Opdrachtgever:
Rijkswaterstaat, Rijksinstituut voor Kust en Zee

Adviezen voor het maken van een gezamenlijke zandbalans voor Westerschelde en monding

C. Jeuken, G. Ruessink, Z.B. Wang

Bureau- en literatuurstudie
maart 2002
SAMENVALTING:
Integraal zandbeheer vereist een goed inzicht in de zandhuishouding van de Westerschelde en monding en de morfologische ontwikkelingen onder invloed van ingrepen op verschillende ruimte- en tijdschalen. Het opstellen van een zandbalans is een belangrijk hulpmiddel voor het verkrijgen van dit inzicht en het formuleren van beleid ten aanzien van zandwinning en vaargeulonderhoud. WL/Delft Hydraulics is gevraagd voorliggend advies uit te brengen voor het maken van een gezamenlijke zandbalans voor Westerschelde en monding. Het doel van het project is drieledig: 1) concretiseer en analyseer de beheersvragen met betrekking tot zandwinning en vaargeulonderhoud en inventariseer op basis daarvan de functionele eisen waaraan de zandbalans moet voldoen om een bijdrage te kunnen leveren aan het beantwoorden van de beheersvragen, 2) een advies uitbrengen over de manier waarop, op een eenduidige en logische wijze, een gezamenlijke zandbalans van de Westerschelde en monding gemaakt kan worden en 3) het inventariseren welke analyses met de resultaten van de zandbalans kunnen worden uitgevoerd om de beheersvragen te kunnen beantwoorden.

De analyse van de (8) beheersvragen leert dat een zandbalans in principe moeten kunnen bijdragen aan de beantwoording van de meeste beheersvragen. Verder mondt de analyse uit in een aantal concrete aanbevelingen en aandachtspunten. Belangrijkste aanbeveling is dat de te gebruiken schematisatie (= vakkenindeling waarvoor de balans wordt gemaakt) wordt gebaseerd op morfologische eenheden op mesoschaal (delen van grote geulen en kortsluitgeulen), die vervolgens kunnen worden geaggreed tot grotere morfologische eenheden. Dit is ook de belangrijkste reden waarom bestaande zandbalansstudies slechts in zeer beperkte mate kunnen bijdragen aan het beantwoorden van de beheersvragen.

Voor het maken van de zandbalans wordt uiteindelijk een zestal stappen onderscheiden: 1) het bepalen van erosie- en sedimentatie van zand ten gevolge van natuurlijke processen en ingrepen sedimentatiesnelheden in de verschillende zandbalansvakken, 2) het traceren en eventueel corrigeren van mogelijke fouten, 3) het bepalen van erosie- en sedimentatietrends, 4) het aggregeren van de gegevens tot de gewenste ruimte- of tijdschalen, 5) het selecteren van deelperioden waarvoor balansen worden opgesteld en, 6) het bepalen van de sedimentuitwisseling tussen de al dan niet geaggregeerde vakken. Met name bij deze laatste stap zijn aanvullende analyses nodig. Voor de beantwoording van de beheersvragen worden enkele specifieke nabewerkingen gedefinieerd.

REFERENTIES:

VER.	AUTEUR	DATUM	OPMERK.	REVIEW	GOEDKEURING
1.0 | C. Jeuken, G. Ruessink | 15/11/2001 | fase 1 | Z.B. Wang | |
2.0 | C. Jeuken e.a. | 10/02/2002 | | H. Winterwerp | |
3.0 | C. Jeuken e.a. | 28/02/2002 | definitief | H. Winterwerp | T. Schilperoort

PROJECTNUMMER: Z3213
TREFWOORDEN: zandbalans, Westerschelde, monding, morfologie, baggeren, storten
INHOUĐ: TEKST 61 | TABellen 4 | FIGUREN 7 | APPENDICES 3
STATUS: □ VOORLOPIG □ CONCEPT X DEFINITIEF
Inhoud

1 Inleiding ..1
 1.1 Achtergrond van het project ..1
 1.2 Doelstellingen en aanpak ...2

2 De beheersvragen en de rol van een zandbalans ..4
 2.1 Inleiding ...4
 2.2 Beheersvraag 1 ..5
 2.3 Beheersvraag 2 ...6
 2.4 Beheersvraag 3 ...10
 2.5 Beheersvragen 4, 6 en 8 ...10
 2.6 Beheersvraag 5 ..12
 2.7 Beheersvraag 7 ...13
 2.8 Conclusies ..14

3 Een analyse van recente zandbalansstudies van de Westerschelde en haar monding ..17
 3.1 Inleiding ...17
 3.2 Het mondingsgebied ...17
 3.3 De Westerschelde ..22
 3.4 Westerschelde en mondingsgebied ..23
 3.5 Discussie en conclusies ..24

4 Het maken van een integrale zandbalans voor de Westerschelde en haar monding ...26
 4.1 Inleiding ..26
 4.2 De schematisatie ...26
 4.2.1 Morfologische eenheden als uitgangspunt ...26
4.2.2 De aansluiting met lodingsvakken, bagger- en stortvakken en
bestaande modelschematisaties ...27
4.2.3 Het kiezen van referentiepunten ..29
4.2.4 Conclusies ..29

4.3 Beschikbaarheid en synchronisatie van gegevens30
4.3.1 De beschikbaarheid van basisgegevens ...30
4.3.2 Het synchroniseren van gegevens ..31

4.4 Omgang met storten en baggeren in een zandbalans32
4.4.1 Inleiding ...32
4.4.2 Het baggeren en storten van slib ...32
4.4.3 Het baggeren en storten van (fijn) zand ..33

4.5 Een stappenplan voor het opstellen van een zandbalans34
4.5.1 Inleiding ...34
4.5.2 Stap 1 - Van waterinhouden naar erosie / sedimentatie van
zand ...36
4.5.3 Stap 2 - Het traceren en verwijderen van mogelijke fouten37
4.5.4 Stap 3 - Het bepalen van erosie-sedimentatietrends38
4.5.5 Stap 4 - Het ruimtelijke aggregeren van de gegevens39
4.5.6 Stap 5 - Het selecteren van deelperioden ..31
4.5.7 Stap 6 - Het bepalen van de sedimentuitwisseling tussen
vakken ...42

5 Analyses ter beantwoording van beheersvragen46

5.1 Inleiding ..46
5.2 Beheersvraag 1 ...46
5.3 Beheersvraag 2 ...49
5.4 Beheersvraag 3 ...49
5.5 Beheersvragen 4, 6 en 8 ...50
5.6 Beheersvraag 5 ...51
5.7 Beheersvraag 7 ...52

6 Samenvatting, conclusies en aanbevelingen ..55

6.1 Samenvatting en conclusies ..55
6.2 Aanbevelingen ...58

7 Referenties ...60
Inleiding

1.1 Achtergrond van het project

De voorliggende studie is uitgevoerd in het kader van het RWS-project ZEEKENNIS. Dit project is onderdeel van de Raamovereenkomst tussen Directie Zeeland en het RIKZ. Het project ZEEKENNIS richt zich op kennisontwikkeling op het gebied van hydrodynamica, morfologie, biologie en de samenhang daartussen ten behoeve van de ondersteuning van beleid en beheer.

Een concreet doel van het project ZEEKENNIS is het genereren van kennis en middelen waarmee de zandinhoud en -verdeling, dus de zandhuishouding van de Westerschelde en het mondingsgebied kan worden bepaald/voorspeld en gestuurd en/of gewaarborgd zodat de gebruiksfuncties veiligheid, toegankelijkheid en natuurlijkheid optimaal op elkaar kunnen worden afgestemd. Deze doelstelling hangt samen met het streven van Directie Zeeland naar een integraal zandbeheer. Integraal zandbeheer betekent dat getrokt wordt alle kunstmatige zandverplaatsingen en/of onttrekkingen dusdanig uit te voeren dat, samen met de natuurlijke zandverplaatsingen, een zo optimaal mogelijke zandhuishouding kan worden verkregen in relatie tot de gebruiksfuncties en beleidsdoelstellingen.

Het zandwinbeleid en de onderhoudsvergunningen (stortvergunningen) ten behoeve van het vaargeulonderhoud zijn de belangrijkste stuurknoppen voor een integraal zandbeheer door Directie Zeeland.

In de Westerschelde wordt zand gewonnen door de zandhandel en de overheid. Voor een periode van 5 tot 10 jaar wordt steeds een afweging gemaakt hoe zandwinning past in het beheer en de ontwikkeling op lange termijn. Voor de locatiekeuze wordt gezocht naar optimalisatie met het overige beleid en dan met name het vaargeulonderhoud. Hierbij doen zich de volgende beheersvragen voor (offerte-aanvraag RIKZ/AB/2001/60220):
1. Hoeveel en waar mag je zand verwijderen zonder dat het mis gaat met het systeem in relatie tot de beleidsdoelstellingen?
2. Hoe groot is het sedimentoverschot in het systeem?
3. Wat is de natuurlijk fluctuatie in de zandbalans van het estuarium?
4. Kan de monding fungeren als sedimentbuffer voor de Westerschelde?

Voor het vaargeulonderhoud en -verruimingen moet in de vergunningen voor Vlaanderen worden aangegeven waar en hoeveel baggerspecie in het estuarium kan worden gestort. Op hoofdlijnen moet duidelijk zijn wat de uitgangspunten zijn van het stortbeleid en hoe deze kunnen worden geoptimaliseerd voor het morfologische systeem. Vragen die hierbij een rol spelen zijn (offerte-aanvraag RIKZ/AB/2001/60220):
5. Hoe ziet de retourstroom van baggerspecie van west naar oost eruit, wanneer komt deze op gang en wat is het verloop daarvan?
6. Wat zijn de gevolgen van de export van zand/baggerspecie naar de monding?
7. Wat zijn de grenzen aan het storten in de Westerschelde en monding waarbij het meergeulenstelsel niet bedreigd wordt.
8. Kan baggerspecie uit de Westerschelde in de monding gestort worden?

Probleemstelling

Integraal zandbeheer vereist een goed inzicht in de zandhuishouding van de Westerschelde en monding en de morfologische ontwikkelingen onder invloed van ingrepen op verschillende ruimte- en tijdschalen. Het opstellen van een zandbalans is een belangrijk hulpmiddel voor het verkrijgen van dit inzicht en het formuleren van beleid ten aanzien van zandwinning en vaargeulonderhoud.

Een zandbalans kwantificeert de erosie en sedimentatie van zand onder invloed van natuurlijke processen en ingrepen voor ieder vak van de nader te specificeren schematisatie, waarvoor de zandbalans wordt opgesteld, inclusief de sedimentuitwisseling tussen die vakken.

In het verleden zijn diverse zandbalansen opgesteld. Dit is echter niet altijd op een eenduidige en logische wijze gedaan. Zo zijn er altijd aparte zandbalansen voor de Westerschelde en monding gemaakt terwijl deze gebieden waarschijnlijk als een samenhangend geheel moeten worden gezien. Daarnaast zijn de zandbalansen vaak gebaseerd op de indeling in vaklodingsbladen. Deze indeling houdt geen rekening met de morfologische eenheden van het systeem terwijl een integraal zandbeheer dit wel vraagt. Mede door deze beperkingen kunnen bovengenoemde vragen met betrekking tot zandwinning en vaargeulonderhoud niet optimaal worden beantwoord. Binnen het project ZEEKENNIS, en in samenwerking met het project K2005, wil men daarom een nieuwe integrale zandbalans opstellen voor de Westerschelde en haar mondingsgebied. WL|Delft Hydraulics is gevraagd voorliggend advies uit te brengen voor het maken van een dergelijke zandbalans.

1.2 Doelstellingen en aanpak

Het doel van het project is drieledig:

1. Concretiseer en analyseer de beheersvragen en inventariseer op basis daarvan de functionele eisen waaraan de integrale zandbalans van Westerschelde en monding moet voldoen om een bijdrage te kunnen leveren aan het beantwoorden van die beheersvragen.

2. Breng een advies uit over de manier waarop, op een eenduidige en logische wijze, een integrale zandbalans van de Westerschelde en monding gemaakt kan worden. Deze zandbalans moet een bijdrage kunnen leveren aan het beantwoorden van de in paragraaf 1.1 genoemde vragen over zandwinning en vaargeulonderhoud. Hierbij moet worden ingegaan op de volgende technische vragen:
 a) Hoe moet worden omgegaan met morfologische eenheden grenzen bij het opstellen van de zandbalans (cellen concept). Welke schematisatie moet worden gebruikt?
b) Hoe moet in de zandbalans worden omgegaan met het storten en baggeren?
c) Is het nodig en mogelijk aansluiting te zoeken bij modelconcepten? Zo ja, hoe?
d) Is synchronisatie van lodingen nodig?
e) Hoe moet worden omgegaan met storten van slib in de zandbalans?
f) Met welke onnauwkeurigheden hebben we te maken?
g) Hoe moet worden omgegaan met verschillen in de beschikbaarheid van gegevens tussen Westerschelde en monding?

Tot slot moet bij het uitbrengen van het advies worden ingegaan op de uitkomsten van eerdere zandbalansstudies van Westerschelde en haar monding.

3. Inventariseer welke analyses met de resultaten van de zandbalans kunnen worden uitgevoerd om de in paragraaf 1.1 genoemde beheersvragen over zandwinning en vaargeulonderhoud te kunnen beantwoorden. Hierbij kan onder meer worden gedacht aan het vaststellen van sedimenttransport-richtingen.

De indeling van deze rapportage is als volgt: een analyse van de beheersvragen en de functionele eisen / mogelijkheden van een zandbalans om die vragen te beantwoorden (doelstelling 1) worden in hoofdstuk 2 behandeld. In hoofdstuk 3 wordt aan de hand van deze inventarisatie en de vragen 2a tot en met 2g een systematische analyse gemaakt van recente (na 1990) zandbalansstudies van Westerschelde en monding (onderdeel doelstelling 2). De resultaten van de analyses in de hoofdstukken 2 en 3 vormen de basis voor opstellen van het advies voor het maken van een gezamenlijke zandbalans van Westerschelde en monding, in hoofdstuk 4. De benodigde analyses voor het beantwoorden van de beheersvragen (doelstelling 3) komen aan de orde in hoofdstuk 5. Tot slot geeft hoofdstuk 6 een samenvatting van de belangrijkste conclusies en aanbevelingen voor vervolgonderzoek.
2 De beheersvragen en de rol van een zandbalans

2.1 Inleiding

Doel van dit hoofdstuk

Dit hoofdstuk geeft een analyse van de beheersvragen en de potentiële rol van een zandbalans in het beantwoorden van die vragen (doelstelling 1). De in paragraaf 1.1 genoemde acht beheersvragen worden geconcretiseerd en geanalyseerd op basis van een discussie met de beheerder en opdrachtgever en een analyse van relevante beleidsstukken: “Wat wordt er precies bedoeld? Over welke tijd- en ruimteschalen hebben we het? En welke waarnemingen en gedachten liggen aan de vraag ten grondslag?” Vervolgens wordt nagegaan in hoeverre een zandbalans van de Westerschelde en haar monding kan bijdragen aan het beantwoorden van de vraag: “wat voor soort gegevens zijn er nodig, wat zijn mogelijkheden en beperkingen?” De resultaten van deze analyses monden uit in een aantal functionele eisen / randvoorwaarden waaraan een gezamenlijke zandbalans van de Westerschelde en monding idealiter moet voldoen (paragraaf 2.8).

Nadere analyse van en discussie over de beheersvragen leert dat de beheersvragen 4, 6 en 8 samen zijn te nemen tot één vraag: Kan de monding fungeren als sedimentbuffer voor zand en baggerspecie afkomstig uit de Westerschelde?

Tijd- en ruimteschalen

Streefbeelden en beleiddoelstellingen worden veelal geformuleerd voor de midden tot lange termijn (10-30 jaar). Evaluaties en eventuele bijstellingen van het beleid vinden plaats op de korte termijn (orde vijf jaar). Dit geldt ook voor het zandwinbeleid en het vaargeulonderhoud in de Westerschelde. Dit betekent in principe dat de beheersvragen zowel op de korte als lange termijn moeten kunnen worden beantwoord.

Om aan te geven op welke ruimteschaal de vragen betrekking kunnen hebben wordt de volgende schaalindeling gehanteerd:

- **Systeemschaal**, bestaande uit Westerschelde en mondingsgebied en eventueel het riviersysteem, met andere woorden het totale estuarine systeem.
- **Megaschaal**, de Westerschelde of de monding of het riviersysteem als onderdeel van het totale estuarine systeem.
- **Macroschaal**, individuele grote geulen en de langgerekt plaatcomplexen tussen de geulen in zowel de Westerschelde als de monding. In de Westerschelde kunnen geulen en plaatcomplexen worden samengenomen tot een bochtgroep. Omdat een bochtgroep dezelfde lengteschaal heeft als een individuele geul, valt ook de bochtgroep onder de macroschaal.
- **Mesoschaal**, de kortsluitgeulen die de verbindingen vormen tussen de grotere hoofd- en nevengeul in een macrocel; delen van hoofd/nevengeulen en grote plaatcomplexen in Westerschelde en monding.

- **Microschaal**, onderdelen van kortsluitgeulen.

Uit de navolgende analyse van de beheersvragen zal volgen dat voor het maken van een nieuwe zandbalans de microschaal vervalt. De nadruk zal komen te liggen op de meso-, macro- en megaschaal.

Opgemerkt wordt dat de beoogde tijd- en ruimteschalen niet noodzakelijk elkaars bij elkaar horen. Dit betekent dat eventuele korte termijn effecten van zandwinning en vaargeulonderhoud wel zichtbaar kunnen zijn op meso- en misschien macroschaal, maar niet op de mega- of systeemschaal. Dit kan consequenties hebben voor de mate waarin de beheersvragen kunnen worden beantwoord.

2.2 Beheersvraag I

Toelichting

Hoeveel en waar mag men zand verwijderen (winnen) _zonder dat het mis gaat met het systeem in relatie tot de beleidsdoelstellingen?_

In het zandwinbeleid (RWS, 2000) wordt een zevental beleidsdoelstellingen geformuleerd, waarvan de eerste twee algemeen zijn en de derde tot en met de zevende doelstelling specifiek:

1. Zo min mogelijk ingrijpen in het watersysteem.
2. Voorzorgprincipe en anders compensatie.
4. Behoud van het meergeulenstelsel.
5. Behoud en versterken van karakteristieke ecotopen.
6. Geen toename van de getijdendoordringing als gevolg van menselijke ingrepen.

Beschouwen we de eerste doelstelling in relatie tot de zandwinning en het vaargeulonderhoud dan betekent dat, dat beide ingrepen zoveel mogelijk op elkaar moeten worden afgestemd (werk met werk maken). Bij het behoud en versterken van de morfologische dynamiek (doelstelling 3) kan bijvoorbeeld worden gedacht aan de regeneratie van intergetijdegebieden door de aanwezigheid van migrerende kortsluitgeulen. De vierde doelstelling betekent de instandhouding van het huidige geul-plaatsysteem dat gekenmerkt wordt door twee grote parallelle geulen, waarvan de ene geul onderdeel uitmaakt van de hoofdvageul (veelal een ebgeul) en de andere als nevengeul fungeert (veelal een vloedgeul). Deze grote geulen worden op de meeste plaatsen gescheiden door plaatgebieden en verbonden door kortsluitgeulen (de zogenaamde bochtgroepen, Jeuken,}

\[1\] Zandwinning vindt voornamelijk plaats in de Westerschelde. Winning in de mondinggebied is alleen toegestaan als het in het belang van scheepvaart is of als hierdoor kusterosie wordt verminderd. Bij dit laatste kan bijvoorbeeld worden gedacht aan het tegenwerken van de landwaartse verplaatsing van kortsluitgeulen vloak onder de kust.
2000; de macro- en mesocellen, Winterwerp e.a., 2000). Het behoud van ondiepwatergebieden en verschillende soorten intergetijdegebieden (hoog en laag dynamisch, hoog gelegen en laag gelegen) is een randvoorwaarde voor doelstelling 5 en hangt tevens nauw samen met de doelstellingen 3 en 4. Geen toename van de getijendoodrading lijkt alleen mogelijk als ingrepen niet leiden tot een wezenlijke verandering in het geulpatroon (meergeulenstelsel) en tot een toename van de gemiddelde diepte in het estuarium.

