Late Eocene Southern Ocean Cooling and Invigoration of Circulation Preconditioned Antarctica for Full-Scale Glaciation

Alexander J. P. Houben1,2, Peter K. Bijl1, Appy Sluijs1, Stefan Schouten3, and Henk Brinkhuis1,3

1Marine Palynology and Paleoceanography, Laboratory of Palaeobotany and Palynology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands, 2Now at Geological Survey of the Netherlands (TNO), Utrecht, The Netherlands, 3Royal Netherlands Institute for sea research (NIOZ) and Utrecht University, Texel, The Netherlands

Abstract During the Eocene-Oligocene Transition (EOT; 34–33.5 Ma), Antarctic ice sheets relatively rapidly expanded, leading to the first continent-scale glaciation of the Cenozoic. Declining atmospheric CO2 concentrations and associated feedbacks have been invoked as underlying mechanisms, but the role of the quasi-coeval opening of Southern Ocean gateways (Tasman Gateway and Drake Passage) and resulting changes in ocean circulation is as yet poorly understood. Definitive field evidence from EOT sedimentary successions from the Antarctic margin and the Southern Ocean is lacking, also because the few available sequences are often incomplete and poorly dated, hampering detailed paleoceanographic and paleoclimatic analysis. Here we use organic dinoflagellate cysts (dinocysts) to date and correlate critical Southern Ocean EOT successions. We demonstrate that widespread winnowed glauconite-rich lithological units were deposited ubiquitously and simultaneously in relatively shallow-marine environments at various Southern Ocean localities, starting in the late Eocene (~35.7 Ma). Based on organic biomarker paleothermometry and quantitative dinocyst distribution patterns, we analyze Southern Ocean paleoceanographic change across the EOT. We obtain strong indications for invigorated surface and bottom water circulation at sites affected by polar westward-flowing wind-driven currents, including a westward-flowing Antarctic Countercurrent, starting at about 35.7 Ma. The mechanism for this oceanographic invigoration remains poorly understood. The circum-Antarctic expression of the phenomenon suggests that, rather than triggered by tectonic deepening of the Tasman Gateway, progressive pre-EOT atmospheric cooling played an important role. At localities affected by the Antarctic Countercurrent, sea surface productivity increased and simultaneously circum-Antarctic surface waters cooled. We surmise that combined, these processes contributed to preconditioning the Antarctic continent for glaciation.

Plain Language Summary The ice sheets of Antarctica are geologically a relatively recent phenomenon. Only by the end of the Eocene Epoch (~34 million years ago), major ice sheets began to develop, likely related to declining greenhouse gas concentrations. We still do not understand what the role—if any—of the tectonic openings of key land bridges (i.e., the present-day ocean conduits between Antarctica and Tasmania and the southern tip of South America) was in cooling the Antarctic continent and stimulating it to become glaciated. In this study we use organic marine microfossils to date and correlate several marginal marine sediment successions, dispersed throughout the Southern Ocean. We then show that the sediment composition at these sites changed abruptly throughout the Southern Ocean by about 35.7 million years ago, roughly two million years before the ice sheets rapidly expanded. We interpret this change in sediment composition to reflect enhanced surface ocean circulation. We furthermore analyzed chemical fossils to derive changes in past sea-water temperatures. By combining these data with counts of the marine organic microfossil species, we reconstructed past environmental change across the periods prior, during and after the growth of the Antarctic ice sheets. The results indicate that from about 35.7 million years ago onward, enhanced surface ocean circulation led to sediment winnowing, higher biological productivity in-and cooling of the surface waters around Antarctica. Irrespective of deepening of the Tasman Conduit, progressive intensification of ocean currents, probably as a result of stronger atmospheric circulation need to be considered in understanding the conditions that allowed rapid Antarctic ice sheet to expansion.
1. Introduction

A central paradigm in paleoceanography links Antarctic cryosphere development during the Eocene-Oligocene Transition (EOT; 34–33.5 Ma) to opening and deepening of Southern Ocean gateways (Kennett, 1977; Kennett et al., 1974). Tectonic separation of these gateways would have allowed for the development of a wind-driven, eastward-flowing circumpolar circulation pattern akin to the modern Antarctic Circumpolar Current, deflecting warm subtropical currents and thereby reducing ocean heat transport to Antarctica. Later work revealed that pre-glacial (early Paleogene) Antarctica was not kept “abnormally warm” by such low-latitude-derived currents (Hill et al., 2013; Huber et al., 2004). Rather, declining atmospheric CO₂ concentrations were proposed to have principally driven Eocene cooling and Eocene-Oligocene climate change (Anagnostou et al., 2016; Cramwinckel et al., 2018; DeConto & Pollard, 2003; Goldner et al., 2014; Pearson et al., 2009). Nonetheless, recent work has shown that the establishment of a westward proto-Antarctic Countercurrent resulting from initial deepening of the southern Tasman Gateway accompanied Antarctic climatic cooling in the latest early Eocene, ~49–50 Ma (Bijl, Bendle, et al., 2013; Sijp et al., 2016). This implies that paleogeographic reconstructions and Southern Ocean gateway opening (Sijp et al., 2014) may at some level have affected Antarctic climate and Eocene-Oligocene glaciation via regional atmospheric and oceanic cooling as well. Similar to the modern, relatively shallow marine currents are primarily wind-driven. Therefore, changes in ocean-atmosphere circulation may have indeed affected Antarctic continental climate, based on model experiments (DeConto et al., 2007; DeConto & Pollard, 2003; Gasson et al., 2016). As a corollary, whereas long-term reductions in atmospheric CO₂ concentrations were required to drive glaciation, invigorated circumpolar circulation may have “set the threshold,” that is, determined the timing and nature of subsequent cryosphere development (e.g., DeConto & Pollard, 2003). In effect, the onset of Antarctic glaciation across the EOT occurred in a stepwise pattern as reflected in oxygen stable isotopes derived from benthic foraminifera (Scher et al., 2011), with the Oligocene Isotope Event 1 (Oi-1, sensu Katz et al., 2008) now thought to mark the onset of major glaciation.

Detailed oceanographic reconstructions from multiple regions in the Southern Ocean are required to test whether and how oceanographic changes played a role in Antarctic cryosphere development. The available evidence for warm-temperate late Eocene conditions (Gulick et al., 2017; Passchier et al., 2013; Warny et al., 2018) coexists with evidence for pre-EOT glaciation and cooling (Carter et al., 2017; Scher et al., 2014). Yet the few available shallow-marine, near-shore sedimentary sequences spanning the EOT are incomplete and generally lack sufficient accurate age assessment. This is principally because carbonate-based microfossils traditionally employed for age correlation as well as temperature proxies are poorly preserved and diagenetically altered (Billups & Schrag, 2003; Bohaty et al., 2012) or absent altogether in high-latitude environments (Cooper & O’Brien, 2004; Escutia et al., 2008; Exxon et al., 2001; Florindo et al., 2003).

