Inhoud

Samenvatting .. 11

Leeswijzer .. 22

1 Inleiding .. 24

2 Studiegebieden en indelingen ... 25

3 Methoden en technieken ... 31
 3.1 Inleiding .. 31
 3.2 Werkwijze ... 31
 3.3 Toelichting evaluatie T2009 .. 33
 3.4 Statistische analyse ... 33

4 Dynamiek waterbeweging ... 34
 4.1 Inleiding .. 34
 4.2 Hoogwater .. 36
 4.2.1 Rekenparameter: Jaargemiddelde hoogwater .. 36
 4.2.1.1 Inleiding .. 36
 4.2.1.2 Gebruikte data .. 36
 4.2.1.3 Analyse .. 41
 4.2.1.4 Interpretatie .. 51
 4.2.1.5 Evaluatie 2009 .. 59
 4.2.2 Rekenparameter: 99-percentiel van de hoogwaterstand gedurende een jaar 60
 4.2.2.1 Inleiding .. 60
 4.2.2.2 Gebruikte data .. 60
 4.2.2.3 Analyse .. 60
 4.2.2.4 Interpretatie .. 64
 4.2.2.5 Evaluatie 2009 .. 66
 4.3 Golven .. 67
 4.3.1 Rekenparameter: Jaarlijks maximale golfoptreden .. 67
 4.3.1.1 Inleiding .. 67
 4.3.1.2 Gebruikte data .. 67
 4.3.1.3 Analyse .. 69
 4.3.1.4 Interpretatie .. 70
 4.3.1.5 Evaluatie 2009 .. 71
 4.3.2 Rekenparameter: Jaargemiddelde significante golfoptreden Hs0 ... 72
 4.3.2.1 Inleiding .. 72
 4.3.2.2 Gebruikte data .. 72
 4.3.2.3 Analyse .. 72
 4.3.2.4 Interpretatie .. 76
 4.3.2.5 Evaluatie 2009 .. 77
 4.4 Verklarende parameters .. 78
 4.4.1 Astronomisch getij ... 78
5 Bevaarbaarheid ... 115
 5.1 Inleiding ... 115
 5.2 Bevaarbare diepte .. 117
 5.2.1 Rekenparameter gemiddeld laagwater ... 117
 5.2.1.1 Inleiding .. 117
 5.2.1.2 Gebruikte data ... 117
 5.2.1.3 Analyse .. 117
 5.2.1.4 Interpretatie ... 125
 5.2.1.5 Evaluatie .. 130
 5.2.2 Rekenparameter Gemiddeld Hoogwater ... 132
 5.2.3 Rekenparameter onderhoudsbaggervolume ... 133
 5.2.3.1 Inleiding .. 133
 5.2.3.2 Gebruikte data ... 133
 5.2.3.3 Analyse .. 134
 5.2.3.4 Interpretatie en evaluatie .. 146
 5.2.3.5 Zandextractie .. 149
 5.2.3.6 Zandwinning ... 150
 5.3 Looptijd getij .. 151
 5.3.1 Jaargemiddelde looptijd hoogwater en laagwater .. 151
 5.3.1.1 Inleiding .. 151
 5.3.1.2 Gebruikte data ... 151
 5.3.1.3 Analyse .. 151
 5.3.1.4 Interpretatie en evaluatie .. 156
 5.3.1.5 Evaluatie .. 157
 5.4 Verklarende parameters ... 157
 5.4.1 Hydraulische randvoorwaarden .. 157
 5.4.2 Bathymetrie en geometrie ... 157
 5.4.3 Sedimenteigenschappen ... 157
 5.4.3.1 VMM Monsternames ... 157
 5.4.3.2 Lithologische kaart ... 165
 5.4.4 Morfologische dynamiek .. 169
 5.5 Evaluatie T2009 Bevaarbaarheid .. 169
 5.6 Algemene interpretatie bevaarbaarheid .. 170

6 Plaat-geulssysteem .. 171
 6.1 Inleiding ... 172
6.2 Monding ... 173
 6.2.1 Rekenparameter Open karakter .. 173
 6.2.1.1 Inleiding .. 173
 6.2.1.2 Gebruikte data .. 173
 6.2.1.3 Analyse ... 173
 6.2.1.4 Interpretatie & evaluatie ... 174
 6.3 Meergeulsysteem .. 175
 6.3.1 Inleiding ... 175
 6.3.2 Gebruikte gegevens .. 175
 6.3.3 Rekenparameter Grootschalige dynamiek ... 176
 6.3.3.1 Inleiding .. 176
 6.3.3.2 Analyse .. 176
 6.3.3.3 Interpretatie .. 178
 6.3.4 Rekenparameter macroschaal dynamiek - volume en dimensies geulen 180
 6.3.4.1 Inleiding .. 180
 6.3.4.2 Analyse .. 181
 6.3.4.3 Interpretatie en trends in het licht van de kwaliteit van de waarnemingen: 191
 6.3.5 Rekenparameter macroschaal dynamiek - Veranderingen in volume Hoofd- en nevengeul 193
 6.3.5.1 Inleiding .. 193
 6.3.5.2 Analyse en interpretatie ... 193
 6.3.6 Rekenparameter bruto sedimenttransportcapaciteit .. 197
 6.3.7 Rekenparameter mesoschaal dynamiek - Kortsluitgeulen ... 198
 6.3.7.1 Inleiding .. 198
 6.3.7.2 Kortsluitgeulen door de platen .. 199
 6.3.7.3 Drempegeulen ... 202
 6.3.7.4 Interpretatie .. 205
 6.3.8 Evaluatie Meergeulsysteem ... 205
 6.3.8.1 Macrocel 1 ... 206
 6.3.8.2 Mesocel 2 .. 207
 6.3.8.3 Macrocel 3 .. 208
 6.3.8.4 Macrocel 4 .. 210
 6.3.8.5 Macrocel 5 .. 212
 6.3.8.6 Macrocel 6 .. 213
 6.3.8.7 Macrocel 7 .. 214
 6.4 Enkelgeulsysteem .. 216
 6.4.1 Inleiding ... 216
 6.4.2 Meandering ... 216
 6.4.2.1 Inleiding .. 216
 6.4.2.2 Gebruikte data .. 216
 6.4.2.3 Analyse en interpretatie ... 216
 6.4.3 Rekenparameter bruto sedimenttransportcapaciteit ... 217
 6.4.4 Rekenparameter oevers ééngleulsysteem ... 217
 6.4.5 Evaluatie ... 217
 6.5 Verklarende parameters ... 218
 6.5.1 Geulvolume .. 218
 6.5.2 Doorstroomoppervlak ... 218
 6.5.3 Sedimentoppervlak ... 224
7 Waterkwaliteit ...245
7.1 Inleiding ..246
7.1.1 Surface plots ..247
7.1.2 Verschil plots ..248
7.2 Zuurstof ..251
7.2.1 Inleiding ...251
7.2.2 Rekenparameter Absoluut zuurstofminimum ..251
7.2.3 Rekenparameter 95 percentiel zuurstof ...253
7.2.4 Rekenparameter Duur van de zuurstofdip ...253
7.2.5 Interpretatie ..253
7.2.6 Beoordeling zuurstof T2009 ..256
7.3 Nutriënten ...257
7.3.1 Inleiding ...257
7.3.2 Rekenparameter FastNOD ...258
7.3.2.1 Inleiding ..258
7.3.2.2 Analyse en interpretatie ...258
7.3.2.3 Beoordeling T2009 ...258
7.3.3 Rekenparameter BOD-C ...259
7.3.3.1 Inleiding ..259
7.3.3.2 Analyse en interpretatie ...259
7.3.3.3 Beoordeling T2009 ...261
7.3.4 Rekenparameter TDIN ...261
7.3.4.1 Inleiding ..261
7.3.4.2 Analyse en interpretatie ...261
7.3.4.3 Beoordeling T2009 ...261
7.3.5 Rekenparameter totaal P ..268
7.3.5.1 Inleiding ..268
7.3.5.2 Analyse en interpretatie ...268
7.3.5.3 Beoordeling T2009 ...270
7.3.6 Rekenparameter DSi ..270
7.3.6.1 Inleiding ..270
7.3.6.2 Analyse en Interpretatie ...271
7.3.6.3 Beoordeling T2009 ...273
7.3.7 Rekenparameter ICEP-DSI, ICEP-TSI ..273
7.3.7.1 Inleiding ..273
7.3.7.2 Analyse en interpretatie ...274
7.3.7.3 Beoordeling T2009 ...275
7.3.8 Rekenparameter TDINflux ..276
7.3.8.1 Inleiding ..276
7.3.8.2 Analyse en interpretatie ...276
7.3.8.3 T2009 ...276
7.3.9 Rekenparameter Nitriet ...276
7.3.9.1 Inleiding ... 276
7.3.9.2 Analyse en interpretatie .. 276
7.3.9.3 Beoordeling T2009 .. 277

7.3.10 Toetsparameter Ammoniak 277
7.3.10.1 Inleiding ... 277
7.3.10.2 Analyse en interpretatie 278
7.3.10.3 Beoordeling T2009 ... 278

7.3.11 Beoordeling T2009 Nutriënten 278

7.5 Toxische Stoffen .. 279
7.5.1 Inleiding .. 279
7.5.2 Rekenparameter P:B ratio ... 279
7.5.2.1 Inleiding ... 279
7.5.2.2 Analyse en interpretatie ... 280
7.5.2.3 Beoordeling T2009 P:B-ratio 284
7.5.2.4 Opmerkingen bij P:B ... 286
7.5.2.5 Beoordeling T2009 PeB ratio 286

7.5.3 Rekenparameter Phaeocystis 288
7.5.4 Rekenparameter Cyanobacteriën 288
7.5.5 Beoordeling T2009 Algenbloei 288

7.5 Toxische Stoffen .. 279
7.5.1 Inleiding .. 279
7.5.2 Rekenparameter Waterbodemkwaliteit 279
7.5.2.1 Inleiding ... 279
7.5.2.2 Gebruikte data ... 292
7.5.2.3 Analyse ... 293
7.5.2.4 Interpretatie .. 295
7.5.2.5 Beoordeling T2009 .. 295

7.5.3 Rekenparameter Chemische Waterkwaliteit 295
7.5.3.1 Inleiding ... 295
7.5.3.2 Gebruikte data ... 297
7.5.3.3 Analyse ... 298
7.5.3.4 Interpretatie .. 301
7.5.3.5 Beoordeling T2009 .. 302

7.5.4 Rekenparameter Zwemwaterkwaliteit 302
7.5.5 Rekenparameter Milieuvorontreinigende stoffen in voedselwebs ... 302
7.5.5.1 Inleiding ... 302
7.5.5.2 Gebruikte data ... 303
7.5.5.3 Analyse ... 304
7.5.5.4 Interpretatie .. 310
7.5.5.5 Beoordeling T2009 .. 311

7.6 Verklarende parameters ... 311
7.6.1 Zout ... 312
7.6.1.1 Verschuivingen in zoutgehalte 312
7.6.1.2 Schommelingen in zoutgehalte 314
7.6.1.3 Stratificatie .. 318

7.6.2 Lichtlimitatie .. 318
7.6.2.1 Seizoensgemiddelde eufotische diepte 318
7.6.2.2 Doorzicht in Westerschelde 319
7.6.2.3 Eufotische diepte .. 320
8 Leefomgeving .. 338
 8.1 Inleiding .. 338
 8.2 Oppervlak .. 339
 8.2.1 Inleiding .. 339
 8.2.1.1 Ecotopen ... 339
 8.2.2 Gebruikte gegevens ... 342
 8.2.3 Westerschelde ... 343
 8.2.4 Zeeschelde en getijrivieren ... 343
 8.2.5 Evaluatie .. 352
 8.3 Kwaliteit .. 354
 8.3.1 Inleiding .. 354
 8.3.2 Gebruikte gegevens ... 354
 8.3.3 Lengte laagwaterlijn grenzend aan laagdynamisch habitat Westerschelde 354
 8.3.4 Lengte laagwaterlijn grenzend aan zacht substraat Zeeschelde 356
 8.3.5 Helling Zeeschelde .. 359
 8.3.6 Hoogtegradiënt ... 363
 8.3.7 Zonering van schorren in de Westerschelde .. 368
 8.3.8 Oeverbreedte schorhabitat .. 371
 8.3.9 Evaluatie .. 377
 8.3.9.1 Laagwaterlijn grenzend aan laagdynamisch plaathabitat/ zachtsubstraat .. 377
 8.3.9.2 Helling van het litoraal en het gehele profielin de Zeeschelde 377
 8.3.9.3 Hoogtegradiënt laagdynamisch habitat/zachtsubstraat 377
 8.3.9.4 Zonering schorhabitat .. 377
 8.3.9.5 schorbreedte ... 377
 8.3.9.6 Oeverbreedte ... 378
 8.4 Turn-over .. 378
 8.4.1 Inleiding .. 378
 8.4.2 Gebruikte gegevens ... 378
 8.4.3 Westerschelde ... 379
 8.4.4 Evaluatie .. 379
 8.5 Verklarende parameters ... 379
 8.6 Evaluatie T2009 Leefomgeving .. 384

9 Flora en fauna ... 386
9.1 Inleiding .. 389
9.2 Broedvogels ... 390
 9.2.1 Inleiding ... 390
 9.2.2 Rekenparameter Intactness index .. 390
 9.2.3 Rekenparameter Sleutelsoorten .. 390
 9.2.3.1 Inleiding .. 390
 9.2.3.2 Analyse .. 391
 9.2.3.3 Interpretatie ... 393
 9.2.3.4 Beoordeling T2009 ... 395
 9.2.4 Rekenparameter Exoten ... 395
 9.2.5 Evaluatie broedvogels .. 395
9.3 Niet-broedvogels .. 396
 9.3.1 Inleiding ... 396
 9.3.2 Rekenparameter Intactness Index .. 396
 9.3.2.1 Inleiding .. 396
 9.3.2.2 Analyse .. 397
 9.3.2.3 Interpretatie ... 398
 9.3.2.4 Beoordeling T2009 ... 398
 9.3.3 Sleutelsoorten .. 398
 9.3.3.1 Inleiding .. 398
 9.3.3.2 Analyse .. 399
 9.3.3.3 Interpretatie ... 405
 9.3.4 Rekenparameter Exoten ... 406
 9.3.4.1 Inleiding .. 406
 9.3.4.2 Analyse .. 406
 9.3.4.3 Interpretatie ... 406
 9.3.4.4 Beoordeling T2009 ... 406
 9.3.5 Evaluatie Niet-Broedvogels .. 408
9.4 Zoogdieren .. 408
 9.4.1 Inleiding ... 408
 9.4.2 Aantallen ten opzichte van de referentiesituatie ... 409
 9.4.2.1 Inleiding .. 409
 9.4.2.2 Analyse .. 409
 9.4.2.3 Interpretatie ... 410
 9.4.2.4 Beoordeling T2009 ... 411
 9.4.3 Rekenparameter Aantal zeehonden in augustus .. 411
 9.4.3.1 Inleiding .. 411
 9.4.3.2 Analyse .. 411
 9.4.3.3 Interpretatie ... 411
 9.4.3.4 Beoordeling T2009 ... 412
 9.4.4 Evaluatie zoogdieren .. 412
9.5 Vissen .. 412
 9.5.1 Inleiding ... 412
 9.5.2 Rekenparameter occurrence Index .. 413
 9.5.2.1 Inleiding .. 413
 9.5.2.2 Analyse .. 413
 9.5.2.3 Interpretatie ... 414
 9.5.2.4 Beoordeling T2009 ... 415
 9.5.2.5 Rekenparameter Sleutelsoorten ... 415
 9.5.3 Rekenparameter Trend in exoten .. 415
9.5.4 Evaluatie vissen ... 417

9.6 Benthos ... 418

9.6.1 Intactness ... 418
 9.6.1.1 Inleiding ... 418
 9.6.1.2 Gebruikte data ... 418
 9.6.1.3 Analyse ... 419
 9.6.1.4 Interpretatie ... 421
 9.6.1.5 Evaluatie 2009 .. 423

9.6.2 Exoten .. 423
 9.6.2.1 Inleiding ... 423
 9.6.2.2 Gebruikte data ... 423
 9.6.2.3 Analyse ... 424
 9.6.2.4 Interpretatie ... 428
 9.6.2.5 Evaluatie 2009 .. 429

9.6.3 Sleutelsoorten .. 430

9.6.4 Verklarende parameters .. 430
 9.6.4.1 Totale macrobenthos biomassa ... 430

9.6.5 Evaluatie benthos .. 431

9.7 Fytoplankton .. 432

9.7.1 Intactness ... 432
 9.7.1.1 Inleiding ... 432
 9.7.1.2 Gebruikte data ... 433
 9.7.1.3 Analyse ... 433
 9.7.1.4 Interpretatie ... 435
 9.7.1.5 Evaluatie 2009 .. 435

9.7.2 Exoten .. 436
 9.7.2.1 Inleiding ... 436
 9.7.2.2 Gebruikte data ... 436
 9.7.2.3 Analyse ... 436
 9.7.2.4 Interpretatie ... 438
 9.7.2.5 Evaluatie 2009 .. 438

9.7.3 Sleutelsoorten .. 438

9.7.4 Verklarende parameters .. 439
 9.7.4.1 Totale fytoplankton biomassa en/of aantal fytoplankton cellen 439
 9.7.4.2 Phaeocystis ... 441
 9.7.4.3 Cyanobacteriën .. 442

9.7.5 Evaluatie fytoplankton .. 445

9.8 Zooplankton .. 446

9.8.1 Intactness ... 446
 9.8.1.1 Inleiding ... 446
 9.8.1.2 Gebruikte data ... 446
 9.8.1.3 Analyse ... 447
 9.8.1.4 Interpretatie ... 448
 9.8.1.5 Evaluatie 2009 .. 448

9.8.2 Exoten .. 449
 9.8.2.1 Gebruikte data ... 449
 9.8.2.2 Analyse ... 449
 9.8.2.3 Interpretatie ... 451
 9.8.2.4 Evaluatie 2009 .. 451
9.8.3 Sleutelsoorten .. 451
9.8.4 Verklarende parameters .. 451
 9.8.4.1 Totale zoöplankton biomassa .. 451
 9.8.4.2 Biomassa eurytemora affinis .. 452
9.8.5 Evaluatie zoöplankton .. 453

9.9 Macrofyten (Vegetatie) .. 454
 9.9.1 Inleiding .. 454
 9.9.2 Rekenparamter intactness index Zeeschelde ... 454
 9.9.2.1 Inleiding .. 454
 9.9.2.2 Analyse .. 454
 9.9.2.3 Interpretatie .. 455
 9.9.2.4 Rekenparameter vegetatietypes Westerschelde .. 455
 9.9.3 Rekenparameter sleutelsoorten en exoten .. 456
 9.9.4 Evaluatie vegetatie .. 456

9.10 Evaluatie T2009 Flora en Fauna .. 457

10 Ecologisch functioneren .. 458
 10.1 Inleiding .. 458
 10.2 Macrozoobenthos .. 459
 10.2.1 Macrobenthische biomassa - primaire productie (westerschelde) .. 459
 10.2.1.1 Inleiding .. 459
 10.2.1.2 Gebruikte data .. 460
 10.2.1.3 Analyse .. 460
 10.2.1.4 Interpretatie .. 461
 10.2.1.5 Evaluatie 2009 .. 463
 10.2.2 30 ton adw aan benthos (zeeschelde) .. 463
 10.2.2.1 Inleiding .. 463
 10.2.2.2 Gebruikte data .. 463
 10.2.2.3 Analyse .. 464
 10.2.2.4 Interpretatie .. 465
 10.2.2.5 Evaluatie 2009 .. 466
 10.2.3 Filterfunctie .. 467
 10.2.3.1 Inleiding .. 467
 10.2.3.2 Gebruikte data .. 467
 10.2.3.3 Analyse .. 467
 10.2.3.4 Interpretatie .. 468
 10.2.3.5 Evaluatie 2009 .. 471
 10.2.4 Diversiteit benthos .. 472
 10.2.4.1 Inleiding .. 472
 10.2.4.2 Gebruikte data .. 472
 10.2.4.3 Analyse .. 472
 10.2.4.4 Interpretatie .. 472
 10.2.4.5 Evaluatie 2009 .. 472
 10.2.5 Evaluatie macrozoobenthos .. 473
 10.3 Vissen en Vogels .. 474
 10.3.1 Energie doorstroom voedselweb .. 474
 10.3.1.1 Inleiding .. 474
 10.3.1.2 Gebruikte data .. 475
 10.3.1.3 Analyse .. 478
Samenvatting

Inleiding

Het Schelde-estuariump (figuur 1-1) is met een totale oppervlakte van ca. 33.000 ha een van de grootste estuaria van Europa. Met een lengte van 160 km en een volledige gradatant van zoet naar brak en zout is het een natuurgebied dat internationale erkenning en bescherming geniet. Het vormt tevens de toegang tot verschillende belangrijke havens en een bron van diverse andere economische activiteiten zoals visserij, zandwinning of toerisme. Het estuariump moet enerzijds water vanuit het bekken afvoeren en anderzijds water kunnen bufferen tijdens stormen vanuit zee. Er kunnen daarom vanuit verschillende invalshoeken doelstellingen geformuleerd worden voor het estuariump, doelstellingen die soms tegenstrijdige belangen behartigen. Het grensoverschrijdende karakter van het Schelde-estuariump maakt het geheel niet eenvoudiger.

Door vele ingrepen en vervuiling uit het verleden is het ecologisch functioneren van het Schelde-estuariump onder zware druk komen te staan. Het is duidelijk dat verschillende ecosysteemdiensten - de voordelen die de maatschappij van het Schelde-ecosysteem ontvangt in de vorm van goederen en diensten - hieronder lijden, zowel kwalitatief als kwantitatief. Nederland en Vlaanderen hebben daarom een gezamenlijke visie uitgewerkt: de Langtermijn Visie (LTV), met een focus op de functies Toegankelijkheid, Veiligheid en Natuurlijkheid.

Om de ontwikkelingen in het estuariump op de voet te volgen en na te gaan of de gestelde doelen worden bereikt, is een beleidsondersteunende Evaluatiemethode Schelde-estuariump ontwikkeld (Holzhauer et al., 2011). De uitgangspunten van deze methodiek zijn de beleidsdoelstellingen uit de LTV en het goed functioneren van het Schelde ecosysteem. Er wordt dus zeker niet vertrokken vanuit een historisch perspectief of ongerepte referentie.
Met het oog op toekomstige ingrepen in het estuarium en het eraan gekoppelde beleid, wordt in dit rapport de toestand anno 2009 onder de loep genomen, gebruik makend van de Evaluatiemethodiek. Voldoet het systeem aan de in de Evaluatiemethodiek gestelde criteria en welke historische trends zijn aanwezig? Op deze vragen geeft het T2009 rapport een onderbouwd antwoord. Daarnaast is in een afzonderlijke nota beschreven of de evaluatiemethodiek ook goed toepasbaar is op basis van de huidige, beschikbare data.

2. Vanuit waterbeweging en morfologie

In het Schelde-estuarium beïnvloeden water en land elkaar voortdurend: de vorm van het estuarium (de morfologie) bepaalt hoe het getij zich door het systeem voortplant, terwijl de beweging van het water – op een tijdschaal van decennia – de vorm van het estuarium beïnvloedt. De mens heeft sinds millennia een heel duidelijke impact op het estuarium. De inpolderingen en bedijkingen, overstromingen, rechttrekkingen, verruiming, onderhoudsbaggerwerken, zandwinning en aanleg van verhardingen, kaaien en havenbekkens hebben de vorm van het estuarium veranderd en vastgelegd. De waterbeweging in het estuarium is ook beïnvloed door de menselijke ingrepen die de diepte van de geulen en daarmee de omvang van de droogvallende platen en slikken en de schorren hebben gewijzigd. De ingrepen hebben een invloed die soms onmiddellijk, en soms over lange tijd, zichtbaar worden in de waterbeweging, de morfologie en daarmee ook effect hebben op de leefomgeving voor dieren en planten.

Voor de waterbeweging is de belangrijkste morfologische ontwikkeling gedurende de afgelopen eeuw de toenam van de omvang van de (hoofd)geul. Het doorstroomoppervlak van de geulen in de oostelijke helft van de Westerschelde en in de Beneden-Zeeschelde is toegenomen met ongeveer 50%. In de rest van de Westerschelde is de omvang van de hoofdgeul ook toegenomen, maar is de mate van verandering minder groot geweest. Ingrepen in de sedimenthuisvarming, zoals baggeren, terugstorten en winnen van zand, het transport van zand en slib door het getij, is verantwoordelijk voor de toenam van de geulomvang.

Andere veranderingen in de morfologische vorm van de Westerschelde zijn het geleidelijke verdwijnen van de kortsluitgeulen in de Westerschelde en de toename van de hoogte van de platen. Kortsluitgeulen zijn de geulen die door de plaatcomplexen de hoofd- en nevengeulen verbinden. Door de afname van het aantal en omvang van de kortsluitgeulen zijn de platen steeds meer aaneengesloten en is het areaal ondiep sublitoraal afgenomen. De toename van de plaat hoogte heeft zich niet overal in de Westerschelde in dezelfde mate en op hetzelfde moment voorgedaan. In de afgelopen tien jaar is de gemiddelde hoogte van de platen alleen nog toegenomen bij de Hooge platen en Platen van Ossenisse. Hoewel deze veranderingen in de morfologie ook hun invloed hebben op de waterbeweging, is de invloed ervan kleiner dan de toename van de geulomvang. Daarnaast komen op veel slikken in toenemende mate veenbanken langs de laagwaterlijn bloot te liggen door de toenemende golf- en stroominvloed.

De afgelopen honderd jaar is het getij sterk veranderd. Een eerst (externe) factor die het getij beïnvloedt, is de waargenomen zeepiegelstijging. Dit leidt tot een verhoging van zowel laag- als hoogwaterstanden, zoals in de monding van het estuarium wordt waargenomen. De invloed van het verdiepen en op diepte houden van de Wielingen, de zuidelijke hoofdgeul in de monding die naar de Westerschelde voert, alsook andere ingrepen en de natuurlijke erosie-sedimentatiedynamiek, hebben geen waarneembare invloed gehad op de waterstanden in de monding. Het karakter van het mondingsgebied is ook niet veranderd door andere menselijk ingrepen, zodat het open en weidse karakter behouden is gebleven.

In de Westerschelde, tussen Vlissingen en Bath, zijn naast geleidelijke veranderingen van de waterstanden ook trendbreuken waargenomen. De geleidelijke verandering van de getijslag buiten het estuarium in de
periode 1940-1960 lijkt de trend op de hoog- en laagwaters in het westen van de Westerschelde beïnvloed te hebben. Een sterke trendbreuk deed zich voor midden jaren ’70 in het oostelijk deel van de Westerschelde met onder meer een sterke verlaging van de laagwaterstanden. Deze trendbreuk is het gevolg van de eerste verruiming in de jaren ’70 waarbij ook grote volumes zand aan het systeem ontrokken zijn: dit heeft geleid tot een toename van het watervolume in het systeem, en sterke onmiddellijke toename van de getijslag.

De toenam van de getijslag van Vlissingen tot Bath en verder in de Zeeschelde tot Dendermonde is een gevolg van de trechtervorm van het estuarium: de getijgolf wordt opgestuwd waardoor het verschil tussen hoog- en laagwater toeneemt. De getijslag is ook in de tijd in de hele Westerschelde en de Zeeschelde toegenomen, met de sterkste toenames in de Zeeschelde. De toename van de getijslag in de tijd is het gevolg van de gecombineerde effecten van verschillende veranderingen en ingrepen in het estuarium die niet individueel tot duidelijke trendbreuken hebben geleid. De maximale getijslag is gedurende de voorbije decennia systematisch meer stroomopwaarts (ongeveer 30 km) komen te liggen: rond 1900 lag dit punt tussen Liefkenshoek en Antwerpen, terwijl dit nu tussen Tirolode en Schelle ligt. De laatste decennia wordt op de Boven-Zeeschelde de sterkste toename van de getijslag waargenomen: het toenemen van de hoogwaterstanden, maar vooral de sterke afnames van de jaargemiddelde laagwaterstanden zijn voor onder meer de bevaarbaarheid een ongunstige evolutie.

De waargenomen extreme hoogwaterstanden, die van belang zijn voor de bescherming tegen overstromingen, vertonen over het algemeen dezelfde ontwikkelingen. De relatief sterke invloed van meteorologische condities op extreme hoogwaterstanden geeft echter een grotere spreiding op de resultaten. Vanaf Dendermonde neemt de stijging van de hoogwaters en daling van de laagwaters de laatste decennia heel sterk toe. Deze ontwikkeling is vanuit elk standpunt (veiligheid, bevaarbaarheid, ecologie) ongewenst.

De waterhuishouding rond Gent blijkt een meetbare invloed te hebben op de waterstanden tussen Melle en Dendermonde: de variatie in jaargemiddelde afvoer bij Merelbeke heeft een sterke positieve correlatie met die in de gemiddelde hoog- en laagwaterstanden. Verder zullen verdiepingen van de Zeeschelde mede aan de basis liggen van de waargenomen getijontwikkeling. Het recht trekken van verschillende bochten in het stroomopwaarts deel van de Zeeschelde voor 1900 en de morfologische adaptatie daaraan is voor de recente ontwikkelingen van het hoog- en laagwater niet van belang.
Een parameter die van belang is voor de scheepvaart, is de *looptijd van de getijgolf* door het estuarium. Deze blijkt in de 20e eeuw ongeveer 20 minuten korter geworden tussen Vlissingen en Antwerpen en 40 à 50 minuten korter tussen Antwerpen en Melle. Voor de scheepvaart is dit een minder gewenste ontwikkeling. Het sneller doordringen van de getijgolf is een gevolg van het ruimer en dieper worden van het estuarium in zijn geheel, waardoor het water minder weerstand ondervindt en dus een hogere snelheid behoudt.

Ondanks de verschillende ingrepen is geen verandering in de *onderhoudsbaggervolumes* van de recente jaren waargenomen in de Westerschelde. In de Beneden-Zeeschelde wordt de laatste jaren (2002-2009) een stijgende trend in het onderhoudsbaggervolume waargenomen. De ingebruikname van het Deurganckdok en de onderhoudsbaggerwerken na de tweede verruiming hebben hier mogelijk een rol in gespeeld.

3. Over ecologische randvoorwaarden

Goede waterkwaliteit is essentieel voor het goed functioneren van het Schelde-estuarium. Voldoende zuurstof en voedsel in het water is onontbeerlijk voor vrijwel alle dierlijk leven. De primaire productie door algen in de waterkolom en op de bodem van slikken en platen vormt de basis van de estuariene voedselketen. Hoewel die primaire productie van levensbelang is voor de Schelde, zijn de data hierover schaars. Gegevens over de kwaliteit van de leefomgeving in het water en op oevers of platen worden pas sinds een aantal decennia gedocumenteerd. Vanaf de jaren ’60 zijn sporadische gegevens over waterkwaliteit beschikbaar; vanaf de jaren ’90 is sprake van een systematische monitoring van de waterkwaliteit. Pas sinds de laatste jaren wordt primaire productie in het gehele estuarium op regelmatige basis gevolgd en gemeten.

De Zeeschelde, had in de jaren ’60 en ’70 de trieste status van een zuurstofloze, dode rivier. De lozing van onbehandeld afvalwater bracht een hoge vracht aan nutriënten en organisch materiaal in het systeem. De mineralisatie van die koolstofverbindingen en de nitrificatie van ammonium onttrokken zeer veel zuurstof aan het water, veel meer dan door algen geproduceerd kon worden. De Zeeschelde was zo vervuild dat de bloei van algen erdoor onderdrukt werd. Onderdrukking van die primaire productie betekende minder zuurstof, en zodoende minder afbraak van de inkomende vuilvracht. Het was een vicieuze cirkel die de Zeeschelde in een anoxische (dit is zuurstofloze) toestand hield. Het gevolg was wel dat denitrificatie, het anoxische proces dat nitraat omzet tot stikstofgas en zo stikstof verwijdert uit het systeem, efficiënt kon doorgaan in de Zeeschelde. De transfer naar de Westerschelde bleef zo enigszins beperkt. De Westerschelde kende bovendien door sterke uitwisseling met zuurstofrijker zeewater nooit zeer lage zuurstofwaarden. Nutriënten waren in de Westerschelde wel ruimschoots aanwezig maar lichtlimitatie controleerde de algenbloei.

Waterzuivering in Brussel

De verbetering van de waterkwaliteit in de Zeeschelde is spectaculair. Van een systeem dat jarenlang de hele zomer zuurstofloos was, zijn we op amper enkele jaren tijd naar een zuurstofrijke waterloop overgegaan. Hebben we dit alles te danken aan de waterzuivering te Brussel in amper enkele jaren?

Tot voor 2007 loosde deze Europese hoofdstad het afvalwater van meer dan 1 miljoen inwoners ongezuiverd via Zenne, Dijle en Rupel in de Schelde. De Zenne was een open riool, waar leven uitgesloten was. Na de start van de waterzuivering is een onmiddellijke omkering zichtbaar: de Zenne kan heradem en en anno 2009 is er weer vis aanwezig. Ook de waterkwaliteit van Dijle en Rupel gaat er fors op vooruit. De Zeeschelde geniet mee van deze verbetering. Echter, de grote omslag van zuurstofloos naar zuurstofrijk is vooral te danken aan het herstel van een sterke primaire productie in de Zeeschelde zelf. Die zogenaamde regime shift zette zich in rond 2003, en leidde reeds in 2005 voor de eerste maal terug tot oververzadiging met zuurstof in de Zeeschelde.

Waterzuivering leidde tot een sterke daling van de organische vracht die het estuarium binnenkomt. Parallel zien we ook de macrobenthos (dit zijn bodemdieren zoals wormen, schelpdieren en kreeftachtigen) biomassa en de aantallen watervogels sterk afnemen in de Zeeschelde. Is waterzuivering daarom de boosdoener voor de afnemende vogelaantallen? Deze vraag blijft voorlopig onbeantwoord. De allochtone koolstofvracht is enerzijds wel afgenomen, maar anderzijds is er een sterke toename van de lokale primaire productie, zodat er nog steeds een groot voedselaanbod is. De concentratie aan opgeloste organische koolstof is niet afgenomen. Mogelijk spelen toxische stoffen in de bodem, die door de zuurstoftoename meer beschikbaar komen, een rol. Harde bewijzen zijn hiervoor echter nog niet geleverd. Toegenomen predatie van de bodemdieren door vissen, die dankzij de verbeterde waterkwaliteit in toenemende mate de Zeeschelde koloniseren, kan eventueel gezorgd hebben voor een competitie met watervogels. Maar misschien heeft het herstellende ecosysteem gewoon nog wat tijd nodig: de grote veranderingen in het voedselaanbod kunnen immers leiden tot een shift in de bentische en pelagische gemeenschappen. Mogelijk zitten we in een overgangsperiode. Het verdient in elk geval de nodige aandacht in de komende jaren.

Een belangrijke limiterende factor voor de primaire productie door algen is licht. De lichtbeschikbaarheid wordt enerzijds bepaald door de troebelheid van het water, anderzijds door de mengdiepte. Beide factoren zijn sterk beïnvloedbaar door ingrepen in het estuarium. De verschuiving in het areaal van ondiepe naar diepe ecotopen heeft de gemiddelde mengdiepte doen toenemen. In de Zeeschelde en Westerschelde is de gemiddelde diepte ten opzichte van NAP & TAW toenomen en zijn de hoog- en laagwaterstanden toegenomen, zodat de gemiddelde mengdiepte ook groter is geworden. Door veranderingen in de hydro- en morfodynamiek kan ook de troebelheid toenemen. De voorbije 10 jaar werd een lichte toename van de zwevende stof in het water waargenomen in de Rupel en de Schelde nabij de Durmmonding; hier situeert zich de zone met maximale getijstanden. De laatste jaren nam ook het aantal uitschieters in de waarnemingen toe: deze zogenaamde “flickering” kan een voorbode zijn van grote systeemveranderingen en verdient in de toekomst zeker de nodige aandacht.

Een andere randvoorwaarde voor het ecologisch functioneren van het Schelde-estuarium is de aanwezigheid van een grote variatie aan habitats (leefgebied) en ecotopen (ecologisch onderscheidbaar gebied). Heersende omstandigheden, bv. van zoutgehalte, temperatuur, stromen, mobiliteit van sediment, helderheid van het water, voedselbeschikbaarheid, etc., verschillen sterk van plaats tot plaats. De grote variatie in habitats volgt uit de aanwezigheid van verschillende gradaties. Op grote schaal bijvoorbeeld de overgang van zout naar zout en meer lokaal van diep (geul) naar hoog (schor). Op kleinere schaal gaat het bv. over de overgang van zandig naar kleib en substraat eventueel al op een plaat van enkele honderden vierkante meters merkbaar. De dynamiek in het estuarium draagt ook bij aan de variatie in
habitats, waarbij onder dynamiek de veranderlijkheid van patronen en processen in de tijd wordt verstaan.

Het areaal van de kenmerkende ecotopen is veranderd als gevolg van autonome morfologische ontwikkelingen, menselijke ingrepen of een combinatie van beide. In de Westerschelde is de verhouding tussen sublitorale ecotopen (geulen) en de combinatie van litorale (platen en slikken) en supralitorale (schorren) ecotopen relatief stabiel. In de Zeeschelde is het areaal van de sublitorale ecotopen toegenomen, vooral ten koste van de litorale habitats. Het schorareaal in de Zeeschelde is voor een belangrijk deel vastgelegd door de stroomdichtheid langs de randen. In de Westerschelde hebben zich binnen de litorale ecotopen wel belangrijke verschuivingen voorgedaan. Het areaal hoogdynamisch litoraal is in de afgelopen 50 jaar toegenomen ten koste van het areaal laagdynamisch areaal. De meest recente ontwikkelingen (na 2006) van de ecotopen in de Westerschelde zijn niet te beschrijven en te vergelijken met eerdere ontwikkelingen, omdat de beschikbare ecotopenkaarten hiervoor nog niet geschikt zijn.

Deze verschuiving naar hoogdynamisch areaal is ten koste gegaan van de draagkracht van het litoraal, bijvoorbeeld voor (op bodemdieren) foeragerende vogels. Verder is de hoogte van de platen toegenomen en wel meer dan de toename van het niveau van hoogwater. Ook deze verandering betekent een achteruitgang van de kwaliteit van de platen voor foeragerende steltlopers. Op twee plaatscomplexen in de Westerschelde is de hoogte dusdanig toegenomen dat daar grote oppervlaktes pionier schor is ontstaan, die naar het zich laat aanzien blijvend is en waarschijnlijk nog zal uitbreiden.

De breedte van de schorren in het Schelde-estuarium is vooral in de Westerschelde en de Beneden-Zeeschelde voldoende voor de aanwezigheid van gradiënten in de vegetatie. In de Boven-Zeeschelde en de zijrivieren is het estuarium dermate smal dat deze minimale breedte zelden wordt aangetroffen. De oever die bestaat uit de schorren en slikken, moet bij voorkeur zo breed zijn dat er voldoende ruimte aanwezig is voor de erosie en nieuwvorming van schorren. In de Westerschelde is de oever op een beperkt aantal plaatsen voldoende breed voor erosie en nieuwvorming. In de Beneden-Zeeschelde is dat ook, maar geldt de kanttekening dat de schorcyclus ook wordt beperkt door de aanwezigheid van bestortingen. De Boven-Zeeschelde is in zijn geheel dermate smal dat er eigenlijk nergens voldoende ruimte op de oevers is voor erosie en vernieuwing. Kanttekening: maatregelen in het kader van het Sigmaplan (het creëren van overstromingsgebieden met gecontroleerd gereduceerd getij) zullen in de toekomst wel leiden tot een toename in getijdenvegetatie (slikken, schorren) langs de Zeeschelde.

4. Naar ecologisch functioneren

De leefomgeving voor planten en dieren in het Schelde-estuarium wordt gekenmerkt door een grote variatie aan habitats en sterk wisselende omstandigheden in de tijd. Het is aan de rijkdom van habitats dat het estuarium vooral zijn biodiversiteit ontleent. De organismen in het estuarium dienen aangepast te zijn aan de dynamiek van het abiotische systeem op verschillende tijdschalen. Binnen één getijdencyclus is op getijdenplaten variatie in overspoeling en droogstand, in stroomdichtheid, in zoutgehalte van het water, slibconcentratie, voedselconcentratie, zuurstof, nutriënten, etc. Met de seizoenen kunnen al deze parameters drastisch wijzen met de variatie van zoetwaterafvoer, terwijl op langere tijdschalen gehele habitattypes (bv. platen, geulen, ondiep water) zich van de ene naar de andere plaats kunnen verleggen. Niet heel veel soorten kunnen de dynamiek met zijn extreme variabiliteit aan. Weliswaar zijn er brakke estuariene habitats soortenarmer dan vergelijkbare habitats in zoetwater of in de zee, door de (soms grote) zoutschommelingen, maar de soorten die voorkomen zijn echter typisch voor estuaria, en verschillen binnen een estuarium ook aanzienlijk van plaats tot plaats.
In het Schelde-estuarium is voor vogels, zoogdieren, vissen, benthos, zoöplankton, fytoplankton en vegetatie gekeken naar de diversiteit, biomassa en de aanwezigheid van exoten. Ook is gekeken naar de samenhang tussen de verschillende groepen, bijvoorbeeld door de energiedoorstroom in het voedselweb.

Grondige verschuivingen in de soortensamenstelling van het fytoplankton kunnen invloed hebben op het functioneren van de voedselketen. De diversiteit aan fytoplankton soorten in het Schelde-estuarium verandert over het algemeen niet, behalve in de mesohaline zone (zone waar rivierwater en getijdestroom elkaar ontmoeten), waar de gemiddelde soortenrijkdom is afgenomen. De aantallen exoten onder het fytoplankton lijken te kunnen afnemen in de Westerschelde. De afname van het aantal exoten is niet geheel los te zien van de afgekeken afname van de fytoplankton biomassa in de Westerschelde. De ontwikkelingen en de toestand in de zones met sterk wisselend zoutgehalte, waar de soortenrijkdom afneemt of reeds bijzonder laag is, zijn verontrustend. Voor de hand liggende verklaringen zijn fluctuaties in salinitéit of afvoerdebieten, of verschuivingen in de ruimte van de zone van maximale turbiditeit, of mogelijke toename van de maximale turbiditeit. Dergelijke patronen zijn echter niet altijd duidelijk waargenomen.

Gronde verschuivingen in de soortensamenstelling van het fytoplankton hebben invloed op het functioneren van de voedselketen. De diversiteit aan fytoplankton soorten in het Schelde-estuarium verandert over het algemeen niet, behalve in de mesohaline zone (zone waar rivierwater en getijdestroom elkaar ontmoeten), waar de gemiddelde soortenrijkdom is afgenomen. De aantallen exoten onder het fytoplankton lijken te kunnen afnemen in de Westerschelde. De afname van het aantal exoten is niet geheel los te zien van de afgekeken afname van de fytoplankton biomassa in de Westerschelde. De ontwikkelingen en de toestand in de zones met sterk wisselend zoutgehalte, waar de soortenrijkdom afneemt of reeds bijzonder laag is, zijn verontrustend. Voor de hand liggende verklaringen zijn fluctuaties in salinitéit of afvoerdebieten, of verschuivingen in de ruimte van de zone van maximale turbiditeit, of mogelijke toename van de maximale turbiditeit. Dergelijke patronen zijn echter niet altijd duidelijk waargenomen.

In de waterkolom vervult het zoöplankton als schakel tussen primaire producenten (of detritus) en hogere trofische niveaus een zelfde essentiële rol als het macrobenthos op de slikken en platen. Verschuivingen in de diversiteit blijken moeilijk te bepalen vanwege verschillen in het determinatie niveau door de jaren heen, maar de soortenrijkdom is gedurende de laatste jaren laag te noemen. De sleutelsoort Eurytemora affinis verandert de laatste jaren een toename in biomassa in de zoete delen van het Schelde-estuarium (enkel in de Durme is dit niet duidelijk), vermoedelijk het gevolg van de verbeterde waterkwaliteit waardoor deze soort zich stroomopwaarts uitbreidt. De totale biomassa van het zoöplankton neemt dan echter weer af in de Rupel en de zoete zone met korte verblijfs tijd. Mogelijke oorzaken zijn effecten van toxische stoffen, een verhoogde begrazing door een toename van de zoöplanktivore vissen, of door verandering in het determinatie niveau.

De bodemdieren (het macrobenthos) vormen een belangrijke schakel in het estuariene voedselweb, als consument van de primaire productie en voedselbron voor hogere trofische niveaus zoals vissen en vogels. In het Schelde-estuarium doen zich verspreid over het gehele systeem een aantal problemen met betrekking tot de bodemdieren voor. De populaties van verschillende soorten exoten breiden uit en kunnen in de toekomst algemeen voorkomen worden in het systeem. In de polyhaline (mariene) zone maken exoten een substantieel deel van de biomassa uit. De ontwikkelingen met betrekking tot de exoten zijn zorgelijk te noemen, omdat een toename in (met name) de biomassa een groot effect kan hebben op het ecologisch functioneren, zoals mogelijke effecten op de energiedoorstroom in het voedselweb en effecten op de aanwezigheid van inheemse soorten. Toenemende exoten, in aantallen en biomassa, duiden over het algemeen ook op een systeem waar frequent (lokale) verstoringen plaats vinden. Anderzijds kan het ook zo zijn dat momenteel exoten in de bovenstroomse delen juist de eerst soorten zijn die weten te profiteren van de verbeterde waterkwaliteit, met name met betrekking tot de zuurtoestand. De totale biomassa aan bodemdieren in de Zeeschelde en de zijrivieren is sinds het begin van deze eeuw sterk afgenomen. Een significante afname van het aantal waargenomen soorten in de niet zo soortenrijke zone
met een sterke salinithegradiënt kan duiden op een toename van de hydrodynamiek, of grote fluctuaties in de afvoerdehbiën en salinité. De abiotische meetgegevens duiden echter niet op een recentelijke substantiële toename van die fluctuaties. Het Schelde-estuarium is van internationaal belang voor heel wat vogelsoorten. Ruim 150 000 vogels (hoofdzakelijk watervogels) kunnen in het Schelde-estuarium verblijven. Van sommige soorten komt een aanzienlijk deel van de NW-Europese populatie voor in het Schelde-estuarium, vooral tijdens de winterperiode en de doortrek wanneer vogels zich verplaatsen van hun noordelijke broedgebieden naar het zuiden en andersom. In de Westerschelde gaat het met name om steltlopers, ganzen en eenden, in de Zeeschelde vooral om eendachtigen. Een aantal soorten die bij laag water hun voedsel (bodemdieren) zoeken op de slikken en platen, zoals de bergeend, bonte strandloper en wulp nemen toe in aantallen in de Westerschelde, terwijl de scholkester een cyclische trend vertoont en de laatste jaren in aantal afneemt. Opvallend is de dalende trend voor grauw e gans, sinds de tweede helft van de twintigste eeuw. Voor deze planteneters is het Verdrinken Land van Saelhinghe het belangrijkste gebied langs de Westerschelde.

Na jaren van toename vertonen de aantallen overwinterende watervogels in de Zeeschelde sinds 2001 een aanhoudende dalende trend. In het jaar 2000 werden nog maandmaxima (januari, december) van ruim 70 000 vogels in de Zeeschelde gehaald, nu zijn de aantallen gedaald tot ruim onder de 20 000. Met name jacht, vervuiling en verstoring was de soort nagenoeg verdwenen in de jaren ’50. Sinds begin jaren ’90 zien we een voorzichtig herstel in het Deltagebied en de Westerschelde. De trend is positief en jaarlijks wordt tevens een klein aantal jongen geboren in de Westerschelde. Dit is echter niet voldoende om de groei te verklaren en de populatie is afhankelijk van imigratie van individuen van elders. Aandachtspunt is dat het areaal aan ongestoord rustgebied moet toenemen zodat het beter geschikt wordt voor de voortplanting van de gewone zeehond.

Hogere planten (Macrofyten) vormen de structurerende levensvorm op de schorren van het Schelde-estuarium. Schorren zijn een belangrijk en kenmerkend habitattype van estuaria wegens de vele functies die ze vervullen. De soortensamenstelling en productie bepalen in belangrijke mate het belang en functie van de schorren in het ecosysteem. Hierbij spelen areaal van de schorren (en vegetatietypes), structurele habitatkwaliteit (topografische index, connectiviteit) en de biologische habitatkwaliteit (vegetatiediversiteit en de verdeling van de vegetatiezones of ecotopen) een rol. In de Westerschelde zijn de laatste decennia grote wijzigingen opgetreden in de biologische habitatkwaliteit. Abiotische en biotische processen liggen hieraan ten grondslag. De sterke ophoging van schorren leidt tot een toename van zeekwiek (in de zoute en brakke zone) en niet (brakke zone) en een afname in soortendiversiteit. De lage schortypes nemen af in oppervlakte. Ophoging van de platen leidt tot ontwikkeling van pioniervegetaties op de hogere delen. Een voorbeeld hiervan is de sterke uitbreiding op de Hooge Platen van de pioniervegetatie, die begint te evolueren naar laag schor. Door deze ontwikkeling gaat belangrijk voedselhabitat voor steltlopers langzaam verloren, en de schorontwikkeling op de platen wordt dan ook als ongunstig geëvalueerd. De zeembies vegetatie (figuur 1.2) neemt sterk af, waarschijnlijk als gevolg van vraat door de sterk toegenomen grauwe ganzenpopulatie. De aantallen grauw e ganzen nemen de laatste
jaren weer fors af; in hoeverre dit een gevolg is van een overbegrazing van hun geprefereerd voedsel is nog onduidelijk.

De biodiversiteit van het Schelde-estuarium laat heel wat verschillende gezichten zien, en het is niet mogelijk om een eenduidige evaluatie te maken. Sommige trends zijn positief, andere zijn negatief, en hetzelfde geldt voor de toestand anno 2009. De verklaring hiervoor is vaak niet eenduidig. Daarnaast kunnen sommige aspecten moeilijk geëvalueerd worden door een gebrek aan (geschikte) informatie. Samenvattend kan gesteld worden dat vooral in de bovenstromse, zoete delen de diversiteit toeneemt onder invloed van verbeterende waterkwaliteit, met name door verbeterde zuurstofcondities en een lagere nutriënten influx. Daar profiteren ook een aantal exoten van. De verbetering van de zuurstofcondities en een lagere organische input kan mogelijk als negatief neveneffect zorgen voor een verhoogde biobeschikbaarheid van reeds jaren in de sedimenten aanwezige toxische stoffen. Daardoor ontbreken misschien een aantal gevoelige groepen onder het zoöplankton en het macrobenthos. Opvallend is de enorme afname in overwinterende vogelaantallen, terwijl de visbestanden positief evolueren.

De grootste problemen met betrekking tot de diversiteit lijken zich momenteel te bevinden in de zone met een sterke saliniteitsgradiënt, waar een toename van de hydrodynamiek, en grote fluctuaties in de afvoerdebieten en saliniteit, mogelijk de dalende trends verklaren.

In de Westerschelde vertoont de diversiteit een gemengd beeld, met sommige (sleutel)soorten die een positieve trend vertonen, en andere soorten juist afnemen. Het voorkomen van de gewone zeehond evolueert gunstig; sommige steltloepersoorten nemen toe, terwijl grauwe gans en smièt afnemen. Exoten zijn met name onder het macrobenthos succesvol, en bepalen in toenemende mate de biomassa in de Westerschelde. Veranderingen in de arealen van dominante macrofyten vegetatietypes wijzen op een toenemende verhogen van de schorren in de Westerschelde.

De grootste problemen met betrekking tot de diversiteit lijken zich momenteel te bevinden in de zone met een sterke saliniteitsgradiënt, waar een toename van de hydrodynamiek, en grote fluctuaties in de afvoerdebieten en saliniteit, mogelijk de dalende trends verklaren.

In de Westerschelde vertoont de diversiteit een gemengd beeld, met sommige (sleutel)soorten die een positieve trend vertonen, en andere soorten juist afnemen. Het voorkomen van de gewone zeehond evolueert gunstig; sommige steltloepersoorten nemen toe, terwijl grauwe gans en smièt afnemen. Exoten zijn met name onder het macrobenthos succesvol, en bepalen in toenemende mate de biomassa in de Westerschelde. Veranderingen in de arealen van dominante macrofyten vegetatietypes wijzen op een toenemende verhogen van de schorren in de Westerschelde.

De macrobenthos biomassa in de Westerschelde fluctueert sterk van jaar tot jaar. Fluctuaties in de schelpdierbestanden (bijv. kokkel) zijn hiervoor in hoofdzaak verantwoordelijk. Schelpdieren hebben zo nu en dan een jaar met massale broedval, dat wordt afgewisseld met enkele jaren zonder substantiële broedval. Dit betekent dat er ook behoorlijke schommelingen in de balans tussen primaire productie en de bentische productie plaatsvinden in de Westerschelde. Verschuivingen in het litoraal en sublitoraal, zoals de verschuiving van laagdynamische naar hoogdynamische litorale gebieden, kan er voor zorgen dat
primaire productie minder efficiënt benut gaat worden door het macrobenthos (in hoogdynamische gebieden komen veel lagere macrobenthos biomassa’s voor). Dit kan de balans tussen primaire productie en macrobenthos productie negatief nemen. Het feit dat er geen algehele afname in de vogel- en vissen- aantallen worden waargenomen, laat zien dat de energiedoorstroom in het voedselweb redelijk in orde is. Echter, het is mogelijk dat de momenteel aanwezige grote biomassa van exotische origine niet geheel ten goede komt van de hogere trofische niveaus.

Met betrekking tot de energiedoorstroom op het systeemniveau is de Zeeschelde met de zijrivieren minder belangrijk dan de Westerschelde vanwege een factor 10 verschil in de verhouding oppervlak en volume. Met betrekking tot de biodiversiteit is het bovenstroomse gedeelte in potentie echter zeker zo belangrijk als de benedenstroomse delen. Daar komt bij dat wanneer het ecosystem functioneren in de Zeeschelde en de zijrivieren nog niet optimaal is, dit direct zal doorwerken naar de benedenstroomse gebieden, daar het een efficiënte doorstroom van energie in het voedselweb kan belemmeren en diverse soorten gebruik maken van het gehele estuarium. De achterblijvende biomassa en diversiteit van de macrobenthos gemeenschappen is daar één aspect van. Daardoor gaat de primaire productie grotendeels pas stroomafwaarts verder het voedselweb in, waardoor de energiedoorstroom minder efficiënt is dan wat potentieel mogelijk is. Het zou er samen met de versnelde doorvoer door het systeem (korte verblijftijden) tevens voor kunnen zorgen dat de mortaliteit van met name fytoplankton zorgt voor een door detritivoren (schimmels en bacteriën) gedomineerd voedselweb, terwijl in potentie de filterende organismen belangrijker zouden kunnen zijn. Problemen profileren zich nu vanaf de zone met een sterke salinit vegetationi grijzend stroomafwaarts tot aan de monding. Een verhoogde dynamiek werkt eveneens de succesvolle vestiging van inheemse schelpdierbanken (zoals kokkels en mossels) tegen. Deze soorten hebben in het verleden toch al te leiden gehad onder visserijdruk en hebben momenteel te maken met concurrentie door exoten als de Amerikaanse zwaardschede.

5. Conclusies anno 2009

De evaluatie voor het jaar 2009 gebeurt aan de hand van de Evaluatiemethodiek. Deze methodiek volgt een piramide-approach: van een aantal globale communicatie-indicatoren (eenvoudige termen die het Schelde-estuarium beschrijven) wordt ingezoomd tot verschillende systeem verklarende factoren. De communicatie-indicatoren, opgebouwd rond de thema’s uit de Langetermijnvisie (LTV), worden in deze rapportage hoofdstuk per hoofdstuk behandeld. De evaluatie van elke communicatie-indicator is gebaseerd op een beperkt aantal toetsparameters.

De communicatie-indicator Dynamiek Waterbeweging krijgt in het jaar 2009 een negatieve beoordeling. Vanuit het standpunt van de veiligheid is de toename van de jaargemiddelde en extreme hoogwaterstanden negatief. Vanuit de analyse van de golfwerking kan geen conclusie getrokken worden.

De communicatie-indicator Bevaarbaarheid wordt negatief beoordeeld. De afname van de looptijden van het gotij en de toename van de gotijslag is ongewenst. De bevaarbare diepte (uitgewerkt als de parameters jaargemiddeld hoog- en laagwater, en onderhoudsbaggervolumes) kent vooral op de Zeeschelde een negatieve ontwikkeling, terwijl dit voor de Westerschelde eerder positief is.

Voor de communicatie-indicator Plaat- en geulsysteem wordt geconcludeerd dat de toetsparameters monding en enkelgeulsysteem positief scoren. Voor het meergeulstelsel krijgen de westelijke macrocellen (1, 2 en 3), een positieve score en de oostelijke macrocel (5, 6 en 7) een negatieve score. In macrocel 4

1 De macrocellen in de Westerschelde bestaan uit de hoofdgeul en de reverse geul die rondom een plaatcomplex liggen. Binnen de macrocel zijn de waterbeweging, het transport van zand en door het getij en de ontwikkelingen van de bodem gekoppeld. In de
wordt de ontwikkeling van de platen, waarvan de hoogte is toegenomen en het aantal is afgenomen, negatief beoordeeld. De sedimenttransportcapaciteit in het meer- en enkelgeulstelsel is niet beschouwd, aangezien de wijze van berekenen, periode, getijcondities, sedimenttransportformule etc. nog vastgesteld moeten worden. In het enkelgeulsysteem is weinig veranderd aan de meandering. De veranderingen hierin hebben zich voorgedaan in periode voor 1910, voorafgaand aan de periode waarvan (tegenwoordig) digitale gegevens beschikbaar zijn.

De communicatie-indicator Waterkwaliteit scoort voor alle toetsparameters negatief, maar de trend is duidelijk positief. De slechte score is vooral te wijten aan de nog grote nutriënt- en vuilvracht die de Zeeschelde en haar zijrivieren binnenstroomt. Dit leidt tot een te grote zuurstofvraag met soms te lage zuurstofwaarden en ongunstige nutriëntverhoudingen. Gelukkig is de input van vervuilende stoffen doorgaans in dalende lijn.

De communicatie-indicator Leefomgeving voor flora en fauna is geëvalueerd op de toetsparameters oppervlak en kwaliteit. De ontwikkeling van het areaal diep en ondiep in de Zeeschelde scoort negatief, net als de breedte van oever en schor. De beperkte beschikbaarheid van onderlinge vergelijkbare ecotopenkaarten, maakt het trekken van conclusies voor de andere parameters vooralsnog niet mogelijk.

De communicatie-indicator Flora en Fauna laat een gemengd beeld zien. Het is dan ook een zeer diverse indicator met wel zeven toetsparameters. Geen enkele toetsparameter laat een volledig positief beeld zien, op de zeezoogdieren (gewone zeehond) na. De rekenparameters voor de Gewone Zeehond laten een positief beeld zien, maar de populatie is nog steeds afhankelijk van immigratie van individuen van elders. Voor de overige toetsparameters (vogels, vissen, macrobenthos, zoöplankton, fytoplankton en macrofyten) scoren bepaalde rekenparameters negatief: dit kan voor het volledige estuarium zijn, of voor een bepaalde zone in het estuarium. De verklaring hiervoor is vaak niet eenduidig. Ook kunnen binnen één rekenparameter bepaalde (sleutel)soorten een positieve evaluatie hebben, andere soorten een negatieve. Dit maakt één beoordeling lastig. Het is tevens duidelijk dat in de komende jaren werk gemaakt moet worden van goede referentielijsten, en lijsten met sleutelsoorten en exoten om een volledige toepassing van de evaluatiemethode toe te laten. Welke soorten geëvalueerd dienen te worden moet voor een aantal toetsparameters nader onderzocht worden, met een focus voor die soorten die een belangrijke rol, dan wel indicatief (positief, negatief) zijn voor het ecologisch functioneren van het estuarium (zie evaluatie nota). Hierbij is het belangrijk dat niet alleen naar het voorkomen (occurrence) gekeken wordt, maar ook de aantallen/biomassa’s (abundance) meegenomen worden. Deze laatste zullen beter onderscheidend zijn dan een evaluatie enkel op basis van voorkomen, zoals in deze rapportage is toegepast.

De communicatie-indicator Ecologisch Functioneren scoort over het algemeen onvoldoende. Op basis van de primaire productie zou men een hogere benthos biomassa moeten kunnen aantreffen in de Westerschelde. Ook in de Zeeschelde wordt de gevenste benthos biomassa niet gehaald. Daar komt bij dat de kokkelbestanden, reeds enkele jaren onder het minimaal gewenste niveau blijven, en lokaal toenemende exotenaantallen en -biomassa onder het macrobenthos voor een negatieve beoordeling van de macrobenthos diversiteit zorgen. De secundaire consumenten biomassa in het systeem haalt wel de orde van grootte die kan worden verwacht bij de huidige primaire consumenten biomassa.

hoofdsel wordt de waterbeweging en het zandtransport door eb bepaald en in de nevengeul door vloed. Een belangrijk deel van het zandtransport vindt daardoor binnen de macrocel plaats en deze worden daarom als zanddende delen beschouwd. Vanwege dat zanddende karakter worden de macrocellen gebruikt voor het beheer en het beleid.

Leeswijzer

In dit rapport is in een hoofdstuk 1 een inleiding opgenomen die ingaat op de algemene beschrijving en het kader van de opdracht. In hoofdstuk 2 zijn de studiegebieden en indelingen weergegeven met verschillende figuren. In hoofdstuk 3 worden de methoden en technieken beschreven om tot een evaluatie van het jaar 2009 en een trendanalyse te komen. In hoofdstuk 4 tot en met 10 worden de piramides Dynamiek Waterbeweging, Bevaarbaarheid, Plaat-geulsysteem, Waterkwaliteit, Leefomgeving, Flora en fauna en Ecologisch functioneren beschreven. Deze hoofdstukken zijn als volgt ingedeeld:

- Samenvatting;
- Beschrijving van de uitwerking van de rekenparameters met een analyse van de data, een interpretatie en een evaluatie van het jaar 2009. In de evaluatie worden op hoofdlijnen conclusies per parameter getrokken;
- Beschrijving van de uitwerking van de verklarende parameters.

In het rapport wordt verwezen naar afzonderlijke digitale bijlagen. Hierbij wordt met een link verwezen naar de datasets en bewerkte data. Deze zijn beschikbaar op de Scheldemonitor (http://www.scheldemonitor.be).

In bijlage 1 zijn de referenties per hoofdstuk opgenomen. In de digitale bijlage 2 zijn kaarten op groot formaat opgenomen:

- Overzichtskaart van het Schelde-estuarium met in tekst gebruikte namen en de OMES-segmenten;
- Bodemligging van het Schelde estuarium;

In de digitale bijlage 3 is een beschrijving gegeven van de statistische achtergrond en de door IMDC ter beschikking gestelde Trend Analyse Tool software.

In de digitale bijlagen 4 en 5 zijn aanvullende uitwerkingen opgenomen voor de hoofdstukken Dynamiek Waterbeweging en Bevaarbaarheid.

In de digitale bijlage 7 zijn de aanvullende resultaten opgenomen voor het hoofdstuk Waterkwaliteit.

In de digitale bijlage 8 zijn aanvullende uitwerkingen opgenomen voor het hoofdstuk Leefomgeving.

In de digitale bijlage 9 zijn aanvullende uitwerkingen voor Flora en fauna opgenomen met daarbij de databewerking en resultaten van Benthos, Fytoplankton en Zoöplankton.

In de digitale bijlage 10 is de databewerking en resultaten van Macrozoöbenthos en Vissen en Vogels opgenomen.

Het hoofdstuk Plaat-geulsysteem (H6) heeft geen digitale bijlage.

Het consortium bestaat uit medewerkers van IMDC, ARCADIS, NIOZ, Universiteit van Antwerpen (UA) en IMARES. De auteurs van de hoofdstukken zijn de volgende:

- Samenvatting, leeswijzer, hoofdstuk 1: Davy Depreiter (IMDC), Tom Maris (UA), Jelmer Cleveringa (ARCADIS), Tom Ysebaert (IMARES), Sander Wijnhoven (NIOZ), Thijs van der Laan (ARCADIS);
- Hoofdstuk 2: Jelmer Cleveringa, Thijs van der Laan (ARCADIS);
- Hoofdstuk 3: Tom Maris (UA), Davy Depreiter (IMDC), Thijs van der Laan (ARCADIS);
- Hoofdstuk 4: Davy Depreiter (IMDC), Sarah Doorze (IMDC), Vincent Gruwez (IMDC), Gert Leyssen (IMDC), Joris Blanckaert (IMDC), Joris Santermans (IMDC);
- Hoofdstuk 5: Davy Depreiter (IMDC), Vincent Gruwez (IMDC), Gert Leyssen (IMDC), Joris Santermans (IMDC);
- Hoofdstuk 6: Jelmer Cleveringa (ARCADIS);
Hoofdstuk 7: Tom Maris (UA), Tom Cox (UA);
Hoofdstuk 8: Jelmer Cleveringa (ARCADIS);
Hoofdstuk 9: Tom Ysebaert (IMARES), Ilse de Mesel (IMARES), Sander Wijnhoven (NIOZ), Jacco Kromkamp (NIOZ);
Hoofdstuk 10: Sander Wijnhoven (NIOZ), Jacco Kromkamp (NIOZ).

De volgende experts van het consortium zijn betrokken geweest: Marc Sas (IMDC), Rob Steijn (ARCADIS), Herman Hummel (NIOZ), Patrick Meire (UA).
Tevens zijn de volgende externe experts bij het consortium betrokken geweest: Marcel Stive (TU Delft, fysisch expert) en Han Lindeboom (IMARES en WUR, ecologisch expert).

Voorafgaand aan de afronding van het rapport, is het rapport nog voorgelegd aan de Commissie Monitoring Westerschelde (CMW²). De adviezen en opmerkingen van de CMW zijn in het eindrapport verwerkt.

In 2014 zal een addendum voor het hoofdstuk Leefomgeving bij de voorliggende rapportage beschikbaar komen op basis van een set consistent vervaardigde ecotopenkaarten.

² De CMW bestaat uit onafhankelijke deskundigen op het gebied van morfologie, ecologie en waterbeheer uit Nederland en Vlaanderen:
Prof. J. Berlamont (KU Leuven), Prof. J. De Rouck (U Gent), Prof. P.M.J. Herman (NIOZ, RU Nijmegen), Prof. P. Hoekstra (U Utrecht), Prof. T. Moens (U Gent), Prof. C. Van Rhee (TU Delft) en Prof. J. Monbaliu (KU Leuven).
1

Inleiding

Separaat van dit rapport is een nota met betrekking tot de evaluatie van de evaluatiemethodiek geschreven.
De ruimtelijke indeling van het Schelde estuarium is gebaseerd op de OMES-compartimenten (Onderzoek Milieu Effecten van het Schelde estuarium). In het kader van de langetermijnvisie is het systeem van bochtgroepen verder geschematiseerd als een ketting van zogenoemde macrocellen en mesocellen. De macrocellen worden gevormd door de grote gekromde ebgeulen en rechte vloedgeulen. De kortsluitgeulen vormen de mesocellen.
In de figuren 2.1 t/m 2.8 zijn de 19 OMES-compartimenten van het Schelde estuarium, de Rupel en de Durme en de meso- en macrocellen van de Westerschelde weergegeven.

![Diagram met de 19 compartimenten van het Schelde estuarium](image)

Figuur 2.1 Het Schelde-estuarium, met de OMES segmenten en meso- en macrocellen (Westerschelde).
Figuur 2-2 De saliniteitszones en OMES segmenten (A) in het Schelde-estuarium en macrocellen (B) in de Westerschelde.
Figuur 2-3 Kaart van de Westerschelde rond macrocellen 1 en 2.

Figuur 2-4 Kaart van de Westerschelde rond macrocel 3.
Figuur 2-5 Kaart van de Westerschelde rond macrocel 4.

Figuur 2-6 Kaart van de Westerschelde rond macrocellen 5, 6 en 7.
Figuur 2-7 Kaart van de Beneden Zeeschelde.
Figuur 2-8 Kaart van de Boven Zeeschelde.
3 Methoden en technieken

3.1 INLEIDING

Bij de uitwerking van de analyses in dit rapport is gebruik gemaakt van de hiertoe ontwikkelde Evaluatiemethodiek Schelde-estuarium (fase 2) (Holzhauer et al., 2011). Deze methodiek werd in 2011 ontwikkeld om op basis van de MONEOS dataset het functioneren van het Schelde-estuarium te evalueren. Er bestonden natuurlijk reeds verschillende beoordelingskaders (o.a. inzake veiligheid, Kaderrichtlijn Water, Habitatrichtlijn), maar een overkoepelende evaluatie van het systeem ontbrak. Ter ondersteuning van beheer en beleid is echter een overkoepelende evaluatie gewenst. Het Schelde-estuarium is immers een complex systeem en continu in verandering. Om economische, veiligheids- en natuurbelangen veilig te stellen, hebben Nederland en Vlaanderen samen een integrale aanpak uitgewerkt, de Langtermijnvisie (LTV), waaruit de Ontwikkelingsschets 2010 volgde. Hierna volgde het gemeenschappelijk monitoringsprogramma MONEOS, met als doel om de juiste parameters op de juiste plaats met de juiste frequentie te meten.

