RESEARCH ARTICLE

A Higher Level Classification of All Living Organisms

Michael A. Ruggiero1*, Dennis P. Gordon2, Thomas M. Orrell1, Nicolas Bailly3, Thierry Bourgoin4, Richard C. Brusca5, Thomas Cavalier-Smith6, Michael D. Guiry7, Paul M. Kirk8

* ruggierm@si.edu

Abstract

We present a consensus classification of life to embrace the more than 1.6 million species already provided by more than 3,000 taxonomists’ expert opinions in a unified and coherent, hierarchically ranked system known as the Catalogue of Life (CoL). The intent of this collaborative effort is to provide a hierarchical classification serving not only the needs of the CoL’s database providers but also the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships. This classification is neither phylogenetic nor evolutionary but instead represents a consensu view that accommodates taxonomic choices and practical compromises among diverse expert opinions, public usages, and conflicting evidence about the boundaries between taxa and the ranks of major taxa, including kingdoms. Certain key issues, some not fully resolved, are addressed in particular. Beyond its immediate use as a management tool for the CoL and ITIS (Integrated Taxonomic Information System), it is immediately valuable as a reference for taxonomic and biodiversity research, as a tool for societal communication, and as a classificatory “backbone” for biodiversity databases, museum collections, libraries, and textbooks. Such a modern comprehensive hierarchy has not previously existed at this level of specificity.

Introduction

Biological classification (taxonomy) aims to simplify and order the immense diversity of life into coherent units called taxa that have widely accepted names and whose members share important properties. It synthesizes information concerning a great variety of characters (e.g.,
morphological; molecular: genes, metagenome, and metabolome; etho-ecological). There is currently no consensus among the world’s taxonomists concerning which classification scheme to use for the overall hierarchy of life, in part because of the confusion resulting from Hennig’s \[1\] redefinition of previous terminology of classification, which has not been universally accepted; the separate goals of cladification and classification \[2\]; and conflicting or unresolved evidence for phylogenetic relationships. The continuing advances in the use of specialized analytical tools from many different fields and their resulting conclusions and assumptions require regular updates as advances in knowledge are made.

Biological classification can integrate diverse, character-based data in a phylogenetic framework, which allows a broad user community to utilize the disparate knowledge of shared biological properties of taxa. Phylogeny is, therefore, the basis for these biological classifications but there is still strong debate over their accounting for evolutionary divergence or information content other than the branching pattern \[3\]. Accordingly, classifications have often been labeled either phylogenetic or evolutionary, depending mainly upon whether or not they reject paraphyletic groups \[3, 4\].

While the type of classification to be used to support further exploration and analysis of any biological scenario may be important, it is not the subject of this paper. The proposed classification does not address detailed phylogenetic questions and, while hierarchical and reflective of phylogeny, is not itself a phylogenetic tree. The aim of this classification is to be a pragmatic means of managing the ever-increasing knowledge of the diversity of life, its relationships, characteristics, and properties. Indeed, the past two decades have witnessed an explosion in biodiversity research and informatics, emphasizing the need for a quality list of accepted scientific names of the more than 1.9 million described living species \[5\] and for greater consensus on how to classify them at higher taxonomic ranks. Since 2001, Species 2000 and the Integrated Taxonomic Information System (ITIS) have worked with their respective contributors to complete a comprehensive species list, called the Catalogue of Life (CoL). The CoL Annual Checklist (http://www.catalogueoflife.org/annual-checklist/2014/) already contains more than 1.6 million valid or accepted species names provided by more than 140 taxonomic databases involving more than 3,000 taxonomists \[6\]. More than 82% of the global species databases are provided at the rank of class or below (includes 1.3 million species), and more than 63% are provided at the rank of order or below (includes 1.0 million species). Owing to the heterogeneity in higher level classification among the contributed databases, the CoL managers sought a practical and coherent hierarchical classification that could serve as a framework for data integration. Here we explain the rationale behind the consensus higher level classification that we propose for CoL use.

Our goal, therefore, is to provide a hierarchical classification for the CoL and its contributors that (a) is ranked to encompass ordinal-level taxa to facilitate a seamless import of contributing databases; (b) serves the needs of the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships; and (c) is likely to be more or less stable for the next five years. Such a modern comprehensive hierarchy did not previously exist at this level of specificity. In this sense it summarizes overarching aspects of the tree of life, including both paraphyletic and monophyletic groups, both being important in facilitating meaningful communication among scientists and between the scientific community and society.

The most recent higher level classification to this level was published more than 30 years ago, before the advent of modern molecular analysis \[7\]. Beyond the immediate use for CoL, the hierarchy is valuable as a reference for taxonomic and biodiversity research, as a tool for societal communication, and as a stable classificatory "backbone" for biodiversity databases, museum collections, libraries, and textbooks, to name a few applications.
Approach

When Linnaeus introduced his novel “system of nature” in the mid-18th century, he recognized three kingdoms of nature: Regnum Vegetabile (plants), Regnum Animale (animals), and Regnum Lapideum (minerals) that has long since been abandoned. However, as is evident from the title of his work, he introduced lower level taxonomic categories (named class, order, genus, and species), each successively nested within higher ranked categories. Linnaeus’ system has proven to be robust for more than 250 years (see the comprehensive discussion and suggestions for dealing with potential conflicts in Vences et al. [8]). In modern-day classifications, the starting point for botanical names is Linnaeus’ Species Plantarum [9] and for zoological names it is the tenth edition of the Systema Naturae [10]. Since Linnaeus, the expansion of knowledge and the increase in the number of described species has required an expansion of the number of hierarchical levels (ranks) within the system. The categories of family and phylum (or division) were introduced in the early 19th century and many intermediate categories have been added since. There is currently little agreement about the general names for categories above that of kingdom; here we use superkingdom rather than empire or domain. In addition, there are three separate codes that govern the assignment and use of scientific names, each with different requirements and terminology and consequences for their classifications. For algae, fungi, and plants (ICN: International Code of Nomenclature for algae, fungi, and plants), the principle of priority does not apply above rank of family; for animals (ICZN: International Code of Zoological Nomenclature), priority does not apply above the family-group ranks; and for prokaryotes other than Cyanobacteria (ICNB: International Code of Nomenclature of Bacteria), only the categories ranked as class and below are covered by the code. A recent paper by the International Committee on Bionomenclature compares terminology among six current nomenclatural codes and makes recommendations for their use in improving communication [11].

In 2005, on behalf of the International Society of Protistologists, Adl et al. [12] presented a nested eukaryote-only cladification that used the names of six supergroups—Amoebozoa, Opisthokonta, Rhizaria, Excavata, Chromalveolata, and Archaeplastida (= Plantae) [13–17]—as the highest ranked eukaryote groups. Their schema was updated in 2012 [18], with Rhizaria and Chromalveolata replaced by SAR plus four small hacrobian groups. Although these taxa are nested, and ranked by a “bulleted” system, Adl et al. avoided the use of Linnaean higher category names (phylum, class, order, family) that would have more usefully denoted rank. Insofar as the nested groups comprise a mix of taxon names based on priority (i.e., according to the year of introduction of the name), many individual genera as well as traditional taxon names (family through class) end up having the same rank in the Adl et al. hierarchy, while at the same time having different suffixes or none at all. The ranks assigned therein often seem to reflect our present partial ignorance of relationships more than careful assessment of relative phenotypic disparity as in Linnaean taxonomy. This is very confusing when these “group names” (genus to kingdom) are used in isolation without regard to phylogenetic relativity.

Two of the great benefits of Linnaean-ranked categories and their standardized suffixes are that they instantly relativize taxa that are otherwise unknown to the non-specialist and also indicate the relative degree of phenotypic distinctiveness amongst groups. The overarching higher level classification used by the CoL, therefore, uses the standard formal categories, as it is intended to be simultaneously pragmatic and informative of both evolutionary relatedness and relative phylogenetic subordination. A classification should be biologically well-grounded and widely useful. In its simplicity, it provides less detail about relationships than a complete phylogeny but is still congruent with it [19]. Our classification is not intended to compete with a cladification such as Adl et al.’s—both are valid ways of ordering the living
world—but we would argue that their’s is less comprehensible to many in the public-domain user communities.

These actual complexities of phylogenetic history emphasize that classification is a practical human enterprise where compromises must be made [20]. We have therefore named only groups generally considered to have had a monophyletic origin, even though some of them may be paraphyletic (i.e., do not include all descendants of their last common ancestor) and others, e.g., Euglenozoa, Rhizaria, Cercozoa, include subgroups (such as Euglenophyceae, Chlorarachnea, and Paulinella) that evolved by the symbiogenetic merger of two fundamentally different lineages [21], while others have had infusions of genes from elsewhere [22] and therefore do not conform to any purely formal definition of monophyly. We have not adopted the view that one should never accept paraphyletic groups in a classification but rather have evaluated each case of paraphyly on its practicability and usage. In some cases (e.g., classical bryophytes) we accepted the splitting of paraphyletic taxa into holophyletic groups (groups with a monophyletic origin that also include all descendants of their last common ancestor, i.e., clades). In others we retained ancestral (paraphyletic) taxa when it seemed beneficial to do so (e.g., Prokaryota, Protozoa, Crustacea, Sarcophterygii, Reptilia). For practical purposes we treat Proteobacteria and Cyanobacteria as holophyletic phyla even though both exclude their mitochondrial and chloroplast descendants, neither of which is now a bacterium but an evolutionarily chimaeric cell organelle. We have conservatively retained several groups where evidence for paraphyly or holophyly is contradictory, such as Archaea (Archaebacteria).

A panel of experts representing the major taxonomic disciplines was convened to review, revise, and update the existing incomplete CoL hierarchy. These authors consulted more than 200 sources (see S1 Appendix), most of which were from recent taxonomic publications and websites. The product is a current and practical classification that meets the panel’s established goal. In achieving a consensus, the panel was required to make some compromises that may require future revision as the related issues are resolved. While all of these individuals made contributions to the hierarchy, not all necessarily endorse every aspect of it. The CoL classification will undergo review and revision at five-year intervals to consider changes as necessary.

Results and Discussion

We are proposing a two-superkingdom (Prokaryota and Eukaryota), seven-kingdom classification that is a practical extension of Cavalier-Smith’s six-kingdom schema [19]; the latter has been used, for example, in the compendious checklist of marine biota of Chinese seas [23] and in the first comprehensive national inventory of biodiversity for New Zealand [24–26]. For each of these kingdoms we had to exercise our taxonomic judgment and reach a practical compromise among diverse opinions and usages and conflicting evidence about certain phylogenetic questions important for defining the boundaries between and ranks of major taxa, including kingdoms. Our schema includes: the prokaryotic kingdoms Archaea (Archaebacteria) and Bacteria (Eubacteria), and the eukaryotic kingdoms Protozoa, Chromista, Fungi, Plantae, and Animalia. We have retained 14 ranks from superkingdom to order (Table 1). Several key taxonomic issues, some not fully resolved, are discussed below.

Prokaryota

The higher classification of prokaryotes is still somewhat unsettled. Woese and Fox [27] treated Archaebacteria (Archaea) and Eubacteria (Bacteria) as separate kingdoms. Margulis and Schwartz [28] recognized the superkingdom Prokarya, containing one kingdom Bacteria that
included a subkingdom Archaea; Cavalier-Smith also treated Archaebacteria and Eubacteria as prokaryote subkingdoms [19, 29]. Commonly used sources of prokaryote names, such as the List of Prokaryotic Names with Standing in Nomenclature (LPSN) [30] and the Taxonomic Outline of Bacteria and Archaea (TOBA) [31] treat Bacteria and Archaea as separate domains but are silent about the category of kingdom. While these sources list the names of phyla in common use as a service to the user, they are not validly published under the ICNB. We have not placed phylum names in quotation marks as they have but we have so designated a few prokaryote names at lower ranks that are in common use but not (or not yet) valid. As no prokaryote names above the ranks of class are covered by ICNB rules, there is no official higher classification of prokaryotes [32] and any attempt at such is necessarily difficult. We have chosen to adopt the classification in current use by the Catalogue of Life. It is derived from the TOBA and recognizes Bacteria and Archaea as equivalent in rank to the eukaryote kingdoms. We treat them as de facto kingdoms until there is a better resolution of their status. The number of negibacterial "phyla" currently recognized [30] is probably excessive compared with eukaryotes and mainly reflects uncertainty about the true relationships of many small phyla, probably exaggerating the significance of their biological disparity. Greater use of multigene trees rather than over reliance on rRNA gene trees alone may eventually allow further simplification by grouping them into fewer phyla, possibly only about half the present number [28].

Protozoa and Chromista

Unicellular eukaryotes, usually called protists, comprise a polyphyletic group of eukaryotes that do not undergo tissue formation through the process of embryological layering. They include ancestrally unicellular eukaryotes directly descended from bacteria by the origin of the nucleus, endomembrane, cytoskeleton, and mitochondria. Assigning them to separate kingdoms was historically difficult when only light microscopy was available but is now

Table 1. List of ranks used in the hierarchy with the number of taxa per rank.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Number of Taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superkingdom</td>
<td>2</td>
</tr>
<tr>
<td>Kingdom</td>
<td>7</td>
</tr>
<tr>
<td>Subkingdom</td>
<td>11</td>
</tr>
<tr>
<td>Infrakingdom</td>
<td>8</td>
</tr>
<tr>
<td>Superphylum</td>
<td>6</td>
</tr>
<tr>
<td>Phylum</td>
<td>96</td>
</tr>
<tr>
<td>Subphylum</td>
<td>60</td>
</tr>
<tr>
<td>Infra phylum</td>
<td>4</td>
</tr>
<tr>
<td>Superclass</td>
<td>12</td>
</tr>
<tr>
<td>Class</td>
<td>351</td>
</tr>
<tr>
<td>Subclass</td>
<td>145</td>
</tr>
<tr>
<td>Infraclass</td>
<td>23</td>
</tr>
<tr>
<td>Superorder</td>
<td>52</td>
</tr>
<tr>
<td>Order</td>
<td>1,467</td>
</tr>
</tbody>
</table>

Main ranks are in bold type; unnamed taxa are not counted.

doi:10.1371/journal.pone.0119248.t001
considerably facilitated because of advances in electron microscopy and gene sequencing. Formerly, the unicellular amoeboid group Myxozoa with multicellular spores was included in Protozoa but these protists are now firmly within the animal kingdom, having been proven to be greatly simplified parasitic animals. Yeasts are unicellular fungi that evolved polyphyletically from multicellular filamentous ancestors and are assigned to one of three higher fungal phyla. Microsporidia are highly reduced intracellular parasites traditionally considered to be Protozoa, but they have been known for two decades to be related to Fungi. At one time it was thought microsporidia had evolved from Fungi and therefore were placed in that kingdom [19, 33]. For several years multigene trees were contradictory about whether microsporidia branched within or diverged from Fungi. The latest evidence is that they are most closely related to rozellids [34], which also have been treated either as Fungi or Protozoa. If this recent phylogeny [34] is correct, both should be in the same kingdom. Here we take the view that the best demarcation between Protozoa and Fungi lies immediately before the origin of the chitinous wall around vegetative fungal cells and associated loss of phagotrophy [33]. We therefore include microsporidia and rozellids in Protozoa (vegetatively wall-less, typically phagotrophs) not Fungi (vegetatively walled osmotrophs).