Bovenstaande beleidsdoelstellingen impliceren dat het misgaat met het systeem als menselijk handelen leidt tot een wezenlijke verandering van de fysische systeemkenmerken. Hierbij moet bijvoorbeeld worden gedacht aan het verdwijnen van het meergeulenstelsel in de Westerschelde en het verdrinken van intergetijdegebieden. De ruimteschaal waarop deze vraag betrekking heeft kan variëren van de meso-schaal (het voorkomen van kortsluitgeulen) tot de megaschaal (het al dan niet verdrinken van het systeem).

Rol van de zandbalans

De basisgegevens van de zandbalans kunnen in principe worden gebruikt om de beleidsdoelstellingen 3, 4, 5 en 6 te evalueren. Voorwaarde is dat de basisgegevens van de zandbalans bestaan uit: 1) de gemeten wateroppervlakten en volumina als functie van de diepte voor verschillende morfologische eenheden op meso- en macroschaal voor diverse jaren, en 2) een overzicht van de ingrepen (baggeren, storten en winnen) per zandbalansvak van de nieuwere schematisatie ten opzichte van één referentieniveau. Vervolgens zal een aantal specifieke analyses moeten worden uitgevoerd om de vragen te beantwoorden (zie hoofdstuk 5).

2.3 Beheersvraag 2

Toelichting

Hoe groot is het sedimentoverschot in het systeem?

In het nieuwe zandwinbeleid (RWS, 2000) wordt gesproken over een potentieel sedimentoverschot van ongeveer 80 Mm³ dat ontstaat als gevolg van de verdieping 48°/43°. Omdat dit een belangrijk getal is, is nagegaan wat met de term sedimentoverschot wordt bedoeld, op welke waarnemingen dit is gebaseerd en wat de oorsprong van het getal 80 Mm³ is. Tot slot wordt nog een opmerking gemaakt over potentiële sedimenttekorten.

De nevengeulen. Als reactie op deze debiettoename eroderen de aangrenzende delen in de vaargeul. Het geërodeerde sediment sedimenteert op de drempels waar het wordt weggebaggerd om vervolgens weer in de nevengeulen (vloedgeulen) te worden gestort. De stortingen in de nevengeulen leiden tot een sedimentoverschot in deze geulen en een versterkte opbouw van de intergetijdegebieden. De term sedimentoverschot is dus lokaal gedefinieerd en heeft betrekking op het aanpassingsproces van het systeem van hoofd- en nevengeulen op macroschaal onder invloed van baggeren in de hoofdvaargeul (veelal ebgeul) en het storten in de nevengeul (meestal vloedgeul).

Tabel 2.1 geeft een overzicht met relevante referenties van de oorsprong van het sedimentoverschot van 80 Mm³. Hieruit blijkt dat de oorsprong van het getal vooral moet

<table>
<thead>
<tr>
<th>Referentie</th>
<th>Waarde</th>
<th>Waar</th>
<th>Opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>Nu nog aanwezig in het oostelijk deel ten gevolge van verdieping 1970-1975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-30</td>
<td>Verdiepen van het middendeel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-50</td>
<td>Verdiepen van het westelijk deel.</td>
<td></td>
</tr>
<tr>
<td>Dekker, 1994</td>
<td>78.3</td>
<td>Verdieping en deels verwachte aanpassing van hoofdvaargeul in het gebied van de Overloop van Hansweert tot de grens.</td>
<td>Er is een karakteristiek van de verdiepte en aangepaste vaargeul in dit gebied gemaakt op basis van de gegevens in TSC (1984). Zie verder tekst.</td>
</tr>
</tbody>
</table>

Deze gedachtegang over sedimentoverschotten is grotendeels gebaseerd op zandbalansstudies op macroschaal (onderverdeling in hoofdgeul, nevengeul en platen, van den Berg e.a. 1991 en Huijs, 1996) en debietmetingen in met name het oostelijk deel van de Westerschelde, het Valkenisse-gebied in het bijzonder. Tevens wordt impliciet verondersteld dat de geulen zich aanpassen volgens een zekere evenwichtsrelatie tussen getijvolume en dwarsdoorsnede.

In de periode 1955-1997 is de hoofdgeul in het oostelijk deel ongeveer 100Mm3 verruimd (Huijs, 1996 in Pieters, 1997). Hiervan is circa 25 Mm3 onttrokken door zandwinning, 35 Mm3 is geborgen in het land van Saeftinghe en de opbouw van plaatgebieden en daarmee onttrokken aan het actieve systeem. De resterende 30-40 Mm3 is in het nevengeulengebied, met name het Valkenisse gebied, terechtgekomen en wordt geïnterpreteerd als zijnde een sedimentoverschot als gevolg van het verdiepen van de vaargeul (Pieters, 1997; Roelse en Arends, 2000, RWS, 2000). Zandwinning in vooral het oostelijk deel van de Westerschelde moet helpen om het veronderstelde sedimentoverschot weg te werken. Opmerkelijk is dat deze getallen, die betrekking hebben op de periode 1955-1997, direct in relatie worden gebracht met de vaargeulverdieping in de periode 1970-1976. Met name in de periode 1955-1970 heeft er een aanzienlijke sedimentatie in het Valkenisse-gebied plaatsgevonden die net zo groot was, zo niet groter dan tijdens de periode van en na de verdieping (Jeukens, 2001).

Het storten en baggeren in het oostelijk deel is gepaard gegaan met een kantelen van het geulsysteem: een netto erosie in de ebgeul waar baggerd wordt en sedimentatie in de vloedgeul waar gestort wordt (Jeukens, 2001). Echter, al ruim voordat de verdieping 1970-1976 werd uitgevoerd was er sprake van een aanzienlijke natuurlijke sedimentatie in de nevengeulen van het Valkenissegebied. Deze was zelfs groter dan de verondiepingen tijdens en na de verdieping. Ook de hydrografische kaarten sinds 1900 suggereren een natuurlijke tendens tot kantelen van het geulsysteem in dit deel van de Westerschelde (Jeukens, 2000):
de grote vloedgeul splitst op in twee kleinere geulen en de activiteit van kortsluitgeulen neemt af. Dit proces is vermoedelijk gepaard gegaan met een toename van de getijdebieten door de ebgeul en wellicht ook een uitruiming van deze ebgeul (vaargeul). Het zou dus kunnen zijn dat het baggeren en storten vanaf 1970 een dergelijke tendens heeft versterkt, maar niet heeft veroorzaakt. Om hierover een uitspraak te kunnen doen zijn echter aanvullende analyses over de periode 1900-1970 nodig. Deze analyses zijn ingepland in het ZEEKENNIS project. Hierbij moet ook de rol van de ontwikkelingen in het middendeel worden beschouwd (Jeuken, 2001); de verwachting is dat de ontwikkelingen in dit deel van invloed zijn geweest op de waargenomen veranderingen in het oostelijk deel van Westerschelde. Daarnaast is het belangrijk dat de morfologische ontwikkelingen sinds de laatste verdieping en verruiming van de vaargeul in de periode 1997-2000 nauwlettend worden gevolgd. Gaan de geuldelen grenzend aan de drempels in de vaargeul wederom uitruimen zoals dat ook tijdens en na de verdieping 1970-1975 is waargenomen?

Numeriek modelonderzoek naar de potentiële gevolgen van zandwinning voor het ontstaan van sedimenttekorten geeft aan dat op de korte termijn de sedimentvraag als gevolg van zandwinning kleiner is dan de winning zelf (Svasek, 1999). Dit volgt uit Svasek’s annames. In het model werd aangenomen dat de geulen zich instantaan en één op één aanpassen volgens de evenwichtsrelatie tussen dominant getijvolume en dwarsdoorsnede: zandwinning leidt tot een toename van het getijvolumina door de geul waar gewonnen wordt. Als reactie op deze debiettoename zal de geul willen uitruimen waardoor de sedimentvraag kleiner is dan de oorspronkelijke hoeveelheid gewonnen zand.

Rol van de zandbalans

Bovenstaande toelichting geeft aan dat de term sedimentoverschot een lastig begrip is. Enerzijds spreekt het aan bij beleid en beheer. Anderzijds is het overschot moeilijk aantoonbaar en kwantificeerbaar, zeker op basis van alleen zandbalans-achtige gegevens. Een gedetailleerde analyse van de erosie en sedimentatie tendensen op de morfologische meso- en macroschaal kan wel bijdragen aan het verkrijgen van duidelijkheid. Het in de tijd bijhouden van deze analyses geeft namelijk duidelijkheid over de vragen:

- Of en in hoeverre de verdieping van de drempels in de vaargeul wederom (na de tweede verdieping) gevolgd wordt door het eroderen van de aangrenzende geuldelen.
- Of en in hoeverre er een vertraagde plaatopbouw, of misschien zelfs -afbraak, optreedt als gevolg van de gewijzigde stort- en zandwinstrategie.

De gegevens zullen op ruimtelijk en temporele samenhang moeten worden geraadpleegd. Hierbij kunnen zowel procesgeoriënteerde modellen als eenvoudiger concepten, zoals het cellenconcept, helpen (zie hoofdstuk 5).
2.4 Beheersvraag 3

Toelichting

Wat is de natuurlijk fluctuatie in de zandbalans van het estuarium?

Met estuarium wordt bedoeld de Westerschelde inclusief de monding, de mega- en systeemschaal. De Schelde valt hier om praktische redenen buiten: er zijn nauwelijks dieptegegevens beschikbaar.

Rol van de zandbalans

Wat echt natuurlijk is zullen we nooit weten doordat ingrepen en natuurlijke processen op diverse tijd- en ruimte schalen door elkaar heen lopen. Het "natuurlijk" effect kan alleen worden bepaald als het boekhoudkundige verschil van de netto veranderingen (dat wat je meet in de dieptekaarten) en de ingrepen.

Een mogelijk praktische beperking is de nauwkeurigheid en resolutie van de gegevens, met name in het grote mondingsgebied. Ook de nog onbekende invloed van de te definiëren morfologische vakkenindeling, de keuze van referentieniveaus op de analyseresultaten en de synchronisatie kunnen een beperking blijken te zijn (zie ook paragraaf 2.3.5): het kan zijn dat dergelijke definities een grotere variatie introduceren dan de veranderingen in de tijd laten zien. Dit vraagt verkennend onderzoek zoals dat ook voor de zeegaten in de Wadden Zee is uitgevoerd (Walburg, 2001).

2.5 Beheersvragen 4, 6 en 8

Toelichting

Kan de monding fungeren als sedimentbuffer voor zand en baggerspecie afkomstig uit de Westerschelde?

Deze vraag is van belang in geval van een ‘natuurlijke’ export van sediment vanuit de Westerschelde (vraag 6) en in geval van direct storten van baggerspecie uit de Westerschelde in de monding (vraag 8). De aanleiding voor de vraag is tweeledig. Enerzijds worden de waarnemingen aan dat de jarenlang waargenomen tendens tot import van sediment in de Westerschelde sinds begin jaren negentig om lijkt te slaan in een tendens tot export. Anderzijds wordt het beleid geconfronteerd met een beperkte stortcapaciteit in de Westerschelde, waardoor er behoefte ontstaat naar alternatieve stortlocaties, bijvoorbeeld in het mondingsgebied. Dit laatste is technisch gezien geen probleem. Voor het beleid en beheer is het echter belangrijk om te weten of het vanuit de Westerschelde gestorte of geëxporteerde sediment al dan niet wordt opgeslagen in het mondingsgebied en weer beschikbaar komt voor de Westerschelde als het zand daar weer nodig is. Met andere woorden, gaat een ‘natuurlijke’ of kunstmatige verandering van de sedimentbalans van het
getijdebekken gepaard met een even grote verandering in het zandvolume van het mondingsgebied? Als dit het geval is, is er sprake van een bufferwerking. Dus met sedimentbuffer wordt bedoeld dat zand in de Westerschelde wordt geëxporteerd naar de monding waar ze wordt opgeslagen (het zandvolume van de monding neemt toe) en weer beschikbaar komt indien er een tekort aan zand in de Westerschelde ontstaat (bijv. ten gevolge van zeespiegelstijging).

Vanuit de diverse Wadden Zee studies, gebaseerd op observaties en modelonderzoek, blijkt dat op systeem schaal (bekken, buitendelta en kust) de buitendelta het meest robuuste element is. Wanneer een delta te veel zand heeft (volgens evenwichtsrelaties) wordt het te veel aan zand afgevoerd. Een tekort wordt onttrokken aan kust of bekken. Dit betekent dat als er al sprake is van een bufferende werking van de buitendelta, dat de delta bij een zandtekort in het bekken het zand misschien wel kan leveren maar weer direct onttrekt aan de kust. Verder is uit deze studies gebleken dat de definitie van vakken en referentieniveaus cruciaal kan zijn voor uitspraken over erosie of sedimentatie van een delta (Walburg, 2001).

Voor het definiëren van morfologische eenheden (vakken, zoals een buitendelta) en maken van een gezamenlijke zandbalans is een werkbaar concept nodig. Hierbij kan bijvoorbeeld worden gedacht aan het gebruik van (zie ook volgende alinea's):

- een in de tijd vaste vakkenindeling;
- veranderende vakindelingen;
- het gebruik van een referentieprofiel ter bepaling van het er boven gelegen zandvolume;
- semi-empirische evenwichtsrelaties.

De ruimteschaal waarop deze vraag speelt is de megaschaal. Aanwijzingen om de vraag op korte termijn te kunnen beantwoorden kunnen worden verkregen uit een meso- en macroschaal analyse (zie ook hoofdstuk 5).

Rol van de zandbalans

In principe is het mogelijk om met behulp van een zandbalans na te gaan of het mondingsgebied als sedimentbuffer fungeert voor de Westerschelde. Hiervoor moeten sedimentbalansen op megaschaal worden bepaald, d.w.z. voor de Westerschelde, het mondingsgebied en de aangrenzende kust. Echter, voor het opstellen van dergelijke balansen is een concept nodig dat als leidraad dient voor het definiëren van morfologische eenheden en het kiezen van referentieniveaus, alsmede informatie over de sedimentuitwisseling tussen de Westerschelde en het riviersysteem (wordt meestal op nul gezet). De lagere nauwkeurigheid van de gegevens in met name het grote mondingsgebied kunnen nog wel een praktisch probleem opleveren, evenals de invloed van berekeningsmethodieken.

In tegenstelling tot de Westerschelde is voor het mondingsgebied niet op voorhand een concept beschikbaar dat kan helpen bij het definiëren van morfologische eenheden en het kiezen van referentieniveaus. Belangrijkste onduidelijkheid is in hoeverre de huidige morfologie van dit gebied bepaald wordt door de geologische ondergrond. Als dit namelijk het geval is, is het de vraag of: 1) het mondingsgebied van de Westerschelde kan worden opgevat als een buitendelta zoals dat bij de zeegaten in de Waddenzee het geval is, en of 2) de bestaande evenwichtsrelaties voor buitendelta's (Eysink en Biegel, 1992) kunnen worden
gebruikt voor het opstellen van concept over het systeem Westerschelde-mondingsgebied. Een mogelijk verder complicerende factor is de suggestie, geuit in de Lange Termijnvisie Schelde estuarium (Winterwerp et al., 2000), dat de monding van de Westerschelde niet in evenwicht is met de huidige hydraulische condities.

Er zijn aanwijzingen dat de morfologie van het mondingsgebied wel wordt beïnvloed door de geologische ondergrond (Winterwerp et al., 2000): de moeilijk erodeerbare Boomse klei dagzoomt in de Wielingen. De Vlakte van de Raan is deels uit Holocene zand en deels uit een twee meter dikke laag Holocene klei opgebouwd (nader geologisch onderzoek naar het mondingsgebied zal worden uitgevoerd in Kust*2005 kader). Maar ook als deze afzetten geen restricties vormen, zal het definieren van morfologische eenheden niet zondermeer op dezelfde manier kunnen worden uitgevoerd zoals dat voor de zeegaten in de Wadden Zee wordt gedaan. Met name de bepaling van het zandvolume ten opzichte van een referentieprofiel is lastig. Bij de zeegaten in de Wadden Zee wordt hiervoor het ruimtelijk en eventueel temporeel gemiddelde kustprofiel langs de aangrenzende eilanden gebruikt. Het zandvolume in de delta wordt dan ten opzichte van dit profiel bepaald. De kust langs de Zeeuwse eilanden heeft een veel grilliger verloop in het horizontale vlak. Daarnaast wordt het dwarsprofiel (het verticale vlak) gedomineerd door de aanwezigheid van grote (kortsluit)geulen, waardoor een ruimtelijk gemiddeld kustprofiel als referentieniveau moeilijk te definiëren is.

Een voorlopig alternatief zou kunnen zijn om net als voor de Westerschelde uit te gaan van veranderingen in het watervolume beneden een bepaald horizontaal referentieniveau en deze veranderingen te vertalen naar erosie en sedimentatie van sediment. Voor het definieren van morfologische eenheden op meso- en macroschaal kan worden aangesloten bij de bestaande schematisatie van het ESTMORF model. Het onderscheiden van eenheden op deze schalen is nodig om op korte termijn (orde vijf jaar) te kunnen nagaan wat er gebeurt met sedimentstortingen in het mondingsgebied (beheersvraag 8); blijft het wel of niet liggen en waar gaat het eventueel naar toe?

2.6 Beheersvraag 5

Toelichting

Hoe ziet de retourstroom van baggerspecie van west naar oost eruit, wanneer komt deze opgang en wat is het verloop daarvan?

De motivatie voor deze wijzigingen in stort- en zandwinbeleid is drieledig: 1) de stortcapaciteit in het oostelijk deel is niet toereikend, terwijl het grotere geulssysteem in het westelijk deel een grotere bergingscapaciteit heeft, 2) de oude stortstrategie was niet efficiënt; de afstanden tussen baggerlocatie en stortlocatie waren klein waardoor er continue sediment werd rondgepompt, en 3) het verder wegbrengen van baggerspecie uit het oostelijk deel draagt naar verwachting bij aan een herstel van de morfologische dynamiek in het oostelijk van de Westerschelde.

Aanvullende vragen bij bovengenoemde beheersvraag zijn:
• Komt er een retourstroom op megaschaal op gang? Zo ja, wat is de bijbehorende tijdschaal en hoe komt het materiaal terug, rechtstreeks via de hoofdgeul of via allerlei morfologische aanpassingen in westelijk en middendeel?
•Komt het naar het westen verplaatste zand snel genoeg terug in het oostelijk deel of verdwijnt het zelfs naar het mondingsgebied en gaat 'het oosten zelf aan de gang' door bijvoorbeeld een erosie van platen of uitdiepen van aangrenzende geulen (herstel van dynamiek)?

 Rol van de zandbalans

Een zandbalans kan inzicht geven in veranderingen in de richting en grootte van de opgetreden sedimentuitwisseling tussen delen van een estuarium, op macroschaal. Als dergelijke veranderingen samenvallen of volgen op wijzigingen in een stortstrategie kan er sprake zijn van een causaal verband, maar dat hoeft niet. Het kunnen ook heel lokale, meer natuurlijke processen zijn die daarvoor zorgen. Het is waarschijnlijk heel moeilijk, zo niet onmogelijk, om op basis van alleen een zandbalans aan te geven wanneer een retourstroom op gang komt en hoe deze verloopt. In combinatie met modellen is er wellicht iets meer over te zeggen (hoofdstuk 5). Belangrijk aspect hierbij is de grootte van de verwachte retourstroom in relatie tot natuurlijke variaties en onnauwkeurigheden. Met andere woorden is de retourstroom een signaal dat je (op significante wijze) kunt terugvinden in gegevens?

2.7 Beheersvraag 7

Toelichting

Wat zijn de grenzen aan het storten in de Westerschelde en monding waarbij het meergeulensysteem niet bedreigd wordt?

