











## GOOS - Biology & Ecosystems Panel Second Panel meeting 19-21 September 2016 IODE Offices, Oostende, BELGIUM **MEETING REPORT**

#### Participants:

Nic Bax, Samantha Simmons, Patricia Miloslavich, Ward Appeltans, Albert Fischer, Frank Muller-Karger, Raphael Kudela, Sanae Chiba, Sonia Batten, David Checkley, David Obura, Lisandro Benedetti-Cecchi, Emmet Duffy, Yunne Shin, Bernadette Sloyan, Artur Palacz, Glen Nolan, Gabrielle Canonico, Pieter Provoost.



#### STEERING COMMITTEE

John Gunn, SC co-chair CEO, Australian Institute of Marine Science Townsville QLD 4810, Australia J.Gunn@aims.gov.au

#### PROJECT OFFICE

GOOS Project Office

Albert Fischer
Head, Ocean Obs. and Serv. Section
IOC/UNESCO
7 pl de Fontenoy
75007 Paris, France a.fischer@unesco.org

#### PHYSICS PANEL

GCOS-GOOS-WCRP Ocean Observations | led by the SCOR-IOC International Ocean GOOS Biology and Ecosystems Panel for Climate (OOPC) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Coordination Project (IOCCP) | GOOS Biology and Ecosystems Panel Carbon Co

Katherine Hill Scientific Officer GCOS Secretariat, c/o WMO 7bis, av de la Paix 1211 Geneva, Switzerland KHill@wmo.int

#### BIOGEOCHEMISTRY PANEL BIOLOGY PANEL

Maciej Telszewski IOCCP Director IO PAN Ul. Powstancow Warszawy 55 81-712 Sopot, Poland m.telszewski@ioccp.org

Patricia Miloslavich International Project Officer AIMS, Townsville QLD 4810, Australia p.miloslavich@aims.gov.au

Ward Appeltans Programme Specialist
IOC/UNESCO, 8400 Oostende, Belgium
w.appeltans@unesco.org

#### Proposed goals of the meeting:

- Update on GOOS BioEco activities since February 2016: status of proposed EOVs, collaborations, survey results, communication/engagement, contribution to new GCOS IP, etc
- Update from panel members on their GOOS related activities through a SWOT analysis
- Discuss/visualize survey results on state of biological ocean observations: What other product can be developed with this data?
- Revise paper draft: Identifying biological global EOVs
- Continue to develop EOV specification sheets: re-assess proposed EOVs (specifically Phytoplankton-HABs and Apex predators)
- Strengthening collaboration within the biological community (MBON, EMBRC, WAMS, CBD, ICES....) and across disciplines (Multi-Disciplinary Sustained Ocean Observations Workshop)
- Provide input for GOOS Strategic and Implementation Plans
- Discuss governance aspects (e.g. Terms of Reference)
- Discuss communication and outreach strategy [Newsletter? Additional information on Web page (http://goosocean.org/)? Social networks? Meetings to target?]
- Update work plan: identify goals, activities, challenges, strategy at short (12 months), medium (24 months), and long term (5 years).
- Discuss funding sources and propose strategy

#### Expected products of the meeting:

- Revised (near to completion) drafts of the specification sheets for the proposed biological EOVs
- Summary of activities and plans of the panel (to provide feedback to GOOS office in IOC and GOOS SC)
- Revised action plan including strategy to implement EOVs, coordination and collaboration among observing systems, communication, papers, meeting participation, funding (proposal submission) and schedule
- Near to submission draft of paper: Identifying biological global EOVs
- From survey data: identify observation coordination needs with the broader community for each of the EOV areas (including setting of standards and sharing of best practice) and ideas on how to encourage organization of common databases and data streams.
- Revised Terms of Reference for Panel

#### 1) Introduction and update

Panel members and other participants were welcomed by chairs Samantha Simmons and Nic Bax and host Ward Appeltans. After a brief round of introductions from each of the participants, Project Officer Patricia Miloslavich provided an update of activities and review of progress since the New Orleans Panel meeting in February 2016 as well as the goals and expected outputs of this meeting.

One of the slides of the presentation showed the impact/feasibility graph generated with the results of the DPSIR analysis. This analysis identified the drivers and the pressures as addressed by international bodies/conventions to support biological ocean monitoring as well as the current state of observations as compiled by an on-line survey with more than 100 responses from observing programs and networks. This

slide generated a very productive discussion on data sharing, especially for fisheries, to be summarized in the section corresponding to the EOV/DPSIR paper.

#### 2) Specification sheets

Bernadette Sloyan, chair of the GOOS Physics Panel summarized the process followed by this panel to select their EOVs. She explained how the physics oceanographic community came together in the 90s through the World Ocean Circulation Experiment WOCE) which was initially driven by science and had the support of the countries. The WOCE led to advances in technology such as the CTD and ARGO. With regard to what is measured, where and how, Sloyan also pointed out that some variables may be monitored at the global level and some may not, and that not all measurements fit into an international coordination framework. In the case of the Physics Panel, built on the OOPC (Ocean Observations Panel for Climate), EOVs had been pre-determined within societal benefit areas (earth energy, carbon, and water cycles) and framed within scientific questions. "Climate" to be considered as anything beyond the 7-day forecast for weather.

This introduction was followed by an overview of the GOOS specification sheets. This overview was largely based on discussion held on the previous days during the "GOOS cross-panel meeting" held on the 16-17<sup>th</sup> of September in which definitions for the different terms contained in the specification sheets were discussed across the three panels and developed in a consistent and standardized way (e.g. EOV, phenomena, sub-variables, supporting variables, derived products, platforms and networks, etc., see definitions below). The "GOOS cross-panel meeting" was attended by chairs and secretariat of the three GOOS panels. During the discussions that followed with the GOOS BioEco Panel, the definition of EOV was further refined to also reflect the relevance of the local scale and to address the wording of the UN-SDGs. This will facilitate the gradual connection between the BioEco Panel and major groups of societal interest such as the CBD and the BIP (Biodiversity Indicators Partnership). Albert Fisher pointed out that there should be some product showing how the EOVs can deliver to certain kinds of indicators, and this maybe could be the opportunity to interact with the IPCC.

#### **Definitions**

A GOOS *Essential Ocean Variable* is a sustained measurement or group of measurements necessary to assess ocean state and change of a global nature, universally applicable to inform societal benefits from the ocean at local, regional, and global scales.

**Sub-variables** are components of the EOV that may be measured, derived or inferred from other elements of the observing system and used to estimate the desired EOV.

