Rechten voorbehouden

Van interne verslagen zijn nadruk of aanhalingen slechts toegestaan met uitdrukkelijke toestemming van het NIOZ.
Aspecten van de osmo- en ionenregulatie
van de fluwelen zwemkrab, *Macropipus puber*

door

Laura van Deijl
Aspecten van de osmo- en ierenregulatie
van de fluwelen zwemkrab, *Macropipus puber*

door
Laura van Deyl

Intern verslag
over
werkzaamheden verricht als doctorale studie
in het tijdvak van mei 1971-februari 1972
aan
NIOZ te Texel
voor
Prof. Dr. S. Dijkstra

onder supervisie van
Dr. Roy E. Weber

NEDERLANDS INSTITUUT VOOR ONDERZOEK DER ZEE
PUBLICATIES EN VERSLAGEN:
nummer 1972-15
I. Summary

1. The osmotic concentrations of blood and muscle extracts of the swimming crab *Macropipus puber* are compared with those in the external medium using freezing point determination, after acclimation to different salinities. *M. puber* appeared able to tolerate salinities ranging from $\pm 14^\circ/oo$ to $43^\circ/oo$. Within this range the osmotic concentrations of blood and tissue follow external concentrations, so that this crab is an osmoconformer.

2. The effect of temperature was studied following acclimation of the crabs to $5^\circ C$ and $15^\circ C$. Apparently the tissue concentrations show stronger regulation at the higher temperature ($15^\circ C$).

3. The water content was determining by measuring the fresh and dry weight of muscle tissue. At $15^\circ C$ it appeared independent of salinity, while at $5^\circ C$ the water content increased with decreasing salinity.

4. The contribution of electrolytes and organic components to the total osmotic concentration of these body fluids were determined using amongst others conductivity measurements. While these components account for approximately $2/3$ of the tissue concentrations, the blood osmotic concentrations is largely due to electrolytes.

5. The time-course of adaptation of osmotic concentration in muscles to a change in blood osmolarities, evidence an intracellular isosmotic regulation.

6. In order to determine in how far the measured tissue homogenate concentrations are representative of intracellular concentrations, inulin-injection experiments were performed, which indicate that homogenates include about 9.5% blood.

Samenvatting

1. Met behulp van de vriespunktdalingmethode zijn de osmotische concentraties van het bloed en de weefselvloeistof van *Macropipus puber* vergeleken met die van het medium. Hiertoe werden de krabben aan verschillende zoutgehalten geacclimatiseerd. *M. puber* blijkt zoutconcentraties van $\pm 14^\circ/oo$ tot $\pm 43^\circ/oo$
te tolereren. Binnen dit traject past de osmotische concentratie van het bloed en van het weefsel zich aan een veranderde uitwendige osmotische concentratie aan, waarmee deze krab tot de osmoconformers gerekend kan worden.

2. Een eventueel temperatuur effect werd nagegaan door deze acclimatie aan verschillende zoutgehalten zowel bij 5°C als bij 15°C te laten verlopen.

 Er zijn aanwijzingen voor een betere regulatie van de weefselvloeistof bij de hogere temperatuur van 15°C.

4. Het aandeel van respectievelijk electrolyten en organische componenten in de totaalosmotische concentraties van de vloeistoffen werd nagegaan onder andere met behulp van geleidbaarheidsmetingen. In het weefsel bepalen zij hier gezamenlijk ± 2/3 deel van, terwijl de bloedosmotische concentratie voor het grootste deel tot stand komt door de aanwezige electrolyten.

5. De aanpassing van de weefselvloeistof aan een veranderde bloedosmotische concentratie betreft een intracellulair isosmotisch regulatimechanisme.

6. Om na te gaan in hoeverre de gemeten waarden uit de weefselhomogenaten representatief waren voor de werkelijke osmotische concentraties van het weefsel werd met behulp van inuline globaal aangetoond dat het weefselpreparaat ± 9,5 % bloed bevatte.
II. Inleiding

De concentratie van opgeloste stoffen in lichaamsvloeistoffen van mariene organismen is aangepast aan de hoge concentratie van opgeloste stoffen in zeewater.

Bij verdarming van het externe milieu is het mogelijk dat sommige van deze dieren door osmose opzwellen en bij een te sterke volumetoename van de cellen doodgaan. Deze dieren kunnen in verdun zee- water hun volume niet constant houden en worden hiermee tot de stenohalien organismen gerekend. De mariene organismen, die wel in verdun zeewater kunnen leven, noemt men euryhalien. Dieren houden bij wisselende zoutgehalten of hun bloedconcentratie min of meer constant, of de bloed osmotische concentratie past zich steeds aan die van het milieu aan. Deze dieren zijn respectievelijk osmoregulatoren en osmo-conformers. Deze laatste groep zijn voornamelijk stenohaliene dieren, hoewel sommige ook in staat zijn bepaalde verdunningen in zeewater concentratie te verdragen.

Naarmate het dier beter in staat is zijn celvolume constant te houden bij verandering van het milieu, wordt het sterker euryhalien.

I. M. puber bevindt zich in de zuidelijke Noordzee aan de noordelijke rand van zijn verspreidingsgebied, waardoor de populatie niet in staat is zich ieder jaar te reproduceren. Hierbij is hij afhankelijk van voldoende aanvoer van larven, die het ene jaar meer en het andere jaar minder zal zijn.

II. Er is een sterk vermoeden dat *M. puber* geen tolerantie heeft voor lage temperaturen, omdat zijn verspreidingsgebied in warmere streken ligt, en omdat deze soort na strenge winters zeldzaam is.
De grote aantallen waarmee de krabben in het voorjaar van 1971 gevangen werden, gaven de mogelijkheid om de osmoregulatie van deze dieren te onderzoeken.

De eerste onderzoeken op dit gebied aan *M. puber* werden gedaan door Margaris (1931). Krabben die in de omgeving van Plymouth werden gevangen, werden overgebracht naar verdund zeewater. Na enkele uren vond hij dat de osmotische concentratie van het bloed zich had aangepast aan die van het nieuwe medium.

Eenzelfde experiment werd uitgevoerd door Hukuda (1931). Na het overplaatsen van zeewater naar verdund zeewater berekende hij van de krabben op verschillende tijdstippen het totale watergehalte door het nat- en het drooggewicht te bepalen. Deze resultaten wijzen op een euryhalien karakter van *M. puber*. Dit in tegenstelling met de sterk verwante soort *M. depurator*, die bij een zoutgehalte van minder dan 75% zeewater sterft binnen enkele uren (Margaris). Het verschil in regulatie van de osmotische processen blijkt uit de leefwijze van beide soorten. *M. depurator* leeft uitsluitend in dieper water (5 tot 55 meter) waar de samenstelling van het milieu constant is, terwijl *M. puber* ook regelmatig dicht bij de kust voorkomt, waar hij is blootgesteld aan concentratieveranderingen van het milieu door het wisselend tij.

Het feit dat *M. puber* zijn bloedosmotische concentratie niet constant kan houden (Hukuda 1931) bij deze wisselende zoutgehalten en deze toch toleereert, veronderstelt een aanpassing van de cellen aan de veranderde samenstelling van het bloed. Bij verdunning van het bloed kan dit tot stand komen door uitscheiden van osmotisch materiaal uit de cellen in het bloed. Dit materiaal bestaat voor het grootste deel uit electrolyten en voor een kleiner deel uit organische moleculen. De aanpassing kan tot stand komen door het uitscheiden van electrolyten zowel als organische moleculen of van één van deze componenten (Lange, 1968).

Deze intracellulaire isosmotische regulatie komt bij veel mariene Crustacea voor, ook al beschikken zij wel over een anisosmotische extracellulaire regulatie, waarbij het de bloedosmotische concentratie over een bepaalde zoutrange wel constaart kan worden gehouden (Florkin, Schoffeniels).

Naar de relatie tussen de osmotische processen in het bloed en in het weefsel is bij *M. puber* geen vorig onderzoek gedaan. Het leek daarom zinvol om de osmotische concentraties van de verschillende componenten in het bloed en in de cellen onderling en met die in het
externe milieu te vergelijken bij dieren, die aan bepaalde zoutgehalten geacclimatiserd zijn. Op deze manier kan inzicht worden verkregen in het totale regulatie patroon. Een belangrijk aspect hierbij is de temperatuur, aangezien het verdwijnen van de krabben na de strenge winter van 1962 - 1963 doet vermoeden dat ook de temperatuur een belangrijke factoren in de verspreiding van deze soort vormt. Om dit na te gaan werden de verschillende acclimatie proeven bij twee temperaturen uitgevoerd. Om inzicht te verkrijgen in het verloop van de interne concentraties bij veranderde zoutgehalten werden tevens metingen aan bloed en celvocht gedaan als functie van de tijd, na overbrenging van dieren naar verdunzen zeewater.

III. Materiaal en methodieken

1. Proefdieren en acclimatie

De krabben van de soort Macropipus puber werden in het voorjaar van 1971 voor de kust van Nederland ter hoogte van Petten door vissers uit Den Helder gevangen op diepten variërend van 8 tot 10 vadem. Tot september werden er veel krabben gevangen. Daarna waren de vangsten klein. Er bestaat een mogelijkheid dat de krabben tegen die tijd van het jaar naar warmer streken trekken, maar het is het meest waarschijnlijk, dat de vissers na september bij het vangen van gul niet diep genoeg gevoit hebben.

De carapax breedte van de krabben varieerde van 5 tot 6,5 cm. Zowel mannetjes als vrouwtjes werden in de experimenten gebruikt.
Na aankomst werden de krabben tijdelijk in een grote asbesten bak geplaatst, die voorzien was van een schelpen grit en zand bodem, en stromend zeewater, waarvan de gemiddelde salinité 30% bedroeg.

Voor de acclimatie aan een reeks zoutgehalten werden aquaria gebruikt van ± 3 liter. Deze waren voorzien van een bodemfilter bestaande uit schelpengruis en zand. In het gruis werd onder een omgekeerde trechter een bruissteentje geplaatst en op perslucht aangesloten, waarmee goede doorluchting van het water tot stand kwam en een bodemfilter werking waardoor de groei van micro organismen werd beperkt. De verschillende salinititeiten werden gemaakt door zeewater te verdunnen met aquadest of te concentreren met HW-zeezout*. Om verdamping van het zeewater te voorkomen werden de bakken met glasplaten bedekt. De reeks zoutgehalten liep van 10% tot 40%.