Tijdens de studie voor de ontwikkeling van de Lange Termijn Visie Schelde estuarium (LTVS) zijn de belangrijkste functies van het estuarium verwoord in de termen Veiligheid, Natuurlijkheid en Toegankelijkheid. De instandhouding van de fysische systeemkenmerken van het estuarium vormt een belangrijk uitgangspunt voor de opgestelde streefbeelden, ontwikkelingsschetsen en beleidsdoelen. Het waarborgen van de fysische systeemkenmerken betekent een instandhouding van het open en natuurlijke mondingsgebied, een systeem van hoofd- en nevengeulen met tussenliggende platen en ondiepwatergebieden (een meergeulensysteem) in de Westerschelde en een riviersysteem met een meanderend karakter in de Zeeschelde.
Tijdens het morfologisch onderzoek, dat in het kader van de LTVS is uitgevoerd, is het zogenaamde cellenconcept Westerschelde ontwikkeld (Winterwerp e.a., 2000). Uit dit cellenconcept blijkt dat een zeer zorgvuldig bagger-, stort- en zandwinbeheer nodig is om het meergeulenstelsel in de Westerschelde duurzaam in stand te houden. Met name het stortbeleid is cruciaal. Dit wordt bevestigd door de waargenomen historische ontwikkelingen in het oostelijk deel van de Westerschelde (Vroon et al., 1997). Ook recente ontwikkelingen in het westelijk deel, sinds de laatste vaargeulverdieping, duiden hierop (Jeuken, 2001): omvangrijke sedimentstortingen gaan gepaard met locale verondiepingen in de nevengeulen / vloedgeulen en hebben mogelijk al geleid tot (ongewenste) morfologische veranderingen in de nabije omgeving.

Deze vraag heeft betrekking op de meso- en macroschaal. Samen met kennis van de waargenomen lange-termijn morfologische ontwikkelingen, moet deze vraag op de korte tijdschaal (ca. vijf jaar) van beleidsevaluaties te beantwoorden zijn.

Rol van de zandbalans

Het stortcriterium zoals dat volgt uit het cellenconcept geeft inzicht in de theoretische grenzen aan het storten van zand in relatie tot het behoud van het meergeulensysteem in de Westerschelde. Een praktische beperking hierbij is dat het cellenconcept niet van toepassing is op het geulensysteem in het mondingsgebied.

Naast het cellenconcept is het ook mogelijk om op basis van alleen morfologische observaties achteraf vast te stellen of de grenzen zijn overschreden (zie Jeuken, 2001). Voorwaarde voor een dergelijke analyse is dat de vakkenschematisatie voor de inhoudsrekeningen gedetailleerd genoeg is (mesoschaal).

2.8 Conclusies

De belangrijkste bevindingen die uit de analyse van de beheersvragen naar voren komen zijn samengevat in Tabel 2.2.

In zijn algemeenheid geldt dat een zandbalans kan helpen bij het vergroten van het inzicht/kennis over de waargenomen morfologische ontwikkelingen van het plaat-geul systeem op verschillende tijd- en ruimteschalen. Deze kennis kan worden gebruikt voor het maken van prognoses voor de toekomstige ontwikkelingen waarop beleid en beheer worden gebaseerd. Voor het maken van echte voorspellingen verdient het de voorkeur om deze fenomenologische kennis te combineren met onderzoek met gecalibreerde modellen.

Uit tabel 2.2 blijkt verder dat een zandbalans een bijdrage kan leveren aan het beantwoorden van de meeste beheersvragen. Echter alleen de beheersvragen 1, 2 en 7 kunnen zowel op de wat kortere als de langere termijn worden geëvalueerd. Dit is inherent aan de ruimteschaal waarop de vraag betrekking heeft.

De analyse van de beheersvragen resulteert in een aantal aanbevelingen:
• Baseer het maken van de zandbalans op een vakkenschematisatie op meso-schaal (delen van hoofdgeulen en platen en eventueel kortsluitgeulen). De basisresultaten van de balansberekeningen, zijnde inhoudsveranderingen en ingrepen per vak, kunnen dan per beheersvraag worden geaggregeerd tot de benodigde ruimte- en tijdschalen.

• Maak aanvullende modelberekeningen voor zandbalansen op de macro- en mesoschaal om de sedimentuitwisseling tussen vakken te bepalen (zie hoofdstuk 4).

Tabel 2.2 Belangrijkste bevindingen per beheersvraag. Met ruimteschaal wordt bedoeld de schaal waarop de beheersvraag betrekking heeft. Voor definitie, zie paragraaf 2.1. Met tijdsperiode bedoeld waarop gegevens nodig zijn om de beheersvraag te beantwoorden.

<table>
<thead>
<tr>
<th>Vraag</th>
<th>Ruimteschaal</th>
<th>Tijdschaal (jaren)</th>
<th>Rol zand balans en overige opmerking</th>
</tr>
</thead>
</table>
| 1 | meso-mega | jaren tot decennia| • Rol balans bestaat uit evalueren en prognoses maken voor toekomst op basis van kennis/insichten over het verleden
• Niet alle beleidsdoelstellingen kunnen worden geëvalueerd.
• Er is schematisatie op mesoschaal nodig die kan worden geaggregeerd tot grotere schalen. |
| 2 | macro | jaren tot decennia| • Het begrip sedimentoverschot is moeilijk aantoonbaar en kwantificeerbaar. Gedachteweg hoe en waarbij liggen moet wel te volgen/evalueren zijn met resultaten van een zandbalans.
• Meso-schaal schematisatie nodig die kan worden geaggregeerd tot grotere schalen.
• Boekhoudkundige benadering biedt mogelijkheden. |
| 3 | mega en systeem | één tot enkele decennia | • Informatie over ontwikkelingen op meso en macroschaal kan inzicht op deze grote schaal aanmerkelijk vergroten.
• Zandbalans biedt in principe mogelijkheden om de vragen te beantwoorden.
• Er is een concept nodig om een morfologische schematisatie te maken van de monding.
• Voor het beantwoorden/evalueren van vragen op korte termijn is een schematisatie op mesoschaal nodig
• Moeilijk te beantwoorden vraag. Bijdrage van zandbalans op macroschaal bestaat uit inzicht in veranderingen in de groote en richting sedimentuitwisseling tussen delen. Voorspelkracht is gering.
• Gecombineerde meso-/macroschaal analyse kan wel bijdragen aan het begrip/inzicht welke delen van het systeem betrokken zijn bij een eventuele sedimentuitwisseling en wat de rol van ingrepen is.
• Zandbalans analyse op meso-schaal biedt mogelijkheden.
• Meso-schaal nodig voor schematisatie van de monding.
• Zandbalans is een benadering voor beantwoorden vragen.
• Voor kortetermijn vragen nodig is een schematisatie op mesoschaal.
Het maken van een zandbalans voor het mondingsgebied vraagt om een concept dat als basis kan dienen voor het opzetten van een morfologische vakkenschematisatie op meso­schaal en het kiezen van referentieniveaus. In theorie zijn twee benaderingen mogelijk:

1) de Zeegaten-benadering Waddenzee, waarbij er wordt gekeken naar veranderingen in het zandvolume van het mondingsgebied ten opzichte van een bepaald referentie kustprofiel;

2) een Westerschelde-benadering waarbij er naar veranderingen in waterbalansen beneden een bepaald referentieniveau wordt gekeken.

Voor het definiëren van morfologische eenheden op meso- en macroschaal kan worden aangesloten bij de bestaande schematisatie van het ESTMORF model.

Besteed expliciet aandacht aan de bandbreedten rond de gegevens, ten gevolge van eventuele meetfouten en aannames in het analyse traject (bijv. uitlevering, synchronisatie). Voor het mondingsgebied zullen de bandbreedte voornamelijk veroorzaakt worden door onzekerheden in het stortmateriaal.
3 Een analyse van recente zandbalansstudies van de Westerschelde en haar monding

3.1 Inleiding

In dit hoofdstuk worden de recente zandbalansstudies (sinds 1990) van Westerschelde en mondingsgebied op systematische wijze geanalyseerd. Hierbij wordt gekeken naar de vragen a t/m g (paragraaf 1.2) die in het kader van de tweede doelstelling van dit onderzoek zijn gesteld. Tot slot wordt in paragraaf 3.5 nagegaan in hoeverre de eerdere balansstudies voldoen aan de aanbevelingen zoals die voortkomen uit de analyse van de beheersvragen (paragraaf 2.8).

Naast deze balansstudies zijn er enkele morfologische studies waarbij ook naar inhoudsveranderingen is gekeken (Huijs, 1996; Van der Male, concept 2000; Jeuken, 2001). Deze zullen in hoofdstuk 4 aan de orde komen.

3.2 Het mondingsgebied

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteur, Jaartal</td>
<td>M.J. van der Slikke, 1997</td>
</tr>
<tr>
<td>Doel van studie</td>
<td>Het bestuderen van de lange-termijn ontwikkeling van de Westerscheldemonding d.m.v. het opstellen van een zandbalans</td>
</tr>
</tbody>
</table>
| Beschikbare gegevens | • Vaklodingsgegevens van de Meetdienst Zeeland, vakken 11, 12, 13, 14, 15, 16, 17, 18, 19, 44 en 49, periode 1969-1993
| | • Bagger- en stortgegevens. De baggergegevens zijn afkomstig van de Afdeling Maritieme Schelde van het Belgisch Ministerie van Openbare Werken. De baggervolumina die gebruikt worden zijn gecorrigeerd voor een uitlevering van 10% |
| Ruimtelijke begrenzing | Het gebied wordt aan de zeewaartse zijde in het westen begrensd door de NAP-20 m dieptelijn, aan de noordzijde door de Domburgse Rassen, aan de landzijde door de kust van Walcheren, de lijn Vlissingen-Breskens, Zeeuws Vlaanderen en Vlaanderen, en aan de zuidzijde door de lijn loodrecht op de kust bij Blankenberge, waar de delta geleidelijk overgaat in de Vlaamse Banken |
| Ruimtelijke schematisatie | De zandbalans is opgesteld voor de Westerscheldemonding als geheel (megaschaal). Er is geen nadere morfologische onderverdeling, in
<table>
<thead>
<tr>
<th>Titel</th>
<th>Grootschalige en interne zandbalans Westerschelde monding (1969-1993)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteur, Jaartal</td>
<td>M.J. van der Slikke, 1998</td>
</tr>
<tr>
<td>Doel van studie</td>
<td>Het kwantificeren van de morfologische veranderingen van de Westerschelde monding d.m.v. het opstellen van een grootschalige en interne zandbalans</td>
</tr>
</tbody>
</table>
| Beschikbare gegevens | - Bodemligging gegevens van de Westerschelde monding, gelood door Rijkswaterstaat sinds 1969 met een regelmaat van ongeveer eens in de twee jaar. T.b.v. het loden is de Westerschelde monding opgedeeld in 11 lodingsvakken (11 t/m 19 + 44 en 49). In deze studie zijn gegevens van 1969 t/m 1993 gebruikt.
Ruimtelijke begrenzing

Ruimtelijke schematisatie
- grootschalige zandbalans: gehele monding is 1 vak
- interne zandbalans (messo-macroschaal): morfologische vakindeling in 34 vakken, gebaseerd op een onderverdeling in (achtervolgens): hoofdgeulen, dieptelijnen (-20, -14 en -10 m NAP), secundaire geulen, sterk door de mens verstoorde gebieden (bagger- en stortvakken, ontgrondingskuilen bij Zeebrugge), en de bankengebieden en ondiepere delen langs de kust. Bij de presentatie van de resultaten wordt een groot aantal vakken weer samengevoegd tot een totaal van 16 vakken. Het betreft een vaste vakindeling (= niet veranderend in de tijd). Door de nogal ruime vakindeling bevatten vele ‘geulvakken’ tevens een aanzienlijke areaal bankengebied.
- In een aantal vakken is de indeling verder opgedeeld om het gedrag van de geulen nader te bestuderen. Het referentieniveau tussen geul en bank is bepaald als een knikpunt in de grafiek van wateroppervlakte versus diepte. De grafiek is gebaseerd op de lodingsgegevens van 1981. De procedure leidt tot ruimtelijk variërende referentie niveaus (zie onder).

Aansluiting bij modelschematisatie
De indeling in morfologische eenheden is consistent met de modelaanpak die in ESTMORF wordt gehanteerd. Voor ASMITA is zij te gedetailleerd (te veel vakken). Wel is de huidige morfologische indeling waarschijnlijk te ruim, d.w.z. er bevindt zich te veel bankengebied in ‘geulvakken’. De overgangsdiepte van bank naar geul is ruimtelijk variërend, terwijl in ESTMORF een constante diepte wordt verondersteld.

Gebruikte software
ArcInfo, VAKGis

Synchronisatie
De monding wordt niet in zijn geheel in 1 jaar gelood. De gegevens van naast elkaar liggende jaren worden gecombineerd. Dit leidt tot een totaal van acht bodems. Er wordt niets vermeld over synchronisatie met gegevens over menselijke ingrepen.

Referentie niveaus
Top van de banken: -5 m NAP, in ‘Oevergebied’ -7 m NAP
Overgang geul - bank: -12 m NAP, in ‘Oevergebied’ -10 m NAP

Aannames
- Morfologische veranderingen op een tijdschaal van 1 à 2 jaar leiden niet tot veranderingen in de zandbalans.
- Er vindt geen uitwisseling van sediment plaats tussen de Zeeschelde en de Westerschelde. Hierdoor kan het zandbalans van de Westerschelde monding gekoppeld worden aan de Westerschelde zandbalans.
- De lodings van 1985 is niet realistisch. Er wordt een gecorrigeerde waarde aangenomen op basis van de trendlijn tussen 1982 en 1990.
- Alle bagger- en stortgegevens betreffen zand.
- Uitleveringspercentage van 10%.

Discussie nauwkeurigheid
Er vindt een uitgebreide discussie plaats over fouten in
De monding slaat midden jaren zeventig van importerend om naar exporterend, voornamelijk richting aangrenzende gebieden van de Noordzee. Deze export vindt voor een belangrijk deel plaats vanuit de stortplaatsen die aan de rand van de monding en de Noordzee liggen.

Over de periode 1970 t/m 1995 is ongeveer 120 Mm³ (± 70 Mm³) geëxporteerd. Vanuit de Westerschelde is ongeveer 40 Mm³ geïmporteerd. Dit betekent dat ongeveer 160 Mm³ vanuit het Schelde systeem naar de omliggende gebieden is geëxporteerd. Hoe de verdeling hiervan is over de Noordzee, de Oosterschelde mond en de Belgische kust kan niet worden afgeleid.

- a) 1970 - 1975. Van der Slikke, export vanuit de Westerschelde van 35 Mm³, Uit den Boogaard (1995), import naar de Westerschelde van 34.5 Mm³
- b) 1980 - 1985. Van der Slikke, export vanuit de Westerschelde van 10 Mm³, Uit den Boogaard (1995), import naar de Westerschelde van 11.8 Mm³

Er zijn te weinig gegevens over de transportrichting bekend om de interne zandbalans sluitend te maken.
Waterwegen en Zeewezen (AWZ), Afdeling Waterwegen Kust. De gebaggerde gegevens worden opgegeven per pachtjaar (van 1 april tot 31 maart) en zijn bekend voor de stortplaats S2, R4 en Paardemarkt. De hoeveelheden zijn uitgedrukt in 'gestorte kubieken 2e soort', een soort volume-eenheid die uitgaat van een conventionele densiteit van 1.6 ton/m³. Deze eenheid is echter niet hetzelfde als een in-situ volume. De samenstelling van het materiaal is niet bekend, zodat er geen onderscheid in slib en zand kan worden gemaakt. De gebaggerde hoeveelheden voor de uitbouw van de Haven van Zeebrugge zijn niet bekend, maar worden geschat op 50 Mm³.

Ruimtelijke begrenzing
- Lodingsvakken 13, 14, 15, 16 en 44

Ruimtelijke schematisatie
- Lodingsvakken

Aansluiting bij modelschematisatie
Er is, in tegenstelling tot de schematisatie van Van der Slikke (1998), geen morfologisch bepaalde vakindeling. In plaats daarvan is gekozen voor een mengsel van functionele eenheden ('vaargeulen', 'strand', 'stortplaatsen') en door de waargenomen morfologische verschillen bepaalde eenheden. Aansluiting met ESTMORF en ASM1TA schematisaties is derhalve nagenoeg afwezig.

Gebruikte software
- ArcView, Spatial Analyst

Synchronisatie
Geen

Referentie niveaus
Geen

Aannames
Gestort materiaal heeft een conventionele densiteit van 1.6 ton/m³. Bij het opstellen van de zandbalans kan dit leiden tot volgende onder- of overschattingen (p. 9):
1) de in-situ volumes zullen groter zijn bij slibrijk materiaal;
2) de in-situ volumes zullen kleiner zijn bij zandrijk materiaal.

Discussie nauwkeurigheid
- Er wordt regelmatig op gewezen dat bagger- en stortgegevens met enige voorzichtigheid moeten worden bekeken: zand versus slib, afwijkende volume-eenheid.
- Er is geen discussie over systematische en stochastische fouten in de lodingsdata. Alle resultaten worden op 0.1 Mm³ nauwkeurig gepresenteerd, wat waarschijnlijk een schijnnauwkeurigheid is.

Belangrijkste bevindingen
- Uit het Belgische deel van de Westerscheldemond verdwijnt tussen 1976-1997 210.8 Mm³ sediment. Rekening houdend met een menselijke import van zand van 124.6 Mm³ is er een natuurlijke export van 335.4 Mm³. Waar het sediment naar toegaat kan uit deze studie niet worden afgeleid. Deze 210.8 Mm³ lijkt te bestaan uit: (1) 40.3 Mm³ ten gevolge van directe menselijke ingrepen, (2) 48.8 Mm³ aan natuurlijke processen in respons op de door de mens uitgevoerde Haven van Zeebrugge en (3) 121.7 Mm³ ten gevolge van andere natuurlijke processen.
- Over de interne hervordering van zand in het Belgische deel van de Westerschelde mond kan niets worden afgeleid uit de huidige gegevens.

Mogelijkheden en beperkingen t.a.v. beheersvragen
- Kwantificatie van volume veranderingen t.g.v. menselijke ingrepen in het systeem. Daarmee is er gepoogd een scheiding te maken tussen natuurlijke en menselijk-veroorzaakte veranderingen.
- Er is geen onderverdeling gemaakt in morfologische eenheden.
3.3 De Westerschelde

<table>
<thead>
<tr>
<th>Titel</th>
<th>Resultaten zandbalans Westerschelde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteur, Jaartal</td>
<td>L.A. Uit den Bogaard, 1995</td>
</tr>
<tr>
<td>Doel van studie</td>
<td>Het maken van een nieuwe zandbalans van de Westerschelde over de periode van 1955 en 1994, en het relateren van de resultaten hiervan aan grootschalige morfologische ontwikkelingen in de Westerschelde. Motivatie voor de deze zandbalans studie is de twijfel aan de nauwkeurigheid van eerdere zandbalanzen en beschikbaar komen van nieuwe gedigitaliseerde gegevens.</td>
</tr>
<tr>
<td>Ruimtelijke begrenzing</td>
<td>Vaklodingsbladen 1 t/m 7, incl. Saeftinge (=7). De waterinhoud van een vak is de inhoud beneden +2.5 m NAP. Voor vak 1 t/m 6 is dit exclusief schorren en slikken boven NAP, voor vak 7 is dit inclusief schorren en slikken boven NAP.</td>
</tr>
<tr>
<td>Ruimtelijke schematisatie</td>
<td>Zandbalans gebaseerd op de lodingsvakken. Macro- en megaschaal</td>
</tr>
<tr>
<td>Aansluiting bij modelschematisatie</td>
<td>Voor ASMITA is een schematisatie per lodingsvak aanwezig. Hierbij is er geen opdeling tussen plaat en geul.</td>
</tr>
<tr>
<td>Synchronisatie</td>
<td>1 januari. Synchronisatie d.m.v. lineaire interpolatie en trendlijnen is beide uitgevoerd.</td>
</tr>
<tr>
<td>Referentie niveaus</td>
<td>Detailstudie zijn gemaakt door de waterinhoud te bestuderen beneden -5 m NAP, -2.5 m NAP, 0 m NAP, en (totaal) 2.5 m NAP.</td>
</tr>
<tr>
<td>Aannames</td>
<td>• uitleveringspercentage van 10% • geen netto transport over de Belgisch-Nederlandse oostgrens • de gemeten aanzanding van Saeftinge wordt meegenomen, waarbij wordt aangenomen dat 70% van het materiaal afkomstig is uit vak 1 en 30% uit vak 2.</td>
</tr>
<tr>
<td>Discussie nauwkeurigheid</td>
<td>Op grond van een discussie van de nauwkeurigheid wordt geadviseerd om bij de interpretatie van (afgeleide) lodingsgegevens niet naar slechts het verschil tussen twee jaren te kijken, maar naar de opeenvolging van een aantal jaren (trend) en naar de verschilkaarten. Als tussen twee vakken in 1 jaar een extreem grote (meer dan 1x10⁶ m³) netto zanduitwisseling optreedt, kan aan de kwaliteit van ten minste 1 van de lodings getwijfeld worden. Op grond van deze regels worden een aantal lodings, zoals beschreven in Hoofdstuk 2 van het rapport, niet meegenomen in de zandbalansberekeningen.</td>
</tr>
<tr>
<td>Belangrijkste bevindingen</td>
<td>• Vak 1 is sinds 1955 sterk verdiept als gevolg van baggerwerkaanmoedigen • Vak 2 heeft in 1994 vrijwel dezelfde inhoud als in 1955. Als gevolg van het baggeren en vooral het storten zijn deze geulen dieper en de platen hoger geworden.</td>
</tr>
</tbody>
</table>

WL | Delft Hydraulics
Zandbalans Westerschelde en monding, periode 1955-1999
J.A.E. de Jong, 2000
Het werk is uitgevoerd door NWL in het kader van het zandwinbeleid en het geven van morfologisch advies betreffende de Westerschelde.