**Supporting variables** are other EOVs or other measurements from the observing system that may be needed to deliver the sub-variables of the EOV.

**Complementary variables** are other EOVs and/or EBVs that are necessary to fully interpret (describe?) the phenomena or understand impacts on the EOV of natural and anthropogenic pressures.

**Derived products** are calculated from the EOV and other relevant information, in response to user needs.

A **phenomenon** is an observable process, event, or property, measured or derived from one or a combination of EOVs, having characteristic spatial and time scale(s) that addresses the GOOS Scientific Questions.

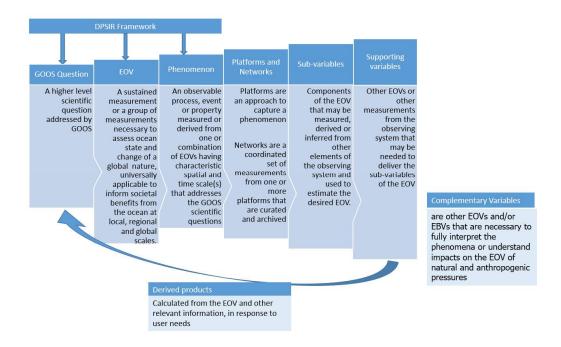



Figure 1. Schematic of EOV associated definitions and levels

Based on the morning discussions and the provided definitions and guidance, the Panel started working on our specification sheets. Initial focus was on defining major questions that could be considered as initial rallying-calls. Questions were to be framed within the drivers and pressures identified within the international conventions, and within the three GOOS themes (Climate, Operational Services, Ocean Health):

- Drivers: Knowledge, Sustainable use of biodiversity, biodiversity conservation, capacity building, economic growth, management, environmental quality, threat prevention, food security.
- Pressures: Loss of resources (habitat/biodiversity/overfishing), climate change, pollution, coastal development, invasive species, solid waste, ocean acidification, extreme weather events, noise, mining

#### Other points considered:

- The Census of Marine Life framework What lived in the oceans? What lives in the oceans? What will live in the oceans? This was noted as very powerful in terms of the simple and strong message.
- What is the (current) measurable baseline for life in the oceans?
- Important to think about how EOVs/phenomena feed into management/decision making and international and national/local reporting requirements
- How is society impacting life in the oceans?

#### Overarching questions:

- What is the current status of life in the ocean?
- How is life in the ocean changing?
- What are the natural and anthropogenic drivers of changing life in the oceans?
- How does the changing life in the ocean affect ecosystem function, (health and services)?

These overarching questions then may have different levels of information. For example, for the question "What is the current status of life in the ocean?" the next level would be to ask about specific variables to define this status such as biodiversity, distribution, and abundance.

| GOOS                                              | Physics                                                                | Biogeochemistry                                         | Biology                                                                      |
|---------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| Current state of                                  | What is required for the                                               | Ocean carbon content                                    | What is the current                                                          |
| oceans                                            | regular assessment of<br>the current ocean state<br>and its evolution? | How large are the ocean's dead zones                    | status of life in the ocean?                                                 |
|                                                   |                                                                        | Is the biomass of the oceans changing                   |                                                                              |
| Predictions of future conditions                  | Operational ocean services                                             | How is ocean carbon content changing?                   | How is life in the ocean changing?                                           |
|                                                   |                                                                        | How fast are ocean dead zones growing?                  |                                                                              |
|                                                   |                                                                        | Is the biomass of the oceans changing?                  |                                                                              |
| Projection of trends                              | Projection of ocean state                                              | Carbon content                                          | What are the natural                                                         |
|                                                   | and its variability on society (sub-seasonal,                          | Dead zones                                              | and anthropogenic drivers of changing                                        |
|                                                   | inter-annual, decadal)                                                 | Biomass                                                 | life in the oceans?                                                          |
| Human impact on                                   | Society's impact on the                                                | How do eutrophication and                               | What are the                                                                 |
| oceans                                            | oceans                                                                 | pollution impact ocean productivity and water condition | anthropogenic<br>drivers of changing                                         |
|                                                   |                                                                        | productivity and water condition                        | life in the oceans?                                                          |
| Impact of changing                                | Ocean knowledge for                                                    | What are the rates and impacts                          | How does the                                                                 |
| oceans on societal benefit                        | climate forecast and projection                                        | of ocean acidification                                  | changing life in the ocean affect ecosystem function, (health and services)? |
| Interactions with                                 | Physics links to                                                       | How does ocean influence                                | Understanding why life                                                       |
| other components of<br>global observing<br>system | Biogeochemistry and<br>Ecosystems                                      | cycles of non-CO2 greenhouse gasses                     | in the oceans is changing.                                                   |

#### Phenomena:

As background for discussion in this section, biological oceanographic phenomena had been synthesized by considering 1) general oceanographic processes, 2) phenomena as proposed in the specification sheets drafts, and 3) those addressing pressures as identified in the international conventions (see Table below).

| Specification sheets drafts                                                                                                                                       | Pressures                                                                                                                                                 | Biological processes                                                                                      | All combined                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resource availability in higher trophic levels Ecosystem damage and health threat by high-biomass blooms Acidification Climate change Status of marine ecosystems | Climate change Ocean acidification Extreme weather events "Loss of resources": habitats / biodiversity (including overfishing) Pollution / eutrophication | Primary production Secondary production Trophic interactions Biodiversity Connectivity Ecosystem services | Production: primary, secondary, biomass, abundance, resource availability, food security  Biodiversity: species diversity, trophic interactions, quality of resources  Distribution: connectivity  Ecosystem health: environmental quality  Human impact: acidification, climate change, ecosystem damage |

Each participant considered this list as well as their area of expertise and proposed their top five major phenomena. This exercise led to a list of phenomena that were then grouped within seven categories or themes: biology, shifts, production, extreme events, movement, species / populations, environment (see file "Phenomena Post-its Sept2016.xlxs"). For each EOV, experts could then select from this list of phenomena those that could be addressed by the EOV and its sub-variables (see file: "specsheet topfive combined.xlxs"). Panel members will continue to work on the specification sheets in the next two weeks following the meeting. Some of the required visions include a clear distinction between phenomena and derived products and noting in the introduction which drivers and which pressures are being addressed by each particular EOV. Once the spec sheets are completed by the appointed panel expert (s), these will be exchanged for internal review among other panel members of different expertise and then go to a first external review by experts (see list below). For these initial external reviewers, it was agreed that a one-two pager explaining what the EOVs are. and what purpose the spec sheets serve would be provided as background material. It was also suggested that after this, all spec sheets should be reviewed internally within the GOOS community by one member of the GOOS SC. After these reviews, the specification sheet authors (GOOS BioEco panelists) would have the opportunity to revise and address all feedback, which will then posted on the GOOS website for public, wide external review by the scientific community. Ideally, the wide external review through the GOOS website should be scheduled after the publication of the EOV/DPSIR paper.