Echter gaven de data uit dit programma nog geen pasklaar antwoord voor het beheer en beleid. Daarvoor is de Evaluatiemethodiek ontwikkeld met als uitgangspunten de beleidsdoelstellingen uit de LTV en het goed functioneren van het ecosysteem. Het vertrekpunt is dus niet een historische of ongerepte referentie. De evaluatie streeft geen eenzijdige consolidatie van de huidige toestand na, wel een systeem dat goed functioneert. Het estuarium moet de vrijheid krijgen om te kunnen evolueren binnen de grenzen van dat goede functioneren. De methodiek biedt de mogelijkheid diverse ontwikkelingsrichtingen tijdig te herkennen en te evalueren, ter ondersteuning van een adaptief beheer. De methodiek wordt in dit T2009 rapport voor het eerst toegepast om daarna elke 6 jaar een evaluatie van het Schelde-estuarium uit te voeren.

3.2 WERKWIJZE

Figuur 3.1: Schematische weergave van de communicatie-indicatoren (piramides) per hoofdfunctie van de langetermijn visie. NB. De functies veiligheid en toegankelijkheid zouden later uitgebreid kunnen worden met communicatie-indicatoren die geen directe relatie hebben met het functioneren van het systeem maar wel van invloed zijn op de functie.

Elke communicatie-indicator is uitgewerkt in een zelfstandig hoofdstuk in de evaluatiemethodiek, waarbij de beoordeling een getrapte aanpak volgt: de piramide-aanpak (Figuur 3.2). De T2009 volgt deze indeling: elke communicatie-indicator of piramide wordt in een afzonderlijk hoofdstuk uitgewerkt en geëvalueerd. Bovenaan de piramide staat de communicatie-indicator. Deze wordt beoordeeld door de onderliggende niveaus te doorlopen.

Figuur 3.2: Schematische weergave ‘piramide-aanpak’

Niveau 1: Rechtstreeks onder de communicatie-indicator staan de toetsparameters: een beperkte maar toch volledige set parameters waarmee een ondubbelzinnig de toestand of trend van de communicatie-indicator geëvalueerd kan worden.

Niveau 2: Elke toetsparameter is opgebouwd uit één of meerdere rekenparameters. Voor elke rekenparameter is een duidelijk toetsingscriterium opgesteld. Alle rekenparameters samen bepalen of de ontwikkelingen van een toetsparameter gunstig of ongunstig zijn voor het functioneren van het systeem.

Niveau 3: Onderaan de piramide staat een set verklarende parameters. Verklarende parameters dragen vooral bij aan het begrijpen van de waargenomen ontwikkelingen en minder aan het beoordelen van de ontwikkeling. De verklarende parameters zelf zijn immers niet onafhankelijk te beoordelen.
Bij de evaluatie worden steeds alle niveaus doorlopen. Ook verklarende parameters worden steeds bepaald. Trends in verklarende parameters kunnen immers wijzen op onderliggende problemen die op termijn kunnen leiden tot negatieve ontwikkelingen in een welbepaalde toetsparameter.

De indeling in verschillende piramides betekent echter niet dat de onderlinge samenhang uit het oog wordt verloren. Wederzijdse beïnvloeding tussen piramides is groot, ook al zijn ze opgesteld met een minimum aan redundantie. Maar toets- of rekenparameters uit de ene piramide kunnen terugkeren als verklarende parameter in een andere. Zo wordt impliciet de verwevenheid van het estuariene systeem ingebouwd in de methodiek.

3.3 TOELICHTING EVALUATIE T2009

In elk hoofdstuk worden alle toetsparameters beoordeeld. Aan het einde van elk hoofdstuk wordt deze beoordeling in de piramide weergegeven (flora en fauna in tabelvorm vanwege de grote hoeveelheden parameters). De ontwikkelingen voor de verschillende parameters in het jaar 2009 (T=tijdstip) kunnen negatief of positief zijn. In elke piramide wordt aangegeven of de gestelde criteria wel of niet gehaald worden voor verschillende parameters. De kleuren groen en rood geven aan dat wel respectievelijk niet wordt voldaan voor de beschouwde rekenparameter. Voor een parameter zonder kleur is een evaluatie of uitspraak (nog) niet mogelijk. Alle parameters in de piramides zijn dus wel onderzocht.

De tekens “+” of “-” geven een evolutie van de parameter aan: een “+” geeft aan dat er een positieve evolutie is, met andere woorden dat het systeem gunstig evolueert in de richting van het criterium voor een positieve evaluatie. De dalende trend voor een parameter kan bijvoorbeeld een gunstige trend zijn en krijgt dan een “+”. Als geen significante stijgende of dalende trend is aangetroffen wordt een “0” in de piramide opgenomen. Bij het ontbreken van een trend wordt niets aangegeven of een specifieke toelichting.

3.4 STATISTISCHE ANALYSE

Vanuit de brongegevens volgt inherent een zekere graad van onzekerheid die verschillend is per type parameter maar ook verschillende in de tijd. Het is niet mogelijk om voor alle parameters deze onzekerheid exact vast te stellen, maar bij de interpretatie van de analyseresultaten is hier rekening mee gehouden. De trends die uit de data berekend zijn (bijvoorbeeld de stijging van de hoog- of laagwaterstanden) gaan steeds gepaard met het vaststellen van een betrouwbaarheidsinterval (Confidence Interval, C.I.) en een verwachtingsinterval (Prediction Interval, P.I.) bij een significantie-niveau van 95% (p<0.05). Deze intervallen geven (grafisch) weer wat de onzekerheid is op de vastgestelde trendlijn. Niet-significante trends worden niet als trend voorgesteld. Meer informatie over de aanpak van de statistische analyse en trendbepaling is weergegeven in de digitale bijlage 3.

Om consistentie en uniformiteit op vlak van de statistische verwerking te verzekeren, is door IMDC de ‘Trend Analyse Tool’ software, ontwikkeld in Matlab, ter beschikking gesteld. In de digitale bijlage 3 is een beschrijving gegeven deze software. Voor een aantal piramides is meer specifieke uitleg bij de methodes opgenomen in de afzonderlijke hoofdstukken.
Dynamiek waterbeweging

De jaar gemiddelde hoogwaterstanden en de jaarlijkse 99- percentiel hoogwater (de waarde die door 1% van de hoog waters in een jaar overschreden wordt) nemen toe in alle stations in het estuarium. Deze parameters worden ook gekenmerkt door een trendbreuk in de jaren ’70 te Bath en in de Zeeschelde en een kleine trendwijziging in de jaren ’60 van vorige eeuw. De trendbreuk in de jaren ’70 in het oostelijk deel van de Westerschelde en de Zeeschelde kan gekoppeld worden aan ingrepen, waaronder sterke sediment-ontrekkingen in het estuarium. De algemene stijgende trend van de hoogwaterstanden wordt hoofdzakelijk verklaard door een combinatie van de stijging van de gemiddelde waterstand (zeespiegelstijging), een toename van de getijslag buiten het estuarium en een cumulatief effect van ingrepen in het estuarium vanaf de monding, die niet individueel tot trendbreuken leiden. De toename van de getijslag met toenemende afstand in het estuarium (amplificatie door de trechtervorm van het estuarium) speelt eveneens een belangrijke rol in het estuarium: de toename wordt bijkomend versterkt dieper in het estuarium. Voor de meest opwaartse stations in het estuarium, blijkt ook een correlatie te bestaan met het debiet van de bovenafvoer te Gent.

Op basis van golfparameters (maximale golfhoogte, jaar gemiddelde van de significante golfhoogte) kan geen significante trend bepaald worden in de golfhoogtes, met uitzondering voor Bath waar een afneemende significante golfhoogte optreedt voorafgaand aan het jaar 2009.

4.1 INLEIDING

Voor de communicatie-indicator *Dynamiek waterbeweging* worden twee toetsparameters uitgewerkt: ‘Hoogwater’ (§4.2) en ‘Golven’ (§4.3). Voor beide toetsparameters bestaan geen kwantitatieve of wettelijke criteria waaraan voldaan moet worden. Voor beide toetsparameters zijn rekenparameters gedefinieerd waarvoor de trendontwikkeling wordt weergegeven. Binnen deze indicator zal dus enkel een uitspraak gedaan worden over de trendontwikkeling van deze parameters in het estuarium. Er wordt op basis van de trendontwikkelingen aangeduid of een toe- of afname van een trend vanuit het systeem gezien een positieve of negatieve evolutie is. Een oordeel met betrekking tot de veiligheid wordt echter in dit kader niet geveld.

Daarnaast zijn een aantal verklarende parameters uitgewerkt (§4.4). Deze dragen bij tot het begrijpen van de waargenomen ontwikkelingen en geven een onderliggende systeemverklaring. Voor de verklaring voor de veranderingen in de waterbeweging in het estuarium zal worden rekening gehouden met de hydraulische randvoorwaarden en morfologische veranderingen in het estuarium.

De verschillende onderdelen van de communicatie-indicator zijn hieronder geïllustreerd. Aan het eind van het hoofdstuk wordt de communicatie-indicator aangevuld met een aanduiding of de huidige trends al dan niet gewenst of positief zijn (§4.5 en §4.6).

![Diagram](attachment:Figure 4-1.png)

Figuur 4-1: Indicator dynamiek waterbeweging.
4.2 HOOGWATER

Sinds het begin van de metingen aan het einde van de 19e eeuw wordt een trendmatige toename van de hoogwaterstanden vastgesteld, niet alleen in het estuarium maar ook wereldwijd (bijvoorbeeld Kemp et al., 2011). Een verdere stijging van de zeespiegel in de toekomst wordt verwacht (IPCC, 2007). De evolutie van het hoogwater is in het kader van de bescherming tegen overstromingen een belangrijke parameter. Een goede kennis van de huidige trends is nodig om toekomstgerichte beslissingen te kunnen nemen.

Er worden twee rekenparameters uitgewerkt om de evolutie van de hoogwaterstanden te evalueren: jaargemiddeld hoogwater, en het 99-percentiel hoogwater per jaar. In deze T2009-rapportage wordt de trend voorafgaand aan het jaar 2009 beschreven. In de toekomst zal een toename van de (stijgende) trend in deze parameters als negatief beoordeeld worden. Een verdere stijging volgens de huidige trend, of minder sterk, zal niet als negatief beoordeeld worden, ook al leidt dit tot een verdere toename van de hoogwaters.

4.2.1 REKENPARAMETER: JAAGMIDDELDE HOOGWATER

4.2.1.1 INLEIDING

Het jaargemiddeld hoogwater wordt bepaald als het rekenkundig gemiddelde van de dagelijkse gemeten hoogwaterstanden over de periode van een kalenderjaar. Het jaargemiddelde hoogwater is hoofdzakelijk afhankelijk van het astronomische getij en windopzet. Het vormt, naast een aantal andere parameters (jaargemiddeld laagwater, getijslag, looptijd, asymmetrie van de getijgolf, ...) een maat voor de evaluatie van de toestand van het systeem in relatie tot de getijvoortplanting. In de evaluatiemethodiek die de basis vormt van dit rapport (Holzhauer, 2011), wordt in het kader van de evaluatie van de Veiligheid uitsluitend naar de evolutie van het jaargemiddeld hoogwater gekeken.

In dit hoofdstuk wordt eerst een overzicht gegeven van de beschikbare meetgegevens van alle meetstations in het Schelde-estuarium (§4.2.1.2). Gegevens van een aantal stations buiten het estuarium worden ook gebruikt als referentie. Vervolgens wordt de evolutie van de jaargemiddelde waterstanden onderzocht voor alle stations (§4.2.1.3). Hierbij wordt een trendanalyse uitgevoerd. Een regressiemodel wordt gekalibreerd rekening houdend met mogelijke aanwezigheid van trendbreuken. Het regressiemodel dat als T2009-trend wordt aangeduid, heeft betrekking op alle gemeten jaren tot het jaar 2009 vanaf de laatste significante trendbreuk en dient uiteindelijk voor de evaluatie van deze rekenparameter vanaf 2010. Pas daarna wordt overgegaan tot een interpretatie van de trends en wordt gezocht naar mogelijke verklaringen voor trendbreuken of -wijzigingen (§4.2.1.4). Het hoofdstuk eindigt met een evaluatie van de rekenparameter op basis van de bepaalde trends volgens de in de methodiek voorgestelde wijze (§4.2.1.5).

4.2.1.2 GEBRUIKTE DATA

Getijgegevens zijn beschikbaar in verschillende meetstations in zowel de Westerschelde (Nederland) als de Zeeschelde (Vlaanderen). Een overzicht (van de locaties) van de Nederlandse meetstations is gegeven in Figuur 4-2 en Tabel 4-1. Het aanvangsjaar van deze metingen varieert tussen 1878 en 1996. Een overzicht van de Vlaamse meetstations is gegeven in Figuur 4-3 en Tabel 4-2. De tijdreeksen starten meestal vanaf 1970. Als bijkomende gegevens is door het Waterbouwkundig Laboratorium een overzicht ter beschikking gesteld met jaargemiddelde getijgegevens vanaf ten vroegste 1901. In Tabel 4-2 staat aangeduid voor welke stations deze extra data werden aangeleverd (cf. kolom “Extra data WI?”). De jaargemiddelde hoogwaters berekend uit de tijdreeksen van de Zeeschelde werden aangevuld met de reeds berekende jaargemiddelden waar mogelijk.
Sommige jaren bevatten grote hiaten in de tijdreeks van opgemeten hoogwaterstanden. Omdat een jaargemiddelde hoogwaterstand van dergelijk jaar mogelijk niet representatief is voor het werkelijk gemiddelde is een drempel bepaald waaronder dergelijk jaar niet wordt meegenomen in de verdere analyse. Enkel indien 75% of meer in de tijdreeks van een jaar waarden beschikbaar zijn, wordt dat jaar beschouwd in de analyse.

Alle jaargemiddelde hoogwaters zijn uitgedrukt in cm TAW3 voor Vlaamse stations en NAP voor Nederlandse stations.

Tabel 4-1: Overzicht van de Nederlandse getij meetstations

<table>
<thead>
<tr>
<th>Plaatsomschrijving</th>
<th>LMW* naam</th>
<th>Bekken</th>
<th>Periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[jaartal]</td>
</tr>
<tr>
<td>Baalhoek</td>
<td>baal</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Bath</td>
<td>bath</td>
<td>Westerschelde</td>
<td>1957-2009</td>
</tr>
<tr>
<td>Borssele</td>
<td>bors</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Breskens Veerhaven</td>
<td>bres</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Cadzand</td>
<td>cadz</td>
<td>Westerschelde</td>
<td>1966-2009</td>
</tr>
<tr>
<td>Hansweert</td>
<td>hans</td>
<td>Westerschelde</td>
<td>1880-2009</td>
</tr>
<tr>
<td>Overloop van Hansweert</td>
<td>ovfh</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Vlakte van de Raan</td>
<td>raan</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Schaar van de Noord</td>
<td>svdn</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Terneuzen</td>
<td>tern</td>
<td>Westerschelde</td>
<td>1878-2009</td>
</tr>
<tr>
<td>Vlissingen</td>
<td>vlis</td>
<td>Westerschelde</td>
<td>1881-2009</td>
</tr>
<tr>
<td>Walsoorden</td>
<td>wals</td>
<td>Westerschelde</td>
<td>1996-2009</td>
</tr>
<tr>
<td>Westkapelle</td>
<td>wkap</td>
<td>Westerschelde</td>
<td>1954-2009</td>
</tr>
<tr>
<td>Euro Platform</td>
<td>euro</td>
<td>Noordzee</td>
<td>1983-2009</td>
</tr>
</tbody>
</table>

*Landelijk Meetnet Water

3 Omzetting NAP → TAW werd waar nodig als volgt uitgevoerd: cm NAP + 233 = cm TAW.
Figuur 4-2: Locaties van de Nederlandse getij meetstations in de Westerschelde (Vlakte van de Raan en Europlatform niet afgebeeld).

Tabel 4-2: Overzicht van de Vlaamse getij meetstations

<table>
<thead>
<tr>
<th>Plaatsomschrijving</th>
<th>Naam</th>
<th>Bekken</th>
<th>Periode</th>
<th>Extra WL?</th>
<th>Periode totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antwerpen - Loodsgebouw</td>
<td>zes21a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>1/01/1971-31/12/2009</td>
<td>ja</td>
<td>1901-2009</td>
</tr>
<tr>
<td>Boom</td>
<td>rup01a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>31/12/1980-31/12/2009</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Dendermonde</td>
<td>zes40a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>1/01/1971-31/12/2009</td>
<td>ja</td>
<td>1901-2009</td>
</tr>
<tr>
<td>Drengoten</td>
<td>zes40a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>31/12/1980-31/12/2006</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Duffel-Sluis</td>
<td>bnt03a-100a-40v</td>
<td>Netebekken</td>
<td>1/01/1981-31/12/2009</td>
<td>ja</td>
<td>1963-2009</td>
</tr>
<tr>
<td>Emblem</td>
<td>kn01a-100a-40v</td>
<td>Netebekken</td>
<td>31/12/1980-31/12/2009</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Gentbrugge</td>
<td>zes59a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>1/01/1981-31/12/2005</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Hamme</td>
<td>dur02a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>31/12/1980-30/04/2001</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Hemiksem</td>
<td>zes28a-100a-40v</td>
<td>Benedenschelde-bekken</td>
<td>31/12/1980-31/12/2009</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Plaatsomschrijving</td>
<td>Naam</td>
<td>Bekken</td>
<td>Periode</td>
<td>Extra WL?</td>
<td>Periode totaal</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>------------------------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>[-]</td>
<td>Hombeek</td>
<td>zen01a-100a-40v</td>
<td>Dijle- en Zennebekken</td>
<td>nee</td>
<td>31/12/1980-31/12/2005</td>
</tr>
<tr>
<td>[-]</td>
<td>Kallosluis</td>
<td>zes14a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>nee</td>
<td>1/02/1982-31/12/2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Kessel</td>
<td>gnt02a-100a-40v</td>
<td>Netebekken</td>
<td>nee</td>
<td>1/01/1981-31/12/2006</td>
</tr>
<tr>
<td>[-]</td>
<td>Liefkenshoek</td>
<td>zes10a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Lier-Maasfort</td>
<td>gnt01a-100a-40v</td>
<td>Netebekken</td>
<td>nie</td>
<td>1/01/1981-31/12/2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Lier-Molbrug</td>
<td>bnt07a-100a-40v</td>
<td>Netebekken</td>
<td>nie</td>
<td>1/01/1981-31/12/2010</td>
</tr>
<tr>
<td>[-]</td>
<td>Mechelen-Benedensluis</td>
<td>dj06a-100a-40v</td>
<td>Dijle- en Zennebekken</td>
<td>nee</td>
<td>31/12/1980-31/12/2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Melle</td>
<td>zes58a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-1940 & 1971-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Merelbeke</td>
<td>zes60a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>nie</td>
<td>1/01/1981-29/12/2005</td>
</tr>
<tr>
<td>[-]</td>
<td>Oosterweel</td>
<td>zes19a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>nie</td>
<td>1/01/1987-31/12/2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Prosperpolder</td>
<td>zes01a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1952-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Rijmenam</td>
<td>dj10a-100a-40v</td>
<td>Dijle- en Zennebekken</td>
<td>nee</td>
<td>1/01/1980-31/12/2000</td>
</tr>
<tr>
<td>[-]</td>
<td>Schelle</td>
<td>zes29a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-1950 & 1965-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Schoonaarde</td>
<td>zes50a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Sint-Amands</td>
<td>zes43a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1951-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Sint-Marie</td>
<td>zes16a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>nie</td>
<td>1/01/1981-31/12/1982</td>
</tr>
<tr>
<td>[-]</td>
<td>Temse</td>
<td>zes36a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-1939 & 1951-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Tielenrode</td>
<td>dur01a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1906-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Uitbergen</td>
<td>zes53a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-1940 & 1951-2006</td>
</tr>
<tr>
<td>[-]</td>
<td>Waasmunsterbrug</td>
<td>dur04a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>ja</td>
<td>1901-2009</td>
</tr>
<tr>
<td>[-]</td>
<td>Waasmunster-Manta</td>
<td>dur05a-100a-40v</td>
<td>Benedenschelebekken</td>
<td>nie</td>
<td>31/12/1980-31/12/2005</td>
</tr>
</tbody>
</table>
Tabel 4-2 (vervolg): Overzicht van de Vlaamse getij meetstations

<table>
<thead>
<tr>
<th>PLAATS-</th>
<th>NAAM</th>
<th>BEKEN</th>
<th>PERIODE</th>
<th>EXTRA WL?</th>
<th>PERIODE TOTAAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[jaartal]</td>
<td>[-]</td>
<td>[jaartal]</td>
</tr>
<tr>
<td>Waasmunster-Sluis</td>
<td>dur03a-100a-40v</td>
<td>Benedenschele-bekken</td>
<td>1/02/1981-22/12/1986</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Walem</td>
<td>rup03a-100a-40v</td>
<td>Benedenschele-bekken</td>
<td>1/01/1972-31/12/2009</td>
<td>ja</td>
<td>1901-2009</td>
</tr>
<tr>
<td>Wetteren</td>
<td>zes56a-100a-40v</td>
<td>Benedenschele-bekken</td>
<td>1/01/1981-31/12/2009</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Zandvlietsluis</td>
<td>zes03a-100a-40v</td>
<td>Benedenschele-bekken</td>
<td>1/01/1981-31/12/2009</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Zele</td>
<td>dur06a-100a-40v</td>
<td>Benedenschele-bekken</td>
<td>1/01/1981-30/12/2003</td>
<td>ja</td>
<td>1951-2003</td>
</tr>
<tr>
<td>Zemst</td>
<td>zen02a-100a-40v</td>
<td>Dijle- en Zennebekken</td>
<td>31/12/1980-31/12/2005</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>Zwijnaarde</td>
<td>zes61a-100a-40v</td>
<td>Benedenschele-bekken</td>
<td>1/01/1981-31/12/2003</td>
<td>nee</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 4-3: Locaties van de Vlaamse getij meetstations in de Zeeschelde
4.2.1.3 ANALYSE

Inleiding
De analyse van de jaargemiddelde hoogwaterniveaus van elk station gebeurt op basis van een trendanalyse. De trendanalyse wordt uitgevoerd door een regressiemodel te kalibreren aan de data rekening houdend met het optreden van trendbreuken. Indien de trend onvoldoende significant zou zijn, wordt een filter toegepast om het algemene verloop van de data duidelijker te maken. De methode wordt volledig beschreven in hoofdstuk 3 (en met name in de bijhorende digitale bijlage 3) en wordt toegepast op alle data van elk station. Een grafiek voor elk station is beschikbaar in de digitale bijlagen. In het voorliggende rapport worden enkel de belangrijkste figuren en resultaten opgenomen. In de figuren die trends afbeelden wordt naast de brondata ook een trendlijn en confidentie- en predictie-intervallen weergegeven (aangeduid als C.I. en P.I.) bij 95% significantieniveau.

Hieronder wordt eerst per deelgebied (buiten estuarium, monding, Westerschelde en Zeeschelde) een bespreking van de resultaten gegeven. De trends en het algemene beeld wordt daarna als overzicht gegeven vooraleer de interpretatie (§4.2.1.4) aan te vatten.

Buiten het estuarium en monding

Voor de stations Euro Platform en Vlakte van de Raan is het significantieniveau van de trend onvoldoende (p > 0.05) om een betekenisvol regressiemodel te kunnen opstellen (zie digitale bijlage). Voor Euro Platform kan kwalitatief wel een lichte stijging in de tijd waargenomen worden. Voor de Vlakte van de Raan fluctueren de hoogwaterstanden tussen 4,0 en 4,1 m NAP (1996-2009).

De stations te Cadzand en Westkapelle aan de monding van het Schelde estuarium hebben echter wel voldoende data om een trend te kunnen onderscheiden (cf. Figuur 4-4 en Figuur 4-5). Er is in beide gevallen duidelijk een 18.6-jarige cyclus en een lineair stijgende trend van respectievelijk 10 en 20 cm/eeuw aanwezig.
Figuur 4-4: Regressiemodel jaargemiddelde hoogwaterstanden voor Westkapelle, gekalibreerd voor periode 1954-2009. C.I. is het confidentie- of betrouwbaarheidsinterval (95%); P.I. is het predictie-interval (95%).

Westerschelde
Een overzicht van alle stations in de Westerschelde is gegeven in Tabel 4-1. De meeste van de stations in de Westerschelde zijn echter vrij recent ingezet (sinds 1996) zodat hun tijdreeks te kort is om een significante trend te kunnen bepalen. De analyse wordt beperkt tot de stations waarvan de tijdreeks voldoende lang is. De belangrijkste meetstations in de Westerschelde zijn Vlissingen, Terneuzen, Hansweert en Bath.

De tijdreeks jaargemiddelde hoogwaterstanden voor deze stations is samen met hun trendlijn weergegeven in de digitale bijlage.

In alle stations is een 18.6-jarige cyclus en een positief lineaire trend aanwezig in de hoogwaterstanden. In elk station in de Westerschelde is een trendbreuk of een trendwijziging te onderscheiden, zij het niet overal even sterk in het oog springend.

Voor het station Vlissingen is dit visueel niet duidelijk maar uit analyse van de residuen (na detrending) blijkt er toch een systematische afwijking ten opzichte van de gemeten waterstanden te bestaan van de trend gëëxtrapoleerd naar het verleden vanaf de jaren '50 - '60 (zie Figuur 4-9 en Figuur 4-10 in de digitale bijlage). Het vaststellen van een exact jaartal wanneer deze afwijking start, is moeilijk uit te voeren als gevolg van de variabiliteit van de data zelf. Als het jaar 1965 (cf. Figuur 4-6) wordt gebruikt als grens voor de trendbepalingen, dan wordt een lineaire stijging van 30 cm/eeuw voor 1965 en 24 cm/eeuw na 1965 bekomen.

Te Terneuzen en Hansweert wordt een kleine stijging van de jaargemiddelde hoogwaterstanden waargenomen (minder dan tien centimeter) rond het jaar 1960. Daarnaast wijzigt de trend rond deze periode (1960, cf. Figuur 4-7 en Figuur 4-8), met opnieuw een zwakkere lineaire stijging van het jaargemiddelde hoogwater na 1960.

Te Bath wordt een kleine toename in de hoogwaterstanden rond 1975 teruggevonden. Ook voor dit station blijkt de mate van de stijging van het jaargemiddelde hoogwater lager te zijn na 1975 dan ervoor.
Figuur 4-6: Regressiemodellen voor de jaargemiddelde hoogwaterstanden van Vlissingen gekalibreerd voor periodes 1881-1964 en 1965-2009 (=T2009).

Figuur 4-7: Regressiemodellen voor de jaargemiddelde hoogwaterstanden van Terneuzen gekalibreerd voor periodes 1878-1959 en 1960-2009 (=T2009).
Figuur 4-8: Regressiemodellen voor de jaargemiddelde hoogwaterstanden van Hansweert gekalibreerd voor periodes 1900-1959 en 1960-2009 (=T2009).

Zeeschelde

Gezien het grote aantal stations in de Zeeschelde wordt de analyse beperkt tot de stations met de langste tijdreeks en voldoende ruimtelijke spreiding zodat het volledige Schelde-estuarium overzichtelijk beschreven kan worden. Deze meetstations zijn Liefkenshoek, Antwerpen, Schelle, Walem, Duffel-Sluis, Ternse, Tielrode, Waasmunster-brug, Dendermonde, Schoonaarde en Melle. De stations die hier niet expliciet behandeld worden, zijn verder in de tekst wel vervat in een overzicht van de stijging per locatie (Tabel 4-3 en Tabel 4-4) en in de digitale bijlage. De tijdreeks met de jaargemiddelde hoogwaterstanden voor deze stations is samen met de trendlijn weergegeven in figuren in de digitale bijlage.

In deze tijdreeksen van jaargemiddelde hoogwaterstanden is opnieuw de 18,6-jarige cyclus aanwezig en hebben ze een positieve lineaire trend.

De kleine verhoging van de hoogwaterstanden, en de verandering van de trend die rond 1975 bij Bath is waargenomen, zet zich verder in het volledige opwaartse Schelde-estuarium (cf. Figuur 4-10). Een uitzondering is Tielrode waar geen duidelijke trendbreuk te onderscheiden is.

Vanaf de Belgisch-Nederlandse grens tot voor Dendermonde is de stijging van het jaargemiddelde hoogwater zwakker na 1975 dan ervoor. Dit verandert echter vanaf Dendermonde (cf. Figuur 4-11), waar de mate van de stijging ongeveer gelijk blijft voor en na de trendbreuk. Nog verder opwaarts, te Schoonaarde en Melle (cf. Figuur 4-12), neemt de stijging sterker toe na de trendbreuk in de jaren ’70.

In de digitale bijlage is een gevoeligheidsanalyse uitgevoerd van het startjaar van de trend en de invloed daarvan op de lineaire stijging van de trend. Uit deze gevoeligheidsanalyse blijkt dat de mate van de stijging in meetstations Dendermonde en Schoonaarde naar elkaar toe convergeren voor een later startjaar van de trend. De trendbreuk werd volgens de gebruikte methode respectievelijk vastgelegd op 1974 en 1971. Het verschil in stijging tussen Dendermonde (76 cm/eeuw) en Schoonaarde (114 cm/eeuw) bedraagt daardoor 38 cm/eeuw. Wordt de trend echter bepaald vanaf 1980 voor beide stations, dan is de trend eerder gelijkwaardig: de stijging bedraagt respectievelijk 54 en 56 cm/eeuw. Het startjaar voor de trendbepaling speelt dus een zekere rol. Een trendbepaling op de hoogwaterstanden te Melle vanaf 1980 (in plaats van 1974) blijft een zeer hoge toenam aantonen: 120 cm/eeuw.

Overzicht trend T2009

De lineair stijgende trend die voor elk meetstation gevonden werd in de jaargemiddelde hoogwaterstanden sinds de laatste trendbreuk of verandering van de trend, vertoont een verschillende mate van stijging over de verschillende meetstations heen. Figuur 4-13 en Tabel 4-3 bieden een overzicht van de trendmatige stijgings- of dalingsnelheid van de jaargemiddelde hoogwaterstanden over het volledige estuarium te beginnen aan de monding te Cadzand en voor de meetstations met de langste tijdreeks. De stijgingsnemaling is gebaseerd op de trendlijn na het optreden van een eventuele trendbreuk of trendverandering en tot aan 2009. Deze werd voor de locaties in de Westerschelde rond 1960-1965 en voor de meeste meetstations vanaf en opwaarts van Bath rond 1975 vastgelegd. De waarde van de stijgingsnemaling stelt de helling voor van de lineaire component van deze trendlijn. In Tabel 4-4 zijn de waarden gegeven van meetstations met kortere tijdreeksen en waarvoor toch een significante trend (p<0.05) aanwezig is.

Van aan de monding tot Hansweert stijgt het jaargemiddelde hoogwater ongeveer met 20 ± 30 cm/eeuw. Vanaf Bath neemt de lineaire stijging sterker toe. De toename neemt verder toe in de Zeeschelde tot zelfs 148 cm/eeuw bij Melle. Er treedt wel lokaal een relatieve afname op tussen Liefkenshoek en Antwerpen-Loodsgebouw. In de Rupel stijgen de hoogwaterstanden met ongeveer 60 cm/eeuw en in de Durme neemt ze toe tot 100 cm/eeuw ter hoogte van Tielrode terwijl de stijging verder opwaarts (te Waastrunsterbrug) 50 cm/eeuw bedraagt.

Tabel 4-3: De stijging van het jaargemiddelde hoogwater in de belangrijkste meetstations.

<table>
<thead>
<tr>
<th>Bekken</th>
<th>Nummering (Figuur 4-13)</th>
<th>Naam meetstation</th>
<th>Afkorting</th>
<th>Periode trend T2009</th>
<th>HW stijging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schelde</td>
<td>1</td>
<td>Cadzand</td>
<td>CADZ</td>
<td>1966 - 2009</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Westkapelle</td>
<td>WKAP</td>
<td>1954 - 2009</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Vlissingen</td>
<td>VLIS</td>
<td>1965 - 2009</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Terneuzen</td>
<td>TERN</td>
<td>1960 - 2009</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Hansweert</td>
<td>HANS</td>
<td>1960 - 2009</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Bath</td>
<td>BATH</td>
<td>1975 - 2009</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Liefkenshoek</td>
<td>LIEF</td>
<td>1975 - 2009</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Antwerpen</td>
<td>ANTL</td>
<td>1974 - 2009</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Schelle</td>
<td>SCHE</td>
<td>1975 - 2009</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Temse</td>
<td>TEMS</td>
<td>1974 - 2009</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Dendermonde</td>
<td>DEND</td>
<td>1974 - 2009</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Schoonaarde</td>
<td>SCHO</td>
<td>1971 - 2009</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Melle</td>
<td>MELL</td>
<td>1974 - 2009</td>
<td>148</td>
</tr>
<tr>
<td>Rupel-Nete</td>
<td>10</td>
<td>Walern</td>
<td>WALE</td>
<td>1975 - 2009</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Duffel-Sluis</td>
<td>DUSL</td>
<td>1975 - 2009</td>
<td>66</td>
</tr>
<tr>
<td>Durme</td>
<td>11</td>
<td>Tielrode</td>
<td>TIEL</td>
<td>1901 - 2009</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Waasmunsterbrug</td>
<td>WABR</td>
<td>1977 - 2009</td>
<td>50</td>
</tr>
</tbody>
</table>
Tabel 4-4: De stijging van het jaargemiddelde hoogwater in de overige meetstations.

<table>
<thead>
<tr>
<th>Plaatsnaam</th>
<th>Waterloop</th>
<th>Periode totaal</th>
<th>HW stijging</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[-]</td>
<td>[jaartal]</td>
<td>[cm/100jaar]</td>
</tr>
<tr>
<td>Baalhoek</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Gat van Borssele</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Breskens Veerhaven</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Overloop van Hansweert</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Vlakte van de Raan</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Schaar van de Noord</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Walsoordien</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Boom</td>
<td>Rupel</td>
<td>1981-2009</td>
<td>70</td>
</tr>
<tr>
<td>Buggenhout</td>
<td></td>
<td>1901-1940</td>
<td>-</td>
</tr>
<tr>
<td>Driegoten</td>
<td>Zeeschelde</td>
<td>1981-2006</td>
<td>71</td>
</tr>
<tr>
<td>Embrun</td>
<td>Kleine Nete</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Gentbrugge</td>
<td>Zeeschelde</td>
<td>1981-2005</td>
<td>135</td>
</tr>
<tr>
<td>Hamme</td>
<td>Durme</td>
<td>1981-2001</td>
<td>105</td>
</tr>
<tr>
<td>Hemiksem</td>
<td>Zeeschelde</td>
<td>1981-2009</td>
<td>51</td>
</tr>
<tr>
<td>Hombeek</td>
<td>Zenne</td>
<td>1981-2005</td>
<td>39</td>
</tr>
<tr>
<td>Kalliosluis</td>
<td>Zeeschelde</td>
<td>1982-2009</td>
<td>59</td>
</tr>
<tr>
<td>Kessel</td>
<td>Grote Nete</td>
<td>1981-2006</td>
<td>-</td>
</tr>
<tr>
<td>Lier-Maasfort</td>
<td>Grote Nete</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Lier-Molbrug</td>
<td>BenedenNete</td>
<td>1981-2009</td>
<td>50</td>
</tr>
<tr>
<td>Mechelen-Benedensluis</td>
<td>Dijle</td>
<td>1981-2009</td>
<td>37</td>
</tr>
<tr>
<td>Merelbeke</td>
<td>Zeeschelde</td>
<td>1981-2005</td>
<td>-</td>
</tr>
<tr>
<td>Oosterweel</td>
<td>Zeeschelde</td>
<td>1987-2009</td>
<td>-</td>
</tr>
<tr>
<td>Prosperpolder</td>
<td>Zeeschelde</td>
<td>1952-2009</td>
<td>40</td>
</tr>
<tr>
<td>Rijmenam</td>
<td>Dijle</td>
<td>1980-2000</td>
<td>-</td>
</tr>
<tr>
<td>Sint-Amands</td>
<td>Zeeschelde</td>
<td>1951-2009</td>
<td>75</td>
</tr>
<tr>
<td>Sint-Marie</td>
<td>Zeeschelde</td>
<td>1981-1982</td>
<td>-</td>
</tr>
<tr>
<td>Uitbergen</td>
<td>Zeeschelde</td>
<td>1901-1940 & 1951-2006</td>
<td>118</td>
</tr>
<tr>
<td>Waasmunster-Manta</td>
<td>Durme</td>
<td>1981-2005</td>
<td>64</td>
</tr>
<tr>
<td>Waasmunster-Sluis</td>
<td>Durme</td>
<td>1981-1986</td>
<td>-</td>
</tr>
<tr>
<td>Wetteren</td>
<td>Zeeschelde</td>
<td>1981-2009</td>
<td>84</td>
</tr>
<tr>
<td>Zandvietsluis</td>
<td>Zeeschelde</td>
<td>1981-2009</td>
<td>29</td>
</tr>
<tr>
<td>Zele</td>
<td>Durme</td>
<td>1951-2003</td>
<td>82</td>
</tr>
<tr>
<td>Zemst</td>
<td>Zenne</td>
<td>1981-2005</td>
<td>55</td>
</tr>
<tr>
<td>Zwijnaarde</td>
<td>Zeeschelde</td>
<td>1981-2003</td>
<td>152</td>
</tr>
</tbody>
</table>
Residuen na trendverwijdering

Uit het vorige blijkt dat voor elke voldoende lange tijdreeks een lineaire trend met een 18.6-jarige cyclus gekalibreerd kan worden. Na het verwijderen van deze trends uit de tijdreeksen, worden de residuen bekomen. De standaardafwijking van de residuen ten opzichte van de T2009 trendlijn voor de jaargemiddelde hoogwaters in de belangrijkste meetstations in het Schelde-estuarium zijn weergegeven in Figuur 4-14. Deze parameter illustreert de spreiding die aanwezig is in de residuen.

Uit Figuur 4-14 blijkt dat vanaf Dendermonde tot in Melle de residuen een opvallend grotere spreiding kennen dan de overige meetstations afwaarts in het estuarium. Ook het station Duffel-Sluis in de Nete vertoont een grotere spreiding in de residuen. In de Durme neemt de spreiding initieel toe in Tielrode om dan weer af te nemen te Waasmunsterbrug.

Figuur 4-14: Standaardafwijking van de residuen ten opzichte van de T2009 trendlijn voor de jaargemiddelde hoogwaters in de belangrijkste meetstations in het Schelde-estuarium.

4.2.1.4 Interprestatie

Inleiding

In deze paragraaf worden verklaringen gezocht voor de vaststellingen die in de voorgaande paragraaf werden gemaakt. Hierbij wordt gebruik gemaakt van de verklarende parameters (§4.4) en literatuur.

In alle stations is een 18.6-jarige cyclus aanwezig en een positief lineaire trend in de jaargemiddelde hoogwaterstanden. Omdat deze trends ook aanwezig zijn aan de monding van het estuarium, is een eerste verklaring te vinden in externe oorzaken: de 18.6-jarige cyclus en een toename van de getijlag en zeespiegel buiten het estuarium.

De externe getij- of zeespiegelveranderingen alleen kunnen niet de verklaring bieden voor de (sterkere) toename van de hoogwaterstanden in het estuarium (vanaf Bath). Daarom worden ook binnen het estuarium (morfológische) verklaringen gezocht voor de stijging van het hoogwater.
Hieronder wordt eerst een interpretatie gemaakt van welke oorzaken (intern of extern) op welke deelgebieden van het estuarium een effect hebben. Dit wordt uitgevoerd aan de hand van de vergelijking van trends in het astronomisch getij (de pure toename van de getijslag) en het gemeten getij (alle effecten gecombineerd). Vervolgens wordt een verklaring gezocht voor de toename van de getijslag.

Verband met (astronomisch) getij

De voorgaande analyse van de hoogwaterstanden toont enerzijds een 18.6-jarige cyclus en anderzijds een lineair stijgende component aan in de metingen.

De **18.6-jarige nodale cyclus** is een gevolg van de variërende positie van de maanbaan t.o.v. het ecliptica-vlak. Dit is een externe en goed gekende oorzaak die een effect heeft op de waterstanden van alle meetstations.

De **lineaire (stijgende) trend** is enerzijds te corrélérer met de stijging in de jaargemiddelde astronomische hoogwaterstanden (cf. §4.4.1, verklarende parameters – astronomisch getij). Het astronomisch getij is het getij berekend op basis van uitsluitend harmonische (astronomische) componenten waaruit langjarige trends (zowel de 18.6-jarige cyclus als de jaargemiddelde waterstand) gefilterd zijn. Het astronomisch getij geeft zodoende inzicht in de evolutie van de getijslag. Anderzijds is de toename van het gemeten hoogwater ook deels te wijten aan de stijging van de gemiddelde waterstand (o.a. de zeespiegelstijging, zie ook cf. §4.4.1). Dit wordt hieronder verder toegelicht door de waargenomen trends in de verschillende parameters te vergelijken. In Tabel 4-5 en Figuur 4-15 worden de trend van de jaargemiddelde waterstand, het astronomisch en gemeten jaargemiddeld hoogwater voor de Westerschelde weergegeven.

De stijging van het jaargemiddelde gemeten hoogwaters (zwarte curve in Figuur 4-15) en de stijging van de jaargemiddelde waterstand (rode curve in Figuur 4-15) is zeer gelijklopend voor de meetstations van aan de monding tot Hansweert. Dit betekent dat de hoogwaterstijging grotendeels kan verklaard worden door een stijging in de gemiddelde waterstand. Bovendien is de waargenomen stijging in de verschillende stations gelijkaardig aan deze te Westkapelle (20 à 25 cm per eeuw). Er kan dus gesteld worden dat de trend in de stijging van de hoogwaters van de monding tot Hansweert voor een groot deel verklaard kan worden door de trend in de zeespiegelstijging.

Er is geen significante trend waargenomen in de jaargemiddelde astronomische hoogwaters voor deze stations, waardoor deze waarde voor die stations gelijkgesteld wordt aan 0 (groene curve in Figuur 4-15). Het ontbreken van een significante trend op de stijging van het astronomisch hoogwater neemt echter niet weg dat er een stijging merkbaar was. Deze effectieve stijging van het astronomisch hoogwater kan eventueel het verschil tussen de trends in gemeten en astronomisch jaargemiddeld hoogwater verklaren.

Te Bath is er echter een zeer uitgesproken verschil: de gemiddelde waterstand stijgt er minder sterk, maar de astronomische hoogwaterstanden stijgen wel trendmatig. De som van beiden (blauwe curve in Figuur 4-15) blijkt de stijging van het jaargemiddeld gemeten hoogwater te benaderen. Met andere woorden, te Bath is een toename van de getijslag een even belangrijke verklaring als de zeespiegelstijging voor de toename van de hoogwaterstanden.
Tabel 4-5: Vergelijking stijging jaargemiddelde waterstand, astronmisch jaargemiddeld hoogwater en gemeten jaargemiddeld hoogwater voor de periodes zoals weergegeven in Tabel 4-3.

<table>
<thead>
<tr>
<th>Naam meetstation</th>
<th>Afkorting</th>
<th>Gemiddelde waterstand</th>
<th>HW stijging (astronomisch)</th>
<th>HW stijging (meting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadzand</td>
<td>CADZ</td>
<td>10</td>
<td>Geen significante trend</td>
<td>10</td>
</tr>
<tr>
<td>Westkapelle</td>
<td>WKAP</td>
<td>24</td>
<td>Geen significante trend</td>
<td>21</td>
</tr>
<tr>
<td>Vlissingen</td>
<td>VLIS</td>
<td>19</td>
<td>Geen significante trend</td>
<td>24</td>
</tr>
<tr>
<td>Terneuzen</td>
<td>TERN</td>
<td>23</td>
<td>Geen significante trend</td>
<td>28</td>
</tr>
<tr>
<td>Hansweert</td>
<td>HANS</td>
<td>26</td>
<td>Geen significante trend</td>
<td>30</td>
</tr>
<tr>
<td>Bath</td>
<td>BATH</td>
<td>17</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Figuur 4-15: Vergelijking tussen de trends op het gemiddeld waterpeil (rood), astronomisch jaargemiddeld hoogwater (groen) en gemeten jaargemiddeld hoogwater (zwart). De blauwe curve is de som van trends op het gemiddeld waterpeil en het astronomisch hoogwater (rode en groene curve).

Opwaarts Bath (m.a.w. in de Zeeschelde) kan deze analyse niet verder gezet worden wegens het ontbreken van de benodigde harmonische gegevens. Het is wel geweten uit de observaties dat zowel de hoogwaterstanden als de getijslag op de Zeeschelde ook toenamen is in de laatste honderd jaar (zie verder in de tekst).

De zeespiegelstijging is een lange-termijn evolutie en een gekend fenomeen (bv IPCC, 2007).

De toename van de getijslag kan verklaard worden door verschillende fenomenen. Eerst wordt kort ingegaan op een externe factor, vervolgens op een factor binnen het estuarium.

In Langendoen (1987), Hollebrandse (2005) en Jeuken et al. (2007) wordt weergegeven dat in bepaalde periodes ook de getijslag langs de Nederlandse kust toenam (bijvoorbeeld een toename van 5 à 10 cm in de periode tussen 1940 en 1960 voor Vlissingen, en een toename van bv de M2-component (zie §4.4.1.1)). Het is echter niet duidelijk of dit een eenmalige fenomeen was, of deel uitmaakt van een langjarige
evolutie (multidecadale cyclus, cf. inzet tekst na §4.4.1) die nog niet onomstootbaar aangetoond is.
Langendoen (1987) wijst op het dieper worden van de mondingszone tussen 1900 en 1980 als sterkste
oorzaak voor de toename van de getijslag in de mondingszone. Dit wordt in omgekeerde richting
bevestigd door Poortman (2013) die aantoont dat het verondiepen van de monding leidt tot een sterke
reductie van de getijslag.

Een verandering van de getijslag op zee zal zich in ieder geval doorzetten in het estuarium. Vast staat dat
de verandering van de getijslag buiten het estuarium een geleidelijke evolutie (vermoedelijk een
cumulatief effect van verschillende, in de tijd gespreide oorzaken) is die niet als sterke trendbreuk herkend
wordt in de metingen binnen het estuarium.

De trendveranderingen in de hoogwaterstanden die worden waargenomen in de jaren ’60 te Vlissingen en
Terneuzen kunnen eventueel verklaard worden door dit fenomeen. Dat de toename van de getijslag op
zee na de jaren ’60 minder sterk verandert, stemt overeen met de interpretatie dat de toename van de
hoogwaterstanden in het westelijk deel van het estuarium (monding tot Hansweert) vooral verklaard
wordt door de zeespiegelstijging.

Een tweede verklaring voor de verandering van de getijslag wordt hieronder gegeven.

Verband met geometrie en bathymetrie

De getijslag neemt zowel ruimtelijk als temporeel toe:
- De getijslag neemt toe met toenemende afstand in het estuarium: deze ruimtelijke toename is een
 gevolg van de convergentie (de trechtervorm) van het estuarium, waardoor amplificatie optreedt.
- De toename van de getijslag in de tijd (de trendmatige stijging) die vanaf Bath een trend vertoont
 wordt veroorzaakt door veranderingen doorheen de tijd, binnen het estuarium.

De maximale jaargemiddelde getijslag in het estuarium is in de voorbije eeuw ongeveer 25 kilometer
dieper in het estuarium opgeschoven (er is sprake van een opschuiving van Antwerpen begin 20e eeuw
naar Tielrode begin 21e eeuw; Kuijper, 2012). De maximale gemiddelde getijslag is ook systematisch groter
geworden ten opzichte van de getijslag te Vlissingen, met andere woorden, de amplificatie is toegenomen.

Natuurlijke processen (cf. communicatie-indicator Plaat-Geulsysteem) of menselijke ingrepen (b.v.
(onderhouds)baggerwerken, zandextractie) die een invloed hebben op de morfologie van het estuarium,
zorgen voor veranderingen in de diepte, breedte en ruwheid. Het is een gekend fenomeen dat
bodemveranderingen in het estuarium leiden tot een verandering van de getijkarakteristieken, met name de
getijslag. Een belangrijke factor hierbij is dat door verdiepen en verruimen de invloed van de bodemfrictie
afneemt in het systeem wat leidt tot toename van de getijslag (Van Rijn, 2010). In deze interpretatie wordt
de trendmatige toename van de getijslag of de toename van de hoogwaterstanden vanaf Bath,
toegeschreven aan morfologische veranderingen in het estuarium.

De trendveranderingen die worden waargenomen in de jaren ’60 te Vlissingen en Terneuzen werden
eerder al toegewezen aan geleidelijke veranderingen in de getijslag buiten het estuarium in de periode
1940 en 1960. Een verklaring kan ook binnen het estuarium gezocht worden. Zo is er een (mogelijke)
toename van de waterdiepte en –volume opgetreden in macrocel 1 en macrocel 3 (zie §4.4.4.2
Morfologische parameters, §6.3.2.1 Sedimentvolume en §6.5.1 Geulvolume: er is volgens deze gegevens in
de periode 1957-1966 ongeveer 50 miljoen m³ sediment uit dit gebied verwijderd, waarvan 30 miljoen m³
periode 1955-1976 worden de gegevens echter onbetrouwbaar geacht, met grote schommelingen in de
waarden waar geen plausibele verklaring voor is (Cleveringa et al., 2013).
Inzake de veranderingen die opgetreden zijn in de jaren ’70, zijn er verschillende elementen aanwijsbaar die een rol spelen.

Inzake de komberging blijkt uit de geometrische en bathymetrische parameters (§4.4.4) dat de gemiddelde waterdiepte onder +3.5 m NAP vrij constant toeneemt sinds de jaren ’70 in de Westerschelde opwaarts vanaf Hansweert en in de Zeeschelde (minder duidelijk bij dit laatste omdat geen jaarlijkse data beschikbaar is). Het volume van het intertidaal gebied (en dus de komberging) neemt gestaag af in de Westerschelde stroom opwaarts van Bath (Macrocel 7) vanaf begin jaren ’70. Deze evoluties kunnen inderdaad de stijging van de getijslag stroom opwaarts van Bath en dus van het jaargemiddelde hoogwater verklaren.

De waterbeweging reageert in principe onmiddellijk op veranderingen in de bodem. Trendbreuken kunnen dus een gevolg zijn van belangrijke menselijke ingrepen. Een overzicht van deze ingrepen wordt gegeven in §4.4.4.1. Zoals reeds eerder vermeld, hebben vooral verdiepingen en verruimingen een grote invloed op de getijslag: een toename van de waterdiepte veroorzaakt initieel een toename van de getijslag en heeft dus invloed op het hoogwater (Van Rijn, 2010). Door herstabilisatie van de sedimentverdeling zijn weliswaar nalopende effecten te verwachten maar moeilijk te voorspellen.

Er zijn verdiepingen en verruimingen uitgevoerd in de Westerschelde en Zeeschelde ten behoeve van het verbeteren van de nautische toegankelijkheid (cf. §4.4.4.1). Daarnaast is ook sediment onttrokken (zandextractie) uit het systeem ten behoeve van allerhande doeleinden.

Omdat de data over de morfologische evolutie in de Zeeschelde maar beperkt is (niet jaarlijks, maar vijf- of tienjaarlijks) wordt gekeken naar de (onderhouds)baggervolumes en zandwinning voor de verklaring van de trendbreuk in dit deel van het estuarium. In §5.2.4.5 en §5.2.4.6 wordt een overzicht gegeven van de zandextractie en –winning die werd uitgevoerd tijdens baggerwerken sinds 1955.

In de Westerschelde is tussen 1970 en 1980 veel zandextractie uitgevoerd binnen het kader van de eerste verruiming. Deze baggerwerken veroorzaakten vooral tussen Hansweert en Bath (macrocellen 5 en 6) en voorbij Bath (macrocel 7) een verdieping van de Westerschelde (zie §6.5.1 Geulvolume). Ook in de Zeeschelde werd een belangrijke zandextractie uitgevoerd begin jaren ’70 (cf. §5.2.4.5 en §5.2.4.6). Het cumulatief effect van zowel de zandextractie uit de Westerschelde als de Zeeschelde lijkt de trendbreuk vanaf ’70/’80 te verklaren in de stations opwaarts van Hansweert en in de Zeeschelde.

In Figuur 5-31 valt ook nog een tweede piek op van zandextractie in de Zeeschelde in 1989. Deze is echter niet zo volumineus en gaat niet gepaard met een zandextractie in de Westerschelde, wat kan verklaren waarom geen trendbreuk rond 1990 is waargenomen.

De tweede verruiming (jaren 1997-98) wordt niet even duidelijk als trendbreuk gedetecteerd in de jaargemiddelde hoogwaterstanden. Een regressiemodel op de hoogwaters voor de periode 1974-1997 (met extrapolatie tot 2009, Figuur 4-16) voor het station Antwerpen is significant (p<0.044) en er wordt een sterke toename van de cumulatieve residuen vastgesteld vanaf 1997-98 tot het jaar 2002, waarna de cumulatieve terug afneemt. Die piek op de cumulatieve residuen komt echter overeen met een piek in de bovenafvoer (zie §4.4.2) wat er op kan wijzen dat de “trendbreuk” veroorzaakt wordt door een opeenvolging van jaren met hoge bovenafvoer. In het regressiemodel valt ook op dat de amplitude van de 18.6-jarige cyclus niet goed wordt ingeschat.
Een analoge analyse op de getijslag (die het effect van de bovendebieten minder sterk voelt, Figuur 4-17) levert een sterker regressiemodel op (p=0.0006) maar toont geen trendbreuken bij analyse van de cumulatieve residuen.

Een trendanalyse voor de metingen van het hoogwater te Bath levert geen significante trend, terwijl de analyse voor de getijslag (Figuur 4-18) dan wel weer een trendbreuk aantoont, die vanaf ongeveer 1996 leidt tot een toename van de residuen ten opzichte van een regressiemodel opgemaakt voor de periode 1978-1997.

Ook in de MOVE (MONitoring Verruiming) eindrapportage (van Eck & Holzhauer, 2006) wordt te Vlissingen, Hansweert en Bath geen significante trendafwijking van de hoogwaterstanden waargenomen na de 2e verruiming van 1996-97, of andere ingrepen. Hierin wordt weergegeven dat de veranderingen op de hoogwaterstanden op de lange termijn bijna wegvallen tegen de invloed van de zeespiegelstijging.
Een belangrijk verschil met de eerste verruiming is dat bij de tweede verruiming zandextractie een kleinere rol speelde. Tijdens deze verruimingcampagne werd het zand niet permanent uit het systeem onttrokken maar op andere locaties opnieuw gestort. Dit neemt echter niet weg dat de jaargemiddelde hoogwaters blijven toenemen als gevolg van de zeespiegelstijging.

Verband met rivierafvoer

Uit Figuur 4-14 bleek dat de spreiding van de residuen op de T2009 trend voor de jaargemiddelde hoogwaters zeer sterk toeneemt diep in de Zeeschelde (opwaarts vanaf Dendermunde en in Duffel-Sluis). Voor elk van deze meetstations werd de correlatie bepaald tussen deze residuen en het debiet van de bovenafvoer. Er blijkt voor elk van deze stations een heel sterke correlatie van meer dan 90% te bestaan met het debiet van de bovenafvoer (cf. Figuur 4-19 en digitale bijlage). Deze sterke correlatie betekent dat een groter jaargemiddeld debiet van de bovenafvoer een groter jaargemiddelde hoogwaterwaarde dan verwacht veroorzaakt en omgekeerd. De spreiding van de residuen te Waasmunsterbrug is minder dan in Tielrode in de Durme. Er zijn echter geen gegevens van het debiet van de bovenafvoer van de Durme beschikbaar, zodat de correlatie in de Durme niet onderzocht kan worden.

In de data van de overige stations in het estuarium is de invloed van het debiet van de bovenafvoer van minder belang, te zien aan de kleinere spreiding van de residuen. De spreiding van de residuen is echter...
toch nog voornamelijk door het debiet van de bovenafvoer te verklaren (correlatie van ongeveer 75%, cf. Figuur 4-20 en digitale bijlage).

Figuur 4-19: Correlatie tussen het debiet van de bovenafvoer te Melle en de residuen van de jaargemiddelde hoogwaters t.o.v. de T2009 trend te Melle. Correlatiecoëfficiënt = 0.98 (lineair, Pearson).

Figuur 4-20: Correlatie tussen het debiet van de bovenafvoer te Schelle en de jaargemiddelde T2009 hoogwater residuen te Vlissingen. Correlatiecoëfficiënt = 0.77 (lineair, Pearson).
4.2.1.5 EVALUATIE 2009

Er werd een trendlijn bepaald voor het jaargemiddelde hoogwater op elke meetlocatie in het Schelde-estuarium. De T2009 trendlijn voor het jaargemiddelde hoogwater wordt gekarakteriseerd door volgende waarnemingen:

- De trendlijn bevat een positief lineaire trend en een 18.6-jarige cyclus. De 18.6-jarige cyclus is een rechtstreeks gevolg van een variërende positie van de maanbaan ten opzichte van de ecliptica. De lineaire trend wordt veroorzaakt door een combinatie van een stijging van de gemiddelde waterstand en een toename van de getijden. Opwaarts vanaf Dendermonde en in Duffel-Sluis neemt de spreiding van de residuen ten opzichte van de trendlijn toe. Op deze locaties geldt een zeer sterke correlatie tussen het jaargemiddelde hoogwater residu op de T2009 trend en het debiet van de bovenafvoer. Zoals blijkt uit de grotere spreiding en grotere correlatiecoëfficiënt oefent het debiet van de bovenafvoer een grotere invloed uit op het jaargemiddelde hoogwater stroomopwaarts dan stroomafwaarts.

- De T2009 trendlijn werd opgesteld vanaf het jaar waarna een trendbreuk of verandering van de trend in het systeem werd vastgesteld.
 - De stations aan de monding vertonen geen trendbreuk.
 - In de Westerschelde (monding-Hansweert) wordt een verandering van de trend gevonden in de jaren '60 die wordt gerelateerd aan enerzijds een toename van de getijden buiten het estuarium en anderzijds een mogelijke toename van het watervolume in de westelijke Westerschelde (alhoewel de onderliggende data voor deze benadering als onbetrouwbaar wordt beschouwd).

- Gedurende het verloop van deze trendlijn bestaat statistisch gezien geen sterke aanwijzing van een andere trendbreuk op de jaargemiddelde hoogwaters die verband houden met latere ingrepen dan de eerste verruiming. De T2009 trendlijn beschrijft de rekenparameter sinds de trendbreuk op een statistisch significante wijze. De voorspelling die deze trendlijn maakt is dus geschikt voor de evaluatie van de rekenparameter vanaf 2010.

De huidige stijgende trend van de rekenparameter jaargemiddelde hoogwater in elk meetstation duidt op een negatieve evolutie in het kader van de bescherming tegen overstromingen in het bijzonder, en de veiligheid (als communicatie-indicator) in het algemeen.
4.2.2 REKENPARAMETER: 99-PERCENTIEL VAN DE HOOGWATERSTAND GEDURENDE EEN JAAR

4.2.2.1 INLEIDING

De rekenparameter 99-percentiel hoogwater is de waarde die door 1% of dus 7 van de hoogwaters in een jaar overschreden wordt. Dergelijke hoogwaterstanden zijn het gevolg van een stormopzet in combinatie met het springtij. Het is een betere parameter voor de analyse dan de maximale waterstand omdat de maximale waterstand nog meer beïnvloed wordt door de meteorologische variabiliteit.

4.2.2.2 GEBRUIKTE DATA

De tijdreeksen van dagelijks opgemeten hoogwaters beschreven in §4.2.1.2 dienen als basis voor het bepalen van de huidig beschouwde rekenparameter. Omdat deze rekenparameter enkel bepaald kan worden op basis van een tijdreeks is hier voor verschillende stations een kleinere dataset voorhanden dan die voor de jaargemiddelde hoogwaterstanden. Voor het station te Dendermonde bijvoorbeeld zijn jaargemiddelde hoogwaterstanden beschikbaar voor periode 1901-2009 terwijl de twee dagelijkse hoogwaterstanden enkel beschikbaar zijn voor 1970-2009 (cf. Tabel 4-2).

De 99-percentiel hoogwater per jaar werd bepaald door de 99-percentiel waarde te berekenen van alle hoogwaters van dat jaar. Er is opnieuw rekening gehouden met hiaten in de tijdreeks van een bepaald jaar: enkel indien 75% of meer van de tijdreeks waarden beschikbaar zijn wordt dat jaar beschouwd in de analyse.

Alle jaarlijkse 99-percentiel hoogwaters zijn uitgedrukt in cm TAW.

4.2.2.3 ANALYSE

Buiten het estuarium en aan de monding

Voor geen enkel van de stations buiten het estuarium en aan de monding kan een statistisch betekenisvolle trend opgesteld worden (cf. digitale bijlage of bv. figuur 4-21). In de plaats daarvan werd een LOWESS filter met een spanwijdte van 6 jaar toegepast om pieken in het verloop uit te filteren en een idee te krijgen van de algemene evolutie in de tijd.

Hoewel de meeste stations een te korte tijdreeks hebben om een trend te kunnen onderscheiden, kunnen toch enkele observaties gemaakt worden tussen de verschillende stations:

- De piekwaarden in de data van elk station komen steeds in hetzelfde jaar voor (bv. 1990);
- De laatste 3 jaren (2007-2009) wordt in elk station een daling opgetekend;
- In alle stations blijft de LOWESS waarde vrij constant (data beperkt tot periode 1970-2009), behalve voor Westkapelle waar een stijging over periode 1957-1970 waargenomen kan worden (cf. Figuur 4-22).

4 Omzetting NAP → TAW werd als volgt uitgevoerd: cm NAP + 233 = cm TAW.
Westerschelde

De belangrijkste stations in de Westerschelde hebben de langste tijdreeksen van data beschikbaar van het volledige Schelde-estuarium (>100 jaar, terwijl de andere stations maximaal 20 à 30 jaar data bevatten). In Figuur 4-23 (bovenaan) valt meteen de relatief grote spreiding op van deze parameter. Daarom werd opnieuw een LOWESS filter met spanwijde 6 jaar toegepast op de originele dataset. De figuren van alle stations zijn terug te vinden in de digitale bijlage. In de Westerschelde gelden dezelfde observaties gedaan als voor de stations buiten en aan de monding van het estuarium.

Ondanks de grote spreiding van deze rekenparameter kan toch een verandering van de trend gevonden worden tussen 1955 en 1965 voor elk meetstation in de Westerschelde. In deze gegevens is het echter niet mogelijk om een significante 18.6-jarige cyclus te onderscheiden in de data.
De lineair positieve trend identificeert een jaarlijkse stijging van deze rekenparameter. De stijging neemt toe in de Westerschelde van 23 cm/eeuw te Vlissingen tot 45 cm/eeuw te Bath (cf. Figuur 4-24).

Figuur 4-24: Evolutie van de lineaire stijging van de 99-percentiel hoogwaters stroomopwaarts in de Westerschelde vanaf Vlissingen tot Bath. Voor nummering van de stations cf. Tabel 4-3.

Zeeschelde

4.2.2.4 INTERPRETATIE

De 99-percentiel hoogwater is een extreme waterstand die wordt veroorzaakt door een combinatie van een springtij en windopzet. Enerzijds ondervindt deze parameter dus invloed van variaties in het (spring-) getij en anderzijds van meteorologische variaties (cf. §4.4.3).

De lineair positieve trend kan net als voor het jaar gemiddelde hoogwater verklaard worden als gevolg van de zeespiegelstijging en een toename van de getijslag (cf. §4.2.1.4) omdat de onderliggende processen dezelfde zijn.
Het is vooral de jaarlijks meteorologische grilligheid die ervoor zorgt dat deze parameter overal in het estuarium een relatief grote spreiding kent. Dit wordt aangetoond door:

- Het feit dat sommige pieken in de tijdreeks over verschillende stations aan de monding en in de Westerschelde in hetzelfde jaar voorkomen (bv. 1990) wijst erop dat de oorzaak van buiten het estuarium afkomstig is;

- Er is een afhankelijkheid van de residuen op de lineaire trend op het stormopzet. Er bestaat immers een significante correlatie tussen de residuen en de jaarlijkse 99-percentiel stormopzet te Vlissingen (cf. Figuur 4-28). Deze correlatie zet zich verder tot in Schelle (cf. digitale bijlage). Dieper in het estuarium echter blijkt de correlatie minder significant te zijn (cf. Figuur 4-29, links). De verklaring is dat op die locaties het debiet van de bovenafvoer de belangrijkste oorzaak is van de spreiding op de residuen (cf. Figuur 4-29, rechts), net zoals voor de jaargemiddelde hoogwaters werd gevonden (cf. §4.2.1.4).

Figuur 4-28: Correlatie tussen de 99-percentiel hoogwater residuen op de T2009 trendlijn en de 99-percentiel stormopzet te Vlissingen (Pearson correlatie coëfficiënt = 0.73)

Figuur 4-29: Links: correlatie tussen de 99-percentiel hoogwater residuen op de T2009 trendlijn te Melle en de 99-percentiel stormopzet te Vlissingen (Pearson correlatie coëfficiënt = 0.44); Rechts: correlatie tussen de 99-percentiel hoogwater residuen op de T2009 trendlijn en de 99-percentiel debiet bovenafvoer te Melle (Pearson correlatie coëfficiënt = 0.90)
De waargenomen verandering van de trend tussen de jaren 1955 en 1965 in de Westerschelde komt min of meer overeen met wat werd waargenomen voor de rekenparameter jaargemiddelde hoogwater. Een uitzondering is Bath waar een trendbreuk voor het jaargemiddelde hoogwater eerder rond 1975 lag bij het jaargemiddelde hoogwater. Mogelijk is dit verschil te wijten aan de grotere spreiding als gevolg van de meteorologische variabiliteit (§4.4.3). De tijdreeks van de stormopzet te Vlissingen is echter net te kort (1971-2009) om dit te kunnen bevestigen. Het valt alleszins wel op dat begin jaren ’70 zeer grote stormopzetten zijn voorgekomen in vergelijking met de tweede helft van de jaren ’70, welke een impact gehad kan hebben op de 99-percentiel hoogwater en de locatie van de trendbreuk.

De oorzaak van de trendbreuk is – analoog aan de rekenparameter jaargemiddelde hoogwater – voornamelijk te zoeken bij morfologische veranderingen (verdieping, zandextractie) die in de Westerschelde werden uitgevoerd (cf. §4.2.1 en §4.4.4) en externe veranderingen van het getij.

4.2.2.5 EVALUATIE 2009

Waar mogelijk werd een trendlijn bepaald voor de jaarlijkse 99-percentiel hoogwaterstand op elke meetlocatie in het Schelde-estuarium. De resulterende T2009 trendlijn wordt gekarakteriseerd door volgende waarnemingen:

- De trendlijn bevat een positief lineaire trend, maar geen significante 18.6-jarige cyclus. De 18.6-jarige cyclus is mogelijk wel aanwezig, maar moeilijk te onderscheiden door de grote spreiding van de waarden als gevolg van de meteorologische variabiliteit. Er werd immers een vrij sterke correlatie gevonden in de Westerschelde tussen de stormopzet en de residuen na verwijderen van de lineaire trend. De lineaire trend op zich wordt veroorzaakt door een combinatie van een stijging van de gemiddelde waterstand (zeespiegelstijging) en een toename van de getijspan in het astronomische getij. Verder stroomopwaarts in het estuarium is de correlatie tussen de residuen en de stormopzet minder sterk omdat de spreiding daar hoofdzakelijk bepaald wordt door het debiet van de bovenafvoer.

- Indien een significante trend aanwezig was, werd de T2009 trendlijn opgesteld vanaf het jaar waarna een trendbreuk of trendverandering in het systeem werd vastgesteld. De stations aan de monding vertonen geen trend. In de Westerschelde werd een verandering gevonden rond de jaren ’60 (1955 – 1965). Dit stemt overeen met de waarnemingen op de jaargemiddelde hoogwaters. Als gevolg van een onvoldoende lange tijdreeks werd geen significante trend gevonden in de meeste stations in de Zeeschelde. Daar waar het wel mogelijk was, is de tijdreeks toch onvoldoende lang om de trendbreuk, waargenomen in de jaren ’70 bij de jaargemiddelde hoogwaterstanden, ook voor deze rekenparameter terug te vinden.