For decades, taxonomists have debated the boundary between Protozoa and Plantae. We accept the view that it should be placed just prior to the evolutionary origin of chloroplasts and that Plantae should comprise all eukaryotes with plastids directly descending from the initially enslaved cyanobacterium, i.e., Viridiplantae (green plants), Rhodophyta (red algae), and Glaucophyta (glaucophyte algae), but exclude those like chromists that got their chloroplasts from plants secondarily by subsequent eukaryote-to-eukaryote lateral transfers. Therefore, all green algae are included in Viridiplantae and Plantae and are excluded from Protozoa. The only photosynthetic Protozoa are Euglenophyceae, which obtained their chloroplasts subsequently from an enslaved green alga [21].

The boundary between Protozoa and Chromista has been more controversial. Chromista was established to include all chromophyte algae (those with chlorophyll c, not b) considered to have evolved by symbiogenetic enslavement of another eukaryote (a red alga) as well as all heterotrophic protists descended from them by loss of photosynthesis or entire plastids [35]. With phylogenetic advances it has become clearer that alveolates (once considered Protozoa) are related to chromistan heterokont algae (and related heterotrophic heterokonts) and more distantly to Rhizaria, the three together forming the major group Harosa (equivalent to SAR). Consequently, Chromista has been greatly expanded to include all Harosa as well as other former protozoa that turned out to be related to haptophytes or cryptophytes. Chromista now includes many groups once treated as Protozoa [19], an expansion followed here. In multigene trees, this expansion is the most difficult part of the entire eukaryote tree to resolve. They sometimes show one or both of Plantae and Chromista as a clade but often their major subgroups are intermingled in contradictory ways [36, 37]. This may be a consequence of the eukaryote-eukaryote chimaeric history of chromists that acquired some genes from red algae or of the very rapid basal radiation of the robust corticate clade (i.e. Plantae plus Chromista). Because of this, some question whether Chromista represents a clade, yet trees are still too poorly resolved to eliminate the likelihood from cell evolutionary considerations that Chromista and Plantae are genuinely distinct sister clades. Evidence that Harosa is a clade is very strong. Evidence that Haptista plus Cryptista are a clade Hacrobia is strong on some trees but questioned by others [37].

Protozoa, like Prokarya, is certainly a paraphyletic taxon [38]; Animalia, Fungi, Plantae, and Chromista all evolved from it. In our hierarchy Protozoa comprises seven phyla, of which
four are probably clades and three paraphyletic. We do not consider it useful in a general classification to subdivide the paraphyletic phyla into numerous smaller ones, often with only a handful of species that most have never heard of, even though a few specialists might favor that despite their constituent subgroups not differing radically in cell structure. For both Protozoa and Chromista we have favored large groups with shared body plans, analogous to extremely diverse animal phyla like Chordata and Arthropoda. The higher proportion of ancestral (paraphyletic) phyla in Protozoa compared with terminal groups like animals and plants is unsurprising because they were the first eukaryotes and they diverged early on but with many fewer associated major changes in body plan than occurred during the much later radiation of bilateral animals. Distinct early diverging protozoan clades can be remarkably similar morphologically and biologically [39].

Fungi
As stated earlier, we take the view that the best demarcation between Protozoa and Fungi lies immediately before the origin of the chitinous wall around vegetative fungal cells and associated loss of phagotrophy. We use an updated version of the higher classification presented in the 10th Edition of the *Dictionary of Fungi* [40]. The evolutionarily convergent Oomycetes such as the serious pest *Phytophthora*, formerly treated as Fungi, belong instead in phylum Pseudofungi of the heterokont Chromista.

Plantae
As with the other kingdoms, Plantae is classified in a variety of ways. Margulis and Schwartz [28] restricted Plantae to land plants (embryophytes or higher plants) and popularized the use of kingdom Prototista to include lower plants (green, red, and glaucophyte algae) and lower Fungi as well as chromists with classical protozoa. Many now consider such a kingdom too broad and heterogeneous and the associated separation of lower and higher plants in different kingdoms to be undesirable. Now taxonomists almost universally classify lower and higher plants together in the single kingdom Plantae and lower and higher fungi within the single kingdom Fungi. We have adopted this delimitation of Plantae here [19, 35] (for which Archaeplastida [12, 18] is a less familiar recent synonym). The structure of plastid genomes and the derived chloroplast protein-import machinery support a single origin of glaucophytes, red algae, green algae, and embryophytes (land plants). The ancestral embryophyte is thought to have originated from relatives of the Charales (stoneworts) or Coleochaetales (Charophyta). Jeffrey [41] first grouped charophytes and embryophytes as a clade Streptophyta, which was later validated as a superphylum [42] and reduced to phylum by Bremer [43].

Chase and Reveal [44] published a phylogenetic classification of land plants, reasoning that “If the major clades of green algae are recognized as classes, then all land plants, the embryophytes, should be included in a single class, here recognized as Equisetopsida.” This argument, however, overemphasizes cladistic level compared with phenotypic disparity, and is contrary to traditional assignment of phylum (or division) status to the main bryophyte, “pteridophyte” and seed-plant subgroups. This latter treatment was exemplified in the 2008 Annual Checklist of the CoL, which listed three bryophyte phyla, four pteridophyte phyla, and five seed-plant phyla, reflecting the arrangement found in many university textbooks of the late 20th century and in Margulis and Schwartz’s *Five Kingdoms* [28]. Here we recognize four embryophyte phyla—three of bryophytes (liverworts, hornworts, and mosses) and a single phylum Tracheophyta for vascular plants—with all species characterized by a diploid phase having xylem and phloem. Bryophyte specialists tend to treat each of the three major bryophyte groups as phyla—Marchantiophyta, Anthocerotophyta, Bryophyta [45, 46]. We have chosen a
conservative approach to the higher classification of plants, largely consistent with Mabberley [47] for the embryophyte ranks above class, while using Chase and Reveal [44] and Stevens [48] for the lower ranks.

Animalia (Metazoa)

The numbers of phyla and classes with extant species in kingdom Animalia differ according to molecular and morphological partitioning in phylogenies [49–59] as well as the preferred treatments of specialists of particular traditional phyla and where to “draw the line” between related taxa and how to rank them—the ranking of phylum versus subphylum is sometimes rather subjective. Based on the contributions of taxonomic experts to an outline of higher level classification and survey of taxonomic richness [60, 61], as many as 39 animal phyla might be recognized (more, if Porifera were abandoned as a phylum and constituent major clades given higher rank [62]). Below we discuss some issues encountered in arriving at decisions for our proposed classification, which accepts 34 animal phyla.

(1) Porifera—One phylum or three? Nielsen [62] argued that ‘The three apparently monophyletic sponge groups Silicea, Calcarea, and Homoscleromorpha do not constitute a monophyletic group, and the “phylum Porifera” thus has to be abandoned.’ More recent studies alternatively support paraphyly [63] or holophyly [58, 64] of sponges. Until the issue is resolved, we will follow the Porifera community [65–67] in retaining one phylum Porifera with four classes.

(2) Status of Myxozoa. Recent work on the vermiform myxozoan Buddenbrockia has demonstrated conclusively that myxozoans are extremely simplified Cnidaria, possibly Medusozoa [68, 69]. We classify Myxozoa as a subphylum of Phylum Cnidaria.

(3) Flatworms—Monophyletic or not? In 1995, Nielsen [70] wrote “The delimitation of the phylum [Platyhelminthes] is not much in question,” but recent molecular analyses, combined with a careful reconsideration of morphology and anatomy, have confused the classification of Platyhelminthes, affecting particularly Acoela, Xenoturbella, and Nemertodermatida. Egger et al. [71] reviewed the evidence, noting the contrast between morphological and phylogenomic data. Whereas the stem-cell system and the mode of replacing epidermal cells unite both Acoela and Rhabditophora and are not found in any other bilaterian lineage, phylogenomic data support a separation of these two groups, a conclusion reached by Philippe et al. [72] based on mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions, and miRNA complements. We follow Philippe et al. [72] and Tyler and Schilling [73] in uniting Acoela, Xenoturbella, and Nemertodermatida as the deuterostome phylum Xenacoelomorpha. The remaining internal classification of Platyhelminthes is also somewhat problematic. We propose a classification that is based in part on Riutort et al. [74] and Tyler [75].

(4) Phylum Gnathifera or phyla Acanthocephala, Gnathostomulida, Micrognathozoa, and Rotifera? Until recently, all four of these groups were commonly treated as separate phyla [28, 61, 76–80]. However, numerous recent molecular and morphological analyses nest Acanthocephala within Rotifera [81–86]. A syncytial epidermis links rotifers, Seison and Acanthocephala; Ahlrichs [87, 88] proposed Syndermata for this clade. As revealed by transmission electron microscopy [89] and scanning electron microscopy [90], the jaw apparatus of gnathostomulids and rotifers is remarkably similar. That of Seison is less obviously homologous [91] and the Seisonidea may have diverged from rotifers at an early stage of their evolution. On the other hand, Seison has similar sperm to acanthocephalans and the epidermis of both groups contains bundles of filaments. Limnognathia maerski, representing a new category of organism (Micrognathozoa) from cold fresh waters in Greenland and the Crozet Islands [92, 93], has a remarkable jaw apparatus (the most complicated known among invertebrates) with
clear homologies, in both the jaw elements and musculature, with the trophi in Rotifera and the jaws in Gnathostomulida. The jaw apparatus and musculature, as well as molecular analyses, unite these taxa as a clade known as Gnathifera (see [86, 92]). In the analysis by Giribet et al. [94], the issue remained unresolved, as Micrognathozoa appeared independent of Gnathostomulida and Rotifera, with unclear affiliation. Edgecombe et al. [59] and Nielsen [95] retain phylum status for Gnathostomulida, Micrognathozoa, and Rotifera but not Acanthocephala. We treat each of the major gnathiferan groups as a phylum, including Acanthocephala, following Monks and Richardson [79], though some of us think that the number of gnathiferan phyla ought to be substantially reduced when their phylogeny, including ingroup relationships of Rotifera sensu lato, is more firmly established.

(5) The scaldidophoran phyla Adrianov and Malakhov [96] erected phylum Cephalorhyncha for Kinorhyncha, Loricifera, Priapula, and Nematomorpha. The first three of these phyla have in common an eversible snout (introvert) with scald spines and inner and outer retractor muscles, a similar excretory filter (protonephridium), and similar sense organs, providing strong justication for uniting them in a single clade, the Scaldidophora [97]. There is also molecular support, though not unanimity, for a clade of Kinorhyncha, Loricifera, and Priapula, known as Scaldidophora. On the other hand, Kinorhyncha has internal and external body segmentation lacking in the other groups. Neuhaus and Higgins [98] noted that conflicting evidence exists for every one of the possible sister-group relationships among these phyla and prefer to keep them separate in a superphylum Scaldidophora (which is preferred over Cephalorhyncha, the latter name originally including the Nematomorpha). We recommend separate scaldidophoran phyla, though the number might be greatly reduced when the phylogeny becomes clearer.

(6) The chordate subphyla Cephalochordata and Urochordata Some sequence analyses have questioned the monophyly of Chordata [99, 100]. Nielsen [95] maintains Urochordata (or Tunicata) and Cephalochordata as separate phyla, whereas the group Urochordata is closer to Vertebrata (craniates), in a clade Olfactores, than Cephalochordata. We retain all three groups as traditional chordate subphyla.

Many users of classifications would prefer a stable, unchanging system. Yet classifications are syntheses of biological knowledge, particularly contemporary phylogenetic understanding of taxa, that must be regularly updated in accord with new scientific discoveries. Taxonomy must therefore navigate between the dual perils of ignoring important advances and making premature or unnecessary changes. We seek stability in nomenclature at the species level but at higher levels the concepts and compositions of major taxa, and therefore the scope of well-known names, must inevitably shift as new organisms are discovered and evolutionary affinities are better understood. The fact that we have been able to agree on a practical unified classification shows that taxonomists can broadly agree, despite the diverse experiences, viewpoints, and to some extent, differing philosophies of classification represented on our panel. The present classification (as, indeed, all classifications) should be regarded as interim, and it will inevitably change in certain respects, some hinted at above. However, we suspect that the recent torrent of radical re-evaluations (resulting especially from the application of DNA sequencing and other new techniques) may lessen as time passes. We hope that this unusually comprehensive classification will be widely useful and provide a sound basis for further improvement.

A complete proposed classification from superkingdom to order is provided in Table 2 and is available for download at <http://www.catalogueoflife.org/col/>. Below the rank of infra-kingdom, we have followed the convention used in the Catalogue of Life and listed taxon names alphabetically. This allows easier searching by those not familiar with the phylogenies of
Table 2. Proposed hierarchical classification from superkingdom to order.

<table>
<thead>
<tr>
<th>SUPERKINGDOM PROKARYOTA</th>
<th>KINGDOM ARCHAEA [= ARCHAEBACTERIA]</th>
<th>Phylum Crenarchaeota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class "Aigarchaeota"</td>
<td>Order N.N. ("Ca. Caldiarchaeum")</td>
</tr>
<tr>
<td></td>
<td>Class "Korarchaeota"</td>
<td>Order N.N. ("Ca. Korarchaeum")</td>
</tr>
<tr>
<td></td>
<td>Class "Thaumarchaeota"</td>
<td>Order Crenarchaeales</td>
</tr>
<tr>
<td></td>
<td>Class Thermoprotei [= Crenarchaeota]</td>
<td>Order Acidilobales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Desulfurococcales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Fervidicoccales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Sulfolobales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thermoproteales</td>
</tr>
<tr>
<td></td>
<td>Phylum Euryarchaeota</td>
<td>Class Archaeoglobi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Archaeoglobales</td>
</tr>
<tr>
<td></td>
<td>Class Halobacteria</td>
<td>Order Halobacteriales</td>
</tr>
<tr>
<td></td>
<td>Class Methanobacteria</td>
<td>Order Methanobacteriales</td>
</tr>
<tr>
<td></td>
<td>Class Methanococci</td>
<td>Order Methanococcales</td>
</tr>
<tr>
<td></td>
<td>Class "Methanomicrobia"</td>
<td>Order N.N. (Methanocalculus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Methanocellales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Methanomicrobiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Methanosarcinales</td>
</tr>
<tr>
<td></td>
<td>Class Methanopyri</td>
<td>Order Methanopyrales</td>
</tr>
<tr>
<td></td>
<td>Class "Nanohaloarchaea"</td>
<td>Order N.N. (e.g., "Ca. Nanosalinarum")</td>
</tr>
<tr>
<td></td>
<td>Class Thermococci</td>
<td>Order Thermococccales</td>
</tr>
<tr>
<td></td>
<td>Class Thermoplasmata</td>
<td>Order Thermoplasmatales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phylum Aquificae</td>
<td>Class Aquificae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Aquificales</td>
</tr>
<tr>
<td></td>
<td>Phylum Armatimonadetes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Kingdom Bacteria [= Eubacteria])