| EOV                                       | Responsible (s) | Panel Reviewer | External Reviewer (suggested)   |
|-------------------------------------------|-----------------|----------------|---------------------------------|
| Phytoplankton<br>biomass and<br>diversity | Frank, Raphael  | Sonia, Dave    | Peter Thompson,<br>Todd O'Brien |

| Zooplankton<br>biomass and<br>diversity                     | Sonia, Sanae,<br>Dave | Raphael, Dave              | Anthony<br>Richardson, Tony<br>Koslow                              |
|-------------------------------------------------------------|-----------------------|----------------------------|--------------------------------------------------------------------|
| Fish abundance and distribution                             | Yunne, Dave           | Frank, David               | Francis Marsac,<br>John Gunn, Kevin<br>Weng                        |
| Turtles, birds,<br>mammals<br>abundance and<br>distribution | Sam, Nic              | Sanae, Yunne               | Dan Costa, Bryan<br>Wallace, Henri<br>Weimerskirch                 |
| Live coral                                                  | David                 | Sanae, Emmett,<br>Lisandro | Jorge Cortés, Aldo<br>Croquer, Hugh<br>Sweatman, Rusty<br>Brainard |
| Seagrass cover                                              | Emmett                | Frank, Sonia,<br>Lisandro  | L.J.McKenzie,<br>Carlos Duarte,<br>Fred Short                      |
| Macroalgal canopy cover                                     | Lisandro              | Raphael, Emmet,<br>David   | JJ Cruz, Sergio<br>Navarrete                                       |
| Mangrove cover                                              | TBD                   | TBD                        | TBD                                                                |

David Checkley suggested to contact Octavio Aburto, assistant professor at SIO to provide advice on how to move forward the mangrove EOV.

Further discussions raised the question on how often would the spec sheets need to be revised once they are permanently posted on the GOOS website and by whom? In this regard, the general agreement was that the spec sheets should be open to receive comments anytime through the website, and then once a year, the Panel would revise these on their annual meeting. The specifications sheets should reflect some version control or indicate a "date last updated" to track these revisions.

#### 3) SWOT analysis from the observation programs and networks

Panel members provided an update of their GOOS related activities as well as a SWOT analysis (internal strengths and weaknesses, external opportunities and threats) within the context of how each of the programs they represent may interact better with GOOS.

-Frank Muller-Karger: Global MBON

-Raphael Kudela: Harmful Algal Blooms (HABs)
-Sonia Batten: Global Alliances of CPRs (GACs)

-Sanae Chiba: BIP-indicators-David Checkley: CALCOFI

-Emmet Duffy: Smithsonian Marine-GEO
-Lisandro Benedetti-Cecchi: EMBOS
-David Obura: Coral MBON / GCRMN

-Yunne Shin: IndiSeas

- -Nic Bax: NERP Marine Biodiversity Hub and links to the CBD
- -Sam Simmons: Animal Telemetry Network

### Marine Biodiversity Observation Network (MBON) – Frank Muller-Karger

| Strengths                                                                                                                                              | Weaknesses                                                                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Build on historical efforts:  Census of Marine Life GOOS                                                                                               | EBV-EOV not linked to SDG indicators (SDG-14) or Aichi Targets                                                                                                                                                                                     |  |
| Interest in concept: Many people willing to help  Conceptual framework for collaborative MBON:                                                         | Massive task nationally, internationally     Slow in communicating benefits to operational groups that could support Common problem: lack of willingness to share data  Operational MBON – no clear path to sustainability  Lack of a data archive |  |
| Opportunities                                                                                                                                          | Threats                                                                                                                                                                                                                                            |  |
| Evolve from and build on Census of Marine<br>Life<br>Link EOV with EBV                                                                                 | Rapid bureaucratic growth Limited funding and short time to define sustainability                                                                                                                                                                  |  |
| Work with and through GOOS Bio-Eco Panel GOOS observation network to 'deploy'/test MBON concepts                                                       | Competition between programs  complicated finding resources (i.e. Future Earth/Future Oceans elements can be an opportunity or a threat)                                                                                                           |  |
| OBIS network and infrastructure  Can OBIS serve community with a data archive?  Building critical international partners and linkages for Pole-to-Pole | Unwillingness of people and agencies to collaborate  Time is ticking                                                                                                                                                                               |  |
| Data system / visualization tool eDNA development and validation, implementation                                                                       |                                                                                                                                                                                                                                                    |  |

| Curation and permanent archive of biological datasets         |
|---------------------------------------------------------------|
| Communications: coordination, news, outreach                  |
| Integrating MBON observations with other operational programs |
| Operational MBON - path to sustainability is a possibility    |

## Global Harmful Algal Blooms (Global-HABs) – Raphael Kudela

| Strengths                                                                             | Weaknesses                                                                                            |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Phytoplankton Diversity/Productivity highly ranked and/or measured by multiple        | Complicated question—very little standardization on measurements/reporting                            |
| International support/coordination                                                    | Automated analysis is expensive and still an emerging technology                                      |
| OBIS, WORMS, HAEDAT                                                                   | No requirement for reporting                                                                          |
| Recognition that chlorophyll (biomass) is not sufficient                              |                                                                                                       |
| Well-defined baseline technology, emerging automated systems                          |                                                                                                       |
| Easy to justify in terms of DPSIR                                                     |                                                                                                       |
| Opportunities                                                                         | Threats                                                                                               |
| Many groups moving forward in parallel                                                | The single biggest threat is that it is easy to                                                       |
| Emphasis on biodiversity at an international level requires moving beyond chlorophyll | go back to coarse-resolution, global estimates of chlorophyll and productivity                        |
| Enumeration of plankton diversity addresses needs of multiple groups:                 | While groups are enthusiastic they are primarily scientific, not driven by intergovernmental mandates |
| <ul><li>HABs</li><li>Biodiversity</li></ul>                                           | For HABs specifically, the HAB community may not support "Phytoplankton Diversity" if                 |

## Global Alliances of CPR (GACs) – Sonia Batten

| Strengths                                                                        | Weaknesses                                                                          |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| CPR Surveys are a "mature" strategy for large-scale biological ocean monitoring. | CPR Surveys are not global; tropical and Arctic regions barely sampled              |
| Could be initiated anywhere, now, with high chances of success                   | Sampling does not capture the whole plankton community                              |
| While not completely global, many of the world's regions have CPR time series.   | Labour intensive (currently) to work up the samples and requires taxonomic training |

• Enables large scale, inter-ocean comparisons

Provide taxonomically resolved data.