Relationships between climate and the surface oceanographic evolution of the Southern Ocean therefore remain elusive. On the basis of a literature survey, we identify a distinct shift from organic-rich siliciclastic silty clays to likely condensed, typically glauconite-rich facies at numerous typically neritic circum-Antarctic locations (Figure 1), which are on the basis of current biostratigraphic data of late Eocene to early Oligocene age. The precise chronostratigraphic position of this lithological shift is still poorly constrained. At Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau, combined organic walled dinoflagellate cyst- (dinocyst) and diatom-based biostratigraphy and magnetostratigraphy suggest an unequivocal late Eocene age for the onset of this glauconite-rich section (e.g., Stickley et al., 2004; Stickley et al., 2004). The shift was originally interpreted to reflect winnowing through invigorated bottom water activity in response to Tasman Gateway deepening.

Here we aim to evaluate if the other, so-called “greensand” units reported from the mostly marginal marine Southern Ocean sites may have the same age and to explore possible relationships. To this end, we revisited five upper Eocene to lower Oligocene Antarctic/Southern Ocean sedimentary sequences to update their age models using the now available chronostratigraphic calibration of regional Paleogene dinocyst events (Bijl et al., 2013; Bijl et al., 2018; Houben et al., 2011). This also fills a gap in dinocyst biostratigraphic zonations for the Southern Ocean (Bijl et al., 2018; Bijl, Sluijs, & Brinkhuis, 2013). An update of these zonations, now also covering the Eocene-Oligocene transition interval is provided in Supporting Information S1 (Brinkhuis, 1994; Brinkhuis et al., 2003; Eldrett et al., 2004; Pross et al., 2010; Williams et al., 2004). In addition, we reconstruct sea surface conditions based on organic molecular compounds and quantitative dinocyst
2 Material and Methods

2.1 Material

2.1.1 ODP Site 1172

The EOT interval was recovered at ODP Site 1172 on the East Tasman Plateau in Holes 1172A and 1172D (Exon et al., 2001). Age control relies on biostratigraphy, notably dinocysts and diatoms (Bijl, Sluijs, & Brinkhuis, 2013; Sluijs et al., 2003; Stickley, Brinkhuis, McGonigal, et al., 2004) and magnetostratigraphy (Fuller & Touchard, 2004). Interpretation of the latter was complicated due to the strong normal overprint of the data. Fuller and Touchard (2004) therefore used the z intensity to interpret polarities. Despite these shortcomings, the interpretation is supported by the identification of chemostratigraphic and biostratigraphic signatures of widely documented paleoclimatic events such as the Middle Eocene Climatic Optimum (Bijl et al., 2010) and the Paleocene Eocene Thermal Maximum (Sluijs et al., 2011, Bijl, Sluijs, & Brinkhuis, 2013). The sedimentary succession across the EOT comprises three lithostratigraphic units (Stickley, Brinkhuis, Schellenberg, et al., 2004, see Figure 2): (1) organic-rich silty mudstones of middle-early late Eocene age (unit III; up to 361.12 m below sea floor [mbsf]); (2) a stratigraphically condensed upper Eocene-lowermost Oligocene transitional unit characterized by increasing glauconite content, winnowing and hiatuses (unit II; 355.8–361.12 mbsf); and (3) an increasingly carbonate-rich Oligocene succession (unit I). The units are broadly taken to represent (1) a shallow-marine, prodeltaic setting, (2) a deeper-marine, current-swept setting, and (3) a pelagic setting (Stickley, Brinkhuis, Schellenberg, et al., 2004). Whereas previous studies focused on Hole 1172A, which was continuously cored across Neogene to middle Eocene strata (Exon et al., 2001), we herein also present results from the parallel Hole 1172D (Cores 2R–3R, 372.5–353 mbsf).

2.1.2 Browns Creek Section, Otway Basin, Victoria, Australia

The Browns Creek section (38°42′17.2″S 143°44′00.2″E) in Victoria, Australia, west of Cape Otway is exposed in two parallel gullies. It constitutes the following (informal) lithological units (following McGowran, 2009, Figure 2): (1) Johanna River sand from the unexposed base to 2-m height; (2) the Browns Creek formation (2–12 m), constituting the Turritella clays (2–9.5 m) and the Notostrea greensand (9.5–12 m); (3) the banded bryozoal marls (12–33 m); and (4) the upper Turritella clay unit (33–36 m), which is erosionally truncated at the top. The siliciclastic fraction of the Browns Creek Formation fines upward into the so-called Turritella clays. The glauconitic Notostrea greensand was interpreted to mark a transgression, culminating in the banded bryozoal marls (McGowran, 2009). The upper boundary of the Turritella clay marks an erosional surface and is overlain by sandy strata. Palynological assemblages from Browns Creek are very rich and well preserved, making it a classical section (Cookson & Eisenack, 1965).

2.1.3 ODP Site 1128, Australian Bight

ODP Site 1128 is located on the continental rise of Southern Australia (Feary et al., 2000, Figure 1, 134°S/127°E). We studied the interval between 397.01 and 94.16 m composite depth (mcd; Holes C and D; Figure 2). The section below 289 mcd of unit IV consists of heavily bioturbated clayey siltstone and sandy siltstone. Unit III (281.85–289 mcd) is composed of glauconitic sandstones, overlain by cross-laminated sandstones grading upward to carbonate nannofossil wackestones. Subsequently, an upper glauconitic sandstone grades upward to nannofossil carbonate mudstone. Shipboard, these sandstones were assemblages. We employ two organic molecular paleothermometers; the Tetraether Index of 86 carbon atoms (TEX86; Schouten et al., 2002) and the alkenone unsaturation index (Uk37; Brassell et al., 1986; Prahl & Wakeham, 1987) on sediment sections from the East Tasman Plateau (ODP Site 1172) and the subantarctic southwest Atlantic Ocean (Deep Sea Drilling Program [DSDP] Site 511; Figure 1). For these sites and ODP Site 696 (northwestern Weddell Sea) and the Browns Creek Section (South Australian coast), we present organic-walled dinocyst assemblage data in order to reconstruct supraregional oceanographic reorganizations in the Southern Ocean surface waters.
interpreted as turbidites separated by green burrowed claystones (Feary et al., 2000). The overlying succession of unit II is uniform green, slightly calcareous claystone that is locally interrupted, particularly in the upper parts, by a few beds of redeposited planktonic foraminiferal and nannofossil ooze and glauconite grains (Feary et al., 2000).

2.1.4. ODP Site 696, Northwestern Weddell Sea
ODP Site 696 was drilled on the South Orkney microcontinent in the northwestern Weddell Sea (Barker & Kennett, 1988; 61°S; 42°W). Unit VII (up to 548 mbsf) was divided in four subunits (Figure 2): Subunit VIID (645.6–606.9 mbsf) represents organic-rich sandy mudstone with occasional clayey mudstones throughout. Subunit VIIC (569.7–606.9 mbsf) yields high amounts of glauconite. The upper part of this subunit (569.7 to 579.4 mbsf) is dominantly sandy and silty mudstones. The major lithologies within subunit VIIB (548.9–579.4 mbsf) are dark claystone and clayey mudstone. At the base of this subunit, silty mudstone occurs; both lithologies contain some glauconite. Small (0.3–2 cm) rounded sedimentary features interpreted as iceberg rafted debris occur in Cores 53R and 54R (Carter et al., 2017). These ice rafted debris clasts were interpreted as derived from the Weddell Sea hinterland and Dronning Maud land, Antarctica, and to be brought to the South Orkney microcontinent via large icebergs (Carter et al., 2017), in spite of indications of warm-temperate conditions in the middle-late Eocene Southern Ocean (e.g., Bijl et al., 2009, 2010; Douglas et al., 2014).

