Reprinted from

SALT

THE STUDY OF AN ANCIENT INDUSTRY

REPORT ON THE SALT WEEKEND

HELD AT THE UNIVERSITY OF ESSEX

20, 21, 22 SEPTEMBER 1974

Published by the Colchester Archaeological Group 1975
Dr. Gouletzquer told the meeting that Dr. Tessier had found his first salt making site ten years ago and was the first man to reconstruct the shape of the so-called 'auger' at La Frenelle in Brittany. This led to an exploration of similar sites along the Atlantic coast from the River Loire to the point of La Gironde. The 'auger' was made of white clay with thin walls. It was sun-dried and probably used only to dry wet salt crystals. Deposits had been found of several augers packed in piles within each other. Crystalline salt would have been obtained by natural evaporation but no tanks or vessels which could have been used for this purpose had been found.

General discussion on shapes and sizes of containers followed and whether or not boiling took place. With regard to the large brique attack containers, Mr. Rodwell said that, in his opinion, these were used in Essex for the boiling of sea water and that this produced the green glassy slag which formed on the outside of the containers. Enormously hot fires were used which caused the clay to run, forming slag.

IRON AGE & ROMAN SALT-MAKING SITES ON THE BELGIAN COAST

H. Thoen

During the systematic examination of the Gallo-Roman settlement of the Belgian coastal plain, new information was obtained on salt-making in this area and earlier finds and publications were reconsidered.

The data acquired are mainly the result of intensive research into three fields:- the technical processes, the relation with the soil, and the chronology.

I. IRON AGE (Fig. 34)

The settlement of the coastal plain has always been strongly affected by the recurrent periods of transgression and regression which have resulted in a very complex soil structure. (Tavernier & Americks 336)

Seen from a geological point of view, the outstanding event during the Iron Age has been the 'Dunkirk I' transgression, during which the Subboreal peat area was flooded via an extensive network of creeks, from about 500 B.C. till the beginning of our era.

Little is known about habitation sites in this period. At the time of the Roman invasion the area was part of the territory of the Menapii. (de Loë 56). In the Belgian coastal area only two settlements are known at present:- De Panne in the south-west and Bruges in the north-east. Both sites yielded traces of a salt-making industry.

A. De Panne (West Flanders, Belgium)

The settlement of De Panne has long been known. Archaeological remains, both from the Iron Age and Roman periods, were found in the dunes along the French-Belgian border and in the adjacent territory of Bray-Dunes (Département du Nord, France). Excavations before World War I (de Loë 58, 60, 91) (Cumin 71) and in 1920-30 (Rahir 266, 267, 268) brought to light numerous brique attack objects such as clay 'nails', evaporation pans, fragments of perforated clay plaques, flattened clay balls etc. The excavators, however, thought these objects to be part of a prehistoric pottery making site (de Loë 91, 92) (Rahir 266, 267, 268). Rahir identified the raw material used as being local clay from the coastal plain. He undertook to prove this by mineralogical and chemical analysis of the clay and of fragments of Iron Age pottery (Rahir 92).

Subsequently, however, it turned out that the analysed clay samples belonged to a Dunkirk II deposit, c. 300-700 A.D., so that Rahir in fact thought the pre-Roman pottery of De Panne to be made of post-Roman clay! (Regemps 20). The thesis of a pottery workshop was nevertheless not rejected, and it was not until 1952 that the possibility of a salt-making industry emerged by referring to similar finds from the Scille Valley (Marian 212). A definitive conclusion was finally reached by Nenquin who lists De Panne as the only Belgian salt making site (Nenquin 243).

The next problem which arises is one of dating. Nenquin (243) and many authors after him (Regemps 23) accept that brique attack was found in an Iron Age context as well as Roman. Two inscriptions discovered at Rimini have been repeatedly cited. They are dedicated by the Salinatores Civitatis Menaporum and the Salinatores Civitatis Morinorum CIL XI 390/1 to L. Lepidius Proculus, a centurion of the Legio VI Victrix in Novaesium (Neuss) during the reign of Vespasian (69-79 A.D.) for services rendered to salt commerce (Favorei H 3) (Witt 367) (Regemps 23). Excavation reports (de Loë and Rahir) reveal, however, that all the elements of brique attack were either discovered in an Iron Age context or where Roman occupation had disturbed the remains of the Iron Age strata; on no occasion were they exclusively Roman.