 Essential for biodiversity-related studies

Have a sample archive for new analyses/techniques (e.g. molecular studies, stable isotopes)

Increased future applicability, but backwards-compatible

Cost-effective sampling

Using commercial ships, sampling is essentially free.

The CPR is an adaptable platform for other instrumentation

• Expensive, in most countries.

Takes time to learn skills and time to process samples

Large amounts of taxonomic data are cumbersome to handle and require synthesis to produce informative and relevant indicators.

"Global" survey is comprised of independent local surveys

- Different funding strategies required
- Different levels of vulnerability
- Coordination (GACS) required which has additional resource implications

#### Opportunities

The push towards understanding and including biodiversity by global conventions – needs taxonomic resolution

Similarity between satellite data and CPR

Near-surface, large scale horizontal coverage by both offers synergies

Utilising the ever-increasing global shipping industry

 "Greening of the fleet" should be attractive - mitigates emissionseffects, provision of social responsibility.

#### Threats

Newer technologies may be more "attractive" to funders, even if more costly

 Cool tech. may be more easily funded by wealthy, often tech-based, Foundations

Investment in autonomous technology by CPR "competitors".

Digital data increasingly more visible/attractive

- No need for hard-to-acquire taxonomic skills
- More "operational" data delivery in modern times
- No expensive archive to maintain

International funding is generally in decline due to global economy and political events (e.g. BREXIT)

#### Global Zooplankton Indicator (BIP) - Sanae Chiba

| Strengths                                                                          | Weaknesses                                                                |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| High score against BIP Indicator Criteria (Temporal & spatial coverage, Scientific | Quasi-global => spatial gap  Coordination of regional monitoring programs |
| credibility, alignment for AT                                                      | Coordination of regional monitoring programs                              |
|                                                                                    | Budgetary issues                                                          |
| Opportunities                                                                      | Threats                                                                   |
| Open the link of GOOS-EOVs to policy/society                                       | ?                                                                         |
| Partnership with BIP                                                               |                                                                           |

| Indicators for Other Programs                                               |
|-----------------------------------------------------------------------------|
| Financial support may be available                                          |
| Increase communication bw conservation biology and oceanography communities |

# California Cooperative Oceanic Fisheries Investigations (CalCOFI) – Dave Checkley

| Strengths                              | Weaknesses                                   |
|----------------------------------------|----------------------------------------------|
| Time series                            | Increasing cost                              |
| Breadth of observation (P, C, B)       | Space-time resolution                        |
| Staff skill, work quality              | Lack of uses and users                       |
| Motivations, goals                     | Aging staff                                  |
| Cooperation (academia, state, federal) | Limited types of observations                |
| Relevance to fisheries                 |                                              |
| Ancillary programs                     |                                              |
| Climate change attribution             |                                              |
| Opportunities                          | Threats                                      |
| New director                           | Budget cuts                                  |
| New funding sources                    | Reorientation to stock assessments           |
| New observing technologies             | Underappreciation of time series and spatial |
| New relevances (CC)                    | extent                                       |
| New agency needs (EBFM, CC)            | Overestimation of new technologies           |
| Education and outreach                 |                                              |
| New ships                              |                                              |
| International cooperation              |                                              |

### Smithsonian Marine GEO - Emmett Duffy

| Strengths                | Weaknesses              |
|--------------------------|-------------------------|
| Stable base funding      | Biodiversity is hard!   |
| Strong brand             | Dispersed governance    |
| Biodiversity expertise   | Funding for partners    |
| Institutional commitment | Data not yet integrated |
| Some mature elements (?) | Lack of standardization |
| Opportunities            | Threats                 |
| Converging interests     | Effective messaging     |

| New technologies       | Mission creep        |
|------------------------|----------------------|
| Crowdsourcing          | "Monitoring fatigue" |
| Educational engagement | Short-term thinking  |
| Public interest        | Crowded field        |
|                        |                      |

## A pan-European Marine Biodiversity Observatory System (EMBOS) – Lisandro Benedetti-Cecchi

| Strengths                                     | Weaknesses                                                   |
|-----------------------------------------------|--------------------------------------------------------------|
| Research capacity                             | Missing expertise                                            |
| Resources available                           | Lack of team cohesion                                        |
| Relevant questions (the wisdom of the crouds) | Lack of long-term vision                                     |
| Opportunities                                 | Threats                                                      |
| Innovative approaches                         | Insufficient financial capacity                              |
| New/broader questions                         | Political / legislative changes                              |
| Expand/integrate with other networks          | Large infrastructures with legal status recognized by the EU |

### Global Coral Reef Monitoring Network (Coral MBON) - David Obura

| Strengths                                                                           | Weaknesses                                                                          |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| A globally distributed monitoring community                                         | Low funding in national and local processes                                         |
| Relatively easy access in the coastal zone of                                       | Variable methods and 'drift'                                                        |
| many reefs/most-used reefs                                                          | Remote reefs costly to access                                                       |
| Public awareness and interest in coral reefs as a flagship ecosystem                | Low and variable capacity across many teams; high turnover of monitoring observers  |
| Relatively low cost observational and image-<br>based methods                       | Distributed and broad network of teams and stakeholders challenging for             |
| Increasing relevance of IT and computational                                        | coordination/integration                                                            |
| tools (image analysis, earth observation data)                                      | Coordination mechanisms have been loose and not well supported                      |
| Opportunities                                                                       | Threats                                                                             |
| Clearer and renewed global commitments for biodiversity and sustainable development | Inexorable growth in threats and worsening condition of reefs may undermine support |
| Imminent deadline (2020) for Aichi Target 10                                        | and commitment for monitoring                                                       |
| reporting                                                                           | Weak governance and regulatory                                                      |
| Natural capital and blue economy                                                    | environments (International/national)                                               |
| frameworks provide funding/commitment opportunities                                 | Economic valuation done in a narrow way may undermine commitments                   |

| Networking/partnering with GOOS/GEOBON ad others                                                                | Intellectual property issues undermine data inputs                                            |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Growing public interest in coral reefs, including in private sector, development banks, etc.                    | Attraction of new/tech methods can undermine support for 'traditional' teams and data sources |
| Growing data/analytics capabilities enable database development to suit multi-scale and multi-stakeholder needs | Competition between programmes and attachment to acronyms/attribution/etc                     |