<table>
<thead>
<tr>
<th>Subkingdom Negibacteria</th>
<th>Phylum Acidobacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class N.N. (Bryobacter)</td>
</tr>
<tr>
<td></td>
<td>Class Acidobacteria</td>
</tr>
<tr>
<td></td>
<td>Order Acidobacteriales</td>
</tr>
<tr>
<td></td>
<td>Class Holophagae</td>
</tr>
<tr>
<td></td>
<td>Order Acanthopleuribacteriales</td>
</tr>
<tr>
<td></td>
<td>Order Holophagales</td>
</tr>
<tr>
<td></td>
<td>Phylum Aquificae</td>
</tr>
<tr>
<td></td>
<td>Class Aquificae</td>
</tr>
<tr>
<td></td>
<td>Order Aquificales</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteroidetes</td>
<td>Class Bacteroidia</td>
<td>Order Bacteroidales</td>
</tr>
<tr>
<td></td>
<td>Class Cytophagia</td>
<td>Order Cytophagales</td>
</tr>
<tr>
<td></td>
<td>Class Flavobacteria</td>
<td>Order Flavobacteriales</td>
</tr>
<tr>
<td></td>
<td>Class Sphingobacteria</td>
<td>Order Sphingobacteriales</td>
</tr>
<tr>
<td>Caldiserica</td>
<td>Class Caldisericia</td>
<td>Order Caldisericiales</td>
</tr>
<tr>
<td>Chlamydiae</td>
<td>Class Chlamydiae</td>
<td>Order Chlamydiales</td>
</tr>
<tr>
<td>Chlorobi</td>
<td>Class Chlorobia</td>
<td>Order Chlorobiales</td>
</tr>
<tr>
<td>Chrysiogenetes</td>
<td>Class Chrysiogenetes</td>
<td>Order Chrysiogenales</td>
</tr>
<tr>
<td>Cyanobacteria [= Cyanophyta]</td>
<td>Class Cyanophyceae [= Phycobacteria]</td>
<td>Order Chroococcales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Nostoccales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Oscillatoriales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Pseudoanabaeniales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Synechococcales</td>
</tr>
<tr>
<td></td>
<td>Class Gloeobacteria [= Gloeobacteriphyceae]</td>
<td>Order Gloeobacteriales</td>
</tr>
<tr>
<td>Deferribacteres</td>
<td>Class Deferribacteres</td>
<td>Order Deferribacteriales</td>
</tr>
<tr>
<td>Deinococcus-Thermus [= Hadobacteria]</td>
<td>Class Deinococci</td>
<td>Order Deinococcales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thermales</td>
</tr>
<tr>
<td>Dictyoglomi</td>
<td>Class Dictyoglomia</td>
<td>Order Dictyoglomales</td>
</tr>
<tr>
<td>Elusimicrobia</td>
<td>Class Elusimicrobia</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Fibrobacteres</td>
<td>Class Fibrobacteria</td>
<td>Order Fibrobacterales</td>
</tr>
<tr>
<td>Phylum Fusobacteria</td>
<td>Class Fusobacteria</td>
<td>Order Fusobacterales</td>
</tr>
<tr>
<td>Phylum Gemmatimonadetes</td>
<td>Class Gemmatimonadetes</td>
<td>Order Gemmatimonadales</td>
</tr>
<tr>
<td>Phylum Lentisphaerae</td>
<td>Class Lentisphaeria</td>
<td>Order Lentisphaerales</td>
</tr>
<tr>
<td>Phylum Nitrospira</td>
<td>Class "Nitrospira"</td>
<td>Order "Nitrospirales"</td>
</tr>
<tr>
<td>Phylum Planctomycetes</td>
<td>Class Phycisphaerae</td>
<td>Order Phycisphaerales</td>
</tr>
<tr>
<td>Phylum Proteobacteria</td>
<td>Class Alphaproteobacteria</td>
<td>Order N.N. (e.g., Breoghania)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Caulobacterales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Kiloniellales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Kordimonadales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Magnetococcales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order “Parvularculales”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Rhizobiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Rhodobacterales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Rhodospirillales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Rickettsiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Sneathiellales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Sphingomonadales</td>
</tr>
<tr>
<td>Class Betaproteobacteria</td>
<td>Order N.N. (Chitinivorax)</td>
<td>Order N.N. (Chitinivorax)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Burkholderiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Hydrogenophilales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Methylphilales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Neisseriales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Nitrosomonadales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order ”Procabacteriales"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Rhodocyclusales</td>
</tr>
<tr>
<td>Class Deltaproteobacteria</td>
<td>Order N.N. (e.g., Deferrisoma)</td>
<td>Order Bdellovibrionales</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirochaetae</td>
<td>"Spirochaetes"</td>
<td>Spirochaetales</td>
</tr>
<tr>
<td>Synergistetes</td>
<td>Synergista</td>
<td>Synergistales</td>
</tr>
<tr>
<td>Thermodesulfobacteria</td>
<td>Thermodesulfobacteria</td>
<td>Thermodesulfobacteriales</td>
</tr>
<tr>
<td>Thermotogae</td>
<td>Thermotogae</td>
<td>Thermotogales</td>
</tr>
<tr>
<td>Verrucomicrobia</td>
<td>Opitutae</td>
<td>Opitutales</td>
</tr>
<tr>
<td></td>
<td>Verrucomicrobiae</td>
<td>Verrucomicrobiales</td>
</tr>
</tbody>
</table>

SUBKINGDOM POSIBACTERIA

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum Actinobacteria</th>
<th>Class Actinobacteria</th>
<th>Order Acidimicrobiales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Order Actinomycetales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Bifidobacteriales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Coriobacteriales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Euzebyales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Gaiellales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Nitriliruptorales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Rubrobacterales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Solirubrobacterales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thermoleophilales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phylum Chloroflexi [= Chlorobacteria]</th>
<th>Class Anaerolineae</th>
<th>Order Anaerolineales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class Caldilineae</td>
<td>Order Caldilineales</td>
</tr>
<tr>
<td></td>
<td>Class Chloroflexia</td>
<td>Order Chloroflexales</td>
</tr>
<tr>
<td></td>
<td>Class Dehalococcoidia</td>
<td>Order Dehalococcoidales</td>
</tr>
<tr>
<td></td>
<td>Class Ktedonobacteria</td>
<td>Order Ktedonobacterales</td>
</tr>
<tr>
<td></td>
<td>Class Thermomicrobia</td>
<td>Order Sphaerobacterales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thermomicrobiales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phylum Firmicutes</th>
<th>Class Bacilli</th>
<th>Order Bacillales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Order Lactobacillales</td>
</tr>
<tr>
<td></td>
<td>Class Clostridia</td>
<td>Order Clostridiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Halanaerobiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Natranaerobiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thermoanaerobacterales</td>
</tr>
<tr>
<td></td>
<td>Class Erysipelotrichia</td>
<td>Order Erysipelotrichiales</td>
</tr>
<tr>
<td></td>
<td>Class Negativicutes</td>
<td>Order Selenomonadales</td>
</tr>
<tr>
<td></td>
<td>Class Thermolithobacteria</td>
<td>Order Thermolithobacterales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phylum Tenericutes</th>
<th>Class Mollicutes</th>
<th>Order Acholeplasmatales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Order Anaeroplasmatales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Entomoplasmatales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Haloplasmatales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Mycoplasmatales</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>PHYLUM</th>
<th>CLASS</th>
<th>ORDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euglenozoa</td>
<td>Diplonemea</td>
<td>Diplonemida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Kinetoplastea</td>
<td>Bodonida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Prokinetoplastida</td>
<td>Trypanosomatida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Euglenoida</td>
<td>Petalomonadida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Ploeotiida</td>
<td></td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Euglenophyceae</td>
<td>Euglenida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Eutreptiida</td>
<td></td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Peranemea</td>
<td>Heteronemida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Peranemida</td>
<td>Rhabdomonadida</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Symbiontida</td>
<td>Postgaardea</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>Ploeotiida</td>
<td>Postgaardida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Loukozoa</td>
<td>Jakobea</td>
</tr>
<tr>
<td>Excavata</td>
<td>Tsukubea</td>
<td>Tsukubamonadida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Neolouka</td>
<td>Malawimonadea</td>
</tr>
<tr>
<td>Excavata</td>
<td>Anaeromonadea</td>
<td>Malawimonadida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Carpomonadea</td>
<td>Oxyomonadida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Carpediemonadida</td>
<td>Trimastigida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Chilomastigida</td>
<td>Dysnectida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Eopharyngea</td>
<td>Diplomonadida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Retortamonadida</td>
<td>Cristamonadida</td>
</tr>
<tr>
<td>Excavata</td>
<td>Spirotrichonymphida</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Order Trichomonadida</th>
<th>Order Trichonymphida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Percolozoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Pharyngomonadea</td>
<td>Order Pharyngomonadida</td>
<td></td>
</tr>
</tbody>
</table>

SUBKINGDOM SARCOMASTIGOTA

<table>
<thead>
<tr>
<th>Phylum Amoebozoa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum Conosa</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Archamoeba</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum Conosa</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Heterolobosea</th>
<th>Order Acrasida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Lyromonadea</td>
<td>Order Lyromonadida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Percolatea</th>
<th>Order Percolomonadida</th>
</tr>
</thead>
</table>

SUBKINGDOM SARCOMASTIGOTA

<table>
<thead>
<tr>
<th>Class Discosea</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subclass Flabellinia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order Dactylopodida</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Himatodidicida</td>
<td></td>
</tr>
<tr>
<td>Order Pellitida</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum Choanozoa [with Microsporidia, Animalia, and Fungi constitutes "Supergroup Opisthokonta"]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum Choanoflagellata</td>
</tr>
<tr>
<td>Class Choanoflagelletae</td>
</tr>
<tr>
<td>Order Acanthoeida</td>
</tr>
<tr>
<td>Order Craspedida</td>
</tr>
<tr>
<td>Class Corallochytrellae</td>
</tr>
<tr>
<td>Order Corallochytrida</td>
</tr>
<tr>
<td>Class Ministeriida</td>
</tr>
<tr>
<td>Class Ichthyosporea</td>
</tr>
<tr>
<td>Order Dermocystida</td>
</tr>
<tr>
<td>Order Ectrinida</td>
</tr>
<tr>
<td>Subphylum Paramycia</td>
</tr>
<tr>
<td>Class Aphelidea</td>
</tr>
<tr>
<td>Order Aphelidida</td>
</tr>
<tr>
<td>Class Cristidiscoidea</td>
</tr>
<tr>
<td>Order Fonticulida</td>
</tr>
<tr>
<td>Order Nuclearida</td>
</tr>
<tr>
<td>Class Rozellidea</td>
</tr>
<tr>
<td>Order Rozellida</td>
</tr>
<tr>
<td>Phylum Microsporidia [with Choanozoa, Animalia, and Fungi constitutes "Supergroup Opisthokonta"]</td>
</tr>
<tr>
<td>Class Dispora</td>
</tr>
<tr>
<td>Order N.N. (e.g., Nosema)</td>
</tr>
<tr>
<td>Class Metchnikovellae</td>
</tr>
<tr>
<td>Order Metchnikovellida</td>
</tr>
<tr>
<td>Class Minispora [= Microsporea]</td>
</tr>
<tr>
<td>Order Minisporida [= Minispora]</td>
</tr>
<tr>
<td>Class Pleistophorea</td>
</tr>
<tr>
<td>Order Pleistophorida</td>
</tr>
<tr>
<td>Phylum Sulcozoa</td>
</tr>
<tr>
<td>Subphylum Apusozoa</td>
</tr>
<tr>
<td>Class Breviatea</td>
</tr>
<tr>
<td>Order Breviatida</td>
</tr>
<tr>
<td>Class Thecomonadea</td>
</tr>
<tr>
<td>Order Apusomonadida</td>
</tr>
<tr>
<td>Subphylum Varisulca</td>
</tr>
<tr>
<td>Class Diphylletea</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Subkingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Class</th>
<th>Subclass</th>
<th>Order</th>
<th>Class</th>
<th>Subclass</th>
<th>Order</th>
<th>Class</th>
<th>Subclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromista</td>
<td>Hacrobia</td>
<td>N.N.</td>
<td>Glissodiscea</td>
<td>Diphyleida</td>
<td>Mantamonadida</td>
<td>Planomonadida</td>
<td>Hilomondea</td>
<td>Rigiifida</td>
<td>Endohelea</td>
<td>Heliomonadida</td>
<td>Microhelida</td>
<td>Picomonadea</td>
</tr>
<tr>
<td>Cryptista</td>
<td>Alveolata</td>
<td>Palpitia</td>
<td>Endohelea</td>
<td>Cryptista</td>
<td>Palpitesa</td>
<td>Rollomonadia</td>
<td>Cryptophyceae</td>
<td>Cryptomonadales</td>
<td>Pyrenomonadales</td>
<td>Tetragonidiales</td>
<td>Goniomonadea</td>
<td>Goniomonadida</td>
</tr>
<tr>
<td>Haptophyta</td>
<td>Alveolata</td>
<td>Palpitia</td>
<td>Papiliospora</td>
<td>Haptophyta</td>
<td>Cercomonas</td>
<td>Goniamonadida</td>
<td>Palpitesa</td>
<td>Pavlovophyceae</td>
<td>Pavlovales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heliozoa</td>
<td>Alveolata</td>
<td>Centrohelea</td>
<td>Armophorea</td>
<td>Heliozoa</td>
<td>Armophorea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harosa</td>
<td>Alveolata</td>
<td>Centrohelea</td>
<td></td>
</tr>
</tbody>
</table>

SUBKINGDOM HAROSA [= "Supergroup SAR"]

INFRAKINGDOM HALVARIA

Superphylum Alveolata

Phylum Ciliophora

Subphylum Intramacronucleata

Class Armophorea

(Continued)
<table>
<thead>
<tr>
<th>Class</th>
<th>Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colpodea</td>
<td>Order Bryometopida
Order Bryophryida
Order Bursarioromorphida
Order Colpodida
Order Cyrtolophosidida
Order Sorogenida</td>
</tr>
<tr>
<td>Litostomatea</td>
<td>Subclass Haptoria
Order Cyclotrichiida
Order Haptorida
Order Pleurostomatida</td>
</tr>
<tr>
<td></td>
<td>Subclass Trichostomatia
Order Entodiniomorphida
Order Macropodiniida
Order Vestibuliferida</td>
</tr>
<tr>
<td>Spirotrichea</td>
<td>Subclass Choreotrichia
Order Tintinnida</td>
</tr>
<tr>
<td></td>
<td>Subclass Hypotrichia
Order Euplotida
Order Kiitrichida</td>
</tr>
<tr>
<td></td>
<td>Subclass Licnophoria
Order Licnophorida</td>
</tr>
<tr>
<td></td>
<td>Subclass Oligotrichia
Order Strombidiida</td>
</tr>
<tr>
<td></td>
<td>Subclass Protocruziida
Order Phacodiniida
Order Protocruziida</td>
</tr>
<tr>
<td></td>
<td>Subclass Stichotrichia
Order Sporadotrichida
Order Stichotrichida
Order Urostylida</td>
</tr>
<tr>
<td>Nassophorea</td>
<td>Order Colpodidiida
Order Microthoracida
Order Nassulida
Order Synhymenida</td>
</tr>
<tr>
<td>Oligohymenophorea</td>
<td>Subclass Apostomatia
Order Apostomatida
Order Astomatophorida
Order Pilisuctorida</td>
</tr>
<tr>
<td></td>
<td>Subclass Astomatia
Order Astomatida</td>
</tr>
<tr>
<td></td>
<td>Subclass Hymenostomatia
Order Ophyroglenida
Order Tetrahymenida</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Subphylum</th>
<th>Class</th>
<th>Subclass</th>
<th>Order 1</th>
<th>Order 2</th>
<th>Order 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum Postciliodesmatophora</td>
<td>Class Heterotrichia</td>
<td>Subclass Heterotrichia</td>
<td>Order Heterotrichida</td>
<td>Order Loxodida</td>
<td>Order Protoheterotrichida</td>
</tr>
<tr>
<td>Subphylum Myzoozoa</td>
<td>Class Apicomonada</td>
<td>Superclass Apicomonada</td>
<td>Order Chromerida</td>
<td>Order Colpodellida</td>
<td>Order Voromonadida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Agamococcidida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Eimerida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Ixorheida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subclass Coleotaphia

Order Coleotaphiida [= Protococcida]

Subclass Hematozooa

Superorder Aconoidia

Order Nephromycida
Order Piroplasmida

Superorder Haemosporidia

Order Hemosporida

Class Gregarinomorpha

Subclass Cryptogragaria

Order Cryptogregarida (Cryptosporidium)

Subclass Histogregaria

Order Histogregarida

Subclass Orthogregarinia

Order Arthrogregarida
Order Vermigregarida

Class Paragregarea

Order Archigregarinida
Order Stenophorida
Order Velocida

Infra phylum Dinozoa

Superclass Dinoflagellata

Class Dinophyceae

Subclass N.N.

