Species Diversity 23: 183–192
25 November 2018
DOI: 10.12782/specdiv.23.183

Marine Macrodasyida (Gastrotricha) from Hokkaido, Northern Japan

Shohei Yamauchi1 and Hiroshi Kajihara2,3

1 Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
2 Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
E-mail: kajihara@eis.hokudai.ac.jp (HK)
3 Corresponding author

(Received 13 November 2017; Accepted 20 July 2018)

http://zoobank.org/3FA0A429-1676-4326-B8D3-FFBA8FE403C9

Three new species of macrodasyidan gastrotrichs are described from the coasts of Hokkaido, northern Japan. Cephalodasys mahoae sp. nov. differs from congeners in having the oocytes developing from posterior to anterior. Turbanella cuspidata sp. nov. is characterized by a pair of small, ventrolateral projective organs at U06. Turbanella lobata sp. nov. is unique among congeners in having paired lateral lobes on the neck. We inferred the phylogenetic position of C. mahoae sp. nov. by maximum-likelihood analysis and Bayesian inference based on 18S rRNA, 28S rRNA, and COI gene sequences from 28 species of macrodasyids. In the resulting trees, C. mahoae sp. nov. formed a clade with an unidentified species of Cephalodasys Remane, 1926, but not with C. turbanelloides (Boaden, 1960).

Key Words: Interstitial, marine invertebrates, meiofauna, Pacific, Sea of Japan.

Introduction

The phylum Gastrotricha currently contains about 850 species of aquatic, microscopic animals (e.g., Todaro et al. 2014; Kolicka et al. 2017), which are classified into the two orders Chaetonotida and Macrodasyida. The former includes tenpin-shaped, hermaphroditic or parthenogenetic species found in marine, brackish, or freshwater habitats, whereas the latter includes vermiform, hermaphroditic species living interstitially in sand in marine ecosystems (Hummon and Todaro 2010; Kieneke and Schmidt-Rhaesa 2015), with exceptions of two freshwater species (Todaro et al. 2012). Macrodasyida currently comprises 365 species classified in 35 genera and 10 families (Hummon and Todaro 2018). Morphologically, macrodasyidans can be distinguished from chaetonotidan by having two pores on each side of the pharynx that allow excess water to be drained during feeding; macrodasyidans possess tubular adhesive glands on both anterior and posterior ends of the body as well as on the lateral surfaces, as opposed to chaetonotidan in which adhesive glands are present only on the posterior end of the body (e.g., Ruppert 1991).

Macrodasyidans have been poorly investigated in Japan, with seven named species so far reported, and only a few records of undetermined species exist for Hokkaido, northern Japan. Saito (1937) described the first macrodasyidan from Japan, Tetranchyroderma dendricum Saito, 1937, from Hiroshima. In an investigation of meiofauna around Kasado Island in the Seto Island Sea, Sudzuki (1976) detected five gastrotrich species, including undetermined species in the genera Cephalodasys Remane, 1926 and Macrodasya Remane, 1924, and described Paradasys nipponensis Sudzuki, 1976. Considering the rather inadequate description and illustration, seemingly based on juvenile specimens, however, there is little doubt that P. nipponensis must be regarded as species inquirenda (Chang et al. 2002). Chang et al. (2002) later described three species of macrodasyidans—Tetranchyroderma schizocirratum Chang, Kubota and Shirayama, 2002, Thaumastoderma clandestinum Chang, Kubota and Shirayama, 2002, and Oregodasys itoi Chang, Kubota and Shirayama, 2002—from Shirahama, middle Honshu, Japan. Hiruta (2002) mentioned undetermined macrodasyidans from Eashii, Hokkaido. More recently, Lee and Chang (2011) described two species—Lepidodasys laeviacus Lee and Chang, 2011 and L. tsushimaensis Lee and Chang, 2011—from Tsushima Island in the Korea Strait, between the Japanese mainland and the Korean Peninsula.

During the course of a faunal survey of marine interstitial animals around Hokkaido, we found three species of macrodasyidan that are new to science, one in Cephalodasys and the other two in Turbanella Schultze, 1853. We inferred the phylogenetic position of the new species of Cephalodasys within Macrodasyida by using partial 18S rRNA, 28S rRNA, and COI gene sequences. In this paper, we describe and illustrate these three species, and present the results of the molecular phylogenetic analysis.