## Indicators of the Sea (IndiSeas) - Yunne Shin

| Strengths                                                        | Weaknesses                                                |
|------------------------------------------------------------------|-----------------------------------------------------------|
| local expertise                                                  | spatial gaps                                              |
| urvey data (fisheries-independent data)                          | data availability                                         |
| conducted on a regular basis                                     | standardization issues                                    |
| scientific credibility                                           | performance of indicators                                 |
| allow inter-system comparison                                    | 30 ecosystems with data time series                       |
| Opportunities                                                    | Threats                                                   |
| some indicators in IPBES list of core and highlighted indicators | sensitive data                                            |
| commitment in national reporting                                 | complexity of data analysis in support to decision-making |
| >30 ecosystems with data time series                             |                                                           |

| Animal Telemetry Network (ATN) – Sam Simmons See data portal: http://oceanview.pfeg.noaa.gov/ATN/                                                |                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| Strengths                                                                                                                                        | Weaknesses                                           |  |
| Data Assembly Center is well under development                                                                                                   | Additional buy-in still needed from the community    |  |
| Have financial support for other development ofor the next 4 years                                                                               |                                                      |  |
| Full-time Network Coordinator on board                                                                                                           |                                                      |  |
| Opportunities                                                                                                                                    | Threats                                              |  |
| Development of a global data standard is underway                                                                                                | Funding beyond the 4 <sup>th</sup> year is uncertain |  |
| JCOMM interested to hear if the community is ready to be considered a "network" delivering at least the environmental variables into that system |                                                      |  |
| There is a relatively newly formed Biologging Society that may facilitate these opportunities                                                    |                                                      |  |

#### **CBD - Nic Bax**

| Strengths                                                                                    | Weaknesses                                                                                                               |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Easy to be locally relevant                                                                  | Global relevance much harder                                                                                             |  |
| Clear link between developing monitoring and capacity building                               | Reporting at international levels at very aggregated level which does not show clear link to national and global reports |  |
|                                                                                              | Not a 'traditional' avenue for developing science                                                                        |  |
| Opportunities                                                                                | Threats                                                                                                                  |  |
| Reports will be produced regardless of lack of data and communication of uncertainty is rare | GEF does not explicitly support monitoring                                                                               |  |

### **NESP Program: Marine Biodiversity Hub- Nic Bax**

| Strengths                                              | Weaknesses                                             |
|--------------------------------------------------------|--------------------------------------------------------|
| stable funding                                         | Can't include everybody                                |
| direct link to government                              | Data->visualisation->uptake very difficult             |
| top-down management                                    |                                                        |
| National coverage -> national leadership opportunities |                                                        |
| Opportunities                                          | Threats                                                |
| National standards ->regional ->international          | Ministerial fiat                                       |
| Support national government in international           | Funds not for international work                       |
| negotiations (CBD, BBNJ, Pacific Oceanscape)           | Cutting edge vs bleeding edge (research vs monitoring) |

#### 4) EOV / DPSIR draft manuscript

#### Data sharing

Yunne Shin pointed out the importance of having the fisheries data. By having such data included in the impact/feasibility graph, "fish" as an EOV would have a much higher rank. While most of the countries actually hold data on fish catch (and even by-catch and discard), these data are usually restricted and not of the public domain nor open access. A discussion followed on the benefits that governments would have by sharing their fisheries data. In this regard, Albert Fischer stressed that the IOC may provide the arguments and framework to encourage data sharing for a greater value, but the IOC does not have the same leverage as would the CBD or the UN through the SDGs. There was general agreement that maintaining an open channel of communication with governments highlighting the value and benefits of data sharing (e.g. to meet their reporting requirements to address the Aichi Targets and the SDGs) is needed, but the sensitivity around economic values was also recognized. It was

suggested that maybe FAO could be considered a potential partner for the GOOS BioEco Panel, but this idea needs further thinking and ideally some feedback from engaged scientists such as Jake Rice and Serge Garcia, who chaired the CBD/FAO workshop on reporting against Aichi Target 6, where it was decided that established FAO national reporting mechanisms could also support individual countries reporting against Target 6..

Dave Checkley informed about a program on fish landings led by Daniel Pauly independent from FAO and that building up on successful stories is very useful to show benefits. One of the recognized problems with fish data, in addition to not being publicly available, is that it relies on fisheries (captures), and mostly of commercial species, while there is very little on natural communities. As a contact person in FAO for fisheries, David Checkley suggested his colleague Manuel Barange (Manuel.barange@fao.org) who began in May 2016 as Director of the Fisheries and Aquaculture Resources and Policy Division of FAO in Rome. Manuel Barange was head of exec office of GLOBEC and most recently headed QUEST-Fish project (http://www.quest-fish.org.uk/). Nic Bax noted that the outputs of this program have received a very variable response. Modelling was recognized as a tool to fill in the gaps of information, which could provide with a justification to incorporate more natural data. Yunne Shin pointed out that there other non-governmental survey fisheries data but these are not publicly available. Frank Muller-Karger stressed that the IOC through the GOOS BioEco Panel should be working more closely in strengthening its relationship with the CBD and the UN-SDG to promote and facilitate the sharing of data, building on the fact that the SDG14a explicitly mentions the IOC.

In the zooplankton area, Sonia Batten mentioned that collaboration behind GACs was built on a framework aimed to work together, using common techniques and taking advantage of opportunistic funding.

#### General suggestions:

Visualize information in a way that each societal driver and pressure can be tracked back from each of the proposed EOVs, that is, to highlight how each of the proposed EOVs is addressing which drivers and pressures. In summary: to link each EOV back to the international conventions.

Use only the "pressures" as a proxy for the impact axis (currently it has both, the drivers and the pressures). For this, a new survey will be prepared and distributed to the panel members and co-authors of the paper (and other members within the GOOS community?) asking to respond for each of the biological variables that resulted as the most observed by a largest number of programs in the "state of biological ocean observations survey", if they do/do not address each of the specific pressures, and to what degree (in a scale 0 to 4, in which 0= does not address, 1=low, 2=medium-low, 3=medium-high, 4=high, plus the option= "I don't know". Each of these will come with an operational definition to avoid subjectivity as much as possible). Another option to explore is through a literature search of the number of papers addressing the pressures for each of the variables (e.g. Scopus or Google Scholar).