* Fa Horst Wigand; Duitsland
De krabben werden vanuit de voorraadbak naar hogere of lagere zoutgehalten gebracht met tussenstappen van 5°/oo per dag. Bij 10°/oo saliniteit bleven de krabben maar één dag in leven.

Deze proeven werden uitgevoerd bij 5° C en bij 15° C. De aquaria werden hiervoor in een grote asbesten bak geplaatst waarin het water met behulp van een koelapparaat op 5° C werd gehouden. De 15° C werd bereikt door de aquaria in een klimaatakamer van 15° C te brengen. De uiteindelijke saliniteitsreeks verliep bij 5° C van 16.8°/oo tot 40.6°/oo en bij 15° C van 16.3°/oo tot 43.7°/oo.

Om de water kwaliteit op peil te houden werden de dieren de week voor het experiment en tijdens de acclimatie niet gevoerd.

2. Bemonstering

Na acclimatie van de krabben werden de concentraties van electrolyten en aminozuren gemeten in bloed- en weefselmonsters. Van iedere krab werd de vierde pereiopode (rechter) zorgvuldig met Kleenex gedroogd. Het laatste segment van de pereiopode werd even boven het scharnierenpunt afgeknipt. Het bloed werd met uitzondering van de eerste druppel opgevangen in een pyrexbuisje. De eventueel aanwezige weefselresten werden afgezwaaid in een M.S.E. tafel centrifuge (5 min bij 2300 g). De buisjes werden afgesloten met rubberdopjes en bij - 35° C bewaard.

Door stollingsverschijnselen varieerden de bloedmonsters soms sterk van vloeibaar en kleurloos tot visceus en blauwkleurig. De fout, die hierdoor ontstaat in de bepalingen is waarschijnlijk heel klein, omdat de bloed osmotische concentratie voor een zeer gering deel bepaald wordt door eiwitten.

Voor de bepaling van de osmotische concentratie in de intracellulaire vloeistof werden monsters van spierweefsel genomen. De derde en vierde rechter pereiopode werden aan de basis afgeknipt en uit de merus (eerste segment) werd voorzichtig het spierweefsel geprepareerd. Na dit weefsel voorzichtig met Kleenex te hebben gedroogd, werd het natgewicht bepaald. Deze duplo weefsel monsters werden ieder afzonderlijk in een potterbuis met 5 ml aquadest gehomogeniseerd. Het homogenaat werd overgebracht in een reageerbuisje en in een M.S.E.-centrifuge werden de celresten gedurende 10 minuten afgezwaaid (2300 g). Van de bovenstaande intracellulaire vloeistof werd een gedeelt onderworpen voor de bepaling van non-protein Ninhydrine Positive Substances (N.P.S.) zoals
aminozuren en ammonia. Dit werd in reageerbuizen afgesloten met paraflim bewaard bij -35°C. De resterende vloeistof werd op dezelfde wijze bewaard voor bepalingen van ionenconcentraties, geleidbaarheid en vriespuntsdaling.

In de tweede acclimatie proef met drie zoutgehalten bij 15°C werden de weefselmonsters met een Virtis "23" Micro Homogenizer gehomogeniseerd. De verschillen die in de osmotische concentraties ontstonden door het gebruik van deze tweede methode waren te verwaarlozen (intern verslag M. Baars).

Van dezelfde krabben werden de 3de en 4de linker pereiopode op gelijke wijze geprepareerd. Deze duplo weefselmonsters werden na bepaling van het nat-gewicht in de droogstof geplaatst, waar- na het drooggewicht bepaald werd en het watergehalte was te berekenen.

3. Watergehaltebepaling

Om de werkelijke concentraties van opgeloste stoffen in het weefsel te kunnen bepalen (door correctie voor eventuele verschillen in de mate van hydratie bij verschillende saliniteiten), werd het watergehalte van weefsel bepaald. Het watergehalte werd bepaald met de natgewicht-drooggewicht methode.

Het natgewicht werd bepaald met een H_2O balans ($\pm 0,1 \text{ mg nauwkeurig}$). Hierna werd het weefsel 48 uur gedroogd in een droogstof bij 70°C. Het gedroogde weefsel werd gewogen en het watergehalte werd als volgt berekend.

$$\frac{\text{Gnat} - \text{Gdroog}}{\text{Gnat}} \times 100\%$$

De natgewicht bepaling brengt naast het wegen nog andere onnauwkeurigheden met zich mee. Het afnemen van aanhangend bloed met een absorberend tissue voor het bepalen van het natgewicht kan niet gelijk zijn voor ieder weefselmonster.
4. Vriespuntsdaling

Een maat voor de osmotische concentratie van een vloeistof wordt gegeven door de vriespuntsdaling, Δ, die veroorzaakt wordt door het totaal aantal opgeloste deeltjes in deze vloeistof.

De vriespuntsdaling van het bloed en de intracellulaire vloeistof werd gemeten met een vriespuntsmeter (merk Knauer, Berlijn). In een klein glazen meetbuisje wordt ± 50 μl monster gebracht. De vloeistof wordt afgekoeld tot −5.95°C. Wanneer deze temperatuur bereikt is, wordt de koeling uitgeschakeld en met een ingebouwd roerdertje wordt de onderkoelde vloeistof tot kristallisatie gebracht. Hierbij komt kristallisatiewarmte vrij, die de temperatuur weer doet stijgen tot aan de temperatuur van het vriespunt, welke dan direct afgelezen kan worden.

Voor verdunde oplossingen geldt, dat de moleculaire concentratie van de opgeloste stof recht evenredig is met de vriespuntsdaling, maar onafhankelijk is van de aard van de stof. In het concentratiegebied waarbinnen gemeten wordt, bestaat dit lineaire verband tussen vriespuntsdaling en osmotische concentratie (Spaargaren 1969). De meter werd geijkt met een oplossing die 400 mosmol NaCl bevat en een Δ heeft van 0.7432°C. Bij gevoeligheidsinstelling 16 van de meter, werden 100 schaaldelen gelijk gesteld met deze Δ waarde van 0.7432°C.

De vriespuntsdaling van het monster werd dan berekend met de volgende formule:

\[S_{ijking} \times U_{monster \circ C} = 0.7432 S_{monster} \]

\[S = \text{gevoeligheidsinstelling van de meter} \]
\[U = \text{gevonden verschil in meetwaarde met die van aqua dest.} \]

De bloedmonsters waren dikwijls visceus en werden allen verdund gemeten. Hiertoe werd 20 μl bloed verdund met 100 μl aquadest en met een glasstaafje geroerd. Uit dit mengsel werden duplo's van ± 50 μl telkens twee of drie keer gemeten. De berekende Δ volgens bovenstaande formule werd dus met 6 vermengvuldigd, ter correctie van deze verdunning.

De vriespuntsdaling van de intracellulaire vloeistof kon direct gemeten worden, omdat deze bij het homogeniseren al met 5 ml
aquadest verdund was. Om uit de vriespuntsdaling van dit verdunnde monster de werkelijke vriespuntsdaling van het weefselvocht te berekenen, moeten de gevonden waarden gecorrigeerd worden voor deze verdunning met 5 ml aquadest en voor het watergehalte van het weefselmonster.

\[
\Delta = \frac{S_{\text{iJking}}}{S_{\text{monster}}} \times \frac{U_{\text{monster}}}{U_{\text{iJking}}} \times (5 + \frac{W.G.}{100})
\]

\[
W.G. = \% \text{ water in weefsel}
\]

\[
G = \text{natgewicht van weefsel}
\]

Van de weefselmonsters werden de duplo's eveneens twee of drie keer gemeten. Voor iedere nieuwe bepaling werden de meetbuisjes verschillende keren met aquadest gespoeld en met absorberend tissue uitgedroogd. De nauwkeurigheid van de meting van het bloed wordt voornamelijk bepaald door de fout die gemaakt wordt bij het pipetteren. De 20 μl bloed en 50 μl aquadest worden met Eppendorff-pipet in de meetbuisjes gebracht. Voor deze pipetten wordt een absolute fout van 1% opgegeven.

De variatie in deze bepalingen, die veroorzaakt werden door verschillen in concentraties van de bloedmonsters van verschillende krabben uit dezelfde zoutconcentratie waren veel groter. Dit blijkt uit de duplowaarden die nooit een grotere spreiding vertoonden dan 10% en de Δ waarden van deze krabben die onderling soms een spreiding van 50% vertoonden.

5. Geleidbaarheid

De osmotische concentratie van het bloed en de cellen van organismen wordt voor een groot deel bepaald door de aanwezige electrolyten. Deze electrolytconcentratie kan berekend worden uit de geleidbaarheidsbepalingen van deze oplossingen.

Het geleidingsvermogen van een vloeistof is bij constante temperatuur omgekeerd evenredig met de elektrische weerstand.

\[
\frac{1}{\rho} = \frac{1}{R} \times \frac{1}{\text{ohm}^{-1} \text{ m}^{-1}}
\]

\[
1/\rho = \text{constante van de cel waarmee gemeten wordt.}
\]

De geleidbaarheid wordt gemeten met een Philips laboratorium geleidbaarheidsmeter van het type PW 9501/01. De monsters werden in glazen meetbuisjes op 20° C gebracht in een waterbad. De vloeistof werd in een vaatje gezogen waarin zich een elektrische cel
bevond en op de schaalverdeling, die hiermee in verband staat, kon de \(p \) worden afgelezen.

De meter werd gevuld met een oplossing van 10x verdund standaard zeewater. Deze bevat 3.5 gram NaCl/liter en gaf een vriespuntsdaling van 0.191° C. De schaal werd ingesteld op deze 0.191° C.

De weefselmonsters waren sterk verdund met homogeniseren en de bloedmonsters werden verdund om voldoende vloeistof voor deze bepaling te verkrijgen. Deze oplossingen werden in eerste instantie tegen de genoemde ijkoplossing gemeten. De gevonden \(\Delta \) waarden bleken echter hoger te liggen dan de \(\Delta 's \) van dezelfde monsters, die met de osmometer waren bepaald. Dit zou ontstaan doordat de electrolytconcentraties in de verdunne monsters te sterk verschilden van die in de ijkoplossing, waardoor de lineariteit tussen concentratie en geleidbaarheid niet meer van toepassing was. Bij heel lage concentraties van electrolyt zijn de ionen beter gedissocieerd waardoor een relatief hogere \(\Delta ' \) waarde wordt gevonden.

Om dit te voorkomen wordt in plaats van één ijkoplossing, een reeks verdunningen van standaard zeewater gemaakt, waarvan de \(p \) wordt gemeten en en een grafiek wordt uitgezet tegen de concentratie. Uit deze ijkgrafiek (fig. 11) worden de concentraties van de monsters afgelezen en de \(\Delta 's \) berekend.

