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SUMMARY

1. We investigated how dynamics in phytoplankton biomass are driven through light and nutrient

limitations in the Mwanza Gulf, Lake Victoria (Tanzania).

2. We measured light attenuation, chlorophyll a and water quality parameters along a phytoplankton

biomass gradient in the Mwanza Gulf at six sampling stations in three different seasons from August

2009 to March 2011.

3. We found a higher rate of attenuation of photosynthetic available radiation than in other gulfs of

Lake Victoria which could only partially be explained by phytoplankton biomass, measured as chlo-

rophyll a. Suspended particulate detritus strongly affected light attenuation, particularly in shallow

water.

4. In shallow water in the southern part of the Mwanza Gulf, nutrients were in excess and phyto-

plankton biomass was limited by light. In deeper water near the entrance of the gulf, light was not

limiting when nitrogen probably was, as indicated by the N:P ratio.

5. Low abundance of N-fixing phytoplankton species suggests that N-fixation was low in shallow

water. Phytoplankton biomass was lower in Mwanza Gulf than in northern gulfs of Lake Victoria,

but might increase in the future as a result of nutrient enrichment caused by an increase in intensive

agriculture and rapid growth of the city of Mwanza.
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Introduction

Lake Victoria has undergone major ecological changes

since the 1960s. Its faunal composition changed with the

introduction of Nile perch, Lates niloticus in the 1950s and

1960s, when the dominant endemic haplochromine cich-

lid fishes declined and hundreds of species went extinct

(Witte et al., 1992; Goudswaard, Witte & Katunzi, 2008).

An important commercial fishery targeting Nile perch

developed and peaked in 1990 with an estimated maxi-

mum total yield of 300 000 ton per year. Catches now

fluctuate around 230 000 tons per year (Kolding et al.,

2008).

In addition to the Nile perch and its fishery, another

major driver of change in Lake Victoria is eutrophica-

tion, which started gradually from the 1920s onwards

and which was caused by an increasing human popula-

tion around the lake and corresponding degradation of

the shorelines (Hecky, 1993). As a result of the increas-

ing nutrient load into the lake, phytoplankton biomass

increased and the community shifted from dominance of

diatoms to cyanobacteria (Hecky, 1993; Mugidde, 1993;

Kling, Mugidde & Hecky, 2001; Verschuren et al., 2002;

Stager et al., 2009; Sitoki et al., 2010). The increased

primary production fuelled the food web and increased

lake productivity and fish catches (Kolding et al., 2008;
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Hecky et al., 2010). However, despite ongoing nutrient

load into the lake, phytoplankton biomass has not

increased since the 1990s (Silsbe et al., 2006; Sitoki et al.,

2010) and is now supposedly light-limited in Lake Victo-

ria in both shallow and deep water (Mugidde, 1993;

Silsbe et al., 2006; C�ozar et al., 2012). In shallow parts of

Lake Victoria, light becomes limited through self-sha-

ding when phytoplankton biomass is high and in deep

water when the mixed depth is greater than the eupho-

tic depth (Hecky, 1993; Guildford et al., 2003; Mugidde

et al., 2003; Gikuma-Njuru & Hecky, 2005). Light limita-

tion in shallow water may also be caused by resuspen-

sion of detritus and sediment and high concentrations of

dissolved organic matter (Gikuma-Njuru & Hecky, 2005;

Loiselle et al., 2008). In inshore areas and bays, this

organic matter originates mostly from allochthonous

sources such as wastewater or run-off from cultivated

shorelines whereas, in offshore areas, it originates

mostly from decaying plankton (Machiwa, 2010).

When light conditions are good, nitrogen may become

limiting in shallow parts of the lake (Guildford et al.,

2003), while in deep water nitrogen might become lim-

ited under anoxic conditions, stimulating denitrification,

which usually occurs in stratified conditions during the

rainy seasons (Guildford et al., 2000; North et al., 2008).

In turn, nitrogen limitation favours nitrogen-fixing

cyanobacteria (Guildford et al., 2003), which now domi-

nate the phytoplankton of Lake Victoria and are respon-

sible for most of the nitrogen load into the lake (Kling

et al., 2001; Mugidde et al., 2003). Phosphorus, on the

other hand, has increased since the 1960s and is mostly

in excess both in shallow and in deep parts of the lake

(Hecky, 1993; Mugidde, 2001).

In contrast to the clear bottom-up effects of nutrient

loading, no top-down regulation of phytoplankton bio-

mass has been shown in in situ experiments, in which

micro-crustacean grazing in shallow and deeper parts of

lake Victoria apparently had little effect on chlorophyll a

concentrations (Lehman & Branstrator, 1993). Moreover,

the relative abundance of large-bodied grazers was very

low and omnivorous cyclopoid copepods dominated the

zooplankton of the Mwanza Gulf throughout the year

(personal observations) and the rest of the lake (Mweb-

aza-Ndawula, 1994; Wanink et al., 2002). Therefore, we

assumed that limitation of phytoplankton growth by

zooplankton is minimal and was not considered in this

study.

Most studies on phytoplankton dynamics and limita-

tions have been conducted in northern Lake Victoria, in

eutrophic bays with high phytoplankton biomass (Mug-

idde, 2001; Gikuma-Njuru & Hecky, 2005; Silsbe et al.,

2006; Haande et al., 2011). In general, the southern part

of the lake has lower seasonal peaks in phytoplankton

biomass, however, and they occur 2 months later than

in the northern part, possibly because of a lake-wide

convective circulation of water (C�ozar et al., 2012). It is

unclear whether the phytoplankton dynamics in the

north, and their drivers, are the same for the whole of

Lake Victoria. Furthermore, phytoplankton dynamics

have rarely been studied for southern Lake Victoria.