Materials and methods

Specimen collection. Specimens were collected from 2012 to 2014 in the intertidal zone at low tide on three beaches around Hokkaido, Japan (Fig. 1). Sediments at the
ground-water level were sampled with a scoop and taken back to the laboratory. Animals were extracted by freshwater-shock: the sediment was placed in a bucket with tap water, then agitated briefly (10 sec) 2–3 times; the supernatant was sieved through 30-µm mesh; the residue was immediately placed in seawater; and living macrodasyids were collected on a glass slide with a cover slip, examined under an Olympus BX51 light microscope, and photographed with a Nikon DS-5Mc digital camera system at several focal depths. Drawings were made from these images by using the GNU image manipulation program GIMP ver. 2.8. Some of the relaxed specimens were fixed in 10% formalin–seawater and mounted in glycerin on a glass slide, with the edges of the coverslip sealed with Canada balsam. Other specimens were observed by scanning electron microscopy (SEM). Material for SEM was fixed overnight in Bouin’s solution. After dehydration in a graded ethanol series (50–100%; 30 min each concentration), the specimens were dried in a Hitachi HCP-2 CO2 critical-point drier, mounted on stubs, coated with gold in a JEOL JFC-1100 ion sputter coater, and examined with a Hitachi S-3000N scanning electron microscope at 15 kV accelerating voltage. Type material has been deposited in the Invertebrate Collection at the Hokkaido University Museum (ICHUM), Sapporo, Japan.

Fig. 1. Map of Hokkaido, showing three sampling localities in this study: Ishikari, Mukawa, and Higashi-Shizunai.

Table 1. List of gastrotrich taxa used in the molecular analysis with GenBank accession numbers.