Order Actiniscales
Order Blastodinales
Order Coccidinales
Order Dinamoebales
Order Lophodinales
Order Pyrocystales
Order Thoracosphaerales

Subclass Dinophysoidea

Order Dinophysidales
Order Nannoceratopsales

Subclass Gonyaulacoidia

Order Gonyaulacales
Order Gymnodiniales

Subclass Peridinoidia

Order Peridiniales
Order Prorocentrales

Subclass Suessioidia

Order Suessiales

Class Ellobiopsea

Order Ellobiopsida

Class Noctilucea

Order Noctilucida

Class Oxynheia

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Superphylum Heterokonta [= "Supergroup Stramenopiles"]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Bigyra</td>
</tr>
<tr>
<td>Class Bikosea</td>
</tr>
<tr>
<td>Order Anoecida</td>
</tr>
<tr>
<td>Order Bicoecida</td>
</tr>
<tr>
<td>Order Borokida</td>
</tr>
<tr>
<td>Order Pseudodendromonadida</td>
</tr>
<tr>
<td>Order Rictida</td>
</tr>
<tr>
<td>Class Blastocystea</td>
</tr>
<tr>
<td>Order Blastocystida</td>
</tr>
<tr>
<td>Class Nanomonadea</td>
</tr>
<tr>
<td>Order Uniciliatida</td>
</tr>
<tr>
<td>Class Opalinea</td>
</tr>
<tr>
<td>Order Opalinida</td>
</tr>
<tr>
<td>Order Proteromonadida</td>
</tr>
<tr>
<td>Class Labyrinthula</td>
</tr>
<tr>
<td>Order Labyrinthulida</td>
</tr>
<tr>
<td>Order Thraustochytrida</td>
</tr>
<tr>
<td>Class Placididea [= Placidiophyceae]</td>
</tr>
<tr>
<td>Order Placidiida</td>
</tr>
<tr>
<td>Phylum Ochrophyta [= Heterokontophyta p.p.]</td>
</tr>
<tr>
<td>Class Bacillariophyceae [= Diatomeae]</td>
</tr>
<tr>
<td>Subclass Bacillariophycida</td>
</tr>
<tr>
<td>Order Achnanthales</td>
</tr>
<tr>
<td>Order Bacillariales</td>
</tr>
<tr>
<td>Order Cymbellales</td>
</tr>
<tr>
<td>Order Dictyoneidales</td>
</tr>
<tr>
<td>Order Eunotiales</td>
</tr>
<tr>
<td>Order Eupodisciales</td>
</tr>
<tr>
<td>Order Lyellales</td>
</tr>
<tr>
<td>Order Mastogloiales</td>
</tr>
<tr>
<td>Order Naviculales</td>
</tr>
<tr>
<td>Order Rhopalodiales</td>
</tr>
<tr>
<td>Order Surirellales</td>
</tr>
<tr>
<td>Order Thalassiophysales</td>
</tr>
<tr>
<td>Subclass Coscinodiscophycida</td>
</tr>
</tbody>
</table>
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Subclass Fragilariophycidae</th>
<th>Order Ardissoneales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Climacospheniales</td>
</tr>
<tr>
<td></td>
<td>Order Cyclophorales</td>
</tr>
<tr>
<td></td>
<td>Order Fragilariales</td>
</tr>
<tr>
<td></td>
<td>Order Lichomorphales</td>
</tr>
<tr>
<td></td>
<td>Order Protoraphidiales</td>
</tr>
<tr>
<td></td>
<td>Order Rhabdonematales</td>
</tr>
<tr>
<td></td>
<td>Order Rhaphonidales</td>
</tr>
<tr>
<td></td>
<td>Order Striatellales</td>
</tr>
<tr>
<td></td>
<td>Order Tabellariales</td>
</tr>
<tr>
<td></td>
<td>Order Thalassiumatales</td>
</tr>
<tr>
<td></td>
<td>Order Toxariales</td>
</tr>
</tbody>
</table>

Class Boldophyceae

- Order Parmales (= Bolidomonadales)

Class Chrysomophyceae

- Order Chrysoeridiales

Class Chrysophyceae

- Order Chloramoebales
- Order Chromuliniales
- Order Chryymphalaerales
- Order Heterogloeales
- Order Hydratales
- Order Ochrymonadiales
- Order Paraphysomonadida
- Order Synurales
- Order Thallochrysidales

Class Eustigmatophyceae

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Dictyochrophyceae</td>
<td>Order Eustigmatales</td>
</tr>
<tr>
<td></td>
<td>Class Dictyochrophyceae [= Hypogyristea]</td>
</tr>
<tr>
<td></td>
<td>Order Dictyochales</td>
</tr>
<tr>
<td></td>
<td>Order Olisthodiscales</td>
</tr>
<tr>
<td></td>
<td>Order Pedinellales</td>
</tr>
<tr>
<td></td>
<td>Order Pelagomonadales</td>
</tr>
<tr>
<td></td>
<td>Order Sarcinochrysidales</td>
</tr>
<tr>
<td>Class Phaeophyceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Dictyotales</td>
</tr>
<tr>
<td></td>
<td>Order Onslowiales</td>
</tr>
<tr>
<td></td>
<td>Order Sphacelariales</td>
</tr>
<tr>
<td></td>
<td>Order Syringodermatales</td>
</tr>
<tr>
<td>Subclass Dictypophycida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Discosporangiales</td>
</tr>
<tr>
<td>Subclass Fucophycida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Ascoseirales</td>
</tr>
<tr>
<td></td>
<td>Order Asterocladales</td>
</tr>
<tr>
<td></td>
<td>Order Desmarestiales</td>
</tr>
<tr>
<td></td>
<td>Order Ectocarpales</td>
</tr>
<tr>
<td></td>
<td>Order Fucales</td>
</tr>
<tr>
<td></td>
<td>Order Laminariales</td>
</tr>
<tr>
<td></td>
<td>Order Nemodermatales</td>
</tr>
<tr>
<td></td>
<td>Order Phaeosiphonellaes</td>
</tr>
<tr>
<td></td>
<td>Order Ralfsiales</td>
</tr>
<tr>
<td></td>
<td>Order Scytothamnales</td>
</tr>
<tr>
<td></td>
<td>Order Sporochnales</td>
</tr>
<tr>
<td></td>
<td>Order Tilopteridales [= Cutleriales]</td>
</tr>
<tr>
<td>Subclass Ishigeophycida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Ishigeales</td>
</tr>
<tr>
<td>Class Phaeothamniophyceae</td>
<td>Order Aurearenales</td>
</tr>
<tr>
<td></td>
<td>Order Phaeothamniales</td>
</tr>
<tr>
<td>Class Picophagophyceae</td>
<td>Order Picophagales</td>
</tr>
<tr>
<td></td>
<td>Order Synchromales</td>
</tr>
<tr>
<td>Class Pinguiophyceae</td>
<td>Order Pinguiochrysidales</td>
</tr>
<tr>
<td>Class Raphidophyceae</td>
<td>Order Actinophryida</td>
</tr>
<tr>
<td></td>
<td>Order Commatilida</td>
</tr>
<tr>
<td></td>
<td>Order Raphidomonadales</td>
</tr>
<tr>
<td>Class Schizocladiophyceae</td>
<td>Order Schizocladiales</td>
</tr>
<tr>
<td>Class Xanthophyceae</td>
<td>Order Mischococcales</td>
</tr>
<tr>
<td></td>
<td>Order Pleurochloridellaes</td>
</tr>
<tr>
<td></td>
<td>Order Tribonematales</td>
</tr>
<tr>
<td></td>
<td>Order Vaucheriales</td>
</tr>
<tr>
<td>Phylum Pseudofungi [= Oomycota]</td>
<td></td>
</tr>
<tr>
<td>Class Bigyromonadida</td>
<td>Order Developayellida</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Class Hyphochytrida</td>
<td>Order Hyphochytriida</td>
</tr>
<tr>
<td>Order Pirsoniida</td>
<td></td>
</tr>
<tr>
<td>Class Oomycetes</td>
<td></td>
</tr>
<tr>
<td>Subclass Eogamia</td>
<td></td>
</tr>
<tr>
<td>Order Anisopliidales</td>
<td></td>
</tr>
<tr>
<td>Order Haptoptiidales</td>
<td></td>
</tr>
<tr>
<td>Order Lagenismatales</td>
<td></td>
</tr>
<tr>
<td>Order Olpidiopsidea</td>
<td></td>
</tr>
<tr>
<td>Order Rozelopsidea</td>
<td></td>
</tr>
<tr>
<td>Subclass Peronosporida</td>
<td></td>
</tr>
<tr>
<td>Order Peronosporales</td>
<td></td>
</tr>
<tr>
<td>Order Pythiales</td>
<td></td>
</tr>
<tr>
<td>Order Rhipidiida</td>
<td></td>
</tr>
<tr>
<td>Subclass Saprolegniida</td>
<td></td>
</tr>
<tr>
<td>Order Albuginales</td>
<td></td>
</tr>
<tr>
<td>Order Leptomitaies</td>
<td></td>
</tr>
<tr>
<td>Order Salilagenidials</td>
<td></td>
</tr>
<tr>
<td>Order Saprolegniales</td>
<td></td>
</tr>
</tbody>
</table>

INFRASKINGDOM RHIZARIA

Phylum Cercozoa

Subphylum Endomyxa

<table>
<thead>
<tr>
<th>Class Ascetosporea</th>
<th>Order Claustrosorida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Haplosporidial</td>
</tr>
<tr>
<td></td>
<td>Order Paradinida</td>
</tr>
<tr>
<td></td>
<td>Order Paramyxa</td>
</tr>
</tbody>
</table>

Class Gromiidea

| Order Gromida | Order Reticulosida |

Class Phytomyxea

| Order Phagomyxida | Order Plasmodiophorida|

Class Vampyrellidea

| Order Vampyrellida | |

Subphylum Monadofilosa

<table>
<thead>
<tr>
<th>Class Imbricata</th>
<th>Order Discocelida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Discomonadida</td>
<td></td>
</tr>
<tr>
<td>Order Euglyphiida</td>
<td></td>
</tr>
<tr>
<td>Order Marimonadida</td>
<td></td>
</tr>
<tr>
<td>Order Variglissida</td>
<td></td>
</tr>
</tbody>
</table>

Subclass Placoperla

<table>
<thead>
<tr>
<th>Order Periofilida</th>
<th>Order Rotosphaeridial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Spongomonadida</td>
<td></td>
</tr>
<tr>
<td>Order Thaumatonomadida</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metromonadea</td>
<td>Zoelucasida</td>
</tr>
<tr>
<td>Metopiida</td>
<td>Metromonadida</td>
</tr>
<tr>
<td>Sarcomonadea</td>
<td>Cercomonadida</td>
</tr>
<tr>
<td></td>
<td>Glissomonadida</td>
</tr>
<tr>
<td></td>
<td>Pansomonadida</td>
</tr>
<tr>
<td></td>
<td>Pseudosporida</td>
</tr>
<tr>
<td></td>
<td>Sainouroida</td>
</tr>
<tr>
<td>Thecofilosea</td>
<td>Cryomonadida</td>
</tr>
<tr>
<td></td>
<td>Ebriida</td>
</tr>
<tr>
<td></td>
<td>Matazida</td>
</tr>
<tr>
<td></td>
<td>Venticlefiida</td>
</tr>
<tr>
<td>Phaeodaria</td>
<td>Eodarida</td>
</tr>
<tr>
<td></td>
<td>Opaloconchida</td>
</tr>
<tr>
<td>Tectosia</td>
<td>Tectofilosida</td>
</tr>
<tr>
<td>Reticulofilosa</td>
<td></td>
</tr>
<tr>
<td>Chlorarachnea</td>
<td>Chlorarachnida</td>
</tr>
<tr>
<td>Granofilosea</td>
<td>Cryptofilida</td>
</tr>
<tr>
<td></td>
<td>Desmothoracida</td>
</tr>
<tr>
<td></td>
<td>Leucodictyida</td>
</tr>
<tr>
<td></td>
<td>Lirmofilida</td>
</tr>
<tr>
<td>Skiomonadea</td>
<td>Tremulida</td>
</tr>
<tr>
<td>Retaria</td>
<td></td>
</tr>
<tr>
<td>Foraminifera</td>
<td></td>
</tr>
<tr>
<td>Monothalamea</td>
<td>Allogromiida</td>
</tr>
<tr>
<td></td>
<td>Astorhizida</td>
</tr>
<tr>
<td></td>
<td>Psamminida</td>
</tr>
<tr>
<td></td>
<td>Stannomida</td>
</tr>
<tr>
<td>Globothalamea</td>
<td>Carterinida</td>
</tr>
<tr>
<td></td>
<td>Globorhizinida</td>
</tr>
<tr>
<td></td>
<td>Lagenida</td>
</tr>
<tr>
<td></td>
<td>Lituolida</td>
</tr>
<tr>
<td></td>
<td>Lofusida</td>
</tr>
<tr>
<td></td>
<td>Robertinida</td>
</tr>
<tr>
<td></td>
<td>Rotaliida</td>
</tr>
<tr>
<td></td>
<td>Testulariida</td>
</tr>
<tr>
<td>Tubothalamea</td>
<td>Miliolida</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Subphylum Radiozoa</th>
<th>Order Spirillinida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superclass Polycystinia</td>
<td>Class Polycystinea</td>
</tr>
<tr>
<td>Superclass Spasmaria</td>
<td>Class Acantharea</td>
</tr>
</tbody>
</table>

KINGDOM FUNGI

SUBKINGDOM DIKARYA [= NEOMYCOTA]