De huidige stijgende trend van de rekenparameter jaarlijks 99-percentiel hoogwater in elk meetstation duidt op een negatieve evolutie in het kader van de bescherming tegen overstromingen in het bijzonder, en de veiligheid (als communicatie-indicator) in het algemeen.

In de toekomst, vanaf 2010, zal blijken of al dan niet een toename van de beschreven, stijgende trends wordt waargenomen, wat al dan niet zou leiden tot een negatieve evaluatie van de rekenparameter.
4.3 GOLVEN

4.3.1 REKENPARAMETER: JAARLIJKS MAXIMALE GOLFHOOGTE

4.3.1.1 INLEIDING

Als rekenparameter voor de toetsparameter golven schrijft de methodiek (Holzhauer et al., 2011) voor de jaarlijks maximale golfhoogte te gebruiken. Dit werd geïnterpreteerd als zijnde de jaarlijks maximale waarde van de maximale golfhoogte H_{max}.

Aangezien deze waarde zeer sterk wordt beïnvloed door meteorologie en minder informatie verschafte over eventuele veranderingen in het systeem, is besloten in overleg met de opdrachtgever, om ook de significante golfhoogte te analyseren.

Er wordt gestart met een overzicht van de gebruikte data. De data worden vervolgens op een beschrijvende en – indien mogelijk – statistische manier geanalyseerd aan de hand van het kalibreren van een regressiemodel rekening houdend met een eventuele aanwezigheid van trendbreuken. Pas daarna wordt overgegaan tot een interpretatie van de trends en wordt gezocht naar mogelijke verklaringen voor de trendbreuk(en). Het hoofdstuk eindigt met een evaluatie van de rekenparameter op basis van de bepaalde trends.

4.3.1.2 GEBRUIKTE DATA

Voor de vorming van golven is er voldoende striklengte (wateroppervlak) nodig in combinatie met een aanhoudende wind voor de meest voorkomende windrichtingen. Dit is beschikbaar op de Westerschelde, maar niet zozeer op de Zeeschelde zodat vooral op de Westerschelde belangrijke golven optreden en golfmetingen uitgevoerd worden. De locaties van de golfmeetboeien zijn weergegeven in Figuur 4-30 en een overzicht van de beschikbare data is gegeven in Tabel 4-6.

De gebruikte data betreffen de (van de oorspronkelijke golfmetingen afgeleide) karakteristieke golfparameters die door Rijkswaterstaat ter beschikking zijn gesteld.
Elk van deze golfmeetboeien meet de (maximale) golfhoogte elke 30 min. Per jaar werd de maximale \(H_{\text{max}} \) bepaald als jaarlijks maximale golfhoogte. In Tabel 4-6 valt op dat de periode waarover gemeten golfdatal beschikbaar is relatief beperkt is.

In de evaluatiemethodiekmethodiek (Holzhauer et al., 2011) werd gespecificeerd dat onder de toetsparameter golven enkel windgolven mag worden verstaan en bv. geen scheepsgolven. Een meetboei maakt echter geen onderscheid tussen deze twee typen golven zodat de metingen zowel windgolven als scheepsgolven bevat. Er wordt wel van uitgegaan dat de jaarlijks maximale golfhoogte wordt veroorzaakt door een storm en dus een gevolg is van windgolven.
4.3.1.3 ANALYSE

Buiten het estuarium of aan de monding

De jaarlijks maximale waarde van de maximale golfhoogte H_{max} is voor elke golfmeetboei die buiten of aan de monding van het estuarium gelegen is, weergegeven in de digitale bijlage en voor meetboei Wielingen in Figuur 4-31. Een gevolg van de relatief beperkte beschikbaarheid aan data voor de golven is dat het zeer moeilijk of onmogelijk wordt om een statistisch significante trend te kunnen bepalen. De jaarlijks maximale golfhoogte blijkt bovendien ook een grote spreiding te kennen. Ook de pieken in het verloop van elke boei komen niet in hetzelfde jaar voor.

De Deurloo boei meet de grootste maximale golfhoogten op, daarna Wielingen en daarna Cadzand. Het verloop van Deurloo blijft relatief constant rond 600 à 650 cm met uitzondering van een piek in 2007. Het verloop van Wielingen vertoont een algemeen dalende trend. Er is geen lineaire trend te onderscheiden in het verloop van Cadzand.

![Time series plot WIELINGEN: 1997 - 2009](image)

Figuur 4-31: Datapunten van de jaarlijks maximale H_{max} te Wielingen voor periode 1997-2009.

Westerschelde

Ook de golfmeetboeien in de Westerschelde hebben een te korte tijdreeks en te grote spreiding om een statistisch significante trend te kunnen bepalen (cf. digitale bijlage en Figuur 4-32). Enkel voor de boei te Bath kan een algemeen dalende (maar geen significante) trend waargenomen worden (cf. Figuur 4-33).
4.3.1.4 **INTERPRETATIE**

De data tijdreeks van elke golfmeetboei wordt gekarakteriseerd door zijn beperkte omvang. De jaarlijks maximale golfhoogte blijkt bovendien ook nog een grote spreiding te kennen die o.a. verbonden is met de natuurlijke variabiliteit in het optreden van stormen en hun intensiteit. Dit wordt aangetoond door de sterke correlatie die bestaat tussen de jaarlijkse 99-percentiel stormopzet te Vlissingen (cf. §4.4.3) en de jaarlijks maximale golfhoogte H_{max} te Wielingen (correlatie coëfficiënt = 0.84, cf. Figuur 4-34).
De pieken in het verloop van elke boei en de algemene trends komen niet overeen tussen de verschillende golfmeetboeien. Dit is een gevolg van:

- Verschillen in bathymetrie in de omgeving van de boei zodat golven in aanloop naar de golfmeetboei zich verschillend gedragen als gevolg van refractie, diffractie, shoaling en golfbreking (of ook: afhankelijkheid van H_{max} van de lokale waterdiepte waar de golfmeetboei gelegen is);
- De positie van de golfmeetboei in de Westerschelde waar voor een bepaalde windrichting in aanloop naar de ene boei meer strijkling aanwezig is dan de andere. De ene meetboei ligt ook dichter bij de monding dan de andere zodat op die locaties meer golfenergie afkomstig van buiten het estuarium wordt opgemeten.

Er kan geen duidelijk verband gelegd worden tussen mogelijke trends die buiten het estuarium zijn waargenomen en het verloop van de tijddreksen in de Westerschelde, wat nog maar eens de grote afhankelijkheid van deze rekenparameter van de lokale bathymetrie en geometrie illustreert.

4.3.1.5 EVALUATIE 2009

De rekenparameter jaarlijks maximale golfoogte H_{max} blijkt minder geschikt te zijn voor evaluatie van het systeem voor het detecteren van trendbreuken vanaf 2010 ten opzichte van de periode voorafgaand aan de derde verruiming. Er kon immers voor geen enkele meetboei een significante trend bepaald worden. Dit is een gevolg van de onvoldoende lange meetperiode, alsook de grote spreiding van de waarden veroorzaakt door de meteorologische variabiliteit.
4.3.2 REKENPARAMETER: JAARGEMIDDELDE SIGNIFICANTE GOLFHOOGTE $H_{1/3}$

4.3.2.1 INLEIDING

Omdat de jaarlijks maximale golfhoogte zeer gevoelig is voor de meteorologische invloeden wordt nog een tweede rekenparameter voor de toetsparameter Golven onderzocht, namelijk de jaargemiddelde significante golfhoogte H. De jaargemiddelde significante golfhoogte is nog steeds onder invloed van de jaarlijkse variabiliteit van stormen, maar minder dan de jaarlijks maximale golfhoogte omdat de golfhoogte deze keer uitgemiddeld wordt over het volledige jaar. De significante golfhoogte $H_{1/3}$ is bovendien een stabielere parameter dan H_{max} omdat $H_{1/3}$ het gemiddelde voorstelt van de 33% grootste golven per 30 min. Een nadeel van de jaarlijkse uitmijding is wel dat, in sommige gevallen, het jaargemiddelde veel golfhoogten (mogelijk zelfs het merendeel) bevat die dieptebeperkt zijn. In dat geval is deze rekenparameter minder afhankelijk van de waterdiepte en dus veranderingen daarin.

4.3.2.2 GEBRUIKTE DATA

De analyse van de rekenparameter jaargemiddelde significante golfhoogte is gebaseerd op dezelfde dataset waaruit de rekenparameter jaargemiddelde maximale golfhoogte werd gehaald (cf. §4.3.1.2). Er is opnieuw rekening gehouden met hiaten in de tijdreeks van een bepaald jaar: enkel indien 75% of meer van de tijdreeks waarden beschikbaar zijn, wordt dat jaar beschouwd in de analyse. Alle jaargemiddelde golfhoogten zijn uitgedrukt in cm.

4.3.2.3 ANALYSE

Buiten het estuarium of aan de monding

Het uitmijden van alle golfhoogten over elk jaar zorgt voor een ander beeld van het verloop van de tijdreeksen dan de jaarlijks maximale golfhoogte (cf. digitale bijlage en Figuur 4-35). Daarentegen is voor deze rekenparameter wel enig verband te zien van het verloop tussen de verschillende boeien: rond de jaren 2002 en 2003 worden de laagste waarden geobserveerd. De datareeksen blijven echter te kort om een significante trend te kunnen bepalen.

![Time series plot WIELINGEN: 1997 - 2009](image)

Naast het verloop in de tijd van de jaarlijks gemiddelde significante golfhoogte, wordt per jaar de cumulatieve verdeling van de significante golfhoogte bepaald. Een cumulatieve verdeling geeft meer informatie dan enkele het jaargemiddelde alleen. De cumulatieve verdeling bepaalt het percentage opgemeten significante golfhoogten die lager zijn dan een bepaalde waarde tijdens een gegeven jaar. In de bijlage en in Figuur 4-36 voor Wielingen worden enkel de uiterste grenzen van deze cumulatieve verdelingen getoond. Dit maakt het mogelijk te bepalen of de jaarlijks cumulatieve verdelingen vanaf 2010 binnen of buiten deze grenzen vallen.

Figuur 4-36: Uiterste grenzen van alle jaarlijkse cumulatieve distributies van Hs te Wielingen.

Westerschelde

In de Westerschelde is voor deze rekenparameter opnieuw meer gelijkenis in het verloop van de tijdreeks tussen de verschillende golfmeetboeien, echter wel alleen wanneer de noordelijke boeien (WCT1 en Hansweert, cf. Figuur 4-37 en Figuur 4-38) en de zuidelijke boeien (Hoofdplaat en PVT1, cf. digitale bijlage) afzonderlijk beschouwd worden. De noordelijke boeien vertonen een dal rond het jaar 2003, een waarneming die overeenkomt met de boeien buiten het estuarium.

Enkel voor golfmeetboei Bath2 wordt een statistisch significant regressiemodel gevonden (cf. Figuur 4-39). Het is een lineair dalende trend. Dit komt wel overeen met de algemeen lineair dalende trend waargenomen voor de rekenparameter jaarlijkse maximale golfhoogte te Bath.

Tenslotte valt ook nog op dat de jaargemiddelde significante golfhoogte tussen de verschillende jaren maar enkele centimeters verschilt.
Figuur 4-37: Datapunten van de jaargemiddelde significante golfhoogte H_s te WCT1 voor periode 2001-2009.

Figuur 4-38: Datapunten van de jaargemiddelde significante golfhoogte H_s te Hansweert voor periode 1999-2009.

In Figuur 4-40 tot en met Figuur 4-42 worden de uiterste grenzen van de jaarlijkse cumulatieve verdelingen van de significante golfoogte getoond. De noordelijke boeien meten over het algemeen hogere waarden op dan de zuidelijke stations. In Bath liggen de uiterste grenzen het verst uit elkaar, het grootste verschil tussen de jaargemiddelde golfoogten per jaar was immers ook te vinden te Bath (cf. Figuur 4-39).

Figuur 4-40: Uiterste grenzen van alle jaarlijkse cumulatieve distributies van H_s te WCT1.

Figuur 4-41: Uiterste grenzen van de jaarlijkse cumulatieve verdelingen van H_s te WCT1 voor periode 2001-2008.
Figuur 4-41: Uiterste grenzen van alle jaarlijkse cumulatieve distributies van H_s te Hansweert.

Figuur 4-42: Uiterste grenzen van alle jaarlijkse cumulatieve distributies van H_s te Bath2.

4.3.2.4 INTERPRETATIE

Uit vergelijking van de grootte van de jaargemiddelde golfhoogte buiten het estuarium en in de Westerschelde blijkt dat deze in de Westerschelde veel kleiner zijn. De overwegende golfrichting van het golfklimaat buiten het estuarium is duidelijk niet gericht volgens de langsrichting van de Westerschelde zodat ook zeker niet alle golven van buiten het estuarium in de Westerschelde propageren.

In de Westerschelde meten de noordelijke meetboeien (WCT1, Hansweert en Bath) duidelijk hogere golven op dan de zuidelijke (Hoofdplaat en Pas van Terneuzen). Dit wijst op een overwegende zuidwestelijke windrichting die lokaal windgolven opwekt in de Westerschelde en waarvoor de noordelijke meetboeien de grootste striklengte bezitten.
Met uitzondering van Bath kon voor geen enkele meetboei een significante trend bepaald worden. De data te Bath vertoont wel een lineair dalende trend. Het is echter moeilijk dit te koppelen aan één bepaalde oorzaak.

4.3.2.5 EVALUATIE 2009

Voor de rekenparameter jaargemiddelde significante golfhoogte is vermoedelijk nog steeds een afhankelijkheid van de meteorologische variabiliteit aanwezig. Ook de beperkte omvang van de datareeks maakte het onmogelijk om een significante trend te bepalen voor de meeste meetboeien. Voor de evaluatie van deze rekenparameter voor de jaren vanaf 2010 is het daarom nuttiger om de cumulatieve verdeling van de significante golfhoogte van het jaar te vergelijken met de uiterste grenzen van de jaarlijkse cumulatieve verdelingen voor de jaren tot en met 2009. Indien de distributie voor een bepaalde golfhoogte onder de onderste grens (of dus de curve rechts van de rechte grenscurve) komt te liggen, betekent dit dat die golfhoogte meer overschreden werd in dat jaar dan de jaren tot en met 2009.

De lineair dalende trend die voor de golfmeetboei te Bath werd gevonden betekent een positieve evolutie op die plaats voor de toetsparameter golven. Deze trend werd echter enkel bij Bath gevonden en een eenduidige oorzaak was moeilijk te bepalen zodat voorzichtig met deze waarneming moet worden omgegaan.

Als conclusie wordt gesteld dat in het algemeen geen significante trend in de golfhoogte bestaat.
4.4 VERKLArende PARAMETERS

Verklarende parameters dragen bij aan het begrijpen van de waargenomen ontwikkelingen. In de voorgaande paragrafen werd reeds vooruit verwezen naar de hieronder beschreven gegevens.

Als verklarende parameters komen in dit hoofdstuk de hydraulische randvoorwaarden (astronomisch getij, rivierafvoer, meteorologie), bathymetrie en geometrie aan bod.

4.4.1 ASTRONOMISCH GETIJ

Het astronomisch getij is het berekende getij op basis van de beweging van de planeten en lokale effecten. Het wordt berekend op basis van harmonische componenten waarvan de periodes gekend zijn door een harmonische analyse op waterstandsmetingen. In Tabel 4-7 worden de perioden en fasen van de vier geanalyseerde componenten met de grootste amplitude in de Westerschelde gegeven: M2, S2, N2 en M4.

Tabel 4-7: Overzicht belangrijkste harmonische componenten van het getij

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbool</th>
<th>Periode [h]</th>
<th>Frequentie [°/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voornaamste tweedagelijkse maan component</td>
<td>M2</td>
<td>12.4206012</td>
<td>28.9841042</td>
</tr>
<tr>
<td>Voornaamste tweedagelijkse zon component</td>
<td>S2</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>Groter elliptische tweedagelijkse maan component</td>
<td>N2</td>
<td>12.65834751</td>
<td>28.4397295</td>
</tr>
<tr>
<td>2*M2</td>
<td>M4</td>
<td>6.2167</td>
<td>57.968208</td>
</tr>
</tbody>
</table>

In Tabel 4-8 wordt een overzicht gegeven van de stations en de periode waarvoor de harmonische componenten ter beschikking werden gesteld. In de data wordt per component telkens een jaargemiddelde amplitude en fase gegeven.

Tabel 4-8: Overzicht van de beschikbare harmonische analyse gegevens van de waterstand meetstations in de Westerschelde

<table>
<thead>
<tr>
<th>Naam meetstation</th>
<th>Afkorting</th>
<th>Periode [jaar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadzand</td>
<td>CADZ</td>
<td>1971-2009</td>
</tr>
<tr>
<td>Westkapelle</td>
<td>WKAP</td>
<td>1971-2009</td>
</tr>
<tr>
<td>Vlissingen</td>
<td>VLIS</td>
<td>1911-2009</td>
</tr>
<tr>
<td>Terneuzen</td>
<td>TERN</td>
<td>1940-2009</td>
</tr>
<tr>
<td>Hansweert</td>
<td>HANS</td>
<td>1939-2009</td>
</tr>
<tr>
<td>Bath</td>
<td>BATH</td>
<td>1971-2009</td>
</tr>
</tbody>
</table>

Wijzigingen in fase zorgen voor een verandering in interactie met andere getijcomponenten en dit heeft een invloed op de getijasymmetrie (Vroom et al., 2012). Veranderingen van de amplitude van elke component heeft invloed op de evolutie van de hoog- en laagwaterstanden en de looptijden. Omdat de jaargemiddelde hoog- en laagwaterstanden rekenparameters binnen de evaluatiemethodiek zijn, is gefocust op de amplitudes.

De trechtervorm van het Schelde estuarium veroorzaakt een verhoging van de getij amplitude, en dus de harmonische amplitudes, verder stroomopwaarts (Figuur 4-43). De getijde energie wordt immers
De amplitude neemt toe in opwaartse richting tot de wrijving de bepalende factor wordt en de amplitude terug afneemt.

De evolutie van de amplitude van de harmonische componenten wordt geanalyseerd voor de beschikbare periode. Bathymetrische ingrepen kunnen een sterke invloed hebben op de amplitude van de belangrijkste componenten (M2, M4, S2, N2).

De harmonische componenten zijn eveneens gebruikt om het harmonisch getij op te stellen doormiddel van het Matlab software pakket t_tide (Pawlowicz et al. 2002). Dit wordt bepaald door de superpositie van de verschillende componenten en is ontdaan van enige meteorologische invloed. Hierdoor is het uitermate geschikt om veranderingen van de getij voortplanting los van de meteorologische veranderingen te bestuderen. Uit dit harmonisch getij worden de harmonische hoog- en laag waters gehaald welke dan weer leiden tot de jaargemiddelde harmonische hoog- en laag waters. Hiervoor zijn volgende stappen uitgevoerd (Figuur 4-44):

- Harmonische analyse waterstand (per jaar) per set van harmonische componenten (aangeleverd)
- Synthese harmonische waterstand (zonder z0 component van de gemiddelde waterstand)
- Bepaling harmonische hoog- en laagwater
- Berekening harmonische jaargemiddelde hoog- en laag waters

Enkele aangeleverde componenten met kleinere amplitudes zijn niet meegenomen, aangezien deze niet tot de interne componentenlijst behoren van t_tide. Dit resulteert in een kleine absolute afwijking van de studieparameters maar zal geen invloed hebben op trends en eventuele trendbreuken. Er is al een nodale
correctie uitgevoerd bij het bepalen van de harmonische componenten dus moet de nodale trend niet meer uit de harmonische hoogwaters gefilterd worden. De z\(0\) component (de gemiddelde jaarlijkse waterstand) wordt niet meegenomen in de opmaak van het harmonische getij. Aangezien de jaargemiddelde waterstand niet mee is genomen, dient een vergelijking met de gemeten hoog en laagwaters dus niet op basis van de absolute waarden maar eerder aan de hand van trends (en eventuele trendbreuken) te gebeuren.

Figuur 4-44: Principe van de analyse van de harmonische / astronomische hoog- en laagwaterstanden.

4.4.1.1 **HARMONISCHE COMPONENTEN**

Een tabel met de verschillende trends en eventuele trendbreuken van de harmonische componenten is opgenomen onder §4.4.1.5. Hieronder zijn deze trends in detail besproken en geanalyseerd.

Aan de monding van het estuarium

De M\(2\), S\(2\) en N\(2\) amplitude van het station Westkapelle vertoont geen significante trend tussen 1971 en 2009. Enkel de M\(4\) amplitude vertoont een lichte significante, maar zeer kleine stijging (cf. Figuur 4-45, boven). De M\(2\), M\(4\) en N\(2\) amplitudes te Cadzand vertonen geen significante trend tussen 1971 en 2009.
Wel neemt de S2 component licht af. Het gaat hier telkens om een zeer kleine trend van nog geen centimeter over de beschouwde tijdsperiode (cf. Figuur 4-45, onder).

Westerschelde
De M2, M4 en S2 amplitudes te Vlissingen vertonen een trendbreuk (vastgesteld op basis van de cumulatieve som van de residu’s) in de jaren 1970. In de M2-component is er een vrij brede periode van veranderingen tussen 1950 en 1970. Voor 1950 zijn de veranderingen eveneens kleiner. De M2 en M4 componenten nemen verder toe in amplitude na de jaren '70 terwijl S2 een afname kent (Figuur 4-46, Figuur 4-47). De N2 component vertoont geen significante trend voor 1975 tot 2009. De trendbreuk van M2, M4 en S2 wordt duidelijk als de cumulatieve som van de residu’s uitgezet wordt t.o.v. 2009 (Figuur 4-48). Deze waarneming kan te maken hebben met een verandering van de getijslag op zee en/of morfologische veranderingen in de monding of het westen van de Westerschelde (zie voor interpratie hoofdstuk 4.2.1.4).

Verder stroomopwaarts, in Hansweert, is er geen trendbreuk meer waar te nemen in de afzonderlijke M2, N2 en S2 amplitudes (cf. digitale bijlage). Wel is een significante stijgende trend waar te nemen over de gehele tijdspanne van 1939 tot 2009. De M4 amplitude vertoont echter wel een duidelijke knik rond 1970. Voor deze component is bijgevolg een trend bepaald na deze knik. Om consistent te zijn met de voorgaande stations is een tijdspanne van 1975 tot 2009 genomen voor de regressie. Het verschil met een regressie van 1970 tot 2009 is bovendien minimaal. Een mogelijke verklaring voor het ‘ontbreken’ van een trendbreuk is dat de M2 component na de overdracht van energie naar hogere harmonische zoals de M4, M6, enz., als de getijgolf zich voortplant in het estuarium. Door een verschuiving van de M2 amplitude terug te vinden zijn in deze hogere harmonische component. Het gaat hier om een niet lineair systeem waardoor rechtstreekse afhankelijkheid moeilijk is aan te tonen. De terugkerende trendbreuk over de verschillende stations kan verschillende oorzaken hebben. Tijdens de jaren 70 is de vaargeul van de Westerschelde verbreed en is de Oosterschelde afgesloten. Daarnaast is er ook een toename van de getijslag buiten het estuarium waargenomen.

4.4.1.2 ASTRONOMISCHE HOOGWATERS

De astronomische hoogwaters laat toe het gezamenlijke effect van de variaties van de afzonderlijke componenten te bestuderen. Hierdoor zijn de jaargemiddelde waarde van de hoogwaters bepaald. Een tabel met de verschillende trends en eventuele trendbreuken van de astronomische hoogwaters is opgenomen onder §4.4.1.5 (Tabel 4-10). Hieronder zijn deze trends in detail besproken en geanalyseerd.

Aan de monding van het estuarium

Figuur 4-49: Jaargemiddelde harmonisch hoogwater te Westkapelle, loess smoothing met venster van 6 jaar,

Figuur 4-50: Jaargemiddelde harmonisch hoogwater te Cadzand, loess smoothing met venster van 6 jaar,
Westerschelde

Figuur 4-51: Jaargemiddelde astronominische hoogwaters te Vlissingen met Lowess smoothing met een venster van 6 jaar.

4.4.1.3 ASTRONOMISCHE LAAGWATERS
De astronominische laagwaters laat toe het gezamenlijke effect van de variaties van de afzonderlijke componenten te bestuderen. Hiertoe is de jaargemiddelde van de laagw aters bepaald. Een tabel met de verschillende trends en eventuele trendbreuken van de astronominische laag is opgenomen onder §4.4.1.5 (Tabel 4-10). Hieronder zijn deze trends in detail besproken en geanalyseerd.

Aan de monding van het estuarium
Voor zowel Westkapelle als Cadzand is er geen significante trend waar te nemen in gemiddelde laagwater waardes voor de periode 1971-2009 (Figuur 4-52 en Figuur 4-53). Dit verschil kan verklaard worden door een mogelijke trendbreuk rond de jaren 1970 welke niet of zeer zwak tot uiting komt in tijdsreeksen met
startdatum 1971. Ook hier komt een astronomische cyclus met periode van ongeveer 4.4j (perigeaan influence) tot uiting in de extreme quantielen (p=0.01).

Figuur 4-52: Jaargemiddelde harmonisch laagwater te Westkapelle, lowess smoothing met venster van 6 jaar.

Figuur 4-53: Jaargemiddelde harmonisch laagwater te Westkapelle, lowess smoothing met venster van 6 jaar.

Westerschelde
De trendbreuk tijden 1960-1980 is eveneens waar te nemen in de jaargemiddelde astronomische laagwaters van Terneuzen en Hansweert (zie digitale bijlage). Voor de periode 1975-2009 wordt geen significante lineaire trend waargenomen in Terneuzen maar wel in Hansweert. In Hansweert is een kleine significante afname van de jaargemiddelde astronomische laagwaters waar te nemen van 8.7cm/100 jaar.

Figuur 4-54: Jaargemiddeld harmonisch laagwater te Vlissingen, lowess smoothing met venster van 6 jaar.

4.4.1.4 JAARGEMIDDELDE WATERSTANDEN

De jaargemiddelde waterstanden zijn niet meegenomen in de bepaling van de astronomische hoog en laagwaters. Om een eenduidige vergelijking met de trends in gemeten hoog en laagwaters mogelijk te maken worden de trends van de jaargemiddelde waterstanden hier besproken. De trends in de gemeten hoog en laagwaters zullen immers een superpositie zijn van de trend in gemiddelde waterstand en een trend in de getijslag. De jaargemiddelde waterstanden vertonen geen trendbreuk gedurende de periode 1960 tot 1980 zoals de astronomische hoog en laag waters (Figuur 4-55, en digitale bijlage). Wel is er voor alle stations een duidelijke stijgende lineaire trend waar te nemen. Een tabel met de verschillende trends en eventuele trendbreuken van de jaargemiddelde waterstanden is opgenomen onder §4.4.1.5 (Tabel 4-10).
4.4.1.5 **CONCLUSIES ASTRONOMISCH GETIJ**

De verklarende parameter ‘astronomische getij’ vertoont over alle locaties een scherpe trendbreuk rond de jaren ’70. Deze trendbreuk is later waar te nemen in stroomopwaartse stations. Deze trendbreuk valt gedeeltelijk samen met de eerste verruiming. In het westen van de Westerschelde zijn reeds vroeger veranderingen ingezet; deze kunnen te maken hebben met verandering van de getij slag buiten het estuarium.

Het ontbreken van significante trendbreuken tijdens de latere verruimingen van de Schelde kan te vinden zijn in de stortstrategie van de eerste verruiming. Hierbij is immers veel sediment uit het systeem gehaald terwijl bij latere verruimingen het terugstorten van de baggerspecie in het systeem gebeurde.

Voor de periode na de trendbreuk is nagegaan of er nog een significante trend is. Opmerkelijk is hier dat de trend bij de astronomische jaargemiddelde laagwaters al vanaf Hansweert en stroomopwaarts significant is terwijl dit bij de astronomische jaargemiddelde hoogwaters pas vanaf Bath het geval is.
Tabel 4-9: Trends van de astronomische componenten met referentieperiode en stijging/daling in cm per eeuw. Indien er een trendbreuk is vastgesteld, geldt de trend steeds na deze trendbreuk.

<table>
<thead>
<tr>
<th></th>
<th>Cadzand</th>
<th>Westkapelle</th>
<th>Vlissingen</th>
<th>Terneuzen</th>
<th>Hansweert</th>
<th>Bath</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>Ja</td>
<td>ja</td>
<td>niet waarneembaar</td>
</tr>
<tr>
<td></td>
<td>Trend [cm/eeuw]</td>
<td>/</td>
<td>/</td>
<td>4.32</td>
<td>5.95</td>
<td>9.99</td>
</tr>
<tr>
<td>M4</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Trend [cm/eeuw]</td>
<td>/</td>
<td>/</td>
<td>1.78</td>
<td>2.05</td>
<td>/</td>
</tr>
<tr>
<td>N2</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
</tr>
<tr>
<td></td>
<td>Trend [cm/eeuw]</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>1.76</td>
</tr>
<tr>
<td>S2</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>ja</td>
<td>ja</td>
<td>niet waarneembaar</td>
</tr>
<tr>
<td></td>
<td>Trend [cm/eeuw]</td>
<td>-1.47</td>
<td>/</td>
<td>-0.2</td>
<td>/</td>
<td>2.31</td>
</tr>
</tbody>
</table>
Tabel 4-10: Trends van de astronomische hoog en laag waters met referentieperiode en stijging/daling in cm per eeuw. Indien er een trendbreuk is vastgesteld geldt de trend steeds na deze trendbreuk.

<table>
<thead>
<tr>
<th></th>
<th>Cadzand</th>
<th>Westkapelle</th>
<th>Vlissingen</th>
<th>Terneuzen</th>
<th>Hansweert</th>
<th>Bath</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Trend [cm/eeuw]</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>17.9</td>
</tr>
<tr>
<td>LW</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Trend [cm/eeuw]</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>-12.54</td>
</tr>
<tr>
<td>WL</td>
<td>Trendbreuk</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
<td>niet waarneembaar</td>
</tr>
<tr>
<td>Trend [cm/eeuw]</td>
<td>10.15</td>
<td>23.8</td>
<td>19.42</td>
<td>22.83</td>
<td>25.76</td>
<td>16.79</td>
</tr>
</tbody>
</table>
Intermezzo: Multidecadale cycli

In een aantal recente studies worden lange cycli gerapporteerd die waargenomen worden in oceanografische en klimatologische parameters. De periode van deze cycli schommelt tussen een duur van 55 en 80 jaar. In een aantal gevallen wordt hiernaar verwiesen als de Atlantische Multidecadale Oscillatie (AMO). Dit is een globaal proces met een periode van ongeveer 70 jaar dat en beïnvloeden het klimaat in Europa en Noord-Amerika (een samenvatting met verdere referenties wordt in Dima & Lohmann (2006) gegeven). Als oorzaak wordt gewezen naar interne processen: bv een onrechtstreekse koppeling (via atmosferische processen) van de thermohaliniere circulatie tussen de oceanen met feedback mechanismen (en dus niet astronomisch gedreven zoals bv de 18,6-jarige cyclus). In Dima en Lohmann (2006) wordt het proces als volgt beschreven. Een versterking van de thermohaliniere circulatie veroorzaakt anomalieën in de bovenste waterlagen van de oceanen. Dit heeft een atmosferisch effect dat zich uitstrekt over Eurazië en de Stille Oceaan, door een koppeling over de tropische klimaatgordel. Verder leidt dit tot een toenemen van het Arctisch zee-ijs en dus ontzetting van zoet water uit de oceanen, waardoor de thermohaliniere circulatie afgezwakt wordt en de cyclus in de negatieve fase terechtkomt. In het proces zitten verscheidene vertragingsmechanismen, wat kan verklaren dat de processen in de Atlantische en Stille Oceaan niet synchroon lopen. De totale duur van de opeenvolging van een reeks koppelingen, duurt 30 tot 35 jaar, wat de duur van een halve periode van de AMO is.

Het AMO proces is uitgebreid bestudeerd op basis van modellen en met behulp van klimatologische proxies. Een voorbeeld hiervan is op basis van zuurstofisotopensamenstellingen opgesloten in de ijskernen van onder meer op Groenland. Cycli met periodes 55 tot 80 jaar komen aan het licht door het Holocene, wat kan aanduiden dat de waargenomen multidecadale processen inherent zijn aan de huidige oceanische structuur en samenhang (bv. Knudsen et al., 2011).

Meer recent is literatuur verschenen die multidecadale cycli in de waterstandsmetingen poogt in kaart te brengen (bv Chambers et al., 2012). In de literatuur wordt erkend dat de bestaande tijdsreeksen met waterstandsmetingen in de meeste gevallen te kort zijn om deze cycli significant vast te leggen. Effectief, de oudste tijdsreeksen vangen aan vanaf 1860, maar meer frequent beginnen de reeksen vanaf ongeveer 1900. Dat geeft slechts ruim 100 jaar gegevens, wat effectief te kort is om betrouwbaar lange cycli op te fitten.

Tegelijk blijkt (cf. Kemp et al., 2011) echter dat, op basis van een reconstructie van de laatste 2000 jaar, de zeespiegel voor 1860 min of meer constant was. In Kemp et al. (2011) wordt dan ook van een trendbreuk gesproken tussen 1860 en 1895, waarna de zeespiegel sneller dan ooit voordien (in de laatste 2000 jaar) stijgt. In deze referentie is geen sprake van het bestaan van een 55- tot 80-jarige cyclus voorafgaand aan 1890. Deze cyclus kan bijgevolg een mode zijn van zeespiegelbewegingen die slechts na 1890 (bv. onder invloed van een klimatologische verandering) een waarneembare amplitude heeft gekregen.

Er blijven veel onzekerheden rond de multidecadale cycli, in elk geval nog te veel om als vaststaand feit te beschouwen en in rekening te brengen in dit T2009-rapport. Dat sluit niet uit dat het een proces is dat in toekomstige evaluaties (waarbij langere tijdsreeksen beschikbaar gekomen zijn) wel in rekening wordt gebracht.
4.4.2 RIVIERAFVOER

De verklarende parameter rivierafvoer wordt beschreven door de analyse van het jaargemiddelde debiet van de bovenafvoer van de Schelde. Het debiet wordt opgemeten op verschillende locaties langs de Schelde waarvan een overzicht gegeven wordt in Tabel 4-11. De waarden voor Schelle en Schaar van Ouden Doel zijn berekende of samengestelde waarden.

Tabel 4-11: Overzicht van de beschikbare bovenafvoergegevens van locaties in de Zeeschelde

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Afkorting</th>
<th>Periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath Spuisluis</td>
<td>BATH</td>
<td>1988-2009</td>
</tr>
<tr>
<td>Schaar van Ouden Doel</td>
<td>SVOD</td>
<td>1959-2009</td>
</tr>
<tr>
<td>Schelle</td>
<td>SCHE</td>
<td>1970-2009</td>
</tr>
<tr>
<td>Grobbendonk</td>
<td>GROB</td>
<td>1990-2009</td>
</tr>
<tr>
<td>Itegem</td>
<td>ITEG</td>
<td>1990-2009</td>
</tr>
<tr>
<td>Haacht</td>
<td>HCHT</td>
<td>1990-2009</td>
</tr>
<tr>
<td>Eppegem</td>
<td>EPPE</td>
<td>1990-2009</td>
</tr>
<tr>
<td>Appels</td>
<td>APPE</td>
<td>1990-2009</td>
</tr>
<tr>
<td>Denderbelle</td>
<td>DEBE</td>
<td>1990-1992</td>
</tr>
<tr>
<td>Melle</td>
<td>MELL</td>
<td>1990-2009</td>
</tr>
</tbody>
</table>

De analyse wordt beperkt tot de metingen te Schaar van Ouden Doel en te Schelle omdat de tijdreeksen van de andere stations te kort zijn. Voor de debieten van Schaar van Ouden Doel is geen significante trend aanwezig (cf. Figuur 4-56, links). De data kent bovendien een grote spreiding. Voor de debieten van Schelle is wel een lineair positieve trend aanwezig (cf. Figuur 4-56, rechts).

De grote spreiding en variabiliteit van het jaargemiddelde debiet van de bovenafvoer kan verklaard worden door:
- Meteorologische invloeden: natuurlijke variabiliteit van de jaarlijkse regenintensiteit;
- Structurele veranderingen: veranderingen in de waterhuishouding te Gent

Er kan echter geen duidelijke trendafwijking waargenomen worden die op een effect van een structurele wijziging zou kunnen duiden.

De rivierafvoer (debit bovenafvoer) heeft vooral invloed op de hoogwaterstanden en kan dus dienen als verklarende parameter voor bepaalde evoluties in de rekenparameters jaargemiddelde hoogwaterstand en jaarlijkse 99-percentiel hoogwater. Voor de jaargemiddelde hoogwaterstand wordt het jaargemiddelde debit van de bovenafvoer gebruikt als verklarende parameter (bv. Figuur 4-57, links). Analoog wordt het jaarlijkse 99-percentiel debit van de bovenafvoer berekend om als verklarende parameter voor de jaarlijkse 99-percentiel hoogwaterstand te kunnen dienen (bv. Figuur 4-57, rechts).

4.4.3 METEOROLOGIE

Omdat de meeste rekenparameters gebaseerd zijn op jaargemiddelde waarden, is verwacht dat de meteorologische invloeden beperkt zijn. De meteorologie heeft het meeste invloed op de rekenparameters van de golven. Golven worden immers opgewekt door de wind en zijn dus meer afhankelijk van het natuurlijk variabel karakter van stormen jaar op jaar. Omdat de extrem hoogwaterstanden o.a. veroorzaakt worden door windopzet, is de jaarlijkse 99%-percentiel hoogwater ook onderhevig aan meteorologische invloeden.

Om de meteorologische afhankelijkheid van deze rekenparameters te kunnen aantonen werd gezocht naar een verklarende parameter die de meteorologische wisselvalligheid goed weergeeft. Er werd gekozen voor de rechte (momentane) stormopzet te Vlissingen. Telkens wanneer een storm optreedt in de Westerschelde wordt een windopzet te Vlissingen veroorzaakt. Deze parameter is dus een geschikte indicator van het optreden van stormen die een effect hebben op de Westerschelde (want afhankelijk van de windrichting) en bevat bovendien ook de variabiliteit van de stormintensiteit. Bij een sterkere storm met een – voor de Westerschelde – nadelige windrichting zal de stormopzet immers door de hoge windsnelheden groter zijn en omgekeerd.

Om de vergelijking met de 99-percentiel hoogwater en de jaarlijkse maximale golflengte relevant te maken, werd daarvoor de jaarlijkse 99-percentiel van de rechte stormopzet te Vlissingen berekend (cf. Figuur 4-58). De rechte stormopzet zelf is berekend door van de waterstandmetingen het astronomisch getij te Vlissingen af te trekken.

4.4.4 BATHYMETRIE EN GEOMETRIE

Veranderingen aan de bathymetrie en geometrie wijzigen de komberging van het estuarium welke een rechtstreekse invloed heeft op de belangrijkste harmonische componenten van het getij. Menselijke ingrepen aan de bathymetrie kunnen dus een verklarende parameter zijn voor trendafwijkingen in het verloop van de jaargemiddelde hoogwaters, laagwaters en looptijden. Aan de hand van een aantal morfologische parameters van de rivier kan eveneens bekeken worden hoe de evolutie van deze een impact heeft op de toetsparameters Hoogwater en Golven.

4.4.4.1 MENSELIJKE INGREPEN

Een overzicht van de voornaamste menselijke ingrepen wordt gegeven in de digitale bijlage. Er wordt, zowel voor de horizontale als voor de verticale ingrepen, een opdeling gemaakt tussen de Westerschelde en de Zeeschelde (+ Rupel en Durme). De belangrijkste gegevens omtrent de verschillende verdiepingen of verruimingen worden hieronder besproken.
Figuur 4-59: Overzicht van de menselijke ingrepen in de Westerschelde samen met de jaargemiddelde hoogwaterstanden in de belangrijkste meetstations (Plancke et al., 2012).
Figuur 4-60: Overzicht van de menselijke ingrepen in de Zeeschelde samen met de jaargemiddelde hoogwaterstanden in de enkele belangrijke meetstations (Plancke et al., 2012).
Gedetailleerde informatie over de verdiepingen is niet omvangrijk en de verscheidene bronnen corresponderen niet steeds volledig. Er wordt getracht een gemene deler te gebruiken. Het onderscheid verdiepingsbaggerwerken - onderhoudsbaggerwerken wordt slechts sinds 2006 bijgehouden met behulp van de baggerstatistiek. Het is bijgevolg niet mogelijk exacte baggervolumes aan de verschillende verruimingen toe te kennen.

Westerschelde

1e verruiming

Begin jaren ‘70 zijn de drempels in de Westerschelde verlaagd met ongeveer 2,5 à 3 meter zodat te streefdiepte op -12,0 m GLLWS (≈ -14,7 m NAP) kwam te liggen.

2e verruiming (aangezien de geulen ook verbreed werden, wordt in het algemeen gesproken van de tweede verruiming)

In 1997-1998 zijn de drempels opnieuw verlaagd, ditmaal met 1 à 1,5 meter. Zodoende werd de gegarandeerde diepte op ongeveer -16,0 m NAP gebracht. In de monding werd dit zelfs -17,4 m NAP (= de zogenaamde 43/48 voet verruiming).

Zeeschelde

1e verruiming

Begin jaren ‘70 werden de te onderhouden bodemdiepten binnen de vaargeul op de Beneden-Zeeschelde gebracht (stroomafwaarts naar stroomopwaarts):

- -12,5 m GLLWS ter hoogte van de Drempel van Zandvliet
- -10,5 m GLLWS ter hoogte van de Drempel van Frederik en verder tot het Kruisschanscomplex
- -8,5 m GLLWS op de Drempel van de Parel en tot aan de Kallosluis
- Geen diepte gegeven stroomopwaarts de toegangsgeul van de Kallosluis

2e verruiming

In 1997-1998 werden deze bodemdieptes verhoogd (stroomafwaarts naar stroomopwaarts):

- -13,0 m GLLWS vanaf de grens tot opwaarts de Europaterminal
- -11,0 m GLLWS opwaarts de Europaterminal tot de toegangsgeul van de Kallosluis
- -8,0 m GLLWS stroomopwaarts de toegangsgeul van de Kallosluis tot het opwaartse einde van de Rede van Antwerpen
- -8,0 m - -6,0 m GLLWS opwaartse einde van de Rede van Antwerpen tot de zeesluis te Wintam

Sinds de ingebruikname van het Deurganckdok

In 2005 werden deze bodemdieptes opnieuw aangepast (stroomafwaarts naar stroomopwaarts):

- -13,3 m GLLWS ter hoogte van de Drempel van Zandvliet
- -13,0 m GLLWS ter hoogte van de Drempel van Frederik
- -14,0 m GLLWS ter hoogte van de Noordzee- en Europaterminal
- -13,3 m GLLWS zwaaizone met een breedte van 500 m ter hoogte van het Deurganckdok

4.4.4.2 MORFOLOGISCHE PARAMETERS

De volgende parameters, welke in Figuur 4-61 te zien zijn, werden geanalyseerd:

- Totale watervolume onder +3,5 m NAP: $V_{+3,5\text{water}}$ - blauwe arcering op de figuur
- Totale watervolume onder -2,0 m NAP: $V_{-2,0\text{water}}$ - verticale arcering
- Totale watervolume van het intertidaal gebied: $V_{\text{intertidal}}$ - de arcering van linksboven naar rechtsbeneden
- Totale oppervlakte bij +3,5 m NAP: $A_{+3,5\text{water}}$ - pijl
- Totale oppervlakte bij -2,0 m NAP: $A_{-2,0\text{water}}$ - pijl
- Totale oppervlakte van het intertidaal gebied: A_{water} - pijl
- Gemiddelde breedte van de rivier: niet te zien op de figuur (evenredig aan de oppervlakte)
- Gemiddelde waterdiepte: gemiddelde waarde op de Y-as van V_{water}
- Totale zandvolume van het intertidaal gebied: V_{sand}^{end} - gele arcering
- Gemiddelde hoogte van het intertidaal gebied: gemiddelde hoogte van V_{sand}^{end}

![Diagram](image)

Figuur 4-61: Typeschets van de doorsnede van de rivier met aanduiding van de morfologische parameters

Westerschelde

Voor de Westerschelde zijn de waterniveaus +3.5 m NAP en -2.0 m NAP als referentievakken gebruikt. De verschillende parameters zijn voor deze twee waterniveaus berekend als referentiwaarde voor de analyse. Het betreft een ruwe afbakening van het intertidaal gebied.

Het volledige systeem van de Schelde, zowel hoofd- als nevengeul, werd meegenomen en werd per macrocel (MC) apart bekeken. Ook mesocel 2 werd beschouwd. De data vanaf 1954 zijn beschikbaar. De totalen worden in de figuren voorgesteld relatief ten opzichte van de waarde in 1954 (procentueel). Voor de figuren van alle macrocellen met de absolute waardes wordt verwezen naar de digitale bijlage. De bron van de getallen uit dit hoofdstuk is de vigerende zandbalans van Rijkswaterstaat (versie tot 2009), die is opgesteld op basis van de Haecon zandbalans (Haecon, 2006) en die jaarlijks wordt aangevuld met de nieuwe kuberingengegevens.

Watervolume van de rivier (cf. eveneens Hoofdstuk 6 (Plaat- en Geulsysteem))

In Figuur 4-62 en de figuren in de bijlage zijn de volgende elementen te zien voor het totale watervolume onder +3,5 m NAP, tussen 1954 en 2009:

- MC1: een stijging van ongeveer 25 Mm3 of ± 3%;
- MC2: een daling van 200 Mm3 naar 160 Mm3 of bijna 20%;
- MC3: gelijkvaardige trend als MC1;
- MC4: een gestage daling van ongeveer 600 Mm3 in 1954 naar 555 Mm3 voor de periode 1985-1991 om daarna terug te stijgen tot een niveau van bijna 570 Mm3 in 2008;
- MC5: lichte daling tot eind jaren '60 en nadien stijgt het volume terug tot een niveau van bijna 500 Mm3;
- MC6 en MC7: een continue stijging van ± 100 Mm3 naar ± 130 Mm3 of ongeveer 30%.
Het totale watervolume onder -2,0 m NAP volgt voor alle macrocellen een gelijkvaardige trend als het volume onder +3,5 m NAP (cf. Figuur 4-63 en de figuren in de bijlage), al zijn de procentuele verschillen groter. Het verschil in evolutie van deze twee volumes wordt verder besproken in de parameter ‘watervolume van het intertidaal gebied’.

Figuur 4-62: Totale relatieve watervolume onder +3,5 m NAP

Figuur 4-63: Totale relatieve watervolume onder -2,0 m NAP

Watervolume van het intertidaal gebied

In Figuur 4-64 en de figuren in de bijlage zijn de volgende elementen te zien:

- MC1: een schommeling tussen 35 Mm³ en 39 Mm³ met een duidelijke stijging tussen 1970 en 1980 en een gestage daling sinds begin jaren '80, ondanks een pick gedurende de 2e verruiming in 1997-1998;
- MC2: een variatie tussen 25 Mm³ en 27 Mm³ met een stijgende trend voor de laatste jaren;
- MC3: het volume is gezakt van ± 65 Mm³ naar ± 55 Mm³, een daling van ongeveer 10 à 15%;
- MC4: een stijging vanaf 1954 van 46 Mm³ naar 54 Mm³ eind jaren '70 en een daling nadien om opnieuw op 46 Mm³ uit te komen;
- MC5: een schommeling tussen 45 Mm³ en 65 Mm³ met een stagnatie rond de 53 Mm³ gedurende de laatste 15 jaren;
- MC6: een grillig verloop tussen 10 Mm³ en 13 Mm³;
- MC7: een continue daling sinds 1954 van ongeveer 13 Mm³ naar 8 Mm³ in 2008 of ongeveer 40%.
Volume intertidaal gebied
(tussen -2,0 m en +3,5 m NAP)

Figuur 4-64: Totale relatieve watervolume van het intertidaal gebied

Oppervlakte van de rivier

In Figuur 4-65 en de figuren in de bijlage zijn de volgende elementen te zien voor de totale wateroppervlakte van de rivier bij +3,5 m NAP:

- MC1: sinds 1954 continu rond de 55,82 Mm² om sinds de 2e verruiming in 1998 zeer licht te dalen met ongeveer 50.000 m² of amper 1%;
- MC2: reeds in 1981 een daling van 19,66 Mm² naar 19,58 Mm² in 2008 (=6%);
- MC3: een zeer lichte daling na de 2e verruiming met enkele duizenden m², maar blijft rond de 81,59 Mm²;
- MC4: een relatief continue waarde rond 45,50 Mm² à 45,51 Mm²;
- MC5: een lichte daling van 46,92 Mm² naar 46,89 Mm² of kleiner dan 1%;
- MC6 en MC7: zeer gelijkmatige totale oppervlakte voor de 2e verruiming en een lichte schommeling nadien. Bij MC6 betreft dit amper 1% (80.000 m² ten opzichte van 10,7 Mm²), bij MC gaat het over 2% (250.000 m² ten opzichte van 11,3 Mm²).

In Figuur 4-66 en de figuren in de bijlage zijn de volgende elementen te zien voor de totale wateroppervlakte van de rivier bij -2,0 m NAP:

- MC1: een daling van 45 Mm² naar 44 Mm² of 2%;
- MC2: een daling van 12 Mm² naar 11,3 Mm² of 6%;
- MC3: een schommeling tussen 63 Mm² en 67 Mm² met zowel stijgende als dalende trends;
- MC4: een dalende trend van 34 Mm² in 1954 naar net boven de 31 Mm² in 1984, om vervolgens terug te stijgen naar 33 Mm² in 2008;
- MC5: een dalende trend van 34 Mm² naar 30,5 Mm², maar sinds 1989 redelijk constant;
- MC6: een stijging naar een waarde van ongeveer 7,5 Mm² in de jaren 70 om nadien terug te dalen naar waarden rond de 7 Mm²;
- MC7: een graduele stijging van 7,4 Mm² in 1954 naar 8,7 Mm² in 2008, een verhoging van bijna 20%.
Oppervlakte van het intertidaal gebied

In Figuur 4-67 en de figuren in de bijlage zijn de volgende elementen te zien:

- **MC1**: een stijging van iets onder de 11 Mm² in 1954 naar iets onder de 12 Mm² in 2008, sinds 1987 is de oppervlakte relatief constant;
- **MC2**: een stijging met enkele sprongen van 7,7 Mm² naar 8,3 Mm²;
- **MC3**: eerst een stijging naar boven de 18 Mm² in 1975 en daarna een daling tot 15,5 Mm² in 2008;
- **MC4**: een stijging naar een waarde van ongeveer 14 Mm² in 1968 dewelke constant blijft tot ongeveer 1995 om daarna opnieuw te dalen naar een waar de van 12,5 Mm².
- **MC5**: een verhoging naar 16 Mm² in 1968 waarna hij tussen de 16 Mm² en de 17 Mm² blijft schommelen;
- **MC6**: een grillig verloop tussen 3 Mm² en 4 Mm²;
- **MC7**: een gestage daling van 4 Mm² in 1954 naar 2,5 Mm² in 2008 of ongeveer 38%.
Oppervlakte intertidaal gebied (tussen -2,0 m en +3,5 m NAP)

Figuur 4-67: Totale relatieve wateroppervlakte van het intertidaal gebied

Breedte van de rivier

Aangezien de lengte van de verschillende macrocellen over de beschouwde tijdspanne constant blijft, volgt de gemiddelde breedte dezelfde trend als de totale oppervlakte. Voor een analyse van de trends wordt bijgevolg verwezen naar deze hierboven van de oppervlakte.

Gemiddelde breedte bij +3,5 m NAP

Figuur 4-68: Gemiddelde relatieve breedte bij +3,5 m NAP

Gemiddelde breedte bij -2,0 m NAP

Figuur 4-69: Gemiddelde relatieve breedte bij -2,0 m NAP

Waterdiepte van de rivier

De gemiddelde waterdiepte wordt zowel voor een waterniveau van +3,5 m NAP als een van -2,0 m NAP uitgedrukt ten opzichte van het niveau +0,0 m NAP. Hierdoor bekomt men een uniforme maatindicatie.
In Figuur 4-70 en de figuren in de bijlage zijn de volgende elementen te zien voor de gemiddelde waterdiepte bij +3,5 m NAP (de Y-as is omgedraaid zodat een verdieping/verondieping overeenkomt met de visuele trend van de grafiek):
- **MC1**: een kleine stijging in de loop van de jaren van 13,1 à 13,2 m NAP naar 13,6 m NAP in 2008;
- **MC2**: graduele verondieping van -6,5 m NAP in 1954 naar boven de -5,0 m NAP in 2008 of bijna 30%;
- **MC3**: stelselmatige verdieping van -9,9 m NAP tot -10,4 m NAP;
- **MC4**: verondieping sinds 1954 van -9,6 m NAP naar -8,7 m NAP in 1991 om nadien terug te verdiepen tot een waarde van -8,9 m NAP in 2008;
- **MC5**: aanvankelijk verondieping met daarna terug verdieping tot een waarde van -7,1 m NAP in 2008;
- **MC6** en **MC7**: graduele verdieping. Voor MC6 van -5,7 m NAP naar -8,3 m NAP ofte 46%, voor MC7 van -4,9 m NAP naar -7,9 m NAP ofte 61%.

Net als bij het totale watervolume volgt de gemiddelde diepte bij -2,0 m NAP in grote lijnen dezelfde trend als deze bij +3,5 m NAP (cf. Figuur 4-71), al zijn de procentuele verschillen hier kleiner. Het verschil in evolutie van deze twee gemiddelde dieptes vormt de basis voor de bespreking van de parameter 'hoogte van het intertidaal gebied'.

![Gemiddelde diepte bij +3,5 m NAP](image1)

Figuur 4-70: Gemiddelde relatieve waterdiepte bij +3,5 m NAP (ten opzichte van +0 m NAP)

![Gemiddelde diepte bij -2,0 m NAP](image2)

Figuur 4-71: Gemiddelde relatieve waterdiepte bij -2,0 m NAP (ten opzichte van +0 m NAP)

Zandvolume van het intertidaal gebied

In Figuur 4-72 en de figuren in de bijlage zijn de volgende elementen te zien:
- **MC1**: de laatste 50 jaar een stijging van 22 Mm³ tot 29 Mm³ of 32%;
- **MC2**: een stijging van 16 Mm³ naar 19 Mm³;
- MC3: een schommeling tussen 26 Mm³ en 34 Mm³ zonder significante trend;
- MC4: vanaf 1954 gestegen tot 25 Mm³ om sinds begin jaren '90 terug te dalen tot 23 Mm³ in 2008;
- MC5: een continue stijging van 24 Mm³ tot 37 Mm³ of 54%;
- MC6: steeds tussen de 7 Mm³ en de 9 Mm³ geschommeld waarbij het de laatste jaren steeds rond de 8 Mm³ ligt;
- MC7: een zakking van 8,4 Mm³ in 1954 tot 5,8 Mm³ in 2008 of 30%.

Zandvolume intertidaal gebied
(tussen -2,0 m en +3,5 m NAP)

Figuur 4-72: Totale relatieve zandvolume van het intertidaal gebied

Hoogte van het intertidaal gebied

De gemiddelde hoogte van het intertidaal gebied wordt uitgedrukt als de gemiddelde zandhoogte ten opzichte van -2,0 m NAP.

In Figuur 4-73 en de figuren in de bijlage zijn de volgende elementen te zien:
- MC1: verhoging van +2,04 m in 1954 tot 2,48 m in 2008 of ongeveer 20%;
- MC2: eveneens een stijgende trends sinds 1954, echter een daling voor de laatste jaren waarbij de hoogte in 2008 2,26 m is;
- MC3: periodes van stijging en van daling met in zijn geheel een verhoging van 1,62 m naar 1,84 m;
- MC4: graduele stijging van 1,46 m in 1954 naar 1,79 m in 2008 of 23%;
- MC5: een stijging van 1,69 m naar 2,25 m in 2008 met een stagnatie rond 2,25 m sinds eind jaren '90;
- MC6: grillig verloop tussen 2,1 m en 2,3 m;
- MC7: een stijging van 2,09 m in 1954 naar 2,31 m in 2008 met in de laatste jaren fluctuaties tot 20cm.

Gemiddelde zandhoogte intertidaal gebied
(tussen -2,0 m en +3,5 m NAP)

Figuur 4-73: Gemiddelde relatieve zandhoogte van het intertidaal gebied (ten opzichte van -2,0 m NAP)
Conclusie

Per macrocel zijn de volgende tendensen voor de parameters waar te nemen (er wordt opnieuw verwezen naar de digitale bijlage waarin de figuren per macrocel samengebracht zijn):

- **MC1**: zowel het watervolume als de gemiddelde waterdiepte vertonen een stijgende lijn. In combinatie met de, zij het zeer licht, dalende trend in de wateroppervlaktes (en bijgevolg gemiddelde breedte) betekent dit dat de rivier versmalt, maar sterker verdiept waardoor het watervolume groter wordt. Het intertidaal gebied wordt groter in oppervlakte en komt gemiddeld hoger te liggen;

- **MC3**: ook hier vertonen het watervolume en de gemiddelde waterdiepte een stijgende lijn met een (opnieuw procentueel licht) dalende trend in de wateroppervlaktes. Opvallend is echter de stijgende wateroppervlakte bij -2,0 m NAP. Bijgevolg daalt de oppervlakte van het intertidaal gebied, samen met watervolume. De gemiddelde hoogte stijgt echter. Opmerkelijk is eveneens dat voor zowel alle parameters er een trendbreuk is in 2004 ten opzichte van de decennia voordien.

- **MC4**: deze MC wordt gemiddeld minder diep. Het watervolume daalt en de wateroppervlaktes blijft relatief constant. De laatste 20 jaar is er weliswaar een omgekeerde trend ingezet. De daling van het intertidaal watervolume is sterker dan de daling van de oppervlakte waardoor de gemiddelde hoogte van het intertidaal gebied stijgt;

- **MC5**: andermaal een stijgende trend voor het watervolume en de gemiddelde waterdiepte, al zwakt de trend de laatste jaren af. Aangezien de wateroppervlaktes (en de gemiddelde breedte) dalen, versmalt de rivier ook hier. Het watervolume van het intertidaal gebied schommelt rond een constante waarde, terwijl de oppervlakte stijgt. Dit wijst op een verondieping van deze zone (= een stijging van de gemiddelde zandhoogte);

- **MC6**: in deze cel is de verhoging van het watervolume en de verbreding nog aanzienlijker dan meer stroomafwaarts. De wateroppervlaktes (en bijgevolg de breedte) blijven relatief stabiel. Alle parameters met betrekking tot het intertidaal gebied schommelen rond een constante waarde;

- **MC7**: De stijging van het watervolume en de vergroting van de gemiddelde waterdiepte is hier het sterkst. De wateroppervlaktes (en gemiddelde breedte) bij +3,5 m NAP blijft gelijk, terwijl deze bij +2,0 m NAP licht stijgt. Het watervolume van het intertidaal gebied daalt en dit sterker dan de daling in wateroppervlaktes. Hierdoor stijgt de gemiddelde hoogte van dit gebied, het wordt ondieper.

Er kan eveneens bekeken worden wat de correlatie met de menselijke ingrepen zoals vermeld onder §4.4.4.1 is.

Een inpoldering zou voor de betrokkene macrocel de volgende zaken kunnen betekenen:

- Een daling van het watervolume bij +3,5 m NAP, het watervolume van het intertidaal gebied en het zandvolume van het intertidaal gebied

- Een daling van de wateroppervlaktes bij +3,5 m NAP, de wateroppervlaktes van het intertidaal gebied en een stijging van de gemiddelde waterdiepte bij +3,5 m NAP

Voor de inpolderingen kunnen als belangrijkste vermeld worden:

- De inpoldering van het Hellegat (achter het huidig slik van Hulst) in 1926 (MC4).

- De inpoldering van ZuidSloe en het havengebied Sloe begin jaren '60 waarbij ongeveer 5 Mm² en 11 Mm³ kombergend volume bij gemiddelde tijhoogte ingenomen werd (MC1).

- De inpoldering van de Braakman in 1952 (MC3).

- De inpoldering van de Selenapolder/Sieperdaschor in 1966 (MC7).

Er zijn vanwege deze inpolderingen niet meteen duidelijke veranderingen in de morfologische parameters terug te vinden. Dit komt enerzijds omdat de zones niet mee in de gemeten data opgenomen zijn. De Sloehaven ligt bijvoorbeeld buiten de afbakening van MC1. Anderzijds zijn de volumes en oppervlaktes
van de ingrepen procentueel te klein om een fluctuatie op te merken en spelen er vermoedelijk andere processen die een duidelijkere invloed op deze parameters hebben.

Er kan verwacht worden dat de verdiepingen en verruimingen op de Westerschelde een grotere en dus beter waarneembare impact op deze parameters zal hebben. Meer precies is het nuttig te kijken naar de zandextracties die doorheen de jaren in de Westerschelde uitgevoerd zijn. Niet bij alle verdiepingsslagwerken is de specie uit het systeem gehaald. Wanneer de specie op een andere plek terug in het systeem gebracht wordt, kan verwacht worden dat de impact van deze verdieping op de morfologische parameters verschillend zal zijn dan wanneer de specie uit het systeem wordt gehaald. Immers, het netto effect op het watervolume zal sterk verschillend zijn. Er wordt bijgevolg verwezen naar §4.4.4.1 waar de zandextracties besproken worden.

Voor de Westerschelde wordt er gemiddeld per jaar enkele honderdduizenden m³ per jaar geëxtraheerd sinds 1955. Er is echter een grote piek terug te vinden ten tijde van de 1e verruiming rond ’70-'75. De extractie begint zelfs wat dan 1970 vroeger en loopt nog enkele jaren door na ’75. Kleinere pieken zijn in 1986 en 1993 terug te vinden.

Zeeschelde (+ Rupel en Durme)
Voor de Zeeschelde (inclusief de Rupel en de Durme) is er enkel data over de verschillende jaren beschikbaar bij een water niveau van +0 m TAW. De analyse zal zich dus beperken tot de parameters bij dit water niveau en een analyse bij verschillende water niveaus of van het intertidaal gebied zoals voor de Westerschelde uitgevoerd werd, is hier niet mogelijk.

Het volledige systeem van de Schelde werd meegenomen en werd per OMES-vak apart bekeken. De data vanaf 1910 zijn beschikbaar, al ontbreekt er voor bepaalde vakken een gedeelte van de data. In het geval er over een lengte van meer dan 10% van de totale lengte van het vak informatie ontbreekt, werd deze informatie niet meegenomen. Het betreft dan voornamelijk het volume en de oppervlakte. De gemiddelde diepte en breedte werden wel beschouwd aangezien deze meer dan waarschijnlijk geen grote variatie zouden vertonen indien de data volledig was geweest. Aangezien de lengte van de beschikbare data dus varieert (in tegenstelling tot de data van de Westerschelde) kunnen de trends in de grafieken minder of meer uitgesproken zijn dan in de realiteit het geval is. Zodoende is de validiteit van de analyse lager dan deze voor de Westerschelde. Stroom opwaarts van de Rupel is er slechts informatie sinds 1930 en tot 2001. De totalen worden in de figuren voorgesteld relatief ten opzichte van de waarde in 1910 (procentueel).

Watervolume van de rivier
In Figuur 4-74 en de figuren in de bijlage is te zien:
- OMES9 (geen data in 1930, 1940 en na 1970): een stijging van ± 37 Mm³ naar ± 45 Mm³ in 1970 of iets meer dan 20%;
- OMES10: een graduele stijging voor 2003 van ongeveer 31 Mm³ naar 44 Mm³ terwijl er na 2003 een forse stijging merkbaar is tot 58 Mm³ in 2008;
- OMES11: een gelijkmatige stijging van 36 Mm³ naar 55 Mm³ in 2008 of 53%;
- OMES12: een stijging van 24 Mm³ in 1910 tot 32 Mm³ in 2008;
- OMES13 (referentiewaarde is deze uit 1920): een stijging van ongeveer 15 Mm³ naar bijna 20 Mm³ ofte 33%;
- Rupel: een stijging in de laatste decennia van ongeveer 3 Mm³ in 1930 naar bijna 5 Mm³ in 2000 wat een stijging van zowat 60% is;
- OMES14: een daling voor 1960 om nadien terug te stijgen tot 13 Mm³ in 2001;
- Durme (vanwege het grote verschil op de beschikbare data, is er geen relevante informatie beschikbaar)
OMES15: een lichte daling voor 1960 en nadien een stijging naar 6,3 Mm³;
OMES16: een constant volume rond 2,1 Mm³ voor 1960, nadien een stijging naar 3,1 Mm³ in 2001;
OMES17: opnieuw een daling voor 1960 om daarna te stijgen naar 1,8 Mm³;
OMES18 (geen data in 1980): vermoedelijk een gelijkwaardige trend, hier een stijging tot ± 800.000 m³ in 2001;
OMES19 (geen data na 1960): een daling tot 1960;

Figuur 4-74: Totale relatieve watervolume onder +0 m TAW

Oppervlakte van de rivier
In Figuur 4-75 en de figuren in de bijlage is te zien:
- OMES9 (geen data voor 1930, 1940 en na 1970): verschuivingen tussen 6,5 Mm² en 7,5 Mm² zonder significante trend;
- OMES10: continu een waarde rond de 4,7 Mm², sinds 2004 is er een sprong naar 5,5 à 6 Mm²;
- OMES11: een stijging van 5,5 Mm² naar 6,1 Mm² met een pek van 6,6 Mm² in 2007;
- OMES12: een schommeling tussen 2,8 Mm² en 3,7 Mm² met zowel in 1910 als in 2008 een waarde van 3,4 Mm²;
- OMES13 (referentiewaarde is deze uit 1920): een variatie tussen 2,3 Mm² en 2,7 Mm²;
- Rupel: vrij constant op 1,4 Mm² tot 1960, maar daarna een gestage stijging tot 1,5 Mm² in 2000;
- OMES14: zowel stijgende als dalende trends rond een gemiddelde van 2,6 Mm²;
- Durme (vanwege het grote verschil op de beschikbare data, is er geen relevante informatie beschikbaar)
- OMES15: zowel stijgende als dalende trends rond een gemiddelde van 1,6 Mm²;
- OMES16 en OMES17: een dalende evolutie tot 1960 om daarna weer te stijgen tot in 2001;
- OMES18 (geen data in 1980): vermoedelijk een gelijkwaardige trend;
- OMES19 (geen data na 1960): een daling tot 1960;
- OMES19 tijarm: opnieuw slechts 3 metingen wat een duidelijke analyse niet mogelijk maakt.

Figuur 4-75: Totale relatieve wateroppervlakte bij +0 m TAW

Breedte van de rivier

In Figuur 4-76 en de figuren in bijlage is te zien dat de gemiddelde breedte een zeer gelijkaardige trend als de totale oppervlakte vertoont, al verschillen de procentuele variaties. De volgende aanvullende trends zijn te zien:
- OMES9: een lichte stijging van ongeveer 1.050 m naar ongeveer 1.250 in 2008 of 20%;
- Durme: een stijging van 21 m in 1930 tot meer dan 30 m in 1950 en een daling nadien tot 9 m in 1997 of bijna 60% van de oorspronkelijke waarde;
- OMES18: een gelijkaardige trend als de stroomafwaartse OMES-vakken;
- OMES19: ook hier dezelfde evolutie met een stijging tot 35 m in 2001 of bijna 50%;
Figuur 4-76: Gemiddelde relatieve breedte bij +0 m TAW

Waterdiepte van de rivier

In Figuur 4-77 en de figuren in de bijlage is te zien (de Y-as is omgedraaid zodat een verdieping/verontdieping overeenkomt met de visuele trend van de grafiek):

- OMES9: een vrij constante waarde rond de -5,5 m TAW tot 1960 en sindsdien vergroot tot -10,3 m TAW in 2008;
- OMES10: een gestage stijging van -6,5 m TAW in 1910 tot -7 m TAW in 1960 en daarna een sterke stijging tot -10,6 m TAW in 2008;
- OMES11: een stijging van -6,6 m TAW in 1910 tot -9,1 m TAW in 2008 of 38%;
- OMES12: een gelijkvulde trend met een verdieping van -7 m TAW tot -9,4 m TAW ofte 34%;
- OMES13: gemiddeld even diep gebleven tot 1960 op een diepte rond de -6,1 m TAW en sindsdien stelselmatisch verdiept tot -8,2 m TAW in 2008;
- Rupel: een verdieping van -2,2 m TAW in 1930 til -3,2 m TAW in 2000 of 45%;
- OMES14: een stagnatie rond de -3,7 m TAW voor 1960 en een verdieping tot -4,9 m TAWerna;
- Durme: gemiddeld minder diep geworden van -1,5 m TAW in 1930 naar -0,9 m TAW in 1997 of 40%;
- OMES15 en OMES16: constant tot 1960 om daarna te verdiepen;
- OMES17, OMES18 en OMES19: een stijgende trend voor 1960 (verontdieping) en nadien een dalende trend (verdieping);
- OMES19 tijarm: opnieuw slechts 3 metingen wat een duidelijke analyse niet mogelijk maakt.
Conclusie

De volgende tendensen op de Beneden-Zeeschelde komen naar voren (er wordt opnieuw verwezen naar de digitale bijlage waarin de figuren per OMES-vak samengebracht zijn):

- **OMES9**: een vrij constante breedte en diepte tot 1960 met daarna een verbreding en een forse verdieping. Geen significante trends voor het volume en de oppervlakte;
- **OMES10**: een constant volume, oppervlakte en gemiddelde breedte met een lichte stijging van het volume en een aanzienlijke verdieping sinds 1960. Er rijzen twijfels bij de waarnemingen van 2007 voor OMES10 tot en met OMES13 aangezien deze grote afwijkingen op de andere waardes vertonen (ook voor bepaalde jaren bij het totale volume en de gemiddelde diepte);
- **OMES11**: een graduele stijging van het volume, de oppervlakte en de gemiddelde breedte en een duidelijke verhoging van de gemiddelde diepte;
- **OMES12**: het volume en de gemiddelde diepte zijn gestegen, terwijl de oppervlakte en de gemiddelde breedte rond één waarde schommelden;
- **OMES13**: idem OMES12;
- **Rupel**: een stijging van het volume, de oppervlakte en de gemiddelde diepte en een verdieping tussen 1930 en 2001;
- **OMES14**: een duidelijke stijging van het volume en de gemiddelde diepte sinds 1960. De oppervlakte en gemiddelde breedte vertonen een nogal grillig verloop;
- **Durme**: hier kan enkel iets over de gemiddelde breedte en de gemiddelde diepte dewelke beide dalen gezegd worden. Ze is duidelijk verzand/dichtgeslibd over de periode 1930-1997;
- **OMES15**: idem OMES14;
- **OMES16**: na 1960 kan men hier een stijgende trend voor het volume, de oppervlakte en de breedte opmerken terwijl dit vak eveneens dieper wordt;
- OMES17: idem OMES16;
- OMES18: een stijging van de gemiddelde breedte en een verhoging van de gemiddelde diepte na 1960. Over het volume en de oppervlakte kan geen significante conclusie genomen worden;
- OMES19: idem OMES18;
- OMES19-tijarm: geen significante trends.