The few studies conducted have focussed on large spa-

tial scales between Gulfs or depth strata covering half

the lake (Shayo, Lugomela & Machiwa, 2011; Ngupula

et al., 2012). Therefore, this study focussed on the

dynamics of phytoplankton biomass and water quality

on a small spatial scale in the Mwanza Gulf in southern

Lake Victoria, covering a depth gradient from 3 m in

inshore water in the south to 30 m in offshore water

near the entrance of the Gulf. This depth gradient

makes Mwanza Gulf an excellent area to study the spa-

tial dynamics and limitations of phytoplankton biomass

in detail.

To study the dynamics of phytoplankton biomass and

growth limitation, we examined spatial and seasonal

dynamics of water quality parameters, light attenuation

and chlorophyll a concentrations in the Mwanza Gulf

from shallow inshore to deep offshore water. We

addressed the following questions: (i) How does phyto-

plankton biomass vary in time and space? and (ii) What

are the factors driving this variability: is it light, nutri-

ents or a combination of both?

Methods

Study area

Mwanza Gulf is located in the south of Lake Victoria

(Tanzania) and is about 60 km long, 2.5–11 km wide

and has a surface area of approximately 500 km2 (Fig. 1;

Witte & Van Densen, 1995). Its irregular shoreline is

characterised by a vegetation of papyrus (Cyperus papy-

rus), reeds (e.g. Phragmites australis) and water hyacinth

(Eichhornia crassipes), alternating with rock formations.

The bottom consists of soft mud. The catchment area of

the Mwanza Gulf is used mainly for agriculture (ranging

from 62.9% in the north to 71.8% in the south). Bush

land, formerly used for agriculture, covers around 20%

of the catchment area. In the south 5.1% consists of natu-

ral habitats such as swamps and woodland, whereas this

is only 0.7% in the north. Here, urban area covers 16.2%

(Mwanza City; Fig. 1). Forests are absent around

Mwanza Gulf (Vlieghe, 2000).
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Whereas most of the water flowing into the Gulf

comes from surface run-off, forming seasonal streams

during the rainy season, there are also some permanent

rivers (Fig. 1). The Isanga River in the south is the larg-

est with a mean annual discharge of 29.8 m3 s�1 and a

catchment area of 6812 km2. The Magogo River has a

mean discharge of 8.9 m3 s�1 and a catchment area of

5207 km2 (Myanza et al., 2005). These rivers collect

waste water from fish processing plants and a brewery.

Towards the north, the Nyashishi River with a mean

annual discharge of 1.7 m3 s�1 and a catchment area of

1565 km2 flows into the gulf and in Mwanza city in the

north, a small river (the Mirongo) collects waste water

from the city and industrial plants before flowing into

the lake. Compared to other gulfs in the lake, Mwanza

Gulf has weak river input and is poorly flushed

(Machiwa, 2010).

Climate

There are three seasons in Lake Victoria based on the

yearly monsoon cycles. There is a dry season from June

to August, when water temperature is low and strong

southerly winds keep the water column well mixed,

oxygenated and isothermal (Talling, 1966; Akiyama,

Kajumulo & Olsen, 1977). In the short rains, from Sep-

tember to December, the water column gradually strati-

fies as the wind declines, rainfall increases and the

surface layer of the water column warms up. During the

long rains, from January to May, precipitation is high

and stratification is strongest (Talling, 1966). However,

both the onset and the timing of rainfall in the Lake Vic-

toria basin are highly variable (Kizza et al., 2009).

Mwanza Gulf had similar seasons during the sam-

pling period from 2009 to 2011, although during the

short and long rains, from September 2009 to May 2010,

rainfall was twice as much as from September 2010 to

May 2011.

Data collection

Data were collected from August 2009 until April 2011

at six sampling stations along a north-south gradient in

three areas (Fig. 1). Data from the six stations were

pooled for analyses into three areas: shallow (<5 m

depth), intermediate (5–10 m depth) and deep water

(10–25 m depth; Fig. 1). In 2009–2010, sampling at all

stations was done once per season, starting in August

2009 during the dry season and ending in May 2010

during the long rains. In 2010–2011, sampling was done

three times per season, starting in June 2010 during the

dry season and ending in April 2011 during the long

rains. At each station, three locations, separated ca.

500 m from each other, were sampled between 10:00 h

and 14:00 h. To minimise direct littoral influences, sam-

pling at each station was done at least 1.5 km from the

shore. In May 2012, additional observations were carried

out on dissolved organic matter fractions.

A hydrolab DS5 multiprobe (OTT Messtechnik GmbH

& Co, Kempten, Germany) collected vertical profiles of

temperature, conductivity and chlorophyll a from the

bottom to the surface. A mounted spherical quantum

sensor (LI-COR Biosciences, Lincoln, Nebraska, U.S.A.)

measured photosynthetic active radiation. Water sam-

ples were taken on three occasions throughout the sam-

pling period for calibration. Conductivity was calibrated

by using standards with known conductivity and chloro-

phyll a by using extraction in 80% ethanol at 75 °C for

5 min (Moed & Hallegraef, 1978). Probe measurements

Nyashishi R.