56
Distribution map of salt making sites in Northern France, Belgium, & the Western Netherlands

- Iron Age
- Roman
- □ uncertain

----- landward limit of the Dunkirk Deposits

IRON AGE 1 Bruges. 2 De Pannen. 3 Bray-Dunes. 4 Zuydcoote. 5 Assendelft. 6 Koudekerke. 7 Leiden. 8 Rockanje. 9 Santpoort. 10 Serooskerke. 11 Vlaardingen. 12 Doornburg.

ROMAN 13 Raversijde. 14 Zeebrugge. 15 Leffinge. 16 Ardenburg. 17 's Heer Abtskerke. 18 Ritthem.

Fig. 34.
From this we conclude that there is no proof of salt-making during Roman times in De Panne and that this activity was confined to the local Iron Age community.

Dating the Iron Age material from De Panne has been a topic for extensive discussion. According to Marien, settlement has been dated to the La Tène II and III periods, continuing into the Roman occupation (Marien 213), but De Laet has pointed out that some of the material can be compared to finds from the early La Tène period (LTE I & II) (De Laet 87). Final publication of the finds should settle this problem. In the meantime we emphasise that the choice of the Iron Age site was governed by physical-geographical factors (a beach flat protected from the sea by older dunes); its development is paralleled by the Dunkirk I transgression, so that settlement in the Early La Tène is acceptable. On the other hand, habitation came to an end during the final phase of the Dunkirk I, therefore probably during the La Tène III period. Continuity with the later Roman occupation, which began in the Flavian period, is improbable.

B. Bruges (West Flanders, Belgium)

We came across the briquetage finds of Bruges whilst 'digging' in the reserves of the Gruuthuse Museum. This material consists mainly of clay cylinders; it belongs to a site known as Fort Lapin, which is situated slightly to the north of the town. The finds were made around 1900 during harbour development alongside the canal from Bruges to Zeebrugge and belong to three different periods: Iron Age, Roman and the Middle Ages.

The excavations were undertaken by a geologist (Ruiter 380) who cared little about the archaeological remains, but who fortunately paid attention to the geological context.

Contrary to De Panne, Bruges is not situated on the present coast-line, but some 12km inland, on the limit of the coastal plain and the sand region. However, the Iron Age settlement of Bruges, as well as that of De Panne, has a direct relation with the Dunkirk I transgression since the salt-making is situated along an active Dunkirk I creek. This is important in dating the site, as its development can only have been possible in the later stages of the transgression or, even more likely, at the beginning of the subsequent regression, thus probably during the La Tène III period. Again there has been no continuity with the later Roman settlement which dates back to the third century.

CONCLUSIONS

1. Both Iron Age settlements are directly related to the Dunkirk I transgression:-
 — De Panne developed on a protected beach flat when the transgression had flooded the greater part of the coastal area;
 — the salt-making site of Bruges came into being on a Dunkirk I creek ridge.

2. The technical process used is the one associated with briquetage. In Belgium it is typical for the Iron Age and has never been found in a Roman context. This has also been observed in Northern France (Zuydcoote, Bray-Dunes) (Fauvel 113) (Wolf 267) and the western part of the Netherlands (Assendelft, Koudekerke, Q Leiden, Rockanje, Vlaardingen and Domburg) (Helderman 153) (Molderman 223) (Menquin 243) (Wend 371) (Dumontak & van den Berg 90) (vanden Berg 347) which all can be dated to the Iron Age. (See Fig. 34)

3. Dating: the relationship of the two settlements with the Dunkirk I transgression provides us with a relative chronology since De Panne came into being during the primary phase and Bruges during the intermediate or even final phase of the Dunkirk I transgression.

II. ROMAN PERIOD (Figs. 34 & 35)

Salt-making during Roman times is confirmed by ancient texts. We have already mentioned the inscriptions dating from the Vespasian reign, dedicated by the Salinatores Civitatis Menapiorum and the Salinatores Civitatis Marinorum. For Belgium these inscriptions have erroneously been related to salt-making at De Panne, since the briquetage finds must now be dated exclusively to the Iron Age.