2.1.5. DSDP Site 511, Southwest Atlantic (Falkland Plateau)
The recovered sedimentary succession at DSDP Site 511 from the western part of the Falkland Plateau, South Atlantic (Ludwig et al., 1980, 51°S, 46°W, Figure 1), yields a 163-m-long upper Eocene to lower Oligocene succession. It comprises massive gray diatomaceous oozes and muddy nannofossil-diatomaceous oozes with variable carbonate content. The lower part (~187–100 mbsf) contains episodic sand-sized glauconite (Ludwig et al., 1980). In particular, the sediments from Core 16R are completely devoid of carbonate and characterized by high glauconite content (Figure 2).

2.2. Methods
2.2.1. Palynology
For palynology, freeze-dried samples were processed with 30% HCl and 38% HF. Residues were sieved over a 15-μm mesh and analyzed using light microscopy to a minimum of 200 dinocysts, where
possible. Counts of <50 specimens were discarded for qualitative assessment. Dinocyst nomenclature and taxonomy, unless stated otherwise, follows that cited in Williams et al. (2017), with the exception of the taxonomic deviation of the subfamily Wetzelielloideae for which we follow Bijl et al. (2016). All materials are stored in the collection of the Laboratory of Palaeobotany and Palynology, Utrecht University.

2.2.2. Biomarker-Derived Sea Surface Temperature Records
For organic biomarker analysis, powdered and freeze-dried sediments were extracted with dichloromethane (DCM)/methanol (9:1) by using accelerated solvent extraction (Dionex). Solvents were subsequently removed by rotary evaporation under vacuum. Extracts were separated by Al2O3 column chromatography using hexane/DCM (9:1, v/v) and DCM/methanol (1:1, v/v) as eluents to yield apolar and polar fractions, respectively. The polar fraction was dissolved in a 99:1 hexane/propanol mixture and this may point toward elevated input of soil deviation from a relationship of TEX86 to sea surface temperature: the Methane Index (Zhang et al., 2006). Furthermore, we test our TEX86 results for overprinting in temperatures (see, e.g., Cramwinckel et al., 2018, and Hartman et al., 2018). On the other hand, the polar fraction was separated through Al2O3 column chromatography using hexane:DCM (1:1, v/v) to yield a “ketone” fraction. The latter was analyzed for alkkenones by gas chromatography using an Agilent 6890 equipped with an on column injector. The U13C index is converted to sea surface temperature (SST) using the calibration of Müller et al. (1998), which has a standard error of ~1.5 °C.

The relationship between thaumarchaeotal membrane lipid distribution (glycerol dialkyl glycerol tetraethers [GDGTs]) and SST was assessed by construction of an extensive global core top sediment data set (Kim et al., 2010) and appeared to be different for polar and (sub)tropical settings. Therefore, Kim et al. (2010) proposed two different calibration models: (1) a logarithmic index (TEX86\(^L\)) that excludes one compound, that is, the regio-isomer of thaumarchaeol and uses a global calibration data set. (2) The logarithm of TEX86 (TEX86\(^H\)) includes the isomer of crenarchaeol and has the polar core top data removed from the calibration data set. Application of the two calibration models for several “deep-time” case studies, culture experiments and surface sediments led Kim et al. (2010) to suggest that the TEX86\(^L\) model should be employed for temperatures below 15 °C and the TEX86\(^H\) model for temperatures exceeding 15 °C. However, later applications of TEX86\(^L\) revealed several shortcomings in reproducing trends seen in accompanying proxy data. In light of this, TEX86\(^L\) has been abandoned for this study. We present our data using the TEX86\(^H\) calibration in the main figures, with the notion that this calibration may have an unknown amount of (in high latitudes probably seasonal) bias toward warmer temperatures (see, e.g., Cramwinckel et al., 2018, and Hartman et al., 2018, for further discussion). The standard error for the TEX86\(^H\) model is ±2.5 °C. Samples with a BIT index of >0.4 were discarded, since this may point toward elevated input of soil-derived GDGTs thereby affecting TEX86 paleothermometry (Weijers et al., 2006). Furthermore, we test our TEX86 results for overprinting influences that may cause deviation from a relationship of TEX86 to sea surface temperature: the Methane Index (Zhang et al., 2011) and GDGT2/crenarchaeol ratio (Weijers et al., 2011), both signaling overprint of methanotrophic archaea contributing to the sedimentary GDGT pool, the GDGT0/crenarchaeol ratio signaling the overprint of methanogenic bacteria into the GDGT pool (Blaga et al., 2009) and influences of water depth changes that could potentially influence the sedimentary GDGT pool (Taylor et al., 2013) using the GDGT2/GDGT3 ratio.

3. Results
3.1. Dating and Correlating Southern Ocean Sites
3.1.1. Browns Creek Section, Otway Coast, Southeastern Australia
Shafik and Idnurm (1997) attempted to tie the basal 10 m of the Browns Creek Section to the Geomagnetic Polarity Time Scale by generating a magnetic reversal stratigraphy. They identified two reversed polarity zones and suggested the interval to correlate to Chron C16n.2n through C15n (~36.7–35 Ma) primarily based on relatively sparse calcareous nannofossil assemblages. The last occurrence (LO) of the typical middle Eocene foraminifer Acanarina collactea (Agnini et al., 2011) is located below the Browns Creek Clay (McGowran, 2009). This suggests correlation to the earliest-late-Eocene Chron C17n.2n for the base of the section. Dinocysts indicate that the Browns Creek Clay and Notostrea greensand are somewhat older than proposed by Shafik and Idnurm (1997). The first occurrence (FO) of Aireiana verrucosa at 5 m
The taxon is also abundant in coeval strata at DSDP Site 511, supporting the ensuing correlation. The interval between the FO of Oligocene magnetochron C12r (Garza & Fuller, 2002). In this sample we record a typical mid late Eocene 3.1.3. ODP Site 696, Weddell Sea One productive sample was recovered from 116.47 mbsf. This level approximately correlates to the early clay unit. Thus suggests correlation to Chron C13r. Glauconite productive sample stratigraphically above the barren interval at 317.7 mbsf. The presence of these taxa characterizes by abundant occurrences of Operculodinium tiara assemblage constituting early Oligocene calcareous nannofossil assemblages (Zone NP19-26X-CC) through 84.82 mcd (1128C-9H CC). Combined paleomagnetic and stable isotope records identify the Oi-1 shift at the base (242 mcd) of Chron C13n (242–214 mcd; Garza & Fuller, 2002; Mallinson et al., 2003). At and above 237 mcd, rich dinocyst assemblages are again recovered. The latest Eocene-early Oligocene taxa Reticulatosphaera actinocoronata, Stoveracysta kakanuiensis, and the previously undescribed taxon we recorded at Browns Creek (dinocyst sp. 2) is recorded at 237 mbsf, which is the first productive sample stratigraphically above the barren interval at 317.7 mbsf. The presence of these taxa thus suggests correlation to Chron C13n. Glaucinite-rich deposition thus ended more or less coevally with the Oi-1 shift. Further up-section (120–130 mbsf), samples are again barren of palynomorphs. One productive sample was recovered from 116.47 mbsf. This level approximately correlates to the early Oligocene magnetochron C12r (Garza & Fuller, 2002). In this sample we record a typical mid-low latitude assemblage constituting Operculodinium tiara and Oligokolpoma galeotti, similar to observations from ODP Site 1172.

