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Abstract: Particulate optical backscattering (bbp) is a crucial parameter for the study of ocean biology
and oceanic carbon estimations. In this work, bbp retrieval, by the quasi-analytical algorithm (QAA), is
assessed using a large in situ database of matched bbp and remote-sensing reflectance (Rrs). The QAA
is also applied to satellite Rrs (ESA OC-CCI project) as well, after their validation against in situ Rrs.
Additionally, the effect of Raman Scattering on QAA retrievals is studied. Results show negligible
biases above random noise when QAA-derived bbp is compared to in situ bbp. In addition, Rrs from
the CCI archive shows good agreement with in situ data. The QAA’s functional form of spectral
backscattering slope, as derived from in situ radiometry, is validated. Finally, we show the importance
of correcting for Raman Scattering over clear waters prior to semi-analytical retrieval. Overall, this
work demonstrates the high efficiency of QAA in the bbp detection in case of both in situ and ocean
color data, but it also highlights the necessity to increase the number of observations that are severely
under-sampled in respect to others environmental parameters.

Keywords: particulate optical backscattering; Raman scattering; QAA algorithm; ESA OC-CCI

1. Introduction

Retrieval of water inherent optical properties (IOPs) from both field and ocean color radiometry is at
the base of several biogeochemical and physical oceanographic studies [1,2]. IOPs of algal and non-algal
particles can be derived from remote sensing reflectance spectra (Rrs; units of sr−1) by using appropriate
algorithms [3–5]. Among IOPs, the particulate optical backscattering coefficient (bbp; in m−1) is
related to the particle concentration in seawater, on their size distribution, refractive index, shape
and structure [6–8]. Former research suggested that bbp is mostly influenced by submicron non-algal
particles [9–11]. However, it has been recently shown that most of bbp is due to particles with equivalent
diameters between 1 and 10µm [8], thus including the contribution of phytoplankton cell and supporting
the use of bbp for the retrieval of: (i) particulate organic concentration (POC) [12,13]; (ii) particle size
distribution [14,15]; and (iii) phytoplankton carbon biomass concentration (Cphyto; mg m−3) [16–18],

Remote Sens. 2020, 12, 77; doi:10.3390/rs12010077 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-0239-0033
https://orcid.org/0000-0002-0477-173X
https://orcid.org/0000-0001-8191-8179
https://orcid.org/0000-0001-5392-7457
https://orcid.org/0000-0003-4203-0956
http://www.mdpi.com/2072-4292/12/1/77?type=check_update&version=1
http://dx.doi.org/10.3390/rs12010077
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 77 2 of 16

a key parameter also for phytoplankton physiology studies [2,19,20]. Efficiency in the bbp retrieval is
crucial for ocean biology and global ocean carbon estimations.

On one hand, radiative transfer theory provides the link between bbp and optical radiometry [21].
Therefore, inversion algorithms for bbp detection from optical radiometry can be developed. In particular,
the quasi-analytical algorithm [3,22] is a multi-level algorithm that concatenates a sequence of
empirical, analytical, and semi-analytical steps to retrieve spectral total non-water light absorption
and backscattering (anw and bbp) first and to decompose anw into its CDOM, algal and non-algal
contributions. Specifically, about bbp, some studies suggested some degree of bbp overestimation by
the QAA [23,24], but their reference bbp data were sub-products of chlorophyll-a (Chl) measurements.
QAA estimations from satellite Rrs showed a bias of +16.4% with respect to in situ bbp for the Adriatic
Sea [25]. Using the in situ NOMAD dataset [26], a bbp overestimation of +38% by the QAA with respect
to the observed value was reported [27]. Other results, based on in situ matchups, showed a bias of
+2.5–8.8% for the QAA-derived bbp in Arctic waters, and of +9.5% to +16.4% in low-latitude waters [28].
Pitarch et al. [29] reported a slight underestimation within 10% in the Mediterranean Sea. Most recently,
QAA-derived bbp from different satellite sensors (i.e., MODIS, VIIRS, OLCI) showed good performance
with respect to a large in situ bbp dataset collected on biogeochemical (BGC)-Argo floats [30].