Mirongo R.

Magogo R.

Isanga R.

Shallow
< 5 m

N

10
km

*
*
*
*
*
*

Intermediate
5–10 m

Deep
15–25 m

MWANZA
CITY

Fig. 1 Map of the Mwanza Gulf with six sampling stations (aster-

isks). Stations were divided in three areas to facilitate data analy-

ses: (1) shallow = depth range of <5 m, (2) intermediate = depth

range of 5–10 m and (3) deep = depth range of 15–25 m.
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were in general 1.5- to 2-fold lower compared to the

extracted chlorophyll a analyses. Chlorophyll a measure-

ments with the probe were corrected with the extracted

calibration analyses of chlorophyll a.

At each station, Secchi depth was measured in tripli-

cate with a 25-cm-diameter black and white Secchi disc

and was defined as the average depth at which the disc

disappeared when lowering it in the water and reap-

peared when lifting it.

At each sampling station, water samples were taken

every metre over the euphotic depth by using a Van

Dorn water sampler. Samples were pooled for analyses

of the following nutrients: total phosphorus (TP), total

nitrogen (TN); particulate fractions: particulate organic

carbon (POC) and particulate inorganic matter (PIM);

and dissolved fractions: dissolved organic carbon

(DOC), chromophoric dissolved organic matter (CDOM)

and humic acid. Nutrients were analysed in the labora-

tory by a digestion and photometric method (Merck

KGaA, Darmstadt, Germany). Water was filtered

through a glass-fibre C filter (Whatman GmbH, Den

Bosch, the Netherlands), and seston was used for analy-

ses of POC and PIM. Particulate organic carbon was

analysed with the standard loss on ignition method

(American Public Health Association (APHA), 2005),

whereby the organic fraction was calculated by the

seston mass combusted for 1 h at 550 °C subtracted

from the mass dried at 105° for 24 h and divided by 2.5

to get the carbon content. Particulate organic carbon con-

tains carbon derived from mainly phytoplankton and

detritus. Detritus was calculated by estimating the car-

bon content of chlorophyll by using a chlorophyll: dry

mass ratio of 1 : 50 (Bailey-Watts, 1974) and a dry mass:

carbon ratio of 2 : 1 (Winberg, 1971). This calculated C

concentration was subtracted from POC to estimate the

carbon concentrations of detritus. For estimating PIM,

five unused filters were weighed after combustion at

550 °C for 1 h, and the average mass was subtracted

from that of the filters with seston after combustion.

Water for DOC, CDOM and HA was filtered through

0.22 lm pore filter and the filtrate collected for analyses.

Dissolved organic carbon was analysed by chemical oxy-

gen demand (American Public Health Association;

APHA, 2005). Chromophoric dissolved organic matter

and HA were determined by measuring the absorbance

at 272 and 465 nm and calibrated gravimetrically (Maz-

zuoli et al., 2003).

Pooled water samples from the euphotic zone were

preserved in glutaraldehyde and sent to the Netherlands

Institute of Ecology for analyses with a phyto-PAM fluo-

rometer (Walz, Germany) to differentiate between chlo-

rophytes, diatoms and cyanobacteria. On 1 September

2010 and 4 April 2011, water samples from station 1, 3

and 6 were preserved with lugol, and after sedimenta-

tion, phytoplankton was generally classified to the genus

or species and abundances estimated. Phytoplankton

was counted as number of colonies, but the number of

cells per colony was noted and all colonies were classi-

fied into size classes.

Estimating physical parameters

Water density was calculated using vertical profiles of

temperature and conductivity (Chen & Millero, 1977).

Thermal stability of the water column (N2) was calcu-

lated according to the following equation (Langenberg,

2008):

N2 ¼ �gDq
�qDz

ð1Þ

where N is the Brunt-Vais€al€a buoyancy frequency, g is

the gravitational acceleration (m s�2), (Dq/Dz) is the

density gradient over a depth interval and �q is the mean

density over the water column (kg L�1).

Water temperature (Twater) was defined as the mean

temperature over the whole water column. Mixed depth

(Zmix) was defined as the maximum change in tempera-

ture with depth over the water column. The euphotic

depth (Zeuph) was defined as the depth at which 1% of

the surface irradiance remains.

Analysis of spatial and seasonal dynamics

The spatial and seasonal effects on the dynamics of

stratification, water quality and light-associated parame-

ters and phytoplankton data were analysed by Kruskal–

Wallis tests because normality could not be achieved

directly or after log transformations. In case of signifi-

cant spatial or seasonal effects, post hoc pairwise compar-

isons were performed with adjusted levels for multiple

comparisons using a Bonferroni correction.

Analyses of light conditions

The attenuation of photosynthetically active radiation

(PAR: 400–700 nm wave length) is caused by optically

active components in the water column and expressed

by the attenuation coefficient KPAR. KPAR was estimated

as the slope of the linear regression of the natural loga-

rithm of PAR on depth of each vertical profile. Regres-

sion correlation coefficients of <0.9 and regressions with

<15 observations within a single vertical profile, were
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excluded from further data analyses. In fresh water,

light attenuating components consist mainly of phyto-

plankton biomass and background attenuation of other

components such as coloured CDOM, inorganic sedi-

ments, suspended detritus and pure water (Morel, 1988):

KPAR ¼ ðkChl � ChlÞ þ Kbg ð2Þ
where kChl is the specific light attenuation coefficient for

phytoplankton (m2 mg�1) determined by the slope of

linear regression of KPAR (m�1) on chlorophyll a concen-

tration in the euphotic zone (Chl, in mg m�3). Kbg is the

background attenuation (m�1), determined as the inter-

cept with the KPAR axis of the same linear regression. To

analyse the relationship between chlorophyll concentra-

tions and KPAR, we performed regression analyses of

KPAR on Chl (with or without loge transformation,

depending on the normality of the residuals). The resid-

uals from these regression analyses indicate background

attenuation, as the influence of chlorophyll a is excluded.