6. "Non-protein ninhydrine positive substances" (NPS)

Theoretisch zou de hoeveelheid niet-electrolyt in het weefsel berekend kunnen worden door de vriespuntsdaling te verminderen met de vriespuntsdaling die veroorzaakt wordt door electrolyten alleen. Deze niet-electrolyt fractie bevat o.a. eiwitten, vrije aminozuren. Om nu de stikstofhoudende componenten met uitzondering van eiwitten, suiker en vetten, die geen belangrijke bijdrage hebben in de osmotische concentraties in de cellen, kwantitatief te bepalen, werd gebruik gemaakt van een kleuring met ninhydrine.

Ninhydrine vormt met de \(\text{NH}_2 \) groep van deze componenten een blauwpaaars gekleurd complex. De intensiteit van deze kleuring is een maat voor de aanwezige \(\text{NH}_2 \) houdende stoffen en wordt met een spectrofotometer gemeten.
De eiwitten, die door hun vele NH\textsubscript{2} groepen een sterke kleuring geven, worden uitgesloten door aan 0,02 ml van het weefselhomoge- naat 0,2 ml aquaest en 0,6 ml methanol/aceton (3:1) toe te voegen. Na 1 uur worden de uitgevlokte eiwitten afgezwaaïd (5 min. 2300 g). Van de bovenstaande vloeistof werd 0,2 ml overgebracht in een glazen buis en afgedekt met parafilm in diepvries bij -35°C bewaard.

Deze monsters werden volgens de methode van Moore en Stein (1948) bewerkt. Aan 0,2 cc onteiwit monster werd 1 cc ninhydrine toegevoegd en dan 20 minuten in een kokend waterbad geplaatst.

Om de reactie van het ninhydrine met de aanwezige NH\textsubscript{2} groepen goed te laten verlopen werden de buizen afgekoeld onder stromend water. Om bij een goede kleurintensiteit te meten, werden de monsters verdund met 10 ml propanol/water (1:1). De ijkoplossingen, waarvoor DL-lencine werd gebruikt en de blanco's (water) werden op dezelfde wijze behandeld als de monsters. Met een Zeiss spektro- fotometer (type PMQ II) werd de extinctie van de oplossingen bij 5700 Å gemeten. Deze golflengte werd door het blauw-paarse complex het sterkst geabsorbeerd.

Uit deze extincties werd het aantal mg N berekend per 100 gram intracellulaire vloeistof. Bij gebruik van een ijkoplossing die 0,0150 gram leucine/100 cc water bevat, volgt de hoeveelheid N in het gemeten monster uit de volgende formule:

\[\frac{E_{\text{monster}}}{E_{\text{lijk}}} \times \frac{0,8 \times 0,02}{0,2} \times \frac{14 (\text{stikst.})}{131,8 (\text{leucine})} \times \frac{100}{0,02} \times \frac{5 + W.G}{W.G.} \]

W = watergehalte weefsel \hspace{1cm} mgN/100 gm
G = natgewicht weefsel \hspace{1cm} intracellulaire vlst.

In deze formule is de correctie \[\frac{5 + W.G}{W.G.} \] voor het watergehalte in het weefsel ingesloten.

De gevonden stikstof concentraties werden vergeleken met de totaal osmotische concentratie door deze om te rekenen in vriespuntsdaling (°C). Hierbij wordt uitgegaan van het gegeven dat een gmol niet-electrolyt per liter een vriespuntsdaling geeft van 1,86 °C.
7. Bepaling van ionenconcentraties

De totale hoeveelheid electrolyt wordt voor een groot deel bepaald door de ionen Na⁺, K⁺ en Cl⁻. Om een indruk te krijgen van de activiteit van deze ionen bij verschillende zoutgehalten werden zij afzonderlijk bepaald.

De concentratie van Na⁺ en K⁺ ionen werd met de Zeiss vlam-spectrofotometer gemeten. De te meten vloeistoffen werden met een sporeiër in een vlam verdeeld, die op een mengsel van acetylen en lucht brandt. De in de vlam aanwezige atomen, moleculen en ionen worden aangeslagen en zenden daarna licht uit met een golf-lengte die voor ieder deeltje specifiek is. Een monochromator werd zodanig ingesteld, dat hij alleen het licht doorlaat wat door respectievelijk Na⁺ en K⁺-ionen wordt uitgezonden. Dit uitgezonden licht wordt opgevangen door de fotocel van de spectrofotometer. De uitslag op de schaalverdeling, die hiermee verbonden is, geeft de ionenconcentraties in de vloeistof weer.

Voor de berekening van de Na⁺ en K⁺ concentraties in het bloed werd gebruik gemaakt van ijkoplossingen, die verdunningen waren van standaard zeewater (H.W. zeezout) met aqua dest. De weefselmonsters zijn veel sterker verdund dan de bloedmonsters, waardoor ook het standaard zeewater sterker verdund zou moeten worden. Het is mogelijk dat hierbij interferentie optreedt tussen de verschillende ionen in het zeewater. Om dit te voorkomen worden ijkoplossingen gemaakt van NaCl en KCl in bidest, waarbij een verhouding wordt aangenomen van Na⁺ : K⁺ = 1 : 2, omdat deze verhouding in weefsel in deze grootorde ligt.

De hoeveelheid Cl⁻-ionen in het bloed en in de intracellulaire vloeistof werd bepaald met een micro-chloro-conuter van het merk Marius. Deze bevat twee generator elektroden (zilver), waardoor een pulserende stroom wordt gestuurd. De lading die per puls wordt doorgevoerd is constant. Iedere puls maakt uit de elektrode een-zelfde hoeveelheid zilver vrij, die zich kan binden met de toegevoegde chloride en als AgCl neerslaat. De titatie wordt beëindigd doordat de kleine overmaat Ag⁺ ionen gedetecteerd worden door de polarisatie van de twee zilverelektroden. Het aantal geregistreerde pulsen is een maat voor de aanwezige Cl⁻-ionen. Het apparaat wordt geijkt met een standaardoplossing van 100 mgeq. Cl⁻ per liter.
Hiervan wordt 10 µl met een Eppendorffpipet in een meetvaatje gepipetteerd samen met een basisoplossing en een gelatine oplossing. De meter werd geijkt met een standaardoplossing van NaCl (100 mg eq./liter). Deze ijkging werd enkele malen herhaald en het gemiddelde aantal counts werd als ijpunt aangenomen.

De nauwkeurigheid van deze meting wordt bepaald door de fout die gemaakt wordt bij het pipetteren van de 10 µl monster. Alle monsters worden in duplo of triplo gemeten met een nauwkeurigheid van ± 10%.

8. Inuline bepalingen

De concentraties van de verschillende componenten, die in de weefselhomogenaten bepaald werden, zijn niet helemaal representatief voor de concentraties in de cellen. De intracellulaire vloeistof is bij deze bewerking van het weefsel altijd verontreinigd met extra cellulaire vloeistof. Deze vloeistof heeft vermoedelijk dezelfde samenstelling als het bloed. Om een indruk te krijgen hoe sterk deze verontreiniging is, werden proeven met inuline gedaan. Hierop werden enkele krabben ingespoten met inuline, een stof die niet door de cellen opgenomen wordt. Na verloop van tijd worden de concentraties in het bloed en het weefsel met elkaar vergeleken.

Inuline is een stof die algemeen geaccepteerd is voor dit doel en wordt veelvuldig toegepast bij de bepaling van filtratie in de glomeruli bij verschillende dieren. Robertse (1970) paste deze methode toe bij het bepalen van het extracellulaire volume in het weefsel van verschillende crustacea. De hoeveelheid vloeistof (10% inuline oplossing in zeewater), die hij in de bloedbaan injicteerde, varieerde van 1 ml voor soorten van 100 - 118 gram tot 5 ml voor een soort van 684 gram. In dit experiment werden deze verhoudingen aangehouden. Met een injectionaald werd ± 0,5 ml 10% inuline oplossing aan de basis van de zwempoot ingespoten. Na ruim 4 uur werden monsters genomen van bloed en weefsel.

werden tegelijkertijd in een waterbad van 80° C geplaatst, gedurende 10 minuten. Na afkoeling met stromend water werden de kleurintensiteit van de monsters gemeten in een colorimeter door een \(f \) met een maximale transmissie bij 523 nm. Met een blanco oplossing die op dezelfde wijze werd behandeld als de monsters, werd de transmissie van het filter op 100 ingesteld. Het ijkpunt werd bepaald met een standaardoplossing van 0,02 mg inuline/cc zeewater. De gemeten monsters werden nu berekend volgens de wet van Lambert-Beer: \(c(\text{xtinctie}) = k (\text{konstante}) \times c(\text{concentratie}) \times d(\text{ikte v. cuvet}) \). Er werden ook monsters van niet-ingespoten krabben in deze bepaling meegenomen, omdat glucose en ander koolhydraten een storende factor kunnen zijn bij deze methode. De kleuring die de glucose veroorzaakt representeert een hoeveelheid inuline, waarmee de concentraties in de ingesperen krabben werden gecorrigeerd.

De concentratie van de verschillende componenten in bloed en intracellulaire vloeistof werd uitgedrukt in °C vriespuntsdaling en in dit verslag als volgt afgekort:

\(\triangle i \) - osmotische concentratie van bloed
\(\triangle c \) - osmotische concentratie van weefsel
\(\triangle i, el \) - osmotische concentratie van bloed, veroorzaakt door electrolyten
\(\triangle c, el \) - osmotische concentratie van weefsel, veroorzaakt door electrolyten

\(\triangle i, N.P.S. \) - osmotische concentratie van bloed, veroorzaakt door N.P.S.
\(\triangle c, N.P.S. \) - osmotische concentratie van weefsel, veroorzaakt door N.P.S.

\(\dot{v}_i \) en \(\dot{v}_c \) - geleidbaarheid van resp. bloed en weefsel

IV. RESULTATEN EN DISKUSSIE

1. Samenstelling van bloed en weefsel na volledige acclimatie aan zoutgehalte en temperatuur.
 a. Watergehalte

 In figuur 1 is het watergehalte van het weefsel uitgezet tegen \(\triangle c \). De dieren die geacclimatisoerd zijn aan eenzelfde
zoutgehalte vertonen onderling een grote variatie in watergehalte. Dat een klein deel hiervan te wijten is aan de oerouderdomme onnauwkeurigheid in de natgewichtbepaling van het weefsel bleek uit de duplo's van één monster, die een relatieve fout vertoonden niet groter dan 9%. Het grootste deel van de spreiding in de sommige watergehalten wordt waarschijnlijk veroorzaakt door het verschil in sexe, in leeftijd, in vervellingstadium of "physiologische conditie" van de krabben. Het aantal aangeboden krabben was niet groot genoeg om hiervoor in dit onderzoek een selectie te maken.