Panel members to review the draft DPSIR paper and provide major and high level suggestions (no editorial work at this time) by Mid-October.

Publication journal: one of the journals suggested for publication was *Current Opinion in Environmental Sustainability* (Yunne Shin). This Elsevier journal has an impact factor of 4.766 and "aims to track the emergence of a new innovative sustainability science discipline by integrating across regional and global systems with their typical dimensions, human-environment interactions and management challenges....it emphasizes the actual interdisciplinary sustainability research approaches, the

solutions it provides and their dissemination and application." The process described in this paper will also serve as the basis for discussion in the "Framework for Ocean Observing: revisited 5 years later" proposed during the GOOS Cross-Panel meeting held the week before in Oostende.

## 5) Other visualization products of the "State of biological ocean observations" survey and data management issues (OBIS)

Ward Appeltans, OBIS project manager, briefly presented the status of OBIS and a number of new developments (portal, r-package etc) as well as the status of expanding OBIS to embrace sample/sampling information and include concurrent environmental data and any biological/ecosystem measurements. In essence, this prepares OBIS to serve new requirements for data sharing and product development arising from initiatives such as GOOS.

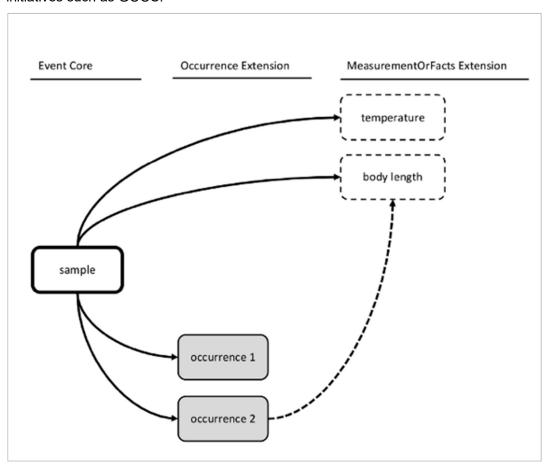



Figure 2. Simple schematic overview of the newly proposed OBIS-ENV-DATA standard, combining events, occurrences and concurrent measurements or facts related to the sample.

The results of the GOOS survey (responses) and the networks that contributed to it are available through <a href="http://dev.iobis.org/goos/">http://dev.iobis.org/goos/</a>. This provides an impressive amount of information. However, the survey was not designed in such a way that each variable could be described separately. Therefore, Ward proposed to develop a database where observing networks can describe each monitoring activity based on the selection of:

- EOV
- Phenomena
- application/science question
- Readiness level
- spatial and temporal coverage and resolution.
- Data systems
- Derived products
- Tools and techniques (incl readiness level)
- Habitat
- Expert contact information

The GOOS panel members will be responsible for managing the content of the tables on the right and left columns (see figure), and the observing networks are responsible for documenting their activities by selecting the right terms in the various tables. This database will serve as the GOOS Strategic Mapping Database for all GOOS panels. The delivery of the database and input interface is planned for end of 2016.

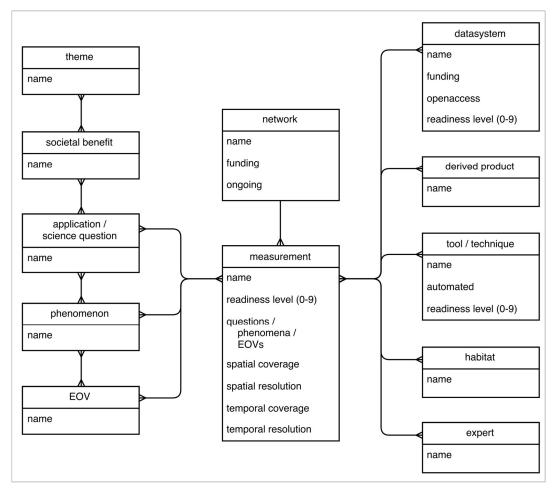



Figure 3. Simple schematic overview of the proposed GOOS Strategic Mapping Database, used the document the monitoring programmes of the ocean observing networks.

.

#### 6) Collaboration / partnership strategy (some actions and next steps)

Points discussed in this session were:

- How do we validate/develop the EOVs with the community?
  - Review process:
    - Expert review (by Nov)
    - Public review (by early 2017)
    - Publication: DPSIR; GOOS EOVs
  - Engagement through meetings: ICRI (nov 2016), PICES (nov 2016), Ocean Sciences Town Hall (2018), GEO Plenary (Nov 2016 messaging through GOOS, USA, Mexico, France (ICRI link), Australia; 2017: USA), CBD; ICES, IOC Assembly (June 2017), 4<sup>th</sup> World Conference on Marine Biodiversity May 2018 (Montreal), OceanObs'19.
  - Oct 2017: Marine Mammals; Biologging society meeting (2017, Germany), World Fisheries Congress (2017),
  - MPA congress 2017 Chile; IMCC (International Marine Conservation Congress, 2018); CERF Nov 2017 (Providence RI); international temperate reef symposium (2019)
  - o IOC's ocean colour
  - Ecological Society of America and other regional analogues
  - o AAAS and other regional analogues
  - o Industry?
  - ACTION: Develop a generic GOOS Biology / Ecology presentation with speaking notes out of existing material (for Patricia to update the present one)
    - 10-min version: high level
    - 20-min version: more scientific audience
  - ACTION: update the poster template
- User community / conventions / agreements
  - o CBD (Cancun, Dec 2016):
  - o CITES:
  - LME: Sam to attend LME LEARN annual meeting (Dec 2016)
  - Future Earth (Oceans KAN):
  - BBNJ PrepCom (April 2017?)
  - o UNEA (2018)
  - o RAMSAR (May 2017) re: mangroves, sea grass, coral reefs
  - o GRA Forum in 2017
  - GRAs: opportunity to (not work EOV by EOV) but to work in a systematic way promoting integration of biological and ecological observations across all relevant observing networks
  - o IIOE-2
- Observing Networks: build and expand from the 104 surveyed networks
  - By EOV:
  - Coral: GCRMN: and links to regional activities, link to PI-GOOS and build capacity
  - Zooplankton: GACS, [regional: CalCOFI, etc.], databases (), GRAs?
     Fisheries agencies