De trends van de gemiddelde breedte komen niet volledig overeen met deze uit Van Braeckel et al. (2006). In Figuur 3.77 van dat rapport is te zien dat er voor OMES9 tot en met OMES12 (mesohalien) een dalende trend tussen 1930 en 1950 en een stijgende trend na 1950 is. In onderhavig rapport vindt men dezelfde trend terug, maar de stijging na 1950 is hier sterker dan de daling ervoor. De andere OMES-vakken vertonen in het rapport een lichte daling in breedte terwijl in Figuur 4-76 van dit rapport eerder een licht stijgende evolutie terug te zien is. De trend voor de Durme is gelijkaardig in beide rapporten. Er dient wel opgemerkt te worden dat de stroom bergende breedte gedefinieerd wordt als de afstand tussen de dijken boven hoogwater terwijl er in deze analyse een breedte bij +0 m TAW gerapporteerd wordt. De evoluties kunnen dus niet zomaar vergeleken worden al is een overeenstemmende trend wel te verwachten;

Er kan ook hier bekeken worden wat de correlatie met de menselijke ingrepen zoals vermeld onder Hoofdstuk 4.4.4.1 is.

Aangezien enkel data van bij +0 m TAW beschikbaar is en dit rond laagwater of daaronder gelegen is, kan de invloed van een inpoldering nauwelijks of niet teruggevonden worden in deze gegevens.

Net als bij de Westerschelde kunnen deze data mogelijk wel een correlatie met de zandonttrekkingen vertonen. De zandonttrekking eind jaren '60 en begin jaren '70 voor de 1e verruiming was korter maar met grotere jaarlijkse volumes: 4,5 Mm³ in 1969; 6,5 Mm³ in 1970; 9 Mm³ in 1971 en 4 Mm³ in 1972.

De stijging in het totale volume onder +0 m TAW van de grafiek komt niet helemaal overeen met deze periode want begint voor zowat alle OMES-vakken al in 1960. Dit kan echter een gevolg zijn van de slechts beperkt beschikbare data (geen gegevens tussen 1960 en 1970) zodat er algemeen gesteld kan worden dat er wel een overeenkomstige trendbreuk in de data teruggevonden kan worden.

De grafieken van de gemiddelde diepte vertonen duidelijk een trendbreuk rond de jaren '60-'70. Ook hier kan ruwweg gesteld worden dat er een overeenkomst is tussen de zandonttrekkingen en de evolutie van deze morfologische parameter.

4.5 EVALUATIE T2009 DYNAMIEK WATERBEWEGING

Een evaluatie volgens de criteria uit de methodiek, zijn op de huidige gegevens nog niet mogelijk omdat ze een referentiepunt vormen voor toekomstige evaluaties. Er kan wel een oordeel geveld worden over het al dan niet positief of gevenst zijn van waargenomen trends. Dit wordt hieronder grafisch voorgesteld door middel van annotatie van de piramide horende bij de communicatie-indicator.

Aangezien een evaluatie niet mogelijk is, worden parameters nog niet ingekleurd. De tekens “+” of “−” geven een evolutie van de parameter aan: een “+” geeft aan dat er een positieve evolutie is, met andere woorden dat het systeem gunstig evolueert in de richting van het criterium voor een positieve evaluatie. De dalende trend voor een parameter kan bijvoorbeeld een gunstige trend zijn en krijgt dan een “−”.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Evaluatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMES17</td>
<td>+</td>
</tr>
<tr>
<td>OMES18</td>
<td>+</td>
</tr>
<tr>
<td>OMES19</td>
<td>+</td>
</tr>
<tr>
<td>OMES19-tijarm</td>
<td>−</td>
</tr>
</tbody>
</table>
De huidige trends die worden waargenomen in de jaargemiddelde en extreme (99%-percentiel) hoogwaters, zijn negatief in het kader van de Veiligheid. De stijging van de hoogwaters neemt toe naarmate de afstand tot de monding toeneemt. Uit de golfhoogtes vielen over het algemeen geen trends te bepalen. De beoordeling van deze parameter is neutraal.

4.6 **ALGEMENE INTERPRETATIE DYNAMIEK WATERBEWEGING**

De evolutie van de getijslag in het estuarium, met name de sterke toename ervan vanaf Bath opwaarts is een fenomeen dat de nodige aandacht verdient omdat het vanuit het standpunt van veiligheid, bevaarbaarheid en ecologie ongewenst is. In de analyse van de waterbeweging wordt de getijslag niet op zich geëvalueerd, maar zit opgesplitst in de hoofdstukken Dynamiek Waterbeweging (hoogwater) en Bevaarbaarheid (hoogwater en laagwater).

De stijgende trend van de hoogwaterstanden kent een zekere invloed van de zeespiegelstijging en een toename van de getijslag op zee. De zeespiegelstijging bedraagt 15 à 20 cm per eeuw. Dit is echter beperkt in vergelijking met de recente stijging van de hoogwaterstanden van Bath (40 cm per eeuw) tot Melle (bijna 150 cm per eeuw). Uit Langendoen (1987) blijkt dat de zeespiegelstijging tussen 1900 en 1980 slechts voor een paar centimeter toename zorgt op de getijslag te Bath. Dit toont aan dat morfologische veranderingen in de laatste decennia de motor zijn voor de veranderingen in de getijslag of de hoogwaterstanden.

Rekening houdend met onderzoek naar de effecten van onder meer verruiming (Van Rijn, 2010) valt er niet te twijfelen aan de impact die de mens op de waterbeweging heeft gehad.
Bevaarbaarheid

De toetsparameter Bevaarbare Diepte wordt bepaald door drie rekenparameters:
1. Jaargemiddeld Hoogwater. Deze parameter duidt voor de bevaarbaarheid op een positieve evolutie aangezien deze waterstand de laatste jaren toeneemt in het hele estuarium. Dit wordt veroorzaakt door enerzijds de zeespiegelstijging en anderzijds de toename van de getijslag, voornamelijk als gevolg van ingrepen in het estuarium.
2. Jaargemiddeld Laagwater. Deze parameter toont een divers beeld: over het algemeen is de evolutie in de Westerschelde positief, alsook in de Beneden-Zeeschelde. Vanaf Temse en stroomopwaarts wordt echter waargenomen dat de laagwaters lager worden. Dit is negatief voor de bevaarbare diepte. De achterliggende oorzaak van deze negatieve trend is dat stroomopwaarts vanaf Temse, de toename van de getijslag dominanter wordt dan de stijging van de zeespiegel.

De conclusie is dat de toetsparameter Bevaarbare Diepte negatief beoordeeld wordt.

De toetsparameter Looptijd Getij wordt bepaald door twee rekenparameters: de looptijd van het hoogwater en de looptijd van het laagwater. In de Westerschelde zijn de looptijden in de 20e eeuw sterk afgenomen. Voor de Zeeschelde is op lange termijn hetzelfde vastgesteld, maar sinds de jaren 1970-1980 is sprake van stagnatie. De toetsparameter wordt negatief beoordeeld.

De negatieve beoordeling van de twee toetsparameters leidt tot een negatief oordeel voor de communicatie-indicator Bevaarbaarheid.

5.1 INLEIDING

De communicatie-indicator Bevaarbaarheid heeft als doel de waterbeweging in relatie tot de hoofdfunctie ‘Toegankelijkheid’ in beeld te brengen. De systeemparameters die de bevaarbaarheid mogelijk kunnen beïnvloeden zijn de bevaarbare diepte en de looptijd van het getij; dit zijn dan ook de twee toetsparameters binnen de communicatie-indicator. Beide toetsparameters kennen geen kwantitatieve criteria, maar zijn gebaseerd op de trendontwikkeling, zonder waardeoordeel met betrekking tot de toegankelijkheid; er wordt wel aangegeven of een bepaalde trendverandering vanuit het systeem gezien positief of negatief is.
De toetsparameter *Bevaarbare Diepte* is gedefinieerd als de minimale waterdiepte in de vaargeul. Veranderingen in waterdiepte worden veroorzaakt door veranderingen in hoog- en laagwaterstanden, en door baggeractiviteiten. Een toename van het onderhoudsbaggervolume voor de vaargeul en/of de havens na de derde verruiming zal als ongunstig beschouwd worden.

De toetsparameter *Looptijd getij* beschrijft de tijd die de getijgolf nodig heeft om het estuarium in te dringen, en houdt dus verband met de snelheid van de getijgolf in het estuarium. Een afname van de looptijd van het hoog- en laagwater t.o.v. de historische trend wordt als een ongunstige ontwikkeling gezien. De bevaarbaarheid van het estuarium, of de tijd die nodig is om schepen bijvoorbeeld de haven van Antwerpen te laten bereiken, hangt hier immers van af.

Ontwikkelingen in scheepstypen, geulwandbestortingen, wrakverwijdering, ... worden buiten beschouwing gelaten. De garantie van een veilige doorvaart voor schepen valt ook buiten het bestek van de evaluatiemethodiek.

In de onderstaande figuur wordt de samenhong van alle parameters in pyramidevorm geïllustreerd. Aan het einde van dit hoofdstuk wordt deze figuur hernomen, met aanduiding van de beoordeling van de huidige trend of toestand (al dan niet gewenst of positief).

![Diagram](image-url)

Figuur 5-1: Communicatie-indicator Bevaarbaarheid, en de diverse parameters.
5.2 BEVAARbare DEEPTE

5.2.1 REKENPARAMETER GEMIDDELD LAAGWATER

5.2.1.1 INLEIDING

De rekenparameter *jaargemiddelde laagwater* vormt net zoals de rekenparameter *jaargemiddeld hoogwater* een maat voor de evaluatie van de toestand van het systeem in relatie tot de getijontwikkeling. De evolutie van de jaargemiddelde waterstanden wordt onderzocht voor alle meetstations in de Westerschelde en Zeeschelde. Er wordt een trendanalyse uitgevoerd waarbij een regressiemodel wordt gekalibreerd, rekening houdend met mogelijke aanwezigheid van trendbreuken. Het regressiemodel heeft betrekking op de periode voorafgaand aan 2009 en dient uiteindelijk voor de toekomstige evaluatie van deze rekenparameter vanaf 2010.

Er wordt gestart met een overzicht van de gebruikte data. De data worden vervolgens op een beschrijvende en – indien mogelijk – statistische manier geanalyseerd aan de hand van het kalibreren van een regressiemodel rekening houdend met een eventuele aanwezigheid van trendbreuken. Pas daarna wordt overgegaan tot een interpretatie van de trends en wordt gezocht naar mogelijke verklaringen voor de trendbreuk(en). Het hoofdstuk eindigt met een beoordeling van de rekenparameter op basis van de bepaalde trends.

5.2.1.2 GEBRUIKTE DATA

De gebruikte data is beschreven in §4.2.1.2.

5.2.1.3 ANALYSE

De meest belangrijke stations voor deze analyse zijn de stations met een lange tijdreeks. Deze zijn per gebied van het Schelde-estuarium reeds opgenoemd in §4.2.1.2. De data van alle stations en hun significante trendlijn – voor en na een eventuele trendbreuk – worden weergegeven in de digitale bijlage. In dit hoofdstuk wordt de weergave beperkt tot de belangrijkste figuren om de leesbaarheid te bevorderen. Meer figuren zijn weergegeven in de digitale bijlage.

Buiten het estuarium en aan de monding

Voor de meetstations Vlakte van de Raan en Europlatform is geen significante trend aanwezig in de relatief korte tijdreeks. Visueel kan wel een lichte stijging onderscheiden worden.

De meetstations aan de monding (Cadzand en Westkapelle) vertonen duidelijk een 18.6-jarige cyclus en een lineair stijgende trend. De tijdreeks van Westkapelle is de langste en is weergegeven in Figuur 5-2 waarin de 18.6-jarige cyclus en een lineair stijgende trend van ongeveer 20 cm/eeuw zichtbaar zijn gemaakt door het kalibreren van een regressiemodel.

Westerschelde

In de datareeksen van Vlissingen en Terneuzen wordt een verandering van de trend gevonden in de jaren '60. Voor en na dit jaartal kan een regressiemodel gekalibreerd worden die een 18.6-jarige cyclus bevat en een lineair stijgende trend.

Voor het station Vlissingen is de trendwijziging visueel niet duidelijk maar uit analyse van de residuen (na verwijdering van de lineaire en cyclische trend) blijkt er toch een systematische afwijking te bestaan tussen de trend op de waterstanden voor en na de jaren '60. Voor Vlissingen blijft de stijging ongeveer hetzelfde voor en na de trendbreuk (21 cm/eeuw, cf. Figuur 5-3), maar de trendlijn maakt een kleine stap naar lagere laagwaters alvorens door te stijgen. Te Terneuzen neemt de stijging af van ongeveer 17.5 cm/eeuw naar 12 cm/eeuw (cf. digitale bijlage).

Te Hansweert wordt begin jaren '80 een trendbreuk gevonden. Vóór de trendbreuk geldt een lineaire stijging van het jaargemiddelde laagwater van ongeveer 12 cm/eeuw en na de trendbreuk neemt deze toe tot 17 cm/eeuw (cf. Figuur 5-4). Bij de trendbreuk wordt ook een plotse stijging van de laagwaters vastgesteld.

Te Bath ligt de trendbreuk rond 1975, waar heel duidelijk een groot verschil is voor en na de trendbreuk. Na de trendbreuk daalt het laagwater plots en onmiddellijk met ongeveer 10 cm. Voor de trendbreuk geldt een lineaire stijging van 20 cm/eeuw (cf. Figuur 5-5), terwijl na 1975 de stijging zo goed als verdwenen is (1 cm/eeuw).
Figuur 5-3: Regressiemodellen voor de jaargemiddelde laagwaterstanden van Vlissingen gekalibreerd voor periodes 1881-1964 en 1965-2009 (=T2009).

De lineaire trend vertoont een verschillende mate van stijging (of daling) over de verschillende meetstations heen. De stijgings- of dalingsnelheid is gebaseerd op de trendlijn na het optreden van een eventuele trendbreuk of verandering van de trend tot aan 2009. Figuur 5-10 biedt een overzicht van de stijgings- of dalingsnelheid over het volledige estuarium te beginnen aan de monding te Cadzand en voor de meetstations met de langste tijdreeksen. De waarde van de stijgings- of dalingsnelheid stelt de helling voor van de lineaire component van deze trendlijn. In Tabel 5-2 zijn de waarden gegeven van meetstations met kortere tijdreeksen en waarvoor een significante trend aanwezig is.

Tot en met Hansweert stijgt het jaargemiddelde laagwater ongeveer 10 à 20 cm/eeuw. Vanaf Bath is de stijging van de gemiddelde laagwaters beperkt, maar deze nemen weer sterker toe in Antwerpen en Schelle, tot 20 cm/eeuw. Voor de stations stroomopwaarts van Schelle wordt daarentegen een daling lineaire trend van het jaargemiddelde laagwater waargenomen tot zelfs -90 cm/eeuw te Melle. Deze daling zet zich ook verder in de Rupel en Nete. Echter in de Durme wordt een uitermate sterke stijgingsnelheid opgetekend te Waasmunsterbrug (615 cm/eeuw).

De grootte van de residuen na het verwijderen van de trend uit de tijdreeksen zijn ook weergegeven (Figuur 5-11). De standaardafwijking van de residuen ten opzichte van de T2009 trendlijn voor de jaargemiddelde laagwaters in de belangrijkste meetstations in het Schelde-estuarium zijn weergegeven. Het blijkt dat vanaf Dendermonde tot in Melle de residuen een opvallend grotere spreiding kennen dan de overige meetstations afwaarts in het estuarium. Ook het station Duffel-Sluis in de Nete vertoont een grotere spreiding in de residuen. In de Durme neemt de spreiding ook toe te Waasmunsterbrug.
Figuur 5-10: Evolutie stijging van de jaargemiddelde laagwaters stroomopwaarts van de schelde en zijrivieren. Belangrijkste stations (cf. Tabel 5-1 voor meetstation nummers).

Tabel 5-1: De stijging of daling van het jaargemiddelde laagwater in de belangrijkste meetstations.

<table>
<thead>
<tr>
<th>Bekken</th>
<th>Nummering</th>
<th>Naam meetstation</th>
<th>Afkorting</th>
<th>Periode trend</th>
<th>LW stijging/daling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[cm/eeuw]</td>
</tr>
<tr>
<td>Schelde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Cadzand</td>
<td>CADZ</td>
<td>1966 - 2009</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Westkapelle</td>
<td>WKAP</td>
<td>1954 - 2009</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Vlissingen</td>
<td>VLIS</td>
<td>1965 - 2009</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Terneuzen</td>
<td>TERN</td>
<td>1960 - 2009</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Hansweert</td>
<td>HANS</td>
<td>1980 - 2009</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Bath</td>
<td>BATH</td>
<td>1976 - 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Liefkenshoek</td>
<td>LIEF</td>
<td>1975 - 2009</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Antwerpen</td>
<td>ANTL</td>
<td>1975 - 2009</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Schelle</td>
<td>SCHE</td>
<td>1977 - 2009</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Temse</td>
<td>TEMS</td>
<td>1975 - 2009</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Dendermonde</td>
<td>DEND</td>
<td>1975 - 2009</td>
<td>-51</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Schoonaarde</td>
<td>SCHO</td>
<td>1970 - 2009</td>
<td>-81</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Melle</td>
<td>MELL</td>
<td>1974 - 2009</td>
<td>-89</td>
</tr>
<tr>
<td>Rupel-Nete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Walem</td>
<td>WALE</td>
<td>1970 - 2009</td>
<td>-35</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Duffel-Sluis</td>
<td>DUSL</td>
<td>1970 - 2009</td>
<td>-63</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Tielrode</td>
<td>TIEL</td>
<td>1970 - 2009</td>
<td>-24</td>
</tr>
<tr>
<td>Durme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Waasmunsterbrug</td>
<td>WABR</td>
<td>1982 - 2009</td>
<td>615</td>
</tr>
</tbody>
</table>
Tabel 5-2: De stijging of daling van het jaargemiddelde laagwater in de overige meetstations. Enkel significante trends worden weergegeven.

<table>
<thead>
<tr>
<th>Plaatsnaam</th>
<th>Waterloop</th>
<th>Periode totaal</th>
<th>LW stijging/daling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[-]</td>
<td>[jaar]</td>
<td>[cm/100 jaar]</td>
</tr>
<tr>
<td>Baalhoek</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Gat van Borssele</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Brekens Veerhaven</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Overloop van Hansweert</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Vlakte van de Raan</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Schaar van de Noord</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Walsoorden</td>
<td>Westerschelde</td>
<td>1996-2009</td>
<td>-</td>
</tr>
<tr>
<td>Boom</td>
<td>Rupel</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Buggenhout</td>
<td>Zeeschelde</td>
<td>1901-1940</td>
<td>-</td>
</tr>
<tr>
<td>Driegoten</td>
<td>Zeeschelde</td>
<td>1981-2006</td>
<td>-</td>
</tr>
<tr>
<td>Emblem</td>
<td>Kleine Nete</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Gentbrugge</td>
<td>Zeeschelde</td>
<td>1981-2005</td>
<td>-</td>
</tr>
<tr>
<td>Hamme</td>
<td>Durme</td>
<td>1981-2001</td>
<td>-11</td>
</tr>
<tr>
<td>Hemiksem</td>
<td>Zeeschelde</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Hombek</td>
<td>Zenne</td>
<td>1981-2005</td>
<td>-</td>
</tr>
<tr>
<td>Kallosluis</td>
<td>Zeeschelde</td>
<td>1982-2009</td>
<td>-1</td>
</tr>
<tr>
<td>Kessel</td>
<td>Grote Nete</td>
<td>1981-2006</td>
<td>-</td>
</tr>
<tr>
<td>Lier-Maasfort</td>
<td>Grote Nete</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Lier-Molbrug</td>
<td>Benedennete</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Mechelen-Benedensluis</td>
<td>Dijle</td>
<td>1981-2009</td>
<td>-142</td>
</tr>
<tr>
<td>Merelbeke</td>
<td>Zeeschelde</td>
<td>1981-2005</td>
<td>-</td>
</tr>
<tr>
<td>Prosperpolder</td>
<td>Zeeschelde</td>
<td>1952-2009</td>
<td>-</td>
</tr>
<tr>
<td>Rijmenam</td>
<td>Dijle</td>
<td>1980-2000</td>
<td>75</td>
</tr>
<tr>
<td>Sint-Amands</td>
<td>Zeeschelde</td>
<td>1951-2009</td>
<td>-</td>
</tr>
<tr>
<td>Sint-Marie</td>
<td>Zeeschelde</td>
<td>1981-1962</td>
<td>-</td>
</tr>
<tr>
<td>Uitbergen</td>
<td>Zeeschelde</td>
<td>1901-1940 & 1951-2006</td>
<td>-</td>
</tr>
<tr>
<td>Waasmunster-Manta</td>
<td>Durme</td>
<td>1981-2005</td>
<td>492</td>
</tr>
<tr>
<td>Waasmunster-Sluis</td>
<td>Durme</td>
<td>1981-1986</td>
<td></td>
</tr>
<tr>
<td>Wetteren</td>
<td>Zeeschelde</td>
<td>1981-2009</td>
<td>-</td>
</tr>
<tr>
<td>Zandvietsluis</td>
<td>Zeeschelde</td>
<td>1981-2009</td>
<td>-17</td>
</tr>
<tr>
<td>Zele</td>
<td>Durme</td>
<td>1951-2003</td>
<td>196</td>
</tr>
<tr>
<td>Zemst</td>
<td>Zenne</td>
<td>1981-2005</td>
<td>-61</td>
</tr>
<tr>
<td>Zwijnaarde</td>
<td>Zeeschelde</td>
<td>1981-2003</td>
<td>-</td>
</tr>
</tbody>
</table>
5.2.1.4 **INTERPRETATIE**

Inleiding

In deze paragraaf worden verklaringen gezocht voor de vaststellingen die in de voorgaande paragraaf gemaakt werden. Hierbij wordt gebruik gemaakt van de verklarende parameters (§4.4, §5.4) en literatuur.

In de belangrijkste meetstations in het estuarium is een 18.6-jarige cyclus en een lineaire trend aangetoond in de jaargemiddelde laagwaterstanden. Deze trends zijn ook aanwezig aan de monding van het estuarium, waardoor een verklaring deels buiten het estuarium valt te zoeken. Externe factoren alleen kunnen niet voor alle (sterkere) veranderingen in het estuarium een verklaring bieden, aangezien de richting van de lineaire trend niet overal gelijk is. Daarom worden ook binnen het estuarium naar (morfologische) verklaringen gezocht voor de veranderingen in de jaargemiddelde laagwaterstanden.

Hieronder wordt weergegeven welke oorzaken op welke deelgebieden van het estuarium een invloed kunnen hebben. Dit wordt uitgevoerd aan de hand van de vergelijking van trends in het astronomisch getij (de toename van de getijslag) en het gemeten getij (alle effecten gecombineerd), net zoals werd gedaan voor de hoogwaterstanden.

Verband met (astronomisch) getij

De 18.6-jarige nodale cyclus is een gevolg van de variërende positie van de maanbaan t.o.v. het eclipticavlak. Dit is een externe en goed gekende oorzaak die een effect heeft op de waterstanden van alle meetstations.

De **lineaire trend in de laagwaterstanden** is in verband te brengen met verschillende processen: de stijging van de zeespiegel en de toename van de getijslag. Afhankelijk van de relativieke verhouding en zin
(stijgend of dalend) van de twee processen, zal bepaald worden of op een bepaalde locatie de laagwaterstanden af- dan wel toenemen. De toename van de gemiddelde waterstand en de astronomische laagwaterstanden (die inzicht geeft in de toename van de getijslag) is uitgewerkt in §4.4.1.3 en §4.4.1.4 als verklarende parameters. Deze gegevens worden hieronder gebruikt om de waarnemingen te verklaren. In algemene zin is de interpretatie gelijkaardig aan deze die uitgevoerd is in §4.2.1.4 voor de jaargemiddelde hoogwaterstanden. In Figuur 5-12 en Tabel 5-3 worden de (T2009-)trends in de gemiddelde waterstand, het jaargemiddeld gemeten laagwater en het jaargemiddeld astronomisch laagwater weergegeven.

Tabel 5-3: Vergelijking stijging gemiddelde waterstand, astronomisch jaargemiddeld laagwater en gemeten jaargemiddeld laagwater

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadzand</td>
<td>CADZ</td>
<td>10.15</td>
<td>Geen trend</td>
<td>10.15</td>
<td>12.45</td>
</tr>
<tr>
<td>Westkapelle</td>
<td>WKAP</td>
<td>23.80</td>
<td>Geen trend</td>
<td>23.80</td>
<td>19.86</td>
</tr>
<tr>
<td>Vlissingen</td>
<td>VLIS</td>
<td>19.42</td>
<td>Geen trend</td>
<td>19.42</td>
<td>21.77</td>
</tr>
<tr>
<td>Terneuzen</td>
<td>TERN</td>
<td>22.83</td>
<td>Geen trend</td>
<td>22.83</td>
<td>12.10</td>
</tr>
<tr>
<td>Hansweert</td>
<td>HANS</td>
<td>25.76</td>
<td>-8.76</td>
<td>17</td>
<td>17.06</td>
</tr>
<tr>
<td>Bath</td>
<td>BATH</td>
<td>16.79</td>
<td>-12.54</td>
<td>4.25</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Figuur 5-12: Vergelijking tussen de trends op het gemiddeld waterpeil (rood), astronomisch jaargemiddeld laagwater (groen) en gemeten jaargemiddeld laagwater (zwart). De blauwe curve is de som van trends op het gemiddeld waterpeil en het astronomisch laagwater (rode en groene curve).

Tussen de monding en Vlissingen is de stijging van het jaargemiddeld (gemeten) laagwater gelijkaardig aan de stijging van de jaargemiddelde waterstand. Dit betekent dat de laagwaterstijging hier grotendeels kan verklaard worden door een stijging in de gemiddelde waterstand (tijdens de periode van de trendbepaling!).

Te Terneuzen is het verschil tussen het gemeten laagwater en de gemiddelde zeespiegelstijging groter (ongeveer 10 cm/eeuw). Aangezien er op de jaargemiddelde harmonische laagwaters geen (statistisch significante) trend aanwezig is, wordt de waarde van de trend gelijkgesteld aan nul. Dit betekent evenwel
niet dat er geen effectieve stijging van de laagwaterstanden is geweest: tussen 1960 en 1980 nam het astronomisch laagwater effectief af met ongeveer 10 centimeter. Dit kan een deel van het verschil in trendmatige verandering verklaren. De waarneming kan gekoppeld worden aan een toename van de getijslag op zee (zie §4.2.1.2).

In de meetstations Hansweert en Bath is er eveneens een belangrijk verschil tussen het gemeten laagwater en de gemiddelde zeespiegelstijging, maar in tegenstelling tot Terneuzen wordt hier wel een trendmatige verandering van de jaargemiddelde astronomische laagwaters waargenomen. Als deze mee in rekening worden gebracht, blijken de trends in de metingen opnieuw goed overeen te stemmen met de som van de trends in de jaargemiddelde waterstanden en de jaargemiddelde harmonische waterstanden. Bovendien blijkt de zin van deze twee componenten tegengesteld te zijn: de gemiddelde waterstand stijgt (een gevolg van de zeespiegelstijging) terwijl de jaargemiddelde harmonische waterstanden afnemen (als gevolg van de toename van de getijslag). Te Bath blijken de absolute waarden van beide componenten ongeveer even groot te zijn, waardoor de netto stijging van de laagwaters maar heel beperkt is.

Opwaarts Bath (m.a.w. in de Zeeschelde) kan de analyse niet verder gezet worden wegens het ontbreken van de benodigde harmonische gegevens, maar uit het gedrag van de laagwaterstanden kan wel één en ander afgeleid worden. Te Liefkenshoek neemt het laagwater beter toe (enkele cm per eeuw). Deze lagere toename is te wijten aan een toename van de getijslag, net zoals voor Bath. Te Antwerpen en Schelle is de stijging van het laagwater opnieuw groter; er kan verondersteld worden dat de toename van de getijslag hier wat minder groot is. Vanaf Temse neemt het jaargemiddeld laagwater af. De afnemende trend wordt sterker naarmate de afstand tot Melle afneemt. Tegelijk is ook de trendmatige stijging van het hoogwater het sterkst richting Melle. Beiden samen tonen aan dat de sterkste toename van de getijslag thans opwaarts voorkomt. De grootste getijslag komt ter hoogte van Tielenroede voor.

De verklaring voor de zeespiegelstijging en de toename van de getijslag is reeds besproken in §4.2.1.4. De algemene bespreking die voor de hoogwaterstanden is weergegeven, geldt eveneens voor de laagwaterstanden: de zeespiegelstijging is een goed gedocumenteerd proces (b.v. IPCC, 2007); de toename van de getijslag kan voor een deel verklaard worden door de toename van de getijslag buiten het estuarium (zie Langendoen, 1987; Hollebrandse, 2005; Jeuken et al., 2007). Bijvoorbeeld voor Vlissingen en Terneuzen kan dit de lichte verandering van de trend rond 1960 verklaren. Zoals in §4.2.1.4 aangehaald, wordt benadrukt dat het niet duidelijk is of de toename van de getijslag op zee een cyclisch fenomeen is gerelateerd aan een multidecadale cyclus, dan wel een eenmalige gebeurtenis. Een verandering van de getijslag op zee zal zich doorzetten in het estuarium, maar het geleidelijke karakter ervan leidt niet tot sterke trendbreuken.

Verband met geometrie en bathymetrie

Er is een tweede verklaring voor de verandering van de getijslag, namelijk de veranderingen in geometrie en bathymetrie van het estuarium. Er wordt verwezen naar §4.2.1.4 voor een algemene bespreking. Hier worden enkele specifieke elementen aangehaald.

Er wordt een onderscheid gemaakt met de toename van de getijslag in de ruimte: de amplificatie van de getijslag is een gevolg van de convergentie van het estuarium. Veranderingen in de vorm van het estuarium zullen de amplificatie bijgevolg ook beïnvloeden.

Daarnaast is er een toename van de getijslag doorheen de tijd, zoals hierboven aangetoond. De opeenvolging van grote en kleine ingrepen zorgen ervoor dat de getijslag doorheen de geschiedenis systematisch is toegenomen. Met name de verruiming van het estuarium heeft een invloed op de laagwaterstanden (zie §4.2.1.4).
Vanaf Hansweert werd een trendbreuk in de jaargemiddelde laagwaterstanden gevonden midden tot eind jaren '70. Te Bath is dit zeer uitgesproken: er treedt rond 1975 een vrij sterke en plotse veraging van de waterstanden op (in de orde van 10 centimeter). Dit zet zich voort in de Zeeschelde (Prosperpolder, Liefkenshoek, Antwerpen, Schelle (met een verlaging van 20 cm over enkele jaren tijd), Terneuzen (verlaging van ongeveer 25 cm), Dendermonde en zijkantijvers (bv. Walem).

Deze trendbreuk is een onmiddellijke verandering in het getijgedrag. Dit wijst op snelle veranderingen in het estuarium, zoals menselijke ingrepen (aanleg geleidewanden, verdiepingen, verruimingen, ...). De oorzaken van deze trendbreuken zijn waarschijnlijk dezelfde als deze van het jaargemiddelde hoogwater (cf. §4.2) omdat:
- het jaartal van de trendbreuk in elk station min of meer overeenkomt met deze van het jaargemiddelde hoogwater;
- de verruimings-/verdiepingscampagnes een effect hadden op de getijslag welke een rechtstreeks effect heeft op zowel de hoog- als laagwaterstand.

Er wordt als oorzaak voor de trendbreuken dus in hoofdzaak verwijzen naar de eerste verruiming (jaren '70) met de hiermee gepaard gaande zandextractie.

De plotse verlaging van de laagwaterstanden in de Zeeschelde (incl. Boven-Zeeschelde) in de tweede helft van de jaren '70 worden ook als effect van de eerste verruiming geïnterpreteerd. Deze verlaging treedt immers op vanaf Bath en blijkt dieper in het estuarium nog sterker te worden. Ingrepen in de Zeeschelde zelf zullen de laagwaterstanden meer beïnvloed hebben.

Baggervolumes voor de Boven-Zeeschelde zijn er niet om de (relatieve) omvang van deze ingrepen te staven, maar het watervolume onder 0 m TAW in de Boven-Zeeschelde neemt sinds 1960 toe, wat wijst op verruiming en verdieping (zie §4.4.4.2), zij het door erosie of door baggerwerken. Ook in de Beneden-Zeeschelde is deze verruiming algemeen vanaf 1960. Dit blijkt ook uit de jaarlijkse baggerhoeveelheden (Figuur 5-15): tot 1960 wordt gemiddeld 1 miljoen m³ zand per jaar gebaggerd. Vanaf 1960 tot aan de eerste verruiming neemt de intensiteit toe tot 3 à 4 miljoen m³ zand per jaar.

Trendveranderingen in de jaren '60 in het westen van de Westerschelde kunnen, naast de toename van de getijslag op zee, eventueel mee veroorzaakt zijn door veranderingen in het watervolume in het gebied (zie ook §4.2.1.4), maar de onbetrouwbaarheid van de data (Cleveringa, 2013) levert geen sterke ondersteuning hiervoor.

Wat betreft effecten van de tweede verruiming (1997-98) wordt in de MOVE (MOnitoring VERruiming) eindrapportage (van Eck & Holzhauer, 2006) een trendbreuk vastgesteld in de laagwaterstanden te Bath vanaf het jaar 2000: de laagwaterstanden ten opzichte van Vlissingen zijn significant gedaald.

Uit een analyse uitgevoerd voor het meetstation Antwerpen blijkt dat op basis van een regressiemodel voor de periode 1974-1997 ook een trendbreuk optreedt rond 1998-1999, maar dat de laagwaters hoger liggen dan de verwachte trendlijn. Dichter bij 2009 normaliseren de waarden echter en neemt de afwijking van de laagwaters weer af (de cumulatieve van de residuen stabiliseert, Figuur 5-13). De analyse op de getijslag (cf. §4.2.1.4) geeft echter een duidelijker indicatie van het optreden van een trendbreuk in deze periode. Er wordt echter op gewezen dat de relatief hoge bovenafvoeren in deze jaren een belangrijke impact kunnen hebben op het creëren van een trendbreuk. Of de trendbreuk dus volledig te wijten is aan de tweede verruiming, is niet zeker. Tenslotte wordt er nog op gewezen dat de tijdreeks 2000-2009 te kort is om een significante trend te bepalen (voor de T2009-toetsing) zodat de trend behouden blijft volgens de bepaling op de periode 1975-2009.
Figuur 5-13: Trendanalyse op de getijslag te Antwerpen (1975-1997) (p=0.0017) en cumulatieve resdien die een

Verder wordt nog opgemerkt dat de waargenomen trendbreuken geen gevolg zijn van een verandering in

de meetmethodiek. Hoewel de nauwkeurigheid van het opnemen van de laagwaters in de loop der tijd

(op sommige locaties meermaals) werd verbeterd, althans in de Westerschelde, heeft dit toch geen invloed

gehad op de jaargemiddelde laagwaters (comm. Helpdesk water van Rijkswaterstaat, 2012). In de

Zeeschelde is er tot op heden geen ingrijpende wijziging in de meetmethodiek doorgevoerd (mond.

comm. Marc Wouters, Waterbouwkundig Laboratorium, 2012). Dat de metingen zelf de resultaten op een

abnormale wijze kunnen beïnvloeden, blijkt wel uit onderstaande gegevens.

Het verloop van de jaargemiddelde laagwater te Waasmunsterbrug vertoont een zeer sterk afwijkend
gedrag ten opzichte van de andere meetstations. Het is bovendien zo dat het jaargemiddelde laagwater

een zeer sterk stijgend verloop kent te Waasmunsterbrug sinds de jaren '50 (615 cm/eeuw vanaf 1982) met

tijdelijke dalingen eind jaren '60 en '70. Dit terwijl voor de andere meetstations opwaarts vanaf Temse en

in de zijrivieren een lineaire dalingscomponent wordt gevonden in de trend sinds de laatste trendbreuk.

Het sterk afwijkend gedrag te Waasmunsterbrug kan verklaard worden door de vele menselijke ingrepen

die zijn uitgevoerd in Durme in de 19de en 20ste eeuw. Een zeer uitgebreide beschrijving hiervan werd

reeds gedaan door Taverniers (1979):

- In de loop van de 19de eeuw werd het oppervlaktewater van de Durme ontnomen ten gunste van het

 kanaal Gent-Terneuzen om het waterpeil daar te kunnen verzekeren. Dit had als gevolg dat er zo goed
 als geen bovenafvoer meer voorkwam en dat de Durme louter aan het getij onderhevig werd met als
 verandering tot gevolg;
- Als gevolg van deze verzanding zijn in de jaren '30 van de 20ste eeuw ingrijpende werken uitgevoerd:

 rechtstrekkingen waardoor de Durme 2.3 km werd verkort, en baggerwerken. Dit verklaart meteen
 waarom in de jaren '30 een daling van de jaargemiddelde laagwaters wordt waargenomen;
- Na deze ingrijpende werken zette de verzanding zich echter voort zodat het laagwater opnieuw begon

 te stijgen. Tussen '46 en '53 werden opnieuw baggerwerken uitgevoerd welke gegaand gaan met een
 daling van de laagwaters tijdens deze periode;
- In 1954-1955 werd de Durme afgedamd ter hoogte van Molsbroek wat de verzandingsproblematiek

 nog heeft verergerd. Sinds de jaren '50 stijgt het jaargemiddelde laagwater sterker dan ooit opgemeten.
De sterke afname van het laagwater tussen '67 en '69 heeft opnieuw te maken met baggerwerken in de Durme tijdens deze periode. De verzanding houdt echter aan wat de stijging van het laagwater tijdens de jaren '70 verklaart.

De sterke afname begin jaren '80 houdt vermoedelijk ook verband met baggerwerken, maar dit werd niet gerapporteerd door Taverniers (1979) om evidente reden.

Dat de stijging van het jaargemiddelde laagwater te Waasmunsterbrug verband houdt met de verzanding van de Durme is nu duidelijk. Wat nog opmerkelijk is, is de zeer sterke graad van de stijging (615 cm/eeuw sinds 1982). Ook dit houdt rechtstreeks verband met de aanslibbing: het laagwater peil dat te Waasmunsterbrug opgemeten wordt is immers het peil van de bodem omdat er geen water meer aanwezig is op deze locatie tijdens laagwater (comm. Elin Vanlierde, Waterbouwkundig Laboratorium, 2012). Vanaf wanneer juist het bodempeil werd opgemeten i.p.v. het laagwateroppervlak als gevolg van de verzanding is echter minder duidelijk. Indien de mate van de stijging van het jaargemiddelde laagwater hiervan een teken is, kan dit al sinds 1960 zijn, kort na de afdamming van de Durme (Taverniers, 1979).

Verband met meteorologie

Net zoals voor het jaargemiddelde hoogwater wordt ook voor het laagwater een sterk stijgende spreiding van de residuen op de T2009 trend waargenomen stroomopwaarts van Dendermonde. Het debiet van de bovenafvoer blijkt opnieuw de verklaring te zijn: er wordt immers een zeer sterke correlatie gevonden van meer dan 90% in deze stations (cf. Figuur 5-13).

Figuur 5-14: Correlatie tussen het debiet van de bovenafvoer te Melle en de jaargemiddelde T2009 laagwater residuen te Melle. Correlatiecoëfficiënt = 0.99 (lineair, Pearson).

5.2.1.5 EVALUATIE

Er werd een trend bepaald voor het jaargemiddelde laagwater op elke meetlocatie in het Schelde-estuarium (Tabel 5-1, Tabel 5-2). De T2009 trendlijn voor het jaargemiddelde laagwater wordt gekarakteriseerd door volgende waarnemingen:
De trendlijn bevat (afhankelijk van de locatie) een positief of negatief lineaire trend en een 18.6-jarige cyclus. De 18.6-jarige cyclus is een rechtstreeks gevolg van een variërende positie van de maanbaan ten opzicht van de ecliptica. De lineaire trend wordt veroorzaakt door een combinatie van een stijging van de gemiddelde waterstand en een toename van de getijslag. Te Bath en vooral opwaarts vanaf Temse is de invloed van de toename van de getijslag groter dan de zeesspiegelstijging. Op deze locaties treedt immers een lineaire dalende trend op na de meest recente trendbreuk. Opwaarts vanaf Dendermonde neemt de spreiding van de residuen ten opzichte van de trendlijn toe. Op deze locaties geldt – net zoals voor de hoogwaters – een zeer sterke correlatie tussen het jaargemiddelde laagwater residu op de T2009 trend en het debiet van de bovenafvoer. Zoals blijkt uit de grotere spreiding oefent het debiet van de bovenafvoer een grotere invloed uit op het jaargemiddelde laagwater stroomopwaarts dan stroomafwaarts.

De T2009 trendlijn beschrijft de rekenparameters sinds de trendbreuk in de jaren '60 of '70 op een statistisch significante wijze. De voorspelling die deze trendlijn maakt is dus geschikt voor de evaluatie van de rekenparameter vanaf 2010.

De huidige stijgende trend van de rekenparameter jaargemiddelde laagwater in de Westerschelde betekent een positieve evolutie voor deze rekenparameter en dus voor de toetsparameter **Bevaarbare diepte**. Dieper in het estuarium echter bestaat een lineair dalende trend stroomopwaarts vanaf Temse. Dit betekent op deze locaties bijgevolg een negatieve evolutie voor de toetsparameter **Bevaarbare diepte**.

De afname van de laagwaterstanden in de Boven-Zeeschelde houdt een risico in voor de scheepvaart. Op ogenblik van schrijven is er echter geen gegarandeerde diepte voor de scheepvaart. Een toetsing is dus niet mogelijk en wordt vanuit de methodiek ook niet gevraagd. Uit een Bericht aan de Schipperij, dd. 25/10/2012, blijkt het volgende:

"De aandacht van de schippers wordt extra gevestigd op de bijzondere bepalingen op de getijgebonden rivieren. De diepgang op tijrivieren kan niet worden vastgesteld aangezien de vaardiepte verandert volgens het te bevaren gedeelte van de rivier, het regime van de vaargeulen en banken, de stand van het getij en de omstandigheden die op het getij een invloed uitoefenen. De schippers dienen hun vaart te ondernemen in functie van de diepgang en afmetingen van hun schip en de stand van het getij."

In de praktijk (comm. Stijn Bosmans, W&Z) blijkt dat voor de getijgebonden vaart een maximale diepgang van 2.8 meter wordt gehanteerd. Aangezien het hier getijgebonden vaart betreft kan verondersteld worden dat er gevaren wordt bij hoge waterstanden. De toename van de getijslag leidt naast een lagere laagwaterstand ook tot een hogere hoogwaterstand, wat voor de getijgebonden vaart op vlak van diepgang positief kan zijn. Een negatief aspect is dan weer dat stroomsnelheden toenemen, maar een evaluatie hiervan valt buiten de methodiek.
5.2.2 REKENPARAMETER GEMIDDELD HOOGWATER

De rekenparameter 'Gemiddeld Hoogwater' is uitgewerkt in het kader van de communicatie-indicator Dynamiek Waterbeweging (§4.2). Hieronder wordt de conclusie beschreven en aangepast in termen van "Bevaarbaarheid".

Er werd een trendlijn bepaald voor het jaargemiddelde hoogwater op elke meetlocatie in het Schelde-estuarium. De T2009 trendlijn voor het jaargemiddelde hoogwater wordt gekarakteriseerd door volgende waarnemingen:

- De trendlijn bevat een positief lineaire trend en een 18.6-jarige cyclus. De 18.6-jarige cyclus is een rechtstreeks gevolg van een variërende positie van de maanbaan ten opzicht van het eclipticavlak. De lineaire trend wordt veroorzaakt door een combinatie van een stijging van de gemiddelde waterstand (zeespiegeltijging) en een toename van de getijdag. Opwaarts vanaf Dendermonde en in Duffel-Sluis neemt de spreiding van de residuen ten opzichte van de trendlijn toe. Op deze locaties geldt een zeer sterke correlatie tussen het jaargemiddelde hoogwater residu op de T2009 trend en het jaargemiddeld debiet van de bovenafvoer. Zoals blijkt uit de grotere spreiding en grotere correlatiecoëfficiënt oefent het debiet van de bovenafvoer een grotere invloed uit op het jaargemiddelde hoogwater stroomopwaarts dan stroomafwaarts.

- De stations aan de monding vertonen geen trendbreuk.
- In de Westerschelde (monding-Hansweert) wordt een geleidelijke verandering van de trend gevonden in de jaren '60 die wordt gerelateerd aan enerzijds een toenamé van de getijdag buiten het estuarium en anderzijds een mogelijke toename van het watervolume in de westelijke Westerschelde (alhoewel de onderliggende data voor deze benadering als onbetrouwbaar worden beschouwd).

- Gedurende het verloop van deze trendlijn bestaan er statistisch gezien geen sterke aanwijzingen voor het voorkomen van andere trendbreuken die gerelateerd zijn aan ingrepen in het estuarium. De T2009 trendlijn beschrijft de rekenparameter sinds de trendbreuk op een statistisch significante wijze. De voorspelling die deze trendlijn maakt is dus geschikt voor de evaluatie van de rekenparameter vanaf 2010.

De huidige stijgende trend van de rekenparameter jaargemiddelde hoogwater in elk meetstation duidt op een positieve evolutie in het kader van de bevaarbaarheid (op vlak van diepgang voor de getijgebonden vaart). Anderzijds heeft een toename van de hoogwaterstand een negatieve invloed op de doorvaarthoogte onder bruggen op de Boven-Zeeschelde. In dat opzicht is deze evolutie ongunstig. Daarnaast heeft een toename van de getijdag en dus stroomsnelheden ook een mogelijk negatieve impact op de bevaarbaarheid. Deze laatste aspecten worden in de evaluatiemethodiek echter niet beschouwd, wat leidt tot een positieve evolutie van de parameter in het kader van de Bevaarbaarheid.

In de toekomst, vanaf 2010, zal blijken of de beschreven stijgende trends wijzigen, wat zou kunnen leiden tot een andere evaluatie van de rekenparameter.
5.2.3 REKENPARAMETER ONDERHOUDSBAUGGERVOLUME

5.2.3.1 INLEIDING

De gegarandeerde waterdieptes voor de Beneden-Zeeschelde en de Westerschelde worden gedetailleerd besproken in CAT (2007). Om de vaarweg diep en breed genoeg te houden is onderhoudsballerwerk vereist. Jaarlijks wordt een hoeveelheid slib en zand op kritieke plaatsen, voornamelijk de drempels, gebaggerd en op een andere locatie teruggestort of volledig uit het systeem van de Schele gehaald.

De hoeveelheid onderhoudsspecie die jaarlijks gebaggerd wordt, geeft weer hoe het systeem verandert. Veranderingen in de hydrodynamica, de bodemligging, de morfologische dynamiek en de sedimenteigenschappen hebben een invloed op het baggervolume. Ook de stortstrategie en de baggertechniek zijn van belang bij de analyse van de baggerhoeveelheden. Waar mogelijk, vormen zij een verklarende factor voor de ontwikkelingen in de baggerstatistieken.

Aangezien de indicator ‘Bevaarbaarheid’ enkel kijkt naar de trendontwikkeling van de bevaarbaarheid zonder een waardeoordeel te vellen, zijn er geen kwantitatieve criteria opgesteld voor de rekenparameters van deze indicator. Er kan gebruikt gemaakt worden van een 95%-predictie-interval aan de hand waarvan geëvalueerd kan worden of de hoeveelheden binnen deze intervallen liggen en wat de algemene trend is. Een stijgend onderhoudsvolume bij ongewijzigde waterdieptes wordt in deze zin als ongunstig beschouwd.

In dit hoofdstuk zullen de onderhoudsvolumes van België en Nederland geanalyseerd worden. Er zal, zowel voor zand als voor slib, gekeken worden naar de jaarlijkse hoeveelheden en de trends over significante periodes. Ook de onderhoudsvolumes in de havens wordt apart bestudeerd. Tot slot wordt er een overzicht gegeven van de baggerspecie die uit het systeem van de Schelde gehaald werd en van extra zandwinning die uitgevoerd werd. De waarden worden in een historische context geplaatst en er wordt een verklaring gezocht voor breekpunten en trends. Er wordt een ruimtelijke analyse van de resultaten uitgevoerd en een link gemaakt met de context van de Langtermijnvisie.

5.2.3.2 GEBRUIKTE DATA

De gebruikte data om de baggervolumes te analyseren zijn afkomstig van afdeling Maritieme Toegang, Vlaamse Overheid. De baggerstatistiek bevat data voor België en Nederland van 1895 tot en met de laatst vereiste datum voor onderhavig rapport, namelijk 31/12/2009. In Nederland is er pas vanaf 1905 data bijgehouden. Er wordt geen onderscheid tussen onderhoud en verdieping gemaakt aangezien dit pas sinds 2006 in de gegevens bijgehouden werd en het precieze doel van bepaalde baggerwerken (onderhoud dan wel verdieping) niet steeds gekend was. In de analyse en de interpretatie wordt dit vanzelfsprekend wel beschouwd.

De hoeveelheden zijn gekarakteriseerd als m^3 in boven voor zand en als m^3 V’ voor slib. Het gereduceerd of equivalent volume V’ wordt gebruikt om de hoeveelheid slib uit te drukken met een standaarddichtheid van 2 ton/m³. Aangezien het gebaggerde slib danig van dichtheid kan verschillen, is dit de meest uniforme manier van kwalificatie.

5 In de evaluatiemethodiek wordt gesproken van een analyse van de waarnemingen sinds 2002. In deze studie zijn de waarnemingen tot verder terug in de geschiedenis gebruikt aangezien er trends over langere periodes terug te vinden zijn.
5.2.3.3 ANALYSE

Boven-Zeeschelde
Er is geen data beschikbaar voor de onderhoudsbaggervolumes in de Boven-Zeeschelde. Enkel voor de opspuitingen voor de Hedwige-Prosperpolder in 2008-2009 zijn volumes geregistreerd (§5.2.3.5).

Beneden-Zeeschelde / Zand
Als eerste wordt er gekeken naar de baggerhoeveelheden van zand in België. Deze zijn vanaf 1895 beschikbaar en worden weergegeven in Figuur 5-15 (jaarlijks) en Figuur 5-16 (cumulatief). De Lowess regressiecurve van de jaarlijkse en cumulatieve baggerhoeveelheden wordt eveneens getoond (spanwijde filter = respectievelijk 10 en 40 jaar). De volgende elementen zijn op te merken:

- Een stijging van de volumes van ± 1 Mm³ in beun voor het begin van de 20e eeuw naar ± 4 Mm³ in beun vlak voor de 1e verruiming;
- Een graduele daling van het volume van ± 4 Mm³ in beun na de 1e verruiming tot 1,5 Mm³ in beun voor de 2e verruiming;
- Een lichte stijging richting 2 à 3 Mm³ in beun na de 2e verruiming;
- De hierboven beschreven trends zijn niet statistisch significant;
- In de grafiek met de cumulatieve hoeveelheden is er een duidelijke trendbreuk rond 1960 merkbaar. Na 1960 stijgt de cumulatieve hoeveelheid bijna 3 keer sterker dan voorheen. Dit is eveneens in Figuur 5-14 te zien met een gemiddelde waarde van 1,2 Mm³ in beun voor 1960 en een gemiddelde waarde van 3,1 Mm³ in beun na 1960.

Figuur 5-15: Jaarlijkse baggerhoeveelheden zand in de Beneden-Zeeschelde [m³ in beun]. Locale regressie met filterbreedte van 10 jaar (Lowess). De verruimingsperiodes worden in het geel indicatief weergegeven.
Figuur 5-16: Cumulatieve baggerhoeveelheden zand in de Beneden-Zeeschelde [m³ in beun]. Locale regressie met filterbreedte van 40 jaar (Lowess). De verruimingsperiodes worden in het geel indicatief weergegeven.

In Figuur 5-17 en Figuur 5-18 worden dezelfde volumes weergegeven met een opsplitsing per baggerzone. Er werden drie baggerzones gedefinieerd: 'vaargeul' waaronder alle drempels, platen en andere baggerlocaties vallen, 'havengebied' met de kaaien, toegangsgeulen tot de sluizen, de sluizen zelf en de havendokken en 'overige' met allerhande aanlegwerken, in en rond steigers, Schaar van Ouden Doel, enz.

Er valt meteen op dat de grootste volumes zand in de vaargeul gebaggerd werden. In het havengebied komen er voornamelijk in de jaren '80 significante volumes voor. De bijzonder grote piek in het jaar 1989 is duidelijk te wijten aan een verhoogde baggerinspanning in de overige gebieden.
Figuur 5-17: Jaarlijkse baggerhoeveelheden zand in de Beneden-Zeeschelde [m³ in beun], opgesplitst per baggerzone. De verruimingsperiodes worden in het geel indicatief weergegeven.

Figuur 5-18: Cumulatieve baggerhoeveelheden zand in de Beneden-Zeeschelde [m³ in beun], opgesplitst per baggerzone. De verruimingsperiodes worden in het geel indicatief weergegeven.
Beneden-Zeeschelde / Slib

Vervolgens wordt er gekeken naar de onderhoudshoeveelheden van slib in België. In Figuur 5-19 en Figuur 5-20 worden respectievelijk de jaarlijkse en de cumulatieve totalen weergegeven. Pas vanaf 1981 werd er slib voor onderhoud gebaggerd. De Lowess regressiecurve van de jaarlijkse en cumulatieve baggerhoeveelheden wordt eveneens getoond (spanwijdte filter = 10 jaar). De volgende elementen zijn op te merken:

- Vrij continue hoeveelheden voor de periode voor de 2e verruiming: rond de 1 Mm³ V’ of lager. Voor 1989 en 1990 is er serieuze verlaging van de baggervolumes op te merken. Er wordt bijna geen slib gebaggerd;
- De baggerhoeveelheden slib liggen hoog voor de periode 2001-2003 met waardes tussen de 2 en 3 Mm³ V’. Dit verklaart de knik in de grafiek met de cumulatieve volumes;
- Daarna is er een vrij abrupte terugval tot ongeveer 1,5 Mm³ V’, maar een stijgende lijn tot 2009 waarin het jaarlijkse totaal terug boven de 2 Mm³ V’ ligt;
- Met behulp van een trendanalyse kan onderzocht worden of er over meerdere decennia bepaalde tendensen in de jaarlijkse volumes terug te vinden zijn en of deze significant zijn. Gezien er pas sinds 1981 slib gebaggerd wordt en gezien het effect van de 2e verruiming op de volumes, werden er geen significante trends aangetroffen. Uit de Lowess curve kan afgeleid worden dat er algemeen wel een gestage stijging van de slibvolumes optreedt;
- In de grafiek met de cumulatieve hoeveelheden is er een trendbreuk merkbaar, ditmaal in 2000. Na 2000 stijgt de cumulatieve hoeveelheid ongeveer 3 keer sterker dan voorheen. Dit is eveneens in Figuur 5-19 te zien met een gemiddelde waarde van 600.000 m³ in beun voor 2000 en een gemiddelde waarde van 1,9 Mm³ in beun vanaf 2000.
Figuur 5-19: Jaarlijkse baggerhoeveelheden slib in de Beneden-Zeeschelde [m³ V']. Locale regressie met filterbreedte van 10 jaar (Lowess). De verruimingsperiodes worden in het geel indicatief weergegeven.

Figuur 5-20: Cumulatieve onderhoudshoeveelheden slib in de Beneden-Zeeschelde [m³ V'].Locale regressie met filterbreedte van 10 jaar (Lowess). De verruimingsperiodes worden in het geel indicatief weergegeven.
Ook voor het slib kunnen de totale baggervolumes opgesplitst worden per baggerzone (cf. Figuur 5-21 en Figuur 5-22). Voor het slib is er een meer gelijke evenredige verdeling tussen de vaargeul en het havengebied dan voor het zand. Tussen 2000 en 2005 is er een duidelijke overheersing van baggerwerken in de vaargeul. De jaren daarvoor en erna zijn gekenmerkt door meer inspanning in het havengebied.

Figuur 5-21: Jaarlijkse baggerhoeveelheden slib in de Beneden-Zeeschelde [m³ in beun], opgesplitst per baggerzone. De verruimingsperiodes worden in het geel indicatief weergegeven.

Figuur 5-22: Cumulatieve baggerhoeveelheden zand in de Beneden-Zeeschelde [m³ in beun], opgesplitst per baggerzone. De verruimingsperiodes worden in het geel indicatief weergegeven.
Beneden-Zeeschelde / Slib-Zandverhouding

Men kan ook de verhouding tussen de slibvolumes en de zandvolumes uitzetten op een grafiek (cf. Figuur 5-23). Opnieuw wordt de Lowess regressiecurve getoond (spanwijdte filter = 10 jaar). Een waarde van 0 betekent geen slibbaggervolumes, een waarde van 1 betekent een gelijke hoeveelheid slib en zand die gebaggerd wordt. De volgende elementen zijn op te merken:

- Er wordt pas sinds 1981 slib gebaggerd volgens de aangeleverde gegevens. Voor en tijdens de 2e verruiming is dit in verhouding tot het zand nog vrij beperkt met een verhouding van gemiddeld ongeveer 0,3;
- Vanaf 2000 stijgt deze verhouding tot duidelijk boven de 1 met een maximale waarde van 3,4 in 2002;
- De laatste jaren is er een dalende trend op te merken die weer onder de 1 gaat. Er wordt dus opnieuw meer zand (in m³ in beun) dan slib (in m³V') gebaggerd.

![Graph](https://via.placeholder.com/150)

Figuur 5-23: Jaarlijkse verhouding slib/zand in de Beneden-Zeeschelde. Locale regressie met filterbreedte van 10 jaar (Lowess). De verruimingsperiodes worden in het geel indicatief weergegeven.
Westerschelde / Zand
Een gelijkaardige analyse kan uitgevoerd worden voor de baggerhoeveelheden van zand in Nederland. Deze zijn vanaf 1905 gedocumenteerd en worden weergegeven in Figuur 5-24 en Figuur 5-25. De Lowess regressiecurve van de jaarlijkse en cumulatieve baggerhoeveelheden wordt eveneens getoond (spanwijde filter = respectievelijk 10 en 40 jaar). De volgende zaken vallen op:

- De 1e (1970-1975) en de 2e (1997-1998) verruimingen komen duidelijk naar voren in de grafieken met pieken tot meer dan 14 Mm³ in beun;
- In het begin van de 20e eeuw stijgen de volumes geleidelijk aan tot 4 à 5 Mm³ in beun voor de 1e verruiming;
- Na de 1e verruiming blijven de baggervolumes hoog met een lichte daling van ±12 Mm³ in beun tot 8 à 9 Mm³ in beun voor de 2e verruiming;
- Een daling van de volumes na 1998 tot 6 à 7 Mm³ in beun;
- De hierboven beschreven trends zijn niet statistisch significant;
- Ook hier is er in de grafiek met de cumulatieve hoeveelheden een duidelijke trendbreuk rond 1970 merkbaar. Na 1970 stijgt de cumulatieve hoeveelheid bijna 5 keer sterker dan voorheen. Dit is eveneens in Figuur 5-24 te zien met een gemiddelde waarde van 1,9 Mm³ in beun voor 1970 en een gemiddelde waarde van 8,9 Mm³ in beun na 1970.

De bevindingen werden getoetst aan deze uit het MOVE eindrapport van Van Eck en Holzhauer (2006). In Hoofdstuk 2.3.2 van dat rapport wordt het onderhoudsbaggerwerk in de Westerschelde tussen 1986 en 2005 besproken waarbij gelijkaardige volumes voor en na de 2e verruiming bekomen worden.

Figuur 5-24: Jaarlijkse baggerhoeveelheden zand in de Westerschelde [m³ in berm]. Lokale regressie (Lowess, filterbreedte 10 jaar). De verruimingsperiodes worden in het geel indicatief weergegeven.

Figuur 5-25: Cumulatieve baggerhoeveelheden zand in de Westerschelde [m³ in berm]. Lokale regressie (Lowess, filterbreedte 40 jaar). De verruimingsperiodes worden in het geel indicatief weergegeven.
Westerschelde / Slib

Tot slot worden ook de baggerhoeveelheden slib in Nederland bestudeerd. Hier zijn gegevens vanaf 1983 beschikbaar hoewel er niet voor alle jaren data aanwezig is: cf. Figuur 5-26 en Figuur 5-27. De Lowess regressiecurve van de jaarlijkse en cumulatieve baggerhoeveelheden wordt eveneens getoond (spanwijdtde filter = 10 jaar). Er valt op dat:

- De baggerhoeveelheden steeds tussen de 0 en de 100.000 m³ V' schommelen met twee uitschieters in 2002 en 2006 van ± 300.000 m³ V';
- De hoeveelheden slib in de Westerschelde erg laag zijn en er weinig tot geen correlatie is met de 2e verruiming;
- Met behulp van een trendanalyse kan onderzocht worden of er over meerdere decennia bepaalde tendensen in de jaarlijkse volumes terug te vinden zijn en of deze significant zijn. Gezien er pas sinds 1983 slib gebaggerd wordt en de hoeveelheden erg laag zijn, werden er geen significante trends aangetroffen;
- In de grafiek met de cumulatieve hoeveelheden is er een duidelijke trendbreuk merkbaar, ditmaal in 2001. Na 2001 stijgt de cumulatieve hoeveelheid ongeveer 4 keer sterker dan voorheen. Dit is eveneens in Figuur 5-26 te zien met een gemiddelde waarde van 40.000 m³ in beun voor 2001 en een gemiddelde waarde van 160.000 m³ in beun vanaf 2001.

Figuur 5-26: Jaarlijkse onderhoudshoeveelheden slib in de Westerschelde [m3 V']. Lokale regressie (Lowess, filterbreedte 10 jaar). De verruimingssperioden worden in het geel indicatief weergegeven.

Figuur 5-27: Cumulatieve onderhoudshoeveelheden slib in de Westerschelde [m3 V']. Lokale regressie (Lowess, filterbreedte 10 jaar). De verruimingssperioden worden in het geel indicatief weergegeven.
Westerschelde / Slib-Zandverhouding

Men kan ook hier de verhouding tussen de slibvolumes en de zandvolumes uitzetten op een grafiek (cf. Figuur 5-28). Opnieuw wordt de Lowess regressiecurve getoond (spanwijdte filter = 10 jaar). Een waarde van 0 betekent geen slibbaggervolumes, een waarde van 1 betekent een gelijke hoeveelheid slib en zand die gebaggerd wordt. De volgende elementen zijn op te merken:

- Er wordt pas sinds 1983 slib gebaggerd volgens de data. De verhouding slib/zand ligt bijzonder laag met slibvolumes (in m³ V') die nauwelijks meer dan enkele procenten van het zandvolumes (in m³ in beun) bedragen.

![Time series plot Westerschelde: 1905 - 2009](image)

Figuur 5-28: Jaarlijkse verhouding slib/zand in de Westerschelde. Lokale regressie met filterbreedte van 10 jaar (Lowess). De vernuimingsperioden worden in het geel indicatief weergegeven.

Opmerking

Havenstortingen
Tussen 2002 en 2009 werd jaarlijks tussen de 2 en 7 miljoen m³ havenslib gebaggerd. Het grootste deel komt uit de haven van Vlissingen (gemiddeld 2 miljoen m³ per jaar) en Terneuzen (gemiddeld 1,5 miljoen m³ per jaar). Te Breskens bedraagt de baggeractiviteit bijna 430 000 m³ per jaar, te Hansweert bijna 200 000 m³. Andere locaties (Koolwaterinlaat kerncentrale Borssele, Walsoorden, Hoedekenskerke,...) kennen een gemiddelde lager dan 50 000 m³ per jaar. Er moet echter opgemerkt worden dat voor een aantal locaties de laatste jaren ofwel niet gebaggerd is, ofwel geen data aangeleverd (Kruiningen, Draaibruggen kanaal Gent-Terneuzen, Perkpolder, Walsoorden). De evolutie per locatie wordt hieronder grafisch weergegeven.

Figuur 5-29: Overzicht van de volumes van baggervolumes in de havens.

5.2.3.4 INTERPRETATIE EN EVALUATIE
In dit onderdeel wordt naar een verklaring gezocht voor de hierboven gerapporteerde resultaten. Er wordt besproken welke menselijke ingrepen, morfologische ontwikkelingen of hydrodynamische evoluties geleid hebben tot veranderende trends in de baggerhoeveelheden.

Beneden-Zeeschelde / Zand
Zoals reeds gesteld, is de piek in de zandvolumes rond ’70-’75 te verklaren door het uitvoeren van de 1e verruiming. De drempels in de vaargeul en de toegangsgeulen tot de sluisen werden verdiept en sindsdien op de gekozen streefdiepte onderhouden.
De piek van 1989-1990 is geen onderdeel van één van de twee 'grote' verruimingen. Zoals reeds vermeld is de reden hiervoor niet te zoeken in baggerwerken in de vaargeul, maar wel in de overige gebieden en meer specifiek dan de bouw van de Liefkenshoektunnel. Deze zorgt in grote mate voor deze tijdelijke verhoging in 1989 en 1990.

Opmerkelijk is de afwezigheid van een piek in de baggerhoeveelheden voor de 2e verruiming (1997-1998).

Dat de baggerhoeveelheden na de 1e verruiming zakken tot het niveau van voor de verruiming en lager is opmerkelijk aangezien het te verwachten valt dat de verruiming een verhoogde sedimentatie teweeg zou brengen en bijgevolg na verloop van tijd een verhoogde baggerinspanning. Dit is wel zo voor het slib in de Beneden-Zeeschelde en voor het zanderig baggerwerk na de 2e verruiming (cf. verder).

De stijgende trend na de 2e verruiming (cf. Figuur 5-16) is een te verwachten gevolg van de uitvoering van deze verruiming. Wat opvalt, is dat de hoeveelheden eigenlijk eerst terugvallen tot een niveau onder de 1 Mm³ in beun voor 2002 en om daarna een stijgende tendens te vertonen. De reden hiervoor ligt vermoedelijk in het feit dat er met een overdiepte gebaggerd werd. Hierdoor is er de eerste jaren een verminderde baggerinspanning vereist.

De kleine pieken in de jaarlijkse hoeveelheden buiten de periodes van de verruimingen zijn te verklaren door infrastructuurwerken in de haven van Antwerpen zoals de aanleg van sluizen en hun toegangsgeul of belangrijke terminals. Bv. de aanleg van de Kruisshanssluis (= Van Cauwelaertsluis) halverwege de jaren '20, de Boudewijnsluis na de tweede wereldoorlog, de Berendrechtsluis vanaf 1981, etc. Deze eerste twee zouden in de data als 'overige' moeten terugkomen, maar staan desondanks toch als 'vaargeul' aangegeven. De bouw van de Berendrechtsluis komt wel duidelijk terug in de overige gebieden.