The importance of salt-trading in our regions is also apparent from the altars which were dredged up from the East Scheldt, off Colijnsplaat (Zeeland, The Netherlands) a few years ago. Amongst the dedicators of these votive altars, erected c. A.D. 200 and dedicated to the local goddess Nehalennia, there were two

2. T he technical process used is the one associated with briquetage. In Belgium it is typical for the Iron Age and has never

A. Zeebrugge (West Flanders, Belgium)

In 1904, during harbour development works, a wooden construction was discovered in the peat. It consisted of a rectangular frame, extending over more than 700 sqm which was divided into compartments by parallel rows of beams; these beams were linked two by two. The length of the beams was between 12 and 12.5m and the distance between the rows varied from 2.6 to 3m. The construction was held firmly in place by vertical driven piles. The total width was 22m, the overall excavated floor and the deliberate slope make this theory difficult to accept. Others mentioned oyster-farming (Van Den Abeelen 346) and a Menapian harbour or landing stage (Lambrechts 188) (Pierardt 355).

The interpretation of this wooden frame is fraught with much discussion. The excavator thought it to be the sub-structure of pile-dwellings in a marshy area, similar to the so-called 'crannogs' of the British Isles (de Leeuw 89). The absence of any kind of floor and the deliberate slope make this theory difficult to accept. Others mentioned oyster-farming (Van Den Abeelen 346) and a Menapian harbour or landing stage (Lambrechts 188) (Pierardt 355).

The first to think of salt-making was Breuer. He interpreted the construction as a saltern and linked the system with briquetage, the technical process of salt-making. (Breuer 29-30) This view was not generally accepted because no briquetage was thought to have been discovered at Zeebrugge. We can, however, back-up the salt-making theory by some important arguments.

First of all there is no doubt about dating the frame. Its position on the Subboreal peat and below a Dunkirk II clay sediment indicates a construction in the Roman period. Arguments in support of salt-making are twofold:

1. The presence of a number of small rectangular pans, used as moulds for salt-cakes. They appear frequently in Iron Age salt-making contexts: e.g. De Panne.

2. Dom burg)

3. Dating: the relationship of the two settlements with the Dunkirk I transgression provides us with a relative chronology since De Panne came into being during the primary phase and Bruges during the intermediate or even final phase of the Dunkirk I transgression.

In Belgium, we can mention two Roman salt-making sites: Zeebrugge and Raversijde.

A. Zeebrugge (West Flanders, Belgium)

In 1904, during harbour development works, a wooden construction was discovered in the peat. It consisted of a rectangular frame, extending over more than 700 sqm which was divided into compartments by parallel rows of beams; these beams were linked two by two. The length of the beams was between 12 and 12.5m and the distance between the rows varied from 2.6 to 3m. The construction was held firmly in place by vertical driven piles. The total width was 22m, the overall excavated floor and the deliberate slope make this theory difficult to accept. Others mentioned oyster-farming (Van Den Abeelen 346) and a Menapian harbour or landing stage (Lambrechts 188) (Pierardt 355).

The interpretation of this wooden frame is fraught with much discussion. The excavator thought it to be the sub-structure of pile-dwellings in a marshy area, similar to the so-called 'crannogs' of the British Isles (de Leeuw 89). The absence of any kind of floor and the deliberate slope make this theory difficult to accept. Others mentioned oyster-farming (Van Den Abeelen 346) and a Menapian harbour or landing stage (Lambrechts 188) (Pierardt 355).

The first to think of salt-making was Breuer. He interpreted the construction as a saltern and linked the system with briquetage, the technical process of salt-making. (Breuer 29-30) This view was not generally accepted because no briquetage was thought to have been discovered at Zeebrugge. We can, however, back-up the salt-making theory by some important arguments.

First of all there is no doubt about dating the frame. Its position on the Subboreal peat and below a Dunkirk II clay sediment indicates a construction in the Roman period. Arguments in support of salt-making are twofold:

1. The presence of a number of small rectangular pans, used as moulds for salt-cakes. They appear frequently in Iron Age salt-making contexts: e.g. De Panne.