Currently, in the European Space Agency (ESA) Ocean Colour (OC) Climate Change Initiative
(CCI), QAA is the selected algorithm to retrieve bbp. Specifically, the ESA OC-CCI project aims at
creating a long-term, consistent, uncertainty-characterized time series of ocean color products, for
use in climate-change studies [5,31]. In such a context, while in the case of Chl the uncertainties are
fully provided, the bbp satellite products lack such information that is also crucial for POC and Cphyto

estimations [1,32]. This absence of statistical assessment is influenced by the paucity of a sufficient
number of in situ observations for the determination of uncertainties.

Nowadays, the uncertainties associated to QAA-based bbp retrievals globally are not known.
In order to provide a best-effort bbp uncertainty assessment, this work aims at evaluating the efficiency
of QAA for global bbp retrievals by using a large database of corresponding in situ Rrs and bbp data
(N = 2881). In details, we use the updated version of the recent in situ global bio-optical dataset [33]
together with field measurements from the BOUSSOLE buoy [34] and two different oceanographic
cruises in the Tyrrhenian and Adriatic Seas. Unlike previous studies [29], here, the QAA performance
is considered at multiple bands that further allow the evaluation of the bbp spectral slope retrievals
against in situ measurements. The goals of this paper are thus: (i) to define the accuracy of the QAA
for bbp retrievals using only in situ Rrs data; (ii) to validate the CCI Rrs with in situ corresponding data;
and (iii) to evaluate the performance of the QAA using satellite CCI Rrs as input data.

2. Data and Methods

2.1. Assessment of the Quasi-Analytical Algorithm (QAA)

The original algorithm [3] has undergone many updates and developments by several researchers.
The QAA version here used is based on the algorithm for the CCI bands which is currently integrated
in the SeaWiFS data analysis system (SeaDAS) [22].

The sub-surface Rrs (named rrs) is calculated as rrs = Rrs/(0.52 + 1.7Rrs) and modeled as a
function of the IOPs as: rrs = g0u + g1u2, with u = bb/(a + bb), g0 = 0.089 and g1 = 0.1245.
This approach provided good results in the Mediterranean Sea in case of oligotrophic and coastal
waters [29,35].

The QAA uses an empirical inversion of Rrs to retrieve absorption and then it solves total
backscattering (bb) analytically. bbp is calculated by subtraction of pure seawater backscattering (bbw)
for an average temperature of 14 ◦C and an average salinity of 38 PSU [36]. bbp is first estimated at
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a reference wavelength of λ = 555 nm and then the calculation is extended to other wavelengths by
assuming a power law bbp = bbp(λ0)(λ/λ0)

−η for the bbp with a spectral slope.

η = p1

[
1− p2 exp

(
−p3

rrs(443)
rrs(555)

)]
(1)

Equation (1) is widely used for QAA retrievals of bbp at multiple wavelengths. Nevertheless,
we use the in situ dataset presented here to evaluate the accuracy of analytical η. The functional
form of Equation (1) is used and the default numerical coefficients p1 = 2.0, p2 = 1.2 and p3 = 0.9 [22]
are replaced by unknown variables established by non-linear regression. To this aim, we used the
iterative bi-square method, which minimizes a weighted sum of squared errors, where the weight
given to each data point decreases with the distance from the fitted curve [37]. This procedure makes
the curve sensitive to the bulk of the data and the effect of outliers is reduced. The error function is
minimized through the trust region algorithm [38]. In addition, the 95% confidence prediction bounds
are also computed.

It is known that for oligotrophic waters the Raman scattering plays a significant role that is not
accounted for in the semi-analytical Rrs modeling [39]. Therefore, a pertinent question is how much
this phenomenon affects the semi-analytical bbp retrievals. With this aim, Lee et al. [40] developed
empirical correction formulas to compensate the Raman scattering on the Rrs. Here, we assess the
effects of this compensation on the difference between the in situ bbp and Rrs-derived bbp. The statistical
assessment was also replicated in other different cases: (i) validation of satellite CCI Rrs against in
situ Rrs; and (ii) bbp retrievals after the application of QAA to satellite Rrs (Raman corrected), were
compared to in situ measurements at the different available wavelengths.