Beschikbare gegevens
- GIS kaarten.

Ruimtelijke begrenzing
- Westerschelde: vaklodingsbladen 1 t/m 6
- Monding: vaklodingsbladen 17, 18a en 19 (slechts een klein deel).

Ruimtelijke schematisatie
Zandbalans per vak. Er zijn detailleringen gemaakt in de tijd en ruimte:
- Westerschelde: onderscheid geulen en plaat/slik/schor op basis van referentieniveau, systeemdelen West (aggregatie vakbladen 4,5,6), Midden (3) en Oost (1,2), en voor periode 1990-1999 en 1995-1999.

Aansluiting bij modelschematisatie
Voor ASMITA is een schematisatie per ladingvak aanwezig. Hierbij is er geen opdeling tussen plaat en geul.

Gebruikte software
ArcInfo, Zandbalans applicatie onder ArcInfo van Uit den Bogaard
Synchronisatie
Synchronisatie op 1 januari, gebruikmakend van lineaire interpolatie. Mogelijkheid van synchronisatie middels trendanalyse wordt genoemd, maar is niet uitgevoerd.

Referentie niveaus
Geul: dieper dan -2 m NAP (water volume)
Plaat: tussen -2 en +3,5 m NAP (zand volume)
Deze niveaus zijn constant in ruimte en tijd. In het mondingsgebied is bijna alles geul.

Aannames
- Uitleveringspercentage van 10%
- Geen netto transport over Belgisch-Nederlandse grens in oostelijk deel Westerschelde
- Jaarlijks zandtransport naar Land van Saeftinge bedraagt 0,3 Mm³, waarvan 0,2 Mm³ uit vak 1 en 0,1 Mm³ uit vak 2

Discusie nauwkeurigheid
- Onbetrouwbare gegevens zijn op grond van eerder onderzoek (Isreal en Huijs, 1998) verwijderd voor analyse

Belangrijkste bevindingen
Westerschelde (1955-1999):
- Totale waterinhoudtoename van 49 Mm³. Dit wordt veroorzaakt door een geulinhoudtoename van 87 Mm³ en plaatzandtoename van 38 Mm³.
- Menselijke ingrepen zorgen voor inhoudstoename van 112 Mm³, waarvan 92 Mm³ door zandwinning.
- Vanaf 1955 is er een netto import van 112-49 = 63 Mm³.

Monding (1964-1998):
- Toename waterinhoud 21,6 Mm³. Dit wordt veroorzaakt door een geulinhoudtoename van 24,6 Mm³ en een plaatzandtoename van 3 Mm³.
- Menselijke ingrepen zorgen voor inhoudstoename van 12 Mm³ (voornamelijk door zandwinning in rekenvak 18a).
- Vanaf 1964 bedraagt de zandexport vanuit de monding 9,6 Mm³. Er is sprake van een sterk wisselend beeld.

Mogelijkheden en beperkingen t.a.v. beheersvragen
- Zandbalans gebaseerd op vaklodingen beperkt de koppeling tussen morfologische veranderingen en de zandbalans.
- Zandbalans in de Westerschelde gebaseerd op vaklodingen is eenvoudig sluitend te krijgen door een aanname van netto sediment transport op 1 van de 2 open grenzen. De keuze van geen transport over de oostgrens lijkt aannemelijk, zodat hiermee de netto import dan wel export uit de Westerschelde kan worden bepaald.
- Koppeling van de Westerschelde en de Westerscheldemonding geeft inzicht in de zanduitwisseling tussen beide.

3.5 Discussie en conclusies

Uit bovenstaande inventarisatie van de recente zandbalansstudies blijkt dat deze studies in beperkte mate kunnen bijdragen aan het beantwoorden van de beheersvragen. Tabel 3.1 geeft een samenvattend overzicht. Deze beperking is inherent aan de beschouwde schaal in de studies. In de meeste studies is dit een soort macroschaal, die lang niet altijd een morfologische basis heeft, of een megaschaal. Alleen het werk van Van der Slikke (1998) geeft een eerste aanzet voor een meso-macroschaal analyse op basis van morfologische eenheden voor alleen het mondingsgebied. Haar basisanalyse richt zich op de meso-schaal. Voor de interpretatie van de gegevens aggregeert ze de resultaten naar macro en megaschaal. De huidige zandbalansstudies voor de Westerschelde zijn gebaseerd op indelingen in lodingsvakken die nagenoeg geen relatie hebben met morfologische eenheden.
Toch zijn hier wel mogelijkheden voor. Een eerste aanzet is gegeven door Huijs (1996). Nadeel van deze studie is dat er gewerkt is met in de tijd variërende vakken, waardoor de resultaten moeilijk te interpreteren zijn. Van der Male (concept) en Jeuken (2000, 2001) werken met een vaste vakkenindeling (gemaakt door Huijs in 1997) die op een tijdschaal van enkele decennia kan worden vastgehouden. Deze studies bieden aanknopingspunten voor het maken van een zandbalans waarmee de beheersvragen kunnen worden beantwoord; de basis is een mesoschaal analyse waarvan de resultaten kunnen worden geaggregeerd tot grotere schaalniveaus (zie paragraaf 2.8).

Tabel 3.1 Mogelijkheden van bestaande zandbalansstudies in het beantwoorden van beheersvragen.

<table>
<thead>
<tr>
<th>Gebied</th>
<th>Auteur, jaar</th>
<th>Ruimteschaal</th>
<th>Bijdrage aan beheersvraag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monding</td>
<td>Van der Slikke, 1997</td>
<td>Mega</td>
<td>4, buffer</td>
</tr>
<tr>
<td></td>
<td>Van der Slikke, 1998</td>
<td>Meso/Macro-Mega</td>
<td>3, fluctuaties (boekhoudkundig)</td>
</tr>
<tr>
<td></td>
<td>Haecon, 2000</td>
<td>Macro</td>
<td>3, fluctuaties (boekhoudkundig)</td>
</tr>
<tr>
<td>Westerschelde</td>
<td>Uit den Bogaard, 1995</td>
<td>'Macro' - Mega</td>
<td>5, retourstroom</td>
</tr>
<tr>
<td>Westerschelde</td>
<td>De Jong, 2000</td>
<td>'Macro' - Marda</td>
<td>3, fluctuaties (boekhoudkundig)</td>
</tr>
<tr>
<td>en stukje</td>
<td></td>
<td>Lodingvakken</td>
<td>3, retourstroom</td>
</tr>
<tr>
<td>Monding</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Het maken van een integrale zandbalans voor de Westerschelde en haar monding

4.1 Inleiding

In dit hoofdstuk wordt een stappenplan voor het maken van een zandbalans opgesteld. Om tot dit plan te kunnen komen zal eerst een aantal essentiële aspecten die een rol spelen bij het maken van een zandbalans worden besproken. Concreet gaat het hier om drie zaken, te weten: 1) de schematisatie, 2) de beschikbaarheid en het zogenaamde synchroniseren van de gegevens en 3) het omgaan met baggeren en storten van zowel zand als slib. Op basis van de beschouwingen hierover, wordt in paragraaf 4.5 het stappenplan geformuleerd.

4.2 De schematisatie

4.2.1 Morfologische eenheden als uitgangspunt

Morfologische eenheden als uitgangspunt nemen voor het maken van een schematisatie betekent dat er in ieder geval rekening wordt gehouden met de configuratie van het systeem van geulen en platen en veranderingen daarin in de tijd. Kijken we vervolgens ook nog naar de ruimteschalen waar de diverse beheersvragen betrekking op hebben, dan impliceert dat de volgende morfologische randvoorwaarden voor de schematisatie:

- De vakkenindeling is vast; verandert niet in de tijd. Een in de tijd variërende morfologische vakkenindeling, zoals bijvoorbeeld door Huijs (1996) is gebruikt, maakt de interpretatie van de resultaten in termen van een zandbalans onmogelijk.
- Op mesoschaal moet onderscheid worden gemaakt tussen: 1) de inloop, 2) het centrale middendeel en 3) het drempelgebied van de grote geulen. Bij de grote vloedgeulen is van belang om het drempelgebied te definiëren als dat gebied waar migrerende kortsluitgeulen (drempelgeulen) voorkomen of voorkwamen. De scheiding tussen in het

WL | Delft Hydraulics
dwarsprofiel naast elkaar liggende geulen kan worden gebaseerd op de gemiddelde ligging van de waterscheiding sinds 1955 (evt. sinds 1931).²
- De mesoschaal eenheden moeten kunnen worden geaggregeerd tot individuele hoofdgeulen, plaatcomplexen en bochtgroepen.

In de praktijk betekenen deze randvoorwaarden dat er voor het opstellen van een zandbalans bij voorkeur met een geulgeoriënteerde vakkenindeling moet worden gewerkt. Het gewenste aggregatieniveau van individuele plaatcomplexen komt voort uit beheersvraag ¹ (zie paragraaf 2.2) en impliceert een aparte schematisatie en inhoudsberekeningen voor de morfologische analyse van platen, slikken en schorren. Immers, de meeste grote geulen worden aan twee zijden begrensd door plaatgebieden. Ook kan worden overwogen om een schematisatie voor het mondingsgebied te maken dat het bankensysteem goed beschrijft.

In principe is er voor de Westerschelde zowel een vaste geulgeoriënteerde vakindeling (ArcInfo coverage rvaksas3, Bijlage A1) als een vaste plaatgeoriënteerde vakindeling op mesoschaal beschikbaar (rvakplaat3, Bijlage A2).

Zoals in hoofdstuk 2 gesteld bestaat er voor het mondingsgebied van de Westerschelde nog geen concept op basis waarvan een duidelijke en consistent morfologische schematisatie kan worden gemaakt en referentieniveaus kunnen worden gekozen. Daarom wordt voorgesteld om als voorlopig alternatief uit te gaan van de Westerschelde methodiek. Dat betekent het vertalen van veranderingen in waterinhoud naar erosie en sedimentatie van sediment op basis van een vaste, zoveel mogelijk morfologische en geulgeoriënteerde schematisatie. Van der Slikke (1998) heeft een eerste aanzet gemaakt voor een dergelijke schematisatie (Bijlage A3). Bij het optimaliseren van deze bestaande schematisaties of het ontwerpen van een eventuele nieuwe vakkenindeling is het nuttig om stil te staan bij de noodzaak en mogelijkheden om aan te sluiten bij de onderverdeling in lodingsvakken, bagger- en stortvakken en bestaande modellschemasatisaties.

4.2.2 De aansluiting met lodingsvakken, bagger- en stortvakken en bestaande modelschematisaties

Aansluiting met lodingsvakken

Een aansluiting van de nieuwe schematisatie met de lodingsvakken, d.w.z. de vakgrenzen die samen vallen met de grenzen tussen de lodingsbladen, is om twee redenen wenselijk:

³ Voor het opstellen van een zandbalans is een plaatsgeoriënteerde schematisatie niet nodig en kan worden volstaan met de geulgeoriënteerde vakkenindeling.
hierdoor is een nette en relatief makkelijke synchronisatie van gegevens mogelijk (zie ook paragraaf 4.3).
het maakt een vergelijking van de resultaten met eerdere zandbalansstudies mogelijk (hiervoor is dan wel een daarop gerichte aggregatie van de basisresultaten nodig).

In de bestaande mesoschaal schematisaties van de geulen en platen in de Westerschelde wordt rekening gehouden met de indeling in lodingsvakken. De door Van der Slikke (1998) gemaakte schematisatie sluit niet aan op de indeling in vaklodingsbladen.

Aansluiting met bagger- en stortvakken

De aansluiting van de te maken / gebruiken schematisatie met de belangrijkste bagger- en stortvakken is wel wenselijk, maar in de praktijk moeilijk realiseerbaar. Omdat de locatie en het aantal bagger- en stortvakken in de tijd varieert. Wel is het waarschijnlijk mogelijk om rekening te houden met de ligging van belangrijkste vakken waar ingrepen plaatsvinden. Aan de andere kant vraagt het opstellen van een zandbalans toch een bepaalde werkwijze (zie paragraaf 4.4) waarbij per jaar wordt gekeken hoeveel procent van een bepaald bagger- of stortvak in een zandbalans vak valt.

Aansluiting met bestaande modelschematisaties

Wat betreft de aansluiting met bestaande modelschematisaties, is het morfologische ESTMORF model van het estuarium inclusief monding het meest relevant. Dit gedetailleerde 1D-netwerk model (oorspronkelijk een Implic model) is opgezet voor de morfologische situatie van 1968 (zie bijlage A4). Het mondingsgebied is recent toegevoegd en omvat 70 vakken. Voor de Westerschelde, inclusief Saeftinghe, zijn ongeveer 140 vakken onderscheiden.

Een afstemming tussen de schematisatie voor de zandbalans en het ESTMORF-model is in ieder geval op de macroschaal zeer wenselijk (mesoschaal indien haalbaar) omdat observaties en modelresultaten dan optimaal kunnen worden gebruikt. Het is echter de vraag of de te maken / gebruiken schematisatie voor de zandbalans moet worden aangepast aan de bestaande modelschematisatie of andersom. Voor het rekenen met ESTMORF is de vakkenindeling van het bestaande model eigenlijk niet optimaal: met name in de Westerschelde zitten te veel kleine vakken. Wellicht dat het beter is om op termijn een nieuwe ESTMORF schematisatie voor de Westerschelde te maken en bij het maken/aanpassen van de schematisatie voor de zandbalans daar al vast zoveel mogelijk rekening mee te houden.
4.2.3 Het kiezen van referentieniveaus

Met referentieniveau wordt bedoeld het horizontaal niveau ten opzicht van NAP waaronder of waarboven (platen) de inhoudsveranderingen worden bepaald.

Voor een zandbalans waarbij geulen en platen samen worden beschouwd wordt meestal een referentieniveau gekozen waarbij alle platen onder water staan. In de laatste zandbalansstudies is hiervoor het niveau NAP+3.5m gekozen (de Jong, 2000). Om inzicht te krijgen in de erosie en sedimentatie van geulen en platen afzonderlijk, is het nodig om een tweede referentieniveau te kiezen dat deze twee eenheden scheidt.

Voor de Westerschelde is het meest voor de hand liggende niveau het laagwaterniveau. Echter, dit niveau varieert zowel in de ruimte als in de tijd. In principe kan met een dergelijke variatie van het referenthorizontale variërend niveau te kiezen dat overtrekken met het gemiddelde laagwaterniveau tijdens gemiddeld tijd in de Westerschelde. De historische gegevens over de periode 1981-1990 (Claessens en Meyvis, 1994) duiden op een gemiddeld laagwaterniveau in de Westerschelde van NAP-2m, waarbij het verschil tussen Vlassingen en Bath ongeveer 0.3m bedraagt. Wel verdient het aanbeveling om voor één of twee deelgebieden (bijvoorbeeld de bochtgroepen van Terneuzen en Valkenswaard) na te gaan wat een in de tijd en ruimte variërend laag water niveau betekent voor de afgeleide erosie- en sedimentatiesnelheden op de platen en in de geulen.

In het mondingsgebied is er nauwelijks sprake van intergetijdegebieden. Alleen stukken van het Bankje van Zoutelande vallen droog. Wel is er een permanent onder water staand bankengebied, de Vlakte van Raan. Het meest landwaarts gelegen deel van deze vlakte ligt hoger dan het zeewaarts gelegen deel. Om de ontwikkeling van het bankengebied en de getijdegeulen in de monding afzonderlijk te kunnen beschouwen, kan waarschijnlijk het beste worden uitgegaan van het niveau NAP-5m als tweede referentieniveau. Een nadere analyse van kombergingsgrafieken, waarin de overgang tussen geul en plaat als een knikpunt zichtbaar is, is wenselijk om dit referentie niveau objectief te bepalen.

4.2.4 Conclusies

Op basis van voorgaande paragrafen kunnen de volgende conclusies worden getrokken:

- De zandbalans dient bij voorkeur te worden gebaseerd op een vaste, morfologische en geulgeoriënteerde vakkenindeling. Een aparte schematisatie voor het maken van inhoudsveranderingen van de plaatgebieden, slikken en schorren wordt aanbevolen met het oog op het beantwoorden van beheersvraag 1.
aanpassingen door te voeren als het gaat om de aansluiting met stortvakken en de bestaande ESTMORF model schematisatie.

- In afwezigheid van een duidelijk concept voor het opstellen van een zandbalans voor de monding, vergelijkbaar met dat voor de buitendelta's van de Waddenzee, wordt voorgesteld om voor de monding een zelfde methodiek als voor de Westerschelde te hanteren. Dat betekent het bepalen van erosie en sedimentatie van zand op basis van veranderingen in waterinhoud. De vakkenindeling van Van der Slikke (1998) en de bestaande ESTMORF schematisatie kunnen als basis dienen voor maken van een nieuwe schematisatie, die zo veel mogelijk rekening houdt met (in volgorde van belangrijkheid): aansluiting met het ESTMORF model, aansluiting met de lodingsvakken (i.v.m. synchronisatie van gegevens), de morfologie van het geul/plaat systeem, en de bagger- en stortvakken.

- De inhoudveranderingen in monding en Westerschelde dienen bij voorkeur ten opzichte van drie vaste referentievlakken te worden bepaald. Het niveau NAP+3.5 waarmee het systeem van geulen en platen in haar totaliteit wordt beschouwd en het niveau NAP-2m (Westerschelde) en NAP-5m (monding), zodat een onderscheid kan worden gemaakt tussen de ontwikkeling van de geulen en de platen. Het niveau NAP-5m is voor de Westerschelde tevens van belang met het oog op het beantwoorden van beheersvraag 1 (ontwikkeling van ondiepwatergebieden).

4.3 Beschikbaarheid en synchronisatie van gegevens

4.3.1 De beschikbaarheid van basisgegevens

Voor de Westerschelde en het mondingsgebied is een unieke set met dieptegegevens beschikbaar die door veel inspanningen sinds 1993 geleidelijk beschikbaar is gekomen in digitaal formaat (als Arc-Info grids). Bijlage B geeft een overzicht. Hieruit blijkt dat de oudste gedetailleerde gegevens betrekking hebben op de morfologische situatie van de Westerschelde in 1931. Voor de periode vanaf 1955 is er minimaal eens per twee jaar in de Westerschelde gemeten, waarbij de peilfrequentie sinds 1985 aanzienlijk is opgevoerd. De dataset en gegevensdichtheid voor het mondingsgebied is kleiner. Vanaf 1969 worden echoladingen gemaakt van praktische het gehele gebied. De frequentie waarmee de lodingsvakken worden gepeild varieert ruimtelijk. De landwaarts gelegen vakbladen worden sinds 1969 minimaal eens per twee jaar gepeild. Voor de zeewaarts gelegen vakken is het tijdsinterval tussen de opnamen groter, 2-4 jaar. Mede door deze ruimtelijke variatie is het van belang dat de schematisatie van het mondingsgebied aansluit bij lodingsvakken.