Phylum Ascomycota

Subphylum Pezizomycotina

<table>
<thead>
<tr>
<th>Class Archaeorhizomycetes</th>
<th>Order Archaeorhizomycetales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Arthoniomycetes</td>
<td>Order Arthoniales</td>
</tr>
<tr>
<td>Class Dothideomycetes</td>
<td>Subclass N.N.</td>
</tr>
<tr>
<td>Subclass Dothideomycetida</td>
<td>Order Acrospermales</td>
</tr>
<tr>
<td></td>
<td>Order Botryosphaeriales</td>
</tr>
<tr>
<td></td>
<td>Order Hysterialles</td>
</tr>
<tr>
<td></td>
<td>Order Jahnulales</td>
</tr>
<tr>
<td></td>
<td>Order Koralionastetales</td>
</tr>
<tr>
<td></td>
<td>Order Patellariales</td>
</tr>
<tr>
<td></td>
<td>Order Trypheliales</td>
</tr>
<tr>
<td>Subclass Meliolomycetida</td>
<td>Order Meliolaes</td>
</tr>
<tr>
<td>Subclass Pleosporomycetida</td>
<td>Order Mytilinidaes</td>
</tr>
<tr>
<td></td>
<td>Order Pleosporales</td>
</tr>
<tr>
<td>Class Eurotiomycetes</td>
<td></td>
</tr>
<tr>
<td>Subclass Chaetothyriomycetida</td>
<td>Order Chaetothyriales</td>
</tr>
<tr>
<td></td>
<td>Order Pyrenulales</td>
</tr>
<tr>
<td></td>
<td>Order Verrucariales</td>
</tr>
<tr>
<td>Subclass Eurotiomycetida</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Order Arachnomycetales</th>
<th>Order Ascosphaerales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Coryneliales</td>
<td>Order Eurotiales</td>
</tr>
<tr>
<td>Order Onygenales</td>
<td></td>
</tr>
<tr>
<td>Subclass Mycocaliciomycetidae</td>
<td></td>
</tr>
<tr>
<td>Order Mycocaliciales</td>
<td></td>
</tr>
<tr>
<td>Class Laboulbeniomycetes</td>
<td></td>
</tr>
<tr>
<td>Order Laboulbeniales</td>
<td>Order Pyxidiophorales</td>
</tr>
<tr>
<td>Class Lecanoromycetes</td>
<td></td>
</tr>
<tr>
<td>Subclass N.N.</td>
<td></td>
</tr>
<tr>
<td>Order Candelariales</td>
<td>Order Umbilicariales</td>
</tr>
<tr>
<td>Subclass Acarosporomycetidae</td>
<td></td>
</tr>
<tr>
<td>Order Acarosporales</td>
<td></td>
</tr>
<tr>
<td>Subclass Lecanoromycetidae</td>
<td></td>
</tr>
<tr>
<td>Order Lecanorales</td>
<td>Order Leotiales</td>
</tr>
<tr>
<td>Order Lecideales</td>
<td>Order Peltigerales</td>
</tr>
<tr>
<td>Order Peltigerales</td>
<td>Order Rhizocarpales</td>
</tr>
<tr>
<td>Order Teloschistales</td>
<td></td>
</tr>
<tr>
<td>Subclass Ostropomycetidae</td>
<td></td>
</tr>
<tr>
<td>Order Agyriales</td>
<td>Order Baemycetales</td>
</tr>
<tr>
<td>Order Ostropales</td>
<td>Order Pertusariales</td>
</tr>
<tr>
<td>Class Leotiomycetes</td>
<td></td>
</tr>
<tr>
<td>Order Cytariales</td>
<td>Order Erysiphales</td>
</tr>
<tr>
<td>Order Geoglossales</td>
<td>Order Helotiales</td>
</tr>
<tr>
<td>Order Leotiales</td>
<td>Order Mediolariales</td>
</tr>
<tr>
<td>Order Ostropiales</td>
<td>Order Rhytismatales</td>
</tr>
<tr>
<td>Order Thelebolales</td>
<td></td>
</tr>
<tr>
<td>Class Lichinomycetes</td>
<td></td>
</tr>
<tr>
<td>Order Eremithallales</td>
<td>Order Lichinales</td>
</tr>
<tr>
<td>Class Orbiliomycetes</td>
<td>Order Orbiliales</td>
</tr>
<tr>
<td>Class Pezizomycetes</td>
<td>Order Pezizales</td>
</tr>
<tr>
<td>Class Sordariomycetes</td>
<td></td>
</tr>
<tr>
<td>Subclass N.N.</td>
<td>Order Phyllachorales</td>
</tr>
<tr>
<td>Subclass Hypocreomycetidae</td>
<td>Order Trichosphaeriales</td>
</tr>
<tr>
<td>Order Coronophorales</td>
<td>Order Hypocreales</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum Basidiomycota</th>
<th>Order Melanosporales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Microascales</td>
</tr>
<tr>
<td>Subclass Sordariomycetidae</td>
<td>Order Boliniales</td>
</tr>
<tr>
<td></td>
<td>Order Calosphaeriales</td>
</tr>
<tr>
<td></td>
<td>Order Chaetosphaeriales</td>
</tr>
<tr>
<td></td>
<td>Order Coniochaetales</td>
</tr>
<tr>
<td></td>
<td>Order Diaporthales</td>
</tr>
<tr>
<td></td>
<td>Order Ophiostomatales</td>
</tr>
<tr>
<td></td>
<td>Order Sordariales</td>
</tr>
<tr>
<td>Subclass Spathulosporomycetidae</td>
<td>Order Lulworthiales</td>
</tr>
<tr>
<td>Subclass Xylariomycetidae</td>
<td>Order Xylariales</td>
</tr>
<tr>
<td>Subphylum Saccharomycotina</td>
<td>Class Saccharomycetes</td>
</tr>
<tr>
<td></td>
<td>Order Saccharomycetales</td>
</tr>
<tr>
<td>Subphylum Taphrinomycotina</td>
<td>Class Neolectomycetes</td>
</tr>
<tr>
<td></td>
<td>Order Neolectales</td>
</tr>
<tr>
<td></td>
<td>Order Pneumocystidomycetes</td>
</tr>
<tr>
<td></td>
<td>Order Pneumocystidales</td>
</tr>
<tr>
<td>Class Schizosaccharomycetes</td>
<td>Order Schizosaccharomycetales</td>
</tr>
<tr>
<td>Class Taphrinomycetes</td>
<td>Order Taphrinales</td>
</tr>
</tbody>
</table>

Phylum Basidiomycota

<table>
<thead>
<tr>
<th>Class Entorrhizomycetes</th>
<th>Order Entorrhizales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Wallemiales</td>
</tr>
</tbody>
</table>

Subphylum Agaricomycotina

<table>
<thead>
<tr>
<th>Class Agaricomycetes</th>
<th>Subclass N.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Auriculariales</td>
</tr>
<tr>
<td></td>
<td>Order Cantharellales</td>
</tr>
<tr>
<td></td>
<td>Order Corticiales</td>
</tr>
<tr>
<td></td>
<td>Order Gloeophyllales</td>
</tr>
<tr>
<td></td>
<td>Order Hymenochaetales</td>
</tr>
<tr>
<td></td>
<td>Order Polyporales</td>
</tr>
<tr>
<td></td>
<td>Order Russulales</td>
</tr>
<tr>
<td></td>
<td>Order Sebacinales</td>
</tr>
<tr>
<td></td>
<td>Order Thelephorales</td>
</tr>
<tr>
<td></td>
<td>Order Trechisporales</td>
</tr>
<tr>
<td>Subclass Agaricomycetidae</td>
<td>Order Agaricales</td>
</tr>
<tr>
<td></td>
<td>Order Atheliales</td>
</tr>
<tr>
<td></td>
<td>Order Boletales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subclass Phallomycetidae</th>
<th>Order Geastrales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Gomphales</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Subphylum Pucciniomycotina</th>
<th>Order Hysterangiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Dacrymycetes</td>
<td>Order Phallales</td>
</tr>
<tr>
<td>Class Tremellomyctes</td>
<td>Order Dacrymycetales</td>
</tr>
<tr>
<td>Subphylum Pucciniomycotina</td>
<td>Order Cystofilibasidiales</td>
</tr>
<tr>
<td>Class Atractiellomyctes</td>
<td>Order Filobasidiales</td>
</tr>
<tr>
<td>Class Classiculomyctes</td>
<td>Order Tremellales</td>
</tr>
<tr>
<td>Subphylum Pucciniomycotina</td>
<td>Order Cystofo\textl{li}basidiales</td>
</tr>
<tr>
<td>Class Agaricostilbomycetes</td>
<td>Order Agaricostiales</td>
</tr>
<tr>
<td>Class Atractiellomyctes</td>
<td>Order Atractiellales</td>
</tr>
<tr>
<td>Class Classiculomyctes</td>
<td>Order Classiculales</td>
</tr>
<tr>
<td>Class Cryptomycolaciomyctes</td>
<td>Order Cryptomycolaciales</td>
</tr>
<tr>
<td>Class Cystobasidiomyctes</td>
<td>Order Cystobasidiales</td>
</tr>
<tr>
<td>Class Microbotryomyctes</td>
<td>Order Erythrobasidiales</td>
</tr>
<tr>
<td>Class Microbotryomyctes</td>
<td>Order Naohideales</td>
</tr>
<tr>
<td>Class Mixiomyctes</td>
<td>Order Mixiales</td>
</tr>
<tr>
<td>Class Pucciniomycetes</td>
<td>Order Helicobasidiales</td>
</tr>
<tr>
<td>Class Pucciniomycetes</td>
<td>Order Pachnocybales</td>
</tr>
<tr>
<td>Class Pucciniomycetes</td>
<td>Order Platygloeales</td>
</tr>
<tr>
<td>Class Pucciniomycetes</td>
<td>Order Pucciniales</td>
</tr>
<tr>
<td>Class Pucciniomycetes</td>
<td>Order Septobasidiales</td>
</tr>
<tr>
<td>Subphylum Ustilaginomycotina</td>
<td>Order Malasseziales</td>
</tr>
<tr>
<td>Class N.N.</td>
<td>Order Malasseziales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Ceraceosorales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Doassansiales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Entylomatales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Exobasidiales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Georgoschiziales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Microstromatales</td>
</tr>
<tr>
<td>Class Exobasidiomyctes</td>
<td>Order Tilletiales</td>
</tr>
<tr>
<td>Class Ustilaginomycetes</td>
<td>Order Urocystidiales</td>
</tr>
<tr>
<td>Class Ustilaginomycetes</td>
<td>Order Ustilaginales</td>
</tr>
</tbody>
</table>

SUBKINGDOM EOMYCOTA
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum Chytridiomycota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Blastocladiomycetes [= Alomyceses]</td>
</tr>
<tr>
<td>Order Blastocladiales</td>
</tr>
<tr>
<td>Class Chytridiomycetes</td>
</tr>
<tr>
<td>Order Chytridiales</td>
</tr>
<tr>
<td>Order Lobulomycetales</td>
</tr>
<tr>
<td>Order Neocallimastigales</td>
</tr>
<tr>
<td>Order Olpidiales</td>
</tr>
<tr>
<td>Order Rhizophlyctales</td>
</tr>
<tr>
<td>Order Rhizophydiales</td>
</tr>
<tr>
<td>Order Spizellomycetales</td>
</tr>
<tr>
<td>Class Monoblepharidomycetes</td>
</tr>
<tr>
<td>Order Monoblepharidales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phylum Glomeromycota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Glomeromycetes [= Glomomyceses]</td>
</tr>
<tr>
<td>Order Archaeosporales</td>
</tr>
<tr>
<td>Order Diversisporales</td>
</tr>
<tr>
<td>Order Glomerales</td>
</tr>
<tr>
<td>Order Paraglomerales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phylum Zygomycota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum N.N.</td>
</tr>
<tr>
<td>Class N.N.</td>
</tr>
<tr>
<td>Order Basidiobolales</td>
</tr>
<tr>
<td>Subphylum Entomophthoromycotina</td>
</tr>
<tr>
<td>Class N.N.</td>
</tr>
<tr>
<td>Order Entomophthorales</td>
</tr>
<tr>
<td>Subphylum Kickxellomycotina</td>
</tr>
<tr>
<td>Class N.N.</td>
</tr>
<tr>
<td>Order Asellariales</td>
</tr>
<tr>
<td>Order Dimargaritales</td>
</tr>
<tr>
<td>Order Harpellales</td>
</tr>
<tr>
<td>Order Kickxellales</td>
</tr>
<tr>
<td>Subphylum Mortierellomycotina</td>
</tr>
<tr>
<td>Class N.N.</td>
</tr>
<tr>
<td>Order Mortierellales</td>
</tr>
<tr>
<td>Subphylum Mucoromycotina</td>
</tr>
<tr>
<td>Class N.N.</td>
</tr>
<tr>
<td>Order Endogonales</td>
</tr>
<tr>
<td>Order Mucoraes</td>
</tr>
<tr>
<td>Subphylum Zoopagomycotina</td>
</tr>
<tr>
<td>Class N.N.</td>
</tr>
<tr>
<td>Order Zoopagales</td>
</tr>
</tbody>
</table>

KINGDOM PLANTAE

SUBKINGDOM BILIPHYTA

<table>
<thead>
<tr>
<th>Phylum Glaucophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Glaucophyceae</td>
</tr>
<tr>
<td>Order Glaucocystales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phylum Rhodophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subphylum Cyanidiophytina</td>
</tr>
<tr>
<td>Class Cyanidiophyceae</td>
</tr>
<tr>
<td>Subphylum Eurhodophytina</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Class Bangiophyceae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class Florideophyceae</td>
</tr>
<tr>
<td>Subclass N.N.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subclass Corallinophycida</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subclass Hildenbrandiophycida</td>
</tr>
<tr>
<td>Subclass Nemaliophycida</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subclass Rhodymeniophycida</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subphylum Metarhodophytina</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subphylum Rhodellophytina</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phylum Chlorophyta</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>INFRAKINGDOM VIRIDIPLANTAE</td>
</tr>
<tr>
<td>INFRAKINGDOM CHLOROPHYTA</td>
</tr>
<tr>
<td>Phylum Chlorophyta</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