Om een relatie tussen de gevonden waarden aan te kunnen geven, werd met een tafel computer de regressielijn berekend, aangenomen dat er een lineair verband bestaat tussen het watergehalte van het weefsel en het zoutgehalte van het medium. Deze lijn geeft het meest waarschijnlijke verband aan tussen de twee grootheden en verloopt bij

\[5^\circ C \text{ volgens } W = 0,4158 y + 83,6 \]
en bij \(15^\circ C \text{ volgens } W = 73,6 \).

Bij \(5^\circ C \) neemt het watergehalte in geringe mate toe bij afnemende zoutgehalte.

Bij \(15^\circ C \) verandert het percentage water in het weefsel niet en blijft op 73,8%. Uit deze gegevens blijkt dat \textit{M. puber} in staat is het volume van zijn cellen goed te kunnen reguleren bij sterke verduuning van het milieu. De regulatie bij \(15^\circ C \) is minder sterk en blijkt na berekening (zie Tabel IV) significant verschillend te zijn van die bij \(5^\circ C \).

Vergelijkbare resultaten werden door Hukuda (1931) voor hele krabben gevonden. Hij verrichtte met \textit{M. puber} adaptatieproeven waarbij de krabben van zeewater naar verdunnd zeewater werden overgebracht. Uit het verschil tussen natgewicht en drooggewicht van het hele dier berekende hij een watergehalte van 72.2%, zowel in zeewater als in verdunnd zeewater. Na het overbrengen trad wel een tijdelijke toename van het totaal gewicht op, die echter nooit meer bedroeg dan 4% van het oorspronkelijke gewicht. Dit ligt ver beneden de berekende gewichtstoename die zou optreden wanneer er enkel sprake was van osmose zonder een verdere volume regulatie. Dit impliceert dat het hele dier, dus ook de cellen,
zich actief aanpast aan de veranderde osmotische concentratie van het externe milieu. De aanpassing van de cellen kan tot stand komen door het actief uitscheiden van osmotisch materiaal bij een verdunning van het milieu. Wanneer we aannemen dat een constant watergehalte van het weefsel, zoals in dit experiment, gekoppeld is aan een constant volume van de cellen, moet bij het uitscheiden van stoffen of het cellvolume of het watergehalte afnemen. Bij een constant celvolume is in dit geval altijd een lichte toename van het watergehalte te verwachten (Lange, 1970) omdat de verhouding water : osmotisch materiaal groter wordt. Dit komt overeen met de grafiek van watergehalte en zoutgehalte bij 5°C. Het constante watergehalte bij 15°C suggereert echter, dat niet het constant houden van het celvolume maar het watergehalte van belang is voor het goede verloop van de celstofwisseling.

b. Osmotische concentratie

Uit figuur 2 en 3 blijkt dat er globaal een rechtlijnig verband bestaat tussen de osmotische concentratie van het milieu en die van het bloed van M. puber. Een verdunning van het milieu van 40 ‰ salinititeit naar 16 ‰ sal. heeft ongeveer eenzelfde verdunning van het bloed tot gevolg. Het bloed van M. puber is niet in staat, zoals C. maenas, een osmotische gradiënt tussen het bloed en het milieu in stand te houden, waarmee een zoutsprong in het milieu voor een groot deel door regulatie van bloed concentratie wordt opgevangen. Door Nagel (1934) en Gross (1957) werd in verschillende decapoda Crustacea een relatie gevonden tussen het vermogen tot deze regulatie en de doorlaatbaarheid van het exoskelet voor de verschillende zouten. Uit proeven met afzonderlijke stukjes exoskelet bleek, dat de permeabiliteit van niet-regulatoren zoals de stenoaliene krab Emerita analoga een factor 3 hoger lag dan die van regulatoren als Cancer antennarius. In het algemeen werd bij mariene en oceaanische Crustacea een grotere permeabiliteit van het exoskelet geconstateerd dan bij brakwater- en kustsoorten.

Bij M. puber gaat deze aanpassing van de bloedosmotische concentratie aan die van het veranderde milieu niet gepaard met het opzwellen of met een gewichtstoename van het dier, zoals uit de bepaling van het watergehalte bleek. Het dier functioneert dus niet als een osmometer maar zal door middel van een actief proces zijn
bloedosmotische concentratie aanpassen. Robertson (1953) consta-
teerde in proeven met *M. puber*, dat dit berustte op een selectieve
uitscheiding van ionen via de klieren in de antennae en een selec-
tieve opname van ionen via de kieuwen.

De verandering van de bloedsamenstelling heeft konsekwenties
voor de cellen. Bij het uitzetten van Δ-weefsel tegen Δ e in
grafiek blijkt dat de Δ c duidelijk afneemt met afnemende Δ e.
De Δ c - Δ e grafiek loopt vrijwel parallel met de Δ i - Δ e
grafiek. Dit zou betekenen dat de osmotische concentratie in de
cellen zich direct aanpast aan de veranderende bloedosmotische
concentratie.

De Δ e blijft over het hele zouttraject in gelijke mate sterk
hypertonisch ten opzichte van de Δ i. Dit wijkt af van het algemeen
aangenomen gegeven, dat de osmotische waarde van de intracellulaire
vloeistof bij meercellige organismen gelijk is aan die van de extra-
cellulaire vloeistof. (Florking & Schoffeniels, 1969). Het verschil
tussen Δ c en Δ i wordt door veel onderzoekers in dergelijke ex-
perimenten geconstateerd. Het is waarschijnlijk dat autolyse van
het organisch materiaal hiervan de oorzaak is. Deze afbraak zal
vooral plaatsvinden tijdens het homogeniseren van het spierweefsel
een tijdens het bewaren van de weefselhomogenaten in diepvries
(Shaw, 1958).

Om de invloed van het homogeniseren na te gaan, werd een
poging gedaan het uitgeprepareerde spierweefsel direct in het meet-
vaatje van de Knauer te brengen en de Δ c te bepalen. Daarop werd
ditzelfde weefselpreparaat evenals in het experiment met 5 ml aqua-
dest gehomogeniseerd en de meting van Δ c werd herhaald.

De twee, op deze wijze bepaalde weefselmonster gegeven,
gemiddeld de volgende Δ c-waarden.

<table>
<thead>
<tr>
<th>Δ c</th>
<th>Δ i</th>
<th>Δ c-weefsel niet</th>
<th>Δ c-weefsel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gehomogeniseerd</td>
<td>gehomogeniseerd</td>
</tr>
<tr>
<td>1.83</td>
<td>1.88</td>
<td>1.99</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Uit deze tabel blijkt de invloed van het homogeniseren op de
Δ c. Omdat deze Δ c's op twee metingen berusten aan twee stukjes
weefsel van 1 krab, kunnen zij slechts een globale indruk geven van
de autolyse die door het homogeniseren veroorzaakt wordt. Het
verschil tussen Δ i en Δ c van niet gehomogeniseerd weefsel, duidt
op een vermeerdering van osmotisch materiaal, die al bij de preparatie van het weefsel optreedt. Dit toont overeenstemming met resultaten van Shaw (1958). De Δc bepalingen, die hij verrichtte aan spierweefsel van *Carcinus maenas*, gaven over de hele reeks zoutgehalten waaraan de krabben geadopteerd waren, Δc waarden die 7 tot 8% hoger lagen dan de Δi's. Ondanks het feit dat alle preparaties onder $0^\circ C$ werden uitgevoerd, trad er toch autolysen op. Dit zou volgens Shaw voornamelijk veroorzaakt worden door de afbraak van de labiele phosphaat-esters als arginine phosphaat en adeninetriphosphaat.

Wanneer Shaw bij deze lage temperatuur autolyse constateert, is er zeker bij de preparatie van het weefsel bij kamertemperatuur en misschien ook tijdens de opslag ervan bij $-35^\circ C$ een dergelijk effect te verwachten. Een controle hiervoor werd uitgevoerd door twee weefselhomogenaten die in diepvries bewaard worden op verschillende tijdstippen te meten.

In Tabel III zijn de resultaten weergegeven.

Het verschil tussen Δc op tijdstip 0 en Δc na 11 dagen diepvries geeft de verwachte toename van het osmotisch materiaal weer. De gelijkmatige toename van Δc, el geeft aan, dat bij deze afbraak van organische stoffen, electrolyten ontstaan.

Het leek weinig zinvol om de Δc's en Δc,el 's voor deze afwijking te corrigeren, omdat zij in gelijke mate afwijken en omdat de vriespuntsmetingen en de geleidbaarheidsmetingen op vrijwel gelijke tijd verricht zijn. Verder zou een nauwkeurige correctie, door de sterke verschillen die tussen de krabben bestaan, een groter aantal van deze waarnemingen vereisen.

In werkelijkheid mag verondersteld worden, dat over het gehele zouttraject de osmotische waarde van de cellen gelijk zal zijn aan die van het bloed. Dit is ook een aanwijzing voor het feit dat *M. puber* over een isosmotisch intracellulair regulatiemechanisme beschikt.

c. Electrolyten, Na^+, K^+, Cl^-

Uit figuur 24 blijkt dat bij $15^\circ C$ de electrolyten in het bloed het grootste deel bijdragen aan de totaal osmotische waarde van het bloed. Voor alle zoutgehalten waaraan *M. puber* werd blootgesteld,
geldt dit in gelijke mate. In hoeverre deze aanpassing van de electrolytconcentratie in het bloed aan die in het zeewater actief of passief tot stand komt, is af te leiden uit de concentraties van de belangrijkste ionen afzonderlijk.

Wanneer er geen sprake is van een actieve ionenuittusseling tussen bloed en medium, zouden de concentraties van de verschillende ionen in het bloed het gevolg zijn van het evenwicht dat vooral in de meer permeabele kieuwen, passief tussen bloed en zeewater tot stand komt als gevolg van het Donnan-evenwicht. Dit betekent dat er door het vrij hoge proteïnegehalte van het bloed intern een hogere concentratie van kationen en een lage concentratie van anionen zal zijn dan in het medium (Prosser p. 65).