These residuals were used to determine the influence of

suspended detritus on KPAR, by correlating them with

suspended detritus concentrations (Cdetritus). As these

residuals were not normally distributed, a nonparamet-

ric Spearman’s rank correlation was used. Similarly,

KPAR and PIM were also correlated with a Spearman’s

rank correlation. Next, to test whether the relationship

between KPAR and chlorophyll a concentrations differed

between areas, we also performed an analysis of covari-

ance of KPAR, with area as factor and Chl as covariate.

Solar irradiance was integrated over the mixed depth

to determine the total integrated irradiance in the mixed

layer by the following equation (Loiselle et al., 2007):

Qt ¼ I0=ðkChl � Chlþ KbgÞ � ð1� e�ðkChl�ChlþKbgÞZmixÞ ð3Þ
where Qt is the total integrated irradiance in the mixed

layer (mol photon m�2 day�1 m) and I0 is the incident

irradiance just below the water surface.

Estimating maximum phytoplankton biomass under light

limitation

We used a light limitation approach based on the carry-

ing capacity of phytoplankton biomass developed by

Loiselle et al. (2007, 2008). This approach uses the calcu-

lated available irradiance (Qt) and the chlorophyll a bio-

mass per unit area (mg m�2) to determine where light

limitation occurs. Chlorophyll a biomass per unit area

can be calculated when Chl concentration in mg m�3 is

multiplied with Zmix. When Qt is plotted against chloro-

phyll a biomass per unit area, a linear regression of 10

data points with highest chlorophyll a over the Qt range

defines the carrying capacity for phytoplankton biomass

under light limitation in a steady state (Fig. 2). The mini-

mum irradiance to allow phytoplankton biomass is the

intercept with the Qt axis, and the critical light require-

ment is the slope of the same linear regression. From

this, we calculated the expected chlorophyll a biomass

per unit area under light limitation:

W ¼ Qt �Qmin=w ð4Þ
where W is the expected depth integrated chlorophyll a

biomass per unit area (mg m�2), Qmin is the minimal

light requirement for allowing phytoplankton biomass

(mol photon m�2 day�1 m) and w is the critical light

requirement [mol photon m�1 day�1 (mg m�2 chloro-

phyll a)�1].

By comparing the measured chlorophyll a (mg m�2)

with the expected light-limited maximum chlorophyll a

(W), the relative degree of limitation by light and/or

other factors was determined. Measured chlorophyll a

located further from the expected W is probably limited

by factors such as nutrients, so we calculated the dis-

tance between measured chlorophyll a and W. The latter

(W) is calculated by using a combination of eqns 2, 3

and 4 for each measured chlorophyll a concentration.

Note that the distance between measured chlorophyll a

and W increases exponentially by using eqn 3, because

phytoplankton biomass cannot increase linearly with

light, as phytoplankton itself will have a negative feed-

back on irradiance when increasing in biomass (Loiselle

et al., 2007, 2008). The distance is then plotted against P,

N and detritus concentrations, and correlations are

tested with Pearson’s or Spearman’s rank, according to

C
hl

 (m
g 

m
–2

)

Integrated irradiance (Qt) in the mixed layer (mol photon m–2 day–1 m)

Q
m

in

Fig. 2 The relationship between daily depth integrated light irradi-

ance and phytoplankton biomass per unit area (mg Chl a m�2)

under light-limited conditions over the mixed layer. The line repre-

sents the maximum potential chlorophyll a concentrations when

light is limited (upper limit), determined by regression of 10 sites

with highest chlorophyll a concentrations. The intercept represents

minimum light requirement (Qmin) for phytoplankton growth and

the slope is the expected maximum phytoplankton biomass under

light limitation.
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normality of the data, to investigate the potential role of

nutrients and detritus dynamics in determining phyto-

plankton biomass. With increasing distance, chlorophyll

is less likely to be limited by light and must be limited

by another factor. A negative correlation between dis-

tance and nutrients or detritus suggests that nutrients or

detritus might become limited when light conditions are

good. A positive or no correlation might indicate a limi-

tation by other factors not measured in this study.

Results

Spatial and seasonal dynamics

Variables associated with stratification and water col-

umn stability, such as Twater and N2, differed between

seasons but not between areas (Table 1). Highest tem-

peratures and stability occurred during the short rains

(September–December; Table 1). Water column mixing

was deepest during the dry season (June–August) and

shallow during the short and long rains. This seasonal

trend in mixing and temperature was observed in both

shallow as well as deeper parts of the Gulf (Fig. 3).