<table>
<thead>
<tr>
<th>Species</th>
<th>18S</th>
<th>28S</th>
<th>COI</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthodasys aculeatus</td>
<td>JF357639</td>
<td>JF357687</td>
<td>—</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Anandrodasys agadasys</td>
<td>JN203487</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2012)</td>
</tr>
<tr>
<td>Cephalodasys mahoae sp. nov.</td>
<td>LC018992</td>
<td>LC383934</td>
<td>LC383935</td>
<td>present study</td>
</tr>
<tr>
<td>Cephalodasys turbanelloides</td>
<td>AM231776</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2006)</td>
</tr>
<tr>
<td>Cephalodasys sp. 1</td>
<td>JN203488</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2012)</td>
</tr>
<tr>
<td>Cephalodasys sp. 2</td>
<td>JF970237</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2012)</td>
</tr>
<tr>
<td>Dactylopodola typhle</td>
<td>JF357653</td>
<td>JF357701</td>
<td>JF432038</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Diplodasys ankeli</td>
<td>JF357667</td>
<td>—</td>
<td>JF432049</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Dolichodasys sp.</td>
<td>AM231778</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2006)</td>
</tr>
<tr>
<td>Lepidodasys unicarenatus</td>
<td>JF357655</td>
<td>—</td>
<td>JF432039</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Macrodasys buddenbrocki</td>
<td>JY963692</td>
<td>KP21012</td>
<td>—</td>
<td>18S, Petrov et al. (2007); 28S, Petrov et al. (unpublished)</td>
</tr>
<tr>
<td>Megadasys sp. 1</td>
<td>JF357656</td>
<td>JF357704</td>
<td>—</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Megadasys sp. 2</td>
<td>JF357655</td>
<td>JF357703</td>
<td>—</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Mesodasys litoralis</td>
<td>JF357658</td>
<td>JF357706</td>
<td>JF432044</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Oregodasys tentaculatus</td>
<td>JF357626</td>
<td>JF357674</td>
<td>JF432021</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Paradasys sp.</td>
<td>AM231781</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2006)</td>
</tr>
<tr>
<td>Paraturbanella teissieri</td>
<td>JF357661</td>
<td>JF357709</td>
<td>—</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Pleurodasys helgolandicus</td>
<td>JF970236</td>
<td>—</td>
<td>—</td>
<td>Papas and Riutort (2012)</td>
</tr>
<tr>
<td>Psychostomella tyrrhenica</td>
<td>JF357634</td>
<td>JF357682</td>
<td>JF432027</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Redudasyas fornerise</td>
<td>JN203489</td>
<td>—</td>
<td>KJ950122</td>
<td>Todaro et al. (2012)</td>
</tr>
<tr>
<td>Tetranchyroderma thyssanophorum</td>
<td>JF357646</td>
<td>JF357694</td>
<td>JF432034</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Thaumastoderma moebjergi</td>
<td>JF357671</td>
<td>JF357713</td>
<td>—</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Turbanella bocqueti</td>
<td>JF357662</td>
<td>JF357710</td>
<td>JF432046</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Urodasys sp. 1</td>
<td>DQ079912</td>
<td>—</td>
<td>—</td>
<td>Sørensen et al. (2006)</td>
</tr>
<tr>
<td>Urodasys sp. 2</td>
<td>JY185488</td>
<td>—</td>
<td>—</td>
<td>Giribet et al. (2004)</td>
</tr>
<tr>
<td>Xenodasys riedli</td>
<td>JN203490</td>
<td>—</td>
<td>—</td>
<td>Todaro et al. (2012)</td>
</tr>
<tr>
<td>Xenodasys sp.</td>
<td>JY185529</td>
<td>—</td>
<td>—</td>
<td>Giribet et al. (2004)</td>
</tr>
<tr>
<td>Outgroups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenotrachelula intermedia</td>
<td>JF357664</td>
<td>JF357712</td>
<td>JF432048</td>
<td>Todaro et al. (2011)</td>
</tr>
<tr>
<td>Xenotrachelula velox</td>
<td>JN185488</td>
<td>JN185529</td>
<td>—</td>
<td>Kånneby et al. (2012)</td>
</tr>
</tbody>
</table>
DNA extraction and amplification. DNA was extracted from 80 pooled specimens of *Cephalodasys mahoae* sp. nov., collected from Ishikari beach by using a DNeasy Blood & Tissue Kit (Qiagen). Amplification of partial 18S rRNA, 28S rRNA, and COI genes was carried out using universal primers: 1F/9R (Giribet et al. 1994) for 18S; 16sar-L/16sbr-H (Palumbi et al. 1991) for 16S; LCO1490/HCO 2980 (Folmer et al. 1994) for COI. For 28S rRNA gene amplification, the primer pair 28S a (Whiting et al. 1997) and 28S_3KR (Yamasaki et al. 2013) were used. Reactions were performed with an iCycler thermal cycler (Bio-Rad Laboratories) in final volumes of 10 µl. PCR conditions were 0.5 min at 95°C, 30 cycles of 0.5 min at 95°C, 0.5 min at 45°C and 1.5 min (18S and 28S) or 0.5 min (16S and COI) at 72°C, and 7 min at 72°C. PCR products were purified with silica method (Boom et al. 1990). Direct sequencing was performed with BigDye Terminator ver. 3.1 (Life Technologies) reagents and a 3730 DNA analyzer (Life Technologies), using amplification primers, as well as internal primers for 18S [5R and 3F (Giribet et al. 1996); 18Sbi and S2.0 (Whiting et al. 1997)] and 28S [rd4.8a, rd5b, and rd7b1 (Schwendinger and Giribet 2005)]. Newly determined sequences have been deposited in DDBJ accession numbers LC018992 (18S), LC383934 (28S), LC383933 (16S), and LC383935 (COI).