INFRAKINGDOM STREPTOPHYTA

(Continued)
<table>
<thead>
<tr>
<th>Superphylum Charophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Charophyta</td>
</tr>
<tr>
<td>Class Charophyceae</td>
</tr>
<tr>
<td>Order Charales</td>
</tr>
<tr>
<td>Class Chlorokybophyceae</td>
</tr>
<tr>
<td>Order Chlorokybales</td>
</tr>
<tr>
<td>Class Coleochaetophyceae</td>
</tr>
<tr>
<td>Order Chaetosphaeridiales</td>
</tr>
<tr>
<td>Order Coleochaetales</td>
</tr>
<tr>
<td>Class Conjugatophyceae [= Zyg nematophyceae]</td>
</tr>
<tr>
<td>Order Desmidiales</td>
</tr>
<tr>
<td>Order Zyg nematales</td>
</tr>
<tr>
<td>Class Klebsormidiophyceae</td>
</tr>
<tr>
<td>Order Klebsormidales</td>
</tr>
<tr>
<td>Class Mesostigmatophyceae</td>
</tr>
<tr>
<td>Order Mesostigmatales</td>
</tr>
<tr>
<td>Superphylum Embryophyta</td>
</tr>
<tr>
<td>Phylum Anthocerotophyta</td>
</tr>
<tr>
<td>Class Anthocerotopsida</td>
</tr>
<tr>
<td>Subclass Anthocerotidae</td>
</tr>
<tr>
<td>Order Anthocorales</td>
</tr>
<tr>
<td>Subclass Dendrocerotaide</td>
</tr>
<tr>
<td>Order Dendrocoratales</td>
</tr>
<tr>
<td>Order Phymatoceras</td>
</tr>
<tr>
<td>Subclass Notothylatidae</td>
</tr>
<tr>
<td>Order Notothyladalea</td>
</tr>
<tr>
<td>Class Leiosporocerotopsida</td>
</tr>
<tr>
<td>Order Leiosporoceratales</td>
</tr>
<tr>
<td>Phylum Bryophyta</td>
</tr>
<tr>
<td>Class Andreaeobryopsis</td>
</tr>
<tr>
<td>Order Andreaeobryales</td>
</tr>
<tr>
<td>Class Andreaeopsis</td>
</tr>
<tr>
<td>Order Andreaeales</td>
</tr>
<tr>
<td>Class Bryopsis</td>
</tr>
<tr>
<td>Subclass Bryidae</td>
</tr>
<tr>
<td>Order Bartramiales</td>
</tr>
<tr>
<td>Order Bryales</td>
</tr>
<tr>
<td>Order Hedwigiales</td>
</tr>
<tr>
<td>Order Hookeriales</td>
</tr>
<tr>
<td>Order Hypnales</td>
</tr>
<tr>
<td>Order Hypnodendrales</td>
</tr>
<tr>
<td>Order Orthotrichales</td>
</tr>
<tr>
<td>Order Ptychonimales</td>
</tr>
<tr>
<td>Order Rhizogoniales</td>
</tr>
<tr>
<td>Order Splachnales</td>
</tr>
<tr>
<td>Subclass Buxbaumiidae</td>
</tr>
<tr>
<td>Order Buxbaumiales</td>
</tr>
<tr>
<td>Subclass Dicranidae</td>
</tr>
<tr>
<td>Order Archidiales</td>
</tr>
<tr>
<td>Order Bryoxiphiales</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phylum: Marchantiophyta</th>
<th>Order Dicranales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Grimmiales</td>
</tr>
<tr>
<td></td>
<td>Order Pottiales</td>
</tr>
<tr>
<td></td>
<td>Order Scouleriales</td>
</tr>
<tr>
<td>Subclass: Diphysciidae</td>
<td>Order Diphysciales</td>
</tr>
<tr>
<td></td>
<td>Order Encalyptales</td>
</tr>
<tr>
<td></td>
<td>Order Funariales</td>
</tr>
<tr>
<td></td>
<td>Order Gigasporales</td>
</tr>
<tr>
<td>Subclass: Funariidae</td>
<td>Order Funariales</td>
</tr>
<tr>
<td></td>
<td>Order Timmiales</td>
</tr>
<tr>
<td>Class: Oedipodiopsida</td>
<td>Order Oedipodiales</td>
</tr>
<tr>
<td>Class: Polytrichopsida</td>
<td>Order Polytrichales</td>
</tr>
<tr>
<td>Class: Sphagnopsida</td>
<td>Order Ambuchananiales</td>
</tr>
<tr>
<td></td>
<td>Order Sphagnales</td>
</tr>
<tr>
<td>Class: Takakiopsida</td>
<td>Order Takakiales</td>
</tr>
<tr>
<td>Class: Tetraphidopsida</td>
<td>Order Tetraphidiales</td>
</tr>
<tr>
<td>Phylum: Marchantiophyta</td>
<td>Order Calobryales</td>
</tr>
<tr>
<td></td>
<td>Order Treubiales</td>
</tr>
<tr>
<td>Class: Jungermanniopsida</td>
<td>Order Jungermanniales</td>
</tr>
<tr>
<td>Subclass: Jungermanniida</td>
<td>Order Porelliales</td>
</tr>
<tr>
<td></td>
<td>Order Ptilidales</td>
</tr>
<tr>
<td>Subclass: Metzgeriida</td>
<td>Order Metzgeriales</td>
</tr>
<tr>
<td></td>
<td>Order Pleuroziales</td>
</tr>
<tr>
<td>Subclass: Pellidae</td>
<td>Order Fossombroniales</td>
</tr>
<tr>
<td></td>
<td>Order Pallaviciniales</td>
</tr>
<tr>
<td></td>
<td>Order Pelliales</td>
</tr>
<tr>
<td>Class: Marchantiopsida</td>
<td>Order Blasiales</td>
</tr>
<tr>
<td></td>
<td>Order Lunulariales</td>
</tr>
<tr>
<td></td>
<td>Order Marchantiales</td>
</tr>
<tr>
<td></td>
<td>Order Neohodgsoniales</td>
</tr>
<tr>
<td></td>
<td>Order Sphaerocarpales</td>
</tr>
<tr>
<td>Phylum: Tracheophyta</td>
<td>Order Isoetales</td>
</tr>
<tr>
<td>Subphylum: Lycopodiophyta</td>
<td>Order Lycopodiales</td>
</tr>
<tr>
<td>Class: Lycopodiopsida</td>
<td>(Continued)</td>
</tr>
<tr>
<td>Subphylum Polypodiophytina</td>
<td>Order Selaginellales</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Class Polypodiopsida</td>
<td></td>
</tr>
<tr>
<td>Subclass Equisetidae</td>
<td>Order Equisetales</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclass Marattiidae</td>
<td>Order Marattiales</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclass Ophioglossidae [= Psilotidae]</td>
<td>Order Ophioglossales</td>
</tr>
<tr>
<td></td>
<td>Order Psilotales</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclass Polypodiidae</td>
<td>Order Cytathaeles</td>
</tr>
<tr>
<td></td>
<td>Order Gleicheniales</td>
</tr>
<tr>
<td></td>
<td>Order Hymenophyllales</td>
</tr>
<tr>
<td></td>
<td>Order Osmundales</td>
</tr>
<tr>
<td></td>
<td>Order Polypodiales</td>
</tr>
<tr>
<td></td>
<td>Order Salviniales</td>
</tr>
<tr>
<td></td>
<td>Order Schizaeales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subphylum Spermatophytina</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superclass "Angiospermae"</td>
<td></td>
</tr>
<tr>
<td>Class Magnoliopsida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder N.N.</td>
</tr>
<tr>
<td></td>
<td>Order N.N. (e.g., Icacinaceae)</td>
</tr>
<tr>
<td></td>
<td>Superorder Amborellanae</td>
</tr>
<tr>
<td></td>
<td>Order Amborellales</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Superorder Asteranae</td>
<td>Order Apiales</td>
</tr>
<tr>
<td></td>
<td>Order Aquifoliales</td>
</tr>
<tr>
<td></td>
<td>Order Asterales</td>
</tr>
<tr>
<td></td>
<td>Order Boraginales</td>
</tr>
<tr>
<td></td>
<td>Order Bruniales</td>
</tr>
<tr>
<td></td>
<td>Order Comales</td>
</tr>
<tr>
<td></td>
<td>Order Dipsacales</td>
</tr>
<tr>
<td></td>
<td>Order Ericales</td>
</tr>
<tr>
<td></td>
<td>Order Escalloniales</td>
</tr>
<tr>
<td></td>
<td>Order Garryales</td>
</tr>
<tr>
<td></td>
<td>Order Gentianales</td>
</tr>
<tr>
<td></td>
<td>Order Lamiales</td>
</tr>
<tr>
<td></td>
<td>Order Paracryphiales</td>
</tr>
<tr>
<td></td>
<td>Order Solanales</td>
</tr>
<tr>
<td></td>
<td>Superorder Austrobaileyanae</td>
</tr>
<tr>
<td></td>
<td>Order Austrobaileyales</td>
</tr>
<tr>
<td></td>
<td>Superorder Berberidopsidanae</td>
</tr>
<tr>
<td></td>
<td>Order Berberidopsidales</td>
</tr>
<tr>
<td></td>
<td>Superorder Buxanae</td>
</tr>
<tr>
<td></td>
<td>Order Buxales</td>
</tr>
<tr>
<td></td>
<td>Superorder Caryophyllanae</td>
</tr>
<tr>
<td></td>
<td>Order Caryophyllales</td>
</tr>
<tr>
<td></td>
<td>Superorder Ceratophyllanae</td>
</tr>
<tr>
<td></td>
<td>Order Ceratophyllales</td>
</tr>
<tr>
<td>Superorder</td>
<td>Order</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dillenianae</td>
<td>Dilleniales</td>
</tr>
<tr>
<td>Lilianae [= Monocotyledones]</td>
<td>Acorales</td>
</tr>
<tr>
<td>Magnoliinae</td>
<td>Canelliales</td>
</tr>
<tr>
<td>Chloranthinae</td>
<td>Laurales</td>
</tr>
<tr>
<td>Magnoliales</td>
<td>Piperales</td>
</tr>
<tr>
<td>Myrothamnanae</td>
<td>Gunnerales</td>
</tr>
<tr>
<td>Nymphaeanae</td>
<td>Nymphaeales</td>
</tr>
<tr>
<td>Proteanae</td>
<td>Proteales</td>
</tr>
<tr>
<td>Ranunculanae</td>
<td>Ranunculales</td>
</tr>
<tr>
<td>Rosanae</td>
<td>Brassicales</td>
</tr>
<tr>
<td>Celastrinae</td>
<td>Crossosomatales</td>
</tr>
<tr>
<td>Cucurbitinae</td>
<td>Fabales</td>
</tr>
<tr>
<td>Fagales</td>
<td>Geraniales</td>
</tr>
<tr>
<td>Huerteales</td>
<td>Malpighiales</td>
</tr>
<tr>
<td>Malvales</td>
<td>Myrtiales</td>
</tr>
<tr>
<td>Oxalidales</td>
<td>Picramniales</td>
</tr>
<tr>
<td>Rosales</td>
<td>Sapindales</td>
</tr>
<tr>
<td>Vitales</td>
<td>Zygophylliales</td>
</tr>
<tr>
<td>Santalanae</td>
<td>Santalales</td>
</tr>
<tr>
<td>Saxifragae</td>
<td></td>
</tr>
<tr>
<td>Kingdom: Plantae</td>
<td>Order: Saxifragales</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Superorder: Trochodendranae</td>
<td></td>
</tr>
<tr>
<td>Order: Trochodendrales</td>
<td></td>
</tr>
<tr>
<td>Superclass: "Gymnospermae"</td>
<td></td>
</tr>
<tr>
<td>Class: Cycadopsida</td>
<td></td>
</tr>
<tr>
<td>Subclass: Cycadidae</td>
<td></td>
</tr>
<tr>
<td>Class: Ginkgoopsida</td>
<td></td>
</tr>
<tr>
<td>Subclass: Ginkgooidae</td>
<td></td>
</tr>
<tr>
<td>Class: Gnetopsida</td>
<td></td>
</tr>
<tr>
<td>Subclass: Gnetidae</td>
<td></td>
</tr>
<tr>
<td>Class: Pinopsida</td>
<td></td>
</tr>
<tr>
<td>Subclass: Pinidae</td>
<td></td>
</tr>
</tbody>
</table>