3.1.3. ODP Site 696, Weddell Sea

For the lower part of the succession, stratigraphic control is obtained from calcareous nanofossils, in particular the first common occurrence of Istmolithus recurvus (Core 59R-CC, 130 mbsf; Wei & Wise, 1990). This places the base of the investigated interval at the correlative level of the base of C16r (36.9 Ma; Villa et al., 2008). Further up-section, dinocysts are instrumental in providing age control; the FO of Stoveracysta kakanuiensis (571.98–571.15 mbsf) is calibrated to the latest Eocene Chron C13r at the ODP Site 1172 (34 Ma). The FO of S. kakanuiensis precedes the FO of the Oi-1 marker M. escutiana (567.39–568.83 mbsf), which suggests that the EOT is recovered. The interval between the FO of S. kakanuiensis and the FO of M. escutiana is characterized by abundant occurrences of Pithanoperidinium sp. A sensu Goodman and Ford 1983. This taxon is also abundant in coeval strata at DSDP Site 511, supporting the ensuing correlation. The
assemblage is, however, substantially less diverse compared to the other sites investigated. The combined palynofossil and nannofossil data provide as a reasonable base for interpreting the upper Eocene glauconite-rich unit to predate the Oi-1 level at ODP Site 696.

3.1.4. Deep Sea Drilling Project Site 511, Falkland Plateau

At DSDP Site 511, relatively rich assemblages of calcareous nannofossils (Wise, 1983) and diatoms (Gombos & Ciesielski, 1983) provide biostratigraphic age control in addition to our dinocyst-based results. At the base of the succession, we record Schematophora speciosa and Alterbidinium distinctum providing a maximum age of ~36.70 Ma (Chron C16n.2n). The calcareous nannofossil Reticulofenestra oamariensis is commonly recorded at these levels. According to Villa et al. (2008), this taxon first occurs in southern high latitudes at a level corresponding to Chron C16n.1n (35.9–35.7 Ma). Consequently, the combined dinocyst and calcareous nannofossil distribution provides an age of about 36 Ma for the base of investigated section. Up-section, we record the FO of Deflandrea sp. A sensu Brinkhuis et al., 2003 (between 178.25 and 177.18 mbsf) and the LO of Schematophora speciosa (148.7–147.7 mbsf). This suggests that the interval between the base of the section and 148.5 mbsf captures the upper part of Chron C16n (36–35.7 Ma). Stoveracysta ornata has its FO at the top of Core 17 (150.2–149.2 mbsf). This implies that Core 16, which yielded carbonate-poor winnowed and glauconite-rich sediment, corresponds to Chron C15r (35.7 Ma). The FO of the diatom Rhizosolenia oligocaenica in the overlying Core 15R calibrated against upper Chron C13r (Roberts et al., 2003). This thus suggests an age of about 34.1 Ma for the interval above Core 16. Hence, the phase of severe winnowing and condensation is thus coeval to the Tasman Region and apparently ends close to the EOT.

Remarkably, below Core 15R, Enneadocysta dictyostila is consistently present (up to 129 mbsf). This implies a last consistent occurrence correlative to Chron C13r, similar to ODP Site 1172. Scattered occurrences further up-section likely represent reworked specimens. An increase in δ18O of thermocline dwelling fora-miniferal (Subbotina) calcite at 101 mbsf is interpreted as the Oi-1 shift (33.9 Ma). Here the dinocyst Malvinia escutiana first occurs (100.26–100.15 mbsf; see also Houben et al., 2011). Concomitantly, we record the FOs of Corrudinium incompositum and the boreal cold-water taxon Gelatia inflata. The abundant occurrence of Phthanoperidinium sp. A sensu Goodman and Ford 1983 characterizes the interval below the Oi-1 shift. Except for the transient abundance of Phthanoperidinium comatum (90.75–35.63 mbsf) and P. amoenum (46.77–35.63 mbsf), no clear dinocyst events are recorded in the lower Oligocene succession. At the top of the investigated interval (27.39 mbsf), the LO of the calcareous nannofossil Istmolitius recurvus is recorded (32.5 Ma; Villa et al., 2008).

3.1.5. Chronostratigraphic Synthesis and Sedimentation Rates

All available paleomagnetic, diatom, and nannofossil data at the various sites support our dinocyst-based correlations (Figure 2, Table 1). The most useful and consistent dinocyst events for dating the glauconite-rich intervals and locating the level of the Oi-1 are the FO and LO of Schematophora speciosa and the subsequent FOs of Stoveracysta ornata, Stoveracysta kakanuiensis, and Malvinia escutiana (Figure 2). Significantly, the new correlations reveal that increased glauconite content and indications of sedimentary winnowing initiated more or less coevally in time along continental margins in the Southern Ocean. Except for ODP Site 696, which has a low diversity assemblage, and ODP Site 1128, which is barren of palynomorphs, the characteristic sedimentary signatures roughly coincide with the LO of Schematophora speciosa within the upper part of Chron C16n.1n, at ~35.7 Ma. Furthermore, these typical sedimentary characteristics are conspicuously recorded up to the Oi-1 level.

We have synthesized the calibrated dinocyst events into dinocyst zonations, which effectively fill the gap between the Paleocene-Eocene zonations of Bijl, Sluijs, and Brinkhuis (2013) and the Oligocene-Miocene of Bijl et al. (2018) in Supporting Information S1. In order to evaluate the apparent synchronicity of “greensand” deposition and potential effects on sedimentation rates, we provide age-depths plots using the primary biostratigraphic and chronostratigraphic constraints discussed in the sections above (see Figure 3 and Data Set S1). This illustrates that the onset of “greensand deposition” is indeed more or less coeval at all investigated sites. At ODP Site 1172, Browns Creek, and ODP Site 1128, it follows that there is an evident concomitant reduction in sedimentation rate, indeed likely related to condensation and/or disconformities, starting between 36 and 35.5 Ma. Sedimentation rates cannot be accurately constrained at DSDP Site 511 and at ODP Site 696 yet, partly because the underlying lower upper Eocene section was not recovered or preserved at these sites.
3.2. Organic-Walled Dinoflagellate Cyst Assemblages; Quantitative Characteristics

3.2.1. Site 1172

At ODP Site 1172, the early late Eocene assemblages constitute dominant trans-Antarctic forms (*Deflandrea antarctica*, *Vozhennikovia* spp., and *Enneadocysta dictyostila*; Figure 4). Above Chron C16n.1n (35.5 Ma), cosmopolitan and low-latitude forms (mainly *Spiniferites* spp.) are recorded for the first time in