Spatial and seasonal effects differed among water

quality variables (Table 1). Total phosphorus concentra-

tion varied seasonally with a slightly higher concentra-

tion during the short rains (September–December) than

the long rains (January–May). Total nitrogen concentra-

tion and TN : TP molar ratio showed a strong spatial

pattern with decreasing values from shallow to deep

water. TN also varied seasonally, with highest concen-

trations during the dry season and short rains and low-

est during the long rains. From the particulate

fractions, POC varied spatially with highest concentra-

tions in shallow water and lowest concentrations in

deep water and seasonally with highest concentrations

Table 1 Summary table of means with post hoc pairwise comparisons and results of the Kruskal–Wallis tests of effects of area (shallow,

intermediate and deep water) and season (dry period, short and long rains) on physical conditions, light-associated parameters, nutrients

and phytoplankton

Area Season Area Season

Shallow

(<5 m)

Intermediate

(5–10 m)

Deep

(15–25 m) Dry

Long

rains

Short

rains H P H P

Stratification

Twater (°C) 24.75 24.98 24.94 23.92a 24.98b 25.74b 2.19 NS 131.10 <0.001
N2 (10�3) 0.49 0.36 0.39 0.25a 0.42ab 0.56b 2.29 NS 18.92 <0.001
Zmax (m) 4.56a 8.54b 22.15c 12.01 11.70 11.53 188.99 <0.001 0.71 NS

Zmix (m) 2.35a 3.93b 11.25c 6.85b 5.50a 5.18a 56.03 <0.001 19.76 <0.001

Water quality parameters (mg L�1)

TN 1.42c 0.89b 0.48a 1.06b 0.80a 0.92b 105.32 <0.001 8.65 0.013

TP 0.08 0.08 0.07 – 0.07a 0.09b 2.23 NS 24.88 <0.001
TN : TP molar 45.92c 25.96b 11.81a – 31.66 20.77 56.07 <0.001 1.21 NS

PIM 17.66 30.71 86.22 13.81a 79.95b 43.56a 4.44 NS 14.48 <0.001
POC 11.76c 8.03b 5.64a 7.17a 10.94b 7.32a 40.96 <0.001 12.78 0.002

DOC 1.03b 1.24b 0.32a – 0.86 – 11.97 0.003 – –

CDOM 1.91b 1.21ab 1.00a – 1.37 – 9.22 0.010 – –
HA 0.0023 0.0011 0.0012 – 0.0015 – 8.13 NS – –

Light-associated parameters

Zeuph (m) 2.77a 3.52b 5.57c 4.83c 3.38a 3.62b 91.02 <0.001 28.62 <0.001
Secchi depth (m) 0.63a 1.08b 1.91c 1.42c 1.10b 1.07a 142.20 <0.001 17.17 <0.001
KPAR (m�1) 2.52a 1.87b 1.04c 1.37a 2.05c 2.01b 82.70 <0.001 17.73 <0.001

Phytoplankton (lg L�1)

Chlorophyll a 17.06c 15.32b 9.25a 13.24 14.96 13.45 85.46 <0.001 0.472 NS

Cyanobacteria 3.55c 3.21b 0.96a 1.48a 2.01a 4.18b 53.42 <0.001 31.81 <0.001
Chlorophytes 0.09 0.00 0.00 0.03 0.02 0.04 6.02 NS 0.004 NS

Diatoms 1.02b 1.17b 0.67a 0.76a 0.80a 1.29b 30.19 <0.001 39.66 <0.001

Significance levels were corrected according to Bonferroni with df = 2 except for seasonal effect on TP and TN : TP in which significance

level was at P < 0.05 with df = 1. Mean values with different superscripts differ significantly.

H, test statistic Kruskal–Wallis; NS, not significant; P, significance level; Twater, water column temperature; N2, buoyancy frequency; Zmax,

maximum depth; Zmix, mixed depth; Zeuph, euphotic depth; KPAR, light attenuation coefficient; TN, total nitrogen; TP, total phosphorus;

POC, particulate organic carbon; PIM, particulate inorganic matter; DOC, dissolved organic carbon; CDOM, chromophoric dissolved organic

matter; HA, humic acid; DOC, CDOM and HA were sampled in May 2012.
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during the long rains. Particulate inorganic matter was

seasonally affected and showed the highest concentra-

tion during the long rains. From the dissolved organic

matter fractions, both DOC and CDOM varied spatially.

Dissolved organic carbon concentration was lowest in

deep water, whereas CDOM was highest in shallow

water and lowest in deep water. Humic acid (HA) con-

centrations were very low and did not vary between

areas.

Chlorophyll a concentrations varied from shallow to

deep water and to a lesser extent between seasons

(Table 1). Total chlorophyll a concentration, as well as

chlorophyll concentrations of the main taxonomic phyto-

plankton groups, all decreased with depth. Cyanobacte-

ria and diatoms also varied seasonally, with highest

concentrations during the short rains, whereas chloro-

phytes occurred only at very low concentrations in all

areas and seasons. Phytoplankton density in September

2010 and April 2011 (stations 1, 3 and 6) showed very

low abundances of N-fixing phytoplankton species

(<4.5% of total abundance). N-fixing species found in

September 2010 were Anabaena spp. and Cylindrospermop-

sis africana; in April 2011 Anabaena spp., Cylindrospermop-

sis africana, C. cuspus, C. philippinensis, C. raciborskii and

C. helicoida. On both occasions close to the date of phyto-

plankton sampling, N : P ratio was highest in shallow

water (36.4 on 26 August 2010 and 71.1 on 1 April 2011)

and lowest in deep water (24.5 on 27 August 2010 and

19.1 on 31 March 2011).