- Sea grasses, mangroves, coral reefs: integrated systems link to the GOOS Regional Alliances (e.g. IOGOOS),
- Sea grass: National Estuarine Research Reserve System [as a way of expanding the network]

#### Thematic:

- o GOA-ON (biology WG)
- MBON (letter of collaboration to be signed between GOOS BioEco, MBON and OBIS –collaboration organization visualized below)
- Organize around each EOV? Standardize observations (hard), data system (more promising), products?
- Identify champion(s)
- Need to be focused and strategic
- [Panel shifts focus each year?: on an EOV additional invited experts working on sampling platforms – identify opportunities for funding...]
- Capacity development (example of activity in 2017 with OTGA with coral reefs focused on an EOV)
- o Regional Groups?
- Observation systems flowing into Data systems
  - Including documentation on observing technique (the metadata)
  - OBIS

Examples from Australia: finding a **level of common reporting** - interoperability

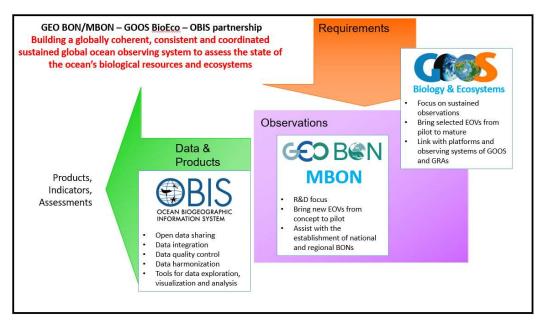



Figure 4. Schematic representation of collaboration between GOOS BioEco, MBON and OBIS within the Framework for Ocean Observing (FOO)

#### 7) Communication strategy

This session was focused on how to reach better to the community and improve communication with the scientific, policy, and general public sectors. Strategies to achieve this included both internal and external communication. Each of the panel members to champion the EOVs within their areas of expertise, geographic range, networks of collaboration, etc.

- Phytoplankton and primary productivity: Frank Muller-Karger and Raphael Kudela
- Zooplankton: Sonia Batten and Sanae Chiba
- Benthic habitats: David Obura (coral reefs), Emmett Duffy (seagrasses), Lisandro Benedetti-Cecchi (rocky shores), TBD (mangroves: contact has been initiated with Llsa Feller from Smithsonian and Lisa Maria Rebelo from IWMI-Laos)
- Fish: David Checkley, Yunne Shin
- Marine turtles, birds, mammals: Sam Simmons

#### 8) Funding strategy

At present, the Project Officer position has been supported by the University of Western Australia (UWA), the Australian Institute of Marine Science (AIMS) and the Commonwealth Science and Industry Organisation (CSIRO). Support was initially for a period of two years (March 2015-February 2017) and the position is currently held at UWA. Efforts are underway to secure the position for another 2 years, now based at the University of Tasmania at Hobart. For this position to be opened, funds to pay for salary for the full 2 year period have to be secured. For this new period, some funding

has been provided by AIMS, the Marine Mammal Commission, the MBON, the IOC, and potentially through CSIRO. The IOC has supported the two Panel meetings (New Orleans and Oostende) and will possibly be able to support one panel meeting per year.

As for future strategy, it was noted the importance of identifying what the funding needs are as there will be several levels including secretariat support (e.g. project officer position), panel meetings, and implementation of EOVs. With regard to a funding strategy to advance the development of EOVs, the panel discussed that these could be driven by individual EOVs. The OCB (Ocean Carbon and Biogeochemistry) call 2017 for scoping workshops (20-65k) was noted as an opportunity to submit a proposal jointly with the Biogeochemistry Panel (Deadline for submission December 1, 2016). Other opportunities to continue to explore are 1) SCOR working groups, 2) National funding opportunities – nationally relevant, globally significant, 3) Foundations, 4) Private Companies.

#### 9) Wrap up and Assignments (within governance structure)

The final discussion of the meeting focused on what is expected from all participants, particularly their individual roles.

#### Individual roles

- Identification of a strategy of the observing networks to be engaged and a time-frame
- Communications leading to a formal agreement between main networks contributing to an EOV.
- Specifying granularity of data products to be made available and timeframe covered
- Periodic reporting (annual?) to GOOS Panel and other key groups
- Leads to metrics of system performance
- Implementation plan
- Identify funding needs for developing EOV

#### Resourcing

- Ward to provide support on what a data consensus model needs to contain
- o Advice on governance structures sharing models eg. GCRMN, MBON

#### Membership

 When does a network become considered as a contributing network and be listed as such.

#### • Succession plans

- 2yr calendar years
- can rotate off, suggestion of replacement appreciated Dave Checkley initially accepted to be in the Panel for one year due to his retirement (topic for discussion)

#### 10) Summary of action items

| Action item                                                   | Who           | When                       |
|---------------------------------------------------------------|---------------|----------------------------|
| Specification sheets:                                         |               |                            |
| Internal review of specification sheets (own experts: work on | Panel members | Tonight / Plane /<br>Train |

| introductory paragraph to reflect drivers/pressures)                                                                                                                   |                                                                              |                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|
| Internal review of specification                                                                                                                                       |                                                                              | 2 weeks                                                    |
| sheets (across panel members)                                                                                                                                          |                                                                              |                                                            |
| External review of specification sheets (from a small group of experts + GOOS community – GRAs/SC)                                                                     | Experts + GOOS community                                                     | Late November                                              |
| External review by broad audience                                                                                                                                      | Open in GOOS website                                                         | After publication of DPSIR paper (?)                       |
|                                                                                                                                                                        |                                                                              | After the Miami meeting (and after publication of paper)   |
|                                                                                                                                                                        | Broad scientific                                                             |                                                            |
|                                                                                                                                                                        | community (spec<br>sheets to be posted on<br>the GOOS website for<br>review) |                                                            |
| DPSIR paper:                                                                                                                                                           |                                                                              |                                                            |
| Review of DPSIR paper and provide feedback on how to present results / discussion (not requesting editorial edits at the moment), journal, literature to be considered | Panel members                                                                | 2 weeks                                                    |
| "Quantifying" impact (using pressures): survey. Defining level of how the variables address the pressures                                                              | Patricia, Ward to send                                                       | Completed in 2 (3?) weeks                                  |
| Collaboration/Communication                                                                                                                                            |                                                                              |                                                            |
| Updated list of meetings 2017-<br>2019 (for regional to global<br>engagement)                                                                                          | Patricia                                                                     | Request feedback to all expecting to have by late November |
| Reaching out to networks (inventory of programs by EOV and clean up active/not active)                                                                                 | Patricia                                                                     |                                                            |
| Ask panel members for quarterly updates: try to build a                                                                                                                | Patricia                                                                     | Quarterly                                                  |