Estimated data yi are compared to reference data xi by using the following statistical indexes:
relative bias (units of %), relative root-mean square error (RMS, units of %) and determination
coefficient (r2)

bias = 100
1
N

N∑
i = 1

yi − xi

xi
(2a)

RMS = 100

√√√
1
N

N∑
i = 1

(
yi − xi

xi

)2

(2b)

r2 =

∑N
i = 1(xi − x)(yi − y)√∑N

i = 1(xi − x)2
√∑N

i = 1(yi − y)2
(2c)

2.2. In Situ Data

The in situ database is composed of three distinct datasets containing multi-spectral Rrs and bbp:
the recently updated global in situ database ([33] hereafter V19 dataset), an in situ dataset collected
by the Italian National Research Council (CNR) during two field campaigns in the Mediterranean
Sea ([29] hereafter CNR dataset) and the time-series of data acquired by the BOUSSOLE buoy in the
northwestern Mediterranean Sea ([34,41]; hereafter BOU dataset [42]). The three in situ databases
were quality-checked as described below. All the Rrs data were band-shifted to the CCI bands (those
of the NASA SeaWiFS instrument, namely 412, 443, 490, 510, 555, and 670 nm). The band-shifting
procedure [43] is a technique to compensate small band differences in multispectral Rrs data. It takes
into account the spectral shape of the absorption and scattering that contribute to Rrs and constitutes
a more accurate approach than a simple linear interpolation. Considering every wavelength an
independent measurement, the final dataset accounts for a total of N = 2881 Rrs and bbp co-located
measurements around the global ocean (Figure 1). As shown in Figure 2, the total Rrs and bbp spectra
cover from oligotrophic open-ocean to more eutrophic coastal waters as the range of Rrs and bbp values
vary between 0–0.02 sr−1 and 10−4–10−1 m−1 respectively.
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Figure 1. Geographical distribution of the in situ Rrs vs. bbp matchups. Some areas (A1, A2, and A3) 
concentrate a high point density and are highlighted in zoomed maps. Pink, yellow, and green dots 
refer to V19, BOU, and CNR data, respectively. 

 
Figure 2. Rrs and bbp spectra for the three-different datasets: V19, BOU, and CNR. Pink, yellow, and 
green lines refer to V19, BOU, and CNR data, respectively. 

2.2.1. V19 Dataset 

Rrs and IOPs, aggregated within ±6 nm, were downloaded. V19 is a global compilation of in situ 
data that was acquired from many sources (e.g., MOBY, AERONET-OC, SeaBASS, NOMAD, 
MERMAID, AMT, and many others), motivated by the validation of the ocean-color products from 
the ESA OC-CCI products. Methodologies were implemented for homogenization, quality control 

Figure 1. Geographical distribution of the in situ Rrs vs. bbp matchups. Some areas (A1, A2, and A3)
concentrate a high point density and are highlighted in zoomed maps. Pink, yellow, and green dots
refer to V19, BOU, and CNR data, respectively.
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Figure 2. Rrs and bbp spectra for the three-different datasets: V19, BOU, and CNR. Pink, yellow,
and green lines refer to V19, BOU, and CNR data, respectively.

2.2.1. V19 Dataset

Rrs and IOPs, aggregated within ±6 nm, were downloaded. V19 is a global compilation of in
situ data that was acquired from many sources (e.g., MOBY, AERONET-OC, SeaBASS, NOMAD,
MERMAID, AMT, and many others), motivated by the validation of the ocean-color products from the
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ESA OC-CCI products. Methodologies were implemented for homogenization, quality control and
merging of all data. No changes were made to the original data, other than averaging of observations
that were close in time and space, elimination of some points after quality control and conversion to a
standard format [44].

In this study, data were selected only if valid and corresponding Rrs and bbp measurements at all
CCI bands were available. Such condition determines a total of N = 319 matchups. Remaining minor
bbp wavelength mismatches were removed by linear interpolation to the CCI bands. Although V19
is a merged dataset from multiple datasets, the condition we set for the matchup left data that were
originally from the NOMAD dataset only.