Light-associated parameters were all affected spatially

and seasonally (Table 1). The light attenuation coefficient

(KPAR) decreased from shallow to deep water, following

the chlorophyll a trend. Highest KPAR values occurred

during the long rains, although seasonal differences

were less conspicuous than spatial differences. Euphotic

zone depth and Secchi depth showed similar spatial

trends with greatest values in deep water and during

the dry season.

Light conditions in Mwanza Gulf

A power regression model best described the relationship

between KPAR and chlorophyll a concentration

(KPAR = 0.27�Chl0.71, R2 = 0.47, F = 67.94, P < 0.0001,

n = 80: Fig. 4a). However, the high values of KPAR and

extent of the variation around the relationship suggested

that background light attenuation (Kbg) was high and

varied between areas (Fig. 4a). When using ANCOVA,

with area as factor and chlorophyll a concentration as co-

variate, we indeed found a strong influence of both chlo-

rophyll and area on KPAR (R2 = 0.69, F = 55.03,

P < 0.0001, n = 80: Fig. 4b). There was no interaction

between chlorophyll and area (F = 0.78, P = 0.46, n = 80),

and the decreasing intercept from shallow to deep water

indicates a decreasing influence of background light atten-

uation (Kbg) from shallow to deep water on KPAR (Fig. 4b).

The specific attenuation coefficient for chlorophyll a (kchl)

was 0.0357 (lg L�1) m�1 (95% CL = 0.016–0.055).
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KPAR = 0.0357·Chl + 1.95
KPAR = 0.0357·Chl + 1.28
KPAR = 0.0357·Chl + 0.64
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A high Kbg in shallow water can be caused, among

other factors, by suspended detritus. There was a signifi-

cant positive correlation between the suspended detritus

concentration (Cdetritus) with the residuals of KPAR from

the power regression (rs = 0.27, P = 0.03), suggesting

that detritus played a significant role in explaining the

differences in light attenuation in Mwanza Gulf. How-

ever, in the regression, only 12% of the variance of resid-

uals was explained (Fig. 4c), indicating that, in addition

to chlorophyll and detritus, other light absorbers like

PIM or CDOM could have contributed to light attenua-

tion in the Mwanza Gulf. Particulate inorganic matter

was not significantly correlated with KPAR (P = 0.33)

and, because of the limited data on the dissolved frac-

tions, we could not directly test the influence of CDOM

or DOC on KPAR.

Limitation on phytoplankton biomass

Shallow and intermediate water was more light-limited

than deep water, and data points were in general

located closer to the upper limit of chlorophyll a concen-

trations per unit area under light limitation (Fig. 5). The

minimum light requirement to allow phytoplankton bio-

mass was 9.01 mol photon m�2 day�1 m. The critical

light requirement was 0.064 mol photon m�1 day�1

(mg m�2 chlorophyll a)�1.

The calculated distance to the upper limit of chloro-

phyll a was plotted against nutrients and detritus (Fig. 6).

A Spearman’s rank test showed a significant negative

correlation of TN concentrations with distance from the

upper limit (rs = –0.24, P = 0.04). A negative correlation

of detritus with distance was found (rs = –0.21, P = 0.04).

Correlation between TP concentrations and distance was

very weak and not significant (rs = –0.08, P = 0.61).

Discussion

Spatial and seasonal dynamics

Stratification in the Mwanza Gulf varied among seasons,

but the differences in mean mixed depth were not more

than 2 m between seasons. This relatively weak effect of

season suggests that stratification was not persistent

throughout the rainy seasons. Lake Victoria has distinct

diurnal rainfall and air convection patterns (Nicholson

& Yin, 2002), which can build up and breakdown strati-

fication on a daily basis. In the Mwanza Gulf, the water

was mostly calm in the morning, but winds picked up

in the afternoons (I. Cornelissen, pers. observ.), probably

causing a breakdown of the stratification built up the

previous night. This diurnal break-up of the stratifica-

tion was also observed in inshore waters of 15 m in

Uganda (Macintyre, Romero & Kling, 2002).

The TN and phosphorus concentrations observed here

were within the range reported by other authors for

Lake Victoria at similar depths (TP: 0.03–0.15 and TN:

0.5–1.5 mg L�1; Mugidde, 2001; Gikuma-Njuru, 2008;

Haande et al., 2011; Ngupula, Mbonde & Ezekiel, 2011).

Total phosphorus did not show a spatial trend, which

also corresponds to other studies (Hecky, 1993; Mug-

idde, 1993). More than half of the P loading into the lake

originates from atmospheric wet and dry deposition.

Run-off is only of local importance (Tamatamah et al.,

2005). Total nitrogen concentrations were about threefold

higher in shallow than in deep water, resulting in higher

TN : TP ratios in shallow water, corresponding to other

studies in Lake Victoria (Mugidde, 2001; Gikuma-Njuru

& Hecky, 2005).

In deep water, PIM probably originated from waste-

water from Mwanza City and from river discharges and
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from resuspension of sediment through turbulence in

shallow water (Lung’ayia et al., 2000; Machiwa, 2010).

The high PIM concentrations observed during the long

rainy season were probably caused by high land run-off

into the lake and resuspension of sediment (Lung’ayia

et al., 2000). Particulate organic carbon concentration in

our study was twofold higher inshore than offshore,

which corresponds with spatial trends of particulate car-

bon in other studies in the Mwanza Gulf and in Ugan-

dan water (Mugidde, 2001; Hecky et al., 2010; Machiwa,

2010).

