DESIGN AND CONSTRUCTION OF CAMBERED V-DOORS

by

Klaus Lange
Institut für Fangtechnik
Bundesforschungsanstalt für Fischerei
Palmaille 9, D-22767 Hamburg

ABSTRACT

Based on the assumption of a circular camber the upper and lower section of a cambered V-door can be considered as parts of the surfaces of two intersecting circular cones. The surface of a circular cone is developable. The dimensions of the flat plate to be transformed into the final shape of the door section can be calculated. A numerical example is presented to explain the design process.
Since the first publications on V-doors in the early sixties [1], [2], [3], [4] this type of door has become popular all over the world especially with inshore trawlers. The form (V-shape) enables the door to pass easily over obstacles on the sea bottom which is an important advantage on rough fishing grounds compared to the traditional flat rectangular doors. The main disadvantage of V-doors is the comparatively low lift coefficient of $c_L = 0.7$ [5]; 0.85 [6] which is even less than the corresponding coefficient of the flat rectangular otterboard $c_L = 0.95$ [5], [7], [8].

Since the investigations of OERTZ with flat and cambered trawl doors the positive influence of camber on the lift coefficient is known [9], [10], [11], today most trawl doors are cambered. Wind tunnel tests with flat and cambered V-doors proved the increase of the lift coefficient c_L when giving a camber to a flat V-door [12]. The results were confirmed by full scale trials with flat and cambered V-doors of the same projected area [13]. Similar results were found with model tests in flume tanks [8].

In contrast to these published data on the hydrodynamic performance of cambered V-doors there is no publication until now on the design procedure of this type of otterboard. This paper describes a method how to design a cambered V-door with circular camber.

With $h =$ height of the trawl door $l =$ length of the trawl door $c =$ camber $\gamma =$ V-angle

we make the following assumption:

- projected area of the door $A = h \times l = 4.5 \text{ m}^2$
- aspect ratio $AR = h/l = 0.5$
- camber $10 \% = 0.1 \text{ m} = 0.3 \text{ m}$
- V-angle $= 15^\circ$

From $A = 4.5 \text{ m} \times 1 \times h$

$AR = 0.5 \text{ m} = 1/h$

we get $l = 3.0 \text{ m}$

$h = 1.5 \text{ m}$

Upper and lower part of the otterboard are equal. They are considered as parts of the surfaces of two equal circular cones intersecting at half of the height h of the otterboard.

The radius R_i of the cone at the intersecting curve is calculated (see Fig. 1)

$$R_i^2 = \left(\frac{1}{2}\right)^2 + (R_i^2 - c)^2$$
\(R_i = \frac{(1/2)^2 + c^2}{2 \times c} = 3.90 \, \text{m} \)

The corresponding radius at the upper edge of the board \(R_a \) is

\[R_a = R_i + \frac{1}{2} \times \tan \gamma \]

\[= 4.101 \, \text{m} \]

The lengths of the generating lines \(m_i, m_a \) are:

\[\sin \gamma = \frac{R_i}{m_i} = \frac{R_a}{m_a} \]

\[m_i = \frac{R_i}{\sin \gamma} = 15.068 \, \text{m} \]

\[m_a = \frac{R_a}{\sin \gamma} = 15.844 \, \text{m} \]

On the developed surface of the cone the arc \(b_i \) being part of a circle with the radius \(R_i \) becomes part of a circle with the radius \(m_i \).

The length of the arc \(b_i \) is calculated as follows:

\[\sin \alpha/2 = \frac{h/2}{R_i} \]

\[b_i = \frac{2 \pi R_i}{360} = 3.079 \, \text{m} \]

The corresponding arc of the upper edge of the board \(b_a \) is

\[b_a = \frac{2 \pi R_a}{360} = 3.238 \, \text{m} \]

On the developed surface of the cone the angle \(\beta \) corresponding to the arcs \(b_i \) and \(b_a \) is calculated:

\[\frac{2 \pi m_i}{360} = \frac{b_i}{\beta} \]

\[\beta = \frac{b_i \times 360}{2 \pi m_i} = 11.73^\circ \]
The lengths of the corresponding cords are

\[
\sin (\beta/2) = \frac{s_i}{2 m_i} \quad s_i = 3,063 \text{ m}
\]

\[
\sin (\beta/2) = \frac{s_a}{2 m_a} \quad s_a = 3,221 \text{ m}
\]

The maximum camber of the arc is

\[
c_i = m_i (1 - \cos \beta/2) = 0.078 \text{ m}
\]

\[
c_a = m_a (1 - \cos \beta/2) = 0.082 \text{ m}
\]

The distance \(d\) between the two cords \(s_i\) and \(s_a\) is

\[
d = (m_a - c_a) - (m_i - c_i) = 0.772 \text{ m}
\]

With these figures the sector of the cone's surface can be designed on a flat plate to be formed into the cambered upper and lower part of the V-door.

\[\text{Literature}\]

Model tests with 3 bottom trawl otterboards.

[8] SFIA, Hull; IFREMER, Brest; DIFTA, Hirtshals
Otterboard Performance and Behaviour.
Final Report, Contract No. TE 1214, Research Programme of the Commission of the European Communities in the Fisheries Sector (FAR).

[9] Oertz, M.
Neue Gesichtspunkte bei Scherbrettern.
Der Fischerbote Nr. 9, 1921.

[10] Oertz, M.
Oertzwerke mbH in Hamburg: Scherbrett für Grundnetze.
Deutsches Reich, Reichspatentamt. Patentschrift Nr. 345642 v. 17. 7. 1920, Klasse 45 H, Gruppe 73/04.

Some of the general engineering principles of trawl gear design.

[12] Lange, K.
Wind tunnel tests with cambered trawl doors of the V-type.
ICES C. M. 1987/B:38.

[13] Lange, K.
Untersuchungen an V-Form-Scherbrettern.
Informationen für die Fischwirtschaft Nr. 1, 1989.
Fig. 1

Sector of the developed surface of the cone