Alignment and phylogenetic analyses. To assess the phylogenetic affinities of *Cephalodasys mahoae* sp. nov., our analyses included 28 species of macrodasyids, and the chaetonotid *Xenotrichula intermedia* Remane, 1934 and *X. velox* Remane, 1934 as an outgroup (Table 1). For 18S and 28S, alignment of the sequences was performed by using MAFFT ver. 7 (Katoh and Standley 2013), employing the E-INS-i strategy. For COI, sequences were aligned by MUSCLE (Edgar 2004) implemented in MEGA ver. 6.0 (Tamura et al. 2013), using the Align Codons option. Alignment-ambiguous areas were removed by using Gblocks ver. 0.91b (Castresana 2000), allowing smaller final blocks, gap positions within the final blocks, and less strict flanking positions, but not allowing many contiguous non-conserved positions. After eliminating ambiguous sites, each data set was 1617 bp (18S), 1996 bp (28S), and 624 bp (COI) long, respectively. To determine the best partition scheme for maximum-likelihood (ML) analysis and Bayesian inference (BI), PartitionFinder ver. 2.1.1 (Lanfear et al. 2017) was used employing the greedy algorithm. For BI, the most suitable substitution model for each partition selected by PartitionFinder ver. 2.1.1 (Lanfear et al. 2017) was GTR+I+G for 18S+28S and COI (1st codon); GTR+G for COI (2nd codon); and HKY+I+G for COI (3rd codon). ML analysis was performed by using RAxML ver. 8.0.0 (Stamatakis 2014) with GTR+G model of nucleotide substitution for all partitions consisting of 1000 rapid bootstraps. BI was carried out using MrBayes ver. 3.2.3 (Ronquist and Huelsenbeck 2003; Altekar et al. 2004) with two independent Metropolis-coupled analyses (four Markov chains of 50,000,000 generations for each analysis). Trees were sampled every 100 generations. Values of run convergence indicated that sufficient amounts of trees and parameters were sampled (average standard deviation of split frequencies = 0.001120; minimum effective sample size of tree lengths = 340.20; potential scale reduction factor of tree lengths = 1.009). Run convergence was also assessed with Tracer ver. 1.7 (Rambaut et al. 2018); effective sample sizes for all parameters were above 200. Large scale phylogenetic analysis, morphological and molecular evidence, and morphological properties of specimen from Ishikari beach were used to construct a new species.

Abbreviations and conventions. Morphological symbols and conventions follow those of Hummon (2010): L, length; H, height; Lt, total body length from anterior tip of head to posterior tip of caudum and its adhesive tubes; PhJIn, junction between pharynx and intestine; LPh, pharyngeal length from anterior tip of head to PhJIn; TbA/TbL/TbD/TbDL/TbV/TbVL/TbP, adhesive tubes of the anterior, lateral, dorsal, dorso-lateral, ventral, ventro-lateral, and posterior (caudal) groups; U, percentage units of Lt from anterior to posterior.

Results

Taxonomy

Order *Macrodasyida* Remane, 1925
Family *Cephalodasyidae* Hummon and Todaro, 2010
Genus *Cephalodasys* Remane, 1926
Cephalodasys mahoae sp. nov.
(Figs 2, 3)

Material examined. Holotype, ICHUM 4977 (adult), mounted on glass slide, Mukawa, Hokkaido, Japan (42°33.417′N, 141°55.724′E), surface layer of medium-grained sand at water’s edge, 28 June 2012. Two paratypes (mounted on glass slides): ICHUM 4978 (adult), same collection data for holotype; ICHUM 4979 (subadult), Ishikari beach, Hokkaido, Japan (43°15.420′N, 141°21.438′E), medium-grained sand, 55 cm depth, 5 m landward from high-water line, 27 August 2013. Three additional specimens (two adults, one subadult) collected together with holotype, lost after observation. About 10 specimens from Ishikari beach, 20 November 2011, lost after observation.

Etymology. The specific name is after Ms Maho Ikoma, who assisted in sampling.

Description. Habitus. Adult Lt 410–460 µm (435 µm in holotype); L of anterior end to PhJIn (at U31–36) 140–160 µm (157 µm in holotype); body transparent, flattened ventrally, transversely convex dorsally; head bearing shallow lateral lobes at U06 (Figs 2A, 3A); neck constriction inconspicuous at U09–11; trunk widest in mid-body region, tapering gradually to caudal base; caudum blunt. Cuticle finely granular, without epidermal glands.

Adhesive tubes. TbA two per side (L 5 µm), occurring on lobe inserted at U08–09 (Figs 2B, 3C); TbVL 10–14 per side (L 4–6 µm), insertions obscure, irregularly spaced, often asymmetrically arranged, present only along intestine (U38–80), none in pharyngeal region or behind anal opening (Figs 2A, B, 3A); TbD/TbDL absent; Tbp 4–6 per side (L 8–11 µm), inserting on tapered posterior end of trunk and directed posteriorly (Figs 2A, B, 3A–C).

Ciliation. Mouth surrounded by short sensory cilia (L 6 µm) (Figs 2A, B, 3A, B), with longer cilia (L 13 µm) inserted on each side at points of head sculpting (Figs 2A, B, 3A, B); ciliary hairs (L 11 µm) forming circum-cephalic band at
U07; sensory cilia (L 13 µm) in lateral and dorsal columns on trunk; ventral locomotory cilia (L 13 µm) running posteriorly from circum-cephalic ring in two longitudinal bands along lateral body margins, remaining separate throughout, but with post-anal ciliary patch.