Uit figuren 5 en 6, waarin resp. K⁺- en Na⁺ concentraties in het bloed uitgezet zijn tegen Na⁺ en K⁺ concentraties in zeewater (berekend met Tabel IV van Barnes), blijkt dat het tegenovergestelde waar is. De kationen K⁺ en Na⁺ hebben in het bloed een hogere concentratie dan in het zeewater. Voor het anion Cl⁻ ligt dit gelijk of iets lager t.o.v. zeewater.

Deze resultaten wijzen erop dat er naast het passief Donnan-evenwicht een actieve ionenregulatie moet bestaan. In overeenstemming hiermee zijn de resultaten van Robertson (1953), die gedialiseerd bloed van Macropipus puber uit een constant milieu van ± 32⁰/oo zoutgehalte, vergeleken met dit milieu. Hij vond de hieronder weergegeven verhoudingen:

<table>
<thead>
<tr>
<th>Concentraties in plasme als percentage van de concentratie in gedialiseerd plasma</th>
<th>mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na K Ca Mg Cl SO₄ proteïnen H₂O</td>
<td></td>
</tr>
<tr>
<td>Macropipus puber</td>
<td></td>
</tr>
<tr>
<td>110 147 120 41 101 83 54 936</td>
<td></td>
</tr>
</tbody>
</table>

Robertson veronderstelde dat deze ionenregulatie tot stand komt door selectieve uitscheiding van ionen via de klieren in de antennae en selectieve opname via de kieuwen.

De bepaling van de electrolytconcentratie in de cellen bij 5°C en 15°C werd, nadat de monsters 6 maanden in diepvries bewaard
waren, herhaald wegens de eerdere verontachtzaming van invloed van verdunning op electrolyt dissociatie (zie methode blz. 10). Om de betrouwbaarheid van deze monsters te toetsen werd de acclimatie proef bij 15°C onder zelfde omstandigheden herhaald nu met 3 verschillende zoutgehalten (fig.4).

In beide proeven en bij beide temperaturen blijkt de Δc, el een groot deel van de Δc te bepalen. De verdunning van het zee-water heeft dus zowel een vermindering van Δi,el als van Δc,el tot gevolg. Bij 5°C bepaalt de Δc,el zowel bij hoog als bij laag zoutgehalte iets meer dan 1/3 deel van Δc, terwijl bij 15°C de afname van Δc,el bij verdunning van het milieu minder sterk is. Bij deze temperatuur vormt Δc, el juist bij lage zoutgehalten meer dan de helft van Δc en boven een Δc van 1,6, 1/3 deel van Δc. Deze verschillende invloed van de verdunning van het zee-water op de electrolytconcentratie in het weefsel bij 5°C en 15°C, doet vermoeden dat M. puber bij hogere temperatuur in staat is de electrolytconcentratie in de cellen beter te reguleren. De herhaalde proef bij 15°C spreek dit vermoeden in een punt tegen. Hier is ook bij het hoogste zoutgehalte de Δc voor de helft door Δc,el bepaald.

Wanneer we in de figuren 5, 6 en 7 de ionenconcentraties afzonderlijk nagaan, wordt het duidelijk in welke mate K⁺ Na⁺ en Cl⁻ ionen bijdragen aan een eventuele regulatie van electrolyt bij 15°C. De verdunning van het zee-water heeft alleen invloed op de Na⁺ en de Cl⁻ concentratie. De afname van Na⁺ bij overgang van het hoogste naar het laagste zoutgehalte bedraagt ±25%, terwijl de Cl⁻ concentratie gehalveerd wordt ten gevolge van een in verhouding gelijke afname van de Cl⁻ bloedconcentratie.

Zoals in de weefsels van de meeste organismen liggen de Na⁺ en Cl⁻ concentratie hierin lager dan in het bloed. Voor K⁺ geldt het tegenovergestelde. In het bloed en het zee-water is de K⁺ concentratie extreem laag, waarbij het bloed hyperionisch is ten opzichte van het zee-water. De K⁺ concentratie in cellen ligt hoog en het verschil met de bloedconcentratie bedraagt een factor 10. Een kleine verandering in de concentratie in het milieu heeft dan ook geen invloed op de celconcentratie. Het reguleren van het K⁺ is voor de cel kennelijk van groot belang. In cellen van veel soorten Crustacea, blijkt de K⁺ concentratie pas af te nemen wanneer

Uit de bovenstaande gegevens mogen we uiteindelijk concluderen dat de aanpassing van de electrolytconcentratie in het spierweefsel aan de veranderde milieuconcentratie, voor het grootste deel tot stand wordt gebracht door de Cl^- ionen en voor een kleiner deel door Na^+ ionen.

d. N.P.S

De milligrammen N waarin de in de cellen aanwezige ninhydrinc positieve stoffen uitgedrukt zijn, werden omgerekend in Δ's en in fig. 2 en 3 tegen Δe uitgezet. De N.P.S. bij de meeste tot nu toe onderzochte Crustacea bestaat voor $\pm 80\%$ uit aminozuren, waarvan de belangrijkste, proline, glycine, alanine, glutamine en asparaginezuur zijn. Uit de genoemde figuren blijkt dat zij naast de electrolyten een belangrijke rol spelen in het osmoregulatieproces wat in de cellen verloopt. De Δe N.P.S. neemt af bij afname van Δe. Hierbij bepaalt het over de hele reeks zoutgehalten zowel bij $5^\circ C$ en $15^\circ C \pm 1/4$ tot 1/3 deel van de osmotische activiteit in het spierweefsel. Dat de verandering van de aminozuurconcentraties in het weefsel niet tot stand komt door opname of uitscheiden van water door het weefsel bleek al uit het vrijwel constante watergehalte. Hieruit is te concluderen dat de spiercellen de mogelijkheid hebben door zowel verhogen als verlagen van de aminozuurconcentratie de osmatische druk in de cellen actief te kunnen reguleren. Dat het hier om een regulatie mechanisme in de cellen gaat, volgt ondermeer uit het feit dat ook met geïsoleerde zenuwvezels van *Carcinus maenas* en *Eriocheir sinensis* een dergelijk regulatieproces gevonden werd. (Schoffeniels, 1961; Potts, 1968).

Een andere mogelijkheid die tot deze regulatie leidt zou kunnen bestaan uit een mechanisme dat de synthese en degradatie van de aminozuren in de cel beïnvloedt. Deze laatste veronderstelling kwam o.a. voort uit onderzoek van Gilles en Schoffeniels (1969) met geëxsoleerde zenuwvezels van _Eriocheir sinensis_ en betrof speciaal de niet-essentiële aminozuren. Voor de regulatie van de essentiële aminozuren zoals tyrosine, phenylalamine, valine, leucine of isoleucine, vermoedden zij de aanwezigheid van een mechanisme dat de permeabiliteit van het cellenmembraan voor deze aminozuren beïnvloedt.

Hierbij is duidelijk het effect aangetoond van Na⁺ en K⁺ ionen op de enzymen, die bij deze processen betrokken zijn. Dit bevestigt de resultaten uit andere proeven met _Eriocheir_ waaruit bleek dat niet alleen de verandering van de osmotische druk verantwoordelijk was voor de verandering in aminozuurconcentratie, maar dat hierbij de aanwezigheid van Na⁺ of K⁺ noodzakelijk was (Schoffeniels, 1961).

Daar in het algemeen de concentratie van proteïnen en stikstofhoudende verbindingen in het bloed van de tot nu toe onderzochte Crustacea slechts 1/100 bedraagt van de concentratie in het weefsel en daarom nauwelijks of geen rol speelt in de osmotische activiteit van het bloed, werd deze in dit onderzoek niet bepaald.
2. Adaptatiesnelheid van osmotische concentraties in bloed en cellen

Na het overbrengen van de krabben van zeewater van 30,1°/oo zoutgehalte naar zeewater van 14,3°/oo zoutgehalte bij 15°C, zijn op verschillende tijdstippen metingen gedaan aan bloed en spierweefsel, waarvan de resultaten zijn weergegeven in figuur 8, 9 en 10.

Voor dit experiment waren nog maar weinig krabben beschikbaar, terwijl ook de aanvoer stagneerde. Daarbij gingen na een verblijf van 6 uur in het verdunne zeewater 3 krabben dood. Door deze omstandigheden kon de adaptatie slechts gedurende 12 uur gevolgd worden en was er voor de waarnemingen na 8 uur en 12 uur nog maar een krab ter beschikking.

Wanneer we in figuur 8 de kromming van de $\Delta c - \Delta e$ curve vergelijken met die van de $\Delta i - \Delta e$ curve dan blijken deze niet gelijk te zijn. Dat wil zeggen dat de cellen hun osmotische concentratie in de eerste uren na overbrenging minder snel aan de veranderde externe osmotische druk aanpassen dan het bloed. De eerste 4 uur is er een duidelijk faseverschil tussen deze processen, wat impliceert dat in deze periode de celinhoud niet isosmotisch is met het bloed. Hukuda (1931) deed dergelijke proeven en constateerde eveneens een snelle afname van de osmotische concentratie in het bloed bij het overbrengen van M. puber van zeewater naar verdund zeewater. Hij schreef dit toe aan een actieve uitscheiding van ionen via de klewen en via het exoskelet, omdat tijdens deze adaptatie het totale gewicht van het dier uiteindelijk niet veranderde. Wel constateerde hij in het begin een lichte toename van het gewicht, die echter nooit meer bedroeg dan 4% van het oorspronkelijke gewicht en binnen 12 uur weer verdween. Hij veronderstelde dat deze lichte osmotische zwelling veroorzaakt werd door het meer doorlaatbaar zijn van het exoskelet voor water dan voor zouten. De tijdelijke toename, die dit zou betekenen voor het watergehalte van het bloed, heeft een verlaging van de osmotische druk van het bloed tot gevolg, waarmee de in dit experiment geconstateerde snellere afname van de Δi ten opzichte van de Δc verklaard zou kunnen worden.

Zoals het verdere verloop de Δi grafiek suggereert, zal deze na verloop van tijd (langer dan 12 uur) de Δe waarde van het nieuwe medium aannemen. De tijd die Margana (1931) hiervoor bepaalde in
een dergelijk experiment met *M. puber*, bedroeg meer dan 20 uur. De temperatuur waarbij deze adaptatie verliep werd niet vermeld.

