FOUR NEW CRUSTACEANS IN THE GUADALQUIVIR RIVER ESTUARY (SW SPAIN), INCLUDING AN INTRODUCED SPECIES.

J.A. Cuesta', L. Serrano', M.R. Bravo², J. Toja¹

¹ Departamento de Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080 SEVILLA, SPAIN. e-mail: mariscal@cica.es
(2) Department of Aquatic Biosciences, Plankton Laboratory, Tokyo University of Fisheries, 4-5-7 Konan, Minato-Ku, TOKYO 108, JAPAN. e-mail: ad94205@tokyo-u-fish.ac.jp

Palabras clave: Peracaridos estuarios, dispersión, especies exóticas, Río Guadalquivir, Península Ibérica.

Keywords: estuarine peracarids, dispersal, exotic species, Guadalquivir River, Iberian Peninsula.

ABSTRACT

This work reports on the presence in the Guadalquivir River estuary of the mysids *Neomysis integer* and *Rhopalophthalmus mediterraneus* and well established populations of the isopod *Synidotea laevidorsalis* and the amphipod *Corophium orientale*. All species are new for the fauna of the Iberian Peninsula. *S. laevidorsalis* is reported here for the second time in European waters. Their introductions are probably associated with aquaculture transplants, fouling on ship's hulls or with ballast water transport.

INTRODUCTION

The Guadalquivir River is situated in southern Spain. The lower part of the river has a gentle slope, which includes an estuary of about 100 km and a strong tidal flow. Its average depth is 10 m. The salt water does not usually go beyond 20 km upstream (BAONZA et al, 1978), but due to intense present drought, salt water was extended further up.

Merchant ship and boat traffic extends up the Guadalquivir River estuary up to Sevilla Harbor. Sevilla has had a continuous and active ship traffic since the 15th century with the discovery of America. Water quality of the Guadalquivir River estuary is very much affected by urban and industrial wastes of organic origin (GUISANDE & TOJA, 1988).

Studies of invertebrates from the estuary of the Guadalquivir River are few. GUISANDE et al. (1986) studied the zooplanktonic communities of this estuary from February 1983 to March 1984 including Rotifers, Copepods and Cladocerans. They concluded that the zooplankton distribution was determined by environmental factors such as salinity and eutrophy.

The distribution of benthic invertebrates from the estuary of the Guadalquivir River is unknown. The present study deals with benthic Crustaceans including Isopods, Mysids and Amphipods recently found in this estuary.

MATERIALS AND METHODS

The estuary was sampled at one site located in one of the river channels 23 km from the river mouth. The salinity was measured with a densimeter and ranged from 16 g.l⁻¹ to 24 g.l⁻¹ during the sampling period.

Samples were collected from January 1991 to December 1994 at high tides over 4-6 hours periods. Specimens were collected by a nonspecific benthonic method: the whole water column was filtered through a mesh of 12 m long and 2 mm pore size fixed to a square of 2.5 m x 1.5 m of filtering surface. This sort of mesh is employed by the tradicional eel larvae fisheries at river channels.

Samples were preserved in formaldehyde 4 % final concentration. The adult body lengths of mysids were measured from the base of the eyestalk to the posterior end of the telson, excluding the setae. Isopods were measured from the anterior part of the cephalon to the posterior end of the pleotelson. Amphipods were measured from the extreme of the second antenna to the posterior end of the telson.

RESULTS

*Rhopalophthalmus mediterraneus* Nouvel, 1960


Body length.- Range 16.6 - 20.9 mm.

Occurrence.- NOUVEL (1960) described this species from specimens collected in 1940-41 off Alger Bay (Algeria, 36° N - 3° E). Until now, this was the only known record for this species (fig. 1). The present material is the first record of the species from Europe.

![Map of world distribution](image)

FIGURE 1. World distribution of Synidotea laevidorsalis, Corophium orientale, Neomysis integer and Rhopalophthalmus mediterraneus. Locations are cited in the text.

FIGURA 1. Distribución mundial de Synidotea laevidorsalis, Corophium orientale, Neomysis integer y Rhopalophthalmus mediterraneus. Las localidades se citan en el texto.
Neomysis integer (Leach, 1814)

Pranus integer Leach, 1814.

Mysis scoticus J.V. Thompson, 1928; Bell, 1853; van Beneden, 1860; G.O. Sars, 1879.

Neomysis vulgaris, Czerniavsky, 1882-83; Norman, 1892; Zimmer, 1904, 1909.

Neomysis integer, W.M. Tattersall, 1912.

Material.- 2 males, June 1993.

Body length.- Range 7.2 - 10.1 mm.