| "story" that is compelling and that shows applications (societal benefit)                            |              |               |
|------------------------------------------------------------------------------------------------------|--------------|---------------|
| Survey data visualization                                                                            |              |               |
| Development of strategic mapping database                                                            | Ward, Pieter | Mid-December  |
| Secretariat and reporting                                                                            |              |               |
| Meeting report                                                                                       | Patricia     | Early-October |
| 1-2 pager to support EOV/spec sheet process                                                          |              |               |
| Update general GOOS<br>presentations (a short – 10<br>minute and a long -30 minutes)                 | Patricia     |               |
| Update general GOOS BioEco<br>poster (for everyone to<br>download as needed for<br>conferences, etc) | Patricia     |               |
| Clean/organize shared Dropbox                                                                        | Patricia     |               |

#### 11) List of acronyms and abbreviations

AAAS: American Association for the Advancement of Science

AIMS: Australian Institute of Marine Science

ARGO: Array for Real-Time Geostrophic Oceanography

ATN: Animal Telemetry Network

BBNJ: Biodiversity Beyond National Jurisdiction

BIP: Biodiversity Indicators Partnership

CalCOFI: California Cooperative Oceanic Fisheries Investigations

CBD: Convention on Biological Diversity

CITES: Convention on International Trade in Endangered Species

CPR: Continuous Plankton Recorder

CSIRO: Commonwealth Science and Industrial Research Organisation (Australia)

CTD: Conductivity-Temperature-Depth

DPSIR: Drivers-Pressures-State-Impact-Response

EBFM: Ecosystem-Based Fishery Management

EMBOS: European Marine Biodiversity Observatory System

EMBRC: European Marine Biological Resource Centre

EOV: Essential Ocean Variable

FAO: Food and Agriculture Organization (United Nations)

FOO: Framework for Ocean Observing

GACs: Global Alliance of CPRs

GCOS: Global Climate Observing System GCOS-IP: GCOS Implementation Plan

GCRMN: Global Coral Reef Monitoring Network

GEO: Group on Earth Observations

GEO BON: Group on Earth Observations – Biodiversity Observation Network

GLOBEC: Global Ocean Ecosystem Dynamics

GOA-ON: Global Ocean Acidification - Observation Network

GOOS: Global Ocean Observing System

GOOS BioEco: GOOS Biology and Ecosystems Panel

GRAs: GOOS Regional Alliances HABs: Harmful Algal Blooms

HAEDAT: Harmful Algae Event Database

ICES: International Council for the Exploration of the Sea

ICRI: International Coral Reef Initiative

IIOE-2: International Indian Ocean Expedition 2

IndiSeas: Indicators of the Seas

IOC: Intergovernmental Oceanographic Commission (of UNESCO)

IOCCP: International Ocean Carbon Coordination Project

IODE: International Oceanographic Data and Information Exchange

IOGOOS: Indian Ocean GOOS

IPCC: Intergovernmental Panel on Climate Change (WMO)

JCOMM: Joint Technical Commission for Oceanography and Marine Meteorology

LME: Large Marine Ecosystem

Marine-GEO: Marine Global Earth Observatory (Smithsonian)

MBON: Marine Biodiversity Observation Network

MPA: Marine Protected Areas

NERP: National Environmental Research Program (Australia)

OBIS: Ocean Biogeographic Information System

OCB: Ocean Carbon and Biogeochemistry
OOPC: Ocean Observations Panel for Climate

OTGA: Ocean Teacher Global Academy

PI-GOOS: Pacific Islands-GOOS

RAMSAR: Convention Convention on Wetlands of International Importance Especially

as Waterfowl Habitat

SBSTTA: Subsidiary Body on Scientific, Technical, and Technological Advice (of the

CBD)

SCOR: Science Council for Oceanic Research

SDGs: Sustainable Development Goals SIO: Scripps Institute of Oceanography

SWOT: Strengths – Weaknesses – Opportunities – Threats

TBD: To be determined

**UNEA: United Nations Environment Assembly** 

UNESCO: United Nations Educational, Scientific and Cultural Organization

UWA: University of Western Australia

WAMS: World Association of Marine Stations WMO: World Meteorological Organization WOCE: World Ocean Circulation Experiment WORMS: World Register of Marine Species

#### 12) Appendix I: Meeting agenda

#### Click on document below to read the full pdf of agenda

18:00 Adjourn for the day

Ferry crossing back to town

Self-paid (with IOC approved per-diem rates) group dinner at 19:30. Restaurant TBD

#### WEDNESDAY, 21 SEPTEMBER: Next steps

Breakfast at Bero Hotel (7:30-8:00). Take ferry to IODE offices.

#### VII. COLLABORATION / PARTNERSHIP STRATEGY (9:00-10:30) Albert

Current collaboration / partnerships: MBON, GRAs, EMBRC, ICES, GCOS, WAMS, CBD, LME (in addition to the Panel member's networks). A central issue is to have the support of the scientific community (and observing networks) to validate the EOVs.

#### For discussion:

- How do we validate/develop the EOVs with the community?
  How do we contribute/engage better with JCOMM?
  How to improve these collaborations?
  What are the next steps? How to maximize efforts and avoid duplication?
  How to take advantage on the survey respondents to build a global network with EOVs as central themes?

- with EOVs a central themes?

  What governance structure supports this level of global collaboration?

  What difference could a combined monitoring program make to improve understanding and management of marine resources?

  What does the funding situation look like?

  Across discipline collaboration: "Promoting Implementation of Multi-Disciplinary Sustained Ocean Observations (IMSOO) Workshop?

Includes next steps to some degree.

VIII. GOOS BIOECO GOVERNANCE: TERMS OF REFERENCE AND NEXT STEPS (11:00-15:00) Nic/Sam

Lunch 12:30-13:30

General discussion to revise the ToRs, action plan and revisit where we want to be by Ocean Obs '09 in light of the strategy and funding discussions. This will feed into the general GOOS Strategic / Implementation Plan.

Review ToR of the GOOS BioEco Panel:

- Vision, objectives, scope and deliverables (the what... to achieve)
  Chairs / members roles and responsibilities (the who....composition, selection,
- duration period, etc.)

  Resources (the how....funding plan)

# 12) Appendix II: Proposed graph of "information flow" of a global observing system of biological variables (draft)