Digestive tract. Mouth terminal, of medium width (18 µm); buccal cavity cup-shaped, shallow; walls lightly cuticular; pharynx medium throughout, with basal pharyngeal pores at U28–32; intestine divided into broad, anterior, granular region with refractive granules at anterior and posterior ends, and narrower, posterior, non-granular region; anus at U91.

Reproductive tract. Hermaphroditic, probably protogynous; testes not seen; oocytes lying along anterior part of intestine (U50–70), developing from posterior to anterior, largest (67×44 µm) anteriorly (Figs 2A, 3C); seminal receptacle present behind oocytes (Figs 2A, 3C).

Remarks. Among the specimens examined, only one had multiple eggs, thus indicating the direction of oocyte development, from posterior to anterior. This orientation, however, is opposite that in the diagnosis of *Cephalodasys* (Hummon and Todaro 2010; Kienke et al. 2015). Notwithstanding, we placed the new species in this genus because all characters except the orientation of oocyte development agree with the generic diagnosis in Hummon and Todaro (2010) and Kienke et al. (2015). That *C. mahoae* sp. nov. and *Cephalodasys* sp. of Petrov et al. (2007) were sister taxa in the resulting phylogenetic tree (Fig. 4) may justify our generic assignment (see also Phylogeny section below). Alternatively, *C. mahoae* sp. nov. could have been placed in *Paradasys* Remane, 1934, because of its resemblance with the type species, *P. subterraneus* Remane, 1934. However, species in *Paradasys* differ from *C. mahoae* sp. nov. by lacking lateral adhesive tubes (Remane 1934; Karling 1954; Rao and Ganapati 1968; Schmidt 1974; Rao 1980; Hummon 2008).

Among 13 species of congeners (Hummon and Todaro 2010; Hummon 2011; Kienke et al. 2015), *C. mahoae* sp. nov. most closely resembles *C. miniceraus* Hummon, 1974 from the Caribbean Sea. Because the latter species was described based only on subadults, the orientation of oocyte development is unknown. *Cephalodasys mahoae* sp. nov. differs from *C. miniceraus* in the arrangement of TbL/TbVL (U38–80 in *C. mahoae* sp. nov., U26–90 in *C. miniceraus*).

Family Turbanellidae Remane, 1926
Genus Turbanella Schultze, 1853
Turbanella cuspidata sp. nov. (Figs 5, 6)

Material examined. Twelve adults. Holotype, ICHUM 4980, mounted on glass slide, Higashi-Shizunai, Hokkaido, Japan (42°17.333′N, 142°27.590′E), medium-grained sand, surface layer at water’s edge, 19 May 2012. Six paratypes, same collection data as for holotype: ICHUM 4981, mounted on glass slide; ICHUM 4991–4995, on SEM stubs. Four additional specimens destroyed after observation.

Etymology. The new specific name is an adjective from the Latin *cuspidatus* (made pointed), indicating the pair of small, ventrolateral, projective organs.

Description. **Habitus.** Adult Lt 570–670 µm (640 µm in holotype); L of anterior end to PhJIn (at U32–27) 160–180 µm (177 µm in holotype). Body medium in length; head sculpted, with lateral cones at U07 (Figs 5A, 6A, B); trunk widest in mid-body region, tapering gradually to caudal base; caudum slightly cleft, incised from tips to U98, bearing a medial cone (L 5–10 µm) (Figs 5B, 6D). Glands 30–40 per side, medium size (6 µm in diameter), scattered along lateral and medial columns.

Adhesive tubes. TbA 7–8 per side (L 4–12 µm), occurring on lobe inserted at U09–11 (Figs 5B, 6A, B); most medial tube on hand always set lower than others; TbL/TbVL 18–25 per side (L 10–16 µm, insertions difficult to distinguish), irregularly spaced and often asymmetrically arranged, with five in pharyngeal region, one at PhJIn, and others along intestine, but none behind anal opening, most bearing cilia; TbDL 8–13 per side, evenly spaced and sym-
metrically arranged, with three in pharyngeal region and remainder along intestine, most bearing cilia; TbD 15–20 per side, with three in pharyngeal region and remainder along intestine, most bearing cilia; 'cirrata' [Seitenfüsschen] tubes occurring at U39; TbP 10–12 per side, arrayed along rear edge of each lobe, lengthening medial to lateral (L 4–13 µm).