<table>
<thead>
<tr>
<th>Site Depth/height (m)</th>
<th>Age</th>
<th>Criterion</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODP Hole 1172A</td>
<td>360.5</td>
<td>35.71</td>
<td>Top C16n.1n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>361.3</td>
<td>35.59</td>
<td>Base C16.1n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>361.5</td>
<td>36.05</td>
<td>Top C16n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>365</td>
<td>36.7</td>
<td>Base C16n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>367.1</td>
<td>37.75</td>
<td>Top C17n.1n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>373.9</td>
<td>38.33</td>
<td>Base C17n.3n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>382.1</td>
<td>39.63</td>
<td>Top C18n.1n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>413.6</td>
<td>39.7</td>
<td>Top C18n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>415</td>
<td>40.24</td>
<td>Base C18n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172A</td>
<td>356.6</td>
<td>29.74</td>
<td>Base C11n.1n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>357.75</td>
<td>29.853</td>
<td>Top C11n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>358.5</td>
<td>30.217</td>
<td>Base C11n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>359.5</td>
<td>33.266</td>
<td>Base C13n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>359.6</td>
<td>33.738</td>
<td>Base C13n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>360.6</td>
<td>34.99</td>
<td>Base C15n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>360.75</td>
<td>35.29</td>
<td>Base C15n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>360.5</td>
<td>35.706</td>
<td>Base C16n.1n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>361.3</td>
<td>35.89</td>
<td>Base C16.1n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>361.5</td>
<td>36.05</td>
<td>Top C16n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>365</td>
<td>36.7</td>
<td>Base C16n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>367.1</td>
<td>36.969</td>
<td>Top C17n.1n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>373.9</td>
<td>38.38</td>
<td>Base C17n.3n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>382.1</td>
<td>39.75</td>
<td>Top C18n.2n</td>
</tr>
<tr>
<td>ODP Hole 1172D</td>
<td>415</td>
<td>40.2</td>
<td>Base C18n.2n</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>108.2</td>
<td>29.97</td>
<td>Base C11n</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>133.7</td>
<td>30.59</td>
<td>Top C12n</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>137.5</td>
<td>31.03</td>
<td>Base C12n</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>142.37</td>
<td>32.00</td>
<td>LO Reticulofenestra umbilicus</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>213.5</td>
<td>33.16</td>
<td>Top C13n</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>242</td>
<td>33.71</td>
<td>Base C13n</td>
</tr>
<tr>
<td>ODP Hole 1128C</td>
<td>251.04</td>
<td>34.44</td>
<td>LO Discoaster saipanensis</td>
</tr>
<tr>
<td>ODP Hole 1128D</td>
<td>259.11</td>
<td>36.50</td>
<td>FO Isthmolithus recurvus</td>
</tr>
<tr>
<td>ODP Hole 1128D</td>
<td>422.17</td>
<td>40.80</td>
<td>LO Chiasmolithus solitius</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>28.6</td>
<td>34.7</td>
<td>FO S. kakanuiensis</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>16.5</td>
<td>35.4</td>
<td>LO Achromosphaera alcicornu</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>16.5</td>
<td>35</td>
<td>FO R. actinocorona</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>10.35</td>
<td>35.75</td>
<td>LO Schematophora speciosa</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>10.1</td>
<td>35.8</td>
<td>LO Aireiana verrucosa</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>4.73</td>
<td>36.5</td>
<td>FO Aireiana verrucosa</td>
</tr>
<tr>
<td>Browns Creek</td>
<td>2</td>
<td>38</td>
<td>LO Aacranina collactea</td>
</tr>
<tr>
<td>DSDP Hole 511</td>
<td>178.77</td>
<td></td>
<td>FO R. oamaruensis</td>
</tr>
<tr>
<td>DSDP Hole 511</td>
<td>149.70</td>
<td></td>
<td>FO Stoveracysta ornata</td>
</tr>
<tr>
<td>DSDP Hole 511</td>
<td>119.50</td>
<td></td>
<td>FO Stoveracysta ornata</td>
</tr>
<tr>
<td>DSDP Hole 511</td>
<td>101.00</td>
<td></td>
<td>Oi-1/FO M. escutiana</td>
</tr>
<tr>
<td>DSDP Hole 511</td>
<td>27.39</td>
<td></td>
<td>LO I. recurvus</td>
</tr>
<tr>
<td>ODP Hole 696</td>
<td>568.11</td>
<td></td>
<td>FO Malvinia escutiana</td>
</tr>
<tr>
<td>ODP Hole 696</td>
<td>571.57</td>
<td></td>
<td>FO S. kakanuiensis</td>
</tr>
<tr>
<td>ODP Hole 696</td>
<td>617</td>
<td></td>
<td>FO I. recurvus</td>
</tr>
</tbody>
</table>

Note. FO = first occurrence; LO = last occurrence; Oi-1 = Oligocene Isotope Event 1.
abundance (Figure 4). Then, progressively through the glauconite-rich unit, Brigantedinium spp. becomes dominant. Above a stratum which can approximately be correlated to Chron C13n and hence the EOT, the material becomes barren of palynomorphs. Above this level, palynomorphs briefly reappear in the considerably deeper pelagic facies (356.3–356.9 mbsf), and only taxa typical for low-latitude environments are recorded (e.g., Spiniferites spp., Operculodinium spp., Hystrichokolpoma rigaudiae, and Oligokolpoma galeottii).

3.2.2. Browns Creek

At the Browns Creek section, dinocyst assemblages are exceptionally rich and very well preserved (see also the pioneering work of Cookson & Eisenack, 1965). In general, distinctly different from ODP Site 1172, trans-Antarctic dinocyst taxa are not recorded. Enneadocysta pectiniformis occurs as the mid-latitude counterpart species of E. dictyostila and specimens of Deflandra phosphoritica (Figure 5).

Assemblages are dominated by Spiniferites spp., a generalist cosmopolitan taxon (Sluijs et al., 2005; Zonneveld et al., 2013, and references therein). Variations in coastal proximity throughout the record are inferred from the episodic abundance of more inshore taxa like Dinopterygium cladoides (in the Johanna River Sand), Deflandra phosphoritica, and Lejeunecysta fallax. This reveals that the neritic locality was susceptible to variations in sea level and as such coastal proximity. Remarkably, throughout the Notostrea Greensand, the low-latitude taxa Schematophora speciosa and Hemiplaciphora semilunifera are very abundant to dominant (Figure 5). Heterotrophic representatives such as Brigantedinium spp. are not recorded. The upper part of the Bryozoal marls is characterized by typical outer neritic taxa (Spiniferites spp. and Operculodinium spp.). Only above the banded bryozoal marls that straddle the Eocene–Oligocene boundary, we record the abundance of heterotrophic representatives (such as Lejeunecysta fallax). We ascribe this to high input of riverine nutrients as the abundance of terrestrial palynomorphs is also elevated, arguably when sea level fell. Trans-Antarctic taxa remain absent throughout.

3.2.3. ODP Site 696

At the base of the investigated succession from ODP Site 696, peridinioid trans-Antarctic taxa like Vozzhennikovia and Spinidinium spp. are dominant (Figure 6), together with high abundance of Deflandra antarctica and Senegalinium spp. and high loadings of terrestrial palynomorphs (>70%). Across the glauconite-rich upper Eocene succession of unit VIIC (607–571 mbsf), small protoperidiniaceans of the genera Brigantedinium and Selenopemphix become increasingly abundant, while the abundance of terrestrial palynomorphs declines. Just below the FO of Stoveracysta kakanuiensis, Brigantedinium spp. becomes dominant, and large specimens of other protoperidiniaceans like Lejeunecysta and Selenopemphix are recorded. Between 569.39 and 568.32 mbsf, bracketing the FO of M. escutiana, Phthanoperidinium sp. A sensu Goodman and Ford, 1983 is dominant. Throughout the lower Oligocene succession, protoperidiniacean taxa are consistently dominant, and large specimens of Selenopemphix and Lejeunecysta are present.