Voor de berekening van de werkelijke concentraties van verschillende componenten in het weefsel, werden de gevonden waarden gecorrigeerd met het watergehalte van 73,8% wat bij 15°C constant bleef. Het verloop van de Δc curve is gestippeld aangegeven vanaf 8 uur omdat deze gegevens weinig betrouwbaar zijn. Zoals reeds werd vermeld berusten de waarden die na 8 uur en 12 uur verkregen werden op bepalingen aan slechts één krab. Daarbij komt nog dat de krab waarvan na 10 uur monsters werden genomen inactief was en geen bloed gaf. De mogelijkheid bestaat dat er voor het intreden van de dood al afbraak van organisch materiaal plaatsvindt in het dier. Dit zou het autolyse effect wat bij de preparatie en het homogeniseren van het spierweefsel al optrad, kunnen versterken en de hoge Δc waarde kunnen verklaren. Uit de acclimatieproef van 5 dagen is verder gebleken dat de Δe zich ook bij een laag zoutgehalte van +16°C/oo conformert met Δi. Met dit gegeven en de bovengenoemde omstandigheden worden de osmotische concentraties die na 6 uur werden bepaald, als afwijkend beschouwd. Verder bevestigt deze proef, dat de electrolyten bijna voor 100% de totaal osmotische druk bepalen van het bloed. Na enkele uren gaan ook niet-electrolyten hierbij een rol spelen. Dit zijn waarschijnlijk de aminozuren of tot ammonia afgebroken aminozuren, die door de cellen in het bloed zijn uitgescheiden, ten einde hun osmotische druk aan die van de verlaagde bloedosmotische druk aan te passen. Een dergelijke ophoping van organisch materiaal, doordat het niet onmiddellijk verwerkt kan worden door het bloed, is ook bij *Cr. crangon* afgeleid uit geleidbaarheidsmetingen (Spaargaren (1969) en aangetoond uit directe N.P.S. metingen door Weber + Van Marrewijk (1972). Na verloop van 3 dagen waren deze stoffen uit het garnaalbloed verwijderd, wat gepaard ging met een verhoogd ammonia gehalte in de urine. Deze gegevens onderstrepen de veronderstellingen van Schoffeniels (zie blz. 23) over de regulatie van de aminozuren in het weefsel. De verandering van Δc, N.P.S. in het spierweefsel geeft in dit experiment niet duidelijk aan in welke mate hij bijdraagt aan de afname van de Δc (fig. 9).

De snelheid waarmee de Cl⁻ concentratie afneemt in het bloed komt overeen met de $\Delta i, el$ en is hier waarschijnlijk voor een
groot deel verantwoordelijk voor (fig. 17).

3. Extracellulaire vloeistof volumen in weefsel, bepaald met inuline

In dit experiment werden 2 series krabben, een van 4 en een van 2, met 0,5 ml 10% inuline oplossing ingespoten. Bij de bemonstering werden ook bloed en weefsel monsters van niet ingespoten krabben als referentie meegenomen. In Tabel V zijn in de kolommen 1 en 2 alle inulinegehaltes zowel in blanco als ingespoten dieren weergegeven. In de kolommen 3 en 4 staan de inulinegehaltes van de ingespoten krabben A, B, C en D nadat deze verminderd zijn met het inuline gehalte van blanco krab 1, en E en F na vermindering met blanco krab 2.

Tabel V

<table>
<thead>
<tr>
<th>kraab mg inuline/100 cc</th>
<th>mg inuline-weef.vlst.</th>
<th>mg inuline-extracell.vlst.</th>
<th>% extracell. vlst. in weef.vlst.</th>
<th>blanco mg inuline/100 cc</th>
<th>mg inuline-weef.vlst.</th>
<th>mg inuline-extracell.vlst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>72.1</td>
<td>60.3</td>
<td>35.9</td>
<td>55.6</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>42.5</td>
<td>103.1</td>
<td>6.3</td>
<td>103.4</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>46.0</td>
<td>83.1</td>
<td>9.8</td>
<td>78.4</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>13.8</td>
<td>73.3</td>
<td>-</td>
<td>68.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>blanco 1</td>
<td>36.2</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blanco 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>72.0</td>
<td>71.4</td>
<td>6.5</td>
<td>65.4</td>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>25.9</td>
<td>71.0</td>
<td>-</td>
<td>65.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blanco 2</td>
<td>65.5</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Opvallend in deze Tabel zijn de relatief hoge waarden in de weefselvloeistof van de blanco krabben. Deze zijn waarschijnlijk het gevolg van de aanwezigheid van veel glucose in de cellen, dat ook na hydrolyse met resorcinol, dat gebruikt werd in de bepaling, een rodekleuring geeft. Deze relatief hoge blanco waarden werden ook in een voorafgaande proef met *Carcinus maenas* gevonden. Het grote verschil in glucose gehalte van de verschillende blanco krabben geeft aan, dat het noodzakelijk is, om bij het vergelijken van "inuline" krabben met blancokrabben over een gemiddelde van meerdere blanco
krabben te beschikken.

Wanneer nu de meest betrouwbare waarden uit deze zeer globale proef samen worden genomen, komen we op een gemiddeld percentage van extracellulaire vloeistof in het weefsel van 9.5%. Hiermee is, zoals verwacht, aangetoond op niet nauwkeurige wijze dat bij de preparatie van het weefsel in dit onderzoek geen zuivere intracellulaire vloeistof wordt verkregen. Hierdoor zijn de concentraties van de verschillende componenten die in het weefselvocht werden bepaald, dus niet helemaal representatief voor de concentraties in de cellen. Omdat deze aanduiding van 9.5% weinig nauwkeurig is leek het niet zinvol om alle berekende concentraties in het weefsel voor dit percentage te corrigeren.

V. Conclusie

In dit onderzoek is M. puber in staat gebleken zich te handhaven in zeewater van verschillende samenstelling variërend van een zoutgehalte van 43 °/oo tot 16 °/oo. Het laagste zoutgehalte wat deze krab tolereert ligt tussen de 16 °/oo en 10 °/oo. Het feit dat deze tolerantie niet gepaard gaat met sterke veranderingen in de mate van hydratatie van het spierweefsel bij 15 °C, wijst op een euryhaliene karakter van M. puber.

De mogelijkheid tot de euryhaliene leefwijze wordt niet gegeven door een anisosmotische extracellulaire regulatie, waarbij het bloed in staat is een osmotische gradiënt ten opzichte van het milieu te handhaven. Uit de acclimatie proeven blijkt, dat de bloedosmotische concentratie zich conformereert met de osmotische concentratie van het medium, een proces wat tot stand komt door een actieve ionen uitwisseling tussen bloed en medium (vermoedelijk via de kieuwen en de klieren in de antennae en door een vrij hoge permeabiliteit van het exoskelet voor zowel water als zouten). De mogelijkheid om in verdunnd zeewater te kunnen leven hangt uitsluitend af van het vermogen van de cellen zich op hun beurt aan de veranderde bloedosmotische concentratie aan te passen, of wel van een intracellulaire isosmotische regulatie.

Zowel electrolyten als aminozuren blijken hierbij een belangrijke rol te spelen. Dat de aanpassing berust op een actieve verschuiving van aminoozuur concentratie en ionen concentraties tussen
de cellen en het bloed, blijkt uit het vrijwel constante watergehalte van het weefsel bij 15\(^{\circ}\)C. Bij deze temperatuur is er geen sprake van verdunning van de celinhoud bij afnemend zoutgehalte van het medium, terwijl bij 5\(^{\circ}\)C wel een toename van het watergehalte van het weefsel wordt geconstateerd, die significant verschilt van het verloop bij 15\(^{\circ}\)C.

De electrolyt concentratie in het spierweefsel bepaalt bij alle zoutgehalten van het gebruikte zeezeewater ± 1/3 deel van de totale osmotische concentratie van het spierweefsel, met uitzondering van de lage zoutgehalten bij 15\(^{\circ}\)C waarbij de electrolyt concentratie de helft van de totale concentratie vertegenwoordigt. Dit zou kunnen wijzen op een temperatuureffect, waarbij het mechanisme in de cellen bij hogere temperatuur beter in staat is de electrolyt concentratie constant te houden, wanneer de electrolytconcentratie in het bloed verandert. De veronderstelling van een temperatuur effect wordt ondersteund door het feit dat ook de regulatie van het watergehalte in het spierweefsel bij 15\(^{\circ}\)C beter verloopt dan bij 5\(^{\circ}\)C.

Daar een dergelijk temperatuur effect gecorreleerd zou kunnen zijn met het verspreidingsgebied van M. puber, of omgekeerd dit gebied uiteindelijk bepaald werd, doordat M. puber in de loop der tijden evolueerde naar een betere regulatie bij hogere temperaturen, lijkt het zinvol om verder onderzoek in deze richting te doen - b.v. door dezelfde acclinatieproeven te herhalen bij een reeks meer extreme temperaturen.

De aanpassing van de electrolyt concentratie in het weefsel aan die in het bloed komt in hoofdzaak tot stand door verschuiving van de Na\(^{+}\) en vooral de Cl\(^{-}\) concentraties. De K\(^{+}\) concentratie in het weefsel bleef daarentegen over het hele zouttraject constant en handhaafde hierbij een sterke gradiënt (een factor 10 hoger) ten opzichte van het bloed. Deze K\(^{+}\) verhouding tussen weefsel en bloed is in vele organismen aanwezig. Het is zeer waarschijnlijk dat ook voor M. puber het handhaven van een constante K\(^{+}\) spiegel in de cellen van groot belang is voor het celmetabolisme, wat o.a. bleek uit proeven met Crangon waarbij toevoeging en onthouding van K\(^{+}\) aan het milieu binnen enkele uren fataal bleek te zijn.

De rol van de aminozuren blijkt in dit isosmotisch proces
intracellulair regulatieproces van even groot belang als die van de electrolyten, daar zij steeds een vaste bijdrage hebben in de, aan het bloed aangepaste osmotische concentratie van de celinhoud. Deze bijdrage varieert zowel bij 5° als bij 15° C van 1/4 tot 1/3 deel van de totaal osmotische concentratie. De mogelijkheid bestaat dat deze verschuiving van aminozuurconcentratie bij verandering van de uitwendige osmotische concentratie, tot stand komt door uit-scheiding van aminozuren uit de cellen in het bloed waar afbraak kan plaatsvinden tot ammoniak, wat vervolgens met de urine het dier kan verlaten. De osmotische activiteit van de aminozuren kan tevens wisselen door beïnvloeding van de synthese en degradatie van de aminozuren in de cel zelf. Neer inzicht in deze aminozuur-regulatie van _M. puber_ zou verkregen kunnen worden door dergelijke experimenten voort te zetten met geïsoleerde spiervezels.