Ciliation. Mouth surrounded by short sensory cilia (L 6 µm), with longer cilia (L 11 µm) inserted at points of head sculpting on each side; ciliary hairs (L 11 µm) forming circum-cephalic band at U07; sensory cilia (L 7 µm) occurring on trunk in lateral and dorsal columns; each Tb on trunk bearing ciliun (L 13 µm) arising from rear apex of tube support; ventral locomotory cilia (L 15 µm) running in two longitudinal bands along lateral body margins to anus, separate except beneath (i.e., ventrally in) pharyngeal region (Fig. 5B).

Digestive tract. Mouth terminal, of medium width (18 µm); buccal cavity cup-shaped, shallow; walls lightly cuticular; pharynx of medium width throughout, with basal pharyngeal pores at U29–24; intestine narrows anterior to posterior; anus at U94.

Reproductive tract. Hermaphroditic; paired testes extending posteriorly from U32, their vasa deferentia recurving anteriorly and exiting at U38; bilateral oocytes developing in posterior to anterior direction, largest (125×57 µm) in anterior region of intestine (Figs 5A, 6C).

Remarks. Among approximately 30 species in the genus *Turbanella*, four species (*T. amphiatlantica* Hummon and Kelly, 2011; *T. bocqueti* Kaplan, 1958 sensu Boaden (1974); *T. varians* Maguire, 1976; and *T. wieseri* Hummon, Fig. 3. Differential interference contrast photomicrographs of *Cephalodasys mahoae* sp. nov. A, Subadult specimen from Ishikari beach, paratype ICHUM 497; B, subadult specimen from Mukawa (lost after being photographed), showing refractive granules at anterior and posterior ends of anterior intestine (indicated by arrowheads); C, anterior adhesive tube (TbA), subadult specimen from Ishikari beach, lost after observation; D, posterior region of body, showing three oocytes (arrowheads) developing from posterior to anterior; holotype (ICHUM 4977). Abbreviations: PhJIn, junction between pharynx and intestine; TbVL, ventro-lateral adhesive tube; TbP, posterior adhesive tube.
2010) share many features with *T. cuspidata* sp. nov., but differ from the latter in the following ways. *Turbanella amphiatlantica* lacks the slight neck constriction; *T. bocqueti* has larger body size (Lt 800–1320) (Hummon 2008); *T. varians* lacks lateral head cones; and *T. wieseri* bears nine TbD per side. In addition, the ventrolateral projective organ on each side the head is characteristic of *T. cuspidata* sp. nov.; the organ is a simple, cylindrical projection, about 45 µm in length and 20 µm in width, sticking out ventrally from a portion slightly anterior to the base of the lateral cone (Fig. 6A, B).

Turbanella lobata sp. nov.
(Figs 7, 8)

Material examined. Holotype, ICHUM 4982 (adult), Ishikari beach, Hokkaido, Japan (43°15.420′ N, 141°21.438′ E), medium-grained sand, 58 cm depth, 5 m landward from high-water level, 14 May 2014. Paratype: ICHUM 4983 (subadult), same collection data as for holotype.

Etymology. The specific name is an adjective from the Latin *lobatus* (lobed), referring to the lateral lobes at U11.

Description. **Habitus.** Adult Lt 390 µm; L of anterior end to PhJIn (at U30) 132 µm. Body short; head slightly sculpted, with lateral cones at U07 and additional lateral lobes at U11 (Figs 7A, 8A); neck constriction at U11; trunk widest in mid-body region, tapering gradually to caudal base; caudum moderately cleft, incised from its tips to U97, medial cone absent. Glands 35–40 per side, medium in size (6 µm in diameter), scattered in lateral and medial columns.

Adhesive tubes. TbA four per side (L 5–7 µm), occurring on lobe inserted at U11 (Fig. 7B); TbL 10–12 per side (L 8–12 µm), some bearing cilia, irregularly spaced and often asymmetrically arranged, with tow in pharyngeal region, one behind anal opening, and others along intestine; TbD 7–8 per side, with one in pharyngeal region and remainder along intestine; 'cirrata' [Seitenfüsschen] tubes occurring at U38; TbP four per side, arrayed along rear edge of each lobe, lengthening medial to lateral (L 3–9 µm) (Figs 7A, B, 8C).