Beneden-Zeeschelde / Slib

De baggervolumes slib zijn in de periode tussen 1981 en de start van de 2e verruiming volgens de verwachting redelijk constant. De dip voor 1989-1990 valt samen met de piek in de zandvolumes. Er werd amper slib gebaggerd aangezien men de extra verruiming aan het uitvoeren was.

Na de 2e verruiming is er duidelijke stijging waar te nemen. Vanwege deze verruiming treedt er een toegenomen aanslibbing op in de diepste zones (baggerzone 'vaargeul'). Na verloop van tijd is er een verhoogde baggerinspanning nodig om deze aanslibbingen opnieuw te verwijderen. De terugval na 2003 is moeilijk te verklaren. De stijgende lijn na 2005 vindt waarschijnlijk mede zijn oorsprong in de ingebruikname van het Deurangeckdok (baggerzone 'havengebied'). Het dok werd in 2005 officieel geopend, maar slechts het voorste gedeelte was op dat moment afge werkt. In de jaren nadien is het stelselmatig verder uitgebaggerd en afgewerkt. De eerste jaren was de streefdiepte 15.5 m en pas later (na de verruiming van het dok) 17 m onder TAW. In IMDC et al. (2008, 2009 en 2010) wordt vermeld dat het slibbaggerwerk in het Deurangeckdok vanaf 2006 op gang kwam met gemiddeld ongeveer 9 000 m³ per week, terwijl dit tegen 2008 reeds 15 000 m³ per week was. Dit houdt een jaarlijkse verhoging van ongeveer 300 000 m³ in.

Beneden-Zeeschelde / Slib-Zandverhouding

De slib/zandverhouding is tot aan de 2e verruiming relatief laag. Daarna stijgt deze tot boven de 1 vanwege een verhoogde aanslibbing in de diepste zones. De stijging van het slibonderhoud na het openen van het Deurangeckdok is niet dermate dat het de stijging in zandonderhoud overtreft: de verhouding daalt.
Conclusie Beneden-Zeeschelde
Er kan besloten worden dat er voor de Beneden-Zeeschelde de laatste jaren een stijgende trend in het onderhoudsbaggervolume teruggevonden kan worden wat als ongunstig voor de toetsparameter 'Bevaarbare diepte' en bijgevolg de communicatie-indicator 'Bevaarbaarheid' beschouwd kan worden. Voor de zanderige specie is dit een verhoging van 1 Mm³ in beun in 2002 naar 3 Mm³ in 2009, voor het slib van onder de 1.5 Mm³ V' in 2004 naar boven de 2 Mm³ V' in 2009.

Dit dient echter genuanceerd te worden te zien aangezien deze baggervolumes verdiepingen inhielden (bv. Deurganckdok sinds 2005).

Westerschelde / Zand
Ook voor de zandvolumes op de Westerschelde is de piek van de 1e verruiming duidelijk op te merken. Alle drempels van de vaargeul werden verlaagd om de streefdiepte van -14,7 m NAP te bereiken.

De 2e verruiming is ook merkbaar in de grafiek van de zandvolumes. Om de streefdiepte op -16 m NAP (-17,4 NAP voor de monding) te brengen is er 1 à 1,5 m van verscheidene drempels weggebaggerd wat de verhoogde volumes verklaart.

De lichte daling na de 1e verruiming valt te verklaren doordat er tot 1990 minder op de drempels gebaggerd is. De sterke daling na de 2e verruiming komt vermoedelijk doordat de onderhoudshoeveelheden sindsdien meer in het midden en het westen van de Westerschelde gestort werden en er bijgevolg een vermindering in onderhoud in het oosten vereist was. Opmerkelijk is hier dat de jaarlijkse volumes gezakt zijn tot het niveau van voor de 1e verruiming (± 6 Mm³ in beun). De precieze oorsprong van deze afname is niet bekend. Zoals vermeld in van Eck en Holzhauser (2006) lijkt het erop dat de aanzandingssnelheid van de drempels een maximum heeft bereikt. De verwachting dat het onderhoudsbaggervolume na deze verruiming duidelijk zou stijgen is niet correct gebleken.

Over de geschiedenis van de laatste 100 jaar vertonen de jaarlijkse baggervolumes een duidelijk stijgende lijn. De evolutie van de scheepvaart naar steeds grotere schepen heeft ervoor gezorgd dat er in de Westerschelde meer en meer zand gebaggerd moest worden om een voldoende diepe en brede vaargeul voor deze scheepvaart te voorzien. De verschillende verruimingen en baggerintensificaties sinds 1970 hebben ervoor gezorgd dat de jaarlijkse volumes niet enkel stijgen, maar ook een grotere spreiding ten opzichte van de trend vertonen. Enkele jaren wordt er uitzonderlijk veel gebaggerd, terwijl dit voor de jaren nadien weer zeer weinig is.

Westerschelde / Slib
De jaarlijkse baggerhoeveelheden slib in de Westerschelde liggen bijzonder laag. Dit komt voort uit het natuurlijke riviersysteem van de Schelde.

In 2002 en in 2006 is er een duidelijke, zij nog steeds absoluut lage verhoging van de baggervolumes op te merken. Mogelijk is dit een effect van de 2e verruiming waardoor er toch enige aanslibbing is voorgekomen die enkele jaren nadien verwijderd diende te worden. Voor het overige is er weinig correlatie met de 2e verruiming.

Westerschelde / Slib-Zandverhouding
De verhouding slib/zand ligt bijzonder laag met slibvolumes die nauwelijks meer dan enkele procenten van het zandvolumes bedragen.
Conclusie Westerschelde
Noch voor het slib, noch voor het zand is er in de Westerschelde een opmerkelijke stijgende trend terug te vinden gedurende de laatste jaren. Men kan concluderen dat er recent geen negatieve evolutie van de toetsparameter 'Bevaarbare diepte' en bijgevolg de communicatie-indicator 'Bevaarbaarheid' plaatsgevonden heeft.

5.2.3.5 ZANDEXTRACTIE

Buiten de totale baggervolumes is het ook interessant te bekijken hoeveel van deze baggerspecie uit het systeem van de Schelde gehaald is. Ook dit heeft een impact op de bevaarbare diepte.

Westerschelde
In Figuur 5-30 is de totale onttrokken hoeveelheid zand sinds 1955 voor de Westerschelde weergegeven. Wat meteen opvalt is de verhoging tijdens de 1e verruiming. Deze begint eigenlijk al voor de verruiming, namelijk eind jaren '60 en loopt ook wat langer dan de verruiming zelf door tot eind jaren '70. Gemiddeld is er over de periode 1968-1979 een jaarlijks zandvolume van 2.1 Mm³ in beun geëxtraheerd. Opmerkelijk is ook de afwezigheid van een verhoging ten tijde van de 2e verruiming. De zandhoeveelheden afkomstig van deze verruiming zijn terug in het systeem van de Schelde gebracht op een andere locatie.

Figuur 5-30: Totale volume zand dat uit het systeem van de Westerschelde gehaald werd [m³ in beun]. De verruimingsperiodes worden in het geel indicatief weergegeven.

Beneden-Zeeschelde
Het totale onttrokken volume zand sinds 1955 voor de Beneden-Zeeschelde wordt in Figuur 5-31 getoond. Ook hier is de 1e verruiming duidelijk terug te vinden en ontbreekt een significante verhoging voor de 2e verruiming. De onttrokken hoeveelheden zijn hier wel groter dan deze bij de Westerschelde: tussen 1969 en 1973 is er een gemiddelde van 5.3 Mm³ in beun geregistreerd. De 'extra' verruiming rond 1990 wordt dan weer wel waargenomen met een piek tot meer dan 6 Mm³. Het gewonnen zand werd gebruikt bij de aanleg van de Europaterminal.
Zandlevering Beneden-Zeeschelde

10,000,000
9.000,000
8.000,000
7.000,000
6.000,000
5.000,000
4.000,000
3.000,000
2.000,000
1.000,000
0

Figuur 5-31: Totale volume zand dat uit het systeem van de Beneden-Zeeschelde gehaald werd [m³ in beun]. De verruimingsperiodes worden in het geel indicatief weergegeven.

Boven-Zeeschelde

Voor de Boven-Zeeschelde is enkel de zandextractie ten bate van de dijkconstructie aan de Hedwige-Prospelpolder beschikbaar. In 2008 werd er ongeveer 60 000 m³ gebaggerd, in 2009 werd dit 550 000 m³. De specie is afkomstig van de Plaat te Sint-Amands, de Plaat Kont West, de Plaat Kont Oost, de Durme, de Plaat Onbekende en de Plaat Buitenland.

5.2.3.6 ZANDWINNING

Buiten het zand dat met de 'reguliere' baggerwerken uit het systeem gehaald wordt voor opspuitingen en allerhande aanlegwerken (dit wordt bijgehouden in de baggerstatistiek), wordt er eveneens zand gewonnen door de handel en de overheid. In de Beneden-Zeeschelde gebeurt dit sinds 1981 met een gemiddelde van ongeveer 1.5 Mm³ in beun per jaar. Voor de Westerschelde doet men dit reeds sinds 1956 met een jaarlijks volume dat grotendeels tussen de 2 Mm³ en de 4 Mm³ in beun ligt. Gemiddeld omvat dit 2.3 Mm³ per jaar. Aangezien dit zand uit het systeem onttrokken wordt, kan er verondersteld worden dat dit een invloed uitoefent op de onderhoudsbaggerwerken. Omdat de zandwinning echter op regelmatige basis en met een vrij constante hoeveelheid gebeurt, is er amper een invloed op korte termijn op te merken. Er kan aangenomen worden dat dit op lange termijn leidt tot het uitraken van het riviersysteem waardoor een vermindering in baggerinspanning tot stand zou kunnen komen, maar dit effect is nauwelijks te kwantificeren.

Figuur 5-32: Zandwinning uit de Schelde. De verruimingsperiodes worden in het geel indicatief weergegeven.
5.3 LOOPTIJD GETIJ

5.3.1 JAARGEMIDDELDE LOOPTIJD HOOGWATER EN LAAGWATER

5.3.1.1 INLEIDING
Het belang van de looptijd van het getij houdt verband met het tijvenster, dit is het tijdsdeel van het getij waarbinnen scheepvaart met een bepaalde diepgang mogelijk is. Hoe korte de looptijd van het hoogwater tussen twee locaties, hoe korter de tijd is dat de noodzakelijke waterdiepte beschikbaar is voor scheepvaart. Een verlaging van de looptijd resulteert dus in een verkleining van het tijvenster waardoor de bevaarbaarheid vermindert.

5.3.1.2 GEBRUIKTE DATA
De analyse van de rekenparameter jaargemiddelde looptijd hoogwater/laagwater is gebaseerd op dezelfde dataset waaruit de rekenparameter jaargemiddelde hoogwater/laagwater werd gehaald (cf. §4.2.1.2). Hier wordt de analyse echter beperkt tot de belangrijkste stations, met name deze die de langste tijdreeks hebben.

De jaargemiddelde looptijd werd als volgt berekend:
- Vlissingen werd steeds als referentiestation genomen;
- Het tijdstip van hoogwater te Vlissingen wordt afgetrokken van het tijdstip van hoogwater bij het beschouwde station. Dit levert de looptijd van hoogwater tussen Vlissingen en het beschouwde meetstation.

5.3.1.3 ANALYSE
De analyse van de jaargemiddelde looptijd is gebaseerd op een trendanalyse waarbij rekening gehouden wordt met een lineaire component en een cyclische component van 18.6 jaar. De helling van de lineaire component wordt gerapporteerd in Tabel 5-4. Deze drukt uit in welke mate de looptijd is af- of toegenomen, gemiddeld genomen over lange tijd. Voor de looptijd tussen Vlissingen-Antwerpen en Vlissingen-Schoonard kon geen significante trend (95% confidantielimiet) vastgesteld worden voor de verandering van de looptijd van het hoogwater. In de tabel worden dan ook geen waarden weergegeven. Voor een aantal stations wordt in meer detail ingegaan op de evolutie van de looptijd van het getij.

Westerschelde
De tijdreeksen voor de stations in de Westerschelde (Terneuzen, Hansweert en Bath) beslaan een periode van 50 tot 127 jaar en tonen gemiddeld een vrij uniforme afname van de looptijd van het hoogwater van 17.2 tot 19.1 minuten per eeuw. De afname van de looptijd van het laagwater is veel minder eenduidig en varieert tussen 9.4 en 32.2 minuten per eeuw. De waarden zijn gelijkwaardig aan deze gerapporteerd in Kuijper & Lesinski (2012) in het kader van LTV O&M Veiligheid (hierin werd enkel van een lineaire trend uitgegaan). Enkel voor het traject Vlissingen-Bath zijn de waarden enigszins afwijkend door het opnemen van een cyclische trend in de berekeningen in voorliggend rapport.

Tussen Vlissingen en Terneuzen (Figuur 5-36) neemt de looptijd van het hoog- en laagwater af tussen 1882 en 2009 van 37 minuten naar 18 minuten (hoogwater) en van ongeveer 36 minuten naar 25 minuten (laagwater). Voor de looptijd van het laagwater lijken de grootste veranderingen zich tussen 1900 en 1940 voorgedaan te hebben (af te leiden uit de Lowess regressiecurves in Figuur 5-36), terwijl de laatste
Decennia de verandering slechts een paar minuten bedraagt. De afname van de looptijd van het hoogwater lijkt een langere tijd aan te houden, vanaf 1900 en slechts vanaf 1990 te stagneren. Gemiddeld genomen nam de looptijd af met 17.2 (hoogwater) en 9.2 minuten (laagwater).

Tussen Vlissingen en Hansweert is de gemiddelde afname van de looptijd van hoog- en laagwater eerder gelijkdaardig (-17.5 en -15.5 min/eeuw). De looptijd tussen Terneuzen en Hansweert is dus relatief constant gebleven. In meer detail blijkt ook hier dat de sterkste afname in de looptijd van het laagwater zich situeert tussen 1940 en 1970. Voor 1940 fluctueert de looptijd sterk (tussen 55 en 75 minuten); na 1970 stagnert de looptijd rond 50 à 55 minuten.

De looptijd tussen Vlissingen en Bath kan slechts tussen 1957 en 2009 bepaald worden, maar ook hier wordt een afname van de looptijd vastgesteld. Vooral de afname van de looptijd van het laagwater is heel sterk: van ongeveer 98 minuten naar 83 minuten, of ongeveer 15 minuten op 50 jaar.

Tenslotte valt nog op dat in bijna elke tijdreeks van de looptijden de spreiding van de looptijden vóór 1987 veel groter is (standaardafwijking van ongeveer 6 min, looptijd Vlissingen-Hansweert) dan de looptijden vanaf 1987 (standaardafwijking van ongeveer 1 min).

Tabel 5-4: De toe- of afname van de jaargemiddelde looptijd hoogwater. (n.s. = niet significant (95%))

<table>
<thead>
<tr>
<th>Bekken</th>
<th>Naam meetstation</th>
<th>Periode</th>
<th>Helling jaargemiddelde looptijd HW t.o.v. Vlissingen</th>
<th>Helling jaargemiddelde looptijd LW t.o.v. Vlissingen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[-]</td>
<td>[-]</td>
<td>[jaar] [min/eeuw]</td>
<td>[min/eeuw]</td>
</tr>
<tr>
<td>Schelde</td>
<td>Terneuzen</td>
<td>1882-2009</td>
<td>-17.2 [-9.4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hansweert</td>
<td>1882-2009</td>
<td>-17.5 [-15.5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bath</td>
<td>1957-2009</td>
<td>-19.1 [-32.1]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liefkenshoek</td>
<td>1980-2009</td>
<td>23.9 [-20.8]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antwerpen</td>
<td>1971-2009</td>
<td>n.s. [-40.0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schelle</td>
<td>1971-2009</td>
<td>-25.4 [-52.6]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tielrode</td>
<td>1981-2009</td>
<td>-0.3 [-32.5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dendermonde</td>
<td>1971-2009</td>
<td>-39.5 [-77.5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schoonaarde</td>
<td>1981-2009</td>
<td>n.s. [-54.9]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melle</td>
<td>1971-2009</td>
<td>-71.2 [-126.8]</td>
<td></td>
</tr>
<tr>
<td>Rupel-Nete</td>
<td>Walem</td>
<td>1981-2009</td>
<td>3.1 [-49.6]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duffel-Sluis</td>
<td>1981-2009</td>
<td>9.8 [-40.3]</td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>Waasmunsterbrug</td>
<td>1981-2009</td>
<td>6.9 [379.6]</td>
<td></td>
</tr>
</tbody>
</table>
Figuur 5-33: Looptijd van het hoogwater vanaf Vlissingen (boven) en tussen de opeenvolgende stations (onder).
Figuur 5-34: Looptijd van het laagwater vanaf Vlissingen (boven) en tussen de opeenvolgende stations (onder).

Figuur 5-36: Looptijd van laag- (links) en hoogwater (rechts) tussen Vlissingen en Hansweert. Lowess venster 20 jaar.

Figuur 5-37: Looptijd van laag- (links) en hoogwater (rechts) tussen Vlissingen en Hansweert. Lowess venster 20 jaar.

Zeeschelde
De tijdreeksen voor de stations langs de Zeeschelde zijn veel korter dan deze voor de stations op de Westerschelde. De gemiddelde verandering van de looptijd zal dus minder betrouwbaar zijn op lange tijdschaal. Er kan enkel gekeken worden naar de laatste decennia (vanaf 1971 of 1981). Bij de trendanalyse over deze periode wordt een deel van de variabiliteit door een 18,6-jarige cyclus verklaard; echter door de korte tijdreeks is dit weinig betrouwbaar. De gemiddelde helling wordt weergegeven in Tabel 5-4.
Zowel de looptijden van Vlissingen tot de verschillende stations, als tussen de opeenvolgende stations, worden afgebeeld in Figuur 5-33 en Figuur 5-34.

Uit een trendanalyse over de volledige tijdreeksen volgt dat langs de Zeeschelde, van Liefkenshoek tot Melle, de afname van de jaargemiddelde looptijd van het laagwater afneemt van -20 min/eeuw te Liefkenshoek tot -127 min/eeuw te Melle (Tabel 5-4). Dit stemt overeen met de beschrijving hierboven. Enkel te Tielrode en Schoonaarde wordt deze afnemende trend doorbroken. Dit betekent dat de voortplanting laagwater gemiddeld genomen meer versnelt in opwaartse richting. Voor de voortplanting van het hoogwater is dergelijke evolutie minder duidelijk af te leiden uit de lineaire trends.

5.3.1.4 INTERPRETATIE EN EVALUATIE

Westerschelde

Uit de analyse van de looptijd van het getij blijkt dat dit in de 20e eeuw is afgenomen met ongeveer 20 minuten. De grootste veranderingen doen zich voor tussen Vlissingen en Terneuzen, en tussen Hansweert en Bath. De laatste decennia lijkt de jaarlijks gemiddelde looptijd wel gelijk te blijven.

Uit het verloop van de jaargemiddelde looptijden in de tijdreeks bleek dat een grotere spreiding van de waarden optreedt vóór 1987 dan erna. Kuipers & Lesinski (2012) hadden dit ook al opgemerkt en de verklaring is dat vóór 1987 de waterstand maar om de 1 à 3 uur werd opgemeten. Dit betekent dat er een vrij grote fout zit op het tijdstip van het gemeten hoog-/laagwater in vergelijking met de grootteorde van de looptijden. Dit zou meteen ook de oorzaak kunnen zijn dat er geen duidelijke correlatie bestaat tussen de voortplantingstijden en diepte van de geul.

Zeeschelde

Door de beperkte lengte van de tijdreeksen is het moeilijk lange-termijn wijzigingen vast te stellen. In Plancke et al. (2012) worden voortplantingstijden vanaf 1900 weergegeven voor Liefkenshoek, Antwerpen en Schelle ten opzichte van Vlissingen; zij het met grote hiaten. Deze data wijzen op een vrij sterke daling van de looptijd, zowel voor hoog- als laagwater.
De duidelijke afname van de looptijd tussen Bath en Liefkenshoek (1987) kan opnieuw een gevolg zijn van de verhoging van de samplefrequentie sinds 1987. Een andere mogelijkheid is de aanleg van de Berendrechtssluis en Europaterminal waarbij een verlaging van de bodemruwheid een versnelling van de getijgolf als gevolg had.

5.3.1.5 Evaluatie

De jaargemiddelde looptijd van het hoogwater en het laagwater wordt vooral gekenmerkt door een sterke daling in de 20e eeuw in de Westerschelde (ongeveer 20 min). De laatste twee decennia echter zijn de looptijden relatief stabiel gebleven. In de Zeeschelde kan geen uitspraak gedaan worden over een mogelijke trendbreuk in de jaren '70-'80 omdat de data maar beschikbaar zijn vanaf de jaren '70. Uit een andere studie bleek echter dat een gelijkvloedige daling zich ook in de Zeeschelde heeft voorgedaan (Plancke et al., 2012). Vanaf de jaren '70-'80 is ook in de Zeeschelde de looptijd relatief constant gebleven.

Er kon geen duidelijke oorzaak geïdentificeerd worden van de daling van het loopgetij, al kan de toename van de waterdiepte een mogelijkheid zijn. Er zit echter te veel spreiding op de looptijden voor 1987 (ten gevolge van een grotere sample-frequentie van 1 à 3 uur) wat mogelijk de reden is waarom een correlatie tussen de looptijd en de waterdiepte niet werd gevonden.

5.4 Verklarenden Parameters

5.4.1 Hydraulische Randvoorwaarden

De hydraulische randvoorwaarden zijn eveneens verklarende parameters binnen de communicatie-indicator Dynamiek Waterbeweging. Er wordt verwezen naar §4.4.1 (astronomisch getij), §4.4.2 (bovenafvoer) en §4.4.3 (meteorologie).

5.4.2 Bathymetrie en Geometrie

De bathymetrie en geometrie zijn eveneens verklarende parameters binnen de communicatie-indicator Dynamiek Waterbeweging. Er wordt verwezen naar §4.4.4.

5.4.3 Sedimenteigenschappen

De sedimenteigenschappen zoals de korrelgrootteverdeling en de fracties zand en slib zijn van belang voor de rekenparameter onderhoudsballigvervolvement. Het onderhoudsvolume in de vaargeul en in de havens wordt behalve door de lokale hydrodynamiek en de bodemligging ook bepaald door de eigenschappen van het sediment.

5.4.3.1 VMM Monsternames

Als basis voor de analyse van het sediment werd gebruik gemaakt van de monsternames en bijhorende laboratoriumanalyses op de minerale fractie die de VMM sinds 1989 uitvoert op de Westerschelde en de Beneden-Zeeschelde. Er zijn niet alle jaren monsternames gebeurd en de data is ook niet voor elk jaar in ieder punt beschikbaar. De beschikbare informatie beperkte zich tot een classificatie in klei, silt en zand. De eerste categorie betreft korrels met een diameter < 2 μm, de tweede tussen 2 μm en 63 μm en de laatste korrels met een diameter > 63 μm. Voor bepaalde jaren, bv. 1989, werden silt en zand in één categorie.
ondergebracht, de verdeling van beide binnen het totaal is niet geweten. Slib, zoals de term in dit rapport gebruikt wordt, is het geheel van de klei- en siltfractie of alle deeltjes met een diameter < 63 μm.

In de digitale bijlage worden alle resultaten gevisualiseerd in kaarten met per meetpunkt een schijfdiagram voor de verdeling van de verschillende grondsoorten. Rood = klei, groen = silt, zand = geel en geel-groene arcering = silt/zand. Eveneens in de digitale bijlage wordt dezelfde informatie gegeven als een tijdreeks per meetpunkt.

Hieronder worden de resultaten besproken per Macroel voor de Westerschelde en per OMES-vak voor de Beneden-Zeeschelde. De belangrijkste figuren zoals aangehaald in de conclusies worden in het hoofdstuk zelf eveneens weergegeven.

Figuur 5-38: Meetpunten in de Westerschelde
Westerschelde

Voor de Westerschelde liggen de punten MT01 tot en met MT04 nog stroomafwaarts van MC1. Deze punten in de monding (Wielingen) bevatten over de laatste jaren een significante hoeveelheid klei en slib die kan oplopen tot boven de 50%. Voor 2002 en 2003 is de onderverdeling silt-zand niet gemaakt. Er kan dus geen uitspraak over het gehalte van één van beide grondsoorten gedaan worden.

Enkel MT05 en MT06 nabij de drempel van Vlissingen liggen in MC1. Zij zijn erg zanderig en bevatten maximaal 5% specie kleiner dan 63µm (zandfractie > 95%). Ook hier is er voor 2002 en 2003 geen duidelijkheid over de onderverdeling silt-zand, al laat de trend in deze meetpunten vermoeden dat de specie ook voor deze jaren bijna volledig zanderig is.

MT07 tot en met MT10 aan Borssèle en Terneuzen bevinden zich in MC3. Ook deze cel bevat amper silt of klei: buiten MT07 in 1999 en MT08 in 2004 stijgt het percentage nooit boven de 20% (zandfractie < 80%). Cf. ook Figuur 5-39 tot en met Figuur 5-42 in de conclusie.

In MC4 zijn de meetpunten MT11 en MT12 gelegen. Zij liggen aan de Overloop van Hansweert en bevatten nagenoeg enkel zand: nooit minder dan 94%.

MT13 tot en met MT19 (Drempel van Hansweert, Walsroden en Valkenisse) liggen in MC5. Ook hier is nauwelijks silt of klei terug te vinden met gezamenlijke percentages die steeds onder de 7% (zandfractie > 93%) blijven.

MC6 bevat de meetpunten MT20 tot en met MT22 te Valkenisse en het nauw van Bath. Buiten de jaren 1999 en 2000 waarbij er hoeveelheden fijne deeltjes van meer dan 10% (zandfractie < 90%) opgemeten werden, blijft ook hier de Westerschelde nagenoeg volledig uit zand bestaan.

MT23, MT24 en MT25 aan de drempel en het vaarwater van Bath bevinden zich in MC7. Ook hier geen zandfracties onder de 92%.

Conclusie

Bijna alle meetpunten in de Westerschelde tonen aan dat er hoofdzakelijk zand aanwezig is. Enkel voor de punten in de monding en in beperkte mate op de drempel van Borssèle zijn er hoeveelheden klei en silt terug te vinden. Een mogelijke oorzaak hiervan is terug te vinden in de stortingen van specie afkomstig van de havens in de Westerschelde (cf. §5.2.3.3). De statistiek toont eveneens dat er geen grote temporele veranderingen voorkomen. Als voorbeeld worden de tijdsreeksen uit MC3 (MT07 tot en met MT10) hieronder weergegeven.

![MT-07](image-url)
Figuur 5-39: Korrelverdeling van het sediment ter hoogte van MT07 (Drempel van Borssele - groene kant) sinds 1989

Figuur 5-40: Korrelverdeling van het sediment ter hoogte van MT08 (Drempel van Borssele - rode kant) sinds 1989

Figuur 5-41: Korrelverdeling van het sediment ter hoogte van MT09 (Pas van Terneuzen) sinds 1997

Figuur 5-42: Korrelverdeling van het sediment ter hoogte van MT10 (Terneuzen) sinds 1989
Figuur 5-403: Meetpunten in de Zeeschelde
Beneden-Zeeschelde

MT26 tot en met MT37 (buiten MT35 en MT36 dat in OME510 ligt) liggen allen in OME59. De drempel van Zandvliet (MT26 en MT27) bevat een gedeeltelijke fijne materie met percentages die oplopen tot boven de 40%. De laatste jaren is er echter een vrij constant niveau van 10 à 15% silt en klei. De Plaat van Doel en de Schaar van Ouden Doel (MT28-MT30) bevatten een fijne fractie die rond de 20% of minder schommelt. Enkel in 2004 en voor MT30 in 2005 zijn er waardes boven de 30% gemeten. In de toegangsgeulen voor de Zandvliet- en de Berendrechtssluis en in de respectievelijke dokken (MT31-MT34) wordt er amper zand gevonden; gemiddeld slechts 17%. Voor de verhouding silt/klei is er een vrij evenredige verdeling. De drempel van Frederik (oostelijke kant) (MT37) heeft na de 2e verruiming 1997-1998 een duidelijke stijging naar 30 à 40% silt en klei die nadien terugvalt en de laatste jaren terug rond de 10% ligt (cf. ook Figuur 5-44 in de conclusie).

De drempel van Frederik (westelijke kant) (MT36) ligt in het OME510-vak en vertoont dezelfde evolutie als de groene kant: een stijging naar 40% na de tweede verruiming en een constant niveau van ± 10% over de laatste jaren. MT38-MT40 zijn in het Deurganckdok genomen, respectievelijk in de ingang, het midden en achteraan. Tussen 2006 en 2009 werden enkel de ingang en het midden bemonsterd. De ingang van het dok heeft gemiddeld nog bijna 38% zand, in het midden is dit al gedaald tot gemiddeld 16%. Het overige materiaal bestaat ongeveer evenveel uit silt als uit klei, met een licht overwicht van de siltige fractie (cf. ook Figuur 5-46 in de conclusie). Op de drempel van Lillo (MI41 en MI42) vindt men de laatste 20 jaar een gemiddelde zandfractie van 82% terug (cf. ook Figuur 5-45 in de conclusie).

In OME511 liggen MT43-MT45, gelegen in de toegangsgeul tot de Kallosluis. Hier ligt de zandfractie zeer laag (gemiddeld < 13%), de siltfractie overheerst met gemiddeld 47%. Er zijn de laatste jaren geen grote trendbreuken opgetreden (cf. ook Figuur 5-48 in de conclusie). Op de plaat en de drempel van de Parel (MT46 en MT47) is opnieuw bijna enkel zand terug te vinden (gemiddeld bijna 87%). In de toegangsgeul tot en met de dokken zelf van de Boudewijn- en de Van Caewelaertsluis (MT48-MT51) zijn vooral klei en silt bemonsterd met een gemiddeld gezamenlijk percentage van 77%. In de toegangsgeulen neemt de laatste jaren de zandfractie lichtjes toe, in de dokken is ze constant of neemt ze af (cf. ook Figuur 5-49 in de conclusie). MT53 en MT54 werden gekozen aan de drempel van Krankeloon. Deze bevatt min of meer enkel zand met een fractie van gemiddeld 95%. Aan het Punt van Melasele (MT55) was de rivierbodem hoofdzakelijk zanderig, maar de laatste twee jaar is er een abrupte stijging tot bijna 50% fijne fractie opgetreden. MT57 en MT58 liggen op de plaat van Boomke. Het afwaartse gedeelte (MT57) bevatt een fijne fractie die sinds begin 2000 gestegen is van ± 10% naar ± 30% in 2009. Het opwaartse gedeelte (MT58) is volledig zanderig met een fractie van gemiddeld 96% over de laatste jaren. MT59 is het enige meetpunt in OME512 en ligt ter hoogte van Oosterweel. De specie kent hier een nogal wisselende samenstelling met zandfracties tussen de 36% en 86%.

Vlak langs de grens tussen OME513 en OME514 liggen de meetpunten MT61 en MT62. Zij liggen in de vaargeul ter hoogte van de zeesluis te Wintam. De bodem is hier opnieuw erg zanderig met een gemiddelde zandfractie van 94% over de laatste jaren.

MT63 ligt in de toegangsgeul tot de zeesluis. Dit is het vak OME514. De fracties klei, silt en zand zijn hier min of meer evenredig verdeeld (een iets grotere hoeveelheid silt).

Conclusie

Zoals verwacht bevat de Beneden-Zeeschelde veel meer klei en silt dan de Westerschelde. Enkele waarnemingen die in het oog springen:
- De drempel van Zandvliet, Frederik en Lillo ondervinden een sterke stijging in het silt- en kleigehalte na de 2e verruiming in 1997-1998 tot percentages rond de 30 à 40% die in de jaren nadien terugvalt om de laatsten jaren constant te blijven op een niveau van ± 10% (cf. Figuur 5-44 en Figuur 5-45). Deze stijging is eveneens terug te zien in de baggervolumes slib op de Beneden-Zeeschelde dewelke na de 2e verruiming fors omhoog gaan (cf. Figuur 5-19).
- In het Deurgankdock zijn de drie grondsoorten terug te vinden met minder zand dieper in het dok. De siltige fractie overheerst licht (cf. Figuur 5-46 en Figuur 5-47).
- In de toegangsgueuln tot de sluizen is zeer veel klei en silt terug te vinden (zandfracties voornamelijk lager dan 30%, cf. Figuur 5-48 en Figuur 5-49).

![Diagram MT-37](image)

Figuur 5-44: Korrelverdeling van het sediment ter hoogte van MT37 (Drempel van Frederik - rode kant) sinds 1989

![Diagram MT-41](image)

Figuur 5-45: Korrelverdeling van het sediment ter hoogte van MT41 (Drempel van Lillo - groene kant) sinds 1989
Figuur 5-46: Korelverdeling van het sediment ter hoogte van MT38 (Deurganckdok - ingang) sinds 2006

Figuur 5-47: Korelverdeling van het sediment ter hoogte van MT39 (Deurganckdok - midden) sinds 2006

Figuur 5-48: Korelverdeling van het sediment ter hoogte van MT43 (toegangsgeul Kallosluis - opwaarts) sinds 1991
5.4.3.2 **LITHOLOGISCHE KAART**

Op basis van 4 lithologische kaarten van de Beneden-Zeeschelde wordt de bodemsamenstelling geanalyseerd tussen 1964 en 2010. Voor de Boven-Zeeschelde is dit soort informatie niet beschikbaar.

In de literatuur zijn vergelijkingen van de kaartsets beschikbaar. Otter (1996) maakt een vergelijking maakt van de kaarten van 1964, 1989 en 1993:

Tussen 1964 en 1986 neemt de oppervlakte zand sterk toe (105 ha), terwijl het slib aan het oppervlak afneemt (-113 ha). De eenheid ‘zand + sib’ is sterk verlegd, maar in oppervlakte niet veranderd. De veranderingen kunnen het gevolg zijn van de aanleg van de stok- en leidam waardoor de geul verlegd is en erosie van de slibaanse gebieden is opgetreden. Daarentegen zijn sluistoeangangsgeulen aangelegd waar slib makkelijk sedimenteert. De afname van sib (-113 ha) is het gevolg van deze geulen niet mee te nemen in de berekening. Tussen 1986 en 1993 is het oppervlak slib opnieuw sterk toegenomen (118 ha). De sibaanrijkingsgebieden liggen vooral in het noorden van de Zeeschelde bij de sluizen. Er wordt ook opgemerkt dat seizoensvariaties een grote impact op de sibhoeveelheden hebben. Door de opmaak van de drie kaarten van ’64, ’89 en ’93 doorheen de seizoenen en getijdenperiodes kunnen conclusies vertekend zijn. (Otter, 1996)

Tussen de grens en Lillo (Figuur 5-50)

Tussen Lillo en Boomke (Figuur 5-51)

Tussen Boomke en Royerssluis (Figuur 5-52)
- In 1999 komt een harde bodem voor in de vaargeul, terwijl ze in 2010 eerder op de oevres voorkomt. In 1986 wordt ook een harde bodem waargenomen. In 1964 wordt dit ook deels als los slib gecatalogeerd.
- Ook de harde bodem in de buitenbocht in 1999 aan de Royerssluis is in 2010 aangeduid als ‘slib+zand’ wat kan wijzen op een verhoogde sedimentatie in dit gebied.
- De zone ‘slib+zand’ aan de Plaat van Boomke is in 2010 ook als harde bodem aangeduid wegens het voorkomen van veel schelpennatraal.
- In de geul naast de plaat van Boomke komt wat los slib voor in 2010.
- Aan de Royersssluis zelf wordt los slib waargenomen (vanaf 1986).

Tussen Royerssluis en Burcht (Figuur 5-52)
- In 1964 wordt vooral klei en slib vermeld. In 1986 is dit nog steeds zo, terwijl zandige zones van de binnenbochten beter in kaart gebracht zijn.
- In 2010 blijken de buitenbochten bijna volledig uit harde bodem te bestaan, terwijl op de kaart van 1999 dit niet het geval is. Dit kan wijzen op een toegenomen erosie.
- Op de kaart van 2010 is een smalle zone in de vaargeul waar los slib wordt aangeduid. Dit is niet het geval in 1999. Vermoedelijk komt dit slib voor in de dalen tussen de zandduinen, aangrenzend in de binnenbocht.

Tussen Burcht en Rupelmonding (Figuur 5-53)
- Er is uitsluitend een kaart voor 2010 beschikbaar.
- De buitenbochten (in het noorden richting Antwerpen, in het zuiden richting Rupelmonding), alsook het rechte deel langsheen Hemiksem en Schelle, wordt aangeduid als vast slib of klei.
- De binnenbochten vertonen een meer zandig karakter, al dan niet met slib.

5.4.4 MORFOLOGISCHE DYNAMIEK

De morfologische dynamiek wordt uitgewerkt onder de communicatie-indicator Plaat- en Geulsysteem (Hoofdstuk 6).

5.5 EVALUATIE T2009 BEVAARBAARHEID

Een evaluatie volgens de criteria uit de methodiek, zijn op de huidige gegevens nog niet mogelijk omdat ze een referentiepunt vormen voor toekomstige evaluaties. Er kan wel een oordeel gevoeld worden over het al dan niet positief of gewenst zijn van waargenomen trends. Dit wordt hieronder grafisch voorgesteld door middel van annotatie van de piramide horende bij de communicatie-indicator.

Aangezien een evaluatie niet mogelijk is, worden parameters nog niet ingekleurd. De tekens “+” of “−” geven een evolutie van de parameter aan: een “+” geeft aan dat er een positieve evolutie is, met andere woorden dat het systeem gunstig evolueert in de richting van het criterium voor een positieve evaluatie. De dalende trend voor een parameter kan bijvoorbeeld een gunstige trend zijn en krijgt dan een “−”.

Op vlak van Bevaarbare Diepte is de toename van de gemiddelde hoogwaters een positieve evolutie: de bevaarbare diepte neemt er door toe. Echter, voor de Boven-Zeeschelde geldt wel dat het voorkomen van bruggen naast een bevaarbare diepte ook een doorvaarhoogte oplegt. In die zin is een toename van de hoogwaters ongewenst, maar omdat dit aspect niet in de methodiek wordt beschouwd, krijgt de toename van de hoogwaters dus een positieve evaluatie. De afname van de laagwaters op de Zeeschelde is een negatieve evolutie: de bevaarbare diepte neemt af (indien de bodemligging gelijk blijft). Op de Westerschelde is de evolutie nog positief: de laagwaters nemen licht toe.
De onderhoudsbaggervolumes blijken de laatste jaren op de Beneden-Zeeschelde toe te nemen. Dit leidt tot een negatieve evaluatie van deze rekenparameter. Op de Westerschelde wordt een dergelijke stijging echter niet waargenomen.

De looptijden van zowel hoog- als laagwater zijn reeds geruime tijd aan het afnemen, wat een ongewenste evolutie is. De laatste twee decennia lijken de looptijden eerder gelijk te blijven, maar de relatief grote spreiding op de resultaten verhindert dit significant te noemen. Op deelsegmenten langs de estuair blijkt de variatie in looptijd ook uiteen te lopen: op sommige delen neemt de looptijd toe, op andere af. De negatieve beoordeling volgt dan ook eerder vanuit de lange-termijnsevolutie dan de evolutie tijdens de twee laatste decennia.

5.6 ALGEMENE INTERPRETATIE BEVAARBAARHEID

Ingrepen in het Schelde-estuair zijn hoofdzakelijk ingegeven vanuit de verbetering van de toegankelijkheid van de havens in het estuairium.

De evolutie van de getijslag (en andere getijenmerken) in het estuairium, met name de sterke toename ervan vanaf Bath opwaarts is een fenomeen dat de nodige aandacht verdient omdat het vanuit het standpunt van veiligheid, bevaarbaarheid en ecologie ongewenst is. De toename van de getijslag blijkt echter voor een groot stuk een gevolg te zijn van ingrepen die tot doel hadden de bevaarbaarheid te bevorderen. De ontwikkeling van de laagwaterstanden in de Boven-Zeeschelde in het bijzonder neemt opmerkelijke proporties aan.

De toename van de baggervolumes in de Zeeschelde maakt deel uit van een feedback cyclus: baggeren creëert accommodatie wat (her)sedimentatie kan bevorderen en zo de baggerinspanning doet stijgen.

De vraag kan gesteld worden op welke manier deze ontwikkelingen omgebogen of gestopt kunnen worden. Zoals de historische beleidskeuzes en hieraan gerelateerde ingrepen in het verleden voor een deel bepaald hebben hoe het estuairium er op heden uit ziet, kan verondersteld worden dat de beleidskeuzes van vandaag en morgen mee zullen bepalen in welke richting de morfologische, ecologische en hydrodynamische parameters, en hieraan gekoppeld de bevaarbaarheid, van het systeem zullen evolueren.
Plaat-geulsysteem

De indicator Plaat- en geulsysteem is een onderdeel van de functie Natuurlijkheid. De indicator is onderverdeeld in drie toetsparameters (morfodynamiek van drie systemen in het Schelde-estuarium): (1) de monding, (2) het meergeulsysteem en (3) het enkelgeulsysteem.

(1) De monding heeft zijn open karakter behouden. Wel is het sedimentdelende systeem in de monding de afgelopen honderd jaar veranderd door het verdiepen en op diepte houden van de Wielingen (zuidelijke hoofdgeul die naar de Westerschelde voert). De uitwisseling van sediment tussen monding en de Westerschelde is hierdoor waarschijnlijk niet veranderd.

De toetsparameter meergeulsysteem (2) is uitgewerkt in drie tijd- en ruimteschalen: (a) grootschalige dynamiek, (b) macroschaal dynamiek, (c) mesoschaal dynamiek.

(a) Grootschalige dynamiek heeft betrekking op de vorm van het meergeulsysteem. De vorm van de oostelijke helft van het meergeulsysteem (Macrocellen 5, 6 en 7) is sterk veranderd, vooral doordat de gemiddelde diepte van de geulen fors is toegenomen.

(b) Macroschaal dynamiek heeft in het meergeulsysteem betrekking op de dimensies van de individuele grote geulen. Deze dimensies zijn in de oostelijke helft van de Westerschelde in de Macrocellen 5,6 en 7 sterk veranderd. De belangrijkste oorzaak hiervoor is de doorgaande onttrekking van sediment aan de hoofdgeul (door het daar te baggeren en elders te storten). Zandwinning heeft een bijdrage geleverd aan het netto onttrekken van zand aan deze Macrocellen.

In Macrocel 4 is de wisseling van de rol van het Middelgat van hoofd- naar nevengeul en de rol van de Overloop van Hansweert van nevengeul- naar hoofdgeul bepalend voor de ontwikkeling van de geulen. In het westen van het meergeulsysteem zijn de absolute verandering van de sedimentinhoud vergelijkbaar met de verandering in het oosten, maar zijn de relatieve veranderingen veel kleiner. De sedimenttransportcapaciteit is in het voorliggende rapport niet beschouwd, aangezien de wijze van berekenen nog moet worden vastgesteld.

(c) Mesoschaal dynamiek heeft voor het meergeulsysteem betrekking op de aanwezigheid en de dynamiek van kortsluitgeulen. Kortsluitgeulen die door de platen lopen zijn nog op vier plaatsen aanwezig en dit is veel minder dan in het verleden het geval was. De resterende kortsluitgeulen in de platen verplaatsen nog steeds en de omvang ervan verandert niet structureel.

Drempelgeulen zijn nog op de twee drempels aanwezig: in Macrocel 1 rond de Schaar van de Spijkerplaat en op de grens van Macrocellen 3 en 4, tussen de Everingen en het Middelgat. Drempelgeulen op de drempels in de hoofdgeulen en op andere overgangen van hoofd- naar nevengeul (bijvoorbeeld bij de Schaar van Valkenisse) zijn tegenwoordig alleen nog in rudimentaire vorm aanwezig.

Beoordeling van de ontwikkelingen in het meergeulsysteem per Macrocel leveren voor de oostelijke Macrocellen 5,6 en 7 een negatieve beoordeling van de morfologische diversiteit, zowel door de ontwikkeling van de geulen als van
platen en kortsutgeulen. In Macrocel 4 wordt de ontwikkeling van de platen, waarvan de hoogte is toegenomen en het aantal is afgenomen, negatief beoordeeld. De ontwikkelingen in de Macrocellen 1 en 3 en in Mesocel 2 worden als overwegend neutraal beoordeeld.

In het enkelgeulsysteem (3) is weinig veranderd aan de meandering. De veranderingen hierin hebben zich voorgedaan in periode voor 1910, voorafgaand aan de waarnemingenperiode.

6.1 INLEIDING

In figuur 6.1 is de communicatie-indicator Plaat-en geulsysteem weergegeven, zoals deze is opgenomen in de Evaluatiemethodiek Schelde-estuarium (Holzhauer e.a., 2011). In dit hoofdstuk worden van de parameters waarvan de gegevens beschikbaar zijn de ontwikkelingen vanaf 1955 tot en met het jaar 2009 weergegeven. De ruimtelijke indeling die bij deze communicatie-indicator gebruikt wordt, is die van de monding (zie waarts van de lijn Vlissingen Breskens), het plaat- en meergeulensysteem van de Westerschelde en het enkelgeul systeem van Zeeschelde.

![Figuur 6.1: Weergave Communicatie indicator Plaat- en geulsysteem en onderliggen de toets-, reken- en verklarende parameters (uit Holzhauer e.a, 2011).](image-url)

Bij de Communicatie-indicator Plaat- en geulsysteem gaat het om de fysieke systeemkenmerken van het Schelde-estuarium zoals benoemd in het streefbeeld in de langetermijnvisie 2030:

“De instandhouding van de fysieke systeemkenmerken van het estuarium is uitgangspunt van beheer en beleid”.
Met specifiek:
"Een open en natuurlijk mondingsgebied, een systeem van hoofd- en nevengeulen met tussenliggende platen en ondiepwatergebieden in de Westerschelde en een riviersysteem met meanderend karakter in de Zeeschelde. Daarnaast treft men een grote diversiteit aan van schorren, slikken en platen in zout, brak en zoet gebied, gecombineerd met natuurvriendelijke oevers."

De fysische systeemkenmerken worden gekenmerkt door de patronen en processen in de tijd (dynamiek) en de ruimte (gradiënten). Voor elk van de toetsparameters resulteert dit in de volgende tijd- en ruimteschalen:
1. Grootschalige dynamiek: De dimensies en hydro- en morfodynamische processen op de schaal van het gehele estuarium;
2. Macroschaal dynamiek: De dimensies en hydro- en morfodynamische processen van de toetsparameters van individuele grote gulelen;

Voor het meergeulssyseem en het enkelgeulssysteem resulteert dit in een set rekenparameters voor elk van de drie tijd- en ruimteschalen. Voor de monding bestaat de rekenparameter uit een kwalitatieve toets op de vraag of er nog steeds sprake is van een open karakter.

6.2 MONDING

6.2.1 REKENPARAMETER OPEN KARAKTER

6.2.1.1 INLEIDING

Conform de evaluatiemethodiek wordt een kwalitatief oordeel over het open karakter van de monding gegeven. De beoordeling vindt plaats op basis van een overzicht van ingrepen in de monding en op basis van de gemeten bodemligging.

Voor de kwalitatieve toets op het open karakter wordt gekeken of:
- Sprake is van een verandering in weidshheid en openheid van het gebied;
- De rol als overgangsgebied tussen Noordzee en Westerschelde wordt belemmerd;
- Geen ingrepen zijn uitgevoerd die de natuurlijke morfologie van het mondingsgebied aantasten.

6.2.1.2 GEBRUIKTE DATA

Voor de monding is gebruik gemaakt van reeds gerapporteerde ontwikkelingen en ingrepen. De waargenomen ontwikkelingen in het mondinggebied van de Westerschelde zijn onder ander beschreven Cleveringa (2008), in samenhang met de morfologische veranderingen op de Voordelta. Een overzicht van de belangrijke morfologische veranderingen is weergegeven in figuur 6.3. Een goed overzicht van de staat van kennis van het mondinggebied kan worden gevonden in de VLIZ Special Publication 35 Studiedag De Vlakte van de Raan van onder het stof gehaald (Coosen e.a., 2006).

6.2.1.3 ANALYSE

In het mondingsgebied, of in de directe nabijheid daarvan hebben voor 2009 verschillende ingrepen plaatsgevonden die de morfologie van het gebied hebben veranderd, zoals het verdiepen van de
Wielingen, de aanwezigheid van de stormvloedkering in de monding van de Oosterschelde, de verlenging van de havendammen bij Zeebrugge, het storten van baggerspecie in verschillende vakken en het aanbrengen van zandsuppleties in verschillende kustvakken. Figuur 6.2 is het overzicht van de bagger, stort- en suppletie volumes in het mondinggebied, zoals deze door Haecon in de sedimentbalans voor de monding zijn gehanteerd. Verder zijn de waargenomen veranderingen in de morfologie het gevolg van natuurlijke sedimentatie- en erosieprocessen.

Figure 6.2: Ingrepen in het mondingsgebied (uit Haecon, 2006)

Ten opzichte van de historische situatie heeft het baggeren van de Wielingen en het storten van de baggerspecie (ook uit de haven van Zeebrugge) ten noorden en ten zuiden van de vaargeul geleid tot een toegenomen omvang van de Wielingen met een gefixeerde positie. Deze verandering heeft zich voorgedaan over de lange periode (meer dan 100 jaar) dat in deze vaargeul is gebaggerd. De baggerinspanningen die zijn gericht op de instandhouding van de Wielingen hebben er waarschijnlijk voor gezorgd de uitwisseling van sediment “over” deze geul niet meer plaatsvindt (Cleveringa, 2008). De morfologie aan de zuidzijde van de monding in combinatie met het beheer van de vaarweg betekent dat de zuidelijk helft van de monding tot en met de Wielingen effectief is losgesneden van het sedimentdelend systeem ten noorden daarvan (met inbegrip van de Vlakte van de Raan, Cleveringa, 2008). In deze zin is geen sprake van een natuurlijke morfologie van het mondingsgebied.

De reguliere inspanningen voor de kustlijnzorg, in de vorm van het aanbrengen van zandsuppleties, op het strand en op de geulwand hebben de zandvolumes in het mondinggebied vergroot (als het zand vanaf de Noordzee is aangevoerd), maar de uitwisselingsprocessen en de daadwerkelijke uitwisseling van sediment niet gewijzigd.

6.2.1.4 INTERPRETATIE & EVALUATIE

De openheid en weidseheid van de monding van de Westerschelde zijn niet gewijzigd, er zijn geen projecten in het monding gebied uitgevoerd die hieraan iets gewijzigd hebben.
Figuur 6.3: Overzicht van de persistente ontwikkelingen in de monding van de Westerschelde en op de Voordelta (gebieden met voornamelijk erosie blauw, en gebieden met voornamelijk erosie zijn rood, ongeacht de omvang in meters van de sedimentatie en erosie).

6.3 MEERGEULSYSTEEM

6.3.1 INLEIDING

Onder de toetsparameter Meergeulsysteem hangen verschillende rekenparameters. De evaluatie van de ontwikkeling van deze rekenparameters gebeurt per macrocel voor de verschillende rekenparameters tezamen. De beoordelingssystematiek is meegegeven in de Evaluatiemethodiek (Holzhauer, 2011). De evaluatie is opgenomen in de laatste paragraaf van dit hoofdstuk.

6.3.2 GEBRUIKTE GEGEVENS

Bij de analyse van de morfologische ontwikkeling is gebruik gemaakt van de digitaal beschikbare bodemligginggegevens van de Westerschelde van 1955 tot 2010 (vaklodingen) en van de daarop
gebaseerde Zandbalans van Rijkswaterstaat. In de Zandbalans van Rijkswaterstaat zijn ook de gegevens over het baggeren en storten opgenomen. Een overzicht van de beschikbare vaklodingen tot 2004 en eventuele problemen met de gegevens is opgenomen in Marijs & Parée (2004).

6.3.3 REKENPARAMETER GROOTSCHALIGE DYNAMIEK

6.3.3.1 INLEIDING

De globale dimensies van platen en geulen betreffen de breedte, diepte, lengte en sedimentverdeling van de Macroel. Figuur 6.4 is een kaart met de Macrocellen die is gehanteerd bij de analyse van de grootschalige dynamiek. De verklarende parameter voor de ontwikkeling is enerzijds de sedimentbalans (per Macroel) en anderzijds de hervordering van het sediment over platen, slikken en ondiepwater. De verhouding tussen het wateroppervlak op hoogwater en laagwater (rs) karakteriseert het (relatieve) areaal intergetijdegebied van de bochtgroepen van de Westerschelde. De breedte-diepe verhouding van een bochtgroep ten opzichte van gemiddeld zeeniveau wordt uitgedrukt in de parameter β. Deze rekenparameter is gerapporteerd in Toffolon en Crosato (2007). Voor deze rekenparameters zijn geen grenswaarden gegeven, het gaat om het waarnemen van de trend per Macroel. Omdat de Macrocellen waarvoor de ontwikkelingen in de voorliggende studie zijn bepaald anders zijn dan de grenzen die door Toffolon en Crosato (2007) zijn gebruikt, verschillen de waarden voor rs en β. De trend wordt beschouwd als indicator voor de grootschalige dynamiek, zodat de verschillen met Toffolon en Crosato (2007) geen probleem opleveren voor de evaluatie.

6.3.3.2 ANALYSE

In figuur 6.4 tot en met figuur 6.7 zijn de waarden voor de jaren 1955, 1996 en 2010 weergegeven voor de verschillende Macrocellen (in één grafiek waarin alle Macrocellen worden gecombineerd zijn de ontwikkelingen niet te achterhalen). Omdat het de ontwikkeling van de trechtervorm van het estuarium op de grootste schaal betreft worden Macroel 1 en mesocel 2 samen beschouwd, conform de aanpak van Toffolon en Crosato (2007). Duidelijk zichtbaar is dat de verhouding breedte en diepte voor de Macrocellen in het westen (1&2 en 3) slechts weinig is verandert en ook de verhouding (rs) is slechts beperkt gewijzigd. In beide Macrocellen zijn de waarden voor de verhouding breedte en diepte (β) lager geworden in de recente opname (1996 en 2010) ten opzichte van de oude opname (1955), doordat de geulen gemiddeld iets dieper zijn geworden. De breedte van de Macrocellen is namelijk niet gewijzigd.

In Macrocellen 3 en 4 (figuur 6.5 en 6.6) en 6 en 7 (figuur 6.7) verschillen de waarden voor 1955 sterk van die van 1996. Ook tussen de waarden van 1996 en 2010 is sprake van een verschuiving. De verschuiving, betreft voor Macrocel 4 voornamelijk een verandering van de verhouding in het intergetijdegebied (r). In Macrocel 5 en 6 blijkt vooral sprake van een verandering in de verhouding tussen breedte en diepte (β), als gevolg van het dieper worden van het geulssysteem. In Macrocel 7 veranderen beide parameters van waarde.

6.3.3.3 **INTERPRETATIE**

De waarden voor de parameters r en β zijn voor de gehele Westerschelde door de veranderingen in het oostelijke deel dichter bij elkaar komen te liggen. Dit is goed te illustreren met de hypsometrische curves van de Macrocellen, waarin van diep naar ondiep het cumulatieve oppervlakte is weergegeven. Om een onderlinge vergelijking van de Macrocellen mogelijk te maken zijn de cumulatieve oppervlaktes genormaliseerd (weergegeven als een percentage van de totale oppervlakte van de Macrocel). Figuur 6.8 laat de hypsometrische curves uit 1955 zijn, waarbij de vorm en de maximale diepte per Macrocel duidelijk verschilt. Van west (Macrocel 1&2) naar oost (Macrocel 7) neemt de maximale diepte (het snijpunt met de linkeraf) af en zijn de hellingen flauwer. In figuur 6.9 zijn de hypsometrische curves voor 2010 weergegeven. De onderlinge verschillen tussen de curves zijn kleiner geworden, zodanig dat een deel van de curves overlapt. Vergelijking van de curves uit 2010 (in figuur 6.9) met die van 1955 (in figuur 6.8) laat zien dat de curve van Macroel 1&2 een vergelijkbare vorm en diepte heeft. De curves van de andere Macrocellen liggen in 2010 beduidend dieper.

De conclusie over de grootschalige dynamiek is dan ook dat de geometrie van het meergeulssysteem uniformer is geworden. De beoordeling van de ontwikkelingen heeft betrekking op de parameters r en β,
waarbij in de evaluatiemethodiek is opgenomen dat “een verandering in de plaat- en geuldimensies via een structurele trend van afname van (i) de verhouding oppervlakte op hoog- en laagwater en/of (ii) de breedte-diepteverhouding van een bochtgroep” binnen de cascade van de samenhangende ontwikkelingen als ongunstig wordt beoordeeld. Deze beoordeling is opgenomen aan het einde van het hoofdstuk, omdat hierin de gehele cascade wordt beschouwd. In tabel 6.1 is een overzicht opgenomen van de veranderingen in de parameters \(r \) en \(\beta \) en de onderliggende veranderingen in arealen, diepte en breedte.

Tabel 6.1: Samenvatting van de ontwikkeling van de macroschaal dynamiek parameters en de onderliggende waarden.

<table>
<thead>
<tr>
<th>Verhouding intergetijd-gebied (r)</th>
<th>Waterop-</th>
<th>Waterop-</th>
<th>Breedte-</th>
<th>Gemiddelde breedte</th>
<th>Gemiddelde diepte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oppervlakte bij hoogwater (S_{hw})</td>
<td>oppervlakte bij laagwater (S_{lw})</td>
<td>diepte (\beta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1&2</td>
<td>Toename</td>
<td>Niet gewijzigd</td>
<td>Afname</td>
<td>Afname</td>
<td>Toename</td>
</tr>
<tr>
<td>MC 3</td>
<td>Afname</td>
<td>Niet gewijzigd</td>
<td>Toename</td>
<td>Afname</td>
<td>Afname</td>
</tr>
<tr>
<td>MC 4</td>
<td>Toename</td>
<td>Niet gewijzigd</td>
<td>Afname</td>
<td>Toename</td>
<td>Afname</td>
</tr>
<tr>
<td>MC 5</td>
<td>Toename</td>
<td>Niet gewijzigd</td>
<td>Afname</td>
<td>Afname</td>
<td>Toename</td>
</tr>
<tr>
<td>MC 6</td>
<td>Afname</td>
<td>Afname</td>
<td>Toename</td>
<td>Afname</td>
<td>Afname</td>
</tr>
<tr>
<td>MC 7</td>
<td>Afname</td>
<td>Niet gewijzigd</td>
<td>Toename</td>
<td>Afname</td>
<td>Afname</td>
</tr>
</tbody>
</table>

Figuur 6.8: Genormaliseerde hypsometrische curves uit 1955 van de Macrocellen in de Westerschelde met op de x-as de cumulatieve oppervlakte per diepte klasse/ totale oppervlakte en op de y-as de diepteklasse.
Inleiding

De eb- en vloedgeulen vormen de bochtgroepen, samen met de tussenliggende platen en de drempelgebieden. Deze bochtgroepen komen overeen met de Macrocellen, de ruimtelijke schaal die bij de evaluatie van deze parameter wordt gehanteerd (figuur 6-10). De dynamiek van de eb- en vloed geulen, individueel en als geulenpaar, beïnvloeden de dynamiek van kortsluitgeulen en intergetijdegebieden. In deze geulen vindt het merendeel van de bagger- en stortactiviteiten plaats. Voor de evaluatie van de morfologische dynamiek van de grote eb- en vloedgeul moet worden vastgesteld of de guldimensies veranderen en welke invloed baggeren en/of storten hierop hebben.

Figuur 6.9: Genormaliseerde hypsometrische curves uit 2010 van de Macrocellen in de Westerschelde

6.3.4 REKENPARAMETER MACROSCHAAL DYNAMIEK - VOLUME EN DIMENSIES GEULEN

6.3.4.1 INLEIDING
De gehanteerde indeling in Macrocellen is weergegeven in figuur 6-10. In deze figuur staan ook de gehanteerde rekenvakken van de Rijkswaterstaat zandbalans, zoals die gehanteerd zijn bij het bepalen van de volumeontwikkelingen van de hoofd- en de nevengeulen.

De indicator voor sedimentvolume van de geulen wordt gegeven door ΔV_{tot}. Hiervoor is in Holzhaeuer e.a. (2011) de definitie gegeven:

$$\Delta V_{tot} = \frac{V_{water,t1} - V_{water,t2}}{AV_t}$$

De parameter V_{tot} wordt beschouwd in relatie tot het netto ingreep volume AV_t, dat is de optelsom van het baggeren, storten, zandwinning en andere onttrekkingen. Het verschil tussen de ΔV_{tot} en AV_t wordt aangeduid als de ‘natuurlijke ontwikkeling’ ΔV_{net}.

De waarden voor de ΔV_{tot}, AV_t en ΔV_{net} zijn bepaald op basis van de Rijkswaterstaat Zandbalans. De gevraagde wijze van weergeven maakt het moeilijk om in een oogopslag te zien welke ontwikkelingen plaatsvinden in de Macrocellen en welke rol de netto ingrepen hierin spelen. Vandaar dat ook de ‘traditionele’ cumulatieve grafieken zijn opgenomen. Bedenk wel dat alleen de V_{tot} in deze grafieken een meetbare verandering is, de cumulatieve V_t en V_{net} zijn niet tastbaar of meetbaar, maar wel bruikbaar voor de beeldvorming. Om de gevolgen van de veranderingen in beeld te krijgen zijn de ontwikkeling van de gemiddelde diepte (hierboven) en het watervolume duidelijker.

6.3.4.2 ANALYSE

Een eerste indruk van de macroschaal dynamiek is de ontwikkeling van de gemiddelde diepte per Macrocel. Op basis van de gemeten zandvolumes is per Macrocel de ontwikkeling van de gemiddelde diepte onder NAP – 2m bepaald en deze zijn weergegeven in figuur 6-11. De ontwikkeling van Mesoceel 2 is niet in deze grafiek opgenomen, omdat het gebied een autonome sedimentatie doormaakt. Verderop in deze paragraaf zal deze ontwikkeling worden besproken.

![Figuur 6-11: Grafiek met per Macrocel de ontwikkeling van de gemiddelde waterdiepte (delen dieper dan NAP -2 m).](image-url)
In de grafiek in figuur 6-11 is zichtbaar dat in 1955 de cellen van west naar oost dieper werden. De afname van de gemiddelde diepte in Macrocel 5 heeft ertoe geleid dat deze vrijwel direct na 1955 gemiddeld ondieper is geworden dan Macrocel 6. In de grafiek is duidelijk zichtbaar dat de Macrocellen in het oosten, nummers 5, 6 en 7 de grootste veranderingen hebben ondergaan. De gemiddelde diepte in Macrocel 6 is met meer dan drie meter toegenomen en in Macrocel 7 bedraagt de toename meer dan 2 m. Macrocellen 3 en 4 vertonen na een beperkt toename van de diepte een kleine afname. Macrocel 1 vertoont een relatief beperkte toename van de gemiddelde diepte.

De waarden voor de ΔV_{tot}, ΔV_i en ΔV_{net} zijn op basis van de Rijkswaterstaat Zandbalans per macrocel weergegeven in de onderste delen van de figuur 6-12 tot en met figuur 6-18. Deze grafieken worden sterk gedomineerd door de enorme verspringende waarden, die met name hun oorsprong hebben in ΔV_{tot}. De grote verschillen zijn waarschijnlijk niet alleen werkelijke verschillen in de bodemligging, maar ook problemen met de gegevens onder andere door het gebruik van verschillende inwin en verwerkingsmethodes en door incidentele fouten in de metingen (zie bijvoorbeeld Van den Berg e.a. 1991, Storm e.a., 1993, Marijs en Parée, 2004).

Macrocel 1

Het gemeten sedimentvolume in Macrocel 1 neemt af. De verandering van het gemeten volume verspringt voor Macrocel 1 rond de nul. De ingrepen zijn tot de jaren '80 overwegend negatief, door het winnen van zand. Na de jaren '80 zijn ze overwegend positief, doordat sediment uit de oostelijk gelegen cellen hier wordt gestort.
Figuur 6-12: Boven: Grafiek met cumulatieve volumeverandering voor Macroel 1 \(V_{tot} \), het netto ingreep volume \(V_i \) en het verschil hiertussen \(V_{net} \). Onder: Grafiek met jaarlijkse waargenomen volume verandering voor Macroel 1 \(AV_{tot} \), het netto ingreep volume \(AV_i \) en het verschil hiertussen \(AV_{net} \).

Mesocel 2, zoals getoond in figuur 6-13, laat overwegend een toename van het waargenomen sedimentvolume zien. Dit komt overeen met de bekende trend van opvulling van het Vaarwater van Hoofdplaat. De beperkte onttrekkingen die hebben plaatsgevonden moduleren dit beeld slechts beperkt.
Figuur 6-13: Boven: Grafiek met cumulatieve volumeverandering voor Mesocel 2 V_{tot}, het netto ingreep volume V_i en het verschil hiertussen V_{net}. Onder: Grafiek met jaarlijkse waargenomen volume verandering voor Mesocel 2 ΔV_{tot}, het netto ingreep volume ΔV_i en het verschil hiertussen ΔV_{net}.

Figuur 6-14 laat de onderste grafiek de jaarlijkse waarden voor Macroel 3 zien, die overwegend schommelen rond de nul. Halverwege de jaren negentig zijn de netto ingrepen voornamelijk positief geworden, als gevolg van het storten van specie vanuit de oostelijk cellen (Macroellen 5, 6 en 7) in het westen. Het cumulatieve effect van de veranderingen is zichtbaar in de bovenste grafiek. Het waargenomen sedimentvolume in Macroel 3 neemt overwegend af sinds 1955, zodat het totale
sedimentvolume tegenwoordig 40×10^6 m3 lager is. De afname verloopt niet geleidelijk; er zijn ook perioden met een toename en met relatief stabiele volumes.

![Graph showing volume changes for Macrocel 3 and Macrocel 4](image)

Figuur 6-14: Boven: Grafiek met cumulatieve volumeverandering voor Macrocel 3 V_{tot}, het netto ingreep volume V_i en het verschil hiertussen V_{net}; Onder: Grafiek met jaarlijkse waargenomen volume verandering voor Macrocel 3 ΔV_{tot}, het netto ingreep volume ΔV_i en het verschil hiertussen ΔV_{net}.

In de onderste grafiek in figuur 6-15 zijn de jaarlijkse volumeveranderingen voor Macrocel 4 weergegeven. De netto ingrepen zijn tot halverwege de jaren '70 klein en overwegend negatief, maar veranderen daarna in groot en overwegend positief. In de cumulatieve grafiek is de trendbreuk naar een netto aanvoer van
sediment zeer duidelijk. De waargenomen ontwikkeling van het sedimentvolume laat een periode van vooral toename zien tot halverwege de jaren '80, gevolgd door een periode waarin het volume beperkt afneemt. Vanwege de complexe ontwikkeling in deze Macrocel, waarbij in periode van waarneming een wisseling van de rollen van eb- en vloedgeul heeft plaatsgevonden die grote consequenties heeft gehad voor de ontwikkeling van de sedimentvolumes van respectievelijk het Middelgat en de Overloop van Hansweert, is de verandering van de inhoud van de gehele Macrocel minder geschikt om te beschouwen dan de ontwikkelingen van de afzonderlijke hoofd- en nevengeul. Verderop in dit hoofdstuk wordt hier nader op ingegaan.

In Macrocel 5, waarvan de verandering in de sedimentvolumes is getoond in figuur 6-16 heeft het waargenomen sedimentvolume een geleidelijke ontwikkeling doorgemaakt van overwegend positief naar overwegend negatief. In de cumulatieve weergave is dit zichtbaar in de gestage afname van het sedimentvolume van het begin van jaren '70 tot het begin van de jaren '80. Na 2004 is sprake van een heel kleinere afname van de waargenomen sedimentvolumes. De netto ingrepen zijn verschoven van overwegend positief tot in de jaren '90 naar overwegend negatief. De cumulatieve netto aanvoer tot de jaren '90 bedroeg ruim 20×10^6 m3, daarna is 55×10^6 m3 netto afgevoerd uit Macrocel 5.