Na overbrengen van de vezels van zuiver water naar verdund zeewater zouden de aminozuurconcentraties binnen en buiten de vezel zowel kwalitatief als kwantitatief gedurende de adaptatie bepaald kunnen worden (Gilles en Schoffeniels, 1969).

De tijdsduur waarbinnen de osmotische regulatieprocessen zich afspelen bij overbrengen van _M. puber_ van geconcentreerd naar verdund zeewater, kon in deze adaptatieproef niet vastgesteld worden. In verband met te kort aan materiaal kon de adaptatie niet langer dan 12 uur gevolgd worden. De eerste 4 uur na overbrenging wordt geconstateerd dat het bloed zich sneller aanpast aan de veranderde uitwendige osmotische concentratie dan de cellen. De snellere afname van de bloedosmotische concentratie kan worden veroorzaakt door een grotere permeabiliteit van het exoskelet voor water dan voor zouten door de grote waterdruk waaraan het in het verdunde milieu wordt blootgesteld (Hukuda, 1931).

Verder blijkt enkele uren na overbrengen de bloedosmotische concentratie niet meer alleen door electrolyten bepaald te worden, maar mede door niet-electrolyten, die waarschijnlijk door de cellen worden uitgescheiden teneinde osmotische concentratie van de celinhoud te verlagen. Het feit dat de waarden, die vanaf een achturige blootstelling werden bepaald weinig betrouwbaar zijn, is niet alleen te wijten aan de zeer beperkte waarnemingen, maar wordt mede veroorzaakt doordat het zoutgehalte van het verdunde medium (14.3°/oo) waarschijnlijk in het grensgebied van de toler- rantie van _M. puber_ ligt. Hiermee zijn twee redenen gegeven om een
dergelijke adaptatieproef met een veel groter aantal krabben te herhalen met minder extreme zoutgehalten. Ten slotte bleek dat de gemeten concentraties in de weefselhomogenaten niet helemaal representatief zijn voor de werkelijke concentraties in het weefsel. Uit de globale bepaling van bloed in het weefselpreparaat met behulp van inuline, blijkt bij deze manier van prepareren het weefsel met ± 9.5% bloed verontreinigd te zijn.

Correcties hiervoor werden niet toegepast omdat dit percentage op te weinig waarnemingen berust.

V. Literatuur

<table>
<thead>
<tr>
<th>%oo monster</th>
<th>nat gew. weefsel</th>
<th>% water gram weefselvloeist.</th>
<th>Δc</th>
<th>Δi</th>
<th>Δe</th>
<th>Δc,el</th>
<th>Δi,el</th>
<th>Δc, N.P.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1.3</td>
<td>0.4215</td>
<td>77.09</td>
<td>1.522</td>
<td>1.014</td>
<td>0.58</td>
<td>1.53</td>
<td>0.489</td>
<td></td>
</tr>
<tr>
<td>A 1.4</td>
<td>0.3407</td>
<td>76.57</td>
<td>1.664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1.3</td>
<td>0.1615</td>
<td>73.11</td>
<td>1.782</td>
<td>1.118</td>
<td>0.71</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1.4</td>
<td>0.2042</td>
<td>75.19</td>
<td>1.828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 2.3</td>
<td>0.2738</td>
<td>76.03</td>
<td>1.701</td>
<td>1.151</td>
<td>0.76</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 2.4</td>
<td>0.2158</td>
<td>76.03</td>
<td>1.633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 3.3</td>
<td>0.1724</td>
<td>71.66</td>
<td>2.016</td>
<td>1.189</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 3.4</td>
<td>0.2091</td>
<td>67.56</td>
<td>1.924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 1.3</td>
<td>0.1733</td>
<td>77.87</td>
<td>1.981</td>
<td>1.222</td>
<td>0.79</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 1.4</td>
<td>0.2464</td>
<td>76.19</td>
<td>1.994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 2.3</td>
<td>0.3902</td>
<td>76.11</td>
<td>1.816</td>
<td>1.460</td>
<td>0.73</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 2.4</td>
<td>0.3468</td>
<td>77.01</td>
<td>1.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.376</td>
</tr>
<tr>
<td>30.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 1.3</td>
<td>0.2468</td>
<td>56.55</td>
<td>2.963</td>
<td></td>
<td></td>
<td>0.94</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>D 1.4</td>
<td>0.2356</td>
<td>70.32</td>
<td>3.871</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 2.3</td>
<td>0.2023</td>
<td>67.01</td>
<td>2.597</td>
<td>1.724</td>
<td>0.80</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 2.4</td>
<td>0.1033</td>
<td>73.66</td>
<td>2.561</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.09</td>
</tr>
<tr>
<td>36.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.947</td>
</tr>
<tr>
<td>E 1.4</td>
<td>0.1254</td>
<td>69.80</td>
<td>2.994</td>
<td></td>
<td></td>
<td>1.23</td>
<td></td>
<td>1.40</td>
</tr>
<tr>
<td>E 2.3</td>
<td>0.3009</td>
<td>73.13</td>
<td>2.362</td>
<td>1.924</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 2.4</td>
<td>0.3384</td>
<td>73.38</td>
<td>2.340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 3.3</td>
<td>0.2973</td>
<td>72.67</td>
<td>2.770</td>
<td>1.998</td>
<td>0.73</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 3.4</td>
<td>0.2091</td>
<td>72.34</td>
<td>2.810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.14</td>
</tr>
</tbody>
</table>
Tabel I (vervolg)

