The impact of underwater noise on the early life stages of fish

Elisabeth Debusschere¹,³*, Alain Norro², Sofie Vandendriessche¹, Kris Hostens¹, Magda Vincx³, Dick Botteldooren⁴ and Steven Degraer²,³

¹ Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences, Biological Environmental Research
²Royal Belgian Institute of Natural Sciences, Management Unit of North Sea Mathematical Models (MUMM)
³University of Ghent, Biology Department, Marine Biology Section
⁴University of Ghent, Department of Information Technologie, Research Group Acoustics

MSFD 11th Descriptor to achieve a Good Environmental Status (GES)
‘Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment’

Offshore wind farm at Bligh Bank (Belgium)
Background noise: ~90-100 dB re 1µPa for frequencies ranging between 10 – 2000 Hz.
Construction phase: pile-driving generates strong impulse low frequency underwater noise over a short period. Estimated sound pressure level (SPL peak) is 270.7 dB re 1 µPa @ 1m.
Operational phase: continuous low frequency noise generation for the next 20 years, which is on average ~20 dB higher than the background noise.

Sound susceptibility of marine fish
Depends on complexity of the hearing structures
e.g. the presence of a swim bladder and the presence of a connection between a gas bladder and the inner ear. The specialization of the hearing mechanisms determines the width of the hearing frequency range and the hearing threshold level
Depends on active or passive transport
The transport of fish eggs and larvae is mainly determined by the currents in contrast to the juveniles and adults which can actively swim away from the sound source

1. Sound parameters
Particle motion: measured by 3 accelerometers
Sound pressure: measured by 1 hydrophone
• Sound pressure level (SPL)
• Single strike and cumulative sound exposure level (SEL)

2. Test organisms are eggs, larvae and juveniles of
Sole (Solea solea) European seabass (Dicentrarchus labrax) Cod (Gadus morhua)
© Palazzi et al. (2006) © Alice Bui © Hans Hillewaert

3. Research opportunities at sea
2013: Construction of monopiles at Lodewijkbank
2014: Construction of mono-/pinpiles at Bligh Bank

4. Experimental design
Cage experiments: Impact of pile-driving on juvenile fish
• Different short-term exposure periods and distances from the construction site
• Monitoring of behaviour and survival in cages during and a necropsy after exposure
Playback experiments:
(1) Impact of short-term exposure to pile driving noise on eggs, and larvae
(2) impact of long-term exposure to operational noise on eggs, larvae and juveniles
• Transducers play back the recorded sound in the aquaria
• Different embryonic and larval stages will be exposed
• Effects on behaviour, physiology, morphology, and survival will be monitored before, during and after exposure

5. Outreach
• Providing essential data for the process of establishing GES noise boundaries (policy)
• Conducting research in consultation with construction companies (sector)
• Building on existing knowledge on fish welfare and underwater noise characteristics (science)

*Elisabeth.debusschere@ugent.be, Ghent University, Marine Biology Research Group, Krijslaan 281 Sterre S8, 9000 Ghent, Belgium
This study is financed by the Agency for Innovation by Science and Technology in Flanders (IWT)