2.2.2. BOU Dataset

The BOUSSOLE (BOUee pour l’acquiSition d’une Série Optique a Long termE) project started in 1999,
and its activities are developed on a site located in the northwestern Mediterranean Sea (7◦54′ E,
43◦22′ N, Figure 1, panel A2). Essential information about the site characteristics, the measurement
platform, and the instrumentation was previously documented [34,41,42]. The bbp data were collected
at 9 m nominal depth with a Hobilabs Hydroscat-4 (442, 488, 550, and 620 nm) and processed as in [45].
In addition, a quality control on bbp was applied that required a spectral bbp slope, calculated from
every pair of two consecutive bands, within given bounds (more than −1 and less than 6). Rrs data
were derived with a set of Satlantic 200-series multispectral radiometers ([46] and references therein).
The Rrs is available at a varying number of the following bands, depending on the time period: 412.5,
442.5, 490, 510, 555, 560, 665, 670, and 681.25 nm. Since the application of the QAA requires Rrs at
443, 490, 555, and 670 nm, only Rrs records whose native bands matched those needed by the QAA
algorithms were selected (within a ±6 nm range). Data at 412.5 nm and 442.5 nm were band-shifted to
412 nm and 443 nm [43], respectively. In the green region, if the Rrs at 555 nm was available, it was
directly sampled and the Rrs at 560 nm was ignored. If the Rrs at 560 nm was available when the Rrs

at 555 nm was missing, the Rrs at 560 nm was band-shifted to 555 nm. Similarly, in the red region,
between the Rrs at 665 nm and 670 nm, preference to Rrs at 670 nm was given. Rrs data at 681.25 nm
was not considered for the analysis. Data was generally available within two hours from the local
noon. The time series at sub-daily resolution were reduced by calculating the daily medians.

2.2.3. CNR Dataset

Data belong to two field campaigns conducted in 2013 and 2015 in Italian seas, encompassing a
high optical range between open and coastal waters. Measurements were performed between 8:30 h
and 16:00 h UTC. IOPs and Rrs were collected sequentially at each station, with a maximum delay of
~1 h and ship drift of maximum few hundreds of meters.

Backscattering was measured with an ECO-VSF3, manufactured by WET Labs, Inc., at the
wavelengths 470, 530, and 660 nm. This instrument measures the volume scattering function at three
backward angles and calculates bb by integration of a polynomial fit. Final data are the result of a
binning across the first optical depth.

Radiometry was performed with OCR-507 radiometers, manufactured by Satlantic, Inc., measuring
at the center bands 412, 443, 490, 510, 556, 665, and 865 nm. In-water upwelling radiance at nadir (Lu)
sensor was mounted onto a free-falling T-shaped structure, with the multicast technique. Above-water
downwelling irradiance (Es) data were collected by a reference sensor, mounted at the top of the ship’s
deck. Rrs was computed using the SERDA software developed at CNR [47]. All the Rrs data were
band-shifted to the CCI bands for consistency with the satellite Rrs. Further details about this dataset
are provided in Pitarch et al. [29].

2.3. Satellite ESA OC-CCI Rrs Data

The ESA OC-CCI version 4.0 global daily Rrs data at 4 km resolution for the period 1997–2017 were
downloaded [48]. CCI products are the result of the merging of SeaWiFS, MERIS, MODIS, and VIIRS
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data in which the inter-sensor biases are removed [49]. This version 4.0 includes the latest NASA
reprocessing R2018.0 that mostly accounts for the aging of the MODIS sensor. ESA OC-CCI provides
the daily Rrs data and associated uncertainty maps in terms of bias and RMS, which were generated
with a procedure that included comparison to in situ data and optical water type analysis [48].

In this work, a conservative extraction procedure was followed, in which the center Rrs data
within a 3 × 3 pixels box was extracted only if all the 9 pixels were not flagged, therefore minimizing
possible land border, cloud or other environmental contaminations, and obtaining the highest quality of
matchups. Finally, for each single Rrs, the bias was also extracted and then compensated pixel-by-pixel.

3. Results and Discussion

3.1. QAA Performance for bbp Retrievals from In Situ Data

QAA-retrieved bbp from in situ Rrs is here compared to in situ measured bbp. Comparisons are
made at the native bands of each in situ bbp instrument for the cases of BOU and CNR and at the CCI
bands for V19. Statistics are also presented for each band and dataset.