Occurrence.- TATTERSALL & TATTERSALL (1951) maintained that this species occurs on all Atlantic coasts of Europe, from Spain to the White Sea. However, MAUCHLINE & MURANO (1977) reported N. integer is widely distributed in European coasts of the North Atlantic Ocean, ranging from 66° N to 40° N latitude. Subsequently, it has been cited from West and East coasts of southern Sweden (JOHANSSON & HALLBERG, 1982); Kiel Bight, Germany (PUTZ & BUCHHOLZ, 1991); Frisian Lake District (BREMER & VIVEJBERG, 1982), Voordelta and Westerschelde, The Netherlands (MEES et al, 1993); Cullercoast District (BAMBER, 1986), Conwy Estuary, Severn Estuary (MOORE et al, 1979), Redbridge (ARMITAGE et al., 1981) and Tamar Estuary, United Kingdom (MOFFAT & JONES, 1992); Gulf of Gascogne (BEAUDOUIN, 1979) and Gironde Estuary, France (MEES & FOCKEDEY, 1993) and Mondego River Estuary, Portugal (GONÇALVES, 1991). The present material is the first record of N. integer from the Guadalquivir River Estuary (37° N Lat.) (fig. 1) and the second for the Iberian Peninsula. Therefore, this finding implies that N. integer enlarge its meridional distribution limits.

C. orientale Schellenberg, 1928
C. volutator f. orientalis Schellenberg, 1928, Crawford, 1937.

Material.- 115 males and 67 females, May, 1992; 120 males and 145 females, February, 1993; 59 males and 34 females July, 1993; 38 males and 43 females, March, 1994, 5 males and 2 females were found in freshwater samples of river sediments collected with an Elkman dregge from Seville Harbor (84 km from the river mouth) in December, 1994.

Body length.- Range 1.8 - 8.0 mm.

Occurrence.- Mediterranean endemic. France: Saint-Tropez, Corstca: Porto Vecchio, Libya, Algeria: Jijel (BELL-...
Cargo-vessel ballast water was first suggested as a vector in the dispersal of non-indigenous marine species nearly 90 years ago (HALLEGRAEFF & BOLCH, 1992). Isopods and amphipods are susceptible of being transported alive by ballast water (KELLY, 1993; WILLIAMS et al., 1988) as well as mysids (CARLTON, 1985). Additionally, isopods and amphipods (such as Corophium spp) are dispersed by fouling (CARLTON & HODDER, 1995).

Several studies have shown that it is possible for sessile adults to disperse on the order of several to many thousand kilometers by rafting on debris in ocean currents (HELMUTH et al., 1994). Many peracarids are dispersal by rafting on drifting materials such as algae and marsh grass (CAINE, 1980; FRANZ & MOHAMED, 1989). However, discoveries of the estuarine species reported herein have not been discovered on deep-sea drift materials.

The lack of data from the north African coast and the scarcity of records from the south Atlantic European coast makes difficult the determination of the main dispersal factor of these organisms in our case.

Historically, dispersal associated with shipping may be an important factor for the introduction of new species in the Guadalquivir estuary, Sevilla Harbor has received active ship traffic since 1503 when it was declared the last stop for the "Carrera de Indias" (the route for the American trade). Fouling and, more recently, ballast water are likely to have introduced many species in the Guadalquivir River.

Local ship traffic may be responsible for secondary introductions. For example, N. integer and R. mediterraneus were found in tidal channels and marshes from Cádiz (SW Spain) (DRAKE, unpublished data).

Other species introduced in the Guadalquivir River estuary are the fish Fundulus heteroclitus since 1970 (FERNANDEZ-DELGADO, 1987), the crab Rhithropanopeus harrissi (CUESTA et al., 1991) and the sea anemone Halopinella lineata (CUESTA, unpublished data). The latter species has a cosmopolitan worldwide distribution due to accidental ship transport (LOPEZ GONZALEZ, 1995).

S. laevidorsalis and C. orientale were always found associated with masses of hydroids, bryozoans and algae. Other common associated species were the Mysis Mesopodopsis slabberi, the amphipod Ampithoe ferox, the isopod Lekanesphaera hookeri, the decapods Palamometes varians, Palaemon serratus, Crangon crangon and Carcinus maenas, and the fish species Syngnathus sp. and Potamotrichus microps.

ACKNOWLEDGEMENTS

We thank Salvador Algarin, Manuel Librero, Manuel del Rio, Susana Hernández, Narciso Mazuelos and Pesquerías Isla Mayor S.A. (PIMSA) for their facilities to take samples. We wish to thank Cesar Megina for his help in identifying Synidotea genus. We also thank Dr. John Chapman for his identification of Synidotea laevidorsalis and his criticism and useful comments on the manuscript.

REFERENCES


The organi­za­tion of the of­fac­tory lo­bes in Uv­ersus and Mysidacea (Crustacea, Malacostraca). Zoomorphology 112: 81-89.

Ballast water and sediments as a mecha­nism for un­wanted spe­cies intro­ductions into Wash­ing­ton State. J. shell. Res. 12: 405-410.


Distribution and abundance of shallow-water hyperbenthic mysids (Crustacea, Mysidacea) and euphausiids (Crustacea. Euphausiacea) in the Voordelta and the Westerschelde, southwest Netherlands. Cah. biol. mar. 34: 165-186.

First record of Synidotea laevadorsalis (Miers, 1881) (Crustacea: Isopoda) in Europe (Gironde estuary France). Hydrobiologia 264: 61-63.


Seasonal changes in density, com­position and re­pro­ductive bio­logy of crustacean pop­u­la­tions in the Severn Estuary. Crustaciana 36: 113-122.


Coralium volutator forma orientalis Schellenberg, 1928, raised to specific rank. Crustacea 1: 188-192.