KINGDOM ANIMALIA

<table>
<thead>
<tr>
<th>Phylum: Cnidaria</th>
<th>Subphylum: Anthozoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class: Anthozoa</td>
<td></td>
</tr>
<tr>
<td>Subclass: Hexacorallia</td>
<td></td>
</tr>
<tr>
<td>Order: Actiniaria</td>
<td></td>
</tr>
<tr>
<td>Order: Antipatharia</td>
<td></td>
</tr>
<tr>
<td>Order: Corallimorpharia</td>
<td></td>
</tr>
<tr>
<td>Order: Scleractinia</td>
<td></td>
</tr>
<tr>
<td>Order: Zoantharia [= Zoanthidea]</td>
<td></td>
</tr>
<tr>
<td>Subclass: Octocorallia</td>
<td></td>
</tr>
<tr>
<td>Order: Alcyonacea</td>
<td></td>
</tr>
<tr>
<td>Order: Helioporacea</td>
<td></td>
</tr>
<tr>
<td>Order: Pennatulacea</td>
<td></td>
</tr>
<tr>
<td>Subphylum: Medusozoa</td>
<td></td>
</tr>
<tr>
<td>Class: Cubozoa</td>
<td></td>
</tr>
<tr>
<td>Order: Carybdeida</td>
<td></td>
</tr>
<tr>
<td>Order: Chirodropida</td>
<td></td>
</tr>
<tr>
<td>Class: Hydrozoa</td>
<td></td>
</tr>
<tr>
<td>Subclass: Hydroidolina</td>
<td></td>
</tr>
<tr>
<td>Order: Anthothecata</td>
<td></td>
</tr>
<tr>
<td>Order: Gonoproxima</td>
<td></td>
</tr>
<tr>
<td>Order: Leptotheclata</td>
<td></td>
</tr>
<tr>
<td>Order: Siphonophorae</td>
<td></td>
</tr>
<tr>
<td>Subclass: Trachylina</td>
<td></td>
</tr>
<tr>
<td>Order: Actinulida</td>
<td></td>
</tr>
<tr>
<td>Order: Limnomedusae</td>
<td></td>
</tr>
<tr>
<td>Order: Narcomedusae</td>
<td></td>
</tr>
<tr>
<td>Order: Trachymedusae</td>
<td></td>
</tr>
<tr>
<td>Class: Polypodiozoa</td>
<td></td>
</tr>
<tr>
<td>Order: Polypodiidea</td>
<td></td>
</tr>
<tr>
<td>Class: Scyphozoa</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctenophora</td>
<td>Nuda</td>
<td>Beroida</td>
</tr>
<tr>
<td></td>
<td>Tentaculata</td>
<td>Cambojiida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cestida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptobranchiida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cydippida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ganesha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lobata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platyctenida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thalassocalyptida</td>
</tr>
<tr>
<td>Placozoa</td>
<td>Placozoa (Trichoplax)</td>
<td></td>
</tr>
<tr>
<td>Porifera</td>
<td>Calcarea</td>
<td>Baerida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clathriniida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leucosolenida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lithistida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Murrayonida</td>
</tr>
<tr>
<td></td>
<td>Demospongiae</td>
<td>Agelasida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Astrophorida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chondrosida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dendroceratida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictyoceratida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hadromerida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halichondrida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haplosclerida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lithistida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poecilosclerida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spirophorida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verongida</td>
</tr>
<tr>
<td>Hexactinellida</td>
<td></td>
<td>Amphidiscosida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aulocalycoida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fieldingida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hexactinosida</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Superphylum</th>
<th>Phylum</th>
<th>Subphylum</th>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>Chaetognatha</td>
<td>Sagittoidea</td>
<td>Homoscleromorpha</td>
<td>Lychniscosida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lyssacinosida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Homosclerophorida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subkingdom Bilateria</td>
</tr>
<tr>
<td>Protostomia</td>
<td>Phylum Orthonectida</td>
<td>Orthonectida</td>
<td>Orphan Phragmophora</td>
<td>Orphan Phragmophora</td>
</tr>
<tr>
<td></td>
<td>Phylum Rhombozoa</td>
<td>Rhombozoa</td>
<td>Orphan Plasmodigenea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Orphan Dicyemida</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Orphan Heterocyemida</td>
<td></td>
</tr>
<tr>
<td>Ecdysozoa</td>
<td>Phylum Anthropoda</td>
<td>Anthropoda</td>
<td>Arachnida</td>
<td>Amblypygi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Araneae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Opiliones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudoscorpiones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudoscorpiones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ricinulei</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scorpiones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solifugae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uropygi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sarcoptiformes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trombidiformes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parasitiformes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Holothryida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ixodida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mesostigmata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Opilioacarida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xiphosura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pycnogonida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pantopoda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Branchiopoda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anostraca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dipleostea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laevicauda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notostraca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cephalocarida</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Order</th>
<th>Subclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachypoda</td>
<td></td>
</tr>
<tr>
<td>Malacostraca</td>
<td>Eumalacostraca</td>
</tr>
<tr>
<td>Superorder Eucarida</td>
<td></td>
</tr>
<tr>
<td>Amphionidacea</td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td></td>
</tr>
<tr>
<td>Euphausiacea</td>
<td></td>
</tr>
<tr>
<td>Peracarida</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
</tr>
<tr>
<td>Bochusacea</td>
<td></td>
</tr>
<tr>
<td>Cumacea</td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
</tr>
<tr>
<td>Lophogastrida</td>
<td></td>
</tr>
<tr>
<td>Mictacea</td>
<td></td>
</tr>
<tr>
<td>Mysida</td>
<td></td>
</tr>
<tr>
<td>Spelaeogriphacea</td>
<td></td>
</tr>
<tr>
<td>Tanaidacea</td>
<td></td>
</tr>
<tr>
<td>Thermosbaenacea</td>
<td></td>
</tr>
<tr>
<td>Syncarida</td>
<td></td>
</tr>
<tr>
<td>Anaspidacea</td>
<td></td>
</tr>
<tr>
<td>Bathynellacea</td>
<td></td>
</tr>
<tr>
<td>Hoplocarida</td>
<td></td>
</tr>
<tr>
<td>Stomatopoda</td>
<td></td>
</tr>
<tr>
<td>Phyllocarida</td>
<td></td>
</tr>
<tr>
<td>Leptostraca</td>
<td></td>
</tr>
<tr>
<td>Maxillopoda</td>
<td></td>
</tr>
<tr>
<td>Branchiura</td>
<td>Arguloida</td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Neocopepoda</td>
<td></td>
</tr>
<tr>
<td>Gymnoplea</td>
<td>Calanoida</td>
</tr>
<tr>
<td>Podoplea</td>
<td></td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>Gelyelloida</td>
</tr>
<tr>
<td>Harpacticoidea</td>
<td>Misophrioida</td>
</tr>
<tr>
<td>Monstrilloida</td>
<td>Mormonilloida</td>
</tr>
<tr>
<td>Siphonostomatoida</td>
<td></td>
</tr>
<tr>
<td>Progymnoplea</td>
<td></td>
</tr>
<tr>
<td>Platycoioida</td>
<td></td>
</tr>
<tr>
<td>Mystacocarida</td>
<td>Mystacocaridida</td>
</tr>
<tr>
<td>Pentastomida</td>
<td>Cephalobaenida</td>
</tr>
<tr>
<td>Poroccephalida</td>
<td></td>
</tr>
<tr>
<td>Tantulocarida (e.g., Basipodellidae)</td>
<td></td>
</tr>
<tr>
<td>Thecostraca</td>
<td></td>
</tr>
<tr>
<td>Ascothoracida</td>
<td></td>
</tr>
<tr>
<td>Infraclass Cirripedia</td>
<td>Order Dendrogastrida</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Order Laurida</td>
</tr>
<tr>
<td></td>
<td>Infraclass Cirripedia</td>
</tr>
<tr>
<td></td>
<td>Superorder Acrothoracica</td>
</tr>
<tr>
<td></td>
<td>Order Cryptophialida</td>
</tr>
<tr>
<td></td>
<td>Order Lithoglyptida</td>
</tr>
<tr>
<td></td>
<td>Superorder Rhizocephala</td>
</tr>
<tr>
<td></td>
<td>Order Akentrogonida</td>
</tr>
<tr>
<td></td>
<td>Order Kentrogonida</td>
</tr>
<tr>
<td></td>
<td>Superorder Thoracica</td>
</tr>
<tr>
<td></td>
<td>Order Ibliformes</td>
</tr>
<tr>
<td></td>
<td>Order Lepadiformes</td>
</tr>
<tr>
<td></td>
<td>Order Scalpelliformes</td>
</tr>
<tr>
<td></td>
<td>Order Sessilia</td>
</tr>
<tr>
<td></td>
<td>Infraclass Facetotecta (Hansenocaris)</td>
</tr>
<tr>
<td></td>
<td>Class Ostracoda</td>
</tr>
<tr>
<td></td>
<td>Order Halocyprida</td>
</tr>
<tr>
<td></td>
<td>Order Myodocopida</td>
</tr>
<tr>
<td></td>
<td>Order Paleocopida</td>
</tr>
<tr>
<td></td>
<td>Order Platyocopida</td>
</tr>
<tr>
<td></td>
<td>Order Podocopida</td>
</tr>
<tr>
<td></td>
<td>Class Remipedia</td>
</tr>
<tr>
<td></td>
<td>Order Nectiopoda</td>
</tr>
<tr>
<td>Subphylum Hexapoda</td>
<td>Class Collembola</td>
</tr>
<tr>
<td></td>
<td>Order Entomobryomorpha</td>
</tr>
<tr>
<td></td>
<td>Order Neelipleona</td>
</tr>
<tr>
<td></td>
<td>Order Poduromorpha</td>
</tr>
<tr>
<td></td>
<td>Order Symphypleona</td>
</tr>
<tr>
<td></td>
<td>Class Diplura</td>
</tr>
<tr>
<td></td>
<td>Order N.N. (e.g., Japygidae)</td>
</tr>
<tr>
<td></td>
<td>Class Insecta</td>
</tr>
<tr>
<td></td>
<td>Subclass Archaeognatha</td>
</tr>
<tr>
<td></td>
<td>Order Archaeognatha</td>
</tr>
<tr>
<td></td>
<td>Subclass Dicondylia</td>
</tr>
<tr>
<td></td>
<td>Order Zygentoma</td>
</tr>
<tr>
<td></td>
<td>Subclass Pterygota</td>
</tr>
<tr>
<td></td>
<td>Infraclass Neoptera</td>
</tr>
<tr>
<td></td>
<td>Superorder Holometabola</td>
</tr>
<tr>
<td></td>
<td>Order Coleoptera</td>
</tr>
<tr>
<td></td>
<td>Order Diptera</td>
</tr>
<tr>
<td></td>
<td>Order Hymenoptera</td>
</tr>
<tr>
<td></td>
<td>Order Lepidoptera</td>
</tr>
<tr>
<td></td>
<td>Order Mecoptera</td>
</tr>
<tr>
<td></td>
<td>Order Siphonaptera</td>
</tr>
<tr>
<td></td>
<td>Order Strepsiptera</td>
</tr>
<tr>
<td></td>
<td>Order Trichoptera</td>
</tr>
<tr>
<td></td>
<td>Superorder Neuropterida</td>
</tr>
<tr>
<td></td>
<td>Order Megaloptera</td>
</tr>
<tr>
<td></td>
<td>Order Neuroptera</td>
</tr>
</tbody>
</table>

(Continued)
Infraclass Palaeoptera	Order Raphidioptera
Superorder Paraneoptera	Order Hemiptera
	Order Psocodea
	Order Thysanoptera
Superorder Polyneoptera	Order Blattodea
	Order Dermaptera
	Order Embioptera
	Order Grylloblattodea
	Order Mantodea
	Order Mantophasmatodea
	Order Orthoptera
	Order Phasmdida
	Order Plecoptera
	Order Zoraptera
Class Protura	Order Ephemeroptera
	Order Odonata
Subphylum Myriapoda	Order Acerentomata
	Order Eosentomata
	Order Sinentomata
Infraclass Helminthomorpha	Order Craterostigmomorpha
Superorder N.N.	Order Geophilomorpha
	Order Lithobiomorpha
	Order Scolopendromorpha
	Order Scutigeromorpha
Class Chilopoda	Order Julida
	Order Spirobolida
	Order Spirostreptida
Subclass Chilognatha	**Superorder Juliformia**
	Order Julida
	Order Spirobolida
	Order Spirostreptida
Superorder Nematophora	**Superorder Merochaeta**
	Order Polydesmida

Infraclass Pentazonia (Continued)
<table>
<thead>
<tr>
<th>Phylum Kinorhyncha</th>
<th>Class Pauropoda</th>
<th>Order Hexamerocerata</th>
<th>Order Tetramerocerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class Symphyla (e.g., Scolopendrellidae)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylum Loricifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylum Nematoda</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Chromadorea</th>
<th>Subclass Chromadaria</th>
<th>Order Chromadorida</th>
<th>Order Desmodorida</th>
<th>Order Desmoscolecida</th>
<th>Order Selacinematida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subclass Plectia</td>
<td>Order Benthimermithida</td>
<td>Order Leptolaimida</td>
<td>Order Plectida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Rhabditica</td>
<td>Order Diplogasterida</td>
<td>Order Drilonematida</td>
<td>Order Panagrolaimida</td>
<td>Order Rhabditida</td>
</tr>
<tr>
<td></td>
<td>Superorder Teratocephalica</td>
<td>Order Teratocephalida</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Dorylaimea</th>
<th>Subclass Bathyodontia</th>
<th>Order Bathyodontida</th>
<th>Order Mermithida</th>
<th>Order Mononchida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subclass Dorylaimia</td>
<td>Order Dorylaimida</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subclass Trichocephalia</td>
<td>Order Dioctophymatida</td>
<td>Order Marimermithida</td>
<td>Order Muspiceida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Enoplea</th>
<th>Subclass Enoplia</th>
</tr>
</thead>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Orders</th>
</tr>
</thead>
</table>
| **Phylum Nematomorpha** | Order Alaimida
Order Enoplida
Order Ironida
Order Rhapsodyrea
Order Trifusida
Order Tripyloida
Subclass Oncholaimia
Order Oncholaimida |
| **Phylum Onychophora** | Order Triplonchida
Order Tripylida
Phylum Nematomorpha
Order Gordioidea
Order Nectonematoida |
| **Phylum Priapula (= Priapulida)** | Class Udeonycophora
Order Euonyphora
Phylum Priapula
Class N.N. (e.g., Priapulidae) |
| **Phylum Tardigrada** | Class Eutardigrada
Order Apochela
Order Parachela
Class Heterotardigrada
Order Arthropodigrada
Order Echiniscoidea |
| **Superphylum Spiralia (= Lophotrochozoa)** | Phylum Acanthocephala
Class Archiacanthocephala
Order Apororhynchida
Order Gigantorhynchida
Order Moniliiformida
Order Oligacanthorhynchida
Class Eoacanthocephala
Order Gyracanthocephala
Order Neoechinorhynchida
Class Palaeacanthocephala
Order Echinorhynchida
Order Heteramorphida
Order Polymorphida
Class Polycanthocephala
Order Polyacanthorhynchida
Phylum Annelida
Class N.N.
Order Myzostomida
Class Clitellata
Subclass N.N.
Order Apodadrilida
Subclass Hirudinea
Order Acanthobdellida |
| **(Continued)** |
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Class</th>
<th>Subclass</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Brachiopoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Craniata</td>
<td></td>
<td>Order Craniida</td>
</tr>
<tr>
<td>Class Lingulata</td>
<td></td>
<td>Order Lingulida</td>
</tr>
<tr>
<td>Class Rhynchoellata</td>
<td></td>
<td>Order Rhynchoellida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Terebratulida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thecideida</td>
</tr>
<tr>
<td>Phylum Bryozoa</td>
<td>Class Gymnolaemata</td>
<td>Order Cheilostomata</td>
</tr>
<tr>
<td></td>
<td>Class Phylactolaemata</td>
<td>Order Ctenostomata</td>
</tr>
<tr>
<td></td>
<td>Class Stenolaemata</td>
<td>Order Plumatellida</td>
</tr>
<tr>
<td>Phylum Cycliophora</td>
<td></td>
<td>Order Cyclostomata</td>
</tr>
<tr>
<td>Phylum Entoprocta</td>
<td>Order Symbiida</td>
<td></td>
</tr>
<tr>
<td>Class Eucycliophora</td>
<td>Phylum Gastrotricha</td>
<td>Order Coloniales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Solitaria</td>
</tr>
<tr>
<td>Phylum Gastrotricha</td>
<td>Order Chaetognatida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Macroaspidida</td>
<td></td>
</tr>
<tr>
<td>Phylum Gnathostomulida</td>
<td>Order Bursovaginoidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Filospermoidea</td>
<td></td>
</tr>
<tr>
<td>Phylum Micrognathozoa</td>
<td>Order Limnognathida</td>
<td></td>
</tr>
<tr>
<td>Class Micrognathozoa</td>
<td>Phylum Mollusca</td>
<td></td>
</tr>
<tr>
<td>Class Bivalvia</td>
<td>Subclass Autobranchia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Heteroconchia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Carditida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Lucinida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Myida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Pholadomyida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Trigoniida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Unionida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Veneroida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Pteriomorpha</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Arcida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Limida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Mytilida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Ostreida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Pectinida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Pteriida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subclass Protobranchia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Nuculanida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Nuculida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Solenomyida</td>
<td></td>
</tr>
<tr>
<td>Class Caudofoveata</td>
<td>Order Chaetodermatida</td>
<td></td>
</tr>
<tr>
<td>Class Cephalopoda</td>
<td>Subclass Coleoidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Decabrachia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Sepiida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Sepiolida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Spirulida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Teuthida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Octobrachia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Octopoda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Vampyromorphida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subclass Nautiloidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Nautilida</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Class</th>
<th>Subclass</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda</td>
<td>Subclass Caenogastropoda</td>
<td>Order Littorinimorpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Neogastropoda</td>
</tr>
<tr>
<td></td>
<td>Subclass Cocculiniformia</td>
<td>Order Acochlidioidea</td>
</tr>
<tr>
<td></td>
<td>(e.g., Cocculinidae)</td>
<td>Order Anaspidea</td>
</tr>
<tr>
<td></td>
<td>Subclass Heterobranchia</td>
<td>Order Cephalaspidea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Gymnosomata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Hygrophila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Nudibranchia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Pleurobranchomorpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Runcinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Sacoglossa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Stylommatophora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Systellommatophora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Thecosomata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Umbraculida</td>
</tr>
<tr>
<td></td>
<td>Subclass Neomphalina</td>
<td>Order N.N. (e.g., Neomphalidae)</td>
</tr>
<tr>
<td></td>
<td>Subclass Neritimorpha</td>
<td>Order Cycloneritimorpha</td>
</tr>
<tr>
<td></td>
<td>Subclass Patellogastropoda</td>
<td>Order N.N. (e.g., Patellidae)</td>
</tr>
<tr>
<td></td>
<td>Subclass Vetigastropoda</td>
<td>Order N.N. (e.g., Ataphridae)</td>
</tr>
<tr>
<td>Monoplacophora</td>
<td></td>
<td>Order Trybliidiida</td>
</tr>
<tr>
<td>Polyplacophora</td>
<td></td>
<td>Order Chitonida</td>
</tr>
<tr>
<td>Scaphopoda</td>
<td></td>
<td>Order Lepidopleurida</td>
</tr>
<tr>
<td>Solenogastres</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Aplotegmentaria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Cavibelonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Sterrofustia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superorder Pachytegmentaria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Neomeniamorpha</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order Pholidoskepia</td>
<td></td>
</tr>
<tr>
<td>Nemertea</td>
<td>Class Anopla</td>
<td>Order N.N. (e.g., Gorgonorrhynchidae)</td>
</tr>
<tr>
<td></td>
<td>Class Enopla</td>
<td>Order Monostilifera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order Polystilifera</td>
</tr>
<tr>
<td>Paleonemertea</td>
<td>(e.g., Carinomidae)</td>
<td></td>
</tr>
<tr>
<td>Phoronida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class N.N. (e.g., Phoronis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylum Platyhelminthes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subphylum Catenulidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Catenulida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subphylum Rhabditophora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Macrostomorpha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Haplopharyngida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Macrostomida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Neoophora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclass Eulecithophora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraclass Adiaphanida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Fecampiida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Prolecithophora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Tricladida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraclass Rhabdocoela</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Dalytyphloplanida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Endoaxonemata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Kalyptorhyncha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclass Neodermata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraclass Cestoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Amphilinidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Bothriocephalidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Caryophyllidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Cyclophyllidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Diphyllidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Diphyllobothriidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Gyrocotylidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Lecanicephalidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Litobothriidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Proteocephalidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Pseudophyllidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Rhinebothriidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Spathbothriidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Tetrabothriidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Tetraphyllidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Trypanorhyncha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraclass Monogenea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Capsalide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Chimaericolidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Dactylogryridea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Dicylbothriidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Gyrodactylidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Mazocraeidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Monocotylidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Montchadskyellidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Polystomatidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraclass Trematoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Aspidogastorida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Diplostomida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Plagiorchiida</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Order Stichocotylida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Polycladidea</td>
<td>Order Lecithoepitheliata</td>
</tr>
<tr>
<td>Class Polycladida</td>
<td>Order Proseriata</td>
</tr>
<tr>
<td>Subclass Proseriatia</td>
<td></td>
</tr>
</tbody>
</table>