A first assessment consists of applying the QAA without performing the compensation for
Raman scattering. Here, results show a general overestimation of around +43.4% for V19 (Table 1)
that is not significant given the overall noise expressed by the RMS (152%). This high RMS is the
likely consequence of the different protocols, instrumental and geophysical noises affecting all single
contributors to the V19 dataset (Table 1). In the case of the BOU dataset, an overall overestimation
of +49.2% is found for all the bands which is statistically significant given the related RMS (58.7%).
On the other hand, the QAA applied to the CNR dataset showed the highest performances, with a bias
of +3.3% and a RMS below 23%.

Table 1. Statistical descriptors of the difference between the QAA-derived bbp and in situ bbp for each
dataset, without Raman scattering compensation. Figure A1 provides a graphical representation of
this table.

Band (nm) Bias (%) RMS (%) r2 N

V19

412 40.3 128.4 0.35 319
443 42.7 129.4 0.37 319
490 44.5 127.8 0.41 319
510 45.0 127.1 0.42 319
555 45.2 124.2 0.44 319
670 43.1 114.2 0.47 319
All 43.4 125.3 0.43 1914

BOU

442 44.5 50.7 0.73 172
488 71.3 79.2 0.73 172
550 29.0 36.5 0.78 172
620 52.0 60.2 0.73 172
All 49.2 58.7 0.75 688

CNR
470 11.8 25.1 0.88 93
530 7.7 22.8 0.89 93
660 −9.6 20.7 0.93 93
All 3.3 22.9 0.88 279

To understand the importance of the Raman scattering correction in semi-analytical bbp retrievals,
the analysis is repeated with corrected Rrs [40]. The application of the Raman scattering correction
reduces both bias and RMS nearly for all the bbp at all bands (Table 2 and Figure 3). Indeed, for the
V19 dataset, the bias decreases to 12% with respect to the retrievals obtained without correction of the
Raman scattering (Table 2). The RMS reduction is around 34%. For the BOU data, the RMS and bias
improve of about 11% and 12%, respectively. In the case of the CNR dataset, statistics show a modest
increase in accuracy except for λ = 660 nm, which is likely influenced by chlorophyll-a fluorescence.



Remote Sens. 2020, 12, 77 7 of 16

Although fluorescence peaks at around λ = 660 nm, the ECO-VSF 3 sensor, used to collect the CNR
dataset, has a full width at half maximum (FWHM) of about 20 to 30 nm, so a fluorescence interference
may not be excluded.

Overall, these results are somewhat expected as the Raman scattering correction produces a
smaller effect in coastal waters [50], which represent a significant part of the CNR dataset with respect
to the two other datasets (Figure 2). The overall statistics are in agreement with previous comparisons
that showed negligible biases over noise at global scale [5] and at regional level [29]. Results in this
section highlight the importance of applying the Raman scattering correction to the source Rrs prior to
semi-analytical bbp retrieval in order to increase the accuracy.

Table 2. Statistical descriptors of the difference between the bbp-QAA derived and in situ bbp for
each dataset with Raman scattering compensation. Figure A2 provides a graphical representation of
this table.

Band (nm) Bias (%) RMS (%) r2 N

V19

412 28.5 94.6 0.45 319
443 30.7 95.0 0.47 319
490 32.2 93.4 0.50 319
510 32.6 92.8 0.51 319
555 32.7 90.4 0.52 319
670 30.7 83.1 0.54 319
All 31.2 91.6 0.52 1914

BOU

442 33.0 40.1 0.73 172
488 57.2 64.8 0.73 172
550 18.2 27.1 0.78 172
620 39.0 47.8 0.73 172
All 37.0 47.0 0.75 688

CNR
470 6.5 22.6 0.88 93
530 2.5 21.3 0.89 93
660 −14.2 23.0 0.93 93
All −1.73 22.3 0.89 279
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3.2. Estimation of the bbp Spectral Slope from Rrs Data