2. Dom burg)
Roman settlement at Raversijde, near Ostend

Fig. 35a. Vertically driven-in piles of a wooden saltern construction on the beach.

Fig. 35b. Section of a pile showing stratification:
1. Modern clay with eroded peat
2. Silt layer of Roman salt making
3. Subboreal peat
4. Calais clay deposits

Fig. 35c. Salt cake moulds

B. Raversijde (near Ostend, West Flanders, Belgium) (Fig. 35)
The archaeological site of Raversijde has long been known for its finds of the Roman period and especially of the Middle Ages. (Chocquet 54, 55, 56) It is situated partly on the present beach between the towns of Middelkerke and Ostend. The mediaeval peat-cuttings are normally visible at low tide. The Roman strata have been greatly disturbed by the Dunkirk transgressions and later by the mediaeval settlement.

In April 1973, whilst discussing the Belgian coastal plain during the Roman period for my doctoral thesis, Mr. and Mrs. E. Cools, both amateur archaeologists from Ostend, drew my attention to a number of piles driven-in vertically on the Raversijde beach. This initiated the beginning of new and more systematic research which had to be carried out under extremely unfavourable and difficult conditions. © The results of our work on the Roman Age are given for the first time in this paper. We were able to ascertain that the character of this large Roman settlement was mainly determined by salt-making.

Our findings were as follows:-

1. Construction and process (Fig. 35a) — although we only discovered some rows of piles and some stretches of ditches, there is a remarkable similarity with the Zeebrugge construction. At Raversijde, however, there must have been several of these; remains have been recognised scattered over a distance of nearly two kilometres. Here, as well as in Zeebrugge, sea-water was caught in a system of basins. The latter were connected to a network of ditches, which in turn received the water from a creek. This had direct communication with the sea through a gap in the dunes.

2. Stratigraphical position (Fig. 35b) — the wooden construction was made on the peat. The piles pierce the Subboreal peat-layer and their bases protrude into the Calais deposits of probably Atlantic date. During Roman times a finely sedimented clay layer was deposited on the peat surface. From this clay layer a number of Roman objects have been recovered.

3. Technical implements (Fig. 35c) — as in Zeebrugge a number of small salt-cake moulds were found which show a remarkable and very specific ornamentation.
4. Chronology — the chronological elements consist mainly of local pottery from the coastal area; they belong to the end of the second and third centuries. Carbon dating of wood samples taken from the piles give the following results:

- 1602 ± 83 B.P. = 348 ± A.D. 83
- 1871 ± 83 B.P. = 79 ± A.D. 83

By the technique described above, concentration of salt sea-water or brine was obtained by natural evaporation. The next operation was extracting the salt by boiling the brine, thus by artificial heating. There are some clues which indicate that it was done by peat fires in small ovens. The peat fuel supplied the briny ashes, from which also salt was extracted after purification, mixing with sea-water and evaporation. It is possible that the ovens which have been found at 's Heer Aisterkerke (Zeeland, The Netherlands) must be ascribed to a similar process. In the same context a lot of scoriae were found, the so-called "zel-as", a waste product of peat fires. Similar ash-layers were also discovered in Zeeland (The Netherlands) at Aardenburg and Ritthem, and recently in Leffinge (West Flanders, Belgium).

GENERAL CONCLUSIONS

1. Within the coastal regions of northern France, Belgium and the western Netherlands salt-making sites from both the Iron Age and the Roman period have never been found in the same place. The location of these sites has indeed been influenced primarily by the coastline which shifted repeatedly as a result of the different phases of transgression and regression. This movement of the coastline resulted for instance in an Iron Age salt-making site at Bruges, on a contemporary Dunkirk I shore, whilst a Roman salt-making site was discovered several kilometres to the west, at Zeebrugge, after the coastline had retreated during the subsequent so-called Roman regression (Fig. 34).

2. As regards the technical aspect, briquetage was in general use during the Iron Age. During Roman times a more industrialised form of salt-making appears, namely by means of elaborate wooden constructions fixed into the peat layer, along ditches and creeks which were directly connected with the sea. Salt was probably also produced by artificial heating in small ovens (peat-fires). The only briquetage elements which remain are the so-called salt-cake moulds which are notable for their remarkable ornamentation (Fig. 35c).