3.2.4. DSDP Site 511

At DSDP Site 511, dinocyst assemblages can essentially be divided in two main domains; those from below the Oi-1 shift (101 mbsf, Figure 7) and...
those from above. Below the Oi-1 shift, endemic trans-Antarctic predominantly peridinioid taxa such as *Alterbidinium distinctum*, *Vozzhennikovia apertura*, *Deflandrea antarctica*, and *Phthanoperidinium* spp. are dominant (Figure 7). The latter group also includes high latitude taxa encountered in the northern Hemisphere (Firth, 1996; Sangiorgi et al., 2008). *Brigantedinium* spp. becomes progressively dominant in Cores 16R and Core 15R (127–142 mbsf), in association with high glauconite content. Just below the Oi-1 level, *Phthanoperidinium* sp. A sensu Goodman and Ford 1983 is dominant (Figure 7). Although the protoperidiniacean taxon *Malvinia escutiana* exhibits its FO within the body of the Oi-1 shift (see also Houben et al., 2011), other presumed heterotrophic representatives (peridinioid and protoperidiniacean taxa, see also Sluijs et al., 2005) demise in abundance and are replaced by typically offshore gonyaulacoid taxa like *Tectatodinium* spp., *Paucisphaeridium* spp., *Elytrocysta* spp., *Cerebrocysta* spp., *Impagidinium* spp., and *Cyclotella* spp.

Figure 4. Relative abundance of selected dinoflagellate cyst taxa and groups encountered at Ocean Drilling Program Site 1172. Blue indicate transantarctic taxa and blue-green those with a cosmopolitan distribution. Brown indicates protoperidiniacean taxa.

Figure 5. Relative abundance of selected dinoflagellate cyst taxa and groups encountered at Browns Creek. Blue indicate trasantarctic taxa and blue-green those with a cosmopolitan distribution. Brown indicates protoperidiniacean taxa.
spp., and *Operculodinium* spp. Typical Eocene taxa assigned to the trans-Antarctic flora only extend in low abundance across the Oi-1 shift. Possibly, these are reworked.

3.3. Sea Surface Temperature Reconstructions

3.3.1. ODP Site 1172

For the samples which had BIT values below 0.4 and thus which were retained in our SST reconstruction at Site 1172, none of the indices signal overprints of methanogenesis, methanotrophic bacteria, or water depth (see Table 1). This lends confidence to present our TEX$_{86}$ results in terms of SST. Some of the samples that
did have high BIT index values did also have an abnormally low ring index (<1.0) or abnormally high GDGT0/crenarchaeol ratio (>10), but these samples were already discarded based on their high BIT index values. Our TEX86H analyses indicate that within the late Eocene (37–35.8 Ma; 372–364 mbsf), SSTs gradually dropped by ~3 °C from 24 to 21 °C (Figure 8) at Site 1172. These SSTs are in line with Uk′37-derived SSTs for the early late Eocene (Bijl et al., 2009, 2010), also when these TEX86 results are recalibrated with the TEX86H calibration (Bijl, Bendle, et al., 2013). Subsequently, SSTs (364–362 mbsf) rose by ~2 °C. Within the transitional sediments of uppermost units IIIA and II, TEX86H-derived SST estimates are discarded for the samples exhibiting BIT indices with values >0.4 (gray dots in Figure 8). These occur at levels that are also barren of palynomorphs. This suggests the presence of degraded marine organic material under oxygenated conditions, which leads to an enrichment in terrestrial organic matter and elevated BIT values (Huguet et al., 2009). Alkenones are not detected within the transitional sediments. Within uppermost unit IIIA (361.5 mbsf, corresponding to Chron C16n.1n, ~35.5 Ma), one sample denotes a distinct cooling to 21 °C. SSTs gradually increased across transitional unit II extending into the latest Eocene (35.4 to ~34 Ma) by 2 °C. Above the correlative Oi-1 level (359.6 mbsf), the early Oligocene succession is virtually barren of organic matter up to 357 mbsf. Two early Oligocene samples (dated ~30 Ma) reveal SSTs slightly warmer than those recorded in the late Eocene ~22 °C.

3.3.2. DSDP Site 511
As for Site 1172, also the TEX86 results from 511 can be confidently interpreted in terms of SST, as all indices to signal potential nontemperature overprints show normal values (see Data Set S1). At the base of the studied succession at Site 511 (179–176 mbsf, ~35.8 Ma, >35.4 Ma), SSTs are ~19 °C according to both TEX86H and Uk′37. At 148.2 mbsf (~35 Ma, Figure 8), SSTs have dropped to 18 °C (TEX86H), while alkenones were not detected at this level. Across Core 16R that lacks carbonate and yields much glauconite, we record a sharp cooling to ~16 °C (TEX86H) and ~15 °C (Uk′37). SSTs drop by ~2 °C to values below 15 °C within Core 13 (109.6 mbsf), just below the Oi-1 shift. From this level, Uk′37 reports cooler SSTs than TEX86H. At the base of the Oi-1 shift at ~101.8 mbsf, SSTs are 15 °C (TEX86H) and 13 °C (Uk′37). Across the Oi-1 shift at

Figure 8. Sea surface temperature records from ODP Hole 1172 (left) and DSDP Site 511 (right). For DSDP Site 511, the oxygen isotope data (after Liu et al., 2009) are also indicated to illustrate the position of the Oligocene Isotope Event 1 (Oi-1) shift. Green shading indicates sedimentary successions characterized by elevated glauconite content. Glauconite content gradually increases initially near the top of unit IIIA at ODP Site 1172. At DSDP Site 511, Core 16R is particularly characterized by high glauconite content. High branched isoprenoid tetraether-index values indicate the dominance of soil-derived glycerol dialkyl glycerol tetraethers over marine glycerol dialkyl glycerol tetraethers. These samples are not considered for Tetraether indexH of 86 carbon atoms analysis. Dashed lines indicate correlations between both sites. Approximate ages are given at the left of the graphs. At Site 1172, the decrease of trans-Antarctic dinocyst taxa coincides with the local introduction of warmer-temperature surface waters. This is ascribed to the introduction of the proto-Leeuwin Current into the East Tasman Plateau region.

DSDP = Deep Sea Drilling Program; ODP = Ocean Drilling Program.
4. Discussion

4.1. Late Eocene Invigoration of Circumantarctic Bottom Currents

The abrupt inception of increased winnowing and condensation, manifested by glauconite-rich sediments of broad late Eocene age, was first reported from the Tasman Region, particularly ODP Sites 1170–1172 (Huber et al., 2004; Stickley, Brinkhuis, Schellenberg, et al., 2004). It was here ascribed to invigorated bottom current intensity during accelerated subsidence of continental blocks such as the South Tasman Rise. Our correlations now imply that the invigoration of bottom circulation at ~35.7 Ma was not just restricted to the shallow-marine waters around the Tasman region. Both the near-shore localities near Cape Otway (Browns Creek) and the Great Australian Bight (ODP Site 1128), located in the Australo-Antarctic Gulf (AAG), were affected by similar processes. In addition, and conspicuously, coeval condensed greensand units are now demonstrated to occur in the northwestern Weddell Sea (ODP Site 696) and in the subantarctic southwest Atlantic (DSDP Site 511; Figure 3). In addition, Estebenet et al. (2014), also on the basis of dinocyst biostratigraphic data, suggested that a widespread occurring glauconitic interval in the upper Member of Rio Turbo Fm. of the Austral Basin of southernmost Argentina and Chile is of similar age. Taken together, these results imply that invigoration of bottom water flow was a widespread phenomenon along the margins of all Southern Ocean basins during the late Eocene, everywhere starting around 35.7 Ma.