The in situ dataset described above is used (see Section 2.2) to assess the proposed relationship in
the QAA and perform a model to data fit that is compared to the common QAA v6 equation [50]. Figure 4
shows a comparison of the independent variable (i.e., the blue-to-green band ratio rrs(443)/rrs(555))
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with respect to η derived from the in situ bbp. Fitting a functional form of Equation (1) returns a curve
(p1 = 2.2, p2 = 0.9 and p3 = 0.5) and a 95% prediction interval, which is around ±1 wide, caused by the
high scatter of the data cloud. The difference between η computed here and the one derived via QAA
is much smaller than the width of the prediction interval, thus making them equivalent for prediction
purposes. Therefore, by the principle of parsimony, the operational η functional form (dashed line
in Figure 4) remains valid. However, one must keep in mind that the low predictive value of this
relationship may result in bbp extrapolations to bands outside the reference one (usually 555 nm) that
accumulate significant errors. In particular, within a worst-case scenario, an error in η estimation,
∆η = 1, will lead to a ~26% error when extrapolating bbp from 555 nm to 412 nm.
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Figure 4. η calculation considering all the in situ data available: V19 (pink dots), BOU (yellow dots),
and CNR (green dots). The solid curve is the best fit of Equation (1) to all the data (p1 = 2.2, p2 = 0.9 and
p3 = 0.5). The 95% confidence prediction bounds are represented by the grey shaded area. The dashed
curve is the η estimation from Rrs as defined in Equation (1). Pink, yellow, and green dots refer to V19,
BOU, and CNR data, respectively.

3.3. Validation of CCI Rrs

Prior to applying to satellite data an algorithm that has been developed with in situ data, assessing
the quality of the satellite Rrs with respect to in situ measured Rrs is desirable in order to identify
possible biases. Therefore, this section uses the in situ Rrs contained in the three datasets to evaluate
the CCI Rrs. There is a total of 882 matchups for V19, 581 for BOU, and 252 for CNR. Good agreement
between in situ values and the CCI Rrs products is found (Figure 5, Table 3) at all wavelengths, rather
consistently with other previous results [5]. Overall, all datasets display similar performance, with
negligible biases with respect to the overall noise expressed by the RMS. In the case of λ = 670, increased
RMS is mostly due to the low values Rrs, except for CNR, that contains a higher data range. It is
concluded that the CCI Rrs do not require adjustments at the studied wavelengths.

The magnitude of this RMS expresses a high bound for the overall uncertainty of the Rrs product
as it is a measure of the errors in the comparison experiment, including those within the in situ data.
The fraction of this error which is attributable to the satellite data only is likely to be much lower.
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To have a measure of this fraction, a comparison to global in situ dataset with a traceable uncertainty
budget would be desirable, though such option is presently not available.
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Figure 5. Scatter plots of CCI Rrs versus in situ Rrs for the six different wavelengths. The dashed line
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Table 3. Statistical descriptors of the difference between satellite CCI Rrs and in situ Rrs for each dataset.
Figure A3 provides a graphical representation of this table.

Band (nm) Bias (%) RMS (%) r2 N

V19

412 −19.6 42.7 0.37 147
443 −16.9 30.6 0.53 147
490 −5.0 19.3 0.66 147
510 −0.4 15.3 0.73 147
555 −4.6 18.7 0.78 147
670 28.4 117.9 0.47 147
All −3.0 54.2 0.73 882

BOU

412 −4.0 22.5 0.50 96
443 −3.7 23.9 0.63 97
490 −1.9 11.1 0.66 97
510 −6.4 11.9 0.47 97
555 9.5 16.0 0.64 97
670 24.2 49.5 0.31 97
All 3.0 26.0 0.89 581

CNR

412 −10.7 24.8 0.42 42
443 2.6 18.2 0.53 42
490 −0.4 13.2 0.75 42
510 −3.7 14.9 0.81 42
555 0.9 19.9 0.88 42
670 −4.9 83.1 0.90 42
All −2.7 21.9 0.87 252

3.4. QAA Performance for bbp Retrievals from CCI Data

After assessing the quality of the QAA retrievals with in situ bbp and the quality of the CCI Rrs

respect to in situ Rrs, the QAA is applied to the CCI Rrs to retrieve the bbp that are then compared to the
in situ data. In agreement with our findings in Section 3.1, CCI Rrs are corrected for Raman scattering.
Results of this comparison are shown in Figure 6 and Table 4. For V19, biases are not significant (less
than 30%) in comparison of RMS values (less than 60%). On the other hand, similarly to the statistics
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derived from Section 3.1, QAA-derived bbp, as compared to the BOU data displays significant positive
biases. Comparison with CNR data shows the highest performances, with bias of +2.7% and RMS of
48%. The conclusions from our analysis are consistent with previous comparisons to QAA, reporting
negligible biases above noise level both at global and regional scales [25,30,51].
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Figure 6. Scatter plots of QAA derived bbp from CCI Rrs versus in situ bbp data for each wavelength
and dataset considered and for the merged data set. The dashed line represents the 1:1 ratio. Pink,
yellow, and green dots refer to V19, BOU, and CNR data, respectively.