Naast deze omvangrijke dataset met dieptegegevens worden de jaarlijkse bagger- en stortgegevens sinds 1955 systematisch bijgehouden. De meeste gegevens worden zelfs op maandbasis verzameld.

Voor het opstellen van een zandbalans moeten de dieptegegevens en de informatie over gebaggerde en gestorte hoeveelheden sediment worden geïntegreerd. Hierbij doet zich het praktische probleem voor dat niet alle benodigde informatie tegelijkertijd is en kan worden ingewonnen. De meest voor de handliggende oplossing is dan het synchroniseren van
gegevens. Wat dit synchroniseren inhoudt en hoe dit het beste kan worden gedaan wordt in de volgende paragraaf toegelicht.

4.3.2 Het synchroniseren van gegevens

Met synchroniseren wordt bedoeld dat de benodigde basisgegevens voor de zandbalans, zijnde de in Arc-Info bepaalde waterinhouden (eventueel hele kombergingsgrafieken) en de gebaggerde en gestorte hoeveelheden zand per vak in de schematisatie, worden vertaald naar eenzelfde datum. In de eerdere balansstudies van de Westerschelde en monding (Uit den Bogaard, 1995; De Jong, 2000) is hiervoor 1 januari van elk kalenderjaar sinds 1955 gekozen. De synchronisatie heeft in de praktijk vooral betrekking op de waterinhouden omdat de bagger- en stortgegevens voor ieder kalenderjaar beschikbaar zijn.

Uit den Bogaard (1995) beschouwt in zijn zandbalansstudie voor de Westerschelde twee verschillende methoden voor de synchronisatie van waterinhouden:

1) een lineaire interpolatie tussen twee opeenvolgende waarnemingen;
2) een interpolatie op basis van lineaire trendlijnen, indien nodig bepaald voor deelreeksen.

Figuur 4.1 toont een voorbeeld van beide methodes. Hoewel de lineaire trend en de observaties min of meer dezelfde erosietendens (0.6 Mm³/jr om 0.7 Mm³/jr) vertonen, ontstaan er forse verschillen in de absolute waarde. Ook de erosiesnelheden voor deelperioden kunnen fors verschillen. Zo leidt lineaire interpolatie tussen twee opeenvolgende waarnemingen voor de periode 1960-1968 tot een gemiddelde erosie snelheid van 1.9 Mm³/jr, wat bijna drie keer zo veel is als de erosiesnelheid gebaseerd op de lineaire trendlijn. Weliswaar kan de trendlijn interpolatie weer voor deelperioden worden bepaald of met een hogere orde polynoom, maar dat introduceert toch een subjectiviteit die later niet meer te kwantificeren is in het uiteindelijke resultaat van de zandbalans en bovendien het traceren van potentiële fouten bemoeilijkt (zie paragraaf 4.5.3). Daarom wordt aanbevolen om de waterinhouden te synchroniseren door middel van lineaire interpolatie tussen twee opeenvolgende waarnemingen.

![Figuur 4.1 Synchronisatie van waterinhouden naar 1 januari van elk kalenderjaar op basis van lineaire interpolatie en een lineaire trendlijn.](image)
4.4 Omgaan met storten en baggeren in een zandbalans

4.4.1 Inleiding

In de Westerschelde en het mondingsgebied wordt ten behoeve van het onderhoud van de vaargeul en de havens op diverse plaatsen sediment gebaggerd en gestort. Daarnaast wordt er ongeveer 2.6 Mm3/jr zand gewonnen (onttrokken aan het systeem).

In de havens langs de Westerschelde wordt per jaar ongeveer 3-4 Mm3 slib gebaggerd, met incidentele uitschieters van 7 Mm3/jr (Bollebakker, pers. com.). Ook in de haven van Zeebrugge worden jaarlijks aanzienlijke hoeveelheden sediment gebaggerd. Over de exacte hoeveelheden, de samenstelling (de verhouding slib-zand), alsmede de jaarlijkse storthoeveelheden per stortlocatie in het mondingsgebied is echter zeer weinig bekend (zie hoofdstuk 3, Bollebakker pers. com.). De verwachting is dat deze gegevens in de nabije toekomst beschikbaar zullen komen (in digitaal formaat, Bollebakker pers. com.). Het beschikbaar komen van de havengegevens van Zeebrugge is met het oog op het opstellen van een gezamenlijke zandbalans voor Westerschelde en monding cruciaal, omdat het vermoedelijk om aanzienlijke hoeveelheden sediment gaat.

Voor het opstellen van een zandbalans moet onderscheid worden gemaakt tussen het baggeren en storten van zand (vaargeulonderhoud) en slib (havenonderhoud). Immers, slib gedraagt zich anders dan zand.

4.4.2 Het baggeren en storten van slib

De 3-4 Mm3/jr slib die jaarlijks in de Westerschelde wordt gestort heeft naar verwachting weinig invloed op de bodemligging in het estuarium (de morfologie). De locatie van de slibstorting is wel van belang voor wat er met het slib gebeurt. Slib dat vanuit een haven in een ervoor liggende getijgeul wordt gestort is vermoedelijk binnen een paar dagen van de geulbodem verdwenen doordat het materieel door de heersende hoge stroomsnelheden (1-1.5 m/s) in de geulen makkelijk wordt opgenomen in de waterkolom. De slibconcentratie van de bodem kan ter hoogte van de stortlocatie wat hoger zijn dan in de aangrenzende

4 Een vraag die de beheerder dan ook bezig houdt is waarom de baggerinspanning over 2001 significant lager was dan in de voorgaande paar jaar en of dit zo blijft: gaat er een retourstroom van west naar oost op gang komen of verdwijnt het in het westen gestorte materiaal uit het systeem (export, beheersvraag 5).
delen van het systeem, maar echt invloed op de bodemligging zal dit vermoedelijk niet hebben gezien de hoge stroomsnelheden in het systeem (slib krijgt geen kans om uit te zakken). Ook de slibconcentratie in het water zal tijdens en vlak na de stortingen groter zijn dan de achtergrondeconcentratie in het systeem. Wanneer de stortlocatie dan ook nog gelegen is nabij hoge schorgebieden zal het regelmatig storten van slib kunnen leiden tot versterkte aanslibbing op het schor. Bij een specifieke analyse van de ontwikkeling van schorgebieden kan het dus nodig zijn om hiermee rekening te houden. Voor het opstellen van een zandbalans van Westerschelde en monding is het vooralsnog niet nodig om rekening te houden met storten van (haven)slib. Voor het opstellen van een slibbalans is dit uiteraard wel nodig.

4.4.3 Het baggeren en storten van (fijn) zand

Het baggeren en storten van (fijn) zand uit het vaargeulonderhoud en het winnen van zand zijn wel van belang voor het opstellen van een zandbalans van Westerschelde en monding. Twee aspecten zijn hierbij met name van belang: 1) de zogenaamde uitlevering tijdens het baggerproces, en 2) het bepalen van de omvang van de ingrepen per vak in de schematisatie. Op beide aspecten wordt kort ingegaan.

Uitlevering van sediment

De grootte van de uitlevering is in sterke mate afhankelijk van het type sediment (Tabel 4.1), en de korrelgrootteverdeling van het sediment. Maar ook de methode van baggeren is van invloed op de uitlevering. Bij mechanische baggeren is de uitlevering over het algemeen kleiner dan bij hydraulisch baggeren. Het vaargeulonderhoud in de Westerschelde gebeurt met mechanische baggervoertuigen (hoppers e.d.). Bij het onderhoud van de havens wordt ook wel gebruik gemaakt van hydraulische baggervoertuigen (b.v. het waterinjectiebaggeren). Naast de uitlevering van sediment leidt de zogenaamde ‘overflow’ tot een verlies van sediment. Omdat hierbij met name het fijne sediment (slibdeeltjes) verdwijnt, is voor het opstellen van de zandbalans de overflow minder van belang dan de uitlevering. Op basis van tabel 4.1 en het gegeven dat in de Westerschelde met name fijn zand (150-200 μm) wordt gebaggerd met mechanische baggervoertuigen, kan worden geconcludeerd dat de gemiddelde uitlevering ongeveer 10% zal zijn (een variatie van 5-15% is waarschijnlijk). Dus bij het opstellen van de zandbalans moeten de beunvolumina worden teruggerekend naar in situ volumina door de bagger volumina te vermenigvuldigen met een factor 1/1.1=0.91.

5 Voorbeeld buiten de Westerschelde: het slibgehalte in de bodem van de stortlocatie Loswal Noord, waar havenslib van Rotterdam wordt gestort, is door het storten verhoogd tot 10%. Dit is echter beduidend lager dan het slibgehalte van 80% in de bodem van de haven zelf.
Tabel 4.1 Uitleveringsfactor, $U = \text{baggervolume/in situ volume}$, voor verschillende sedimenttypen gebaggerd door een mechanisch baggervoertuig (naar Bray et al., 1997).

<table>
<thead>
<tr>
<th>Sediment type</th>
<th>Uitleveringsfactor U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard gesteente (opgeblazen)</td>
<td>1.50-2.00</td>
</tr>
<tr>
<td>Middelmatig hard gesteente (opgeblazen)</td>
<td>1.40-1.80</td>
</tr>
<tr>
<td>Zacht gesteente (opgeblazen)</td>
<td>1.25-1.40</td>
</tr>
<tr>
<td>Grind met harde pakking</td>
<td>1.35</td>
</tr>
<tr>
<td>Grind met losse pakking</td>
<td>1.10</td>
</tr>
<tr>
<td>Zand met harde pakking (verkit)</td>
<td>1.25-1.35</td>
</tr>
<tr>
<td>Zand met middelmatige pakking</td>
<td>1.15-1.25</td>
</tr>
<tr>
<td>Zand met losse pakking</td>
<td>1.05-1.15</td>
</tr>
<tr>
<td>Vers afgezet slib</td>
<td>1.00-1.15</td>
</tr>
<tr>
<td>Geconsolideerd slib</td>
<td>1.10-1.40</td>
</tr>
<tr>
<td>Harde klei</td>
<td>1.15-1.25</td>
</tr>
<tr>
<td>Middelmatig harde klei</td>
<td>1.10-1.15</td>
</tr>
<tr>
<td>Zachte klei</td>
<td>1.00-1.10</td>
</tr>
<tr>
<td>zand/grind/klei mengsels</td>
<td>1.15-1.35</td>
</tr>
</tbody>
</table>

De omvang van ingrepen per vak van de schematisatie

Bij het opstellen van de zandbalans moet per vak van de schematisatie worden bepaald hoe groot het in situ gemeten volume van de ingrepen (baggeren, storten en zandwinnen) is. Voor iedere bagger- en stortvergunning worden vakken gedefinieerd waarbinnen de ingrepen moeten worden uitgevoerd. Waar precies binnen een bagger- of stortvak wordt gebaggerd/gestort is niet bekend. Als een bagger- of stortvak geheel binnen een vak van de schematisatie valt is het toekennen van het volume ingrepen eenduidig. Als een bagger- of stortvak in twee of meer vakken van de schematisatie valt is de meest objectieve en eenduidige wijze het naar rato van oppervlak verdelen van de ingrepen. Stel dat 60% van het oppervlak van een baggervak in vak 1 van de schematisatie valt en de andere 40% van het baggervak in vak 2, dan wordt 60% van het voor uitlevering gecorrigeerde baggervolume aan vak 1 toegekend en 40% aan vak 2 toegekend.

4.5 Een stappenplan voor het opstellen van een zandbalans

4.5.1 Inleiding

In de voorgaande paragrafen is een aantal concrete adviezen naar voren gekomen ten aanzien van de te gebruiken / te maken schematisatie, het synchroniseren van gegevens en het omgaan met baggeren en storten. Deze kunnen als volgt worden samengevat:

Schematisatie:
- De zandbalans dient bij voorkeur te worden gebaseerd op een vaste geulgeoriënteerde vakkenindeling die zo veel mogelijk rekening houdt met de aansluiting op: 1) de onderverdeling in lodingsvakken; cruciaal i.v.m. een nette synchronisatie van de
gegevens, 2) de ligging van de bagger- en stortvakken en 3) de bestaande ESTMORF-
schematisatie.

- Voor de Westerschelde kan worden uitgegaan van de Arc-Info coverage
rvaksas3 die op
een aantal kleine punten kan worden verbeterd, zie paragraaf 4.2.2 en Jeuken (2001).
- Voor de monding wordt aanbevolen om een nieuwe schematisatie te maken die aansluit
op de lodingsvakken. De ESTMORF schematisatie en de schematisatie van Van der
- De inhoudsveranderingen dienen ten opzichte van drie verschillende referentieneiveaus te
worden bepaald: 1) NAP+3.5m, 2) NAP-2m en 3) NAP-5m.

Synchronisatie:
Aanbevolen wordt om de tijdreeksen van de waterinhouden lineair te interpoleren tussen 2
waarnemingen naar 1 januari van ieder kalenderjaar. De bagger-, stort- en zandwingegevens
zijn in principe per kalenderjaar beschikbaar.

Baggeren en storten:
Voor het onderhoud van de vaargeul wordt hoofdzakelijk fijn zand gebaggerd en gestort.
Daarnaast wordt er in de Westerschelde zand gewonnen en havenslib gestort.
- De bagger- en stortgegevens met betrekking tot het vaargeulonderhoud en de
zandw inning moeten worden meegenomen bij het opstellen van de zandbalans. De
gegevens moeten worden vertaald naar in situ kuubs per vak van de schematisatie,
Hierbij kan voor de uitlevering worden uitgegaan van 10%. Een gevoeligheidanalyse
waarbij een uitlevering van 5 en 15% wordt gehanteerd kan helpen bij het kwantificeren
van bandbreedten. Voor de verdeling van bagger/storthoeveelheden op een locatie die
meerdere vakken van de schematisatie beslaat kan worden uitgegaan van een verdeling
naar ratio van het oppervlak.
- De stortingen van havenslib hebben vermoedelijk weinig invloed op de bodemligging en
even als zodanig ook niet te worden meegenomen in het opstellen van de zandbalans.
Wanneer de stortlocatie dicht bij hoge schorgebieden is gelegen kunnen regelmatig
terugkerende slibstortingen wel leiden tot een versterkte slibsedimentatie en ophoging
van deze gebieden.

De benodigde basisgegevens voor het opstellen van een zandbalans en het uitvoeren van
aanvullende analyses ten behoeve van het beantwoorden van specifieke beheersvragen
bestaan uit:
- de kombergingsgrafieken per vak van de schematisatie per beschikbaar jaar6,
en voor ieder vak in de schematisatie als functie van de tijd:
- de lineair gesynchroniseerde waterinhouden en -oppervlakten ten opzichte van drie
referentieneiveaus (NAP+3.5m, NAP-2m en NAP-5m), en;
- de voor uitlevering gecorrigeerde gebaggerde, gestorte en gewonnen volumina zand per
jaar.

6 Kombergingsgrafieken beschrijven de verdeling van het wateroppervlak en -volume als functie van
de waterdiepte voor een gegeven gebied. Deze zijn alleen beschikbaar voor de jaren waarvoor
eholodingen beschikbaar zijn.
Deze gegevens kunnen in principe worden bepaald met behulp van de bestaande Arc-Info applicaties Vakgis en Zandbalans van Rijkswaterstaat.

Het opstellen van een volledige zandbalans op basis van deze gegevens impliceert dan zes stappen:

1) het bepalen van erosie- en sedimentatie van zand ten gevolge van natuurlijke processen en ingrepen in de verschillende zandbalansvakken,
2) het traceren en eventueel corrigeren van mogelijke fouten in de gegevens uit stap 1,
3) het bepalen van erosie- en sedimentatiertrends,
4) het aggregeren van de gegevens tot de gewenste ruimtesschaal (bijvoorbeeld van meso- naar macroschaal),
5) het selecteren van deelperioden waarvoor balansen worden opgesteld en,
6) het bepalen van de sedimentuitwisseling tussen de al dan niet gegommergeerde vakken.

Aanvullende stappen zijn:
7) nauwkeurigheidsanalyse van de verkregen resultaten,
8) visualiseren en presenteren van de resultaten, en
9) opslaan van de resultaten voor verdere bewerking.

De eerste zes stappen, die in een willekeurig spreadsheetprogramma kunnen worden uitgewerkt, worden in de navolgende paragrafen toegelicht.

4.5.2 Stap 1 - Van waterinhouden naar erosie / sedimentatie van zand

De eerste stap in het opstellen van een zandbalans bestaat uit het bepalen van de erosie- en sedimentatiesnelheden (in Mm³/jr) ten gevolge van natuurlijke processen en ingrepen. Voor het bepalen hiervan wordt onderscheid gemaakt tussen (tabel 4.2):

1) de totale erosie /sedimentatie \(V_{tot} \), dat wat je meet met de echolagingen;
2) de erosie /sedimentatie ten gevolge van ingrepen \(V_i \);
3) de zogenaamde natuurlijke erosie /sedimentatie \(V_{nat} \).

Laatstgenoemde kan in de praktijk niet worden gemeten, maar kan alleen achteraf worden bepaald als het boekhoudkundige verschil \(V_{tot} - V_i \). Of dit echt het natuurlijke effect is, d.w.z. dat wat er aan erosie of sedimentatie zou zijn opgetreden zonder de ingrepen, zullen we nooit echt met zekerheid weten.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definitie en omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{tot})</td>
<td>(Waterinhoud in jaar 1 - waterinhoud in jaar 2)/ aantal jaren. De totale erosie (-) of sedimentatie (+) is dat wat je meet met de echolagingen.</td>
</tr>
<tr>
<td>(V_i)</td>
<td>Som van baggeren (-), storten (+) en zandwinning (-) per jaar.</td>
</tr>
<tr>
<td>(V_{nat})</td>
<td>(V_{tot} - V_i), het door de waterbeweging per jaar aan- of afgevoerde volume sediment.</td>
</tr>
</tbody>
</table>
De drie parameters V_{tot}, V_t en V_{nat} dienen bij voorkeur te worden bepaald voor de drie referentieniveaus (NAP+3.5m, NAP-2m, NAP-5m), zodat indien gewenst de ontwikkeling van geulen en platen ook afzonderlijk kan worden beschouwd.

Het baggeren en storten van sediment vindt in de praktijk plaats in de geulen. Daarom verdient het aanbeveling om voor de bepaling van V_{nat} de ingrepen V_t aan de geulen toe te kennen. Een eventueel versterkte opbouw of afbraak van platen ten gevolge van ingrepen zal, als dit optreedt, vermoedelijk met een naaieffect zichtbaar zijn in de erosie / sedimentatiecurven van de platen.

4.5.3 Stap 2 - Het traceren en verwijderen van mogelijke fouten

Zowel de bagger- en stortgegevens als de dieptegegevens waarop de zandbalans wordt gebaseerd kunnen stochastische en systematische fouten bevatten. Vooral de systematische fouten zijn belangrijk omdat deze vaak niet uitmidden (Storm et al., 1994).

Over de nauwkeurigheid van de bagger- en stortgegevens zoals die bij Directie Zeeland worden verzameld en bijgehouden is weinig tot niets bekend. Belangrijkste aanname in het verwerkingstraject van de gegevens, die de resultaten van de zandbalans beïnvloedt, is het te hanteren uitleveringspercentage (zie paragraaf 4.4).

De systematische fouten in de dieptegegevens kunnen zowel tijdens de inwinning als de diverse verwerkingsstadia ontstaan. We beperken ons hier tot het herkennen en eventueel corrigeren van systematische fouten in de basisgegevens voor de zandbalans.

Tijdreeksen van de momentane waarden van V_{tot} en V_{nat} kunnen worden gebruikt voor het traceren van in het oog springende systematische fouten. Deze zullen als abrupte pieken en dalen in de grafieken van $V_{nat}(t)$ en $V_{tot}(t)$ zichtbaar zijn (zie fig. 4.2 ter illustratie). Het verdient aanbeveling om zowel de tijdreeksen ten opzichte van NAP+3.5m als NAP-2m / NAP-5m (de geulen) hierop te controleren (in één grafiek). Het is namelijk mogelijk dat systematische fouten zich alleen maar voordoen in het intergetijdegebied of in de geulen. De op deze wijze geïdentificeerde fouten zouden ook zichtbaar moeten zijn in de erosie/sedimentatie kaarten (verschilkaarten): een periode van algehele erosie wordt bijvoorbeeld gevolgd door algehele sedimentatie en weer een periode van algehele erosie. De sedimentatie is in dat geval verdacht.