Figuur 6-17 laat de veranderingen in Macrocel 6 zien, met een overwegend negatief ontwikkeling van het waargenomen sedimentvolume en vrijwel altijd netto onttrekkingen. In Macrocel 7 is het beeld vergelijkbaar (figuur 6-18), in de cumulatieve grafieken is bij beide Macrocellen dan ook sprake van een gestage afname van het gemeten sedimentvolume, in combinatie met een gestage toename van het onttrokken sedimentvolume.
Figuur 6-15: Boven: Grafiek met cumulatieve volumeverandering voor Macrocel 4 V_{tot}, het netto ingreep volume V_i en het verschil hiertussen V_{net}; Onder: Grafiek met jaarlijkse waargenomen volume verandering voor Macrocel 4 ΔV_{tot}, het netto ingreep volume ΔV_i en het verschil hiertussen ΔV_{net}.
Figuur 6-16: Boven: Grafiek met cumulatieve volumeverandering voor Macrol 5 V_{tot}, het netto ingreep volume V_i en het verschil hiertussen V_{net}; Onder: Grafiek met jaarlijkse waargenomen volumeverandering voor Macrol 5 ΔV_{tot}, het netto ingreep volume ΔV_i en het verschil hiertussen ΔV_{net}.
Figuur 6-17: Boven: Grafiek met cumulatieve volumeverandering voor Macroel 6 V_{tot}, het netto ingreep volume V_i en het verschil hiertussen V_{net}; Onder: Grafiek met jaarlijkse waargenomen volume verandering voor Macroel 6 ΔV_{tot}, het netto ingreep volume ΔV_i en het verschil hiertussen ΔV_{net}.
Figuur 6-18: Boven: Grafiek met cumulatieve volumeverandering voor Macrocel 7 V_{tot}, het netto ingreep volume V_i en het verschil hiertussen V_{net}; Onder: Grafiek met jaarlijkse waargenomen volume verandering voor Macrocel 7 ΔV_{tot}, het netto ingreep volume ΔV_i en het verschil hiertussen ΔV_{net}.
6.3.4.3 INTERPRETATIE EN TRENDS IN HET LICHT VAN DE KWALITEIT VAN DE WAARNEMINGEN

In de figuren 6.12 tot 6.18 zijn geen trends aangegeven en de gebruikte gegevens zijn, in tegenstelling tot de metingen aan de waterstanden in de voorgaande hoofdstukken, niet gebruikt voor het uitvoeren van trendanalyses. De belangrijkste reden om geen trendanalyses uit te voeren is dat op voorhand niet duidelijk is welke analysemethode toepasbaar is op de gebruikte gegevens. Bij de gegevens in de zandbalans is voor de periode tot 1996 in ieder geval sprake van onderlinge afhankelijkheid van de waarden van de verschillende jaren. Tot 1986 werden de oostelijke en de westelijke helft van de Westerschelde om het jaar gemeten en tot 1996 werd de westelijke helft om het jaar en de oostelijk helft ieder jaar gemeten. Tot 1996 is voor het ontbrekende gebied de waarde via lineaire interpolatie bepaald (zie bijvoorbeeld Uit den Bogaard, 1995) en hiermee is een onderlinge afhankelijkheid van de meetpunten geïntroduceerd. De mate van afhankelijkheid van de bodemligginggegevens verschilt dus per periode. Het zonder meer toepassen van een regressie-analyse is vanwege de mate van afhankelijkheid van de gegevens niet mogelijk. In Duin (2005) zijn bijvoorbeeld trends bepaald voor de ontwikkeling van het sedimentvolume van de Nederlandse kust en getijwateren met de niet-parametrische trendmethode van Mann-Kendall. In het rapport van Duin (2005) wordt ook verwezen naar andere analysemethoden en discussies hierover.

Verder verschilt de nauwkeurigheid van de metingen in de tijd, waarbij wordt gereferereerd aan de nauwkeurigheid van de gehele bodemligging en niet aan de individuele x, y en z bepalingen. Een overzicht van de betrouwbaarheid van de gegevens is opgenomen in het rapport “Grootschalige sedimentbalans van de Westerschelde” (LTV V&T-rapport G-2, Consortium Deltares-IMDC-Svasek-Arcadis, 2013). In het LTV V&T-rapport worden bandbreedtes voorgesteld die gehanteerd kunnen worden voor de verschillende periodes waarin de metingen zijn verzameld.

Uit het LTV V&T-rapport zijn twee grafieken overgenomen waarin alleen de werkelijk gemeten bodems zijn opgenomen en de bandbreedte rond de gegeven is aangegeven. Wat in deze twee grafieken van belang is, is het verschil in de omvang van de foutenbalk ten opzichte van de waar genomen veranderingen. In de westelijke helft van de Westerschelde zijn de foutenbalken groot ten opzichte van de veranderingen en in de oostelijke helft zijn deze klein. Het verschil in omvang van de foutenbalk is terug te voeren op de omvang van de oostelijke en de westelijke helft. Het vertrouwen in de waar genomen ontwikkelingen is groter voor recente ontwikkelingen en is groter voor de oostelijke helft dan voor de westelijke helft. De geleidelijke veranderingen en trendbreuken in de grafieken met de ontwikkelingen van de sedimentvolumes zijn om de bovengenoemde redenen niet statistisch geanalyseerd.
Figuur 6-19: Twee grafieken met de cumulatieve weergave van het sedimentvolume van de oostelijke helft (boven) en de westelijke helft (onder) van de Westerschelde en de cumulatieve (netto) ingrepen in het gebied (uit LTV V&T-rapport G-2, Consortium Deltares-IMDC-Svasek-ARCADIS, 2013).
6.3.5 Rekenparameter Macroschaal Dynamiek - Veranderingen in Volume Hoofd- en Nevengeul

6.3.5.1 INLEIDING

De eb- en vloedgeul vormen samen met de tussenliggende platen de Macrocellen (figuur 6-5). De dynamiek van de eb- en vloedgeul, individueel en als geulenpaar, beïnvloeden de dynamiek van kortsluitgeulen en intergetijdegebieden. Voor de evaluatie van de morfologische dynamiek van de eb- en vloedgeul wordt per macrocel de ontwikkeling van de geuldimensies getoond.

6.3.5.2 ANALYSE EN INTERPRETATIE

In de grafiek waarin Macrocel 1 en Mesocel 2 zijn gecombineerd (figuur 6-20) is zichtbaar dat in Mesocel 2 een vrijwel constante toename van het sedimentvolume in de geul plaatsvindt. In de hoofdgeul in Macrocel 1 ligt het volume na een beperkte toename aan het begin van de jaren '80 weer op het oorspronkelijk niveau. In de nevengeul in Macrocel 1 heeft tot halverwege de jaren '90 een afname van het sedimentvolume plaatsgevonden, gevolgd door een stabilisatie.

![Graph showing sediment volume changes](image-url)

Figuur 6-20: Sedimentvolume in de hoofd- en nevengeul en de totale geul (onder NAP – 2 m) ten opzichte van 1955 voor Macrocel 1 en Mesocel 2 (Rijkswaterstaat zandbalans).
In Macroel 3 is het sedimentvolume van zowel de hoofd- als de nevengeul afgenomen tot rond halverwege de jaren '90 (figuur 6-21). Daarna is het volume min of meer stabiel.

De ontwikkeling van het sedimentvolume van de hoofd- en de nevengeul in Macroel 4 wordt bepaald door de rolwisseling die het Middelgat (van hoofd- naar nevengeul) en de Overloop van Hansweert (van neven- naar hoofdgeul) hebben doorgemaakt. Figuur 6 laat zien dat het sedimentvolume van de nevengeul toeneemt, terwijl het sedimentvolume van de hoofdgeul is afgenomen. Voor de Macroel als geheel overheers de sedimentatie in de geulen.

Figuur 6-21 Sedimentvolume in de hoofd- en nevengeul en de totale geul (onder NAP – 2 m) ten opzichte van 1955 voor Macroel 3 (bron Rijkswaterstaat zandbalans).
MACROCEL 4

Figuur 6-22: Sedimentvolume in de hoofdgeul Overloop van Hansweert en nevengeul Middelgat en de totale geul (onder NAP – 2 m) ten opzichte van 1955 voor Macroel 4 (Rijkswaterstaat zandbalans).

Macroel 5 laat vanaf de jaren ’70 een gestage afname van het sedimentvolume zien (figuur 6-21). Deze afname van het sedimentvolume heeft voornamelijk plaatsgevonden in de hoofdgeul, waar de afname bijna 5×10^6 m3 bedraagt.

De afname van het sedimentvolume in de hoofdgeul van Macroel 6 domineert in die Macroel de afname van het sedimentvolume (figuur 6-22). In Macroel 6 neemt het volume van de nevengeul ook gestaag af sinds ongeveer de jaren ’80.

De afname in zowel hoofd- als nevengeul is nog meer uitgesproken in Macroel 7 (figuur 6-23).
Figuur 6-23: Sedimentvolume in de hoofd- en nevengeul en de totale geul (onder NAP – 2 m) ten opzichte van 1955 voor Macrocél 5 (Rijkswaterstaat zandbalans).

Figuur 6-24: Sedimentvolume in de hoofd- en nevengeul en de totale geul (onder NAP – 2 m) ten opzichte van 1955 voor Macrocél 6 (Rijkswaterstaat zandbalans).
6.3.6 REKENPARAMETER BRUTO SEDIMENTTRANSPORTCAPACITEIT

De (bruto) sedimenttransportcapaciteit wordt gebruikt bij het bepalen van de capaciteit van de hoofd- en de nevengeul om sediment in te storten. De maximale capaciteit van een geul systeem in evenwicht (geen verandering) bedraagt 5-10% van de bruto sedimenttransportcapaciteit, afhankelijk van waar er gestort en gebaggerd wordt. In een van ‘van nature’ eroderende geul is de werkelijke capaciteit groter, terwijl die in een ‘van nature’ sedimentermende geul juist kleiner is (voor richtlijnen zie Jeuken en Wang, 2010).

Vanwege het ontbreken van waarden voor de periode waarover de voorliggende beschouwing plaatsvindt, wordt deze parameter voornamelijk achterwege gelaten.
6.3.7 REKENPARAMETER MESOSCHAAL DYNAMIEK - KORTSLUITGEUELEN

6.3.7.1 INLEIDING

Kortsluitgeulen vormen verbindingen tussen de vloed- en de ebgeul, die zijn aangegeven in figuur 6-26. In de voorliggende rapportage worden twee soorten kortsluitgeulen onderscheiden, de kortsluitgeulen die door de plaatcomplexen lopen en de drempelgeulen. De drempelgeulen zijn de vertakkingen van de eb- en vloed geulen die uitlopen in ondieptes, de drempels. In de huidige Westerschelde is het drempelcomplex met de meest uitgesproken kortsluitgeulen de overgang tussen de Everingen en de Overloop van Hansweert/het Middelgat (D2 in figuur 6-27). Het andere gebied waar uitgesproken drempelgeulen aanwezig zijn is de omgeving van de Schaar van de Spijkerplaat (D1 in figuur 6-28). In de uitloop van de Schaar van Valkenisse (X1 in figuur 6-28; eerder in het gebied van de Geul Zimmerman) was tot halverwege de jaren ‘90 sprake van dynamiek van drempelgeulen. Tegenwoordig loopt de nevengeul hier met een kleine drempel over in de hoofdgeul zonder dat er sprake van drempelgeuldynamiek.

Figuur 6-26: Schematisatie van het meergeulensysteem (gebaseerd op Van Veen 1950 en Jeuken, 2000) met in lichtblauw de kortsluitgeulen (figuur 3-1 uit de evaluatiemethodiek, Holzhauer e.a., 2011).

Figuur 6-27: Overzichtskaart met de kortsluitgeulen door de platen (K), de drempelgeulen (D). De gebieden bij X worden in de tekst nader toegelicht.
6.3.7.2 **KORTSLUITGEULEN DOOR DE PLATEN**

De kortsluitgeulen rond de Lage Springer verbinden het Vaarwater langs Paulinaschot met de Pas van Terneuzen. Figuur 6-28 is een dwarsdoorsnede van de kortsluitgeul ten noordwesten van de Lage Springer en figuur 6-29 is een dwarsdoorsnede van de kortsluitgeul ten zuidoosten van de Lage Springer. Beide dwarsdoorsnedes tonen een verplaatsing van de kortsluitgeulen naar het noordwesten. In de grafiek daaronder (figuur 6-30) is de ontwikkeling van de doorstroomoppervlakte van de beide geulen getoond, waarbij zichtbaar is dat het doorstroomoppervlakte van de geul aan de noordwestzijde sterk is afgenomen en omgekeerd de omvang van andere kortsluitgeul is toegenomen. Samen lijkt sprake te zijn van een kleine afname van het doorstroomoppervlakte.

![Dwarsdoorsnede k3 (op x-as: afstand in m vanaf nulpunt)](image)

Figuur 6-28: Dwarsdoorsnede k3 door de kortsluitgeul ten noordwesten van de Lage Springer (K3a in figuur 6 27).
Figuur 6-29: Dwarsdoorsnede k3 door de kortsluitgeul ten zuidoosten van de Lage Springer (K3b in figuur 6 27).

Figuur 6-30: Ontwikkeling van de doorstromoppervlaktes onder NAP -2m van de kortsluitgeulen rond de Lage Springer (K3a en K3b in figuur 6 27).

Figuur 6-31 laat de dwarsdoorsnede k6 zien, door de Zuid Everingen, tussen de hoofdgeulen Everingen en de Pas van Terneuzen. De kortsluitgeul Everingen verplaatst naar het westen en de omvang ervan neemt licht af (figuur 6-32).
Figuur 6-31: Dwarsdoorsnede k6 door de kortsluitgeul Zuid Everingen (K6 in figuur 6.27).

Figuur 6-32: Ontwikkeling van de doorstroomoppervlakte onder NAP -2m van de Zuid Everingen (K6 in figuur 6.27).

In figuur 6-33 zijn de dwarsdoorsnedes getoond van de (kortsluit)geul van de Molenplaat, die tussen het Middelgat en de Overloop van Hansweert ligt. Deze kortsluitgeul vertoont een rotatie met de klok mee. De dwarsdoorsnede loopt door de zuidwestelijke helft van de geul en daar uit de rotatie zich als een migratie naar het zuidwesten. De omvang van de geul neemt de afgelopen jaren beperkt toe (figuur 6-34).
Van het oorspronkelijke grote aantal kortsluitgeulen resteren de vier hierboven beschreven kortsluitgeulen. De getoonde kortsluitgeulen zullen naar verwachting niet op korte termijn (jaren) verdwijnen als de ontwikkelingen zich met een zelfde tempo voortzetten.

6.3.7.3 DREMPELGEULEN

De ontwikkeling van de drempelgeulen is lastig te vatten in doorsneden of grafieken, omdat de patroonveranderingen van enkele naar meervoudige scharen betekenen dat de vormveranderingen zeer

Figuur 6-35: Schematische weergave van Macrocel 3 (A) en de twee kenmerkende patronen van de eb- en vloedscharen op de drempel van de Everingen (B en C), uit Jeuken (2000).
Figuur 6-36: Kaart van de drempel van de Everingen met de ligging van de drempelgeulen in de periode 1992-2010 (alleen de oneven jaren zijn getoond ter willen van de overzichtelijkheid).

Ook bij de Schaar van de Spijkerplaat is sprake van een doorgaande dynamiek van de drempelgeulen, met inbegrip van de vorming en afbraak van zandbanken. Op andere locaties in de Westerschelde waar in het verleden sprake was van dynamiek van kortsuitgeulen is dat de afgelopen jaren niet meer zo, zoals bij de Schaar van de Noord. In de bodemligging is nog wel enige variatie zichtbaar in de aanwezigheid van ondieptes en schaartjes, maar deze bereiken niet de omvang die ze in het verleden hadden.

6.3.7.4 INTERPRETATIE

Over de kortsuitgeulen is vastgesteld dat nog vier kortsuitgeulen door de platen resteren en twee drempelgebieden waar de dynamische drempelgeulen worden aangetroffen. De kortsuitgeulen worden tegenwoordig aangetroffen in de Macrocellen 1, 2, 3 en 4. Verder oostelijk is geen sprake meer van kortsuitgeulen. Ten opzichte van vroeger is dit een duidelijk andere situatie, zodat geconstateerd wordt dat de morfodynamiek op deze mesoschaal in het meergeulensysteem duidelijk is veranderd.

6.3.8 EVALUATIE MEERGEULENSTELSEL

De evaluatie heeft betrekking op het kwalificeren van de ontwikkelingen op de schaal van de totale bochtgroep. De evaluatie en beoordeling van de morfologische natuurlijkheid van het meergeulensysteem geeft antwoord op de volgende vragen:
1. In hoeverre blijven de globale configuratie en aanwezigheid van karakteristieke morfologische elementen en hun gedrag op het niveau van de bochtgroepen behouden?
2. Hoe veranderen de rekparameter en hoe hangen deze veranderingen met elkaar samen?
3. Wat betekent dit voor de morfologische diversiteit van de bochtgroepen in het meergeulensysteem: neemt deze toe, af of blijft dit gelijk?

Hieronder zijn per Macroceld de aspecten benoemd die leidend zijn voor de beoordeling van de morfologische dynamiek. Hiervoor is de template gehanteerd uit de Evaluatiemethodiek (figuur 3-7 in Holzhauer, 2011). In de template van de evaluatiemethodiek wordt niet expliciet gebruikgemaakt van de kantelindex (de verhouding tussen de diepte van de hoofd en de nevengeul), maar de ontwikkeling van de hoofd- en nevengeul worden wel tegenover elkaar geplaatst per macrocel, zodat de relatieve ontwikkeling van de hoofd- en nevengeul en daarmee het behoud van het meergeulensysteem wel wordt beoordeeld. Het is dan ook niet noodzakelijk om de kantelindex als eigenstandige parameter te vermelden.

In de beoordelingssystematiek zit een zekere mate van subjectiviteit, bijvoorbeeld als het gaat om de ontwikkelingen van het sedimentvolume in relatie tot het baggeren (en zandwinnen) en storten. Geopgegd is om de keuzes zo goed mogelijk te onderbouwen, zodat de afwegingen voor toekomstige evaluaties zo inzichtelijk mogelijk zijn.

Verder is het goed om toe te lichten dat de gekozen terminologie (Natuurlijke Sedimentatie, Natuurlijke Erosie) geenszins betekent dat er geen achterliggende oorzaken voor de erosie of sedimentatie zijn die samenhangen met menselijke ingrepen (zoals het baggeren en storten elders in het estuarium, maar ook inpolderingen en de aanleg van harde structuren). Het is eigenlijk de veronderstelde autonome trend waarover wordt gesproken. Een van de belangrijke autonome ontwikkelingen in de Westerschelde is bijvoorbeeld de rolwisseling van de hoofd- en nevengeul in macrocel 4. Hiervan is niet met zekerheid vast te vast te stellen of deze ontwikkeling niet mede tot stand is gekomen dankzij of onder invloed van

* In de evaluatie methodiek wordt gesproken over de morfologische natuurlijkheid. Omdat woorden als ‘natuurlijkheid’ en ‘autonoom’ discussie oproepen, bijvoorbeeld over de invloed van historische veranderingen in de begrenzing (bedijking, aanleg harde ‘ophangpunten’), zijn deze zo veel mogelijk buiten de evaluatie van plaat-geul gelaten.
menselijke ingrepen, zoals het baggeren op de Drempel van Hansweert. Desondanks beschouwen we in de onderstaande template de ontwikkelingen van het Middelgat als Natuurlijke Sedimentatie en die in de Overloop van Hansweert als Natuurlijke Erosie.

6.3.8.1 **MACROCEL 1**

Bochtgroep als geheel

Op de schaal van de bochtgroep en in combinatie met Mesocel 2 heeft zich een kleine verschuiving voorgedaan in de macroschaal dynamiek, die in vergelijking met de andere bochtgroepen als heel beperkt wordt beschouwd.

| MC 1: Kwalificatie dynamiek morfologische dimensies |
|-------------------------------|--------------------------------|
| Verhouding intergetijd-gebied | Breedte-diepte verhouding |
| |
| X Toename | Afname | Afname | Afname | Afname |
| | | | | |

Het sedimentvolume van Macrocel 1 is afgenomen (erosie). Deze ontwikkeling past bij waarnemingen over de lange termijn ontwikkeling van de westelijke helft van de Westerschelde (bijvoorbeeld de Looff en Bakker, 1977), waarin is vastgesteld dat dit gebied al gedurende een eeuw steeds ruimer is geworden. Hoewel hier een groot sedimentvolume mee is gemoeid, is de relatieve verruiming klein, omdat het gebied van Macrocel 1 groot is.

<table>
<thead>
<tr>
<th>MC 1: Ontwikkeling zandbalans dynamiek</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>Natuurlijke Erosie (NE, NEB, NES)</td>
</tr>
<tr>
<td>Natuurlijke Sedimentatie (NS, NSS, NSB)</td>
</tr>
<tr>
<td>Erosie grotendeels bepaald door Baggeren (EB)</td>
</tr>
<tr>
<td>Sedimentatie grotendeels bepaald door Storten (SS)</td>
</tr>
<tr>
<td>Geen wezenlijke Verandering (GV, GVB, GVS)</td>
</tr>
</tbody>
</table>

Macroschaal dynamiek: Hoofd en nevengeul

De hoofdgeul in Macrocel 1 heeft een omvang die niet veel is veranderd, ondanks het storten van (havens) baggerspecie en het beperkte baggerwerk. De nevengeul is in omvang toegenomen tot ongeveer eind jaren '90 (1) en daarna is een periode van stabilisatie opgetreden (2). Omdat deze overgang samenhangt met de periode waarin meer sediment is gestort, hangt deze stabilisatie mogelijk samen met de stortingen.

<table>
<thead>
<tr>
<th>Hoofd-/Ebgeul</th>
<th>MC 1: Kwalificatie morfologische dynamiek</th>
<th>Neven-/Vloedgeul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natuurlijke tendens tot erosie versterkt door baggeren (NEB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot erosie verzwaakt door storten (NES)</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie verzwaakt door baggeren (NSB)</td>
<td></td>
</tr>
</tbody>
</table>
Hoofd-/Ebgeul - MC 1: Kwalificatie morfologische dynamiek

<table>
<thead>
<tr>
<th>Hoofd-/Ebgeul</th>
<th>Neven-/Vloedgeul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuurlijke tendens tot sedimentatie versterkt door storten (NSS)</td>
<td></td>
</tr>
<tr>
<td>Erosie grotendeels bepaald door baggeren (EB)</td>
<td></td>
</tr>
<tr>
<td>Sedimentatie grotendeels bepaald door storten (SS)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Geen verandering ondanks storten (GVS)</td>
</tr>
<tr>
<td>X</td>
<td>Geen verandering ondanks baggeren (GVB)</td>
</tr>
<tr>
<td>X</td>
<td>Geen verandering en geen directe ingrepen (GV)</td>
</tr>
</tbody>
</table>

Meso-schaal dynamiek: kortsluitgeulen

In het gebied rond de Schaar van Spijkerplaat is sprake van dynamiek op en rond de drempel. Deze dynamiek lijkt op een zelfde manier door te gaan als de afgelopen halve eeuw. Kortsluitgeulen door de Hooge plaat zijn al meer dan een halve eeuw afwezig.

<table>
<thead>
<tr>
<th>MC 1: Kortsluitgeulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanwezigheid kortsluitgeulen door de platen</td>
</tr>
<tr>
<td>Migratie kortsluitgeulen door de platen</td>
</tr>
<tr>
<td>Omvang kortsluitgeulen door de platen</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

De beoordeling als geheel van Macroel 1 is dat de morfologische diversiteit gelijk blijft. De ontwikkeling van de Hooge plaat, die steeds verder in hoogte toeneemt en waar tegenwoordig permanent een groot areaal aan schor aanwezig is, wordt beschouwd bij Leefomgeving. Deze vanuit leefomgeving minder gewenste ontwikkeling, die ook betekent dat de morfologische dynamiek van de plaat afneemt, is ten opzichte van het behoud van de morfologische dynamiek op de andere schalen beperkt.

6.3.8.2 MESOCHEL 2

Bochtgroep als geheel

De macroschaaldynamiek is onderdeel van Macroel 1. Het sedimentvolume van Mesocel 2 is constant toegenomen (sedimentatie trend sinds ongeveer 1860). Deze ontwikkeling is onderdeel van de afname van het belang van het Vaarwater als geul die op een lange termijn van eeuwen plaatsvindt.

<table>
<thead>
<tr>
<th>MC 2: Ontwikkeling zandbalans dynamiek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuurlijke Erosie (NE, NEB, NES)</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
MC 2: Ontwikkeling zandbalans dynamiek

- Sedimentatie grotendeels bepaald door Storten (SS)
- Geen wezenlijke Verandering (GV, GVB, GVS)

Macroschaal dynamiek : Hoofd en nevengeul

De geul in Mesocel 2 vertoont een constante neiging tot sedimentatie, dit is de bepalende ontwikkeling in Mesocel 2.

<table>
<thead>
<tr>
<th>Hoofd-/Ebbegeul</th>
<th>MC 2: Kwalificatie morfologische dynamiek</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Natuurlijke tendens tot sedimentatie</td>
</tr>
</tbody>
</table>

Meso-schaal dynamiek: kortsluitgeulen

Rond de Springers liggen twee kortsluitgeulen die de geul in Mesocel 2 verbinden met de hoofdgeul in Macroel 3. De omvang van de noordwestelijk geul neemt af en die van de zuidoostelijk toe, zodat de totale omvang min of meer gelijk lijkt te blijven. De geulen verplaatsen, zodat als geheel sprake is van dynamische kortsluitgeulen.

<table>
<thead>
<tr>
<th>MC 2: Kortsluitgeulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>Aanwezigheid kortsluitgeulen door de platen</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Migratie kortsluitgeulen door de platen</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Omvang kortsluitgeulen door de platen</td>
</tr>
<tr>
<td>Aanwezigheid drempelgeulen</td>
</tr>
<tr>
<td>Doorgaande migratie drempelgeulen</td>
</tr>
<tr>
<td>Omvang drempelgeulen stabiel</td>
</tr>
<tr>
<td>Geen kortsluitgeulen</td>
</tr>
</tbody>
</table>

De ontwikkelingen in mesocel 2 worden gedomineerd door de trend tot sedimentatie. Deze ontwikkelingen worden beschouwd als een gelijkblijvende morfologische diversiteit.

6.3.8.3 MACROCEL 3

Bochtgroep als geheel

Op de schaal van de bochtgroep heeft zich een kleine verschuiving voorgedaan in de macroschaal dynamiek, die in vergelijking met de andere bochtgroepen als heel beperkt wordt beschouwd.

<table>
<thead>
<tr>
<th>MC 3: Kwalificatie dynamiek morfologische dimensies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhouding intergetijde-gebied (r_s)</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
Het sedimentvolume van Macroel 3 is afgenomen. Net als voor Macroel 1 geldt dat deze ontwikkeling past bij waarnemingen over de lange termijn ontwikkeling van de westelijke helft van de Westerschelde. De relatieve verruiming van Macroel 3 is klein, want weliswaar is sedimentvolume dat er mee is gemoeid groot, maar het gebied waarover de afname plaats heeft gevonden is ook groot.

MC 3: Ontwikkeling zandbalans dynamiek

<table>
<thead>
<tr>
<th></th>
<th>Natuurlijke Erosie (NE, NEB, NES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natuurlijke Sedimentatie (NS, NSS, NSB)</td>
</tr>
<tr>
<td></td>
<td>Erosie grotendeels bepaald door Baggeren (EB)</td>
</tr>
<tr>
<td></td>
<td>Sedimentatie grotendeels bepaald door Storten (SS)</td>
</tr>
<tr>
<td></td>
<td>Geen wezenlijke Verandering (GV, GVB, GVS)</td>
</tr>
</tbody>
</table>

Macroschaal dynamiek: Hoofd en nevengeul

De hoofdgeul in Macroel 3 is steeds ruimer geworden. Mogelijk heeft het baggeren op de drempel (van Borssele) hieraan een bijdrage geleverd, maar waarschijnlijk is sprake van een natuurlijke ontwikkeling van het verruimen. De toename van het volume van de nevengeul Everingen is tot stilstand gekomen in de jaren negentig. Het is zeer waarschijnlijk dat het storten van baggerspecie (vanuit de oostelijk gelegen Macroellen) hieraan een bijdrage heeft geleverd.

MC 3: Kwalificatie morfologische dynamiek

<table>
<thead>
<tr>
<th>Hoofd-/Ebgeul</th>
<th>MC 3: Kwalificatie morfologische dynamiek</th>
<th>Nevengeul-/Vloedgeul</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Natuurlijke tendens tot erosie versterkt door baggeren (NEB)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot erosie verzwaakt door storten (NES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie verzwaakt door baggeren (NSB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie versterkt door storten (NSS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosie grotendeels bepaald door baggeren (EB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedimentatie grotendeels bepaald door storten (SS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geen verandering ondanks storten (GVS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geen verandering ondanks baggeren (GVB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geen verandering en geen directe ingrepen (GV)</td>
<td></td>
</tr>
</tbody>
</table>

Meso-schaal dynamiek: kortsluitgeulen

Zowel door de Middelplaat, als op de drempel van de Everingen zijn kortsluitgeulen aanwezig. De omvang en de dynamiek van deze geulen lijkt hetzelfde te blijven.

MC 3: Kortsluitgeulen

<table>
<thead>
<tr>
<th></th>
<th>Aanwezigheid kortsluitgeulen door de platen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Migratie kortsluitgeulen door de platen</td>
</tr>
<tr>
<td></td>
<td>Omvang kortsluitgeulen door de platen</td>
</tr>
</tbody>
</table>
MC 3: Kortsluitgeulen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Aanwezigheid drempelgeulen</td>
</tr>
<tr>
<td>X</td>
<td>Doorgaande migratie drempelgeulen</td>
</tr>
<tr>
<td>X</td>
<td>Omvang drempelgeulen stabiel</td>
</tr>
<tr>
<td></td>
<td>Geen kortsluitgeulen</td>
</tr>
</tbody>
</table>

De ontwikkelingen in Macrocel 3 wijzen op een gelijkblijvende morfologische diversiteit.

6.3.8.4 MACROCEL 4

Bochtgroep als geheel

De wisseling van de rol van de hoofd en de nevengeul in Macrocel 4 domineert vrijwel alle ontwikkelingen. Ook de verhouding van het intergetijdegebied en de ontwikkeling van de breedte-diepte verhouding wordt door deze ontwikkeling bepaald. Het aaneengroeien van de platen en het opvullen van de kortsluitgeulen heeft geleid tot toename van het areaal aan intergetijdegebied. Na 1996 is dit areaal afgenomen, doordat de omvang van de hoofdgeul is toegangen ten koste van het platteland.

MC 4: Kwalificatie dynamiek morfologische dimensies

<table>
<thead>
<tr>
<th></th>
<th>Verhouding intergetijde-gebied r_x</th>
<th>Breed-depie verhouding β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toename</td>
<td>Afname</td>
<td>Afname</td>
</tr>
<tr>
<td>Afname</td>
<td>Afname</td>
<td>Afname</td>
</tr>
<tr>
<td>X</td>
<td>Toename</td>
<td>Toename</td>
</tr>
<tr>
<td>Afname</td>
<td>Afname</td>
<td>Afname</td>
</tr>
</tbody>
</table>

Het sedimentvolume van Macrocel 4 als geheel is relatief stabiel, mogelijk mede dankzij het storten van sediment. Tot halverwege de jaren '90 was sprake van een toename van het sedimentvolume, deels in een periode dat ook veel sediment is gestort (1). Vanaf halverwege de jaren '90 was sprake van afname van het sedimentvolume, ondanks het storten van grote volumes sediment (2).

MC 4: Ontwikkeling zandbalans dynamiek

1. **Natuurlijke Sedimentatie (NS, NSS, NSB)** - Tot halverwege jaren '90
2. **Natuurlijke Erosie (NE, NEB, NES)** - vanaf halverwege jaren '90

Erosie grotendeels bepaald door Baggeren (EB)
Sedimentatie grotendeels bepaald door Storten (SS)
Geen wezenlijke Verandering (GV, GVB, GVS)

Macschaal dynamiek: Hoofd en nevengeul

De Overloop van Hansweert is gaandeweg verworven tot de hoofdgeul, wat een gradueel proces is geweest dat van de jaren '50 tot jaren '80 heeft geduurd en in decennia daarvoor al in voorbereiding was. De omvang van de hoofdgeul is steeds toegenomen, ondanks het storten van baggerspecie in deze geul. Ondertussen (omstreeks de jaren '80) is het Middelgat veranderd in de nevengeul en heeft er een vrijwel constante sedimentatie plaatsgevonden. Op basis van de waargenomen trend in de sedimentatie van het
Middelgat is vastgesteld dat bij een doorgaande ontwikkeling het Middelgat nog 80 tot 185 jaar als nevengeul aanwezig is en dat een afname van de sedimentatiesnelheid in de toekomst waarschijnlijk is (LTV V&T-conceptrapport K-16, Consortium Deltares-IMDC-Svasek-Arcadis 2013). Over de sedimentatie in het Middelgat en de afnemende omvang van deze nevengeul zijn zorgen geuit.

<table>
<thead>
<tr>
<th>Hoofd-/Ebgeul (Overloop van Hansweer)</th>
<th>MC 4: Kwalificatie morfologische dynamiek</th>
<th>Neven-/Voedgeul (Middelgat)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natuurlijke tendens tot erosie versterkt door baggeren (NEB)</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Natuurlijke tendens tot erosie verzwakt door storten (NES)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie verzwakt door baggeren (NSB)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie versterkt door storten (NSS)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Erosie grotendeels bepaald door baggeren (EB)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Sedimentatie grotendeels bepaald door storten (SS)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Geen verandering ondanks storten (GVS)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Geen verandering ondanks baggeren (GVB)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Geen verandering en geen directe ingrepen (GV)</td>
<td>X</td>
</tr>
</tbody>
</table>

Meso-schaal dynamiek: kortsluitgeulen

Sinds ongeveer halverwege de jaren ‘90 is er nog één kortsluitgeul aanwezig in Macroel 4, dat is de Geul van de Molenplaat. Deze kortsluitgeul behoudt zijn omvang en vertoont een beperkte rotatie. Voor de jaren ‘90 waren meer kortsluitgeulen aanwezig en bestonden de plaatcomplexen uit meer delen dan de huidige drie (Rug van Baarland Molenplaat en Plaat van Ossenisse).

MC 4: Kortsluitgeulen

X	Aanwezigheid kortsluitgeul door de platen
X	Migratie kortsluitgeul door de platen
X	Omvang kortsluitgeul door de platen
	Aanwezigheid drempelgeulen
	Doorgaande migratie drempelgeulen
	Omvang drempelgeulen stabiel
	Geen kortsluitgeulen

De dominante ontwikkeling in Macroel 4 is de wisseling van de hoofd- en de nevengeul. Deze verandering wordt gezien als onderdeel van de morfologische diversiteit. In potentie kan de ontwikkeling, zou deze op dezelfde wijze doorgaan, leiden tot het verdwijnen van de nevengeul. De afname van het aantal kortsluitgeulen tot het huidige aantal van één is ook geen gunstige ontwikkeling.
6.3.8.5

MACROCEL 5

Bochtgroep als geheel

De grootschalige dynamiek in Macrol 5 wordt gekenmerkt door een verschuiving van de verhouding tussen de breedte en de diepte. Daar mee is de verandering in het intergetijdegebied klein. De bepalende factor in de verschuiving is de toename van gemiddelde waterdiepte.

<table>
<thead>
<tr>
<th>MC 5: Kwalificatie dynamiek morfologische dimensies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhouding intergetijde-gebied (r)</td>
<td>Breedte-diepte verhouding (\beta)</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Toename</td>
<td>Afname</td>
</tr>
<tr>
<td>Afname</td>
<td>Afname</td>
</tr>
<tr>
<td>Toename</td>
<td>Toename</td>
</tr>
<tr>
<td>Afname</td>
<td>Toename</td>
</tr>
</tbody>
</table>

De toename van de gemiddelde waterdiepte is een van de manifestaties van de afname van het sedimentvolume in Macrol 5. Deze afname van het sedimentvolume vond in eerste instantie, vanaf het einde van de jaren '60 plaats ondanks het storten van sediment. In tweede instantie, na de jaren '90 is geen sprake meer van het netto storten van sediment en is netto sediment onttrokken aan Macrol 5.

<table>
<thead>
<tr>
<th>MC 5: Ontwikkeling zandbalans dynamiek</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuurlijke Erosie (NE, NEB, NES)</td>
<td></td>
</tr>
<tr>
<td>Natuurlijke Sedimentatie (NS, NSS, NSB)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Erosie grotendeels bepaald door Baggeren (EB)</td>
<td></td>
</tr>
<tr>
<td>Sedimentatie grotendeels bepaald door Storten (SS)</td>
<td></td>
</tr>
<tr>
<td>Geen wezenlijke Verandering (GV, GVB, GVS)</td>
<td></td>
</tr>
</tbody>
</table>

Macroschaal dynamiek: Hoofd en nevengeul

De ontwikkeling van de hoofd- en de nevengeul verloopt duidelijk verschillend in Macrol 5. De omvang van de hoofdgeul neemt vanaf de jaren '70 toe. In eerste instantie is op locaties in de hoofdgeul gestort (H1), later is niet meer gestort (H2). Het netto onttrekken van sediment door het baggeren in de hoofdgeul is de dominante factor in deze ontwikkeling. De omvang van de nevengeul is tot de jaren '90 afgenomen. Deze sedimentatie is waarschijnlijk gedomineerd door het storten van sediment in de nevengeul (N1). Na het stopzetten van de stortingen in de nevengeul is de omvang van de nevengeul toegenomen (N2). Vanaf halverwege de jaren '00 is het sedimentvolume wederom toegenomen, mogelijk (mede) vanwege stortingen (N3).

<table>
<thead>
<tr>
<th>Hoofd-/Ebgeul</th>
<th>MC 5: Kwalificatie morfologische dynamiek</th>
<th>Neven-/Vloedgeul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuurlijke tendens tot erosie versterkt door baggeren (NEB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>Natuurlijke tendens tot erosie verzwakt door storten (NES)</td>
<td>N2.</td>
</tr>
<tr>
<td>Natuurlijke tendens tot sedimentatie verzwakt door baggeren (NSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natuurlijke tendens tot sedimentatie versterkt door storten (NSS)</td>
<td>N3.</td>
<td></td>
</tr>
</tbody>
</table>
T2009-rapport Schelde-estuarium

Hoofd-/Ebgeul	MC 5: Kwalificatie morfologische dynamiek	Neven-/Vloedgeul
H2	Erosie grotendeels bepaald door baggeren (EB)	N1.
Sedimentatie grotendeels bepaald door storten (SS)		
Geen verandering ondanks storten (GVS)		
Geen verandering ondanks baggeren (GVB)		
Geen verandering en geen directe ingrepen (GV)		

Meso-schaal dynamiek: kortsluitgeulen

In de huidige situatie zijn er geen kortsluitgeulen meer aanwezig in Macrocel 5. Kortsluitgeulen die door de platen lopen zijn al tenminste 20 jaar afwezig. Drempelgeulen op de overgang van de nevengeul naar de hoofdgeul, zijn vanaf het begin van de jaren ‘00 afwezig. Tegenwoordig is sprake van een doorgaande verbinding.

MC 5: Kortsluitgeulen

<table>
<thead>
<tr>
<th>X</th>
<th>Geen kortsluitgeulen</th>
</tr>
</thead>
</table>

De ontwikkeling van het sedimentvolume, zowel van de hoofd- als van de nevengeul, de ontwikkeling van de grootschale geometrie worden gedomineerd door ingrepen, in de vorm van het bagger- en stortbeleid en de zandwinning. De morfologische diversiteit is afgenomen. Ook het volledig onbreken van kortsluitgeulen is een afname van de morfologische diversiteit.

6.3.8.6 MACROCEL 6

Bochtgroep als geheel

Net als in Macrocel 5 wordt de grootschalige dynamiek in Macrocel 6 gekenmerkt door een verschuiving van de verhouding tussen de breedte en de diepte. De bepalende factor in de verschuiving is de toename van gemiddelde waterdiepte.

MC 6: Kwalificatie dynamiek morfologische dimensies

<table>
<thead>
<tr>
<th>Breedte-diepte verhouding r_5</th>
<th>Breed-de-diepte verhouding β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toename</td>
<td>Afname</td>
</tr>
<tr>
<td>X</td>
<td>Afname</td>
</tr>
<tr>
<td>Toename</td>
<td>Toename</td>
</tr>
<tr>
<td>Afname</td>
<td>Toename</td>
</tr>
</tbody>
</table>

Het sedimentvolumes in Macrocel 6 is gestaag afgenomen, onder invloed van doorgaande onttrekkingen van sediment.

MC 6: Ontwikkeling zandbalans dynamiek

| Natuurlijke Erosie (NE, NEB, NES) |
| Natuurlijke Sedimentatie (NS, NSS, NSB) |
MC 6: Ontwikkeling zandbalans dynamiek

<table>
<thead>
<tr>
<th></th>
<th>MC 6: Kwalificatie morfologische dynamiek</th>
<th>Neven-/Vloedgeul</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Erosie grotendeels bepaald door Baggeren (EB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentatie grotendeels bepaald door Storten (SS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen wezenlijke Verandering (GV, GVB, GVS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Macroschaal dynamiek: Hoofd en nevengeul

Het onttrekken van sediment heeft in Macroel 6 geleid tot een afname van het sedimentvolume van zowel de hoofd, als de nevengeul.

<table>
<thead>
<tr>
<th>Hoofd-/Ebgeul</th>
<th>MC 6: Kwalificatie morfologische dynamiek</th>
<th>Neven-/Vloedgeul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natuurlijke tendens tot erosie versterkt door baggeren (NEB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot erosie verzwakt door storten (NES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie verzwakt door baggeren (NSB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natuurlijke tendens tot sedimentatie versterkt door storten (NSS)</td>
<td></td>
</tr>
<tr>
<td>X Erosie grotendeels bepaald door baggeren (EB)</td>
<td></td>
<td>X (indirect door het baggeren in de hoofdgeul)</td>
</tr>
<tr>
<td>Sedimentatie grotendeels bepaald door storten (SS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen verandering ondanks storten (GVS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen verandering ondanks baggeren (GVB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen verandering en geen directe ingrepen (GV)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meso-schaal dynamiek: kortsluitgeulen

Omdat geen sprake meer is van platen, ontbreken de kortsluitgeulen. Ook is geen sprake van drempelgeulen in Macroel 6.

<table>
<thead>
<tr>
<th>MC 6: Kortsluitgeulen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X Geen kortsluitgeulen</td>
<td></td>
</tr>
</tbody>
</table>

De ontwikkeling van de grootschalige geometrie en het sedimentvolume van de hoofd- en de nevengeul, worden gedomineerd door ingrepen, in de vorm van het stelselmatig onttrekken van sediment aan Macroel 6. Kortsluitgeulen ontbreken. De morfologische diversiteit is afgenomen.

6.3.8.7 MACROCEL 7

Bochtgroep als geheel

Net als in Macroel 5 en 6 wordt de grootschalige dynamiek in Macroel 7 gekenmerkt door een verschuiving van de verhouding tussen de breedte en de diepte. De bepalende factor in de verschuiving is de toename van gemiddelde waterdiepte.
Het sedimentvolumes in Macrocel 7 is gestaag afgenomen, onder invloed van doorgaande onttrekkingen van sediment.

MAC 7: Kwalificatie dynamiek morfologische dimensies

<table>
<thead>
<tr>
<th>Verhouding intergetijde-gebied r</th>
<th>Breedte-diepte verhouding β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toename</td>
<td>Afname</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Afname</td>
<td>Afname</td>
</tr>
<tr>
<td>Toename</td>
<td>Toename</td>
</tr>
<tr>
<td>Afname</td>
<td>Toename</td>
</tr>
</tbody>
</table>

MAC 7: Ontwikkeling zandbalans dynamiek

- Natuurlijke Erosie (NE, NEB, NES)
- Natuurlijke Sedimentatie (NS, NSS, NSB)
- Erosie grotendeels bepaald door Baggeren (EB)
- Sedimentatie grotendeels bepaald door Storten (SS)
- Geen wezenlijke Verandering (GV, GVB, GVS)

Macroschaal dynamiek: Hoofd en nevengeul

Het onttrekken van sediment heeft in Macrocel 7 geledt tot een afname van het sedimentvolume van zowel de hoofd, als de nevengeul.

Meso-schaal dynamiek: kortsluitgeulen

Omdat geen sprake meer is van platen, ontbreken de kortsluitgeulen. Ook is geen sprake van drempelgeulen in Macrocel 7. De aanwezigheid van de stroomleidam sinds het begin van de jaren '70 betekent dat er geen nieuwe kortsluitgeulen kunnen ontstaan tussen de hoofd en de nevengeul.
Net als in Macroel 6 wordt de ontwikkeling van de grootschalige geometrie en het sedimentvolume van de hoofd- en de nevengeul, gedomineerd door ingrepen, in de vorm van het stelselmatig onttrekken van sediment. Kortsluitgeulen ontbreken in Macroel 7 en de aanwezigheid van de leidam is een permanente obstructie voor dynamiek. De morfologische diversiteit is afgenomen.

6.4 ENKELGEULSYSTEEM

6.4.1 INLEIDING

Het streefbeeld van de langetermijnvisie levert voor het ééngleulsysteem het volgende: “De Boven-Zeeschelde is van nature een meanderende rivier en dat bochtige karakter is in 2030 behouden. De daarbij behorende afwisseling van steile en flauwe oevers is in ruime mate aanwezig. De rivier heeft voldoende “ruimte” om grotere getijindringing en hoogwatergolven moeiteloos te verwerken. Bij het onderhoud van de vaarweg wordt hier scherp op gelot.”

Het ééngleulsysteem wordt gevormd door de Zeeschelde en de zijrivieren van de Zeeschelde, zoals de Durme, Rupel, Nete en de Zenne. Lokaal worden kenmerkende slikken en schorren aangetroffen. Voor het ééngleulsysteem zijn het meanderende karakter, het sedimenttransport en de geometrie van oevers de te evalueren parameters.

De meanderening van de geul heeft een historisch/ landschappelijke waarde, het bepaald mede de getijdoordriving, de afvoersnelheid en de omvang van het intergetijdengebied. Meanderening heeft invloed op zowel een hoogwaterstand (veiligheid) als de laagwaterstand (toegankelijkheid).

6.4.2 MEANDERING

6.4.2.1 INLEIDING

Voor de meanderening is de parameter S gebruikt die wordt bepaald door de werkelijke lengte van de rivier (-as) te delen door de valleilengte.

6.4.2.2 GEBRUIKTE DATA

De data over de valleilente is aangeleverd door INBO. De lengte van de rivier is bepaald op basis van de digitaal beschikbare bodemligginggegevens van de Zeeschelde en getijrivieren.

6.4.2.3 ANALYSE EN INTERPRETATIE

In tabel 6.2 is per OMES-segment de parameter S aangegeven voor de jaren waarvoor gegevens beschikbaar waren. De groene cellen hebben een waarde groter dan 1,5 en zijn daarmee geklasseerd als meanderend. De oranje waarden liggen tussen de 1,1 en 1,5 en zijn daarmee kronkelend. De overige waarden liggen onder de 1,1 en zijn kenmerkend voor een rechte rivier. De waarden lager dan 1 zijn in theorie niet mogelijk hebben te maken met een andere bepaling van de lengte van de rivieras en de vallei- as. Belangrijk is dat zich per segment geen grote verschuivingen hebben voorgedaan.
De bochtigheid van Omes segment 17,18 en 19 heeft overigens wel een verschuiving doorgemaakt van kronkelend naar recht in de periode voorafgaand aan de periode waarvan de bodemligging beschikbaar is. Deze verandering was onderdeel van een hele reeks rechttrekkingen eind negentiende eeuw (1860-1900). Deze periode werd echter niet in de trendbepaling beschouwd. In de Durme heeft tussen Hamme en Waasmunster nog tussen 1930 en 1960 een rechttrekking plaatsgevonden, maar deze is in de gebruikte gegevens niet terug te zien.

Tabel 6.2 Meandering S voor de Schelde, per OMES-segment

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10,10</td>
<td>10,10</td>
<td>10,23</td>
<td>10,23</td>
<td>10,21</td>
<td>10,68</td>
<td>8,99</td>
<td>8,99</td>
<td>9,00</td>
<td>9,00</td>
<td>9,91</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,700</td>
<td>0,707</td>
<td>0,703</td>
<td>0,705</td>
<td>0,705</td>
<td>0,714</td>
<td>0,709</td>
<td>0,709</td>
<td>0,709</td>
<td>0,716</td>
<td>0,705</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,406</td>
<td>1,402</td>
<td>1,416</td>
<td>1,426</td>
<td>1,423</td>
<td>1,423</td>
<td>1,418</td>
<td>1,416</td>
<td>1,416</td>
<td>1,416</td>
<td>1,415</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,169</td>
<td>1,175</td>
<td>1,182</td>
<td>1,188</td>
<td>1,179</td>
<td>1,178</td>
<td>1,178</td>
<td>1,177</td>
<td>1,177</td>
<td>1,177</td>
<td>1,173</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1,007</td>
<td>1,007</td>
<td>1,006</td>
<td>1,006</td>
<td>1,007</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1,068</td>
<td>1,062</td>
<td>1,066</td>
<td>1,064</td>
<td>1,064</td>
<td>1,064</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td>1,005</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3,252</td>
<td>3,228</td>
<td>3,229</td>
<td>3,237</td>
<td>3,237</td>
<td>3,232</td>
<td>3,236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2,410</td>
<td>2,397</td>
<td>2,399</td>
<td>2,393</td>
<td>2,390</td>
<td>2,401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1,038</td>
<td>1,039</td>
<td>1,031</td>
<td>1,038</td>
<td>1,030</td>
<td>1,031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1,052</td>
<td>1,055</td>
<td>1,047</td>
<td>1,051</td>
<td>1,051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1,006</td>
<td>1,006</td>
<td>1,002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trjGM</td>
<td>0,944</td>
<td>0,920</td>
<td>0,930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>1,464</td>
<td></td>
</tr>
<tr>
<td>Rupel</td>
<td>1,121</td>
<td>1,118</td>
<td>1,118</td>
<td>1,120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4.3 REKENPARAMETER BRUTO SEDIMENTTRANSPORTCAPACITEIT

De (bruto) sedimenttransportcapaciteit wordt gebruikt bij het bepalen van de geul om sediment te transporterer. Voor het meergeulysysteem hebben berekening plaatsgevonden (Jeukens en Wang, 2010), maar is voor de evaluatie nog geen methodiek voor handen. De wijze van berekenen in het kader van de Evaluatiemethodiek moet voor de Zeeschelde nog vastgesteld worden.

Vanwege het ontbreken van waarden voor de periode waarover de voorliggende beschouwing plaatsvindt, wordt deze parameter vooral nog achterwege gelaten.

6.4.4 REKENPARAMETER OEVERS ÉÉNGEULSYSTEEM

De ontwikkeling van de oevers komt is bij de indicator Leefomgeving uitgewerkt en hier vindt ook de evaluatie van deze rekenparameter plaats.

6.4.5 EVALUATIE

Alleen de mate van meandering wordt geëvalueerd voor het éénguysysteem. Vaste criteria zijn niet beschikbaar voor de meandering. Per segment hebben zich geen grote veranderingen voorgedaan en er is geen sprake van trends.
6.5 VERKLArende PARAMETERS

6.5.1 GEULVOLUME

De ontwikkeling van het geulvolume is opgenomen in hoofdstuk 4, in de paragraaf 4.4.4.2.

6.5.2 DOORSTROOMOPPERVLAK

De ontwikkeling van de (doorstroom) oppervlakten van de Macrocellen 1 tot 7 zijn weergegeven in figuur 6-37 tot figuur 6-43. In deze grafieken is ook de relatieve bijdrage van het doorstroomoppervlakte van de geul (onder NAP – 2 m) aan het totale oppervlak onder NAP -3,5 m weergegeven. Een toename langs de rechteras, van de verhouding tussen het doorstroomoppervlakte onder NAP -2 m en onder NAP + 3,5 m, betekent dat de bijdrage van de geul aan het doorstroomoppervlakte relatief gezien toeneemt ten opzichte van de bijdrage van platen en slikken.

Zichtbaar is dat voor Macrocellen 1 en 3 sprake is van een zeer beperkte toename van het doorstroomoppervlakte, tegenover een substantiële toename in Macrocellen 5, 6 en 7. Ook is zichtbaar dat de geuldeLEN in Macroel 5, 6 en 7 een steeds groter bijdrage gaan leveren een het doorstroomoppervlakte. Per Macroel 5,6 en 7 verschilt het moment waarop de verandering in de verhouding optreedt. Mesocel 2 laat een afname zien van de doorstroomoppervlakten, vanwege de doorgaande sedimentatie in het Vaarwater bij Hoofdplaat. Macroel 4 vertoont een complex patroon, dat samenhangt met de rolwisseling van de geulen en de daarbij horende af- en toename van de doorstroomoppervlakten van respectievelijk het Middelgat en de Overloop van Hansweert.

![Grafiek ontwikkeling doorstroomoppervlakte](image)

Figuur 6-37: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Macroel 1 (onder NAP -3,5 m) en de verhouding tussen deze twee.
Figuur 6-38: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Mesocel 2 (onder NAP -3,5 m) en de verhouding tussen deze twee (legenda in figuur 6).

Figuur 6-39: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Macrocel 3 (onder NAP -3,5 m) en de verhouding tussen deze twee (legenda in figuur 6).
Figuur 6-40: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Macrocel 4 (onder NAP -3,5 m) en de verhouding tussen deze twee.

Figuur 6-41: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Macrocel 5 (onder NAP -3,5 m) en de verhouding tussen deze twee (legenda in figuur 6-51).
Figuur 6-42: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Macrocel 6 (onder NAP -3,5 m) en de verhouding tussen deze twee.

Figuur 6-43: Grafiek van de ontwikkeling van het doorstroomoppervlakte van de geulen (onder NAP -2 m) en de gehele Macrocel 7 (onder NAP -3,5 m) en de verhouding tussen deze twee.
De doorstroomoppervlakten voor de Zeeschelde zijn ontleend aan de profielgenerator van INBO (Van Braeckel et al. 2010). De beschikbare bodemligginggegevens beslaan in de Zeeschelde niet altijd het tidale bereik en daarom is de doorstroomoppervlakte onder 0m TAW beschouwd. Het niveau van 0 m TAW komt overeen met NAP -2,33 m en het niveau van 0 m TAW is daarmee vrijwel gelijk aan het niveau van NAP – 2 m dat in de Westerschelde als bovengrens voor de geulen is gehanteerd.

De doorstroomoppervlakte van de gehele Zeeschelde is weergegeven in figuur 6.44 en voor onderdelen in de figuren 6.45 tot 6.48. De grote veranderingen hebben zich voorgedaan tussen 1950 en 2009. Door de logaritmische schaal in figuur 6.44 is zichtbaar dat de toename inderdaad over de volle lengte van het estuarium waarnembaar is. De absolute en relatieve omvang van de veranderingen van de doorstroomoppervlaktes zijn het grootst in de Beneden-Zeeschelde. In figuur 6.45 is zichtbaar dat de omvang in de meest westelijke raaien van om en na bij de 8.000 m² is toegenomen tot om en na bij de 12.000 m², een toename met ongeveer 50%.

![Doorstroomoppervlakte onder 0 m TAW](image)

Figuur 6.44 Doorstroomoppervlakte onder 0 m TAW in de Zeeschelde (op basis van gegevens van INBO, Van Braeckel, 2010) – let op de logaritmische schaal.
Figuur 6.45 Doorstroomoppervlakte onder 0 m TAW in de Beneden-Zeeschelde in de mesohaline zone (op basis van gegevens van INBO, Van Braeckel, 2010)

Figuur 6.46 Doorstroomoppervlakte onder 0 m TAW in de Beneden-Zeeschelde in de oligohaline zone (op basis van gegevens van INBO, Van Braeckel, 2010)
6.5.3 SEDIMENTBALANSEN

Periode 1955-1976
- Onbetrouwbare gegevens: grote schommelingen in de waarden waar geen plausibele verklaring voor is;
- Mogelijk afname in sedimentvolume westelijke helft van -0,9 x 10^6 m³ per jaar;
- Mogelijk afname in sedimentvolume oostelijke helft (trend bepaald op -0,2 x 10^6 m³ per jaar);
- Toenemende netto onttrekkings, in eerste instantie vooral in de westelijke helft, voor zandwinning.
- Maximum in 1976, met zowel in de westelijke als in de oostelijke helft zandwinning;
- Baggeren en storten tot 1972 voornamelijk in het oosten, rond de 4 x 10^6 m³ per jaar, in de periode 1972-1976 sterke toename baggeren en storten, vooral in het oosten, tot rond de 8 x 10^6 m³ per jaar;
- Berekende toename van het transport van monding naar Westerschelde van ongeveer 1 tot 5 x 10^6 m³ per jaar;
- Berekende toename van het transport van west naar oost van ongeveer 1 tot 3 x 10^6 m³ per jaar.

De berekende toename van het transport van de monding naar de Westerschelde is het gevolg van een bepaalde trend in de Westerschelde, die relatief vlak is. Op basis van de gegevens van de bodemligging en de grote schommelingen erin, kan niet worden uitgesloten dat in de periode een afname van het sedimentvolume van de westelijke helft van de Westerschelde heeft plaatsgevonden. Als dat het geval zou zijn geweest, dan zou de toename van het transport van de Westerschelde naar de monding kleiner of nul zijn geweest. Ook de berekende toename van het transport van west naar oost is het gevolg van de bepaalde trends in de westelijke en de oostelijke helft. Ook hiervoor geldt dat de schommelingen in de waarden van de bodemligging ruimte bieden aan andere ontwikkelingen. De berekende toename zou daarom in werkelijkheid ook kleiner kunnen zijn.

Periode 1976-1994
- Minder betrouwbare gegevens: schommelingen in de waarden waar geen plausibele verklaring voor is;
- Mogelijk afname in sedimentvolume westelijke helft van -0,9 x 10^6 m³ per jaar;
- Mogelijk afname in sedimentvolume oostelijke helft (trend bepaald op -0,2 x 10^6 m³ per jaar);
- Afnemende netto onttrekkings, zowel in de westelijke als in de oostelijke helft. Rond 1979 is gemiddeld niveau bereikt, rond de 2,5 x 10^6 m³.
- Grote volumes baggeren en storten vooral in het oosten, met maxima eind jaren ’80 van 10 x 10^6 m³ per jaar;
- Berekende afname van het transport van monding naar Westerschelde van ongeveer 5 tot 3 x 10^6 m³ per jaar;
- Berekende afname van het transport van west naar oost van ongeveer 3 tot 2 x 10^6 m³ per jaar;
- In 1980-1982 tijdelijke verplaatsing van gestorte specie uit oost naar west, waarmee positieve netto ‘onttrekking’ in westen.
- Dat leverde een berekende ‘dip’ in de het transport van monding naar Westerschelde, van ruim 1 x 10^6 m³ per jaar.
Figuur 6.49 Schematische weergave van de sedimentstromen in en rond de Westerschelde in drie perioden.

Ook voor deze periode geldt dat de berekende transporten moeten worden beschouwd in het licht van de bepaalde trends. En omdat ook voor deze periode sprake is van schommelingen in de bodemligginggegevens, kan niet worden uitgesloten dat de transporten van de monding naar het westen en van het westen naar het oosten in werkelijkheid in detail anders zijn verlopen.

Periode 1994-2010
- Grotere betrouwbaarheid gegevens (vanaf 1992);
- Toename sedimentvolume westelijke helft (trend bepaald op \(+1.5 \times 10^6\) m³ per jaar);
- Grote afname sedimentvolume in oostelijk helft (trend bepaald op \(-4.1 \times 10^6\) m³ per jaar);
- Stabiele volumes netto onttrekkingen rond \(2 \times 10^6\) m³ per jaar;
Afnemend volume baggeren in het oosten, met maximum van bijna 12×10^6 m3 in 1998 en minimum van $4,3 \times 10^6$ m3 in 2006;

Sterke afname van het stortvolume in het oosten, na maximum van 8×10^6 m3 in 1996 tot minimum van $1,2 \times 10^6$ m3 in 2006;

Kleine toename in het volume baggeren in het westen in begin jaren negentig, van minder dan 1×10^6 m3 per jaar tot boven de 3×10^6 m3 per jaar, daarna stabiel tussen 1 en 2×10^6 m3 per jaar;

Sterke toename van het stortvolume in het westen, met maximum van ruim 9×10^6 m3 in 1996 daarna stabilisatie tussen 2 en 5×10^6 m3 per jaar;

Resultaat is netto verplaatsing van baggerspecie van oost naar west;

Berekende afname van het transport van monding naar Westerschelde stabiel op ongeveer 1×10^6 m3 per jaar;

Berekend transport van west naar oost van ongeveer 1×10^6 m3 per jaar. Twee slingers in deze ontwikkeling door een waargenomen trendbreuk in ontwikkeling sedimentvolume rond 1994 en door een grote verplaatsing baggerspecie van oost naar west in de periode 1997-2001.

Misschien wel het belangrijkste dat in figuur 6.49 kan worden afgelezen is dat de omvang van de sedimentverplaatsingen en onttrekkingen tenminste zo groot en vaak groter is dan de afgeleide residuele sedimenttransporten. De ingrepen zijn de dominante factor in de sedimentdynamiek, zeker in de oostelijke helft van de Westerschelde.

6.5.4 EROSIE-SEDIMENTATIE

Met de beschikbare bodems zijn verschilkaarten te maken waarin de erosie en sedimentatie zichtbaar is. Hier worden voor de Westerschelde (traditionele) sedimentatie- en erosiekaart weergegeven die zijn gemaakt door de bodemligging van 1955 af te trekken van de bodemligging in 2010. In deze kaarten zijn alleen de grote bodemveranderingen zichtbaar: de erosie (verdieping) van meer dan 5 m is aangegeven in blauw en de sedimentatie (verondieping) van meer dan 5 m is aangegeven in rood. Deze kaarten en de beschrijving is overgenomen uit "Ontwikkeling mesoschaal Westerschelde (factsheets)" LTV V&T-rapport K-16 (Consortium Deltares-IMDC-Svasek-Arcadis, 2013). In de kaarten zijn de lange termijn ontwikkelingen (periode langer dan 50 jaar) aangegeven met letters en de belangrijke ontwikkelingen op de kortere termijn met cijfers.

Macrocel 1&2 -figuur 6.51
De lange termijn ontwikkelingen van eeuwen in en rond macrocel 1 worden ruwweg bepaald door vier sleutelontwikkelingen

![Figuur 6.51 Macrocel 1&2 Verschil in bodemligging tussen 1955 en 2010 (blauw = erosie; rood = sedimentatie).](image)

- A. Sedimentatie en afdamming Sloe.
- B. Sedimentatie en afdamming Braakman (in het volgende hoofdstuk).
- C Noordwaartse migratie Honte en de bestortingen bij Vlissingen en Borssele.
- D Verplaatsing van de noordzijde van de Hooge platen en de Schar van de Spijkerplaat.

De ontwikkelingen die op een termijn van tientallen jaren bepalend zijn geweest voor de ontwikkelingen en die naar verwachting ook in de toekomst een rol zullen spelen zijn met cijfers aangegeven in figuur 2.3 en betreffen:
1. Dynamiek rond de Spijkerplaat en Honte;
2. Sloe en de Kaloot;
3. Westwaartse migratie Pas van Borssele;
4. Sedimentatie in het Vaarwater langs Hoofdplaat;
5. Hogere platen;

Macrocel 3 – figuur 6.52
De belangrijkste grootschalige ontwikkelingen die de lange termijn ontwikkelingen in en rond macrocel 3 hebben gedomineerd zijn:
A. Westwaarts verplaatsing van de Pas van Borssele;
B. Zuidwaarts verplaatsing Everingen en ontstaan Rug van Borssele;
C. Zuidwaarts uitbochten Pas van Terneuzen;
D. Oostwaarts uitbreiding Everingen en verplaatsing van het drempelgebied;
E. Functieverandering hoofd- en nevengeul Macrocel 4.

![Diagram](image-url)

Figuur 6.52 Verschil in bodemligging in macrocel 3 tussen 1955 en 2010 (blauw = erosie; rood = sedimentatie).

Binnen het kader van deze grootschalige ontwikkelingen hebben andere ontwikkelingen plaatsgevonden, die met cijfers zijn aangegeven in figuur 6.52:
1. Afname areaal en sedimentatie op de Middelplaten;
2. Ontstaan, verplaatsing en verdwijnen van de kortsluitgeulen door de Middelplaten;
3. Verplaatsing Everingen;
4. Dynamiek van eb- en vloedscharen op de drempel;
5. Verdwijnen van de Geul van Baarland.

Macrocel 4 figuur 6.53
De belangrijkste grootschalige ontwikkeling die de lange termijn ontwikkelingen in en rond macrocel 4 heeft gedomineerd is:
E. Functieverandering hoofd- en nevengeul Macrocel 4.
Figuur 6.53 Verschil in bodemligging in macrocel 4 tussen 1955 en 2010 (blauw = erosie; rood = sedimentatie).

De ontwikkelingen die worden beschreven binnen het kader van deze grootschalige functiewisseling zijn:
1. Opvullen Middelgat.
2. Tweezijdig uitruimen Overloop van Hansweert;
3. Hoger worden platen
4. Opvullen kortsluitgeulen;
5. Relatief stabiele slikken.

Macrocel 5-6-7 –figuur 6.54
Aan de oostzijde van de Westerschelde is in de afgelopen twee eeuwen veel verandert in de begrenzing van het estuarium en in de loop en ligging van geulen en drempels, zoals in figuur 6.54 zichtbaar is. In de kaart uit 1818 zijn de volgende aspecten gemarkeerd:

A. De afdamming van het Kreekrak (1867);
B. Verschillende bedijkingen bij Rilland;
C. Bedijking schorren bij Ossendrecht (rond 1970);
D. Sedimentatie op het Land van Saeftinghe;
E. Verplaatsing Plaat van Walscoorden;
F. Uitbochten van de hoofdgeul;
Figuur 6.54 Bodemligging in de oostelijke helft van Westerschelde in 1818 met de contouren uit 2010 en de sleutelaspecten voor de lange termijn ontwikkeling.

Macrocel 5 –figuur 6.55

De morfologische in macrocel 5 zijn aangeven in de sedimentatie-erosiekaart in figuur 6.55, de ontwikkelingen die worden beschreven zijn:

Figuur 6.55 Verschil in bodemligging in macrocel 5 tussen 1955 en 2010 (blauw = erosie; rood = sedimentatie).

1. Verdiepen van de drempel tussen de Put van Hansweert en de Bocht van Walsoorden, door baggeren;
2. Verplaatsing van de Schaar van Valkenisse naar het zuidwesten, met erosie aan de zuidwestzijde(2a) en sedimentatie (2b) aan de noordoostzijde;
3. Overwegend sedimentatie in de Zimmermangeul, met lokaal erosie (3b);
4. Sedimentatie op en daarmee hoger worden van de Plaat van Valkenisse;
5. Sedimentatie op en daarmee hoger worden van de Plaat van Walsoorden;
6. Erosie bij het Zuidergat;
7 verplaatsing van de noordelijke geulwand van de hoofdgeul naar het zuiden, in samenhang met;
F1. Verdieping en verplaatsing van de hoofdgeul.

Macrocel 6 en 7 - figuur 6.56

De morfologische in macrocel 5 zijn aangeven in de sedimentatie-erosiekaart in figuur 6.56, de ontwikkelingen die worden beschreven zijn:
1. Verdieping en verbreding van de hoofdgeul, in samenhang met het uitbochten (F1 en F2);
2. Erosie in de Appelzak;
3. Erosie van de Schaar van de Noord.

![Figuur 6.56 Verschil in bodemligging in macrocel 6 en 7 tussen 1955 en 2010 (blauw = erosie; rood = sedimentatie).](image-url)
Beneden-Zeeschelde

6.5.5 SLIB

![Slib gehalte (% in de toplaag volgens McLaren](image)

6.5.6 OVERIGE VERKLARENDE PARAMETERS

In de evaluatiemethodiek zijn bij plaat-geul de verklarende parameter getijontwikkeling, zeespiegelstijging (zie de jaren gemiddelde waterstanden), geulvolume, waterdiepte en ingrepen genoemd opgenomen die al uitgebreid zijn geanalyseerd in hoofdstukken 4 en 5. Deze analyse zal hier niet worden herhaald.

Bodemruwheid als verklarende parameter is lastig, zowel omdat het moeilijk is om dit met meetgegevens vast te stellen (bodemruwheid is een combinatie van verschillende ruwheden door de korrels van het sediment en bodemstructuren), als dat de bodemruwheid een direct effect heeft op de waterbeweging en het sedimenttransport en daarmee een indirect effect heeft op morfologie. In dit rapport is bodemruwheid niet opgenomen.

Stroomsnelheden en debiet hebben als verklarende parameter een direct verband met de morfologie. Voor de parameters geldt dat voor het verkrijgen van volledig vergelijkbare waarden van verschillende momenten in de tijd geen beroep kan worden gedaan op 13-urs debietmetingen. Deze metingen zijn bruikbaar voor het verifiëren van modeluitkomsten, maar bevatten te veel variatie om direct onderling te vergelijken. Voor een vergelijking zijn modelsimulaties van de waterbeweging, met bodems en
getijrandvoorwaarden van verschillende jaren het aangewezen middel (dit is te combineren met modelsimulaties voor het bepalen van de sedimenttransportcapaciteit) In dit rapport zijn de stroomsnelheid en debieten niet opgenomen.