Table 4. Statistical descriptors of the difference between the QAA-derived bbp from satellite CCI Rrs

and in situ bbp for each dataset with Raman scattering compensation. Figure A4 provides a graphical
representation of this table.

Band (nm) Bias (%) RMS (%) r2 N

V19

412 24.2 51.8 0.66 147
443 26.8 53.9 0.67 147
490 29.1 56.0 0.68 147
510 29.9 56.8 0.67 147
555 31.0 58.1 0.67 147
670 31.6 60.7 0.62 147
All 28.8 56.3 0.68 882

BOU

442 56.6 62.7 0.67 97
488 86.9 96.2 0.64 97
550 41.9 50.2 0.70 97
620 66.8 75.3 0.69 97
All 63.1 73.1 0.69 388

CNR
470 10.1 52.9 0.48 42
530 7.8 54.9 0.46 42
660 −9.6 33.5 0.63 42
All 2.7 48.1 0.50 126

4. Conclusions

The main findings of this work and their relevance for ocean color studies are summarized here:

(1) Raman scattering compensation of Rrs prior to the application of the QAA significantly reduces
errors in the retrieval of bbp with respect to in situ bbp. Inclusion of this processing step in
operational schemes is recommended.

(2) The QAA-derived bbp from in situ radiometry has negligible biases with respect to in situ bbp.
(3) CCI Rrs shows low biases but higher RMS differences with respect to in situ data, that could be

excessive for the monitoring of natural change over short periods. Here, the standardization of in
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situ radiometry protocols is highly encouraged [52], in order to reduce the errors when in situ
datasets formed by multiple contributors are merged and used for Rrs matchup analysis.

(4) In part as a consequence of the findings above, QAA-derived bbp from CCI Rrs displays negligible
biases respect to in situ bbp, with moderately low RMS errors.

(5) The in situ radiometry-derived spectral backscattering slope (η) has low predictive value as
compared to η derived from bbp matchups. In this context, the impact of using the best fitted
curve instead of the widely used expression [22] is negligible, thus validating the application of
the latter without its retuning.

Notwithstanding these results, one future challenge should be to evaluate the impact of two other
sources of inelastic scattering before the application of QAA on Rrs: (i) red fluorescence, caused by
chlorophyll, that usually plays an important role around the peak close to 685 nm; and (ii) the blue
fluorescence, caused by CDOM, that can be relevant close to the peak at 425 nm [53].

In addition, there is the need of increasing the amount of spatial and spectral coverage of
high-quality in situ bbp observations. As of today, available multispectral bbp is limited to a small
number of ship-borne data, or longer datasets but in fixed points (i.e., buoy). On the other hand,
Biogeochemical-Argo floats cover large areas but their data are mainly given at a single band. Therefore,
there is need to significantly increase the amount of bbp data at multiple bands, seasons and geographical
regions. New technological developments on autonomous platforms will aid to enhance data density
across many water types, to extend the CCI uncertainty derivation approach to bbp as well, thus
allowing the mapping of uncertainties for every bbp product.

Lastly, in situ bbp measurements lag behind the standards on protocols and uncertainty
characterization with respect to other quantities such as the radiometry [52]. Only when in situ
uncertainty-characterized datasets, from instrument characterization to deployment [54], become
available, more detailed algorithm validation could be performed and this will help to better evaluate
the influence of optically active constituents (e.g., CDOM, chlorophyll).
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Appendix A

This appendix includes the graphical representation of the information in Tables 1–4, for a quicker
interpretation of the results and the derived conclusions. The error bars are made by taking the
mean bias in tables as central values and the standard deviation (σ) as bar width, calculated as
σ =

√

RMS2 − Bias2. When error bars intersect the zero-difference line, the differences are assumed to
be not significant.
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