Als zowel de tijdreeksen als de erosie/sedimentatiekaarten aangeven dat er fouten zitten in de gegevens van een bepaald jaar kan worden overwogen om de waarde van totale erosie/sedimentatie te vervangen door een lineair geïnterpoleerde waarde. Wanneer de parameters V_{tot}, V_t en V_{nat} in een spreadsheetprogramma zijn bepaald, zal de natuurlijke erosie/sedimentatie automatisch mee veranderen.
4.5.4 Stap 3 - Het bepalen van erosie-sedimentatietrends

Grafieken van de cumulatieve erosie / sedimentatie (in Mm3) geven een goed inzicht in de erosie- en sedimentatietrends en de veranderingen in deze trends (zie Fig. 4.3 ter illustratie). Deze grafieken bieden vervolgens ook een aanknopingspunt voor het identificeren van karakteristieke perioden waarvoor een zandbalans kan worden opgesteld (zie ook paragraaf 4.5.6).

Figuur 4.3 Voorbeeld van een cumulatieve erosie/sedimentatie curve gebaseerd op de momentane waarden zoals weer gegeven in de onderste figuur van Fig. 4.2. Het hier beschouwde gebied vertoont een bijna continue trend van natuurlijk erosie 1.65 Mm3/jr. De toenemende verschillen tussen V_{nat} en V_{nat} wijzen op een toenemende invloed van het storten op de waargenomen erosie in de tijd.

Hoewel met het bepalen van alleen deze gegevens de volledige zandbalans nog niet is opgesteld, is het wel waardevolle basis informatie die het inzicht in het morfologisch functioneren van het systeem aanmerkelijk kan vergroten. De mate waarin dit het geval is hangt samen met de ruimteschalen en aggregatiennevelen waarop de gegevens worden beschouwd.

4.5.5 Stap 4 - Het ruimtelijk aggregeren van de gegevens

De basisgegevens voor het opstellen van de zandbalans, $V_{nat}(t)$, $V_{tot}(t)$ en $V_{nat}(t)$, worden op de meso-schaal bepaald. Deze gegevens kunnen tot verschillende ruimteschalen worden geaggregeerd. Zoals aangegeven in paragraaf 2.1 worden in deze studie 4 ruimteschalen onderscheiden: 1) de systeemschaal, 2) de megaschaal, 3) de macroschaal en 4) de mesoschaal. Deze schalen worden hieronder toegelicht en geconcretiseerd. Ter illustratie is in Bijlage C een principe schets opgenomen.

De systeemschaal

De systeemschaal is de grootste schaal en omvat de Westerschelde inclusief het mondingsgebied en kust. Er zijn twee vakgrenzen: ter hoogte van de grens Nederland / België en de zeevaartse rand van de monding.

De mega-schaal

Op de megaschaal worden de Westerschelde en het mondingsgebied als twee aparte morfologische eenheden beschouwd. De denkbeeldige raai Vlissingen-Breskens vormt de vakgrens. Het opstellen van de inhoudsveranderingen op dit schaalniveau kan inzicht geven in hoeverre de Westerschelde en het mondingsgebied als één systeem werken (zoals omschreven in paragraaf 2.5).
De macroschaal
De macroschaal heeft betrekking op de lengteschaal van het systeem van grote eb- en vloedgeulen. Bij het aggregeren van de gegevens naar deze schaal kan een onderscheid worden gemaakt tussen een *een-dimensionale (1d) macroschaal* en een *twee-dimensionale (2d) macroschaal* (beiden hebben dezelfde lengteschaal, Bijlage C). Opgemerkt wordt dat de hiervoor genoemde systeem- en megaschaal ook als een-dimensionaal kunnen worden opgevat.

In de een-dimensionale situatie wordt geaggregeerd over de totale estuariene breedte, van oever tot oever, waarbij in de dwarsdoorsnede naast elkaar liggende eb- en vloedgeulen over hun gehele lengte worden samengenomen. Voor de Westerschelde betekent dit dat de grenzen tussen de verschillende vakken dan min of meer samenvallen met de overgangen tussen de zogenaamde bochtgroepen (Jeuken, 2000) of macrocellen (Winterwerp et al., 2000). Dit is dus niet hetzelfde als de vaak gehanteerde indeling in lodingsvakken (zie hoofdstuk 3). Voor de monding van de Westerschelde impliceert een vergelijkbare benadering vanuit morfologisch oogpunt dat eigenlijk het gehele mondingsgebied als één vak moet worden beschouwd. Immers, in hooffdlijnen bestaat dit gebied uit twee uitwaaiende geulen, de Wielingen en het Oostgat, die gescheiden worden door het bankengebied (subgetijde platen) Vlakte van Raan. Dus op basis van het geulpatroon is er geen reden om vakgrenzen in longitudinale richting aan te brengen in een 1d-schematisatie van het mondingsgebied. Een mogelijke ruimtelijke variatie in de hypsometrische eigenschappen van het mondingsgebied kan nog wel een motivatie zijn voor een opsplitting in meerdere 1d-vakken. Een gedetailleerde dieptekaart van de monding suggereert namelijk verschillen in de hypsometrische karakteristieken landwaarts en zeewaarts van de rai Westkapelle-Zeebrugge. Landwaarts van deze rai is een vrij sterk geprononceerd geulplaatrelief aanwezig (diepe geulen met hoge banken). Zeewaarts van deze denkbeeldige lijn zijn deels gebaggerde geulen ondieper en is het bankengebied Vlakte van de Raan lager. Een analyse van de kombergingsgrafieken op (geaggregeerde) meso-schaal kan duidelijkheid verschaffen over het nut en noodzaak om een verdere op splitsing van het mondingsvak in meerdere 1d-vakken te maken.

In een twee-dimensionale benadering worden binnen de een-dimensionale vakindeling de individuele grote geulen onderscheid. Dus in het 1d-macro-schaal vak wordt een bochtgroep opgesplitst in meerdere vakken, meestal twee, die elk een duidelijke geul met aangrenzend plaatgebied vertegenwoordigen (Bijlage C).

De mesoschaal
Informatie over de veranderingen van $V_{in}(t)$, $V_{d}(t)$ en $V_{out}(t)$ zouden voor de meso-schaal vakkenindeling zoals die in paragraaf 4.2 is voorgesteld beschikbaar moeten zijn.

4.5.6 Stap 5 - Het selecteren van deelperioden

Op basis van de tijdreeksen met de cumulatieve waarden van $V_{nl}(t)$, $V_n(t)$ en $V_{na}(t)$ kan in theorie de jaarlijkse uitwisseling van sediment tussen vakken in de sedimentbalans worden bepaald. Zo heeft Uit den Bogaard (1995) bijvoorbeeld de sedimentimport in de Westerschelde voor ieder jaar in de periode 1955-1993 bepaald. Het is echter gebruikelijk om naar sedimentbalansen voor deelperioden te kijken. In de recente bestaande zandbalansstudies wordt over het algemeen gewerkt met vijfjaarlijkse intervallen (1955-1960,...). Deze keuze stamt uit de tijd dat de digitale beschikbaarheid van echoladingen nog zeer beperkt was (Van den Berg et al., 1991), en heeft dus weinig tot geen relatie met opgetreden morfologische ontwikkelingen.

De tijdreeksen met de cumulatieve waarden van $V_{nl}(t)$ en eventueel $V_n(t)$ en $V_{na}(t)$ vormen een solide basis voor het objectief definiëren van morfologische deelperioden waarvoor zandbalansen kunnen worden opgesteld. In eerste instantie kan worden gekeken naar perioden met duidelijke trends van natuurlijke erosie en/of sedimentatie trends (V_{nl}) op de een-dimensionale en twee-dimensionale macroschaal. Grotere en/of kleinere ruimteschalen kunnen desgewenst in de analyse betrokken worden.

Als voorbeeld dient figuur 4.4. Hierin staan de cumulatieve natuurlijke erosie en sedimentatie ten opzichte van NAP+3.5m op drie verschillende ruimteschalen in het westelijk deel van de Westerschelde: 1) de een-dimensionale macroschaal van de bochtgroepen of macrocellen (fig. a), 2) de twee-dimensionale schaal van de individuele grote eb- en vloedgeulen in deze bochtgroepen (fig. b en c) en 3) een macro-megaschaal waarin de som van de drie bochtgroepen is weergegeven (fig. d). Dit figuur laat het volgende zien:

- Zowel de Vlissingen als de Terneuzen bochtgroep worden gekenmerkt door een lange-termijn erosie. De Hansweert bochtgroep kent een langdurige natuurlijke sedimentatie tot ongeveer 1988 die daarna omslaat in een erosie.
- Deze tendensen op de 1d-macro schaal hangen samen met een erosie van de vloedgeulen en een sedimentatie in de eengeul. Het beeld van de lang-termijn erosie in de Vlissingen en Terneuzen bochtgroep wordt dus bepaald door het eroderende gedrag van de vloedgeulen. In de Hansweert sectie domineert de sedimentatie in de eengeul tot 1988, waarna de erosie van de vloedgeul de sedimentbalans van de bochtgroep bepaalt.
- In zowel de bochtgroep bij Vlissingen als Terneuzen vindt tussen 1968-1976/1978 een kordurende periode van natuurlijke sedimentatie plaats waarin de sedimentatie in de eengeul overheerst.

Zandbalans Westerschelde en monding

Bovenstaand voorbeeld heeft betrekking op de erosie en sedimentatie ten opzichte van NAP+3.5m. Dat betekent dat intergetijde platen en geulen zijn samengenomen. Dit inzicht in de morfologische veranderingen kan nog worden vergroot door naar de geulen en platen afzonderlijk te kijken en door deelvakken van de geulen (mesoschaal) te beschouwen. Uit een mesoschaal analyse van de geulen blijkt bijvoorbeeld dat de erosie van de drie vloedgeulen zich voornamelijk manifesteert in de ondiepe drempelgebieden van deze geulen (Jeukens, 2000, 2001).

4.5.7 Stap 6 - Het bepalen van de sedimentuitwisseling tussen vakken

De laatste stap in het opstellen van een zandbalans bestaat uit het bepalen van de sedimentuitwisseling tussen de verschillende al dan geaggregeerde vakken. Alleen in geval van een zogenaamd een-dimensionale vakkenindeling, waarbij de (geaggregeerde) vakken de gehele breedte van Westerschelde en monding beslaan, is onder aanname van het sedimenttransport op één vakgrens, een uitspraak te doen over de sedimentuitwisseling tussen de vakken en een echte zandbalans op te stellen. In geval van een twee-dimensionale vakkenindeling, waarbij in de estuarine dwarsdoorsnede meer dan één vak wordt onderscheiden, zijn aanvullende analyses nodig om uitspraken te kunnen doen over de sedimentuitwisseling tussen vakken. Immers, naast de sedimentuitwisseling in langsrichting moet nu ook de sedimentverdeling en uitwisseling tussen twee naast elkaar liggende geulen worden bepaald. Het bepalen van de sedimentuitwisseling in een 1D-zandbalans en een 2D-zandbalans worden hieronder verder uitgewerkt. Wel verdient het aanbeveling om met de 1D-zandbalans te beginnen en daarna de 2D-balans pas op te stellen.
6a: de sedimentuitwisseling in een 1D-zandbalans

Bij het opstellen van een een-dimensionale zandbalans balans moet voor de sedimentuitwisseling op minimaal één vakgrens iets worden aangenomen of bepaald. Het is het beste om hiervoor de kleinste / kortste rand te kiezen, omdat daar het netto sedimenttransport op de rand meestal het kleinste zal zijn. Voor het opstellen van gezamenlijke zandbalansen voor de Westerschelde en monding betekent dit dat er voor de jaarlijkse natuurlijke sedimentuitwisseling op de grens Nederland - België een aanname moet worden gedaan. In de zandbalansstudies tot dusverre is dit transport gelijk aan nul gesteld. Op basis van de gemiddelde natuurlijke erosie/sedimentatiesnelheden (\(V_{nat} \) in \(\text{Mm}^3/\text{jr} \)) kan dan de zandbalans (erosie/sedimentatie per vak inclusief de sedimentuitwisseling) in zeeuwsen richting worden opgesteld voor morfologisch karakteristieke perioden. Een eenvoudig voorbeeld is hieronder schematisch uitgewerkt (desgewenst kunnen \(V_{nat} \) en \(V_i \) aan dit plaatje worden toegevoegd, \(V_{nat} = V_{nat} - V_i \)).

![Diagram van sedimentuitwisseling](image)

Figuur 4.5 Prinicipeschets voor het opstellen van een zandbalans.

De sedimentuitwisseling op de zeewaarts gelegen rand van een balansvakje \(S_r \) is gelijk aan de som van sedimentuitwisseling op de landwaarts gelegen rand, \(S_l \), en de natuurlijke erosie/sedimentatie in het vak \(V_{nat} \).

Opgevat worden dat er vrij weinig bekend is over de ‘echte’ sedimentuitwisseling op de grens Nederland - België. Temeer omdat zandbalansstudies voor de Schelde schaars zijn en qua beschikbare gegevens niet of slecht aansluiten op de basisgegevens voor Westerschelde en monding. De aanname over het sedimenttransport op deze vakgrens zou door middel van enkele berekeningen met een procesgeoriënteerd model (bijv. Delft3D) wel beter kunnen worden verkend en onderbouwd.

6b: de sedimentuitwisseling in een 2D-schematisatie

Inleiding

Zoals reeds eerder gesteld verdient het aanbeveling om voor het opstellen van de 2D-zandbalans altijd eerst de 1D zandbalans te maken. Belangrijkst argument hiervoor is dat de 1D-zandbalans randvoorwaarden en controlekader oplevert voor de 2D-zandbalans. Belangrijkste aspecten die een 2D-balans dan extra moeten worden gedefinieerd zijn:

- de verdeling van het netto / residuele zandtransport over de grote geulen in de dwarsdoorsnede, op de meest plaatsen een ebgeul (veelal hoofdvaarwater) en een vloedgeul (nevenvaarwater), en,
- de sedimentuitwisseling tussen de geulen over (inter)getijde platen.

De (inter)getijde platen en vloedgeulen worden over het algemeen gekenmerkt door een vloedgedomineerd, d.w.z. landwaarts gericht, residueel zandtransport. In de ebgeulen is dit transport zeewaarts gericht, d.w.z. ebgedomineerd. Voor het opstellen van een 2D-zandbalans moeten deze kwalitatieve tendensen echter worden gekwantificeerd, waarvoor aanvullende analyses omtrent sediment transportpaden nodig zijn. Hierbij kan gebruik worden gemaakt van metingen en modelberekeningen.

Naast het feit dat goed zandtransport meten in een dynamisch milieu als de Westerschelde uitermate moeilijk is, kent het gebruik van transportmetingen twee belangrijke problemen:
- het resttransport is het kleine verschil van een groot ebtransport en een groot vloedtransport en is daardoor erg gevoelig voor meetfouten,
- de metingen vertegenwoordigen vaak verschillende hydrodynamische en meteorologische condities die meestal niet representatief zijn voor het lange-termijn gemiddelde resttransport.

Net als de metingen worden (proces-georiënteerde) modellen gekenmerkt door onnauwkeurigheden in het resttransport. Wel is het met behulp van modellen mogelijk om resttransporten te bepalen die representatief zijn voor de lange termijn.

Kijken we naar de beschikbare operationele modellen dan bieden het bestaande ESTM ORF model en Delft3D-modellen concrete aanknopingspunten. Als derde ‘model’ kan nog het Invers Sediment Transport Model worden genoemd, hoewel dit laatste modelconcept nog niet eerder is gebruikt voor de Westerschelde en monding. De inzet van deze drie modellen wordt in de volgende alineas beknopt toegelicht.

ESTMORF berekent de netto sedimentuitwisseling tussen vakken van een model-schematisatie. Voorwaarden voor het gebruiken van deze resultaten bij het opstellen van een 2D-zandbalans zijn:
- de vakkenindeling van het ESTMORF model en de schematisatie voor de zandbalans dienen goed op elkaar aan te sluiten, in ieder geval op de 2D-macroschaal, en,
- het model dient goed gekalibreerd te zijn, d.w.z. dat de gemeten en berekende erosie- en sedimentatietrends goed overeenkomen op basis van een fysisch realistische parameter settings.

Transportinformatie uit proces-georiënteerde modellen
Met een proces-georiënteerd model, zoals bijvoorbeeld Delft3D, kunnen resttransporten voor een willekeurige raai, en dus ook een schematisatie, worden bepaald tijdens de postprocessing. Ook hierbij geldt weer de voorwaarde dat het model zo goed mogelijk moet zijn gekalibreerd. Een extra controle criterium kan bijvoorbeeld zijn dat het model de belangrijkste erosie- en sedimentatietrends goed overeenkomen op basis van een fysisch realistische parameter settings.

WL | Delft Hydraulics
in de landwaarts en zeewaarts gelegen mesoschaal vakken, die onderdeel vormen van de geaggregeerde 2D-macroschaal (voor methode zie Jeuken, 2000).

Inverse Sediment Transport Modelling (ISTM)

Enkele kanttekeningen ten aanzien van het toepassen van het huidige *ISTM* zijn:

- Het gebruik van *ISTM* is nog in sterke mate voorbehouden aan experts of materiedeskundigen i.v.m. de keuzes voor regularisatie-instellingen en het inbrengen van morfologische kennis.
- Voor het afleiden van transporten tussen morfologische eenheden is het momenteel nog niet duidelijk wat beter is: of eerst op een fijn rechthoekig grid de balans opstellen en dan aggregeren, of de balans direct op basis van morfologische eenheden afleiden. De laatste aanpak is nu nog niet mogelijk als die eenheden onregelmatig van vorm zijn (geen rechthoekige gridcellen).
- Het *ISTM* is een statisch model dat de gemiddelde sedimentbalans over één tijdsinterval berekend en niet het dynamisch verloop over dat interval. Hierdoor heeft het model geen autonoom voorspellend vermogen.

Wel lijkt het *ISTM* goede perspectieven te bieden voor het opstellen van een 2D zandbalans op meso- en macroschaal en het testen van uit meetgegevens afgeleide hypothesen. Bij dit laatste kan bijvoorbeeld worden gedacht aan het onderzoeken of bepaalde (deel)gebieden importerend of exporterend zijn, en of, en in welke mate deelgebieden morfologische interactie vertonen. Dergelijke inzichten zijn cruciaal bij het beantwoorden van de diverse beheersvragen. Daarom wordt nadrukkelijk aanbevolen om in de nabije toekomst een experiment en validatiestudie met *ISTM* voor de Westerschelde en monding op te zetten en uit te voeren.
5 Analyses ter beantwoording van beheersvragen

5.1 Inleiding

Zoals eerder gesteld bestaat een zandbalans, zoals bedoeld in deze studie, uit: 1) de erosie- en sedimentatietendensen ten gevolge van natuurlijke processen en ingrepen in ieder zandbalansvak inclusief, 2) de sedimentuitwisseling tussen de vakken.

Het doel van dit hoofdstuk bestaat uit het aangeven hoe de basisgegevens en resultaten van de zandbalans (zie paragraaf 4.5.5) kunnen worden geaggregeerd en geanalyseerd om te kunnen bijdragen aan het beantwoorden van de diverse beheersvragen (zie paragraaf 1.1 en hoofdstuk 2).

Teruggrijpend op de analyses in hoofdstuk 2 zal per beheersvraag eerst worden nagegaan of voor het beantwoorden van de vraag een volledige zandbalans (inclusief sedimentuitwisseling tussen de vakken) nodig is, of dat er kan worden volstaan met de gegevens over de inhoudsveranderingen (als functie van tijd en diepte). Is dit laatste het geval, dan zal worden aangegeven hoe deze gegevens het beste kunnen worden geaggregeerd en geanalyseerd (welke parameters).