Chlorophyll a concentrations observed in the Mwanza

Gulf fell in the same range as those measured by Shayo

et al. (2011) in Mwanza Gulf and by Ngupula et al.

(2012) in Tanzanian waters, but were in general two- to

threefold lower than in highly eutrophic gulfs in

Uganda, such as Napoleon and Murchison Gulf

(Lehman & Branstrator, 1994; Mugidde, 2001; Yasindi &

Taylor, 2003; Silsbe et al., 2006; C�ozar et al., 2007; North

et al., 2008; Okello et al., 2010; Haande et al., 2011). The

decrease in chlorophyll concentration from shallow to

deep water suggests that nutrients in shallow water

were in excess, enabling a high chlorophyll concentra-

tion until light became limited. Deeper mixing than the

euphotic depth and possible N limitation resulted in

lower chlorophyll concentrations in deeper water. Simi-

lar to other studies on the Ugandan side of Lake Victo-

ria, cyanobacteria were found to be the dominant

phytoplankton group in all locations and throughout the

study period (Okello et al., 2010; Haande et al., 2011).

The very low concentration of chlorophytes also corre-

sponds with other studies in Mwanza Gulf and Lake

Victoria (Akiyama et al., 1977; Lung’ayia et al., 2000;

Kling et al., 2001; Gikuma-Njuru, 2008; Ngupula et al.,

2011).

Light conditions in Mwanza Gulf

Secchi depth was less strongly related to KPAR in

Mwanza Gulf (R2 = 0.75, n = 99: Fig. 7), than in Ugan-

dan waters (R2 = 0.90, n = 112: Fig. 7; Silsbe, 2004). The

relationship obtained paralleled that found for Ugandan

waters, but our Secchi depths were consistently 20 cm

greater than in Uganda at identical KPAR values. As
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KPAR and Secchi depth measure different optical proper-

ties, that is, KPAR measures attenuation of light in the

visible wavelength range and Secchi measures clarity

(Preisendorfer, 1986), KPAR–Secchi depth relationships

differ between types of water. Koenings & Edmundson

(1991) found a tenfold range of KPAR–Secchi depth rela-

tionship between different types of lakes with either

stained (high in CDOM concentrations), turbid (high in

concentrations of suspended particles) or clear waters.

Our KPAR–Secchi depth relationship can be classified in

between clear and turbid waters. The wider 95% predic-

tion intervals of our relationship compared with that for

Uganda (Fig. 7) suggest that there is additional spatial

variation in the sources of light absorption within the

Mwanza Gulf.

Morel & Prieur (1977) classified oceanic waters as

‘case I’ water, in which phytoplankton and detritus

derived from phytoplankton contribute predominantly

to the light attenuation in water, while in ‘case II’ water

sediments and CDOM play a dominant role in light

attenuation. In our study, KPAR values were much

higher in relation to the chlorophyll a range than in

Ugandan and Kenyan waters (Silsbe, 2004; Loiselle et al.,

2008) and in oceanic case I waters (Morel, 1988), sug-

gesting that light absorbers other than phytoplankton

contributed to the light attenuation (background attenua-

tion Kbg) and that the Mwanza Gulf might be considered

as a case II water (Fig. 8). Loiselle et al., (2008), who

found a similar relationship between chlorophyll and

KPAR as Silsbe et al., (2006), identified their study sites as

case II waters. Our study showed high variation

(R2 = 0.47) between KPAR and chlorophyll a, suggesting

that the relative contribution of chlorophyll to light

absorption varied spatially.

It becomes even more evident how strong the light

attenuation by non-algal absorption in our study sites

was, when we compare the integrated irradiance (Qt) of

Morel’s type I waters (which have negligible non-algal

absorption), with the Qt in Mwanza Gulf at similar chlo-

rophyll concentrations and surface irradiance. Our study

shows that non-algal absorption removed 83, 78 and

67% of the integrated irradiance in shallow, intermediate

and deep water, respectively. This indicates that light

limitation was caused by non-phytoplankton light

absorbing properties rather than by self-shading of phy-

toplankton in the Mwanza Gulf.

In the Mwanza Gulf, besides phytoplankton, sus-

pended detritus played an increasing role in PAR atten-

uation from deep to shallow water. In addition, shallow

water had higher CDOM and DOC concentrations than

deep water (Table 1), which suggests that CDOM and

DOC were probably of terrestrial origin (Loiselle et al.,

2007). Chromophoric dissolved organic matter concen-

trations were of similar magnitude as those in the Nyan-

za Gulf (Loiselle et al., 2007). However, as chlorophyll a

concentrations were much higher in the Nyanza Gulf,

the relative contribution of CDOM to light attenuation

could be of more importance in the Mwanza Gulf than

in the Nyanza Gulf.

Limitations of phytoplankton biomass

The specific attenuation coefficient for chlorophyll a

(kChl = 0.036 lg L�1 m, 95% CL = 0.016–0.055) was con-

siderably higher and varied more than in Ugandan and

Kenyan Gulfs (0.019 � 0.002 (SD) lg L�1 m; Loiselle

et al., 2008). The specific attenuation coefficient for chlo-

rophyll a (KChl) of 414 data sets of temperate freshwater

and marine waters ranged from 0.004 to 0.029 lg L�1 m

(Krause-Jensen & Sand-Jensen, 1998). The coefficient

depends on physiological state, photo-adaptation and

historical light exposure of phytoplankton and can vary

considerably within and between aquatic ecosystems

with different taxonomic phytoplankton communities

(Dubinsky & Berman, 1981). The high kChl coefficient in

our study suggests that light attenuation was relatively

fast at a relatively low chlorophyll a biomass and that

light became limited at a low chlorophyll a biomass.