6.5.7 PLAATHOOGTE

In de communicatie-indicator Plaat-Geul zijn de platen niet expliciet opgenomen als rekenparameter of verklarende parameter voor het meergeulensysteem. De ontwikkeling van de platen is belangrijk omdat de platen belangrijke waarden van het meergeulensysteem vertegenwoordigen. In het voorliggende hoofdstuk zijn een aantal ontwikkelingen van de plaatcomplexen beschreven. In hoofdstuk 4 zijn al een aantal aspecten van het litoraal van de Westerschelde per macrocel beschouwd als verklarende parameter bij de waterbeweging. In deze paragraaf worden alleen de plaatcomplexen beschouwd. De ligging van de verschillende plaatcomplexen is weergegeven in figuur 6.60

![Figuur 6.60 Overzichtskaart van de plaatcomplexen, met de contouren van de NAP - 2 m lijn, met in groen de buitengrenzen van de kuberinggebieden van de volledige complexen en in rood de contour van de hoge delen.](image)

De verschillende plaatcomplexen omvatten een sedimentvolume van ruim 100 x 10⁶ m³, waarbij de Hooge platen het grootste sedimentvolume bergt (figuur 6.61). In het totaal is het sedimentvolume op de platen sinds 1955 toegenomen met ruim 30 x 10⁶ m³. De grootste toenamen van het sedimentvolume hebben plaatsgevonden op de oostelijk gelegen plaatcomplexen: van Valkenisse en Ossenisse-oost. Deze twee plaatcomplexen dragen rond de 70% bij aan de totale toename. Het sedimentvolume van de platen is niet constant toegenomen in de tijd. De sterkste toename van het totale sedimentvolume in de platen heeft plaatsgevonden tot in het begin van de jaren '90. Per plaatcomplex verschilt met moment waarop de toename van het sedimentvolume is gestopt. Na het begin van de jaren '90 is het volume van de Plaatcomplex van Valkenisse gestabiliseerd. Voor de plaatcomplex van Ossenisse-oost ligt het moment van stabilisatie rond het begin van de 21e eeuw. Het sedimentvolume van het Middelplaatcomplex is zelfs afgenomen vanaf het begin van de jaren '90.
Figuur 6.61 Grafiek met het sedimentvolume van de platen boven NAP -2 m

De verandering van het sedimentvolume van de platen bestaat een combinatie van veranderingen van het areaal en van de hoogte. In een schematische dwarsdoorsnede in figuur 6.62 zijn de bijdrage van de verschillende veranderingen aangegeven:
1. Plaat wordt daadwerkelijk hoger;
2. Areaalveranderingen;
2a & 3: Opvullen van kortsluitgeulen en schaartjes – toename plaatareaal;
2b: Verplaatsing (hoofd)geul: afname van het plaatareaal;
2c: Verplaatsing (neven)geul: toename van het plaatareaal.

Figuur 6.62 Schematische dwarsdoorsnede van de verschillend ontwikkelingen die plaats kunnen vinden bij het toenemen van het plaatvolume.

De ontwikkeling van de areaalen van de plaatcomplexen is weergegeven in figuur 6.63. De ontwikkelingen van de gemiddelde hoogte is weergegeven in 6.64. De veranderingen verschillen nogal per plaatcomplex, waarbij de grootste veranderingen steeds optreden bij de platen van Ossenisse-oost. De gemiddelde hoogte neemt van de platen neemt over het algemeen toe, of blijft stabiel. Het areaal van de platen kan zowel toe als afnemen.
Figuur 6.63 Grafiek met de verandering van het areaal van de platen boven NAP -2 m.

Figuur 6.64 Grafiek met de verandering van de gemiddelde hoogte van de platen boven NAP -2 m.

Naast de ontwikkelingen van het gehele plaatcomplex zijn ook de ontwikkelingen van de delen beschouwd die altijd hoog zijn geweest. Door de ontwikkelingen van deze delen te vergelijken met de ontwikkelingen van het hele plaatcomplex wordt een indruk gekregen van de relatieve bijdrage van de
hoogtetoename van de plaat (1 in figuur 6.62) ten opzicht van de areaalveranderingen (2 en 3 in figuur 6.62).

Figuur 6.65 Grafiek met de verandering van de gemiddelde hoogte van de altijd hoge delen van de Hooge platen boven NAP -1 m.

Figuur 6.66 Grafiek met de verandering van de gemiddelde hoogte van de altijd hoge delen van de Middelplaat boven NAP 0 m.
Platen van Ossenisse-west- hoge delen

![Graph of Platen van Ossenisse-west- hoge delen](image)

Figuur 6.67 Grafiek met de verandering van de gemiddelde hoogte van de altijd hoge delen van de Rug van Baarland, Molenplaat en de tussengelegen plaat (Ossenisse-west boven NAP -1 m).

Ossenisse - oost boven NAP -1 m

![Graph of Ossenisse - oost boven NAP -1 m](image)

Figuur 6.68 Grafiek met de verandering van de gemiddelde hoogte van de altijd hoge delen van de Platen van Ossenisse – oost boven NAP -1 m.
Figuur 6.69 Grafiek met de verandering van de gemiddelde hoogte van de altijd hoge delen van de Plaat van Walsoorden en Valkenisse boven NAP -1 m.

De ontwikkeling van de gemiddelde hoogte in figuur 6.64 per plaatcomplex en de ontwikkelingen van de delen die altijd hoog zijn geweest in de figuren 6.65 tot 6.69 laten geen eensluidende ontwikkeling zien. Het is wel duidelijk dat de toename van de plaathoogte in de oostelijke complexen is gestopt. Ook de toename van de hoogte van het Middelgat lijkt niet verder door te zetten. De hoogte van de Hooge platen lijkt nog steeds toe te nemen. Het complex van platen met de Rug van Baarland en Molenplaat heeft een nivellerings ondergaan, zodat alle hoge delen tegenwoordig een vergelijkbare hoogte hebben. In tabel 6.3 is een overzicht gepresenteerd van de verschillende bijdragen van de veranderingen uit figuur 6.64 per plaatcomplex.
<table>
<thead>
<tr>
<th>Plaatcomplex</th>
<th>Toename hoogte</th>
<th>Kortsluitgeulen</th>
<th>Effect areaal veranderingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hooge platen</td>
<td>Gehele plaat</td>
<td>Vrijwel niet, waren al afwezig</td>
<td>Afname areaal door verplaatsing nevengeulen</td>
</tr>
<tr>
<td>Springer</td>
<td>Alleen de hoge delen</td>
<td>Nog steeds kortsluitgeulen aanwezig</td>
<td>Afname areaal door verplaatsing hoofdgeul</td>
</tr>
<tr>
<td>Middelplaat</td>
<td>Alleen de hoge delen</td>
<td>Nog steeds kortsluitgeulen aanwezig</td>
<td>Afname areaal door verplaatsing nevengeul en drempel Everingen</td>
</tr>
<tr>
<td>Rug van Baarland en Molenplaat (Ossenisse-west)</td>
<td>Alleen de lage delen worden hoger, herverdeling sediment op de plaat</td>
<td>Doorgaande ontwikkeling</td>
<td>Afname areaal door verplaatsing hoofdgeul na 1993</td>
</tr>
<tr>
<td>Ossenisse – oost</td>
<td>Doorgaand, snelle toename tot begin jaren '90</td>
<td>Vrijwel ten einde, geen kortsluitgeulen meer aanwezig</td>
<td>Afname areaal door verplaatsing hoofdgeul na 1998</td>
</tr>
<tr>
<td>Valkenisse</td>
<td>Tot ongeveer 1995</td>
<td>Periode ~1965 tot ~1995</td>
<td>Geen uitgesproken bijdrage</td>
</tr>
</tbody>
</table>

Tabel 6.3 Overzicht van de ontwikkelingen van de plaatcomplexen.

6.5.8 VERKLARINGEN

In het Schelde-estuarium is de morfologie ingrijpend veranderd, op alle schalen en in alle onderdelen. Vrijwel het gehele estuarium is ruimer geworden, in die zin dat het watervolume is toegenomen en het sedimentvolume is afgenomen (erosie). Het ruimer worden in de Westerschelde manifesteert zich in iedere macrocel anders. De relatieve afname van het sedimentvolume is het grootst in de oostelijke Macrocellen (5 en met name 6 en 7) en in de Zeeschelde. In de Boven-Zeeschelde en de zijrivieren is in het verleden de omvang van het niet bedijkte gebied afgenomen en is de lengte van de rivier afgenomen door rechttrekkingen. Op mesoschaal is in de Westerschelde is sprake van een doorgaande afname van het aantal en de omvang van de kortsluitgeulen. Het areaal van het intergetijdegebied in de Westerschelde is min of meer gelijk gebleven, hoewel in de macrocellen 6 en 7 tegenwoordig geen sprake meer van platen. In de Zeeschelde is het areaal tidaal afgenomen, dit zal in het hoofdstuk leefomgeving verder worden geanalyseerd.

De veranderingen in de morfologie gaan hand in hand met veranderingen in de waterbeweging. Het niveau van hoogwater is toegenomen, waarbij de mate van toename stroomopwaarts in het estuarium groter is. Het niveau van laagwater is niet toegenomen of zelfs afgenomen. De getijslag in het estuarium is daarmee toegenomen.

Voor de opgetreden veranderingen in het Schelde-estuarium zijn geen eenduidige en eenvoudige verklaringen te geven, omdat sprake is van een samenspel van autonome veranderingen (zeespiegelstijging, sedimentatie), menselijke ingrepen van verschillende aard en omvang (bedijking, bestorting, zandwinning, baggeren en storten, enz.). In het onderstaande diagram is de morfodynamische terugkoppeling op de waterbeweging en het sedimenttransport weergegeven en zijn de factoren aangegeven die morfologie en waterbeweging veranderen.

Vanwege de complexiteit wordt hier niet gezocht naar één of meerdere verklaringen van de getoonde ontwikkelingen in plaat-geul.

6.6 EVALUATIE T2009 PLAAT-GEULSYSTEEM

De evaluatie vindt plaat op de toetsparameters morfodynamiek van drie systemen in het Schelde-estuarium: de monding, het meergeulsysteem en het enkelgeulsysteem.

Het open karakter van de monding is behouden. Weliswaar is het sedimentdelende systeem in de monding veranderd door het verdiepen en op diepte houden van de Wielingen, maar de uitwisseling van sediment tussen monding en de Westerschelde is hierdoor waarschijnlijk niet veranderd.

De toetsparameter meergeulsysteem is uitgewerkt in drie tijd- en ruimteschalen: (a) grootschalige dynamiek, (b) macroschaal dynamiek, (c) mesoschaal dynamiek. Deze worden in samenhang geëvalueerd per de macrocel. De grootschalige dynamiek heeft betrekking op de trechtervorm van het meergeulenstelsel en de relatieve bijdrage van de geulen en intergetijdegebieden. De vorm van de oostelijke helft van het meergeulsysteem (Macrocellen 5, 6 en 7) is sterk veranderd, vooral doordat de gemiddelde diepte van de geulen fors is toegenomen. Macroschaal dynamiek heeft in het meergeulsysteem betrekking op de dimensies van de hoofd- en nevengeulen. Deze dimensies zijn in de oostelijke helft van de Westerschelde in de Macrocellen 5, 6 en 7 sterk veranderd. In Macrocel 4 is de wisseling van de rol van het Middelgat van hoofd- naar nevengeul en de rol van de Overloop van Hansweert van nevengeul- naar hoofdgeul bepalend voor de ontwikkeling van de geulen. In het westen van het meergeulsysteem zijn de absolute veranderingen van de sedimentinhoud vergelijkbaar met de verandering in het oosten, maar zijn de relatieve veranderingen veel kleiner. Mesoschaal dynamiek heeft betrekking op de aanwezigheid en de dynamiek van kortsluitgeulen. Kortsluitgeulen die door de platen lopen zijn nog op vier plaatsen aanwezig en dit is qua aantal plaatsen veel minder dan in het verleden het geval was. De resterende kortsluitgeulen in de platen verplaatsen en de omvang ervan verandert niet structureel. Drempelgeulen zijn nog op de twee drempels aanwezig; in Macrocel 1 rond de Schaar van de Spijkerplaat en op de grens van Macrocellen 3 en 4, tussen de Everingen en het Middelgat.
Drempelgeulen op de drempels in de hoofdgeulen en op andere overgangen van hoofd- naar nevengeul (bijvoorbeeld bij de Schaar van Valkenisse) zijn tegenwoordig afwezig.

Beoordeling van de ontwikkelingen in het meergeulsysteem per Macrocel leveren voor de oostelijke Macrocellen 5,6 en 7 een negatieve beoordeling van de morfologische diversiteit, zowel door de ontwikkeling van de geulen als van platen en kortsluitgeulen. In Macrocel 4 worden de ontwikkelingen van de platen, waarvan de hoogte is toegenomen en de kortsluitgeulen waarvan het aantal is afgenomen, negatief beoordeeld. De ontwikkelingen in de Macrocellen 1 en 3 en in Mesocel 2 worden als overwegend neutraal beoordeeld.

De sedimenttransportcapaciteit in het meer- en enkelgeulsystel is in het voorliggende rapport niet beschouwd, aangezien de wijze van berekenen, periode, getijcondities, sedimenttransportformule etc. nog vastgesteld moeten worden.

In het enkelgeulsysteem is weinig veranderd aan de meandering. De veranderingen hierin hebben zich voorgedaan in periode voor 1910, voorafgaand aan de periode waarvan (tegenwoordig) digitale gegevens beschikbaar zijn.

De beoordeling van Plaat-geul is samengevat in figuur 6.70.

Figuur 6.70 Overzicht van de evaluatie-uitkomsten voor plaat-geul. Groen: positieve beoordeling; Oranje: enkele negatief aspect; Rood: negatieve beoordeling.
Waterkwaliteit

Het Schelde-estuarium, en dan vooral de Zeeschelde, had een zeer slechte reputatie inzake waterkwaliteit. Ondanks de spectaculaire verbetering van de waterkwaliteit in de zoete zone, is de evaluatie van de communicatie-indicator Waterkwaliteit negatief, en dit voor alle vier de toetsparameters. Vooral de Zeeschelde scoort slecht, maar ook de Westerschelde haalt niet steeds de gestelde criteria. Ondanks deze negatieve evaluatie, is er optimisme mogelijk: de trend is bijna steeds positief. De verwachting is dat voor diverse parameters de waterkwaliteit in de nabije toekomst wel kan voldoen aan de gestelde criteria.

Voor de toetsparameter Zuurstof, stellen zich geen problemen in de Westerschelde. Hoewel de Zeeschelde anno 2009 geen grote acute zuurstofproblemen meer kent, voldoet ze aan geen enkele rekenparameter. Vooral evaluatie op basis van continue metingen (voorlopig enkel op 1 locatie mogelijk), legt vele zuurstofproblemen bloot.

De zuurstofproblemen uiten zich ook in de toetsparameter Nutriënten. De rekenparameters FastNOD en BOD-C, die beiden een maat zijn voor de zuurstofvraag, voldoen immers niet aan de gestelde criteria. Ook voor totaal P, DSi (opgelost Silicium) en ICEP (Indicator for Coastal Eutrofication Potential) is de score slecht. De input vanuit het bekken is nog steeds te groot: de Schelde kan die vracht aan nutriënten en organisch materiaal niet probleemloos verwerken. Door de grote nutriëntinput bloeien algen zeer sterk in de zoete Zeeschelde. Dit leidt tot uitputting van silicium zodat er een risico is op verschuivingen in de algenpopulatie. Hiervan getuigen de slechte scores voor DSi en ICEP, ook in de Westerschelde. Tot op heden werd die verschuiving nog niet waargenomen, wellicht beperkt het slechte lichtklimaat die omslag.

Ammoniak toxiciteit vinden we niet meer terug. Nitriet overschrijdt wel het gestelde criterium, maar literatuuronderzoek wijst uit dat voor nitriet de maatlat te streng gesteld is. Maar zelfs met een aangepaste grenswaarde, voldoet de Schelde nog niet.

Algenbloei wordt negatief beoordeeld. Schadelijke algensoorten worden weliswaar niet waargenomen, maar op basis van de P:B en P₂:B ratio’s wordt een negatieve score toegekend. In verschillende delen van het estuarium bereikt de P:B ratio niet die waarden die verwacht kunnen worden op basis van het beschikbare licht.

De rekenparameter Toxische Stoffen tenslotte wordt ook negatief geëvalueerd. Toxische stoffen worden helaas nog te vaak aangetroffen, zowel in waterbodem, waterkolom als in de onderzochte biota.
7.1 INLEIDING

De communicatie-indicator Waterkwaliteit bestaat uit 4 toetsparameters (Figuur 7-1). Elke toetsparameter bestaat uit een aantal rekenparameters, die elk getoetst moeten worden aan de criteria uit de evaluatiemethodiek.

Om de data voor 2009, maar ook uit de voorgaande jaren (ten behoeve van een trendanalyse) te toetsen aan deze criteria, werden als eerste stap de onderduizenden metingen voor diverse parameters en diverse stations geordend en samengenomen in 1 databank. Stations werden geordend langs de lengteas van het estuarium (km aanduiding toegekend aan elk meetpunt) en ingedeeld in de salinitie- en omescompartimenten zoals opgegeven in de methodiek. Parameters werden eenvormig gemaakt en alle data werden in dezelfde eenheden omgezet. Vervolgens werden scripts ontwikkeld voor het uitrekenen van de diverse rekenparameters.

De methodiek schrijft voor diverse parameters een beoordeling op niveau 4 voor: dit is op niveau van de OMES compartimenten. In de Westerschelde is de ruimtelijke resolutie van de RWS data echter niet steeds voldoende groot. Daarom werd in samenspraak met de opdrachtgever beslist om in de Westerschelde een evaluatie op niveau 3 (saliniteitszones) uit te voeren in plaats van niveau 4.

Bij de zonering op niveau 3 dient opgemerkt te worden dat de afbakening en naamgeving wordt gehanteerd zoals opgenomen op pagina 44 van de Evaluatiemethodiek. Zowel indeling als naamgeving staan echter ter discussie. Zo schept bijvoorbeeld de naam “Mondingszone” voor de meest afwaartse zone van het estuarium verwarring en wordt de grens van de mesohaline zone soms betwist. Onderstaande tabel geeft daarom de in dit hoofdstuk gebruikte stations weer en hun zonering volgens de Evaluatiemethodiek.
Tabel 7-1: Gebruikte stations met zonering

<table>
<thead>
<tr>
<th>station(s)</th>
<th>Rivier</th>
<th>zone (omes)</th>
<th>zone (saliniteit)</th>
<th>Code Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breskens, Hooge Platen, Temseuzen</td>
<td>Westerschelde</td>
<td>1-2</td>
<td>Mondingszone</td>
<td>monding</td>
</tr>
<tr>
<td>Hoedeckenskerke</td>
<td>Westerschelde</td>
<td>3-4</td>
<td>Polyhaliene zone</td>
<td>poly</td>
</tr>
<tr>
<td>Hansweert, Kruiningen Perkpolder, Bath</td>
<td>Westerschelde</td>
<td>5-8</td>
<td>Meso haliene zone</td>
<td>meso</td>
</tr>
<tr>
<td>Grens</td>
<td>Westerschelde/Zeeschelde</td>
<td>9</td>
<td>Zone met sterke saliniteigradient</td>
<td>9 (gradient)</td>
</tr>
<tr>
<td>Liefkenshoek</td>
<td>Zeeschelde</td>
<td>10</td>
<td>Zone met sterke saliniteigradient</td>
<td>10 (gradient)</td>
</tr>
<tr>
<td>Punt van Melsele</td>
<td>Zeeschelde</td>
<td>11</td>
<td>Zone met sterke saliniteigradient</td>
<td>11 (gradient)</td>
</tr>
<tr>
<td>Antwerpen, St Anna</td>
<td>Zeeschelde</td>
<td>12</td>
<td>Zone met sterke saliniteigradient</td>
<td>12 (gradient)</td>
</tr>
<tr>
<td>Kruiibeke, Bazel</td>
<td>Zeeschelde</td>
<td>13</td>
<td>Oligohaliene zone</td>
<td>oligo</td>
</tr>
<tr>
<td>Steendorp, Temse</td>
<td>Zeeschelde</td>
<td>14</td>
<td>Oligohaliene zone</td>
<td>oligo</td>
</tr>
<tr>
<td>Lippenbroek, Mariakerke</td>
<td>Zeeschelde</td>
<td>15</td>
<td>Zoet lange verblijftijd</td>
<td>15 (zoet lang)</td>
</tr>
<tr>
<td>Baasrode, Vlissingenbroek, Dendermonde</td>
<td>Zeeschelde</td>
<td>16</td>
<td>Zoet lange verblijftijd</td>
<td>16 (zoet lang)</td>
</tr>
<tr>
<td>Sint Onolfs, Appels</td>
<td>Zeeschelde</td>
<td>17</td>
<td>Zoet korte verblijftijd</td>
<td>17 (zoet kort)</td>
</tr>
<tr>
<td>Utbergen</td>
<td>Zeeschelde</td>
<td>18</td>
<td>Zoet korte verblijftijd</td>
<td>18 (zoet kort)</td>
</tr>
<tr>
<td>Wetteren, Melle</td>
<td>Zeeschelde</td>
<td>19</td>
<td>Zoet korte verblijftijd</td>
<td>19 (zoet kort)</td>
</tr>
<tr>
<td>Niel, Boom, Terhagen</td>
<td>Rupel</td>
<td>Boundary</td>
<td>Boundary</td>
<td>Rupel</td>
</tr>
<tr>
<td>Dender</td>
<td>Dender</td>
<td>Boundary</td>
<td>Boundary</td>
<td>Dender</td>
</tr>
<tr>
<td>Durme</td>
<td>Durne</td>
<td>Boundary</td>
<td>Boundary</td>
<td>Durne</td>
</tr>
</tbody>
</table>

7.1.1 SURFACE PLOTS

Voor waterkwaliteit bestaat een grote dataset aan meet waarden met vele punten in ruimte en tijd. Met lijningrafieken kan slechts ruimte of tijd weergegeven worden. Daarom is binnen dit hoofdstuk gekozen om te werken met de zogenaamde surface plots, waarbij op de x-as de tijd is weergegeven, op de y-as de kilometerafstand tot Vlissingen (Figuur 7-2). De meet waarden zijn met een kleurschaal weergegeven. Om verschillen in lage waarden ook in de verf te zetten, is vaak een niet-lineaire kleurschaal gehanteerd, zoals in onderstaand voorbeeld. Voorwaarde voor zulke plots is een goede ruimtelijke en temporele dekking van de data. Op onderstaande figuur zijn de gebruikte datapunten ter informatie weergegeven. Ter indicatie werden aan de kilometer-as enkele belangrijke locaties toegevoegd. Bij de tijd-as staat ter informatie het maandgemiddelde zoetwaterdebit te Schelle weergegeven.
7.1.2 VERSCHIL PLOTS

Voor een evaluatie of interpretatie van het ecosysteem functioneren is het nuttig te achterhalen welke parameters stijgen of dalen in tijd en ruimte. Evoluties in de tijd kunnen eenvoudig uit tijdreeksen worden afgeleid. Evoluties in de ruimte zijn minder eenvoudig af te leiden. Een dalend concentratieprofiel langs de lengteas van het estuarium, duidt niet meteen op een absolute afname of verwijdering van die stof. Verdunning bepaalt in grote mate het concentratieprofiel. Stoffen die niet interageren met het estuarium, tonen een zogenaamd conservatief menggedrag, en nemen van zoet naar zee af in concentratie door verdunning met zeewater. Hoewel er een continue beperkte input van chloride is vanuit het bekken, wordt het chloride gehalte in het estuarium in hoofdzaak bepaald door uitwisseling met zeewater. Het chloride gehalte kan daarom als maat gebruikt worden voor de conservatieve menging of verdunning met zeewater.

Om elke afwijking van dit conservatieve mengprofiel zichtbaar te maken, kunnen concentraties van een bepaalde stof uitgezet worden ten opzicht van het chloride gehalte. Zo kan men afleiden of de stof zich lineair gedraagt met chloride. Elke afwijking hiervan wijst op een toe- of afname die niet kan worden toegeschreven aan verdunning. Hoewel deze methode vaak wordt toegepast op data van de Westerschelde, heeft ze een aantal grote nadelen. Als ze wordt toegepast op het ganse estuarium, worden alle punten uit de zoete zone te dicht opeen geplot, waardoor de methode voor de Zeeschelde ongeschikt is.
is. Door vaak grote concentratieverschillen tussen zoete Schelde en Westerschelde, zijn bovendien met een lineaire x-as, geen duidelijke concentratieverschillen meer waarneembaar (Figuur 7-3). Tenslotte, wanneer zones met toe- of afname van een bepaalde stof worden gedetecteerd, is het niet rechtstreeks af te leiden uit de figuur waar die zones zich bevinden, aangezien alles uitgezet is ten opzichte van chloride. Zeker in de Zeeschelde kan het chloridegehalte sterk verschuiven, afhankelijk van getij en bovendebiet.

Figuur 7-3: Ammoniumgehalte uitgezet ten opzichte van chloride-concentratie.

Op basis van het chlorideprofiel in het estuarium, kan uitgaande van de concentratie van een stof in het begin en eind van het estuarium, het conservatieve profiel berekend worden: dit is het concentratieprofiel mocht er enkel menging zijn (Figuur 7-4). De berekening van het conservatieve profiel is gebaseerd op Eyre et al. (2000) waar een chloride-gewogen interpolatie wordt gemaakt tussen een opwaartse en een afwaartse concentratie:

\[
[E]_{x,\text{mix}} = (1 - \frac{\text{Cl}_{\text{afwaarts}}}{\text{Cl}_{\text{opwaarts}}})[E]_{\text{opwaarts}} + \frac{\text{Cl}_{\text{afwaarts}}}{\text{Cl}_{\text{afwaarts}}}[E]_{\text{afwaarts}}
\]

waarbij \([E]_{x,\text{mix}}\) = concentratie van element E op een zekere afstand x wanneer er enkel conservatieve mixing plaats heeft gehad.

Figuur 7-4: gemeten en conservatief concentratieprofiel voor ammonium (zomer 2000)

Het verloop van dit conservatieve profiel wordt echter bepaald door de keuze van begin- en eindpunt. Ligt het gemeten profiel onder het conservatieve, is er duidelijk een afname die sterker is dan door conservatieve menging kan worden verklaard. In welke zone en hoe sterk de afname is, kan men niet rechtstreeks afleiden met deze benadering. Door echter voor elk individueel meetpunt een conservatieve concentratie te bepalen op basis van de concentraties van die stof in het dichtsbijzijnde opwaartse en afwaartse punt, kan ook het verschil bepaald worden tussen de gemeten concentratie en de conservatieve concentratie, op dat ene punt. Dit verschil geeft aan of er ter hoogte van het meetpunt een toe- of afname is die niet het gevolg is van conservatieve menging. Een toename kan wijzen op een puntlozing (bv zijrivier).
in de zone van het meetpunt. Het kan ook wijzen op allerhande processen of omzettingen die de concentratie van de stof doen toenemen. Omdat bij een grote tussenafstand tussen meetpunten er een langere weg is waarin de processen de concentratie kunnen wijzigen, worden de berekende toe- of afnames gedeeld door die tussenafstand. Zo krijgen we de toe- of afname van die stof per kilometer, bovenop de concentratieverschillen ten gevolge van conservatieve menging.

Door deze berekening voor elk punt van het estuarium uit te voeren, en voor elke campagne, kan een surface plot gemaakt worden met toe- of afnames. Deze worden verder “verschilplots” genoemd, zoals geïllustreerd in Figuur 7-5 voor ammonium. Rood wijst op een afname van NH₄⁺, bovenop het conservatief menggedrag, groen wijst op een toename. Een afname (rood) is in het geval van NH₄⁺ gewenst, een stijging (groen) niet.

![Toename/afname van NH₄-N (mg/km)](image)

Figuur 7-5: Toename (groen) of afname (rood) per kilometer van ammonium (mg/l) indien er geen conservatieve menging was. Afname van ammonium is gunstig, toename ongunstig.
7.2 ZUURSTOF

7.2.1 INLEIDING

Deze toetsparameter bevat 3 rekenparameters:

<table>
<thead>
<tr>
<th>Rekenparameter</th>
<th>Beoordeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absoluut zuurstofminimum</td>
<td>Een daling van het zuurstofgehalte onder het zuurstofminimum van 2,5 mg/l kan ernstige gevolgen hebben voor het ecosysteem van de Schelde. Deze rekenparameter wordt geëvalueerd in elk compartiment niveau 4 voor de data voor ruimtelijke dekking en voor alle data voor temporele dekking (continue meetstations).</td>
</tr>
<tr>
<td>95 percentiel zuurstof</td>
<td>In het zomerhalfjaar (vanaf mei tot en met oktober) wordt het zuurstofgehalte positief geëvalueerd als 95% van de meetingen boven 5 mg/l blijven. Uitzondering vormt de brakke zone. In de winter wordt dit 6 mg/l. Voor de ruimtelijke dekking wordt deze rekenparameter geëvalueerd in elk compartiment. Voor de temporele dekking wordt deze rekenparameter afzonderlijk bepaald en geëvalueerd voor elk continu meetstation. Uitzondering vormt de brakke zone van het estuarium, waar zowel voor temporele als ruimtelijke dekking wordt gewerkt met 90 in plaats van 95 percentiel. De brakke zone kunnen immers van nature hogere respiratie en verminderde primaire productie optreden.</td>
</tr>
<tr>
<td>Duur van de zuurstofdip</td>
<td>Zakken de zuurstofwaarden onder 5 mg/l in de zomer en 6 mg/l in de winter, dan spreken van een zuurstofdip. Wordt deze dipt langer dan 5 uur (op basis van de continue metingen), volgt een negatieve evaluatie.</td>
</tr>
</tbody>
</table>

7.2.2 REKENPARAMETER ABSOLUUT ZUURSTOFMINIMUM

Ruimtelijke dekking (Westerschelde op basis van WS data; Zeeschelde op basis van OMES en VMM data) Voor elke zone werd uit de gehele dataset voor 2009 het minimum bepaald en getoetst aan het criterium, zijnde minimaal 2,5 mg/l (Tabel 7-2). Op basis van de ruimtelijke metingen werd overal aan het criterium voldaan.
Tabel 7-2: Absoluut zuurstofminimum (mg/l) en 95 percentiel waarden. Groene of rode markering duiden op het wel of niet halen van het criterium. (*: in de zones 9 tot en met 14 geldt een 90% in plaats van 95%)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Absoluut minimum</th>
<th>95% Winter* (6 mg/l)</th>
<th>95% Zomer* (5 mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>monding</td>
<td>7,1</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>poly</td>
<td>7,3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>meso</td>
<td>7,3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>9 (gradient)</td>
<td>4,7</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td>10 (gradient)</td>
<td>5,0</td>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>11 (gradient)</td>
<td>4,0</td>
<td>100%</td>
<td>91%</td>
</tr>
<tr>
<td>12 (gradient)</td>
<td>4,1</td>
<td>71%</td>
<td>79%</td>
</tr>
<tr>
<td>13 (oligo)</td>
<td>3,5</td>
<td>70%</td>
<td>73%</td>
</tr>
<tr>
<td>14 (oligo)</td>
<td>3,1</td>
<td>85%</td>
<td>68%</td>
</tr>
<tr>
<td>15 (zoeë lang)</td>
<td>4,2</td>
<td>100%</td>
<td>77%</td>
</tr>
<tr>
<td>16 (zoeë lang)</td>
<td>4,6</td>
<td>96%</td>
<td>98%</td>
</tr>
<tr>
<td>17 (zoeë kort)</td>
<td>3,9</td>
<td>100%</td>
<td>91%</td>
</tr>
<tr>
<td>18 (zoeë kort)</td>
<td>4,7</td>
<td>94%</td>
<td>91%</td>
</tr>
<tr>
<td>19 (zoeë kort)</td>
<td>3,2</td>
<td>100%</td>
<td>86%</td>
</tr>
<tr>
<td>Rupel</td>
<td>3,3</td>
<td>85%</td>
<td>73%</td>
</tr>
<tr>
<td>Durme</td>
<td>4,8</td>
<td>100%</td>
<td>91%</td>
</tr>
</tbody>
</table>

Temporele dekking: sondedata van het UA meetplatform te Kruibeke. In 2009 werd een minimale waarde van 1,02 mg/l waargenomen, waardoor het criterium niet gehaald werd. In de zomermaanden daalde het zuurstofgehalte 49 maal onder de drempel van 2,5 mg/l. De duur van deze periode met ernstig zuurstoftekort gaat van een 10-tal minuten tot maximaal 6 uur, en de tekorten kunnen verspreid over de dag voorkomen (Figuur 7-6). Er is duidelijk geen sprake van nachtelijke hypoxie.

Figuur 7-6: Distributie van het starttijdstip (uur) van de zuurstoftekorten (< 2,5 mg/l)

De slechte score van de temporele dekking (sondedata Kruibeke) lijkt in tegenstrijd met de betere score van de ruimtelijke dekking in dezelfde zone (zone 13). Analyse van sondedata toont echter dat de zuurstofdips steeds voorkwamen tussen de vaarcampagnes door. Op momenten van vaarcampagnes,
geven de continue en periodieke data hetzelfde beeld (Figuur 7-7). Dit toont duidelijk het belang van de
continue data: enkel periodieke data gebruiken, geeft duidelijk een vertekend beeld.

Kruibeke, zomer 2009

[Graph showing data comparison between temporal and spatial data]

Figuur 7-7: Vergelijking tussen temporele data (sonde) en ruimtelijke (boottochten) te Kruibeke (zomer 2009)

In de zoete zone met korte verblijftijd en in de Rupel, worden geen zuurstoftekorten (<2,5 mg/l)
geregistreerd, maar de marge is klein. Naar analogie met de resultaten te Kruibeke, kan men hier ook een
negatieve evaluatie verwachten, mochten er voor 2009 continue data ter beschikking zijn. Voor meer
recente jaren zullen die data wel beschikbaar zijn.

7.2.3 REKENPARAMETER 95 PERCENTIEEL ZUURSTOF

Ruimtelijke dekking:
In de wintermaanden dient 95% van de metingen boven 6mg/l uit te komen (90% in de zone met sterke
gradiënt en oligohaliene zone) voor een positieve evaluatie, in de zomermaanden ligt de grens op 5 mg/l.
De Westerschelde voldoet aan dit criterium, de Zeeschelde, en dan vooral de oligohaliene zone en de zoete
zone met korte verblijftijd, scoren winter en zomer slecht (Tabel 7-2).

Temporele dekking: sondaardata van het UA meetplatform te Kruibeke.
In de zomer van 2009 was slechts 56% van de meetwaarden boven 5 mg/l, in de winter was dit 65%,
waardoor in beide gevallen niet voldaan is aan de voorwaarde voor een positieve beoordeling. Ook hier
scoret de temporele dekking slechter dan de ruimtelijke.

7.2.4 REKENPARAMETER DUUR VAN DE ZUURSTOFDIP

Ruimtelijke dekking: voor de bepaling van de duur van de zuurstofdip zijn continue data vereist,
waardoor de ruimtelijke dekking vervalt.

Temporele dekking:
Zuurstof mag niet langer dan 5 uur onder 5 mg/l of 6 mg/l dalen in zomer resp. winter voor een positieve
 evaluatie. In de zomer van 2009, noch in de winter werd hieraan voldaan: meerdere dips (zuurstof tussen
2,5 en 5 resp. 6 mg/l) kwamen voor. De dips hadden een lengte van enkele uren tot meerdere dagen,
waardoor de evaluatie negatief is.

7.2.5 INTERPRETATIE

Voor de periode 1995-2009 zijn voldoende data beschikbaar voor een surface plot (Figuur 7-8). Daar waar
zuurstof in de Zeeschelde in de jaren negentig quasi heel de lente, zomer en winter onder het absolute
minimum duikt, vermindert dit duidelijk vanaf 2000 met een concentratie rond de Rupelmonding (km 92), om vanaf 2009 steeds boven 2,5 mg/l te blijven. Ook het aantal waarnemingen onder 5 mg/l neemt sterk af in de Zeeschelde. In de Westerschelde wordt, op de klassieke zomer-winterschommelingen na, weinig evolutie waargenomen in het laatste decennium.

Zuurstof (mg/l O2)

Figuur 7-8: Zuurstof (mg/l). Zuurstofwaarden onder 2,5 mg/l (criterium absoluut zuurstofminimum) zijn in rood en oranje weergegeven. De grens van 5 mg/l is in zwarte lijn gemarkeerd. Gele punten duiden momenten van oververzadiging aan.

Op langere termijn zijn wel trends waarneembaar in de Westerschelde. Figuur 7-9 bekijkt de gemiddelden in het zomerhalfjaar, de meest relevante periode voor biota. In de periode voor 1975 vertoont zuurstof geen trend in de mondings- en polyhaliene zone. In de mesohaliene zone is er een beperkte daling van het zuurstofgehalte ($p = 0,023$), in de zone met gradiënt is de daling meer uitgesproken ($p = 1,2*10^{-5}$). In de oligohaliene en zoete zone zijn onvoldoende data voorhanden. Vanaf 1975 is er in de polyhaliene en mesohaliene zone een beperkte toename van zuurstof ($p = 5,3*10^{-4}$ resp. $p = 1,3*10^{-3}$). In de zone met sterke gradiënt is de toename spectaculair met een bijna vertienvoudiging van de zuurstofconcentratie ($p = 3,3*10^{-9}$). In de oligohaliene en zoete zone moet men wachten tot het einde van de jaren negentig voordat een spectaculaire stijging inzet ($p = 1,9*10^{-4}$ resp. $3,4*10^{-7}$).
Figuur 7-9: Langertermijn-trend voor zuurstof (gemiddelden zomerhalfjaar) in de verschillende zones van het estuarium

De verschilplot voor zuurstof (Figuur 7-10) toont dat de zones met grote zuurstofdaling zich bevinden nabij de opwaartse grens van het getijgebied en rond de Rupelmonding (km 92). In de jaren negentig betreft het een zeer brede zone rond de Rupelmonding, waarin er afname is van zuurstof. Na 2003 lijkt deze zone smaller te worden.

Verklaringen voor de zuurstoftrends zijn vooral te vinden in de wijzigende input vanuit het bekken, en het daaruit voortvloeiende herstel van het ecologisch functioneren. De hogere zuurstofwaarden vormen

![Graph: Toename/afname van zuurstof (mg/l/km)](image)

Figuur 7.10: Toename of afname per km van het zuurstofgehalte (mg/l). Een toename van zuurstof (groen) is gunstig, een afname (rood) niet.

7.2.6 BEoordeling zuurstof T2009

Op verschillende plaatsen en tijdstippen worden 1 of meerdere criteria voor zuurstof niet gehaald in 2009, waardoor de evaluatie voor de toetsparameter zuurstof negatief is. De problemen situeren zich in de zone met sterke saliniteitsgradient, oligohaliene zone en de zoete zones. In de oligohaliene zone bevindt zich ook de datasonde voor temporele dekking, welke zeer slecht scoort. In de Westerschelde worden de criteria ruim schoots gehaald, hoewel hier geen temporele evaluatie is. In de zoete zones wordt wel aan het zuurstofminimum voldaan, maar de marge is klein. Vermoedelijk zou een temporele evaluatie in deze zones niet overal positief zijn.
7.3 NUTRIËNTEN

7.3.1 INLEIDING

Deze toetsparameters omvat 10 rekenparameters:

<table>
<thead>
<tr>
<th>Rekenparameter</th>
<th>Beoordeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastNOD</td>
<td>FastNOD= 4.33 ([\text{NH}_4-\text{N}] + 16/14 [\text{NO}_2-\text{N}]), te bepalen in elk compartiment op niveau 4, mag 2 mg/l niet overschrijden voor een positieve evaluatie.</td>
</tr>
<tr>
<td>BOD-C</td>
<td>BOD-C (BOD voor koolstofmineralisatie, na toevoeging van nitrificatieremmer) mag 6 mg/l niet overschrijden, te bepalen in elk compartiment op niveau 4 in de Zeeschelde.</td>
</tr>
<tr>
<td>TDIN</td>
<td>De jaargemiddelde TDIN concentratie (TDIN= NH4+-N + NO2-N + NO3-N), te bepalen in elk compartiment op niveau 4, moet dalen ten opzichte van de gemiddelde TDIN concentratie van de voorbije 6 jaar.</td>
</tr>
<tr>
<td>Totaal P</td>
<td>De jaargemiddelde totaal P concentratie, te bepalen in elk compartiment op niveau 4, moet dalen ten opzichte van de gemiddelde totaal P concentratie van de voorbije 6 jaar.</td>
</tr>
<tr>
<td>DSI</td>
<td>DSI wordt negatief beoordeeld als de waarde langer dan 2 twee opeenvolgende meetcamps onder 0.01 mM daalt (uitgaande van twee meetcamps per maand in het zomerhalfjaar), te bepalen in elk compartiment op niveau 4.</td>
</tr>
<tr>
<td>ICEP-TSi</td>
<td>ICEP-TSi = (Nflux/(1416) – TSiflux/(2820)) * 106 * 12 wanneer N/P < 16</td>
</tr>
<tr>
<td></td>
<td>ICEP-TSi = (Pflux/31 –TSiflux/(28*20)) * 106 * 12 wanneer N/P > 16</td>
</tr>
<tr>
<td></td>
<td>ICEP-TSi dient negatief te zijn voor een positieve evaluatie, te bepalen in elk compartiment op niveau 3.</td>
</tr>
<tr>
<td>ICEP-DSi</td>
<td>ICEP-DSi = (Nflux/(1416) – TSiflux/(2820)) * 106 * 12 wanneer N/P < 16</td>
</tr>
<tr>
<td></td>
<td>ICEP-DSi = (Pflux/31 –TSiflux/(28*20)) * 106 * 12 wanneer N/P > 16</td>
</tr>
<tr>
<td></td>
<td>ICEP-DSi wordt bepaald in elk compartiment op niveau 3. ICEP-DSi < 0 wordt positief geëvalueerd. ICEP-DSi > 0 wordt negatief beoordeeld als de rekenparameter DSI in het afwaartse compartiment (niveau 3) negatief scoort.</td>
</tr>
<tr>
<td>Nitriet</td>
<td>Nitrrietstikstof (NO2-N), maandelijks te bepalen in elk compartiment op niveau 4, mag 0.03 mg/l niet overschrijden voor een positieve evaluatie.</td>
</tr>
<tr>
<td>Ammoniak</td>
<td>Ammoniak (NH3), maandelijks te bepalen in elk compartiment op niveau 4, mag 0.025 mg/l niet overschrijden voor een positieve evaluatie.</td>
</tr>
</tbody>
</table>

Voor de ruimtelijke dekking in de Westerschelde is gekozen om de beoordeling steeds uit te voeren op niveau 3. Tabel 7-3 vat de beoordeling voor alle rekenparameters voor de toetsparameters Nutriënten samen, voor het jaar 2009. In de polyhaline zone zijn echter onvoldoende data beschikbaar voor een evaluatie in 2009. In de mondingszone en mesohaline zone liggen echter monsternamepunten die kort bij de polyhaline zone gelegen zijn. Op basis van die waarnemingen, weergegeven in de surface plots, kan wel een kwalitatieve uitspraak gedaan worden over de polyhaline zone.

Tabel 7-3: Samenvatting van de diverse toetsparameters voor Nutriënten voor 2009, met vermelding van het toetsingscriterium. Groen duidt op het behalen van het criterium, rood niet. Voor TDIN (mg/l) en Totaal P (mg/l) is een daling vereist ten opzichte van de voorbije zes jaar. Omdat een vervanging van tot P door PO4-P wordt voorgesteld, is deze ook opgenomen. Voor DSI zijn twee opeenvolgende metingen onder het toetsingscriterium vereist; bij waarden met een * is die opeenvolging er niet en is de evaluatie bijgevolg positief. Voor ICEP is de evaluatie negatief als de waarde < 0 en in het afwaartse compartiment DSI negatief scoort. Bij Nitriet legt de Evaluatiemethodiek de lat op 0.03 mg/l. In dit
rapport wordt een grens van 0,1 mg/l NO$_2$-N voorgesteld, weergegeven in de kolom Nitriet**. (//: geen evaluatie vereist; -: onvoldoende data voor evaluatie)

<table>
<thead>
<tr>
<th>Zone</th>
<th>FastNOD <2 mg/l</th>
<th>BOD-C <3 mg/l</th>
<th>TDIN (2009) dalings tov 0000 cm</th>
<th>Tot P (2009) dalings tov 0000 cm</th>
<th>PO4-P (2009) dalings tov 0000 cm</th>
<th>DSI >0,28 mg/l</th>
<th>ICEP-TSi <0 kg C/km² d</th>
<th>ICEP-DSi <0 kg C/km² d</th>
<th>TDINflux <20 kTon N/j</th>
<th>Nitriet <0,03 mg/l</th>
<th>Nitriet** <0,1 mg/l</th>
<th>Ammonium <0,025 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>monding</td>
<td>0,9</td>
<td>/</td>
<td>0,6</td>
<td>1,1</td>
<td>0,07</td>
<td>0,05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>poly</td>
<td>-</td>
<td>/</td>
<td>-</td>
</tr>
<tr>
<td>meso</td>
<td>1,3</td>
<td>/</td>
<td>1,6</td>
<td>2,2</td>
<td>0,04</td>
<td>0,05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9 (gradient)</td>
<td>3,4</td>
<td>5,7</td>
<td>3,5</td>
<td>4,3</td>
<td>0,29</td>
<td>0,28</td>
<td>0,10</td>
<td>0,12</td>
<td>0,08</td>
<td>6,5</td>
<td>7,6</td>
<td>0,05</td>
</tr>
<tr>
<td>10 (gradient)</td>
<td>3,1</td>
<td>2,3</td>
<td>3,7</td>
<td>4,5</td>
<td>0,37</td>
<td>0,31</td>
<td>0,15</td>
<td>0,15</td>
<td>0,05</td>
<td>6,1</td>
<td>0,11</td>
<td>0,01</td>
</tr>
<tr>
<td>11 (gradient)</td>
<td>4,0</td>
<td>2,4</td>
<td>4,1</td>
<td>5,0</td>
<td>0,49</td>
<td>0,39</td>
<td>0,15</td>
<td>0,16</td>
<td>0,29</td>
<td>-</td>
<td>0,08</td>
<td>0,01</td>
</tr>
<tr>
<td>12 (gradient)</td>
<td>4,8</td>
<td>3,0</td>
<td>4,7</td>
<td>5,4</td>
<td>0,44</td>
<td>0,35</td>
<td>0,15</td>
<td>0,15</td>
<td>0,14</td>
<td>-</td>
<td>0,07</td>
<td>0,01</td>
</tr>
<tr>
<td>13 (oligo)</td>
<td>6,5</td>
<td>3,3</td>
<td>4,9</td>
<td>5,6</td>
<td>0,51</td>
<td>0,43</td>
<td>0,16</td>
<td>0,15</td>
<td>0,20</td>
<td>9,1</td>
<td>14,3</td>
<td>0,13</td>
</tr>
<tr>
<td>14 (oligo)</td>
<td>7,0</td>
<td>3,3</td>
<td>5,1</td>
<td>5,6</td>
<td>0,72</td>
<td>0,61</td>
<td>0,18</td>
<td>0,18</td>
<td>0,05</td>
<td>-</td>
<td>0,20</td>
<td>0,01</td>
</tr>
<tr>
<td>15 (roet lang)</td>
<td>4,4</td>
<td>3,6</td>
<td>5,2</td>
<td>5,6</td>
<td>0,85</td>
<td>0,72</td>
<td>0,25</td>
<td>0,24</td>
<td>0,05</td>
<td>-</td>
<td>0,14</td>
<td>0,01</td>
</tr>
<tr>
<td>16 (roet lang)</td>
<td>6,6</td>
<td>8,9</td>
<td>5,3</td>
<td>5,8</td>
<td>0,80</td>
<td>0,70</td>
<td>0,21</td>
<td>0,30</td>
<td>0,05</td>
<td>-</td>
<td>0,15</td>
<td>0,01</td>
</tr>
<tr>
<td>17 (roet kort)</td>
<td>6,1</td>
<td>5,4</td>
<td>5,4</td>
<td>6,0</td>
<td>0,84</td>
<td>0,78</td>
<td>0,22</td>
<td>0,32</td>
<td>0,06</td>
<td>-</td>
<td>0,27</td>
<td>0,01</td>
</tr>
<tr>
<td>18 (roet kort)</td>
<td>7,4</td>
<td>6,8</td>
<td>6,0</td>
<td>6,2</td>
<td>0,76</td>
<td>0,74</td>
<td>0,23</td>
<td>0,35</td>
<td>0,03</td>
<td>-</td>
<td>0,35</td>
<td>0,01</td>
</tr>
<tr>
<td>19 (roet kort)</td>
<td>6,6</td>
<td>6,8</td>
<td>6,0</td>
<td>6,3</td>
<td>0,76</td>
<td>0,80</td>
<td>0,25</td>
<td>0,41</td>
<td>0,01</td>
<td>-</td>
<td>0,79</td>
<td>0,01</td>
</tr>
<tr>
<td>Rupel</td>
<td>17,0</td>
<td>10,6</td>
<td>4,7</td>
<td>5,6</td>
<td>0,82</td>
<td>0,52</td>
<td>0,20</td>
<td>0,28</td>
<td>1,07</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Durme</td>
<td>13,9</td>
<td>5,9</td>
<td>5,9</td>
<td>5,8</td>
<td>0,86</td>
<td>0,86</td>
<td>0,18</td>
<td>0,21</td>
<td>0,10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

7.3.2 REKENPARAMETER FASTNOD

7.3.2.1 INLEIDING

FastNOD is de zuurstofvraag voor snel omzetbare stikstofvormen. Een hoge FastNOD kan op korte tijd voor zuurstoftekorten zorgen. De methodiek geeft volgende formule:

FastNOD = 4.33 [NHT-N] + 16/14 [NO$_2$--N]

te bepalen in elk compartiment op niveau 4, voor de Westerschelde werd niveau 3 gekozen. FastNOD mag 2 mg/l niet overstijgen voor een positieve evaluatie.

7.3.2.2 ANALYSE EN INTERPRETATIE

FastNOD kent een duidelijke daling in de periode 1995-2009, een daling die het meest uitgesproken is in de zomer (Figuur 7-11). In de zomer zijn de biochemische processen actief die de componenten van FastNOD (NH$_4$ en NO$_2$) omzetten naar nitraat. Een hoge FastNOD kan dus op korte tijd het zuurstofgehalte naar beneden trekken. Het risico op snelle zuurstofdalingen is, met gedaalde FastNOD, dus sterk afgenomen. De verhoogde FastNOD waarden in de wintermaanden vormen minder een probleem, aangezien door de lagere temperatuur de zuurstof vragende processen vertraagd zijn. Gezien de steeds verbeterende zuurstofcondities in Schelde en boundaries en de dalende input van ammonium, wordt een verdere daling van FastNOD verwacht. De trend is dus positief.

7.3.2.3 BEOORDELING T2009

Enkel de twee meest afwaartse zones voldoen aan het criterium (2 mg/l). De input vanuit de zijrivieren is zeer hoog, zodat interne estuariene processen deze hoge zuurstofvraag niet onmiddellijk kunnen verwerken en ook de Zeeschelde nog een hoge FastNOD kent. Deze rekenparameter wordt bijgevolg negatief geëvalueerd.
7.3.3 REKENPARAMETER BOD-C

7.3.3.1 INLEIDING

Deze rekenparameter is enkel van toepassing in de Zeeschelde: BOD-waarden in de Westerschelde zijn door de grote verdunning sowieso laag en worden dan ook niet gemeten (en geëvalueerd). De rekenparameter BOD-C toetst de biochemische zuurstofvraag voor koolstofmineralisatie. Zuurstofvraag voor nitrificatie zit niet vervat in deze parameter (wel in FastNOD).

7.3.3.2 ANALYSE EN INTERPRETATIE

BOD-C vertoont een duidelijke afname in tijd en ruimte (Figuur 7-12). De hoogste concentraties worden het meest opwaarts waargenomen, waar de vuilvracht vanuit de Bovenschelde (Figuur 7-14) het estuarium bereikt. Vandaar neemt de concentratie geleidelijk af naar de grens toe, door enerzijds verdunning, anderzijds mineralisatie van die vuilvracht. Dit vertaalt zich dan ook in sterk dalende zuurstofwaarden in de meest opwaartse zone. Vanuit de Rupel (meetpunt Boom op ca. 6 km van de Rupelmonding) komt gemiddeld de hoogste vracht naar het estuarium. Dat veroorzaakt een lokale stijging van BOD-C in de Schelde rond de Rupelmonding (km 92), een stijging die grotendeels wordt gemaskerd door het verdunning effect van de ruimer wordende Schelde in afwaartse richting. Vanaf 2007 treedt de grote waterzuivering op van Brussel in werking, waardoor vanaf dan de input vanuit Rupel meer dan halveert. Voor de Dender zijn BOD-C data beschikbaar van begin jaren ’90: een zeer hoge BOD-C input die snel afneemt.

Figuur 7-11: Surface plot FastNOD. De zwarte lijn duidt de grens van 2 mg/l aan.

Figuur 7.12: BOD-C: Biochemische zuurstofvrage voor koolstofmineralisatie (mg/l) in de Zeeschelde. De zwarte lijn markeert de grens van 6 mg/l.

Figuur 7.13: Totale zuurstofvrage te Appels (zoet met korte verblijftijd) tijdens de zomermaanden
7.3.3.3 **BEOORDELING T2009**

In de zoete zone wordt niet steeds voldaan aan het criterium (6 mg/l) (Tabel 7-3). Deze rekenparameter krijgt daarom een negatieve evaluatie in de zoete Schelde. Ook het Rupelbekken scoort slecht.

7.3.4 REKENPARAMETER TDIN

7.3.4.1 **INLEIDING**

Omdat geen duidelijke grenswaarde kan afgeleid worden, maar het duidelijk is dat de TDIN vracht nu te hoog is in vele delen van het estuarium, stelt de methodiek dat de jaargemiddelde TDIN concentratie moet dalen ten opzichte van de gemiddelde TDIN concentratie van de voorbije 6 jaar. TDIN wordt bepaald als som van NH₄-N, NO₂-N en NO₃-N.

7.3.4.2 **ANALYSE EN INTERPRETATIE**

TDIN toont een daling, en dit het meest uitgesproken in de Zeeschelde, een daling die het sterkst is eind jaren ’90, maar zich ook doorzet tot op heden (Figuur 7-16). In de Westerschelde is de daling veel beperker en de laatste jaren niet significant. Op de verschilplot (Figuur 7-17) is duidelijk te zien dat in de Zeeschelde in de jaren ’90 er een aanzienlijke afname was van de grote TDIN toevoer vanuit het bekken. In de zones met zeer lage zuurstofconcentraties speelde denitrificatie in de waterkolom een prominente rol. In de meer recente zuurstofrijke jaren is er nog weinig effectieve afname van TDIN: de concentratiegradiënt aan TDIN in het estuarium (Figuur 7-16) is nu in hoofdzaak te wijten aan conservatieve verdunning. De dalende trend in 2009 ten opzichte van de voorbije 6 jaar, is grotendeels te

Door allerlei maatregelen in het bekken (o.a. naar aanleiding van de KRW) wordt verwacht dat TDIN verder zal dalen. De daling van TDIN zal zich dus naar alle waarschijnlijkheid verder zetten, zodat de trend voor TDIN als gunstig bestempeld kan worden.

Figuur 7-16 Surface plot TDIN (totaal opgelost stikstof, mg/l)
Figuur 7-17: Toename of afname per km van TDIN (mg/l). Een afname (rood) is gunstig, een stijging (groen) niet.
Om een beter beeld te krijgen van de trends in TDIN, worden de belangrijkste componenten van TDIN, namelijk ammonium en nitraat, hier ook onder de loep genomen (hoewel dit geen rekenparameters zijn). De evolutie van NH₄⁺ is de voorbije decennia spectaculair. De surface plot (Figuur 7-18) toont de enorme evolutie die de Zeeschelde heeft doorgemaakt van 1995 tot heden, enerzijds door een duidelijke afname van NH₄⁺ aan de boundaries, anderzijds door een sterke nitrificatie bij toenemende zuurstofwaarden. De verschilplot (Figuur 7-19) toont duidelijk de zones met sterke afname van ammonium, met name zones van nitrificatie. Die strekken zich in de jaren '90 uit over de zoet zone tot aan de rand van de mesohaline zone. Die sterke nitrificatie vergde veel zuurstof: de nitrificatiezones vallen dan ook grotendeels samen met de zones van lage zuurstof. Die nitrificatie vertaalt zich in een duidelijk afgetekende seizoenaal trend: in de warmere zomermaanden daalt ammonium. In de wintermaanden is nitrificatie beperkt en stijgt de concentratie, ondanks verdunningseffecten door hogere afvoer. Op de lange termijnplots (Figuur 7-21) zien we ter hoogte van de grens NH₄⁺ pieken tussen '70 en '80, de periode waarin ook fosfaat maximale waarden kende. De ammoniumpiek was zelfs tot in de mondingszone duidelijk waarnembaar.

Figuur 7-18: Surface plot ammoniumstikstof (mg/l)

![Surface plot ammoniumstikstof (mg/l)](image)
Figuur 7-19: Toename of afname per km van NH$_4$-N (mg/l). Een afname (rood) van NH$_4$ wordt gunstig geëvalueerd, een toename (groen) niet.

Figuur 7-20: Jaargemiddelde Ammoniumstikstof in de zijrivieren

Figuur 7-21: Jaargemiddelde Ammoniumstikstof in de mondingszone en aan de grens (km 58)
Parallel aan stijgende zuurstofwaarden nam ook nitraat sterk toe (Figuur 7-22). Dat is enerzijds een gevolg van de toenemende nitrificatie, waarbij ammonium wordt omgezet tot nitraat. Anderzijds hebben toegenomen zuurstofwaarden de denitrificatie in de waterkolom doen afnemen. Denitrificatie is het anaerobe proces waarbij nitraat wordt omgezet tot stikstofgas. In de quasi zuurstofloze zoete Zeeschelde kon dit proces zeer efficiënt doorgaan. Getuige hiervan is het voorkomen van zeer lage nitraatconcentraties in de zoete Zeeschelde tijdens het zomerhalfjaar in de jaren '90, ondanks het feit dat er toch een grote nitraataanvoer was. Naarmate het zuurstofgehalte toeneemt, zien we nitraat ook toenemen. Ook in de boundaries neemt nitraat gestaag toe met stijgende zuurstofwaarden, terwijl ammonium afneemt (Figuur 7-24). In de lange termijndata piekt nitraat in de mondingszone circa een decennium later dan ammonium (Figuur 7-25).

Figuur 7-22: Surface plot nitraatstikstof (mg/l)

![Surface plot nitraatstikstof (mg/l)](image)
Figuur 7-23: Toename of afname per km van NO3-N (mg/l). Een afname (rood) van nitraat wordt gunstig geëvalueerd, een toename (groen) niet.

Figuur 7-24: Jaargemiddelde Nitraatstikstof in de zijrivieren

Figuur 7-25: Jaargemiddelde Nitraatstikstof in de mondingszone en aan de grens (km 58)
7.3.4.3 **BEOORDELING T2009**

In het gehele estuarium daalt TDIN ten opzichte van de voorbije jaren, de evaluatie is bijgevolg positief (Tabel 7-3).

7.3.5 **REKENPARAMETER TOTAAL P**

7.3.5.1 **INLEIDING**

Bij afwezigheid van een duidelijke grenswaarde, stelt de evaluatiemethodiek een daling voor ten opzichte van de gemiddelde totaal P concentratie van de voorbije 6 jaar.

7.3.5.2 **ANALYSE EN INTERPRETATIE**

Totaal fosfor (totP) vertoont een dalende trend (Figuur 7-26), een daling die het meest uitgesproken is eind jaren '90 in de Zeeschelde. Ook op langere termijn wordt die daling waargenomen (Figuur 7-28): in de mondingszone is er een significante daling vanaf de start van de dataset in 1977 (p=3*10^-9). De laatste jaren wordt geen daling meer waargenomen, in tegendeel. Aan de grens is een langere dataset beschikbaar, waar eerst nog een toename wordt geregistreerd tot een maximum in het begin van de jaren '70. Vanaf dan neemt totP sterk af (p=1,2*10^-16). Ook hier wordt de laatste jaren evenwel geen daling meer waargenomen. Bijgevolg scoort de rekenparameter totP, die de jaargemiddelde totP concentratie vergelijkt met het gemiddelde van de voorbije 6 jaar, negatief. De gevraagde daling wordt immers niet waargenomen.

In alle boundaries neemt totP significant af van de voorbije twee decennia (Figuur 7-27). In de Bovenschelde is deze daling ook de voorbije 6 jaar significant (4,5*10^-3). In het Rupelbekken, waar pas sinds 2007 de waterzuivering van Brussel actief is, wordt echter geen trendbreuk vastgesteld, maar stagneert de totaal P concentratie. Een mogelijke verklaring voor de stagnerende tot P concentraties in het estuarium (inclusief Rupel), is een toegenomen binding van fosfor, hetzij in biota, hetzij aan partikels. Fosfaten kunnen immers gebonden worden aan sediment en zwevende stof via metaal oxyhydroxides onder gunstige zuurstofomstandigheden. De fosfaatconcentratie (Figuur 7-29) vertoont immers wel een daling, ook de laatste zes jaar, al is deze daling meestal niet significant. Enkel in de OMES compartimenten 13 en 15 is een beperkte stijging te zien. Maar van een algemene toename is niet meteen sprake. Aan de boundaries vertoont PO4 een gelijkzijdige trend als totaal fosfor. Indien de evaluatie met PO4-P in plaats van totaal P wordt uitgevoerd, levert dit wel een positief resultaat op. Omdat voor organismen het beschikbare PO4-P relevanter is dan totaal P, geniet een evaluatie van PO4-P de voorkeur.

In 2009 lag de gemiddelde totaal P concentratie hoger dan in de voorbije jaren. 2009 kan echter niet omschreven worden als een uitzonderingsjaar. Hoewel de Bovenschelde voor zowel totaal P als PO4 de laatste jaren een zwak dalende trend vertoont, is er geen aanwijzing dat deze dalende trend zich ook in het estuarium zal verderzetten en zal leiden tot een positieve evaluatie voor de rekenparameter totaal P. De trend voor PO4-P is wel dalend en dus gunstig.
Figuur 7-26: Surface plot totaal fosfor (mg/l)

Figuur 7-27: Jaargemiddeld totaal fosfor in de zijrivieren

Figuur 7-28: Jaargemiddeld totaal fosfor in de mondingszone en aan de grens (km 58)
Op 1 zone na, is totaal fosfor overal gestegen in 2009 ten opzichte van de voorbije 6 jaren (Tabel 7-3). Evaluatie van deze rekenparameter is dus duidelijk negatief. Echter, als niet met totaal fosfor maar enkel met fosfaat wordt gerekend (zoals wordt voorgesteld), is de evaluatie wel overwegend positief.

REKENPARAMETER DSI

INLEIDING

DSi (Opgelost Silicium) is een essentieel element voor de groei van kiezelwieren. Het wordt negatief beoordeeld als de waarde langer dan 2 twee opeenvolgende meetcampagnes onder 0,01 mM (0,28 mg/l) daalt.
7.3.6.2 ANALYSE EN INTERPRETATIE

Voor 2003 was DSi depletie, op enkele uitzonderingen na, een probleem van de Westerschelde (Figuur 7-31). Door verdunning met siliciumpoor Noordzeewater nemen de concentraties vanaf de opwaartse grens van het getijgebied gestaag af richting monding, met daar bovenop de consumptie van DSi in het estuarium zelf. Naar de monding toe geraakt de Si pool bijgevolg uitgeput. Aan de boundaries blijft de DSi concentratie het laatste decennium nagenoeg constant (Figuur 7-33). De debiet kent echter wel jaarlijkse schommelingen, waardoor de totale Si vracht naar het estuarium flink kan variëren. In de zeer natte jaren 2000, 2001 en 2002 kwam hierdoor in totaal veel meer DSi het estuarium in, wat zich vertaalde in hogere concentraties in de Westerschelde en aan de monding.

Sinds 2003 is de algenbloei, en dus ook de DSi opname, sterk toegenomen in de zoete Schelde. De verschilplot voor DSi toont dan ook een sterkere DSi afname in de Zeeschelde vanaf 2003 (Figuur 7-32). Depletie is vanaf dan ook in de Zeeschelde een veel voorkomend fenomeen. In de zomer van 2009 komt depletie in zowat alle zones van het estuarium voor.

De lange termijn trend toont in de mondingszone vanaf de jaren '80 een zwak dalende trend van DSi (Figuur 7-34). Aan de grens is deze trend meer uitgesproken tussen eind '70 en '90. Vanaf dan blijft de DSi concentratie schommelen rond 3 mg/l, met een lichte verhoging tijdens de natte periode rond 2000. Nochtans, chl a vertoont in de periode 1980 – 1990 ook een dalende trend, wat een toegenomen consumptie in deze zone minder waarschijnlijk maakt. Van de Zeeschelde ontbreken geschikte data over deze periode. Een toegenomen consumptie van DSi tussen 1980 – 1990 lijkt er weinig waarschijnlijk, omdat in die periode de Zeeschelde gekend staat als een quasi dode rivier. Mogelijks heeft een verminderte recyclage (onder andere door zoöplankton) van het opgenomen DSi, vastgelegd in biota als biogeen silicium of BSi, naar DSi een rol gespeeld. Vanaf 2003 stijgt chl a sterk in de zoete Schelde, een stijging die ook wordt waargenomen aan de grens. DSi vertoont in deze periode geen significante evolutie aan de grens. Misschien kan een toegenomen recyclage van DSi de toegenomen consumptie compenseren, waardoor aan de grens de concentraties niet significant afnemen.

Er is op korte termijn geen duidelijke trend voor de rekenparameter DSi op te stellen. De DSi concentratie zal in grote mate afhangen van de toekomstige ontwikkeling van de algenbloei en de recyclage van het biogeen silicium (BSi) tot DSi. Het Geactualiseerde Sigmaplan voorziet in de aanleg van verschillende intergetijdengebieden, welke bekend staan om hun rol in het recycleren en vrijstellen van DSi op momenten van depletie. Ook in de Westerschelde zijn er plannen voor het uitbreiden van het areaal intergetijdengebied. De omvang is echter beperker, en bovendien hebben deze gebieden door het veel grotere watervolume in de Westerschelde een kleinere impact op de nutriëntcyclusing. Een toegenomen waterkwaliteit in het zoete deel van het estuarium zal de zoöplanktonpopulatie verder doen ontwikkelen, met mogelijk gunstige gevolgen voor de opgelost silicium concentraties. De mogelijkheden om DSi vrij te stellen zullen dus toenemen, maar het verloop van de DSi consumptie via algenbloei is onduidelijk.
Figuur 7-31: Surface plot van opgelost silicium (DSi, mg/l Si). De rode stippen duiden metingen onder 0,01 mM aan. De grijze zone bevat te weinig datapunten voor een goede weergave.

Figuur 7-32: Toename of afname per km van opgelost silicium (mg/l Si). Toename (groen) van DSi is gunstig, afname (rood) niet.
7.3.6.3 BEoordeling T2009
Het opgelost siliciumgehalte duikt in de Westerschelde en in de zoete delen van de Zeeschelde geregeld voor meerdere opeenvolgende metingen onder de grens van 0,01 mM. De evaluatie van deze rekenparameter is bijgevolg negatief.