Phylum Rotifera

Class Eurotatoria	
Class Monogonta	Order Flosculariaceae
Class Bdelloidea (e.g., Adinetidae)	Order Ploima
Subclass Monogonta	

Phylum Sipuncula

Class Phascolosomatidea	Order Seisonacea
Order Aspidosiphoniformes	Order Golfiniflorines
Order Phascolosomatiformes	Order Sipunculiformes
Class Sipunculidea	

Phylum Chordata

Subphylum Cephalochordata	Order Amphioxiformes
Subphylum Urochordata	
Class Appendicularia	Order Copelata
Class Ascidiacea	Order Enterogona
Class Thaliacea	Order Pyrosomida
Subphylum Vertebrata [= Craniata]	Order Salpida

InfraKingdom Deuterostomia

Infraphylum Agnatha	
Class Cephalaspidomorphi	Order Petromyzontiformes
Class Myxini	Order Myxiniformes

Infraphylum Gnathostomata	
Superclass Actinopterygii	Order Acipenseriformes
Class Chondrostei	Order Polypteraiformes
Class Cladistia	Order Amiiformes
Class Holostei	
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Class Teleostei</th>
<th>Order Lepisosteiformes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Acanthuriformes</td>
</tr>
<tr>
<td></td>
<td>Order Albulaformes</td>
</tr>
<tr>
<td></td>
<td>Order Plecocephaliformes</td>
</tr>
<tr>
<td></td>
<td>Order Anabantiformes</td>
</tr>
<tr>
<td></td>
<td>Order Anguilliformes</td>
</tr>
<tr>
<td></td>
<td>Order Argentiniformes</td>
</tr>
<tr>
<td></td>
<td>Order Ateleopodiformes</td>
</tr>
<tr>
<td></td>
<td>Order Atheriniformes</td>
</tr>
<tr>
<td></td>
<td>Order Aulopiformes</td>
</tr>
<tr>
<td></td>
<td>Order Batrachoidiformes</td>
</tr>
<tr>
<td></td>
<td>Order Beloniformes</td>
</tr>
<tr>
<td></td>
<td>Order Beryciformes</td>
</tr>
<tr>
<td></td>
<td>Order Blenniiformes</td>
</tr>
<tr>
<td></td>
<td>Order Carangiformes</td>
</tr>
<tr>
<td></td>
<td>Order Centrarchiformes</td>
</tr>
<tr>
<td></td>
<td>Order Characiformes</td>
</tr>
<tr>
<td></td>
<td>Order Cichliformes</td>
</tr>
<tr>
<td></td>
<td>Order Cirrhitiformes</td>
</tr>
<tr>
<td></td>
<td>Order Clupeiformes</td>
</tr>
<tr>
<td></td>
<td>Order Cynoniformes</td>
</tr>
<tr>
<td></td>
<td>Order Cyprinodontiformes</td>
</tr>
<tr>
<td></td>
<td>Order Elopiformes</td>
</tr>
<tr>
<td></td>
<td>Order Etheiiformes</td>
</tr>
<tr>
<td></td>
<td>Order Gadiformes</td>
</tr>
<tr>
<td></td>
<td>Order Galaxiiformes</td>
</tr>
<tr>
<td></td>
<td>Order Gobiiformes</td>
</tr>
<tr>
<td></td>
<td>Order Gonorynchiformes</td>
</tr>
<tr>
<td></td>
<td>Order Gymnotiformes</td>
</tr>
<tr>
<td></td>
<td>Order Hapaliformes</td>
</tr>
<tr>
<td></td>
<td>Order Holocentriiformes</td>
</tr>
<tr>
<td></td>
<td>Order Istiophiroides</td>
</tr>
<tr>
<td></td>
<td>Order Kurtiformes</td>
</tr>
<tr>
<td></td>
<td>Order Labriformes</td>
</tr>
<tr>
<td></td>
<td>Order Lampridiformes</td>
</tr>
<tr>
<td></td>
<td>Order Lepidogalaxiiformes</td>
</tr>
<tr>
<td></td>
<td>Order Lobotiformes</td>
</tr>
<tr>
<td></td>
<td>Order Lophiiformes</td>
</tr>
<tr>
<td></td>
<td>Order Mugiliformes</td>
</tr>
<tr>
<td></td>
<td>Order Myctophiformes</td>
</tr>
<tr>
<td></td>
<td>Order Notacanthiformes</td>
</tr>
<tr>
<td></td>
<td>Order Ophidiformes</td>
</tr>
<tr>
<td></td>
<td>Order Osmeriformes</td>
</tr>
<tr>
<td></td>
<td>Order Osteoglossiformes</td>
</tr>
<tr>
<td></td>
<td>Order Pempheriformes</td>
</tr>
<tr>
<td></td>
<td>Order Perciformes</td>
</tr>
<tr>
<td></td>
<td>Order Percopsiformes</td>
</tr>
<tr>
<td></td>
<td>Order Pholidichthyiformes</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superclass Chondrichthyes</td>
<td></td>
</tr>
<tr>
<td>Class Elasmobranchii</td>
<td></td>
</tr>
<tr>
<td>Order Carcharhiniformes</td>
<td></td>
</tr>
<tr>
<td>Order Heterodontiformes</td>
<td></td>
</tr>
<tr>
<td>Order Hexanchiformes</td>
<td></td>
</tr>
<tr>
<td>Order Lamniformes</td>
<td></td>
</tr>
<tr>
<td>Order Myliobatiformes</td>
<td></td>
</tr>
<tr>
<td>Order Orectolobiformes</td>
<td></td>
</tr>
<tr>
<td>Order Pristiformes</td>
<td></td>
</tr>
<tr>
<td>Order Pristiophoriformes</td>
<td></td>
</tr>
<tr>
<td>Order Rajiformes</td>
<td></td>
</tr>
<tr>
<td>Order Squaliformes</td>
<td></td>
</tr>
<tr>
<td>Order Squatiniformes</td>
<td></td>
</tr>
<tr>
<td>Order Torpediniformes</td>
<td></td>
</tr>
<tr>
<td>Class Holocephali</td>
<td></td>
</tr>
<tr>
<td>Order Chimaeriformes</td>
<td></td>
</tr>
<tr>
<td>Superclass Sarcopterygii</td>
<td></td>
</tr>
<tr>
<td>Class Coelacanthi</td>
<td></td>
</tr>
<tr>
<td>Order Coelacanthiformes</td>
<td></td>
</tr>
<tr>
<td>Class Dipnoi</td>
<td></td>
</tr>
<tr>
<td>Order Ceratodontiformes</td>
<td></td>
</tr>
<tr>
<td>Order Lepidosireniformes</td>
<td></td>
</tr>
<tr>
<td>Superclass Tetrapoda</td>
<td></td>
</tr>
<tr>
<td>Class Amphibia</td>
<td></td>
</tr>
<tr>
<td>Order Anura</td>
<td></td>
</tr>
<tr>
<td>Order Caudata</td>
<td></td>
</tr>
<tr>
<td>Order Gymnophiona</td>
<td></td>
</tr>
<tr>
<td>Class Mammalia</td>
<td></td>
</tr>
<tr>
<td>Subclass Prototheria</td>
<td></td>
</tr>
<tr>
<td>Order Monotremata</td>
<td></td>
</tr>
<tr>
<td>Subclass Theria</td>
<td></td>
</tr>
<tr>
<td>Infraclass Eutheria [= Placentalia]</td>
<td></td>
</tr>
<tr>
<td>Order Afrotheria</td>
<td></td>
</tr>
<tr>
<td>Order Artiodactyla</td>
<td></td>
</tr>
<tr>
<td>Order Carnivora</td>
<td></td>
</tr>
<tr>
<td>Order Cetacea</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Table 2. (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Order Chiroptera</td>
</tr>
<tr>
<td>Order Cingulata</td>
</tr>
<tr>
<td>Order Dermoptera</td>
</tr>
<tr>
<td>Order Erinaceomorpha</td>
</tr>
<tr>
<td>Order Hyaenoleidomorpha</td>
</tr>
<tr>
<td>Order Lagomorpha</td>
</tr>
<tr>
<td>Order Macroscelidea</td>
</tr>
<tr>
<td>Order Perissodactyla</td>
</tr>
<tr>
<td>Order Pholidota</td>
</tr>
<tr>
<td>Order Pilosa</td>
</tr>
<tr>
<td>Order Primates</td>
</tr>
<tr>
<td>Order Proboscidea</td>
</tr>
<tr>
<td>Order Rodentia</td>
</tr>
<tr>
<td>Order Scandentia</td>
</tr>
<tr>
<td>Order Sirenia</td>
</tr>
<tr>
<td>Order Soricomorpha</td>
</tr>
<tr>
<td>Order Tubulidentata</td>
</tr>
<tr>
<td>Infraclass Metatheria [= Marsupialia]</td>
</tr>
<tr>
<td>Order Dasyuromorpha</td>
</tr>
<tr>
<td>Order Didelphimorpha</td>
</tr>
<tr>
<td>Order Diprotodontia</td>
</tr>
<tr>
<td>Order Microbiotheria</td>
</tr>
<tr>
<td>Order Notoryctemorpha</td>
</tr>
<tr>
<td>Order Paucituberculata</td>
</tr>
<tr>
<td>Order Peramelemorpha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Reptilia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subclass Aves</td>
</tr>
<tr>
<td>Infraclass Neognathae</td>
</tr>
<tr>
<td>Superorder Galloanseri</td>
</tr>
<tr>
<td>Order Anseriformes</td>
</tr>
<tr>
<td>Order Galliformes</td>
</tr>
<tr>
<td>Superorder Neoaves</td>
</tr>
<tr>
<td>Order Accipitriformes</td>
</tr>
<tr>
<td>Order Apodiformes</td>
</tr>
<tr>
<td>Order Bucerotiformes</td>
</tr>
<tr>
<td>Order Caprimulgiformes</td>
</tr>
<tr>
<td>Order Cariniformes</td>
</tr>
<tr>
<td>Order Charadriiformes</td>
</tr>
<tr>
<td>Order Ciconiiformes</td>
</tr>
<tr>
<td>Order Coliiformes</td>
</tr>
<tr>
<td>Order Columbiformes</td>
</tr>
<tr>
<td>Order Coraciiformes</td>
</tr>
<tr>
<td>Order Cuculiformes</td>
</tr>
<tr>
<td>Order Euryaliformes</td>
</tr>
<tr>
<td>Order Falconiformes</td>
</tr>
<tr>
<td>Order Gaviiformes</td>
</tr>
<tr>
<td>Order Gruiformes</td>
</tr>
<tr>
<td>Order Leptosomiformes</td>
</tr>
<tr>
<td>Order Mesitornithiformes</td>
</tr>
<tr>
<td>Order Musophagiformes</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Echinodermata</td>
<td>Subphylum Asterozoa</td>
</tr>
<tr>
<td>Class Asteroidea</td>
<td>Order Brisingida</td>
</tr>
<tr>
<td></td>
<td>Order Forcipulatida</td>
</tr>
<tr>
<td></td>
<td>Order Notomyotida</td>
</tr>
<tr>
<td></td>
<td>Order Paxillosida</td>
</tr>
<tr>
<td></td>
<td>Order Peripoda</td>
</tr>
<tr>
<td></td>
<td>Order Spinulosida</td>
</tr>
<tr>
<td></td>
<td>Order Valvatida</td>
</tr>
<tr>
<td></td>
<td>Order Velatida</td>
</tr>
<tr>
<td>Class Ophiuroidea</td>
<td>Order Euryalida</td>
</tr>
<tr>
<td>Subphylum Crinozoa</td>
<td>Order Ophiurida</td>
</tr>
</tbody>
</table>

(Continued)
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Order</th>
<th>Comatulida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Cyrtocrinida</td>
</tr>
<tr>
<td>Order</td>
<td>Hyocrinida</td>
</tr>
<tr>
<td>Order</td>
<td>Isocrinida</td>
</tr>
</tbody>
</table>

Subphylum Echinozoa

Class Echinoidea

Subclass Cidaroida

Order Cidaroida

Subclass Euechinoidea

Infraclass N.N.

Order Echinothurioida

Infraclass Acroechinoidea

Order Aspidodiadematoida

Order Diadematoida

Order Micropygoida

Order Pedinoida

Infraclass Carinacea

Order Arbacioida

Order Camarodonta

Order Salenioida

Order Stomopneustoida

Infraclass Irregularia

Order Cassiduloida

Order Clypeasteroida

Order Echinolampadoida

Order Holasteroida

Order Spatangoida

Class Holothuroidea

Order N.N. (Thyone)

Order Apodida

Order Aspidochirotida

Order Dendrochirotida

Order Elasipodida

Order Molpadida

Phylum Hemichordata

Class Enteropneusta (e.g., Harrimaniidae)

Class Pterobranchia

Subclass Cephalodiscida (Cephalodiscus)

Subclass Graptolithina

Order Rhabdopleurida

Phylum Xenacoelomorpha

Subphylum Acoelomorpha

Class Acoela (e.g., Diopisthoporidae)

Class Nemertodermatida (e.g., Nemertodermatidae)

Subphylum Xenoturbellida

Class N.N. (Xenoturbellidae)

Names below rank of infrakingdom are arranged alphabetically within each parent rank, except for taxa that are not named (N.N.). Brackets indicate synonyms. Quoted names are not validly published but in common use.

doi:10.1371/journal.pone.0119248.t002
the many taxa therein and provides for easier import and manipulation of data by information systems.

Supporting Information

S1 Appendix. List of sources consulted for proposed higher level classification of all living organisms. (PDF)

S1 Table. Proposed hierarchical classification from superkingdom to order. (XLSX)

Acknowledgments

We thank those on the expert panel who are not authors of this paper for their valuable contributions earlier in this process. In addition, we are very grateful to David Nicolson for his help in reviewing and improving the many drafts of the classification, Brian Tindall and Peter Stevens for their helpful review of the draft manuscript, and the three PLoS reviewers for their useful comments. We also thank Gloria Ruggiero for her excellent editorial work on the manuscript.

Author Contributions

Conceived and designed the experiments: MR DG NB TB RC-S MG PK TO. Analyzed the data: MR DG NB TB RC-S MG PK TO. Wrote the paper: MR DG NB TB RC-S MG PK TO.

References

8. Vences M, Guayasamin JM, Miralles A, De la Riva I. To name or not to name: criteria to promote economy of change in Linnaean classification schemes. Zoo taxa. 2013; 3636: 201–244.

