Historical Evolution of Mud deposition and erosion in intertidal areas of the Scheldt estuary

Wang, C.(1,2); Vanlede, J.(3); Temmerman, S. (2); Vandenbruwaene, W. (3), Plancke, Y. (3)

(1) Satellite Environment Center, Ministry of Environmental Protection of P. R. China, Beijing, P.R. China
(2) University of Antwerp, Ecosystem Management Research Group, Antwerp, Belgium,
(3) Flanders Hydraulics Research, Flemish Government, Antwerp, Belgium,

joris.vanlede@mow.vlaanderen.be
Inhoud

- Study Framework
- Methodology
- Results
 - Saeftinghe
 - General mass balance

Study Framework

- Mud Balance of the Sea Scheldt
 - Historical evolution
 - Mass Balance [TDM/yr]
- Historical Evolution of Mud deposition and erosion in intertidal areas of the Scheldt estuary
 - How much sediment is stored /yr in intertidal areas?
 - 1 consistent methodology over entire estuary
Method: Ecotopes

Ecotope Change

- Subtidal -> Intertidal
- Intertidal <-> Subtidal
- Intertidal -> Marsh
- Marsh <-> Intertidal
- Stable Intertidal
- Stable Marsh
- Marsh

Vegetation Maps

MLWS

Subtidal zone

Intertidal Flat

Marsh

Ecotopes Change (1959 – 1988)

Ecotope change between 1959 and 1988

Ecotope1959, Ecotope1988
- Intertidal flat, No data
- Marsh, Marsh
- Marsh, Intertidal flat
- Marsh, Subtidal zone
- No data, Marsh
- No data, Intertidal flat
- Intertidal flat, Intertidal flat
- Intertidal flat, Subtidal zone
Method: Zonation

Method: overview

Ecotope Change class (6)

\[
\Delta \text{Mud Mass} [\text{TDM}] = \Delta \text{Height} [\text{m}] \times \text{Area} [\text{m}^2] \times \text{Mud content} [%] \times P \text{ Dry Bulk} [\text{kg/m}^3]
\]

500 +/- 100 kg/m³
Mud deposition in Saeftinghe

(a) 1931
(b) 1963

(c) 1992
(d) 2004

Elevation (m MHRSL)

-5 1.5

Mud deposition in Saeftinghe
(zone 7)

1931 - 1963

90,000 TDS/yr

1963 - 1992

70,000 TDS/yr

1992 - 2004

90,000 TDS/yr

2004 - 2011

25,000 TDS/yr
Mud deposition and erosion in intertidal areas

Mass (ton/year)

<table>
<thead>
<tr>
<th>Location</th>
<th>Stable marsh</th>
<th>Stable intertidal flat</th>
<th>Marsh -> Intertidal flat</th>
<th>Intertidal flat -> Marsh</th>
<th>Intertidal flat -> Subtidal zone</th>
<th>Subtidal zone -> Intertidal flat</th>
<th>All intertidal areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Scheldt (1931-2010)</td>
<td>69,000</td>
<td>43,000</td>
<td>-11,000</td>
<td>22,000</td>
<td>-308,000</td>
<td>227,000</td>
<td>43,000</td>
</tr>
<tr>
<td>Sea Scheldt (1930-2011)</td>
<td>44,000</td>
<td>-5,000</td>
<td>1,000</td>
<td>20</td>
<td>-11,000</td>
<td>7,000</td>
<td>36,000</td>
</tr>
</tbody>
</table>

Conclusions

- Intertidal areas are a net sink of mud in both the Western Scheldt and Sea Scheldt
 - 43,000 TDM/yr for Western Scheldt
 - 36,000 TDM/yr for Sea Scheldt
- Important dynamics between intertidal & subtidal zone in the Western Scheldt
 - Gross mass fluxes one order of magnitude bigger than total net flux
- Accuracy of the method is limited in the Sea Scheldt, due to data availability
Conclusions

- A stable marsh captures about 4x more sediment TDS/ha than a stable intertidal flat
 - Sedimentation on stable marches (Saeftinge!) is more important (x1.6) than sedimentation on stable intertidal flats in the Western Scheldt.
 - But there’s 2.5 times more surface area of intertidal flats on average.
- After 2004, most of the marshes in Saeftinghe are above MHWL and close to the upper limit in elevation, resulting in a slower increase in elevation and less mud deposition

Acknowledgements

- Rijkswaterstaat & INBO & HIC & aMT & UA-Ecobé group for providing data
- Divisions Maritime Access and Sea Scheldt as partners in the Mud Balance research

Technical Report