Institute royal du Patrimoine artistique, Brussels, (unpublished)
Triempe Burger (pers. comm).

ACKNOWLEDGEMENTS

The willing co-operation of Ir. J.A. Triempe Burger (State Service for Archaeological Investigations in the Netherlands) has made it possible to include some parallel finds from the Dutch coastal area. We are indebted to Mr. E. Cools for his help in the field and for translating this contribution from the Flemish. We wish to thank here Prof. Dr. J. Nenquin (Ghent) and Prof. Dr. S.J. De Laet, Director of the Seminar for Archaeology at the University of Ghent, the former for encouraging this study, the latter for his welcome suggestions. For clarification of some geological problems we have been greatly helped by Prof. Dr. J. Americx and Prof. Dr. W. De Breuck from the Geological Institute of Ghent University. We also wish to express here our sincere thanks to the Department of Public Works especially the Coastal Service at Ostend directed by Ir. R. Simoen, and the building contractors Van Huelle Bros., Ostend, for their help in the field. We are greatly indebted also to Mr. L. Louwyck, Ostend Airport for his help in aerial reconnaissance flights and the Belgian Air Force, (sections VS1/IRP C.O. Lt. Col. Candries and CEEP. C.O. Cdt. Coertjens) for their magnificent contribution in aerial photography. Finally the curators and staff of the Royal Museum for Art & History of Brussels, the Gruthuse Museum of Bruges and the Communal Museum of Ostend, assisted us in our work by granting access to their collections.
The principle of getting raw material as well as of manufacturing and evaporating the salt did not change at that time. As in previous periods the brine was brought to the saltern through timbered ditches 0.35m wide and 0.20—0.30m deep. In the middle part of one of the ditches there was a rectangular storage tank 2.40 x 1.40m and 0.50m deep where the brine got rid of impurities (clay etc.) and flowed to the reservoir as a pure raw material. Then it was poured out to clay vessels, put on hearths and evaporated. The whole installation — apart from hearths — was covered with a roof propped on poles which left numerous traces all over the area. Their lay-out, however, does not indicate the form, the size or the number of the buildings.

The hearths for salt evaporating from the Late La Tène Period were of 0.80—1.20m diameter. One big hearth from the Early Roman Period was of 7m diameter made of big stones lined with clay and placed on the surface of the ground and is worthy of notice. In the Late La Tène Period brine was boiled in small graphite pots, and at the beginning of the Roman Period big clay vessels of the shoulder diameter of 0.80m and about 1.00m high (Fig. 50c) were used for this purpose. The second stage of salt manufacturing process: evaporating and portioning is the most poorly represented of the archaeological material found. Numerous tumbler-shaped cups occurring in Kraków-Kurdwanów and single specimens in Wieliczka (site XI) prove it was analogous to Halstatt Period.

The oven for salt manufacturing from Late La Tène Period discovered at Otloczyn (Kujawy) (Fig. 50f) is of a completely different character. It is situated where the Vistula terrace bends about 150m away from the brine springs, which is situated below within the river valley. It is circular, of 2.90m diameter and its vertical section consists of two parts, lower and upper. Its lower part is made up of an oven with two chambers with a hearth of stone sunk 0.70m into the ground, while a large circular clay basin with side walls 0.08—0.10m thick was used to boil the brine brought from the neighbouring spring forming its upper part. No briquetage connected with evaporating and portioning the salt was found there. So it may be assumed that in the Late La Tène Period the salt manufacturing process was not carried on in the same way, at least not in the same vessels, everywhere in Poland. Some differences existed between Little Poland and Kujawy. Further excavation which should be carried on, especially in Great Poland and Kujawy, may elucidate the problem.

Summary of the Proceedings by the Chairman

I think we are all left with the impression of the high quality of the contributions made. These have been one of the finest features of the Conference which has been one of the more successful of any we have attended. Conferences are made up of various parts; this one I see as a combination of good quality papers, an exhibition of material, a visit this afternoon on which I hope the sun will shine, and then eventually, the publication of the Proceedings themselves. That should achieve a complete and wholly successful conference and let us hope that that is how it will work out.