ODP Sites 1170 and 1171 are located on South Tasman Rise, which was part of a promontory between Australia and Antarctica (Stickley, Brinkhuis, Schellenberg, et al., 2004). At these sites, the indications for bottom water current invigoration appear coincident with a late Eocene phase of accelerated deepening of the conduit (Cande & Stock, 2004; Close et al., 2009). An expected consequence of widening and deepening of a southern branch of the Tasman conduit at latitudes >60°S is the intensification of the wind-driven westward-flowing Antarctic Counter Current. In combination with regional deepening, this may also explain a strengthening of the bottom water flow at Site 1172 on the East Tasman Plateau, northwest of the South Tasman Rise.

Although Site U1356 from the Wilkes Land Margin does not contain an in situ record of late Eocene marine sediments, the first 30 m of the earliest Oligocene part of the record is characterized and often times dominated by reworked late Eocene dinocysts (Bijl et al., 2018; Houben et al., 2013). Notably, the lithology in this part of the record is characterized by an alternation of dark gray mudstone and green sandstones, with the dinocyst assemblages from the green sandstones being dominated by the late Eocene reworking. Although allochthonous sediments are difficult to interpret, and glauconite presence has not been confirmed, the green color of the reworked late Eocene does suggest that greensands were also deposited on the late Eocene Wilkes Land Antarctic margin and subsequently reworked into the early Oligocene strata.

In the southwest Atlantic, at Sites 696 and 511 and the onshore Austral Basin, the effects of tectonic reorganization near the Drake Passage are expected to be potentially important. Although tectonic reconstructions for Drake Passage deepening remain ambivalent, there are no clear indications for a major reorganization in the late Eocene (e.g., Hill et al., 2013; Huck et al., 2017; Lagabrielle et al., 2009; Wright et al., 2018). We therefore ascribe enhanced bottom water flow in the southwest Atlantic to enhanced circulation of its western boundary as a likely westward propagation of the Antarctic Countercurrent.

The sedimentary patterns recognized in the AAG (at the Browns Creek Section and at Site 1128) may indirectly also relate to subsidence of the Tasman region. This facilitated throughflow of the eastward proto-Leeuwin current into the Southwest Pacific through a northern Tasman conduit. This mechanism was proposed to explain the incursion of cosmopolitan components of the dinocyst and diatom assemblages at Site 1172, east of Tasmania, concomitantly with the inception of winnowed, glauconite-rich sediments (Stickley, Brinkhuis, Schellenberg, et al., 2004). Analogous to the strengthened Antarctic Countercurrent, this could have invigorated bottom current intensity along the northern margin of the AAG, affecting Browns Creek and ODP Sites 1168 and 1128.
4.2. Late Eocene Surface Oceanographic Change

Prior to 35.7 Ma, when glauconitic deposition started, dinocyst assemblages are dominated by low-latitude and cosmopolitan taxa in the AAG (Brown’s Creek, see also ODP Site 1168 in Sluijs et al., 2003, and Bijl et al., 2011). This is likely because the surface waters were influenced by the low-latitude eastward flowing proto-Leeuwin current along the northern margin of the AAG (Figure 9), much like the Modern. Trans-Antarctic endemic dinocyst taxa are dominant at ODP Site 1172, ODP Site 696, and at DSDP Site 511, in line with reports of similar endemic trans-Antarctic assemblages in middle-late Eocene strata from adjacent regions (e.g., Guerstein et al., 2008; Mohr, 1990; Wrenn & Hart, 1988). It implies that the East Tasman Plateau, the Weddell Sea, and the southwest Atlantic were influenced by Antarctic-derived surface waters (Figure 9a). This finding confirms the sea surface circulation patterns projected by general circulation models that are primarily forced by the wind fields (e.g., Huber et al., 2004). Hence, prior to 35.7 Ma, there was a polar-easterly wind-driven surface circulation system around Antarctica, with essentially surface waters driven westward along the Antarctic margin. As part of this, the southern edge of a proto-Ross Gyre flowed along Antarctica’s Pacific margin and extended northward in southwest Pacific (Tasman Current, Figure 9, see also Huber et al., 2004), and the equivalent Indian-Atlantic Southern Ocean gyre flowed westward at its southern edge and extended northward in the southwest Atlantic. This situation can be considered the equivalent of the proto-Antarctic Counter Current.

From ~35.7 Ma onward at ODP Site 1172, the abundance of cosmopolitan taxa increased (Figure 9b). In theory, these taxa could have derived from the East Australian Current, flowing southward along the eastern margin of Australia. However, the southern geographic position of Site 1172 should have kept it within the reach of the northward Tasman Current rather than the East Australian Current (e.g., Huber et al., 2004). A more likely source of the cosmopolitan dinocyst taxa is the through-flow of the eastward proto-Leeuwin Current into the southwest Pacific (Stickley, Brinkhuis, Schellenberg, et al., 2004). Yet Sites 696 and 511 remained under the influence of Antarctic-derived surface currents through the latest Eocene, also associated with phases of invigorated bottom water circulation.

Throughout the glauconite-rich unit at Site 1172 (361–359.5 mbsf; ~35.5–33.7 Ma), Brigantedinium spp., representative of obligate heterotrophs (Protoperidinium, Jacobson & Anderson, 1986; Menden-Deuer et al., 2005) that characterize high sea surface productivity, become progressively dominant (Figures 4 and 9). A similar trend is recorded at ODP Site 696 and DSDP Site 511 where Brigantedinium spp.
increases in abundance during the same time interval (Figure 7 and 9b). Yet, at Browns Creek in the AAG, *Schematophora speciosa* and *Hemiplaciphora semilunifera*, taxa closely related to the *Areoligera* and *Glaphyrocysta* groups, become dominant. The latter is the characteristic of relatively high-energy neritic conditions (Sluijs & Brinkhuis, 2009, and references therein), indicating the increasing *Brigantedinium* abundance does not represent a Southern Ocean wide phenomenon.