Is er wel een volledige zandbalans nodig om de vraag te kunnen beantwoorden, dan bepaalt de ruimteschaal (paragraaf 2.1) waarop de vraag betrekking heeft of er wel of geen aanvullende analyses, met bijvoorbeeld modellen, nodig zijn (zie paragraaf 4.5.7). In het geval van een 1-dimensionale zandbalans (ruimteschaal = macro- tot en met systeemschaal) zijn aanvullende analyses niet echt nodig. Voor het opstellen van een 2-dimensionale zandbalans is dit wel essentieel (zie ook paragraaf 4.5.7). Ook voor deze twee situaties zal worden getracht aan te geven hoe er het beste kan worden geaggregeerd en geanalyseerd.

5.2 Beheersvraag 1

Hoeveel en waar mag je zand verwijderen (winnen) zonder dat het mis gaat met het systeem in relatie tot de beleidsdoelstellingen?

Zoals omschreven in paragraaf 2.2 kan een zandbalansstudie worden uitgevoerd voor de evaluatie van een viertal beleidsdoelstellingen:
- behoud en versterken van dynamische morfologische processen,
- behoud en versterken van karakteristieke ecotopen,
- geen toename van de getijdendoordringing als gevolg van menselijke ingrepen,
- behoud van het meergeulensysteem, zie ook paragraaf 5.7.
De ruimteschaal waarop deze evaluaties betrekking hebben, varieert van de meso-schaal tot de mega-schaal. De analyses voor de eerste drie doelstellingen worden hieronder kort toegelicht. De vierde beleidsdoelstelling wordt in paragraaf 5.7 behandeld.

De evaluaties kunnen worden uitgevoerd indien de basisgegevens voor het opstellen van een zandbalans (4.5.1) per meso-schaal vak en per kalanderjaar beschikbaar zijn. Voor de beantwoording van beheersvraag 1 is het voldoende om, voorafgaande aan een aantal specifieke analyses die hier onder worden besproken, de erosie- en sedimentatietendensen ten gevolge van natuurlijke processen en ingrepen in ieder zandbalansvak te kwantificeren. Het is niet nodig om de sedimentuitwisseling tussen de vakken te bepalen. Met andere woorden het opstellen van een volledige zandbalans is niet nodig om de beleidsdoelstellingen te evalueren.

Morfologische dynamiek

De berekende erosie- en sedimentatietendensen representeren het netto effect van erosie en sedimentatie-processen. Echter, kleine netto veranderingen impliceren niet automatisch een beperkte morfologische activiteit. Bijvoorbeeld, de migratie van een kortsuitgeul binnen een meso-schaal vak levert aanzienlijke erosie en sedimentatie-volumes op, maar netto geen volume-verandering, omdat erosie en sedimentatie-volumes elkaar grotendeels opheffen. Om morfologische dynamiek te kwantificeren introduceerden Sistermans (1996) en Jeuken (2000) een indicator gebaseerd op de totale volumina geërodeerd, $V_{c,vol}$, en gesedimenteerd, $V_{s,vol}$, zand in een bepaalde tijdsperiode, zoals dat direct uit de dieptegegevens kan worden bepaald (= inclusief het effect van ingrepen). De grootte van de morfologische dynamiek (S) kan dan worden berekend als het gemiddelde van $V_{c,vol}$ en $V_{s,vol}$, $S = 0.5*(|V_{c,vol}| + |V_{s,vol}|)$ (Jeuken, 2000). Indien in een vak gebaggerd of gestort wordt, of zand gewonnen is, kunnen deze volumes verdisconteerd worden mits de locaties waar de ingrepen plaats vinden bekend zijn. Deze indicator die door Jeuken (2000) is toegepast voor de mesoschaal, kan ook op de macro-, mega- en systeem-schaal worden bepaald.

Tijdseries van S, waarbij S telkens bepaald wordt uit twee in de tijd opeenvolgende lodings, levert inzicht of de morfologische dynamiek toeneemt of afneemt. Hierbij is het van belang dat de tijdsduur tussen twee opeenvolgende lodings ongeveer constant is, omdat het kan worden aangenomen (Jeuken, 2000) dat S toeneemt met de tijdsduur tussen de lodings. In een langere tijdspanne kan immers meer sediment geërodeerd en gesedimenteerd worden. Bij de interpretatie van de gegevens over de morfologische dynamiek is het van belang dat ook de oorsprong van de eventuele ruimtelijke en temporele variaties worden achterhaald. Daarom verdient het aanbeveling om in ieder geval de mesoschaal en de 2D-macro-schaal te beschouwen, ook als het gaat om uitspraken op de 1D-macro-, mega- en systeem-schaal.

Ontwikkeling van ecotopen

De intergetijdegebieden, schorren en het zogenaamde ondiepwatergebied (tussen NAP-5m en laawaterniveau) zijn de belangrijkste gebieden voor de ontwikkeling van waardevolle ecotopen in het estuarium.
Voor het evalueren van de ontwikkeling van deze gebieden is strikt genomen geen volledige zandbalans nodig (wel wenselijk). Wel is het belangrijk om de basisgegevens \((V_{ot}(t)) \) en de kombergingsgrafieken van de intergetijdegebieden, ondiepwatergebieden en schorren te bepalen op basis van de plaatgeoriënteerde schematisatie rvakplaat3. Daarnaast is inzicht in de ontwikkeling van de geulen op de meso- en 2d-macroschaal, op basis van de geulgeoriënteerde schematisatie rvaksas3, essentieel. Immers, zoals aangegeven in hoofdstuk 4, vinden de ingrepen plaats in de geulen. Een invloed van die ingrepen op de ontwikkeling van de platen zal slechts als een nabijeffect kunnen waargenomen, waarbij bijvoorbeeld plaatgebieden een versterkte sedimentatie vertonen na een periode van intensief storten in een nabij gelegen geul. Informatie over de sedimentuitwisseling tussen geulen kan uiteraard wel verder helpen bij het identificeren van dergelijke effecten (dit betekent een geulgeoriënteerde zandbalans op de 2D-macroschaal, zie paragraaf 4.5).

Bij de analyse kan van grof naar fijn worden gewerkt. Hierbij kan worden begonnen met een inventarisatie van de ontwikkeling van het ondiepwatergebied en de intergetijdegebieden per bochtgroep (1D-macroschaal). Vervolgens kan meer in detail worden gekeken naar de ontwikkeling van kleinere plaatcomplexen binnen die bochtgroep of de ontwikkeling van hoog en laaggelegen intergetijdegebied. Parameters die vrij eenvoudig te bepalen zijn, zijn:

- momentane en cumulatieve erosie-sedimentatiesnelheden en tendensen, \(V_{ot} \).
- veranderingen in het areaal,
- veranderingen in de gemiddelde hoogte
- de ratio wateroppervlak op hoog water en wateroppervlak op laag water (Dronkers, 1998; Toffolon, in prep.)

Aandachtspunt hierbij is het te kiezen referentieniveau. Zoals aangegeven in hoofdstuk 4, verdient het aanbeveling om de (geulgeoriënteerde) zandbalans op te stellen op basis van in de ruimte en tijd vast gekozen referentiepunten. Echter, voor de ontwikkeling van ecotopen lijkt het essentieel om naast deze vaste referentiepunten ook de invloed van de in tijd en ruimte variërende laag- en hoogwaterstanden te evalueren. Zo is in de meeste studies tot nu toe uitgegaan van vaste referentiepunten (zie bijv. Vroon et al., 1997), hetgeen voor de interpretatie wel duidelijk is. Echter, wanneer bijvoorbeeld voor het Valkensissegebied in het oostelijk deel ook de waargenomen verlaging van het laagwatervenniveau wordt beschouwd, zal de opbouw van het intergetijdegebied nog sterker blijken te zijn. De keuze van het referentievenniveau hangt in dit geval sterk af van de gehanteerde definitie voor intergetijdegebied.

Ontwikkeling getijdoordringing

Veranderingen in de getijdoordringing kunnen ontstaan door veranderingen van de gemiddelde geuldiepte en het intergetijdegebied (komberging) op macro en megaschaal. Ook zijn er aanwijzingen dat substantiële veranderingen in de diepte van drempels in de grote vloedgeulen (mesoschaal) gepaard kunnen gaan met een toename van de getijslag.

Voor het bepalen van het optreden van dergelijke veranderingen is een volledige zandbalans niet nodig. Inzicht in \(V_{ot}(t) \), \(V(t) \) en \(V_{res}(t) \) en de bijbehorende veranderingen van het natte
wateroppervlak $O_{vat}(t)$ op de 2D en 1D-macroschaal is in principe al voldoende om te kunnen beoordelen of ingrepen de getijdoorstroom hebben beïnvloed.

De gemiddelde geuldiepte h_{geul} kan dan worden bepaald als de ratio V/O_{vat} waarbij wordt aangenomen dat het wateroppervlak niet wezenlijk verandert onder invloed van de ingrepen. Veranderingen in komberging kunnen worden afgeschat door te kijken naar veranderingen in de waterberging boven de intergetijdegebieden. Deze waterberging kan direct worden afgeleid uit de kombergingsgrafieken. Hierbij moet dan wel rekening worden gehouden met waargenomen veranderingen in hoog en laagwaterniveaus en veranderingen in de gemiddelde geuldiepe op de 1D-macroschaal waardoor de voortplantingsnelheid van de getijgolf verandert. Indien trendbreuken in het temporele gedrag van h_{geul} en komberging samenvallen met veranderingen in menselijke ingrepen (bijvoorbeeld, meer zandwinning), dan kan dit een indicatie zijn dat de menselijke ingrepen verantwoordelijk zijn voor deze trendbreuken. Aanvullende modelberekeningen met een 1D of 2D waterbewegingsmodel kunnen de waarnemingen verder onderbouwen.

5.3 Beheersvraag 2
Hoe groot is het sedimentoverschot in het systeem?

Zoals reeds vermeld in paragraaf 2.3 is de term sedimentoverschot een lastig begrip dat in de praktijk voor meerdere uitleg vatbaar is en bovendien sterk schaalafhankelijk is. Op basis van alleen zandbalansgegevens is het nagenoeg onmogelijk om het sedimentoverschot in het systeem te kwantificeren. Het in de tijd bijhouden van de erosie en sedimentatie tendensen op morfologische meso- en macro-schaal, ondersteund met modelberekeningen (ESTMORF, Delft3D en ISTM), kan wel bijdragen aan duidelijkheid op de vragen:

- of en in hoeverre de verdieping van de drempels in de vaargeul gevolgd wordt door het eroderen van de aangrenzende geuldelingen
- of en in hoeverre er een vertraagde plaatopbouw of zelfs afbraak optreedt als gevolg van de gewijzigde stort- en zandwinstrategie.

5.4 Beheersvraag 3
Wat is de natuurlijk fluctuatie in de zandbalans van het estuarium?

Met estuarium wordt bedoeld het gehele systeem van Westerschelde en monding, de systeemschaal. Voor dit geheel systeem kunnen de natuurlijke fluctuaties $V_{nat}(t)$ alleen worden bepaald als het boekhoudkundige verschil van de totale erosie /sedimentatie $V_{tot}(t)$, gebaseerd op de gegeven dieptegroeven, en de ingrepen $V_{ing}(t)$. De basisgegevens op mesoschaal dienen te worden geaggregeerd tot deze systeemschaal. De natuurlijke fluctuaties geven dan aan in hoeverre het systeem onder invloed van natuurlijke processen en ingrepen erodeert, sedimenteert dan wel stabiel is.

Zoals reeds in paragraaf 2.4 wordt vermeld, zullen de interpretatie en bruikbaarheid van het resultaat worden beperkt door een aantal praktische zaken: de nauwkeurigheid van de gegevens (zowel van de dieptekaarten als van de ingreep hoeveelheden; uitleverpercentage,
verhouding zand/slib), de grootte van de vakken, de keuze van de referentieniveaus en de synchronisatie. Het effect van deze zaken kan worden ingeschat door de ‘zandbalans’ verschillende keren op te stellen met net iets andere keuzes (bijv. 15% uitlevering i.p.v. 10% uitlevering) om zo de gevoeligheid van de uitkomsten in kaart te brengen.

5.5 Beheersvragen 4, 6 en 8

Kan de monding fungeren als sedimentbuffer voor zand en baggerspecie afkomstig uit de Westerschelde?

Lange-termijn evaluatie

De beantwoording van deze beheersvraag op een tijdschaal van één tot enkele decennia, de midden tot lange-termijn, kan in principe worden uitgevoerd met een volledige zandbalans op mega-schaal. Hierbij zijn de Westerschelde, het mondingsgebied en de aangrenzende kustvakken de balansvakken.

Per balansvak dienen de volgende gegevens te worden berekend:
- de momentane en cumulatieve totale erosie en sedimentatie (V_{tot}),
- de momentane netto ingrepen (V_i) in de diverse balansvakken, waarbij een uitleveringspercentage van 10% is gehanteerd (fijn zand, Bray e.a, 1997)
- de momentane en cumulatieve natuurlijke erosie / sedimentatie (V_{nat}),

Het berekenen van de sediment uitwisseling tussen de balansvakken wordt mogelijk indien op een grens deze uitwisseling wordt aangenomen. Meestal wordt de uitwisseling tussen de Westerschelde en het riviersysteem verwaarloosd.

Er is een aantal praktische problemen die de waarde van de uitkomsten beperken:
- De afwezigheid van een concept voor de definitie van het mondingsgebied. In tegenstelling tot de buitendelta’s bij de Waddenzee, is een dergelijk concept er voor de Westerschelde-monding niet. Echter, de uitkomsten van de zandbalans kunnen in belangrijke mate bepaald worden door hoe een balansvak ruimtelijk gedefinieerd wordt. Gevoeligheidsanalyses voor de Waddenzee delta’s laten zien dat de uitkomst van een zandbalans sterk afhankelijk is van of een mondingsgebied bepaald wordt in de tijd vaste ruimtelijke grenzen of door ruimtelijke grenzen die volgens een gekozen concept in de tijd kunnen variëren. Het eerste concept is het eenvoudigst, maar levert verkeerde uitkomsten wanneer in de tijd de monding gedeeltelijk ‘uit’ het gekozen gebied loopt. Dit wekt het idee dat de monding exporterend is (het volume zand in het gebied neemt af), terwijl in werkelijkheid het volume in het mondingsgebied niet hoeft te veranderen. Het tweede concept is vanuit morfologisch oogpunt beter, maar dient voor de Westerschelde monding nader uitgezocht te worden.
- De nauwkeurigheid van de gegevens in het grote mondingsgebied is relatief laag. Tevens is er onduidelijkheid over het precieze uitleveringspercentage en over de samenstelling (zand/slib) van het gestorte materiaal. De consequenties van de onzekerheden kunnen in principe onderzocht worden door de zandbalansen herhaaldelijk op te stellen door bepaalde parameters (uitleveringspercentage, zand/slib...
samenstelling) te variëren binnen een realistisch bereik, en te kijken hoe de uitkomsten worden beïnvloed.

Korte-termijn evaluatie

Om de herverdeling van zand in de Westerschelde monding op een tijdschaal van een aantal jaren, de korte termijn, te bestuderen dient een zandbalans op meso-schaal gemaakt te worden. Een duidelijke en consistente morfologische indeling voor de monding bestaat echter nog niet. Zoals vermeld in paragraaf 2.5 en voorgesteld in hoofdstuk 4 zou een voorlopig alternatief kunnen zijn om net als voor de Westerschelde uit te gaan van veranderingen in het watervolume binnen een bepaald horizontaal referentieniveau en deze veranderingen te vertalen naar erosie en sedimentatie van zand. Ook dient er nieuwe schematisatie voor het mondingsgebied te worden gemaakt, waarbij de bestaande ESTMORF schematisatie en de schematisatie van Van der Slikke (1998) als eerste leidraad kunnen dienen (zie hoofdstuk 4). Voor het bepalen van de sedimentuitwisseling tussen vakken zijn aanvullende analyses met modellen nodig zoals omschreven in paragraaf 4.5.7.

5.6 Beheersvraag 5

Hoe ziet de retourstroom van baggerspecie van west naar oost eruit, wanneer komt deze opgang en wat is het verloop daarvan?

Zoals aangegeven in paragraaf 2.6, kan een zandbalans inzicht geven in veranderingen in de richting en grootte van de _opgetreden_ sedimentuitwisseling tussen delen van een estuarium. _Voorspellingen_ kunnen alleen worden gemaakt op basis van extrapolatie van waargenomen trends en goed gekalibreerde modellen.

Om inzicht in de _opgetreden_ retourstroom te krijgen dient de zandbalans opgesteld te worden op de 1D en 2D macro-schaal (zie hoofdstuk 4), en dienen de grootte en richting van de sediment uitwisseling tussen de balansvakken te worden gekwantificeerd uitgaande van erosie- en sedimentatietendensen ten gevolge van natuurlijke processen en ingrepen in ieder zandbalansvak. Indien veranderingen in de grootte en richting van de sedimentuitwisseling tussen delen van een estuarium samenvallen of volgen op wijzigingen in een stortstrategie, kan er sprake zijn van een causaal verband. In hoeverre een zandbalans daadwerkelijk antwoord geeft op deze beheersvraag, zal in belangrijke mate afhangen van de grootte van de retourstroom in relatie tot natuurlijke variaties en onnauwkeurigheden in de zandbalans. Wanneer de retourstroom een duidelijk signaal geeft, zal een zandbalans kunnen helpen; wanneer de retourstroom gering is van omvang, zal het signaal slechts ruis, en daarmee niet te kwantificeren, zijn.

Een exercitie met een zandbalans op de 1D-macroschaal kan een eerste inzicht geven over het al dan niet optreden van een retourstroom in het verleden. Zoals omschreven in paragraaf 4.5.7 kan deze 1D-balans worden opgesteld op basis van een aanname over het netto sedimenttransport op de grens België-Nederland (meestal gelijk aan nul verondersteld) en de natuurlijke erosie-sedimentatiesnelheden V_{net} per vak van de schematisatie. Door de sedimentuitwisseling tussen de vakken nogaals te bepalen op basis
van dezelfde aanneming en de totale erosie/sedimentatie per vak V_{tot}, in plaats van V_{main}, ontstaat een inzicht in hoe de uitwisseling tussen sedimentbalansvakken verandert als gevolg van de ingrepen, en of er een retourstroom heeft plaatsgevonden. Vervolgens kan nog worden geprobeerd deze zandbalans exercitie te verfijnen naar een 2D-balans waarbij gebruik wordt gemaakt van een goed gekalibreerd ESTMORF-model en/of Delft3D en bij voorkeur ISTM (zie paragraaf 4.5.7).

5.7 Beheersvraag 7

Wat zijn de grenzen aan het storten in de Westerschelde en monding waarbij het meergeulenstelsel niet bedreigd wordt?

Zoals aangegeven in paragraaf 2.7 kunnen de basisgegevens zoals die voor een zandbalans zijn bepaald worden gebruikt voor het aftasten van de grenzen aan het storten. Een volledige zandbalans is hiervoor niet nodig. Het is echter wel belangrijk dat de gegevens op meso- en macroschaal, d.w.z. voor onderdelen van de grote geulen en de individuele geulen in hun geheel, beschikbaar zijn. Het beschouwen van de mesoschaal is noodzakelijk en zinvol. Enerzijds omdat de ingrepen per definitie op deze ruimteschaal plaatsvinden. Anderzijds kan het zo zijn dat de invloed van de ingrepen op de korte termijn al wel zichtbaar is op de mesoschaal, maar nog niet op de macroschaal. De meso-schaal analyse is daarmee belangrijk voor het signaleren van effecten en het beantwoorden van de beheersvraag op de korte termijn (enkele jaren). Figuur 5.1 laat zien hoe bijvoorbeeld op basis van de meso-schaal vakkenindeling in de Arc-Info coverage $rvkasa3$, de vakken geaggregeerd kunnen worden tot de tweedimensionale macroschaal. Hierbij kunnen per rechthoek de grijsblauwe en blauwe vlakken geaggregeerd worden tot 'ebgeul' en 'vloedgeul' gebieden, zodat in de gehele Westerschelde een twealftal vakken ontstaan.
Figuur 5.1 Voorbeeld hoe de mesoschaal vakkenindeling kan worden geaggregeerd om het behoud van het meergeulenstelsel te evalueren.