Ciliation. Mouth surrounded by short sensory cilia (L 3 µm), with longer cilia (L 5 µm) inserted at points of head sculpting on each side; ciliary hairs (L 11 µm) forming cir-
cum-cephalic band at U07; sensory cilia (L 9 µm) occurring on trunk in lateral columns; each Tb inserted on trunk, bearing cillum (L 11 µm) arising from rear apex of tube support; ventral locomotory cilia (L 12 µm) running in two longitudinal bands along lateral body margins to anus (Fig. 7B).

Digestive tract. Mouth terminal, of medium width (11 µm); buccal cavity conical-shaped; walls lightly cuticular; pharynx of medium width throughout, with basal pharyngeal pores at U30; intestine narrowing anterior to posterior; anus at U91.

Reproductive tract. Hermaphroditic; paired testes extending posteriorly from U59, their vasa deferentia recurving anteriorly, but terminal not seen; bilateral oocytes developing posterior to anterior, largest (53 × 23 µm) in anterior region of intestine (Figs 7A, 8B).

Remarks. Among approximately 30 species in the genus Turbanella, five species share many features with Turbanella lobata sp. nov.: T. caledoniensis Hummon, 2008; T. lutheri Remane, 1952; T. otti Schrom, 1972; T. pacifica Schmidt, 1974; and T. subterranea Remane, 1934. These species differ from T. lobata sp. nov. as follows: T. caledoniensis lacks lateral head lobes and the neck constriction; T. lutheri

Fig. 6. Turbanella cuspidata sp. nov. A, SEM image of head and neck region; arrowhead indicates projective organ, left anteroventral view, paratype ICHUM 4991. B–D, Differential interference contrast photomicrographs of holotype (ICHUM 4980); B, head and neck region, ventral view; C, mid-body region showing oocytes; D, caudal part, ventral view, showing medial caudal cone and arrangement of posterior adhesive tubes (TbP). Abbreviation: TbA, anterior adhesive tube.
bears TbP from the outside edge; T. otti bears a prominent medial caudal cone; T. pacifica lacks TbD; and T. subterranea has only a slight neck constriction. The dorsolateral lobes at the neck constriction in T. lobata sp. nov. (Fig. 8A) are unique among members of the genus. However, this character should be treated with caution, because it might be as a result of freshwater osmotic shock during extraction.

Phylogeny

In the resulting tree, Cephalodasys mahoe sp. nov. was sister to Cephalodasys sp. of Petrov et al. (2007) with full support of bootstrap (BS) value and Bayesian posterior probability (PP) (Fig. 4). These two OTUs were nested within a rather well-supported subclade (97% BS, 1.00 PP) that contains Dolichodasys sp. (Cephalodasyidae), Redudasys formerise Kisielewski, 1987 (Redudasysidae), and Anandrodasys agadasya (Hochberg, 2003) (Redudasysidae). Cephalodasys turbanelloides (Boaden, 1960) sensu Todaro et al. (2006) was sister to Paradasya sensu Todaro et al. (2006), not to the C. mahoe+Cephalodasys sp. clade. Cephalodasys turbanelloides was originally established in Paradasya (Boaden 1960), suggesting that transfer of the species to Cephalodasys (Hummon 1974) may require a revision. Our analysis indicates Cephalodasys and Cephalodasyidae as currently diagnosed (Hummon and Todaro 2010; Kieneke et al. 2015) are not monophyletic (Fig. 4). However, additional gene markers may recover them as monophyletic, because support values for basal nodes are generally low (Fig. 4). In any case, inclusion of C. maximus Remane, 1926, the type species of Cephalodasys, as well as P. subterranea, the type species of Paradasya (see Remarks for C. mahoe sp. nov. above), in molecular phylogenetic context is indispensable to test the appropriateness of the generic placement of C. mahoe sp. nov., as well as for taxonomic revision of the family.

Acknowledgments

We are grateful to Ms Maho Ikoma (Hokkaido University) for her help in sampling and to Professor Matthew H. Dick (Hokkaido University) for editing an early version of the manuscript. This study was financially supported by JSPS KAKENHI 25650133 for HK.

References

es) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26: 408–437.