The papers themselves have made their appeal to all those who attended. To the professional who is interested in salt production they have shed a great deal of light, I am sure, on areas other than those with which they are dealing; while for those who are more generally interested in archaeology and the position of the salt industry within man’s general activities, they have yielded a considerable body of information. One of the nice things is the way in which both professional and amateur have been represented here this weekend. I am not a great believer in professionalism in archaeology and I am delighted that we have had contributions from those engaged full time in other work and yet can offer so much. One of the nice things is the way in which both professional and amateur have been represented here this weekend. I am not a great believer in professionalism in archaeology and I am delighted that we have had contributions from those engaged full time in other work and yet can offer so much. (Hear, hear) We have heard of these interesting similarities over such a wide area, in this basic human need and the processes and means of satisfying it and its problems. Professor Kondo’s contribution was the most striking. We saw briquetage which had such remarkable affinities with what we are looking at from Europe itself. Then, one’s thoughts immediately spring to ideas of diffusion or parallel development; I do not think there is any necessity to argue one way or another, though the point could be seized upon by protagonists of either point of view.

A general impression of my own is of a basic process of salt preparation, but within that, the utmost diversity depending on the initial quality of the raw material. Clearly, as with Frau Kleemann’s description of Saale, one has a high quality brine which gives the economic edge and so evaporation and crystallization processes are correspondingly speeded up. Elsewhere we have seen the difficulties of achieving a concentrated brine from sea water or from the ashes of roots or plants or from salt impregnated soil and so there is a great deal of diversity in the original sources of the brine. Then the evaporation and crystallization process and finally the conversion of the ‘slush’ — I suppose the best term one can think of — into the dried cake which could then be transported. There is a great deal for us to discuss, the briquetage still remains a problem, the mounds still remain a problem to some extent, although Dr. Gouletquer has clearly shown the growth of debris into a miniature Monte Testaccio in his West African sites. But whether this was the same in Essex perhaps we have still to learn.
BIBLIOGRAPHY

Abbreviations

AB Annales de Bretagne
ACACS Annales du Cercle archéologique du Canton de Solignac
ACAM Archéologie Cambrésienne
ACari Archéologie Cantabrienne
AJ Antiquaries Journal
AN Annales Nederlandse Geschiedenis
ANL Archäologisches Nya Tidsskrift
AP Archäologische Praxis
Arch Archäologie
Archi Archäologisches Journal
Ant Antiqua
AS&B Annales de la Société d’Archéologie de Bruxelles
ASSR Annales de la Société d’Études et de Recherches de Strasbourg
BMH Bulletin des Musées Royaux d’Art et d’Histoire
BMBSA Bulletin et Mémoires de la Société d’Anthropologie de Belgique
Brit Britannia
BRB Britisch-Rheinische Zeitschrift für Kunstgeschichte
CAGAR Colchester Archaeological Group Annual Bulletin
CBA RR 10 Council for British Archaeology Research Report 10
CH Chesterfield Historian
CL Country Life
CNS Congrés International des Sociétés Savantes
CPP Congrès Préhistorique de France
DAG Discussions Archéologiques de Genève
EA The East Anglia
EDR Ely Diocesan Records
ER Essex Review
FR Essais de Numismatique
Gem Germania
Inst Arch Institute of Archaeology, London
IAH Journal of African History
JE Journal of Ecology
JIPNS Journal of International Palaeoanthropology
JIA Journal of Industrial Archaeology
JMV Jahrbuch für Mittel- und Deutsch-Ostteilische Vorgeschichte
LA&ARP Lincolnshire Archaelogical & Archaeological Reports & Papers
LAE Lincolnshire Archives Office
LDAS Lincolnshre Diocesan Architectural Society
LMAE Sociedad Arqueológica Española
LR Linnean Society of London
LQ Linnean Society of New South Wales
LMARG Lower Medway Archaeological Research Group
LNS Lincolnshire Notes & Queries
LRJ Lincolnshire Record Society
NA Norfolk Archæology
NATI Natìonale Arkeologische Historische
PANSA Polska Akademia Nauk Studenckie Archiologie
PCNFCE Proceedings of the Cottswold Nature Field Club
PINHAS Proceedings of the Dorset Natural History & Archaeological Society
PGA Proceedings of the Geologists Association
PFB The Proceedings of the Hampshire Field Club
PPS Proceedings of the Prehistoric Society
PPSEA Proceedings of the Prehistoric Society of East Anglia
PRAS Proceedings of the Royal Archaeological Institute
PRS Pipe Roll Society
PSJL Proceedings of the Society of Antiquaries of London
PSANHS Proceedings of the Somerset Archaeological & Natural History Society
PSTRA Proceedings of the Sutcliff Institute of Archaeology & Natural History
PUBBS Proceedings of the University of Bristol Speleological Society
RA(Hants) Rescue Archaeology (Hants)
RSPR Royal Society of Primitive Religion
RCHM(E) Royal Commission on Historical Monuments (England)
RGRS Royal Geological Society Research Series No. 5
SA Staffordshire Archaeology
SAS South African journal of Science
SAN Société des Antiquaires de Normandie
SNQ Sutton Notes & Queries
TBAS Transactions of the Birmingham Archaeological Society
TCWAS Transactions of the Camborne & Westmorland Archaeological & Antiquarian Society
TEAS Transactions of the Essex Archaeological Society
TGAAS Transactions of the Glamorgan Antiquary
TLCAS Transactions of the Lancashire & Cheshire Antiquarian Society
TLCHS Transactions of the Lancashire & Cheshire Historic Society
TWPLC Transactions of the Woolhope Naturists Field Club
VCH Victoria County History
WA World Archaeology
WAMS Wiltshire Archaeological Magazine
WHS Worcestershire Historical Society
WZUHS Weisscn Wissenschaftliche Zeitschrift der Universitäts der Reine