<table>
<thead>
<tr>
<th>%/oo</th>
<th>monster</th>
<th>nat gew. weefsel.</th>
<th>% water weefsel-vloeist.</th>
<th>gram</th>
<th>Δc</th>
<th>Δi</th>
<th>Δe</th>
<th>Δc_{el}</th>
<th>Δi_{el}</th>
<th>Δc, N.P.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.6</td>
<td>F 1.3</td>
<td>0.2039</td>
<td>71.48</td>
<td>0.1457</td>
<td>3.018</td>
<td>1.991</td>
<td>2.193</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 1.4</td>
<td>0.2650</td>
<td>70.59</td>
<td>0.1870</td>
<td></td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 2.3</td>
<td>0.1956</td>
<td>62.46</td>
<td>0.1220</td>
<td>3.463</td>
<td>2.170</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 2.4</td>
<td>0.1609</td>
<td>65.15</td>
<td>0.1048</td>
<td>3.424</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 3.2</td>
<td>0.2592</td>
<td>67.59</td>
<td>0.1751</td>
<td>2.855</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 3.4</td>
<td>0.2641</td>
<td>53.01</td>
<td>0.1399</td>
<td>3.522</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%oo</td>
<td>monster</td>
<td>nat gew.</td>
<td>% water</td>
<td>gram weefsel</td>
<td>Δc</td>
<td>Δi</td>
<td>Δe</td>
<td>Δc,el</td>
<td>Δi,el</td>
<td>Δc, N.P.S.</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>G 1.3</td>
<td>0.2319</td>
<td>0.1432</td>
<td>1.657</td>
<td>0.951</td>
<td>0.93</td>
<td>0.76</td>
<td>0.592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 1.4</td>
<td>0.2195</td>
<td>0.1390</td>
<td>1.827</td>
<td>0.89</td>
<td>0.81</td>
<td>0.427</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 2.3</td>
<td>0.4686</td>
<td>73.69</td>
<td>1.541</td>
<td>0.992</td>
<td>0.83</td>
<td>0.446</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 2.4</td>
<td>0.4540</td>
<td>73.25</td>
<td>1.585</td>
<td>0.83</td>
<td>0.446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>H 1.3</td>
<td>0.1121</td>
<td>72.09</td>
<td>2.018</td>
<td>1.627</td>
<td>0.72</td>
<td>1.75</td>
<td>0.539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1.4</td>
<td>0.1681</td>
<td>72.67</td>
<td>1.865</td>
<td>0.65</td>
<td>0.334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 2.3</td>
<td>0.1105</td>
<td>71.77</td>
<td>1.837</td>
<td>1.289</td>
<td>1.18</td>
<td>0.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 2.4</td>
<td>0.0793</td>
<td>71.20</td>
<td>2.265</td>
<td></td>
<td>0.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.3</td>
<td></td>
</tr>
<tr>
<td>I 1.3</td>
<td>0.3129</td>
<td>76.52</td>
<td>2.394</td>
<td>1.984</td>
<td>1.631</td>
<td>1.614</td>
<td>0.82</td>
<td>1.53</td>
<td>0.691</td>
<td></td>
</tr>
<tr>
<td>I 1.4</td>
<td>0.2777</td>
<td>76.31</td>
<td>2.119</td>
<td>1.413</td>
<td>0.56</td>
<td>0.710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2.2</td>
<td>0.1742</td>
<td>2.364</td>
<td>-</td>
<td>1.00</td>
<td>1.72</td>
<td>0.874</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2.3</td>
<td>0.2872</td>
<td>2.696</td>
<td>1.14</td>
<td>0.744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 3.3</td>
<td>0.3227</td>
<td>73.93</td>
<td>2.236</td>
<td>1.727</td>
<td>0.93</td>
<td>0.654</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 3.4</td>
<td>0.3448</td>
<td>76.01</td>
<td>2.089</td>
<td>0.92</td>
<td>0.654</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>J 1.2</td>
<td>0.2536</td>
<td>74.25</td>
<td>2.458</td>
<td>2.458</td>
<td>1.843</td>
<td>0.90</td>
<td>1.38</td>
<td>0.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 1.4</td>
<td>0.2755</td>
<td>74.98</td>
<td>2.065</td>
<td>2.267</td>
<td>0.82</td>
<td>1.38</td>
<td>0.762</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 2.2</td>
<td>0.2748</td>
<td>76.95</td>
<td>2.114</td>
<td>2.381</td>
<td>1.846</td>
<td>1.10</td>
<td>1.52</td>
<td>0.855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 2.4</td>
<td>0.1735</td>
<td>76.25</td>
<td>0.1322</td>
<td>2.18</td>
<td>1.00</td>
<td>0.837</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 3.3</td>
<td>0.2462</td>
<td>74.22</td>
<td>0.1827</td>
<td>2.424</td>
<td>1.794</td>
<td>0.93</td>
<td>0.632</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 3.4</td>
<td>0.2909</td>
<td>74.77</td>
<td>0.2175</td>
<td>2.175</td>
<td>0.94</td>
<td>0.558</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>K 1.3</td>
<td>0.2789</td>
<td>72.80</td>
<td>0.2030</td>
<td>2.457</td>
<td>0.95</td>
<td>1.37</td>
<td>0.744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 1.4</td>
<td>0.3322</td>
<td>73.73</td>
<td>0.2449</td>
<td>2.451</td>
<td>0.74</td>
<td>1.37</td>
<td>0.714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 2.3</td>
<td>0.3515</td>
<td>72.47</td>
<td>0.2547</td>
<td>2.529</td>
<td>1.11</td>
<td>1.37</td>
<td>1.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 2.4</td>
<td>0.4192</td>
<td>72.52</td>
<td>0.3040</td>
<td>2.541</td>
<td>1.08</td>
<td>1.041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 3.3</td>
<td>0.3496</td>
<td>74.50</td>
<td>0.2604</td>
<td>2.432</td>
<td>1.946</td>
<td>0.99</td>
<td>0.948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 3.4</td>
<td>0.3611</td>
<td>74.17</td>
<td>0.2678</td>
<td>2.529</td>
<td>1.09</td>
<td>0.967</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>L 1.3</td>
<td>0.2404</td>
<td>72.40</td>
<td>0.1740</td>
<td>2.983</td>
<td>1.26</td>
<td>0.89</td>
<td>0.818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 1.4</td>
<td>0.2650</td>
<td>71.18</td>
<td>0.1886</td>
<td>2.801</td>
<td>1.17</td>
<td>0.892</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 2.3</td>
<td>0.3581</td>
<td>73.01</td>
<td>0.2614</td>
<td>2.916</td>
<td>2.318</td>
<td>0.95</td>
<td>0.744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 2.4</td>
<td>0.3220</td>
<td>73.39</td>
<td>0.2363</td>
<td>2.783</td>
<td>1.04</td>
<td>0.811</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%/oo</td>
<td>monster</td>
<td>mg aeq. bloed</td>
<td>Cl⁻ in: weefsel</td>
<td>mg aeq. bloed</td>
<td>Na⁺ in: weefsel</td>
<td>mg aeq. bloed</td>
<td>K⁺ in: weefsel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.3</td>
<td>G 1.3</td>
<td>127.8</td>
<td></td>
<td>126.7</td>
<td></td>
<td></td>
<td>187.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 1.4</td>
<td>109.2</td>
<td></td>
<td>110.4</td>
<td></td>
<td></td>
<td>200.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 2.3</td>
<td>300</td>
<td>245</td>
<td></td>
<td>7.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 2.4</td>
<td>95.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>H 1.3</td>
<td>399</td>
<td>130.2</td>
<td>113.8</td>
<td>12.05</td>
<td></td>
<td>221.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H 1.4</td>
<td>110.8</td>
<td>350</td>
<td>105.6</td>
<td></td>
<td>12.77</td>
<td>185.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H 2.3</td>
<td>344</td>
<td>113.9</td>
<td></td>
<td></td>
<td>10.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H 2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.3</td>
<td>I 1.3</td>
<td>417</td>
<td>122.9</td>
<td>93.4</td>
<td>14.67</td>
<td></td>
<td>160.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I 1.4</td>
<td>100.9</td>
<td>445</td>
<td>121.3</td>
<td></td>
<td>12.77</td>
<td>169.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I 2.2</td>
<td>528</td>
<td>222.7</td>
<td>118.4</td>
<td></td>
<td></td>
<td>189.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I 2.3</td>
<td></td>
<td>420</td>
<td>122.6</td>
<td></td>
<td></td>
<td>169.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I 3.3</td>
<td></td>
<td></td>
<td>119.2</td>
<td></td>
<td></td>
<td>159.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I 3.4</td>
<td></td>
<td></td>
<td>91.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.9</td>
<td>J 1.2</td>
<td>511</td>
<td>165.0</td>
<td>131.8</td>
<td>15.17</td>
<td></td>
<td>191.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J 1.4</td>
<td></td>
<td>167.3</td>
<td>138.2</td>
<td></td>
<td>15.17</td>
<td>201.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J 2.3</td>
<td>542</td>
<td>128.1</td>
<td>177.7</td>
<td></td>
<td>15.17</td>
<td>172.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J 2.2</td>
<td></td>
<td>195.1</td>
<td>141.8</td>
<td></td>
<td>15.17</td>
<td>222.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J 3.3</td>
<td></td>
<td>173.7</td>
<td>132.1</td>
<td></td>
<td>15.17</td>
<td>181.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J 3.4</td>
<td></td>
<td>140.2</td>
<td>121.9</td>
<td></td>
<td>15.17</td>
<td>154.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.9</td>
<td>K 1.3</td>
<td></td>
<td>168.4</td>
<td>158.1</td>
<td>12.87</td>
<td></td>
<td>182.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K 1.4</td>
<td></td>
<td>134.3</td>
<td>125.2</td>
<td></td>
<td>15.17</td>
<td>199.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K 2.3</td>
<td></td>
<td>130.1</td>
<td>132.1</td>
<td></td>
<td>15.17</td>
<td>202.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K 2.4</td>
<td></td>
<td>141.4</td>
<td>118.9</td>
<td></td>
<td>15.17</td>
<td>177.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K 3.3</td>
<td></td>
<td>549</td>
<td>179.5</td>
<td></td>
<td>15.17</td>
<td>173.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K 3.4</td>
<td></td>
<td></td>
<td>178.9</td>
<td></td>
<td>15.17</td>
<td>171.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.7</td>
<td>L 1.3</td>
<td></td>
<td>226.9</td>
<td></td>
<td>13.42</td>
<td></td>
<td>209.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L 1.4</td>
<td></td>
<td>219.4</td>
<td></td>
<td>157.8</td>
<td></td>
<td>209.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L 2.3</td>
<td></td>
<td>196.1</td>
<td></td>
<td>148.6</td>
<td></td>
<td>188.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L 2.4</td>
<td></td>
<td>206.8</td>
<td></td>
<td>163.2</td>
<td></td>
<td>183.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tijd (uur)</td>
<td>Bepaling 1</td>
<td>Bepaling 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Δ_c</td>
<td>$\Delta_{c,el}$</td>
<td>Δ_c</td>
<td>$\Delta_{c,el}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. bij kamertemperatuur:</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.136</td>
<td></td>
<td>0.155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.138</td>
<td>0.108</td>
<td>0.159</td>
<td>0.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.136</td>
<td>0.160</td>
<td>0.155</td>
<td>0.122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.136</td>
<td>0.110</td>
<td>0.156</td>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. monster in diepvries geplaatst:</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.162</td>
<td>0.122</td>
<td>0.157</td>
<td>0.120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.167</td>
<td>0.120</td>
<td>0.155</td>
<td>0.120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 dagen</td>
<td>0.190</td>
<td>0.157</td>
<td>0.182</td>
<td>0.190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel IV

Berekening regressielijnen \(y = b \times + a \) van het watergehalte van weefsel (Fig. 1). Uit de voor \(b \) gevonden waarden blijkt een richtingsverschil voor beide lijnen dat groter is dan de som van de spreidingen in \(b \) \((S_b) \).

<table>
<thead>
<tr>
<th></th>
<th>5°</th>
<th>15°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>-0.4158</td>
<td>0.0061</td>
</tr>
<tr>
<td>(r)</td>
<td>0.555</td>
<td>0.0311</td>
</tr>
<tr>
<td>(a)</td>
<td>83.59</td>
<td>73.59</td>
</tr>
<tr>
<td>(S_{xy})</td>
<td>5.014</td>
<td>1.613</td>
</tr>
<tr>
<td>(S_b)</td>
<td>0.1271</td>
<td>0.029</td>
</tr>
</tbody>
</table>
fig. I Watergehalte van het weefsel in gewichtsprocenten na adaptatie van de krabben aan verschillende zoutgehalten bij 15°C en 5°C.
- gemiddeld watergehalte bij 15°C.
- gemiddeld watergehalte bij 5°C.
Het lineaire verband tussen watergehalte en zoutgehalte is een berekende regressielijn. (zie tabel.)
fig. 2 De osmotische concentraties in bloed en cellen uitgedrukt in °C na 5 dagen adaptatie aan verschillende zoutgehalten bij 15 °C. De punten geven van 2 of 3 kрабen de gemiddelde standaarddeviatie aan. Geen verklaring voor de uiteenlopende waarden van Δi, el.
Fig. 3 de osmotische concentraties in bloed en cellen uitgedrukt in °C, na 5 dagen adaptatie aan verschillende zoutgehalten bij 5°c. De punten geven van 2 of 3 krabben de gemiddelde ± I standaarddeviatie aan. Geen verklaring voor de uiteenlopende waarden van Δi, e).
fig. 4 Herhaalde adaptatie van krabben aan drie zoutgehalten bij 15°C, om de electrolyt concentratie een tweede keer te meten. De aangegeven concentraties zijn gemiddelden van 2 of 3 krabben en zijn uitgedrukt in ±1 standard-deviatie.
Fig. 5 De K⁺-concentraties in bloed en weefsel uitgedrukt in mMol per liter na 5 dagen adaptatie aan verschillende zoutgehalten bij 15°C. De punten geven de gemiddelde concentraties ± I standaarddeviatie weer, van 2 of 3 krabben.
De Cl⁻-concentraties in bloed en weefsel uitgedrukt in mmol per liter na 5 dagen adaptatie aan verschillende zoutgehalten bij 15°C.

A Cl⁻-concentraties in monsters uit de herhaalde adaptatieproef bij 15°C (zie fig. 4).

geeft de gemiddelde concentratie weer ± standaarddeviatie
fig. 7 de Na⁺-concentraties in bloed en weefsel uitgedrukt in mmol per liter, na 5 dagen adaptatie aan verschillende zoutgehalten bij 15°C.

† geeft de gemiddelde concentratie waar ± 1 standaarddeviatie.
fig. 6 Cematische concentraties in het bloed uitgedrukt in °e, op verschillende
tijdstippen gemeten na overbrengen van ε. ruwer van 30,1°/oo naar 14,3°/oo
zoutgehalte bij 15°C.
fig. 9 De osmotische concentraties in het vaas. el uitgedrukt in °/s, op verschillende tijdstippen gemeten na opeenvolging van fester van 0,5% tot 2% en 2% tot 0,5%.
fig. 10 De Cl⁻-concentraties in het bloed uitgedrukt in mmol per liter, op verschillende tijdstippen gemeten na overbrengen van *M. pubes* van 30,1°/oo naar 14,3°/oo zoutgehalte bij 15°C.
Fig. 11 Lijnklijn voor de berekening van φ in de verdunde weefselmonsters.