Furthermore, we found that the minimal and critical

light requirements for phytoplankton were similar and

7.5-fold higher than in Ugandan and Kenyan gulfs,

respectively (Loiselle et al., 2007). We also found that

shallow and intermediate water was more light-limited
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(closer to upper limit for phytoplankton biomass) than

deep water, because of higher background attenuation

(Kbg) due to detritus and possibly CDOM. Although

other studies confirm that, in general, phytoplankton

growth in Lake Victoria is light-limited, they suggest that

this is due to self-shading when phytoplankton biomass

is high, especially in shallow water and during periods

of stratification (Guildford et al., 2003; Gikuma-Njuru &

Hecky, 2005). In the Mwanza Gulf, where biomass was

much lower than in northern Lake Victoria Gulfs, self-

shading is expected to play a smaller role.

Our results suggest that factors other than light might

be limiting under specific local conditions. Nitrogen was

probably limited in deep water when light was not

limited. This is confirmed by the TN : TP ratio of 11.8,

which is lower than the ratio of 20 : 1 at which N

generally becomes limiting for phytoplankton growth

(Guildford & Hecky, 2000). A possible cause for low N

concentration might have been deoxygenation in deep

water, enhancing denitrification (Hecky, 1993). The high

TN : TP ratio of 46 in shallow water found in the pres-

ent study indicates a tendency for P limitation besides

light limitation (Guildford & Hecky, 2000). Through

N-fixation, N could accumulate in the water column.

Unfortunately, direct measurements of N-fixation were

not available. However, based on the very low abun-

dances of N-fixing phytoplankton species in September

2010 and April 2011, we infer that the concurrently mea-

sured high N : P ratios in shallow water were not

caused by N-fixation. The high nitrogen content

observed in this study in the Mwanza Gulf may be bet-

ter explained by inputs from run-off from cultivated and

urbanised land, river discharges and internal N loading

through low denitrification rates in well-oxygenated

sediment and resuspension of sediments (Hecky, 1993;

Lung’ayia, Sitoki & Kenyanya, 2001; Pr�esing et al., 2001).

Furthermore, the slow flushing character and lack of

extensive wetlands in connection with the Mwanza Gulf

enable accumulation of N. The apparent lack of N-fixation

is in contrast to other studies in Lake Victoria, in the

Ugandan region, where N-fixation was high and consid-

ered an important N source (Hecky, 1993). N-fixation

was especially high under optimal light conditions in

shallow water with shallow mixed depths (Mugidde et al.,

2003; Guildford et al., 2003). Possibly the low abundances

of N-fixers we found might be an indication that light

conditions in Mwanza Gulf were less optimal for N-fixers

compared to other parts of Lake Victoria.

The degree of light limitation in our study was proba-

bly biased, as we estimated mixed depths from tempera-

ture profiles measured in the mornings when diurnal

stratification was strongest. Complete mixing of the

water column would probably occur once a day in the

late afternoon, resulting in deeper mixed depths over

much of the day. To demonstrate how much distances

are affected by deeper mixing, we ran the light limitation

analysis again with the original data, but assuming a

50% deeper mixed depths and using two alternative sce-

narios: (i) keeping the chlorophyll concentration per unit

area over the mixed layer equal to the observed concen-
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tration per unit area, assuming that the concentration per

unit volume below the observed mixed depth is zero and

thus resulting in lower concentrations per unit volume

over the simulated mixed depths and (ii) keeping the

chlorophyll concentration per unit volume over the

mixed layer equal to the observed concentration per unit

volume, which resulted in higher concentrations per unit

area with the simulated deeper mixed depths (Fig. 9).

According to scenario (i), distances increased with 5%

on average (line b, black dots in Fig. 9), whereas in sce-

nario (ii) distances increased with 46% on average (line

c, open circles). This means that if we assume a greater

mixed depth than in our measurements, in both scenar-

ios, distances increase and therefore light limitation is

less likely to occur than in our original calculations.

Therefore, on a time scale of 24 h, we most probably

overestimated the importance of light limitation and

thus underestimated the effect of other factors limiting

phytoplankton biomass. Thus, our conclusions that other

factors besides light might be limiting in the Mwanza

Gulf are strengthened rather than diminished.

Several studies suggest that primary production in

Lake Victoria might not increase further with eutrophi-

cation, because nutrients are in excess and light limits

further phytoplankton biomass production (Silsbe et al.,

2006; Sitoki et al., 2010). This may account for the highly

eutrophic gulfs in the north with very high phytoplank-

ton biomass, but our study shows that besides light,

nutrients can be limiting in the Mwanza Gulf and phyto-

plankton production is likely to depend on specific local

environmental conditions. A further increase in eutro-

phication could lead locally to higher chlorophyll a con-

centrations under optimal light and mixing conditions.

However, this does not mean that primary production

and lake productivity will continue to increase at a

similar rate, because photosynthetic efficiency decreases

with chlorophyll a. (Silsbe et al., 2006). Eutrophication

affects the whole of Lake Victoria, but its heterogeneous

environment should be considered when assessing

water quality and implementing measures to reduce

eutrophication.
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