BIBLIOGRAPHY

6. Anst, E. "Dissertations Archæologicae Canadenses"
12. Baker, T. "Tae (iron age salt industry in Lincolnshire" LAASAR, n.s. vii (1960) 25-34
INDEX

In order to keep the Index within due compass, references to particular sites and all names of persons, have been omitted. It is suggested that the Index be used in conjunction with the Tables of Contents and Illustrations (pp. 2 and 3).

INDEX

INDEX
seasonal cycle, crop-sowing 23; land usage 22; seasons 21,22,37,44,47,75,77,78;81,82;
seaweak, 72
sea wall see coast
scratch, 75
Sheppey, Isle of, 26
settlements, Belgica 10; Iron Age 10,15,23,56,58; medieval 38,43,59;
Roman 10,15,27,28,34,26,59,66,70; Romano-British 10,15,27,29;
tribal 10,63,81,84; village 15,21,29,62,81
shell industry 19, oil as fuel 18, ornaments 19
sheep see animals
shell deposits see deposits
Shoreham, Sussex, 23,24
Skene, Tinns, 38
slag see glass & vitrification
Slahy's Marsh, Kent, 26,30
Slea, river, 31,35
sleech, 75
sleech pit, 75
sleech ways, 6,39,51
Solway Firth, 71,75
Somerset Levels, 20
sources of salt see methods
South Tamar, Devon, 51
Southwell, Nottingham, 39
South Wooston, Norfolk, 44
spigots, tap, see methods
stockade see firing
Studland, Dorset, 15,16
Subborean see periods
sunworks see methods
Sutton on Sea, Lincoln, 40
Swineheath, Lincoln, 35
talc, 77,79
Taodini, Africa, 81
Tchad, Lake see Chad, Lake
tooth see bones
Tiditama-Tesent, Mungu, Africa, 47,49
Terraformer, Norfolk, 42,43
tertiary see periods
Tetney, Lincoln, 38
tertiary impression, 47
Thorpe, Lincoln, 31
tidal creek, 6,7,10,26,39,31,35,56,59,63
sleetcracks, 77
trade, trade centres, markets, 10,15,24,25,30,35,40,44,47,48,51,58,61,63,
76,80,82,83