Voor de wijze van analyseren kan de methode zoals beschreven door Jeuken (2000, 2001) worden gevolgd. Om de beheersvraag te kunnen beantwoorden moet het belang van de netto ingrepen (sommig baggeren, storten en winnen) in de tendensen van erosie en sedimentatie worden geclassificeerd. Deze analyse van de cumulatieve waarden van $V_{net}(t)$, $V_{nat}(t)$ en $V_{s}(t)$ (voor definities zie tabel 4.2), samen met de beschikbare erosie- en sedimentatiekaarten, vormt de basis voor het traceren van grenzen voor het storten van sediment in het geul systeem. Als leidraad voor de interpretatie van de gegevens is in Figuur 5.2 een theoretisch voorbeeld gegeven. In dit figuur staan als functie van de tijd: de cumulatieve netto erosie en sedimentatie, de cumulatieve ingrepen en het 'natuurlijk' effect, allen in miljoenen profielkub. Een stijgende lijn (positieve richtingscoëfficiënt) duidt op sedimentatie. Een dalende lijn is indicatief voor erosie. Voor het aangeven/classificeren van het belang van ingrepen wordt vooral gekeken naar het verloop van de netto en natuurlijke erosie en sedimentatie (zie Fig. 5.2 en tabel 5.1) en knikpunten in deze verlopen. Als deze lijnen nagenoeg samenvallen is baggeren of storten van weinig betekenis geweest. Hebben deze lijnen een tegengesteld verloop dan betekent dat, dat de ingrepen sturend zijn geweest in de waargenomen geulontwikkeling. Voor het traceren van grenzen in de stortcapaciteit zijn met name de situaties '3' in Figuur 5.2 van belang.

Tabel 5.1 Classificatie van de invloed van menselijke ingrepen aan de hand van de cumulatieve erosie- en sedimentatiecurven (zie ook Figuur 5.2).

<table>
<thead>
<tr>
<th>Belang van ingreep</th>
<th>Criterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Geen invloed</td>
<td>Netto en 'natuurlijke' erosie / sedimentatie zijn even groot en hebben hetzelfde teken (geen ingreep).</td>
</tr>
<tr>
<td>2 Invloed</td>
<td>Netto en 'natuurlijke' ontwikkeling hebben het zelfde teken maar zijn niet even groot.</td>
</tr>
<tr>
<td>3 Kritische invloed</td>
<td>Netto en 'natuurlijke' ontwikkeling zijn net niet tegengesteld aan elkaar.</td>
</tr>
<tr>
<td>4 Sturend</td>
<td>Netto en 'natuurlijke' erosie / sedimentatie hebben een tegengesteld teken.</td>
</tr>
</tbody>
</table>
Figuur 5.2 Cumulatieve erosie en sedimentatie en de classificatie van het effect van ingrepen. Voor betekenis code 1-4 zie tabel 3.2. In dit voorbeeld sedimenteert een geul al dan niet als gevolg van netto storten, waarna een periode van erosie volgt waarbij storten een geringe invloed heeft gehad. V_{netto} moet V_{net} zijn.
6 Samenvatting, conclusies en aanbevelingen

6.1 Samenvatting en conclusies

Achtergrond en doel

De beheerder van de Westerschelde, Directie Zeeland, streeft naar een integraal zandbeheer. Dit betekent dat getracht wordt alle kunstmatige zandverplaatsingen en/of onttrekkingen dusdanig uit te voeren dat, samen met de natuurlijke zandverplaatsingen, een zo optimaal mogelijke zandhuishouding kan worden verkregen in relatie tot de gebruiksfuncties en beleidsdoelstellingen.

Het zandwinbeleid en de onderhoudsvergunningen (stortvergunningen) ten behoeve van het vaargeulonderhoud zijn de belangrijkste stuurknoppen voor een integraal zandbeheer. Bij het formuleren van het beleid ten aanzien van de zandwinning en het vaargeulonderhoud staan de volgende vragen centraal:

1. Hoeveel en waar mag je zand verwijderen (winnen) zonder dat het mis gaat met het systeem in relatie tot de beleidsdoelstellingen?
2. Hoe groot is het sedimentoverschot in het systeem?
3. Wat is de natuurlijk fluctuatie in de zandbalans van het estuarium?
4. Kan de monding fungeren als sedimentbuffer voor de Westerschelde?
5. Hoe ziet de retourstroom van baggerspecie van west naar oost eruit, wanneer komt deze opgang en wat is het verloop daarvan?
6. Wat zijn de gevolgen van de export van zand/baggerspecie naar de monding?
7. Wat zijn de grenzen aan het storten in de Westerschelde en monding waarbij het meergeulenstelsel niet bedreigd wordt.
8. Kan baggerspecie uit de Westerschelde in de monding gestort worden?

Integraal zandbeheer vereist een goed inzicht in de zandhuishouding van de Westerschelde en haar monding en de morfologische ontwikkelingen onder invloed van ingrepen op verschillende ruimte- en tijdschalen. Het opstellen van een zandbalans is een belangrijk hulpmiddel voor het verkrijgen van dit inzicht. Een zandbalans kwantificeert de erosie en sedimentatie van zand onder invloed van natuurlijke processen en ingrepen voor ieder vak van de, nader te specificeren, schematisatie waarvoor de zandbalans wordt opgesteld, inclusief de sedimentuitwisseling tussen die vakken. WL|Delft Hydraulics is gevraagd voorliggend advies uit te brengen voor het maken van een gezamenlijke zandbalans van Westerschelde en monding.

Het doel van het huidige project is drieledig:

1. Concretiseer en analyseer de beheersvragen en inventariseer op basis daarvan de functionele eisen waaraan de gezamenlijke zandbalans van Westerschelde en monding...
moet voldoen om een bijdrage te kunnen leveren aan het beantwoorden van die beheersvragen.

2. Een advies uittrengen over de manier waarop, op een eenduidige en logische wijze, een gezamenlijke zandbalans van de Westerschelde en monding gemaakt kan worden.

3. Inventariseren welke analyses met de resultaten van de zandbalans kunnen worden uitgevoerd om de genoemde beheersvragen over zandwinning en vaargeulonderhoud te kunnen beantwoorden.

Analyse beheersvragen

In deze studie is een onderscheid gemaakt in vier ruimteschalen: 1) de systeemschaal, de Westerschelde en monding samen, 2) de megaschaal, de Westerschelde of monding, 3) de macroschaal, de bochtgroepen in de Westerschelde en de individuele grote geulen en plaatcomplexen in Westerschelde en monding, 4) de mesoschaal, onderdelen van de grote geulen en de kleinere kortsluitgeulen.

De analyse van de beheersvragen resulteert in een aantal aanbevelingen voor het maken van een zandbalans:

- Basieer het maken van de zandbalans op een vakkenschematisatie op meso-schaal. De basisresultaten voor het opstellen van een zandbalans, kunnen dan per beheersvraag worden geaggregeerd tot de benodigde ruimte- en tijdschalen.
- Maak aanvullende modelberekeningen voor zandbalansen op de 2d-macroschaal en de mesoschaal.
- In afwezigheid van een concept zoals dat voor de zeegaten in de Waddenzee beschikbaar is, wordt voor de monding van de Westerschelde geadviseerd om een zelfde benadering als voor de Westerschelde te hanteren. Dit betekent het bepalen van de erosie en sedimentatie van zand op basis veranderingen in de waterinhoud beneden een hoog referentieniveau (NAP+3.5m).
- Besteed expliciet aandacht aan de bandbreedten rond de gegevens, ten gevolge van eventuele fouten en aannamen in de analyses. Dit kan worden bereikt door gevoeligheidsanalyses (voor bijvoorbeeld de uitlevering) uit te voeren bij het opstellen van de zandbalans.

"Recept" voor het opstellen van een zandbalans

Beperkingen bestaande studies

onduidelijkheid over de samenstelling van het stortmateriaal afkomstig uit de haven van Zeebrugge.

Adviezen ten aanzien van schematisatie, synchronisatie en baggeren en storten:
De zandbalans dient bij voorkeur te worden gebaseerd op een vaste geulgeoriënteerde vakkenindeling die zo veel mogelijk rekening houdt met: de aansluiting met het ESTMORF model, de aansluiting met de lodingsvakken (i.v.m. synchronisatie van gegevens), de morfologie van het geul/plaat systeem, en de bagger- en stortvakken. Voor de Westerschelde kan worden uitgegaan van de Arc-Info coverage rvaksas3 die op een aantal kleine punten kan worden verbeterd. Voor de monding wordt aanbevolen om een nieuwe schematisatie te maken die in ieder geval aansluit op de lodingsvakken. De ESTMORF schematisatie en de schematisatie van Van der Slikke (1998) kunnen als eerste leidraad worden gebruikt. Voor een eenduidige interpretatie wordt aanbevolen om de inhoudsveranderingen te beschouwen ten opzichte van drie verschillende, maar in de tijd en ruimte vast gedefinieerde referentieniveaus, te weten: 1) NAP+3.5m, 2) NAP-2m en 3) NAP-5m.

Met betrekking tot het synchroniseren wordt aanbevolen om de tijdreeksen van de waterinhouden op basis van twee opeenvolgende waarnemingen lineair te interpoleren naar 1 januari van ieder kalenderjaar. De bagger-, stort- en zandwingegevens zijn in principe per kalenderjaar beschikbaar.

Voor het onderhoud van de vaargeul wordt hoofdzakelijk fijn zand gebaggerd en gestort. Daarnaast wordt er in de Westerschelde zand gewonnen en havenslib gestort. De bagger- en stortgegevens met betrekking tot het vaargeulonderhoud en de zandwinning moeten worden meegenomen bij het opstellen van de zandbalans. De gegevens moeten worden vertaald naar in situ volumina per vak van de schematisatie. Hierbij kan voor de uitlevering worden uitgegaan van 10%. Voor de verdeling van bagger/storthoeveelheden op een locatie die meerdere vakken van de schematisatie beslaat kan worden uitgegaan van een verdeling naar rato van het oppervlak.

De stortingen van havenslib hebben vermoedelijk weinig invloed op de bodemligging en hoeven als zodanig ook niet te worden meegenomen in het opstellen van de zandbalans. Wanneer de stortlocatie dicht bij hooggelegen schorgebieden is gelegen kunnen regelmatig terugkerende slibstortingen wel leiden tot een versterkte slibsedimentatie en ophoging van deze gebieden.

Benodigde basisgegevens
De basisgegevens voor het opstellen van een zandbalans bestaan uit:
- de lineair gesynchroniseerde waterinhouden en -oppervlakten ten opzichte van drie referentieniveaus (NAP+3.5m, NAP-2m en NAP-5m), en;
- de voor uitlevering gecorrigeerde gebaggerde, gestorte en gewonnen volumina zand, voor ieder vak in de schematisatie als functie van de tijd.

Stappenplan
Voor het opstellen van een gezamenlijke zandbalans van de Westerschelde en monding wordt een zestal stappen onderscheiden:
1) Het bepalen van erosie- en sedimentatie van zand ten gevolge van natuurlijke processen en ingrepen in de verschillende zandbalansvakken. Op basis van de inhoudsveranderingen worden tijdreeksen van drie parameters bepaald: 1) de totale erosie/sedimentatie, $V_{nat}(t)$, 2) de netto ingrepen $V(t)$ en 3) de natuurlijke erosie $V_{nat}(t)=V_{tot}(t)-V(t)$, voor meer details zie tabel 4.2.
2) Het traceren en eventueel corrigeren van mogelijke fouten op basis van $V_{tot}(t)$ en $V_{nat}(t)$ en verschilkaarten.
3) Het bepalen van erosie- en sedimentatiertrends door grafieken te maken van de cumulatieve waarden van $V_{tot}(t)$, $V_{nat}(t)$ en eventueel $V(t)$ (zie bijv. figuur 4.3).
4) Het aggregeren van de gegevens tot de gewenste ruimteschaal. Hierbij kan weer onderscheid worden gemaakt in de systeemschaal, de megaschaal, de macroschaal (1D en 2D) en de mesoschaal.
5) Het selecteren van deelperioden op basis van de cumulatieve waarden van $V_{tot}(t)$ en $V_{nat}(t)$ waarvoor balansen kunnen worden opgesteld.
6) Het bepalen van de sedimentuitwisseling tussen de al dan niet geaggregeerde vakken. Hierbij wordt onderscheid gemaakt tussen 1D-balansen en 2D-balansen. In een 1D-balans moet voor het transport op één vakgrens iets worden aangenomen dan wel bepaald. Voor het opstellen van een 2D is aanvullende informatie over de sedimentuitwisseling tussen de vakken nodig. Deze kan worden verkregen op basis van: 1) metingen, 2) modelberekeningen met het gekallibreerde ESTMORF-model, 3) modelberekeningen met een gekallibreerd procesmodel (bijv. op basis van Delft3D) en 4) Inverse Sediment Transport Modelling (ISTM).

Analyses ter beantwoording van de beheersvragen

Voor de diverse beheersvragen is ten slotte aangegeven of voor het beantwoorden van de beheersvraag een volledige zandbalans nodig is, of dat er kan worden volstaan met informatie over inhoudsveranderingen, V_{tot}, V_{nat}, V_{f} en kombergingsgrafieken. Vervolgens is gekeken welke type analyse er dan nodig is. Hieruit blijkt dat voor het beantwoorden van de vragen 4, 6, 8, over het fungeren van de monding als sedimentbuffer voor zand en baggerspecie uit de Westerschelde en vraag 5, de retourstroom, een volledige zandbalans nodig is. Voor de vragen 1 (misgaan systeem door zandwinning), 3 (natuurlijke fluctuatie zandbalans) en 7 (handhaven meergeulensysteem) kan worden volstaan met een nadere analyse van de basisgegevens voor de zandbalans. Vraag 2 over het sedimentoverschot kan eigenlijk niet worden beantwoord omdat het een moeilijk aantoonbaar en kwantificeerbaar begrip is wat voor meerdere uitleg vatbaar is.

6.2 Aanbevelingen

Naast de diverse adviezen die worden gegeven ten aanzien van het opstellen van een zandbalans zijn een paar aanbevelingen voor verder onderzoek dan wel aanvullend werk naar voren gekomen, die in een vroeger of later stadium bijdragen aan het maken van een nieuwe zandbalans.
Schematisatie:
1. Bij het optimaliseren van de bestaande geulgeoriënteerde schematisatie voor de Westerschelde en het maken van de nieuwe morfologische schematisatie voor monding verdient het aanbeveling om de vakken zodanig te definieren dat ze:
 • een morfologische basis hebben, d.w.z. geulgeoriënteerd,
 • aansluiten bij de vaklodingen,
 • en een goede basis vormen voor het maken van een nieuw ESTMORF model.
De laatste voorwaarde betekent dat door het aggregeren van de vakken die aansluiten op de vaklodingsbladen, bruikbare ESTMORF-vakken ontstaan.
2. Maak een analyse van de kombergingsgrafieken in het mondingsgebied om uit te zoeken hoe banken en geulen het beste kunnen worden gescheiden.

Gegevens
4. Zorg dat de gegevens van baggeren en storten in het mondingsgebied goed op orde komen, vergelijkbaar met de Westerschelde. Dat wil zeggen inzicht in wat (zand of slib), waar (welke locatie), wanneer (welk jaar) is gestort/gebaggerd en implementeer deze gegevens in bestaande of eventueel nieuwe Arc-Info applicaties.

Sedimentuitwisseling
5. De aannames over het sedimenttransport op deze grens Nederland- België zou door middel van enkele gevoeligheidsberekeningen met een gekalibreerd procesgeoriënteerd model (bijv. Delft3D) beter kunnen worden onderbouwd.
6. Laat een ISTM-pilot opzetten voor de Westerschelde en monding met het oog op het opstellen van zandbalansen op de 2D-macroschaal.
7. Overweeg het opzetten van een verbeterde ESTMORF schematisatie in de nabije toekomst i.v.m. het opstellen van 1D en 2D zandbalansen.

Gevoeligheidsanalyse
8. Voer gevoeligheidsanalyses uit om inzicht te krijgen in de bandbreedte rond de resultaten. Bij het bepalen van een zandbalans worden op verschillende stadia onzekerheden geïntroduceerd: in de meetdata zelf (onnauwkeurigheden) en in het analyse traject (bijvoorbeeld, in de bagger- en stortgegevens: samenstelling materiaal, uitleveringspercentage, beschikbaarheid gegevens). Mogelijke ‘scenario’s’ zijn de aannames dat al het gestorte materiaal zand of slib is of dat het uitleveringspercentage niet 10%, maar 5% of 15% is.
7 Referenties

Overzichtskaart
Westerschelde-totale gebied
Datum: rond 1996

Legenda
Diepte in m t.o.v. NAP
Boven N.A.P. > 0 m
+4 tot +3 m
+3 tot +2 m
+2 tot +1 m
+1 tot N.A.P.
N.A.P. tot -1 m:
-1 tot -2 m
-2 tot -3 m
-3 tot -5 m
-5 tot -7.5 m
-7.5 tot -10 m
-10 tot -15 m
-15 tot -20 m
-20 tot -25 m
-25 tot -35 m
-35 tot -45 m
Diepere dan -45 m

Vakindeling grutten
Bron: Vakindelingen RWS

Ministerie van Waterstaat en Ruimtelijke Ordening
Deelraad Waterstaat
Rijksdienst voor Deltawet en Deltaplan
Rijkswaterstaat
Zeeuwse Hydrografische Dienst
Klik voor meer informatie

A Bestaande schematisaties

map 2003
Overzichtskaart
Westerschelde-
totale gebied

Legenda

Diepte in m tot NAP

- Boven N.A.P. +4 m
- +4 tot +3 m
- +3 tot +2 m
- +2 tot +1 m
- +1 tot N.A.P.
- N.A.P. tot -1 m.
- -1 tot -2 m
- -2 tot -3 m
- -3 tot -5 m
- -5 tot -7.5 m
- -7.5 tot -10 m
- -10 tot -15 m
- -15 tot -20 m
- -20 tot -25 m
- -25 tot -35 m
- -35 tot -45 m
- Dieper dan -45 m

Bron: Voëlmond RWS
achaei 1 250000

Tweedelijk platen en sliktten

Maar: Vakledingen RWS

schaal 1: 250000

Ministerie van Verkeer
en Waterstaat

Zeeuws-Vlaanderen

Ministerie van Verkeer
en Waterstaat

Zeeuws-Vlaanderen

Rijksdienst voor Zee- en Zet

A. Schuurweser
FIG. A.3: Schematisatie mondingsgebied van Vlaardingen (1998)
Legenda
Diepte in m t.o.v. NAP

Bron: Vakindeling ESTMORF
Bodem: rond 1996

Overzichtskaart
Westerschelde-moningsgebied

Zeeuwse Westerschelde en monding Z3213 maart 2002
Overzichtskaart
Kaartengebied

Legenda
Diepgte in m ten NAP
-1 tot + 3 m
+3 tot + 5 m
+5 tot + 7,5 m
+7,5 tot +10 m
+10 tot +15 m
+15 tot +20 m
+20 tot +25 m
+25 tot +30 m
+30 tot +45 m
Dieper dan +45 m

Bron: Vaklijdin RWS
Schaal: 1:500000

Aanmelding voor deze kaart
Rijkswaterstaat
Rijkswaterstaat
Rijkswaterstaat
Tabel B.1 Overzicht van beschikbare vakladingen. Voor locatie bladen zie Fig. B.1.
Fig. C. Aggregatie tot een 1D en 2D-schematisatie voor de Westerschelde (inclusief kleine aanpassingen)

Overzichtskaart
Westerschelde-totale gebied
Bodem, rond 1996

Legenda
Diepte m ten N.A.P.
-4 tot +3 m
-2 tot +1 m
-1 tot N.A.P.
-1 tot -2 m
-2 tot -3 m
-3 tot -4 m
-5 tot -7,5 m
-7,5 tot -10 m
-10 tot -15 m
-15 tot -20 m
-20 tot -25 m
-25 tot -35 m
-35 tot -45 m
Dieper dan -45 m

Vakindeling geulen
Bron: Vakindeling RWS
schaal 1:250000

Afbeelding van: NL, Delta Proeven

© Ministerie van Verkeer en Waterstaat
© Directoraat-Generaal Waterstaat
© Rijkswaterstaat voor Kunst en Zee
© NLZ Middenbrug