High productivity can be brought about by increased riverine or aeolian nutrient input, for which no evidence, such as increased abundance of terrestrial palynomorphs, is apparent in any of these records. Rather, we propose that high productivity is caused by increased vertical mixing of the surface waters, which also results in high abundance of *Brigantedinium* spp. in (sub)modern open oceanic environments (e.g., Marret & Zonneveld, 2003; Reichart & Brinkhuis, 2003). Further evidence for elevated surface productivity comes from increased preservation of biogenic opal and inorganic geochemical productivity proxies at ODP Site 1090 on the Agulhas Ridge (Anderson & Delaney, 2005; Diekmann et al., 2004), ODP Site 689 (Maud Rise; Schumacher & Lazarus, 2004), and originations of modern Antarctic radiolaria taxa from 35.7 Ma onward (Lazarus et al., 2008). We therefore propose that in the “counter current perimeter” invigorated bottom water circulation was strongly coupled with invigorated surface ocean circulation, leading to more vertical mixing and primary productivity. This was likely driven by enhanced polar easterly wind fields, brought about by late Eocene cooling (Scher et al., 2014); onset of Antarctic glaciation probably invigorated atmospheric pressure gradients over the Southern Ocean.

4.3. Surface-Oceanographic Change Across the EOT

Across the onset of Antarctic glaciation marked by the second step of the EOT (i.e., Oi-1), we note a series of prominent environmental changes. At ODP Site 1172, invigoration of bottom water circulation continued, with sediments becoming barren of palynomorphs at ~33.7 Ma, probably due to overexposure to oxygen. This lasted for about 3 million years (until ~30 Ma) after which the high carbonate content and gonyaulacoid-dominated cosmopolitan-low-latitude dinocyst assemblages indicate open-ocean, oligotrophic, warm-temperate conditions. Comparable low-latitude-derived assemblages are found on the northern margin of the AAG at ODP Site 1128 (Figure 9c).

At ODP Site 696, the EOT marks the onset of sustained dominance of heterotrophic protoperidiniacean dinocysts. Along with *Brigantedinium* spp. that were already abundant by late Eocene times, we now also record large-sized specimens of *Selenopemphix* and *Lejeunecysta*. These lower Oligocene assemblages are thought to be adapted to seasonal sea-ice conditions as similar assemblages are recorded at two sites along the Wilkes Land margin, Prydz Bay, and the Ross Sea (Houben et al., 2013). Whereas the Weddell Sea area featured rafting icebergs already by late Eocene times (Carter et al., 2017). It is only until after Oi-1, when evidence from dinoflagellate cysts suggest sea ice conditions commenced around Antarctica (Houben et al., 2013).

At DSDP Site 511, we also record major biotic turnover directly associated with the Oi-1. Whereas heterotrophic representatives (peridinoid taxa and *Brigantedinium* spp.) are dominant below the Oi-1 shift, gonyaulacoid taxa that are thought to relate to autotrophic dinoflagellates are dominant above Oi-1 (Figure 9). This suggests a regional reduction in nutrient availability through a decrease in vertical ocean mixing or a regional deceleration of the surface currents affecting the southwest Atlantic. Possibly, the development of sea ice conditions along the Antarctic Margin and in the Weddell Sea affected the northward extension of the Antarctic counter current, similar to the present day situation (Nicol et al., 2000).

4.4. Temperature Change Across the EOT

The middle to late Eocene is generally assumed to represent a period of gradual, long-term cooling of Southern Ocean waters that, perhaps along with the development of some Antarctic ice, led to a positive shift recorded in deep ocean benthic foraminifera oxygen isotope records (Zachos et al., 2008). Yet the few late Eocene SST records from the Southern Ocean that are available are characterized by opposing patterns. Relatively low-resolution SST records from the Southern Ocean from Liu et al. (2009) document cooling for ODP Site 1090 (Agulhas Ridge, South Atlantic Ocean) and warming for DSDP Site 277 (Campbell Plateau, Southwest Pacific) over the ~3 Myr before Oi-1. In the two stratigraphically well-resolved sections studied here, we also find this opposite pattern. A long-term ~3–4 °C middle-late Eocene cooling is recorded at ODP Site 1172 between 37 and 35.8 Ma (Figure 8). Yet, between 35.5 and 33.7 Ma (the glauconite rich
records (e.g., Liu et al., 2009), we interpret this as characteristic for cooling of the higher latitudes. This is in-line with vegetation reconstructions that document late Eocene climatic deterioration on Antarctica (Francis et al., 2008, and references therein). Possibly, this cooling may have contributed to suggested late Eocene ephemeral glaciation well before the Oi-1 (Hambrey et al., 1991; Katz et al., 2008; Peters et al., 2010; Scher et al., 2014).

The record from DSDP Site 511 furthermore provides information of the climate evolution across the EOT. The coincidence of invigorated circulation at sites theoretically affected by the Antarctic Counter Current; and multiple processes could have provided the primary forcing of these changes. Evidence for late Eocene cooling is provided by deep-sea oxygen isotope data (Scher et al., 2014); cooling spurred circum-Antarctic circulation, enhanced vertical mixing, increased deep and intermediate water formation (Scher & Martin, 2006), and resulted in more productive surface waters, which is consistent with our and previous observations (Stickley, Brinkhuis, Schellenberg, et al., 2004). Goldner et al. (2014) suggested that a decrease in CO₂ concentrations initiated Antarctic Ice Sheet growth, leading to increased thermal gradients and invigorated ocean circulation. There is now increasing evidence to suggest that glaciation initiated in the late Eocene, prior to Oi-1 (Carter et al., 2017; Scher et al., 2014). Our results indicate that changes in circum-Antarctic circulation preceded Oi-1 by ~2 million years.

Initial studies arising from ODP Leg 189 in the Tasman Gateway region suggested late Eocene deepening of the Tasmanian Gateway on the basis of lithological (glauconite deposition and winnowing) and micropalaeontological characteristics (Stickley, Brinkhuis, Schellenberg, et al., 2004). However, the results from Leg 189 do not unequivocally reflect deepening, as absolute water depth is difficult to interpret from lithologic and microfossil data. The activation of Tasman tid Guyots in the region (Vogt & Conolly, 1971) add...
Acknowledgments
A. H. and H. B. acknowledge Equinor for funding. A. S. thanks the European Research Council for Starting Grant 259627 and the Netherlands Earth System Science Centre. P. K. B. acknowledges funding through NWO polar programme grant 866.10.110 and Veni grant 863.13.002. We thank Steven Bohaty for numerous discussions on Southern Ocean biostратigraphy and oceanography. We thank Stephen Gallagher for guidance and assistance with sampling in Australia. The Integrated Ocean Discovery Program (IODP) provided samples and shipboard data. We acknowledge Mike Hannah, Rob McKay, and one anonymous reviewer for constructive reviews. This publication is accompanied by two supporting information files that contain a description of the dinocyst stratigraphic framework and updated zonation (Supporting Information S1) and an MS Excel file with palynological and organic paleothermometry data (Data Set S1).

5. Conclusions
Our results indicate that during the late Eocene, the Antarctic Margin and south Southern Ocean were critically affected by changing and conspicuously enhanced ocean circulation. This finding points toward the inception of a potentially powerful positive climate feedback system; involving cooling, enhanced atmospheric circulation, thermal isolation, and enhanced biological productivity. This combination of processes was a determining factor in the nature and timing of ice-sheet expansion marked by the Oi-1. The late Eocene intensification of the Antarctic Countercurrent and its climatic and environmental feedbacks may have well contributed to setting the stage of minor scale, ephemeral Antarctic glaciations prior to the EOT. This pattern of transient precursor glaciations prior to the major glacial expansion is in line with the hypothesized role of powerful nonlinear feedbacks in ice sheet mass balance and stability.

References

Geochemistry, Geophysics, Geosystems