Transgression see periods
Transport, boulder clay 38; carravans 49,81,83,83; coastal 10,39,76,82; inland 10,
24,61,81,84; nomads 47,51; river 82,83,84; road 35,37,38; tombs 41;
saltwash 80; water 22,30,34,81,83
tip lines see briquetage/deposits
Trebearvon, Cornwall, 19,20
Transear be periods
tumuli, 63
Tydd St. Giles, Cambs, 43
Tyler, Hants, 77,78
Tynham, Dorset, 16
Ullswater, Cumbria, 75
Ulysses, Kent, 26
Unterga, Africa, 81,83
Vints, river, 85,87
vitrification see glass
Walberswick, Suffolk, 39
Walpole, Norfolk, 43,44
Walsoken, Norfolk, 43,44
Walton, Norfolk, 42,43,44
Wash, The, 35,42,43,44
wattling, 8
wayam see equipment
wedges see equipment
weller or weller, 44
West Acre, Norfolk, 42
West Bengal, Pakistan, 85
West Burton, Norfolk, 42,43,44
West Winch, Norfolk, 42
Whitham, Cambridge, 73,74
wicker burials see equipment
Widawka, Poland, 85,86,87
Wiggenshall, Norfolk, 42
Wimbledon, Cheshire, 31
Winterton, Lincoln, 31
Wisbech, Cambs, 42
Witham, river, 33
Woodbridge, Suffolk, 39
Worcester, Worcestershire, 80
working floors see working
Wrexham, Cumbria, 74,75
Wrigglesworth, Lincoln, 37,38
Wye Regis, Dorset, 14,18,19,20
Zeebrugge, Belgium, 57,58,59

Delegates
(Subscribees indicated thus *)

Dr. J. Alexander *
M. D. Astor *
F. T. Baker *
J. B. Bennett *
E. Berry
Mrs. E. K. Berry *
J. D. Bestwick *
Dr. M. R. Bloch *
Mrs. Bloch
B. A. Bonner *
J. R. Bradley
Dr. D. R. Brothwell
Mrs. Button
Mrs. M. Cardale-Schrimff *
Dr. C. O. Carter *
H. M. Carter *
Mrs. R. Carter
H. N. Chittick
D. T. D. Clarke *
W. D. D. Danby
G. M. R. Davies *
Capt. A. C. D. De Brissy
Mrs. G. De Brissy *
Mrs. K. W. De Brissy *
R. M. De De Brissy *
S. J. Dockrill *
A. B. Doncaster *
Dr. P. Edwards *
Mrs. S. M. Elston *
J. P. Elston
F. H. Erith *
Mrs. K. A. Evans *
Capt. R. H. Farrands *
R. A. H. Farrar *
A. J. Fawcett *
Miss J. Foster
Miss J. M. Frayn *
C. Gabet *
Dr. P. L. Gouletquer *
L. S. Harley *
Mrs. Harley
J. P. Hayes *
Miss H. Hasley *
E. W. Holden *
Mrs. H. G. Holden
Miss G. N. Hyde
l. Jackson *
A. Jodkowski *
Miss D. Jones *
Mrs. M. J. Jones *
Mrs. B. Kirkham *
Mrs. D. Kleinmann *
Prof. Y. Kondo *
Miss R. Kryger-Larsen *
Miss M. D. Lettucq
Mrs. l. McMaster *
D. F. MacKreth *
W. W. McMaster
Mrs. M. Marshall *
J. I. Martin *
Mrs. M. Martin *
R. Martin *
J. May *
A. Myles *
Mrs. M. L. Money
N. Money
E. Mount *
B. N. Numms *
A. E. B. Owen *
R. W. Palmer
Miss E. M. C. Roper
Mrs. E. H. Rudkin *
L. P. Sampson
Mrs. J. J. Sheard *
B. B. Simmons *
Mrs. E. B. Smith
Miss B. R. Stevens
Miss J. Stubbing
C. J. Stirman *
C. F. Tehburr *
Dr. M. Tessler *
Mdm M. Tessier *
Dr. H. Thoem *
F. H. Thompson
J. T. Tindal
Dr. M. S. Tite
J. B. Whitwell *
D. Wildbridge *
Mrs. C. M. Wilson *
D. R. Wilson *
Mrs. G. Wilson
D. Wright *