7.3.7 REKENPARAMETER ICEP-DSI, ICEP-TSI

7.3.7.1 INLEIDING
De rekenparameter ICEP-DSi werd door Billen en Garnier (2007) ontwikkeld om een indicatie te hebben voor het risico op ongewenste verschuivingen in de algengemeenschap in afwaartse gebieden en dan vooral de kustzeeën. ICEP staat voor “Indicator of Coastal Eutrofication Potential”. Voor deze indicator gaan zij ervan uit dat zolang er voldoende opgelost silicium is, geen schadelijke algen tot bloei zullen komen. De ICEP bepaalt de potentiële koolstofbiomassa die zich kan ontwikkelen in de afwaartse gebieden ten gevolge van ongewenste algenbloei op basis van de resterende hoeveelheden stikstof of fosfor, nadat alle silicium werd geconsumeerd. Om verschillende estuaria met elkaar te kunnen vergelijken, wordt de ICEP uitgedrukt per oppervlakte van het stroomgebied, dus in de eenheid kg C. km² dag⁻¹. De ICEP is gebaseerd op de molaire Redfield ratios waarbij C:N:P:Si zich verhouden als 106:16:1:20. De berekening gaat als volgt:

\[
\text{ICEP} = \frac{N_{\text{flux}}}{14 \times 16} - \frac{S_{\text{flux}}}{28 \times 20} \times 106 \times 12 \quad \text{wanneer } N/P < 16 \text{ (N is limiterend over P)}
\]
ICEP = \((P_{\text{flux}}/31 - S_{\text{flux}}/(28*20)) \times 10^6 \times 12\) wanneer \(N/P > 16\) (\(P\) is limiterend over \(N\))

Voor de Schelde anno 2009 (en voorgaande jaren) is \(P\) limiterend over \(N\), waardoor de laatste berekeningswijze van toepassing is. De methode van Billen en Garnier (2007) is opgesteld voor het ganse estuarium (niveau 1): \(N_{\text{flux}}, P_{\text{flux}}\) en \(S_{\text{flux}}\) stellen de gemiddelde fluxen voor totaal stikstof, totaal fosfor en opgelost silicium aan de monding voor. Omdat door enkel te werken met de flux aan opgelost silicium, een onderschatting gemaakt wordt van de totale siliciumflux, is er dus een mogelijke overschatting van het eutrofiëringprobleem. Daarom wordt in de evaluatiemethode gesteld om een ICEP te berekenen met DSi waarden (ICEP-DSi) en een ICEP te berekenen met de totale siliciumflux, zijnde DSi + BSi (ICEP-TSi) waarbij DSi staat voor opgelost Silicium, BSi voor biogeen en TSi voor totaal silicium. Hoewel ICEP werd ontwikkeld voor een evaluatie op niveau 1 (gehele estuarium), stelt de evaluatiemethode voor om ICEP niet enkel te berekenen aan de monding van het estuarium om de impact op de kustzee te bepalen, maar ook in elke zone (niveau drie) van het estuarium. Indien beide ICEP bepalingen evolueren doorheen het estuarium, kan dit informatie opleveren over het estuariene ecosysteemfunctioneren.

Wanneer zones functioneren als silicium-sink of -bron, kan dit invloed hebben op de ICEP. Cyclering van BSi naar DSi door bijvoorbeeld zoöplankton kan veranderingen teweegbrengen in de beide ICEP-indicatoren en hun onderlinge verhouding.

7.3.7.2 ANALYSE EN INTERPRETATIE

ICEP bepalingen vereisen fluxberekeningen, welke de inzet van een ecosysteemmodel vereisen. Voor de T2009 werd zo'n model opgezet. Dit ecosysteemmodel is een vereenvoudigde versie van het OMES-model (Cox et al, 2004, 2005) dat op zijn beurt gebaseerd was op het MOSES model (Soetaert en Herman, 1994, 1995a,b). Het gebruikte ecosysteemmodel bevat een 1D tijgemiddeld transportmodel en beschrijvingen van de belangrijkste biogeochemische processen die de ecologische waterkwaliteit van het estuarium bepalen. In het bijzonder bevat het formuleringen voor primaire productie, zoöplanktonbiomassa en de begrazing van fytoplankton door zoöplankton. Een uitgebreide beschrijving van het model wordt beschikbaar gesteld via VLIZ. De beschrijving zal alle gekozen procesformuleringen bevatten en de parameterwaarden waarmee de simulaties gedaan zijn. Het model zelf is geïmplementeerd in het vrij toegankelijke softwarepakket “R” (Soetaert en Herman, 2009; Soetaert en Meysman, 2012) en de gebruikte code wordt beschikbaar gemaakt via het VLIZ. Ook de werkwijze om de resultaten te reproduceren die gebruikt zijn voor T2009 zal hiervan deel uitmaken.

In de '70 bereikte de totale fosforflux naar de Noordzee een maximum (Billen en garnier, 2007), en kende ook de ICEP-DSi haar maximale waarde. Ook de totaal fosfor concentraties piekten in die periode. Vanaf de jaren '80 vertoont Silicium (DSi) een zwak dalende trend (p=0,01) in de mondingszone, wat schadelijke algenbloei extra in de hand werkt. Totaal fosfor en fosfaat tonen echter een sterkere dalende trend in de periode 1980 - 1995 (p=1,2*10^-8), waardoor ICEP-DSi vanaf de jaren '80 significant afneemt (Figuur 7-35). Half de jaren '90 stopt de daling van de fosforconcentratie, en stagneert ICEP-DSi rond 10 kg C/m²/dag. Dit is een aanzienlijke potentiële biomassa aan ongewenste algen, die in de Noordzee tot bloei
kunnen komen. Als de dalende Si trend zich verder zet, zonder verdere daling van fosfor, zal ICEP terug toenemen. De huidige trend voor ICEP is dus neutraal tot ongunstig.

7.3.7.3 \textbf{BEOORDELING T2009}

ICEP-TSi en ICEP-DSi werden bepaald op jaarbasis voor de verschillende zones niveau 3. De mondingszone weerspiegelt de output op estuariumschaal. Zowel ICEP-TSi als ICEP-DSi hebben positieve waarden (7,3 kg C/km²/jaar resp. 9,3 kg C/km²/jaar (Tabel 7-3)), wat wijst op een potentieel voor schadelijke algenbloei in de Noordzee. Aangezien in het meest afwaartse compartiment van de Schelde en in de Noordzee opeenvolgende DSi tekortschieten in 2009, is het risico reëel en worden deze rekenindicatoren negatief beoordeeld.

Billen en Garnier (2007) hebben de ICEP-DSi toegepast op diverse estuaria. Ook voor pristiene situaties werd de ICEP-DSi gemodelleerd. In onverstoorde milieus levert de ICEP-DSi steevast negatieve waarden op: silicium is steeds in overmaat aanwezig. In sterk eutrofe systemen, stijgt de ICEP-DSi boven 0 uit tot ca. 20 à 30 kg C/km²/dag, wat wijst op een groot potentieel van schadelijke algenbloei. De Schelde kan in de jaren ‘70 en ‘80 als zeer eutroof beschreven worden, met ICEP waarden tussen 30 en 40 kg C/km²/dag. In 2009 is de Schelde “matig” eutroof volgens de ICEP benadering.

Om omzettingen in het estuarium zelf in kaart te brengen, zijn ICEP berekeningen vereist in elke zone op niveau 3. Deze werden voor 2009 bepaald (Tabel 7-3). Nabij Gent zijn ICEP-DSi en ICEP-TSi quasi gelijk: silicium komt in hoofdzaak in opgeloste vorm het estuarium in. Nabij de monding is het gevaar op schadelijke algenbloei, op basis van ICEP-DSi, even groot als nabij Gent, ondanks de afname van stikstof langs de monding. DSi is immers evenzeer gedaald, en P, wat bij ontbering van Si het limiterende element wordt voor schadelijke algenbloei, is niet evenredig met gedaald. De ICEP-TSi waarden liggen wel lager aan de monding: wanneer het biogene silicium mee in rekening wordt gebracht, zijn de N-P-Si verhouding en vrachten wel iets gunstiger aan de monding. Met andere woorden: de filterfunctie van het estuarium maakt dat de kans op schadelijke algenbloei kleiner wordt aan de monding ten opzichte van de opwaartse grens van het getijgebied, zij het zeer beperkt.

ICEP werd ook bepaald voor elke maand in het zomerhalfjaar. Deze data leveren echter geen duidelijke resultaten of inzichten op en worden hier niet verder besproken.
7.3.8 REKENPARAMETER TDINFLUX

7.3.8.1 INLEIDING

Niet enkel de verhouding van de nutriënten, ook hun absolute concentraties kunnen een rol spelen in de verstoring van de fytoplanktonpopulatie aan de monding van de Schelde en de kustzee. Phaeocystis wordt hierbij als indicatorspecies gebruikt voor schadelijke algenbloei. Echter niet alle Phaeocystis is schadelijk: pas wanneer deze soort bij een te groot nutriëntaanbod tot overmatige bloei komt, worden grote kolonies (>400 μm) gevormd die niet meer begraasd kunnen worden door het zoöplankton, waardoor Phaeocystis plots een ongewenste soort wordt. De trofische efficiëntie van het ecosysteem komt immers in het gedrang. In de evaluatiemethodiek wordt de maximaal toelaatbare uitstroom van TDIN ingeschat op 20 kton/jaar.

7.3.8.2 ANALYSE EN INTERPRETATIE

De TDINflux bepaling vereist de inzet van een ecosysteemmodel (zie ook fluxberekeningen voor ICEP 7.3.7.2). Het gebruikte ecosysteemmodel is opgesteld voor het huidige ecosysteem; voor fluxen uit het verleden worden data uit literatuur aangewend (Hofmann et al., 2008). De flux bereikte in de jaren '80 een maximum, en oversteeg van '70 tot en met het begin van het nieuwe millennium 20 kton/jaar (Tabel 7-4). Ook nitraat, dat het hoofdaandeel van de TDINflux uitmaken, bereikte een piek in de jaren '80 (Figuur 7-25). Sindsdien is de concentratie significant in dalende lijn (p=0,005). De trend voor de TDINflux kan positief geëvalueerd worden.

Tabel 7-4: TDINfluxen

<table>
<thead>
<tr>
<th>periode</th>
<th>'70</th>
<th>'80-'86</th>
<th>'01-'04</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDINflux (kton/jaar)</td>
<td>26,6</td>
<td>50,4</td>
<td>33,6</td>
<td>14,3</td>
</tr>
</tbody>
</table>

7.3.8.3 T2009

In 2009 bedroeg de TDIN flux 14,3 kton/jaar, waardoor deze parameter een gunstige evaluatie krijgt.

7.3.9 REKENPARAMETER NITRIET

7.3.9.1 INLEIDING

De maximale concentratie aan nitrietstikstof (NO$_2$-N) mag 0,03 mg/l niet overschrijden voor een positieve evaluatie. Deze grens wordt bij de evaluatie van de methodiek wel in vraag gesteld: een grens op 0,1 mg/l lijkt zinniger en meer in overeenstemming met bestaande wettelijke kaders.

7.3.9.2 ANALYSE EN INTERPRETATIE

In 1995 werd quasi jaar rond het nitrietgehalte van 0,03 mg/l overschreden. Sinds ca. 2003, parallel aan de sterke verbetering van het zuurstofgehalte in het estuarium, is het nitrietgehalte fors gedaald. Nitriet is een intermediair product bij het denitrificatietransgres. Door de sterke toename van zuurstof en bijgevolg afname van denitrificatie, neemt wellicht ook het nitrietprobleem af. Het concentreert zich meer en meer naar de Bovenschelde en naar de wintermaanden, waar ook de nitraatwaarden het hoogst zijn.
Nitriet is duidelijk in dalende lijn. De evolutie van de rekenparameter nitriet kan gunstig beschouwd worden, maar jaar rond onder 0,03 mg/l NO₂⁻-N ligt nog niet meteen in het verschiet. De grens van 0,1 mg/l daarentegen is wel binnen bereik.

Figuur 7-36: Surface plot Nitriet (mg/l NO₂⁻N). De zwarte lijn markeert de grens van 0,03 mg/l. De streeplijn duidt de nieuw voorgestelde grenswaarde van 0,1mg/l aan.

7.3.9.3 BEOORDELING T2009

In 2009 werd nergens in het estuarium het oorspronkelijke criterium voor nitriet (0,03 mg/l) gehaald (Tabel 7-3). Voor de polyhaliene zone is geen evaluatie, maar op basis van de aangrenzende stations, kan ook hier verwacht worden dat nitriet 0,03 mg/l oversteeg in 2009. Beschouwen we een grens van 0,1 mg/l NO₂⁻-N, voldoet de Westerschelde wel, maar scoort de Zeeschelde nog steeds ondermaats (Figuur 7-36).

7.3.10 TOETSPARAMEER AMMONIAK

7.3.10.1 INLEIDING

Ammoniak wordt niet standaard gemeten in de Westerschelde of Zeeschelde, waardoor de data niet rechtstreeks voorhanden zijn. Ammoniak kan echter wel berekend worden uit het chemisch evenwicht met ammonium:

\[
\text{NH}_3 + \text{H}^+ \rightleftharpoons \text{NH}_4^+ , \text{met een evenwichtsconstante } K_a \text{ die temperatuur afhankelijk is.}
\]

\[
K_a = [\text{NH}_3][\text{H}^+] / [\text{NH}_4^+] \\
\text{p}K_a = 0.09018 + 2729.92/T
\]

NH₃, H⁺ (via pH) en temperatuur zijn gekend zodat N₄H bepaald kan worden.
7.3.10.2 **ANALYSE EN INTERPRETATIE**

Ammoniakvorming was een probleem in de zuurstofloze Zeeschelde van de jaren '90. Met de toename van O₂ daalde ammonium drastisch en zo ook het schadelijke ammoniak, zodat het in 2009 geen probleem meer stelt. De trend voor NH₄⁺ is nog steeds dalend, zowel in het estuarium als in de zijrivieren, zodat een verdere daling van ammoniak verwacht mag worden. Hoge pH waarden doen echter het evenwicht van NH₄⁺ naar NH₃ verschuiven. pH is in de zoete zone, door zeer sterke primaire productie, in stijgende lijn. Door de zeer sterke afname van NH₄⁺ is het gevaar op grote ammoniakvorming echter klein. De trend voor deze rekenparameter blijft dus gunstig.

![Surface plot Ammoniak](image.png)

Figuur 7-37: Surface plot Ammoniak. De zwarte lijn markeert de grens van 0,025 mg/l.

7.3.10.3 **BEOORDELING T2009**

In 2009 bleef ammoniak steeds onder 0,025 mg/l, wat een positieve beoordeling oplevert.

7.3.11 **BEOORDELING T2009 NUTRIËNTEN**

Tabel 7-3 vat reeds de beoordeling van nutriënten samen: deze is globaal genomen ongunstig.

De rekenparameters die wijzen op een direct risico voor zuurstofproblemen, met name FastNOD en BOD-C, scoren beide slecht in de Zeeschelde. De slechte score bij de toetsparameter Zuurstof ligt dan ook voor de hand.

De rekenparameters TDIN en TDINflux scoren positief. En als PO₄ in plaats van totaal P wordt beschouwd, is ook hier de evaluatie vrij gunstig. Dit betekent echter niet zomaar dat er geen problemen meer zijn met deze nutriënten. TDIN en PO₄ evalueren echter een trend, bij ontbreken van een goede referentiewaarde, en die trend is dalende. Maar N en P in het estuarium zijn nog steeds hoog, zeker in het
zoet, zodat we niet van een zeer goede toestand kunnen spreken. Het uitgangspunt van de evaluatiemethodiek is echter niet het streven naar een pristiene toestand, maar wel die concentraties toelaten zodat er geen schadelijke gevolgen zijn voor het ecosysteem. En deze lijken er op het eerste zicht niet te zijn in het estuarium zelf. Algenbloei in het estuarium, en zeker in het zoete, is zeer groot, maar leidt niet tot directe problemen. Wellicht voorkomt lichtlimitatie een ontsporing van het systeem. Naar de Noordzee toe vormen de grote nutriëntvrachten wel een potentiële probleem. Hoewel de TDIN-vracht onder het criterium van 20 kTon N/jaar duikt, blijft de ICEP nog steeds te hoog.

Het toxische ammoniak verdween uit het estuarium. Schadelijke nitriet concentraties werden nog wel waargenomen, maar de trend is hier duidelijk positief: hopelijk behoorde dit binnenkort tot het verleden.

De trends in de rekenparameters voor Nutriënten worden volledig toegeschreven aan de veranderingen in het bekken enerzijds, en de veranderingen in het ecosysteemfunctioneren zelf die uit de dalende nutriëntinput in het estuarium voortvloeiden anderzijds.

7.4 ALGENBLOEI

7.4.1 INLEIDING

Deze toetsparameter omvat drie rekenparameters:

<table>
<thead>
<tr>
<th>Rekenparameter</th>
<th>Beoordeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>P:B ratio</td>
<td>De ratio wordt berekend door de dagproductie te delen door de chl a concentratie in de waterkolom (dus geïntegreerd over de diepte, net als de primaire productie), dit voor elk compartiment niveau 3, maandelijks te bepalen tijdens lente en zomer. Waarden lager dan 10 worden negatief beoordeeld. Het jaargemiddelde dient te stijgen voor een positieve evaluatie.</td>
</tr>
<tr>
<td>Phaeocystis</td>
<td>Vanaf een cellendichtheid van meer dan 4 x 10⁶ cellen per liter is er sprake van problematische Phaeocystis bloei, maandelijks te bepalen in lente en zomer, op niveau 3.</td>
</tr>
<tr>
<td>Cyanobacteriën</td>
<td>Vanaf een cellendichtheid van meer dan 2 x 10⁷ cellen per liter is er sprake van problematische cyanobacteriebloei, maandelijks te bepalen in lente en zomer, in brak en zoet, op niveau 3.</td>
</tr>
</tbody>
</table>

7.4.2 REKENPARAMETER P:B RATIO

7.4.2.1 INLEIDING

In de evaluatiemethodiek wordt de bepaling van de primaire productie niet duidelijk omschreven. In de “Snelle screening van de evaluatiemethodiek” werd voorgesteld om te werken met de bruto primaire productie per eenheid biomassa (P_b), omdat dit vermoedelijk de beste resultaten zal geven. We duiden de ratio van “bruto primaire productie per eenheid biomassa (P_b)” over “biomassa (B)” aan als P_b:B. Ter evaluatie van de methodiek, wordt eerst de ratio van “bruto primaire productie (P)” over “biomassa (B)”, aangeduid als P:B, berekend. De biomassa aan algen kan ingeschat worden aan de hand van het chlorofyl a gehalte. Wanneer verder bij deze rekenparameter gesproken wordt over biomassa, gaat het dus in werkelijkheid om chl a concentraties (µg/l). Een omrekening naar biomassa wordt niet gedaan. De bruto primaire productie, verder kortweg primaire productie, werd bepaald in mmol C.m⁻².d⁻¹.
Evaluatie is enkel vereist op niveau 3 tijdens lente en zomer. Ter evaluatie en ter verfijning van de methodiek om bandbreedtes af te leiden, zal de P:B ratio in eerste instantie voor alle beschikbare zones (niveau 4) worden bepaald, jaar rond.

In het kader van MONEOS worden sinds 2010 alle fotosynthese parameters en omgevingsvariabelen gemeten die vereist zijn voor de bepaling van primaire productie in de Zeeschelde. Voordien was dit niet steeds zo, maar uit bestaande datasets kunnen deze wel afgeleid of ingeschat worden. 2009 was een overgangsjaar, waarin de overstap werd gemaakt naar de gestructureerde metingen conform het MONEOS programma. Voor de Westerschelde zijn deze data niet beschikbaar in het kader van MONEOS, maar kan er beroep gedaan worden op de dataset van NIOZ.

De evaluatie van de P:B en Pe:B ratio’s berust, volgens de Evaluatiemethodiek, op 2 criteria. Ten eerste moet een minimale waarde bereikt worden en ten tweede stelt de methodiek dat een stijging van de ratio nodig is voor een gunstige evaluatie, bij gebrek aan goede referentiewaarden. Zoals in de evaluatiemethodiek vermeld, werd de daar voorgestelde P:B-grens waarde (10) afgeleid op basis van enkele schaarse data voor de Westerschelde. De evaluatiemethodiek vermeldt daarom dan ook dat verfijning van deze grenswaarde nodig is. Ook een grenswaarde voor de Pe:B ratio werd tot heden niet vastgelegd, maar wordt op basis van de resultaten die volgen afgeleid. In wat volgt, wordt ook dieper ingegaan op de interpretatie van P:B en Pe:B.

7.4.2.2 ANALYSE EN INTERPRETATIE

Zowel de P:B als de Pe:B ratio’s vertonen een duidelijke seizoenaal trend (Figuur 7-38). Dat is niet verwonderlijk, want lichtbeschikbaarheid is de overheersende sturende factor van de dieptegemiddelde primaire productie. Primaire productie in het Schelde-estuariaum is tegenwoordig voornamelijk licht gelimiteerd. Dit wordt bevestigd door het algemene verband tussen P:B en instralend licht die beide een uitgesproken seizoenaal patroon vertonen (Figuur 7-39). Wanneer we P:B ratio’s willen gebruiken om iets te zeggen over iets anders dan lichtbeschikbaarheid, moeten we ervoor zorgen dat we situaties vergelijken met gelijkaardige lichtbeschikbaarheid. Uit het globale verband in Figuur 7-39 kunnen we niet besluiten dat nutriënt-limiatie niet voorkomt in specifieke zones en in specifieke maanden of jaren. Nutriënt-limiatie in specifieke zones of periodes zal resulteren in P:B-ratio’s die lager zijn dan verwacht op basis van de lichtbeschikbaarheid.
Figuur 7.38: Seizoenaliteit in 2009 van P:B en P:B ratio’s. Data van de polyhalienne zone is afkomstig van Hansweert.

Figuur 7-39 maskeert niet alleen het voorkomen van nutriënt-limitatie in bepaalde zones en periodes, maar ook de aanwezige longitudinale gradaties. Ook langsheen de estuariën als worden verschillen in P:B grotendeels verklaard door het verschil in lichtbeschikbaarheid. In dit verband is de ratio Ze/Zm (Ze = eufothische diepte, Zm = mengdiepte) de belangrijkste verklarende factor (meer informatie over deze verklarende factor is te vinden bij 7.6.2 Lichtlimitatie). In licht gelimiteerde systemen staat deze ratio in verhouding met de potentiële primaire productie. Figuur 7-40 toont het profiel van Ze/Zm langsheen de estuariën als, uitgemiddeld per zone op niveau 3. De hoogste potentie voor primaire productie vinden we in de mesohaliene zone. Dit heeft te maken met de gunstige, kleine gemiddelde diepte in dat compartiment, waarin het Verdronken Land van Saeftinghe is gelegen. Ook in de zoete zone met korte verblijftijd is een hoge potentiële primaire productie. Daarna volgen de mondingszone en de polyhaliene zone. De minste potentie voor primaire productie vinden we de zone met sterke saliniteitsgradiënt, de oligohaliene zone en de zoete zone met lange verblijftijd. Een P:B-profiel langsheen de estuariën als dat afwijkt van dit kwalitatieve beeld in Ze/Zm, is indicatief voor andere factoren dan lichtbeschikbaarheid die de primaire productie beïnvloeden.

Figuur 7-40: Profiel langs de estuariën als van de ratio Ze/Zm. De zwarte lijn is de mediaan van alle observaties in de lente- en zomermaanden (maart-september) tussen 1996 en 2009. De grijze band geeft het 25% en 75% percentiel weer.

Figuur 7-41 toont de opgemeten P:B en Pb:B profielen voor 2009 langsheen de estuariën als. Deze wijken in verschillende maanden af van het kwalitatieve beeld dat we zouden verwachten op basis van het Ze/Zm-profiel. In het bijzonder valt op dat P:B en Pb:B in de zoete zone met korte verblijftijd (zone 7) zo goed als altijd kleiner is dan in de kustzone (zone 1), hoewel de potentie voor primaire productie op basis van het Ze/Zm profiel lager is in de kustzone. Ook de ratio's in de oligohaliene zone (5) en de zoete zone met lange verblijftijd (6) verhouden zich omgekeerd dan wat op basis van het Ze/Zm profiel verwacht zou worden. De verhouding tussen de ratio's van de zone met sterke saliniteitsgradiënt (4) en de oligohaliene zone (5) varieert van maand tot maand. Samenvattend zijn de ratio's in de zoete zone van het estuarium dus lager dan verwacht.

Vooraleer we hieruit conclusies kunnen trekken merken we nog op dat de verhouding Ze/Zm niet de enige factor is met een longitudinale gradiënt langsheen de estuariën als die een invloed heeft op P:B en Pb:B. De fotosynthetische parameters Pmax en α vertonen allebei een stijgende trend richting de monding (Kromkamp et al, 1991; Cox et al, 2010). Om in te schatten in hoeverre de hierboven vastgestelde afwijkingen van het verwachte profiel op basis van Ze/Zm ratio's te verklaren zijn door een trend in de fotosynthetische parameters, kijken we in eerste instantie naar de P:B en Pb:B profielen van de jaren 1991, 2006 en 2011.
Om de lange termijntrends van de P:B en Pe:B ratio’s te beoordelen moeten we kijken naar situaties met gelijkaardige lichtcondities. De evaluatiemethodiek vermeldt dat de P:B-ratio beoordeeld moet worden in lente en zomer, zonder te specifiëren om welke maanden het gaat. Om een zo volledig mogelijk beeld te krijgen, beschouwen we hier de maanden maart tot en met september. De ratio’s voor de verschillende jaren worden uitgemiddeld over deze maanden, en vergeleken per zone op niveau 3. Op deze manier garanderen we gelijkaardige condities van lichtbeschikbaarheid. Zowel de nominale waarden per zone als de profielen langs de estuariïse as vertonen een niet-triviale lange-termijn trend (Tabel 7-5 en Tabel 7-6). In de mondingszone en de polyhaline zone waren de ratio’s nooit zo hoog als in 1991. Tussen 2006 en 2011 vertonen de ratio’s een consistent stijgende trend, en de waarden uit 2011 benaderen opnieuw de waarden uit 1991.
In 2009 zijn de P:B en PBB-ratio's in de zoete zone met korte verblijftijd lager dan in de mondingszone, hoewel op basis van Ze/Zm profielen het omgekeerde werd verwacht. Ook de ratio's in de oligohaliene zone en de zoete zone met lange verblijftijd verhouden zich omgekeerd dan verwacht. Dit kwam reeds tot uiting in de maandelijkse profielen in Figuur 7-38 en wordt weerspiegeld in de gemiddelden in Tabel 7-5 en Tabel 7-6. In 2009 en 2011 zijn de P:B ratio's daarentegen wel consistent met het Ze/Zm profiel. We besluiten dat het verschil in fotosynthetische parameters tussen de zoete zone met korte verblijftijd en de mondingszone niet van die aard is om het verschil tussen de P:B-ratio in beide zones in 2009 te verklaren, en evenmin om het verschil in P:B-ratio's tussen de oligohaliene zone en de zoete zone met lange verblijftijd. Ze/Zm blijkt dus in dit geval een goede leidraad.

Daarentegen, de P:B ratio's in de zone met sterke saliniteitsgradiënt (4) zijn voor alle geanalyseerde jaren hoger dan die in de oligohaliene zone (5), hoewel men op basis van het Ze/Zm profiel het omgekeerde zou kunnen verwachten. Vermoedelijk speelt hier wel de gradiënt in fotosynthetische parameters.

In de Westerschelde verwachten we op basis van het Ze/Zm profiel een gelijkvaardige P:B-ratio in de mondingszone en in de polyhaliene zone, terwijl de uitgesproken gunstigere Ze/Zm ratio in mesohaliene zone een hogere P:B ratio doet verwachten. Ook hier speelt vermoedelijk de gradiënt in fotosynthetische parameters een rol, die er voor zorgt dat de geobserveerde P:B ratio's in de polyhaliene en mesohaliene zones lager liggen dan wat we op basis van het Ze/Zm-profiel zouden verwachten.

7.4.2.3 BEOORDELING T2009 P:B-RATIO

Een goede referentiewaarde voor de P:B en PBB-ratio kwantificeren is een moeilijke opdracht. Het zijn immers indicatoren die door een hele reeks factoren beïnvloed worden. In de evaluatiemethode werd als drempelwaarde voor P:B de waarde 10 vooropgesteld, te behalen in lente en zomer. Voor PBB diende nog een drempelwaarde te worden bepaald. De voorgestelde drempelwaarde was gebaseerd op observaties in
Mondingszone, polyhaliene & mesohaliene zone
We houden vast aan richtgetal 10 voor P:B, voor het lente-zomer gemiddelde (maart-september). We stellen voor om naar het gemiddelde te kijken, zodat enkele onderschrijdingen van deze drempel tijdens het jaar, niet noodzakelijk een negatieve evaluatie op moet leveren. Op basis van het Ze/Zm-profiel in Figuur 7-40 zouden we voor de mesohaliene zone een strenger criterium kunnen voorstellen. We vermoeden echter dat de gradiete in fotosynthetische parameters het effect van de gunstige Ze/Zm ratio ten dele opheft. Daarom houden we voorlopig ook voor de mesohaliene zone hetzelfde richtgetal. Voor T2009 betekent dit dat het criterium niet wordt behaald, en volgt dus een negatieve beoordeling mondingszone, polyhaliene en mesohaliene zone.

De evaluatiemethodiek stipuleert ook dat de trend positief moet zijn. Als we 2011 buiten beschouwing laten dan is dit het geval voor de mondingszone, de polyhaliene en de mesohaliene zone. En volgt een positieve evaluatie op het trend-criterium. Als we 2011 erbij nemen dan zien we dat de trend in de mesohaliene zone niet eenduidig is. De trend na 2009 valt echter strikt genomen buiten het bestek van deze referentiemeting, en we houden dus een positieve evaluatie wat betreft dit criterium op in de mesohaliene zone.

Zone met sterke saliniteitsgradiënt, oligohaliene zone & zoete zone met lange verblijftijd
Op basis van het Ze/Zm-profiel (cf. bovenstaande redenering) is een minder streng criterium gerechtvaardigd in de zones 4, 5 en 6 (Zone met sterke saliniteitsgradiënt, oligohaliene zone en zoete zone met lange verblijftijd). De beschikbare gegevens die binnen het bestek van de T2009-evaluatie zijn geanalyseerd zijn echter onvoldoende om een goed gefundeerde drempelwaarde te bepalen. We stellen voor om voorlopig richtgetal 5 voor P:B te hanteren in deze zones en deze drempelwaarde te verfijnen in een volgende evaluatie. Dit criterium wordt in 2009 niet gehaald in zones 4,5 en 6 en er volgt dus een negatieve evaluatie.

De trend is enkel in de oligohaliene zone positief. Wanneer we de observaties uit 2011 mee in overweging nemen dan stellen we vast dat de trend niet eenduidig is. De trend na 2009 valt echter strikt genomen buiten het bestek van deze referentiemeting, en we houden dus een positieve evaluatie wat betreft dit criterium in de oligohaliene zone.

Zoete zone met korte verblijftijd
7.4.2.4 OPMERKINGEN BIJ P:B

De methode om fotosynthetische parameters te bepalen verschilt in 2006 met de methode in 2009 en later. Wij kunnen niet uitsluiten dat dit aan de basis kan liggen voor de opvallend hoge waarden voor de P:B ratio in de zoete zones in 2006. Het valt aan te bevelen om met het oog op de volgende evaluatie in 2015, de methodologie ongewijzigd te laten om een eenduidige interpretatie van de trends mogelijk te maken.

Het ganse estuarium is zich nog steeds aan het herstellen van de uiterst vervuilde toestand waarin het zich bevond. Dit herstel is niet afgerond. In het bijzonder kunnen we een verder herstel van het voedselweb verwachten. De complexe interacties in een voedselweb maken het effect van de terugkeer van predatoren over het algemeen moeilijk tot onmogelijk te voorspellen. Via zogenaamde ‘trophic cascades’ kunnen vrij abrupte veranderingen optreden in andere delen van het voedselweb (e.g. Beninca et al., 2008, Scheffer et al., 2001). Fytoplankton, als basis van het voedselweb, is hier zeker vatbaar voor. In het bijzonder is in een ten dele hersteld voedselweb een verhoogde predatie door zoöplankton te verwachten. Maar een verder herstel, met de terugkeer van o.a. vissen, kan een achteruitgang van de zoöplanktonpopulatie te weegbrengen met een bijhorende toename in fytoplanktonbiomassa. In een volgende evaluatie moet dit verdere herstel in rekening worden gebracht om de richtgetallen voor P:B en Pn:B verder te verfijnen.

De P:B-ratio is sterk afhankelijk van de morfologie van het estuarium. Daarom is het uiterst belangrijk om de productiviteit (P), te bepalen met up to date bathymetrische gegevens. In het bijzonder hebben werken die de gemiddelde diepte van het estuarium verhogen een negatief effect op de P:B ratio (bv verdiepingswerken, zandextracties, ...). Dit negatief effect zal enkel tot uiting komen in P:B-ratio wanneer geactualiseerde bathymetrische data gebruikt worden om de productiviteit P te bepalen.

7.4.2.5 BEOORDELING T2009 Pn:B RATIO

Zoals reeds uiteengezet wordt P:B beïnvloed door meerdere factoren. Met al deze factoren moet rekening gehouden worden in de interpretatie van de ratio, en dus ook bij de beoordeling van Pn:B:

- Lichtbeschikbaarheid
 - Lichtinstraling (seizoenaliteit, weersomstandigheden)
 - Lichtdoordringen in de waterkolom (Ze; eufotische diepte)
 - Mengdiepe en morfologie (Zm)
- Photosynthetische parameters
 - Longitudinale gradiënt
 - Seizoenaliteit (T, soortensamenstelling)
 - Nutriëntlimitatie. Wanneer nutriëntlimitatie optreedt kan begraizing via nutriëntcyclering ook een rol spelen.

De ratio Pn:B wordt nu niet enkel meer bepaald door bovenstaande factoren die P:B beïnvloeden, maar ook door alle factoren die de algenbiomassa B beïnvloeden. Belangrijk hierbij is dat de biomassa B op een bepaald tijdstip het netto resultaat is van de biomassa-opbouw doorheen het jaar, terwijl de P:B-ratio...
grotendeels bepaald wordt door omgevingsvariabelen op het moment van de bepaling ervan. De PB:B-ratio wordt dus beïnvloed door de historiek van de factoren die hem bepalen. Als we ervan uit gaan dat het estuarium elk voorjaar “ge-reset” wordt, is de evolutie van die factoren doorheen het jaar van belang. In het bijzonder kunnen bepaalde events een grote impact hebben op PB, terwijl ze niet of weinig van belang zijn voor de P:B-ratio. Bijvoorbeeld: als er tijdens het voorjaar een debietspiek optreedt, zal een gedeelte van de aanwezige biomassa uitspoelen. Het gevolg is een verminderde potentie voor biomassaopbouw tijdens de rest van het jaar met als resultaat een relatief lage PB:B ratio doorheen het jaar.

Naast de (historiek van de) hierboven opgesomde factoren die P:B-bepalen, wordt PB:B verder nog beïnvloed door:

- Begrazing
- Import en export in een bepaalde zone, beïnvloed door debiet en (longitudinaal) transport
- Respiratie

Hoewel de PB:B-ratio in principe moeilijker interpreteerbaar is dan de P:B-ratio, merken we op dat op het eerste gezicht beide ratio’s een gelijkwaardig kwalitatief verloop kennen, zowel doorheen het jaar als langs de estuariene as (Figuur 7-42 en Figuur 7-43). Dit blijkt ook uit de zomer gemiddelde waarden voor 2009 (Tabel 7-5 en Figuur 7-42). Hieruit zouden we kunnen besluiten dat de spatio-temporele patronen in PB:B grotendeels bepaald worden door de spatio-temporele patronen in P:B.

7.4.3 **REKENPARAMETER PHAEOCYSTIS**

Voor de voorbewerking van de aangeleverde fytoplanktondata zie indicator ‘Flora en fauna’. Voor het aantal *Phaeocystis* cellen valt een duidelijke periodiciteit in de ontwikkeling te verwachten. Er is indien een significante trend werd verwacht (Pearsons test) getest op de aanwezigheid van een lineaire trend rekening houdende met de aanwezige cyclische trend met een periode van een jaar.

In de mesohaline zone is het aantal *Phaeocystis* cellen, zoals valt te verwachten voor een overwegend zoutwater organism, laag. Er wordt geen significante trend in de ontwikkelingen waargenomen over de afgelopen 20 jaar, en de cellen aantallen benaderen nooit de grens van het maximaal toelaatbare (4*10^6 cellen/l). De rekenparameter *Phaeocystis* wordt daarom positief geëvalueerd.

7.4.4 **REKENPARAMETER CYANOBACTERIËN**

Voor cyanobacteriën zijn onvoldoende data beschikbaar voor een toetsing van deze rekenparameter. Echter, op basis van consultatie van experten, werd geconcludeerd dat cyanobacteriën momenteel geen probleem stellen in het estuarium, en dat daarom geen adequate monitoring wordt uitgevoerd. De rekenparameter Cyanobacteriën wordt bij gevolg niet meegenomen in de evaluatie van de toetsparameter Algen.

7.4.5 **BEOORDELING T2009 ALGENBLOEI**

De rekenparameters P:B en Pb:B worden voor 2009 negatief geëvalueerd. De trend is nog wel positief, al verraden de data van 2011 dat deze trend niet geheel wordt verder gezet. De rekenparameters met betrekking op de plaagalglen kunnen positief beoordeeld worden.

Een volledige evaluatie van de Pb:P ratio, die algenbloeí moet evalueren in functie van de energiedoorslag in de voedselketen, is nog niet voorhanden. Daarvoor zijn voorlopig te weinig datapunten beschikbaar. Echter, de negatieve score van de P:B ratio leidt duidelijk tot een negatieve score voor de toetsparameter Algenbloeí.
7.5 TOXISCHE STOFFEN

7.5.1 INLEIDING

Deze toetsparameter omvat vier rekenparameters:

<table>
<thead>
<tr>
<th>Rekenparameter</th>
<th>Beoordeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbodemkwaliteit in het Schelde-estuarium</td>
<td>In het Vlaamse deel van het Schelde-estuarium wordt de waterbodemkwaliteit bepaald in het waterbodemmeetnet a.h.v. het triade-concept (een beoordeling gebaseerd op drie componenten: 1) een fysico-chemische, 2) een ecotoxicologische, 3) een biologische component). In Nederland is er geen specifieke monitoring omtrent waterbodemkwaliteit in de Westerschelde en monding van de Schelde, alleen zijn havensedimenten in het verleden getoetst op baggerkwaliteit.</td>
</tr>
<tr>
<td>Chemische waterkwaliteit oppervlaktewater in het Schelde-estuarium</td>
<td>De beoordeling van het oppervlaktewater geschiedt via de normen voor goede ecologische en chemische toestand van de KRW. Dit omvat de beoordeling van 33 prioritaire stoffen voor de chemische kwaliteit en 8 overige relevante stoffen voor de ecologische kwaliteit. Daarnaast zijn er voor het Schelde-stroomgebied drie stroomgebiedsrelevante stoffen aangeduid, te weten Cu (koper), Zn (zink) en PCB’s.</td>
</tr>
<tr>
<td>Zwemwaterkwaliteit in het Schelde-estuarium</td>
<td>De zwemwaterkwaliteit wordt bepaald door twee parameters: intestinale enterokokken (kve/100 ml) en Escheria coli (kve/100 ml). Voor kust- en overgangswater zijn er strengere normen dan in binnenwateren.</td>
</tr>
</tbody>
</table>
| Milieuverontreinigende stoffen in het voedselweb in het Schelde-estuarium | Er is geen gezamenlijk grensoverschrijdend monitoringsprogramma voor milieuverontreinigende stoffen in biota van het Schelde-estuarium. Monitoring in biota bestaat momenteel uit:
 - Vlaanderen: jaarlijkse gemiddelde concentratie van PCB’s, DDT’s, Cd, Hg, Pb (µg/kg versgewicht) in paling
 - Nederland: jaarlijkse gemiddelde concentratie van PCB’s, DDT’s, Cd, Hg, Pb (µg/kg versgewicht) in mossel en bot
Onder de KRW zijn er drie stoffen waarvoor een Milieukwaliteitsnorm (MKN) voor biota is opgenomen: hexachloorbenzeen, hexachloorbutadien en (methyl)kwik. |

7.5.2 REKENPARAMETER WATERBODEMKWALITEIT

7.5.2.1 INLEIDING

Sinds 1994 wordt in Vlaanderen aan een waterbodemmeetnet gewerkt. In 2000 heeft de Vlaamse MilieuMaatschappij (VMM) een routinematig waterbodemmeetnet opgestart. Dit meetnet omvat een integrale kwaliteitsbeoordeling, en omvat fysisch-chemische analyses (o.a. van organische en anorganische verontreinigende stoffen), biologische analyses (biotische waterbodemindex) en ecotoxicologische testen (kortdurend test met algen en kreeftachtigen). Elk onderdeel van deze zogenaamde triade geeft informatie over de toestand van de waterbodem (aanwezigheid van bepaalde stoffen, potentiële effecten, actuele kwaliteit), maar biedt afzonderlijk onvoldoende informatie om een ecologisch oordeel over de kwaliteit
van de waterbodem te vellen. De triade methode integreert de resultaten van chemische, biologische en ecotoxicologische analyses en laat toe waterbodems in te delen in kwaliteitsklassen, gaande van niet verontreinigd tot sterk verontreinigd.

De in Vlaanderen toegepaste richtwaarden voor gehalten aan vervuilende stoffen in waterbodems in enkel zoete waterlopen, zoet mesotidaal laaglandestuarium en zoete meren staan weergegeven in Tabel 7-7 (besluit van de Vlaamse Regering van 1 juni 1995 houdende algemene en sectorale bepalingen inzake milieuhygiëne).

<table>
<thead>
<tr>
<th>parameter</th>
<th>eenheid</th>
<th>milieukwaliteitsnorm</th>
</tr>
</thead>
<tbody>
<tr>
<td>organische stoffen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>o,p'-DDE</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>o,p'-DDT</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td>mg/kg DS</td>
<td>0,30</td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>mg/kg DS</td>
<td>0,50</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>acenafteen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>acenaftyleen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>α-endosulfan</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>α-hexachloorcyclohexaan (α-HCH)</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>aldrin</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>anthraceen</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>benzo(a)anthraceen</td>
<td>mg/kg DS</td>
<td>0,15</td>
</tr>
<tr>
<td>benzo(a)pyreene</td>
<td>mg/kg DS</td>
<td>0,15</td>
</tr>
<tr>
<td>benzo(b)fluoranteen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>benzo(g,h,i)peryleen</td>
<td>mg/kg DS</td>
<td>0,13</td>
</tr>
<tr>
<td>benzo(k)fluoranteen (b)</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>benzeen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>parameter</td>
<td>eenheid</td>
<td>milieukwaliteitsnorm</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ß-hexachloorcyclohexaan (ß-HCH)</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>chryseen</td>
<td>mg/kg DS</td>
<td>0,21</td>
</tr>
<tr>
<td>dibenzo(a,h)anthraceen</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>dieldrin</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>endrin</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>ethylbenzeen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>fenanthreen</td>
<td>mg/kg DS</td>
<td>0,21</td>
</tr>
<tr>
<td>fluorantene</td>
<td>mg/kg DS</td>
<td>0,37</td>
</tr>
<tr>
<td>fluoreen</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>γ-hexachloorcyclohexaan (γ-HCH)</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>indeno(1,2,3-cd)pyreen</td>
<td>mg/kg DS</td>
<td>0,14</td>
</tr>
<tr>
<td>naftaleen</td>
<td>mg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>ortho-Xyleen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>PCB 28</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>PCB 31</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>PCB 49</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>PCB 52</td>
<td>µg/kg DS</td>
<td>0,10</td>
</tr>
<tr>
<td>PCB 101</td>
<td>µg/kg DS</td>
<td>0,40</td>
</tr>
<tr>
<td>PCB 118</td>
<td>µg/kg DS</td>
<td>0,30</td>
</tr>
<tr>
<td>PCB 138</td>
<td>µg/kg DS</td>
<td>0,70</td>
</tr>
<tr>
<td>PCB 153</td>
<td>µg/kg DS</td>
<td>0,90</td>
</tr>
<tr>
<td>PCB 180</td>
<td>µg/kg DS</td>
<td>0,60</td>
</tr>
<tr>
<td>pyrean</td>
<td>mg/kg DS</td>
<td>0,30</td>
</tr>
<tr>
<td>styrean</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>tolueen</td>
<td>mg/kg DS</td>
<td>0,20</td>
</tr>
<tr>
<td>anorganische stoffen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arseen, totaal</td>
<td>mg/kg DS</td>
<td>19</td>
</tr>
<tr>
<td>cadmium, totaal</td>
<td>mg/kg DS</td>
<td>1</td>
</tr>
<tr>
<td>chroom, totaal</td>
<td>mg/kg DS</td>
<td>62</td>
</tr>
</tbody>
</table>
In Nederland bestaat er een driejaarlijkse monitoring van de waterbodemkwaliteit in de Westerschelde en monding van de Schelde. Dit betreft meetingen van verschillende chemische stoffen in waterbodems van een aantal locaties (zie Figuur 7-44). Er vindt echter momenteel geen standaard normtoetsing plaats van gehalten aan chemische stoffen in waterbodems.

Figuur 7-44: Overzicht van locaties waar waterbodemmonsters zijn genomen in de periode 1996-2010 (Vroom e.a., 2012).

7.5.2.2 GEBRUIKTE DATA

Voor de T2009 voor waterbodems in het Vlaamse deel van het Schelde-estuarium zijn gegevens opgenomen afkomstig van de Vlaamse MilieuMaatschappij (VMM).

Locaties Triade:
1. Beneden Zeeschelde (154100) – Grens
2. Beneden Zeeschelde (162000) – Hemiksem/Bazel
3. Beneden zeeschelde (164000) – Dendermonde
4. Beneden Zeeschelde (168900) – Melle
5. Boven Schelde (172100) – Zwijnaarde
6. Dender (499500) – Dendermonde
7. Dijle (212400) – Mechelen
8. Grote Nete (253000) – Itegem
9. Kleine Nete (272000) – Grobbendonk
10. Rupel (210000) – Niel
11. Zenne (341550) – Humbeek
12. Zenne (345000) – Eppegem
Voor het Nederlandse deel van het Schelde-estuarium (de Westerschelde) zijn figuren overgenomen van de eerstelijnsrapportage Westerschelde (Vroom e.a., 2010). Een selectie van te presenteren stoffen is gemaakt gebaseerd op 1) mogelijke probleemstoffen in biota (kwik (Hg), cadmium (Cd)), in water (verschillende PAK’s, metalen, TBT) en de stroomgebied relevante stoffen (PCB’s (PCB-153), koper (Cu) en zink (Zn)).

Locaties waterbodem Westerschelde (metalen: Al, As, Cd, Cr, Hg, Ni, Pb, Zn):
1. Hansweert geul
2. Hoedekenskerke
3. Schaar van Ouden Doel
4. Terneuzen Boei 20
5. Vlissingen Boei SSVH
6. Walcheren 2
7. Walcheren 20
8. Wielingen Boei W2

Locaties waterbodem Westerschelde (organische micro’s: 13 PCB’s, 13 PAK’s, organotinverbindingen):
1. Baarland drempel
2. Bath Boei 68
3. Bath Boei 71
4. Borssele drempel
5. Hansweert Boei OHMG
6. Hoedekenskerke Boei 4
7. Kruiningen Perkpolder drempel
8. Schaar van Ouden Doel
9. Speelmansgat
10. Terneuzen Boei WPT2
11. Vlissingen Boei SSVH
12. Wielingen oost

7.5.2.3 ANALYSE

Beoordeling van waterbodems in het Vlaamse deel van het Schelde-estuarium laat zien dat regelmatig waterbodems in een eindklasse 4 (zwaar vervuild) zijn ingedeeld (Figuur 7-45 en Figuur 7-46). Bij alle locaties is een verbetering in de eindbeoordeling zichtbaar in de opeenvolgende jaren, met uitzondering van de locatie Dender-Dendermonde. Bij de locaties Zenne zijn alleen meetingen in 2010 beschikbaar, die voor de drie takken van de triade en de eindbeoordeling klasse 4 (rood) scoren, d.w.z. sterk afwijkend t.o.v. de referentie. De locatie Kleine Nete – Grobbendonk is de enige locatie die sinds 2005 een eindbeoordeling klasse 1 (blauw) scoort, d.w.z. niet verontreinigd. In 2008-2010 zijn er nog enkele locaties die klasse 4 beoordelingen scoren: Beneden Zeeschelde – Hemiksen/Bazel (biologie), Grote Nete – Itegem (Fysico-chemie), Zenne – Humbeek en Zenne – Eppegem (alle takken en eindklasse), Dender – Dendermonde (biologie en eindklasse).
Figuur 7-45: Triade-beoordeling van waterbodems in het Vlaamse deel van het Schelde-estuarium ten opzichte van de referentie. Blauw = niet verontreinigd (klasse 1), groen = licht verontreinigd (klasse 2), geel = verontreinigd (klasse 3), rood = sterk verontreinigd (klasse 4).

Figuur 7-46: Triade-beoordeling van waterbodems in het Vlaamse deel van het Schelde-estuarium ten opzichte van de referentie. Blauw = niet verontreinigd (klasse 1), groen = licht verontreinigd (klasse 2), geel = verontreinigd (klasse 3), rood = sterk verontreinigd (klasse 4).

7.5.2.4 **INTERPRETATIE**

De (fysisch-chemische) kwaliteit van waterbodems in het Schelde-estuarium lijkt op basis van de triade beoordelingen in het Vlaamse deel en de gehalten aan chemische stoffen in de Westerschelde te verbeteren in de periode 1996-2010. Waterbodems in de Westerschelde zijn echter op basis van het ontbreken van huidige normen niet getoetst, dus een volledige beoordeling van deze waterbodems is momenteel niet mogelijk. Gehalten aan chemische stoffen zijn over het algemeen hoger stroomopwaarts in het Schelde-estuarium en nemen stroomafwaarts af. In het Vlaamse deel van het Schelde-estuarium zijn momenteel de meest vervuilde waterbodems aangetroffen in de Dender en met name de Zenne.

7.5.2.5 **BEOORDELING T2009**

7.5.3 **REKENPARAMETER CHEMISCHE WATERKwaliteit**

7.5.3.1 **INLEIDING**

Voor oppervlaktewater bestaat er een breed monitoringsmeetnet zowel in het Vlaamse als het Nederlandse deel van het Schelde-estuarium. De beoordeling van het oppervlaktewater geschiedt voor deze T0-bepaling via de milieukwaliteitsnormen (MKN) voor goede ecologische en chemische toestand van de KRW. Dit omvat de beoordeling van 33 prioritaire stoffen voor de chemische kwaliteit (zie Tabel 7-8) en 8 overige relevante stoffen voor de ecologische kwaliteit. De MKN hiervoor zijn vastgelegd in Bijlage I van de richtlijn 2008/105/EG van het Europees Parlement en de Raad van 16 december 2008. Er is een MKN-JG dat een norm voor het jaargemiddelde geeft, en een MKN-MAC dat een norm geeft voor een maximaal aanvaardbare concentratie (piekbelasting). Daarnaast zijn er voor het Schelde-stroomgebied drie stroomgebiedsrelevante stoffen aangeduid, te weten koper (Cu), zink (Zn) en PolyChloorBiphenylen (PCB's).

Tabel 7-8: De 33 prioritaire stoffen van de Kaderrichtlijn Water

<table>
<thead>
<tr>
<th>nr</th>
<th>CAS-nummer</th>
<th>EU-nummer</th>
<th>Naam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15972-60-8</td>
<td>240-110-8</td>
<td>alachloor</td>
</tr>
<tr>
<td>2</td>
<td>120-12-7</td>
<td>204-371-1</td>
<td>antraceen</td>
</tr>
<tr>
<td>3</td>
<td>1912-24-9</td>
<td>217-617-8</td>
<td>atrazine</td>
</tr>
<tr>
<td>4</td>
<td>71-43-2</td>
<td>200-753-7</td>
<td>benzeen</td>
</tr>
<tr>
<td>5</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
<td>gebromeerde difenylethers (2)</td>
</tr>
<tr>
<td>6</td>
<td>52534-81-9</td>
<td>n.v.t.</td>
<td>pentabroomdifeny leth (congeneren 28, 47, 99, 100, 153 en 154)</td>
</tr>
<tr>
<td>7</td>
<td>7440-43-9</td>
<td>231-152-8</td>
<td>cadmium en cadmiumverbindingen</td>
</tr>
<tr>
<td>6</td>
<td>75-72-3</td>
<td>200-262-8</td>
<td>tetrachloor-koolstof, koolstoftetrachloride</td>
</tr>
</tbody>
</table>
Kaderrichtlijn Water prioritaire stoffenlijst

<table>
<thead>
<tr>
<th>nr</th>
<th>CAS-nummer</th>
<th>EU-nummer</th>
<th>Naam</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>85535-84-8</td>
<td>287-476-5</td>
<td>ClO-13-chlooralkanen (2)</td>
</tr>
<tr>
<td>8</td>
<td>470-90-6</td>
<td>207-432-0</td>
<td>chloorfenvinfos</td>
</tr>
<tr>
<td>9</td>
<td>2921-88-2</td>
<td>220-864-4</td>
<td>chloorpyrifos, chloorpyrifosethyl</td>
</tr>
<tr>
<td>9 bis</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
<td>cycloodieenbestrijdingsmiddelen:</td>
</tr>
<tr>
<td>9 ter</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
<td>DDT-totaal</td>
</tr>
<tr>
<td>10</td>
<td>107-06-2</td>
<td>203-436-1</td>
<td>1,2-dichloorethaan</td>
</tr>
<tr>
<td>11</td>
<td>75-09-2</td>
<td>200-538-9</td>
<td>dichloormethaan</td>
</tr>
<tr>
<td>12</td>
<td>117-81-7</td>
<td>204-211-0</td>
<td>bis(2-ethylhexyl) ditlaat (DEHP)</td>
</tr>
<tr>
<td>13</td>
<td>330-34-1</td>
<td>205-354-4</td>
<td>diuron</td>
</tr>
<tr>
<td>14</td>
<td>115-29-7</td>
<td>204-079-4</td>
<td>endosulfan</td>
</tr>
<tr>
<td>15</td>
<td>206-44-0</td>
<td>205-912-4</td>
<td>fluorantheen (4)</td>
</tr>
<tr>
<td>16</td>
<td>118-74-1</td>
<td>204-273-9</td>
<td>hexachloorbenzeen</td>
</tr>
<tr>
<td>17</td>
<td>57-68-3</td>
<td>201-765-5</td>
<td>hexachloorbutadien</td>
</tr>
<tr>
<td>18</td>
<td>608-73-1</td>
<td>210-158-9</td>
<td>hexachloorevocubeeaan</td>
</tr>
<tr>
<td>19</td>
<td>34123-59-6</td>
<td>251-835-4</td>
<td>isoproturon</td>
</tr>
<tr>
<td>20</td>
<td>7439-92-1</td>
<td>211-100-4</td>
<td>isodrin en loodverbindingen</td>
</tr>
<tr>
<td>21</td>
<td>7439-97-6</td>
<td>211-106-7</td>
<td>kwik en kwikverbindingen</td>
</tr>
<tr>
<td>22</td>
<td>91-20-3</td>
<td>202-049-5</td>
<td>naphthaan</td>
</tr>
<tr>
<td>23</td>
<td>7440-02-0</td>
<td>213-111-4</td>
<td>nijl en nikkelverbindingen</td>
</tr>
<tr>
<td>24</td>
<td>25154-52-3</td>
<td>246-672-0</td>
<td>(4-nonylfenol) (1)</td>
</tr>
<tr>
<td>25</td>
<td>1806-26-4</td>
<td>217-302-5</td>
<td>(p-nonylfenol) (1)</td>
</tr>
<tr>
<td>26</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
<td>octylfenolen (1)</td>
</tr>
<tr>
<td>27</td>
<td>50-32-8</td>
<td>200-028-5</td>
<td>benzo[a]pyreen (1)</td>
</tr>
<tr>
<td>28</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
<td>polycyclische aromatische koolwaterstoffen, PAK's (1)</td>
</tr>
<tr>
<td>29</td>
<td>50-32-8</td>
<td>200-028-5</td>
<td>benzo[a]pyreen (1)</td>
</tr>
<tr>
<td>30</td>
<td>688-73-3</td>
<td>211-704-4</td>
<td>tributylverbindingen</td>
</tr>
<tr>
<td>31</td>
<td>56643-28-4</td>
<td>n.v.t.</td>
<td>tributyltin-kation</td>
</tr>
<tr>
<td>32</td>
<td>67-66-3</td>
<td>200-663-8</td>
<td>trichloorethyleen, trichloorethyleen PER</td>
</tr>
<tr>
<td>33</td>
<td>1382-09-8</td>
<td>216-428-8</td>
<td>trifuralin</td>
</tr>
</tbody>
</table>

Voetnoot (1)

Wanneer groepen stoffen zijn geselecteerd, zijn typische voorbeelden daarvan als indicatieve parameter vermeld (tussen haakjes en zonder nummer). Voor deze groepen stoffen moeten de indicatieve parameters worden bepaald door de analysemethoden.
Kaderrichtlijn Water prioritaire stoffenlijst

<table>
<thead>
<tr>
<th>nr</th>
<th>CAS-nummer</th>
<th>EU-nummer</th>
<th>Naam</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>Deze groepen van stoffen omvatten meestal een groot aantal verschillende verbindingen. Adequate indicative parameters kunnen op dit moment niet worden vermeld.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Alleen pentabroom bifenylether (CAS-nummer 32534-81-9).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Fluorantheen komt voor op de lijst als een indicator voor andere, gevaarlijker polyaromatische koolwaterstoffen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS
Chemical Abstract Services.

EU-nummer
Nummer in de Europese inventaris van bestaande handelsstoffen (European Inventory of Existing Commercial Chemical Substances: EINECS) of de Europese lijst van stoffen waarvan kennisgeving is gedaan (European List of Notified Chemicals: ELINCS)

7.5.3.2 GEBRUIKTE DATA

Voor de toetsing van oppervlaktewaterkwaliteit in het Vlaamse deel van het Schelde-estuarium is gebruik gemaakt van de jaarlijkse beoordelingen van de VMM voor het jaar 2009. Op basis van deze beoordelingen zijn de belangrijkste stoffen geselecteerd die tot normoverschrijding hebben geleid in het Vlaams deel van het Schelde-estuarium. Voor deze stoffen zijn voor zover mogelijk meer gedetailleerde grafieken opgenomen, zodat eveneens trendinformatie kan worden weergegeven. Deze trendgrafieken zijn gebaseerd op databases die zijn aangeleverd door de opdrachtgever. Monitoring van oppervlaktewater van het Vlaams deel van het Schelde-estuarium betreft 29 locaties. Hiervan zijn er 10 het meest relevant (o.a. vanwege koppeling met de waterbodemgegevens). Dit betreft waar mogelijk de volgende locaties in Vlaamse deel Schelde estuarium, met de desbetreffende nummering zoals aangegeven op het datafiche:

2. Beneden Zeeschelde (154100) – Grens
7. Beneden Zeeschelde (162000) – Hemiksem/Bazel
12. Beneden Zeeschelde (164000) – Dendermonde
17. Beneden Zeeschelde (168900) – Melle
20. Dender (499500) – Dendermonde
21. Dijle (212400) – Mechelen
23. Grote Nete (253000) – Itegem
25. Kleine Nete (272000) – Grobbendonk
29. Zenne (341560) – Zemst

Voor toetsing van de kwaliteit van het oppervlaktewater in het Nederlandse deel van het Schelde-estuarium in 2009 is informatie ontvangen van Rijkswaterstaat m.b.t. zout oppervlaktewater Zeeland (presentatie KRW toetsing RWS ZL 2009 - chemische parameters, 17 september 2010). De toetsing heeft plaatsgevonden via de KRW systematiek; echter er heeft geen middeling over drie jaar plaatsgevonden en is de toetsing per locatie en niet per waterlichaam uitgevoerd. Op basis van deze beoordelingen zijn de belangrijkste stoffen geselecteerd die tot normoverschrijding hebben geleid in het Nederlands deel van het Schelde-estuarium. Voor deze stoffen zijn voor zover mogelijk meer gedetailleerde grafieken opgenomen, zodat eveneens trendinformatie kan worden weergegeven. Deze trendgrafieken zijn gebaseerd op figuren uit de eerstelijnsbeoordeling van de Westerschelde (Vroom e.a., 2012) en aangevuld met KRW-normen. Locaties voor oppervlaktewaterbemonstering in de Westerschelde zijn weergegeven in Figuur 7-47 en betreft de locaties:

1. Walcheren 2
2. Vlissingen Boei SSVH
3. Terneuzen Boei 20
4. Hansweert Geul
5. Schaar van Ouden Doel
7.5.3.3 **ANALYSE**

In Tabel 7-9 is voor de verschillende waterlichamen van het Vlaams deel van het Schelde-estuarium de toetsing voor gevaarlijke stoffen weergegeven. Voor de waterlichamen waar een beoordeling is uitgevoerd zijn deze allen als ‘niet goed’ beoordeeld. Een overzicht van de bepalende stoffen voor deze beoordeling zijn vervolgens weergegeven in Tabel 7-10.

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Code</th>
<th>Beoordeling KRW - gevaarlijke stoffen</th>
<th>Niet conform</th>
<th>Wel conform</th>
<th>Bepalende stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>GETIJDEDURME</td>
<td>VL08_39</td>
<td>nmb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEESCHELDE I</td>
<td>VL08_40</td>
<td>niet goed</td>
<td>168900: 6</td>
<td>168900:103</td>
<td></td>
</tr>
<tr>
<td>ZEESCHELDE II</td>
<td>VL08_41</td>
<td>niet goed</td>
<td>164000: 5</td>
<td>164000:5</td>
<td></td>
</tr>
<tr>
<td>ZEESCHELDE III + RUPEL</td>
<td>VL05_42</td>
<td>Niet goed</td>
<td>162000: 5</td>
<td>162000:108</td>
<td></td>
</tr>
<tr>
<td>Locatie</td>
<td>Code</td>
<td>Beoordeling KRW - gevaarlijke stoffen</td>
<td>Niet conform</td>
<td>Wel conform</td>
<td>Bepalende stoffen</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ZEESCHELDE IV</td>
<td>VL.08_43</td>
<td>niet goed</td>
<td>154100: 5</td>
<td>154100: 102</td>
<td>Bepalend voor chemische toestand (prioritaire stof): - Benzo(g,h,i)peryleen + Indeno(1,2,3-cd)pyr - Benzo(b+k)fluorantheen Bepalend voor ecologische toestand: - Pyreen - Kobalt, opgelost - Arseen, opgelost</td>
</tr>
<tr>
<td>GETIJDEIJLIE & GETIJDEZENNE</td>
<td>VL.08_95</td>
<td>niet goed</td>
<td>211700: 1</td>
<td>211700: 22</td>
<td>Bepalend voor chemische toestand (prioritaire stof): - Benzo(g,h,i)peryleen + Indeno(1,2,3-cd)pyr - Benzo(b+k)fluorantheen - Benzo(a)pyreen - Fluorantheen - Tributyltin Bepalend voor ecologische toestand: - Kobalt, opgelost - Aceenaftaan - Pyreen - Arseen, opgelost - Fenantreen - PCB t</td>
</tr>
<tr>
<td>GETIJDENETES</td>
<td>VL.08_132</td>
<td>niet goed</td>
<td>251500: 1</td>
<td>251500: 22</td>
<td>Bepalend voor ecologische toestand: - Kobalt, opgelost</td>
</tr>
<tr>
<td>BOVEN-SCHELDE IV</td>
<td>VL.05_58</td>
<td>Niet goed</td>
<td>172100: 5</td>
<td>172100: 102</td>
<td>Bepalend voor chemische toestand (prioritaire stof): - Benzo(g,h,i)peryleen + Indeno(1,2,3-cd)pyr - Benzo(b+k)fluorantheen - Fluorantheen Bepalend voor ecologische toestand: - Uranium, opgelost - Pyreen</td>
</tr>
</tbody>
</table>
Tabel 7-10: Milieuverontreinigende stoffen die naar voren komen uit de Beoordeling van KRW gevaarlijke stoffen in oppervlaktewater van het Vlaams deel van het Schelde-estuarium (VMM).

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Code</th>
<th>Beoordeling KRW - gevaarlijke stoffen</th>
<th>Niet conform</th>
<th>Wel conform</th>
<th>Bepalende stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTWERPSE HAVENDOKKEN + SCHELDERIJN-VERBINDING</td>
<td>V1.05_187</td>
<td>mnb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 7-11: Milieuverontreinigende stoffen die naar voren komen uit de beoordeling van KRW gevaarlijke stoffen in oppervlaktewater van het Nederlands deel van het Schelde-estuarium (VMM).

<table>
<thead>
<tr>
<th>Prioritaire stoffen KRW</th>
<th>Overige relevante stoffen</th>
<th>Stroomgebied relevante stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyreene</td>
<td>Pyreene</td>
<td>PCB's</td>
</tr>
<tr>
<td>Σ Benzo(b)fluorantheen + benzo(k)fluorantheen</td>
<td>Acefaat</td>
<td>Koper</td>
</tr>
<tr>
<td>1 Σ Benzo(g,h,i)pyrelene + indeno(1,2,3-cd)pyreene</td>
<td>Fenantrene</td>
<td>Zink</td>
</tr>
<tr>
<td>Fluorantheen</td>
<td>Kobalt</td>
<td></td>
</tr>
<tr>
<td>Kvik</td>
<td>Arseen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uranium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boor</td>
<td></td>
</tr>
</tbody>
</table>

In Bijlage 7.2 zijn de figuren weergegeven met de trends van de prioritaire en overige relevante stoffen die naar voren komen uit de beoordeling van KRW gevaarlijke stoffen in oppervlaktewater van het Vlaamse deel van het Schelde-estuarium. Daarnaast zijn in deze Bijlage de trends in oppervlaktewater weergegeven voor de stroomgebiedrelevantie stoffen (PCB’s, koper en zink).

Uit de beoordeling voor zout oppervlaktewater Zeeland blijkt dat voor prioritaire stoffen (gemeten op 9 locaties) er van de 46 stoffen / stofgroepen, vier norm overschrijdingen zijn geconstateerd, te weten voor cadmium, Σ Benzo(b)fluorantheen + benzo(k)fluorantheen, Σ Benzo(g,h,i)pyrelene + indeno(1,2,3-cd)pyreene, en TBT. Voor wat betreft overige stoffen zijn er van de 88 stoffen / stofgroepen, 6 norm overschrijdingen aangetroffen, te weten: boor, koper, uranium, vanadium, kobalt en zink.

Daarnaast zijn er voor zwevende stof in zout water van de 43 stoffen / stofgroepen / 4 locaties, tien norm overschrijdingen geconstateerd, te weten voor: PCB’s, antraceen, benzo(a)antraceen, fenantheen, koper, minerale olie, naftaleen, nikkel, tributylin (TBT), en vanadium.

In Tabel 7-11 is een overzicht gegeven van stoffen die in oppervlaktewater en/of zwevende stof hebben geleid tot overschrijding van KRW normen.

<table>
<thead>
<tr>
<th>Prioritaire stoffen KRW</th>
<th>Overige relevante stoffen</th>
<th>Stroomgebied relevante stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(b)fluorantheen + benzo(k)fluorantheen</td>
<td>Kobalt</td>
<td>PCB’s</td>
</tr>
<tr>
<td>Σ Benzo(g,h,i)pyrelene + indeno(1,2,3-cd)pyreene</td>
<td>Uranium</td>
<td>Koper</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Boor</td>
<td>Zink</td>
</tr>
<tr>
<td>TBT</td>
<td></td>
<td>Vanadium</td>
</tr>
</tbody>
</table>
Uit de eerstelijnsbeoordeling van de Westerschelde (Vroom e.a., 2012) zijn figuren beschikbaar voor de overige relevante stoffen uranium, boor en vanadium in oppervlaktewater. Deze zijn hieronder weergegeven in Bijlage 7.3.

7.5.3.4 **INTERPRETATIE**

Prioritaire stoffen

Prioritaire stoffen die naar voren komen uit de KRW toetsing van chemische stoffen in oppervlaktewater zijn weergegeven in Tabel 7-12. PAK’s als benzo(b)fluorantheen, benzo(k)fluorantheen, benzo(g,h,i)perylen en indeno(1,2,3-cd)pyreen overschrijden regelmatig de MKN-JG in het Schelde estuarium. Trends van PAK’s in oppervlaktewater zijn lastig te meten vanwege hun fysisch-chemische karakteristieken en over het algemeen variabel in tijd. Deze kunnen beter worden bepaald in zuwvende stof, waterbodem of biota.

In het Vlaamse deel van het Schelde estuarium overschrijdt daarnaast kwik regelmatig de MKN-MAC. Trends zijn variabel voor de verschillende locaties.

In het Nederlands deel van de Westerschelde overschrijden cadmium en TBT de MKN in oppervlaktewater.

Tabel 7-12: Milieuverontreinigende stoffen die naar voren komen uit de KRW toetsing van oppervlaktewater in het schelde estuarium.

<table>
<thead>
<tr>
<th>Prioritaire stoffen KRW</th>
<th>Overige relevante stoffen</th>
<th>Stroomgebied relevante stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen</td>
<td>Nederland</td>
<td>Vlaanderen</td>
</tr>
<tr>
<td>Benzo(b)fluorantheen + benzo(k)fluorantheen</td>
<td>Benzo(b)fluorantheen + benzo(k)fluorantheen</td>
<td>Kobalt</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylen + indeno(1,2,3-cd)pyreen</td>
<td>Benzo(g,h,i)perylen + indeno(1,2,3-cd)pyreen</td>
<td>Uranium</td>
</tr>
<tr>
<td>Benzo(a)pyreen</td>
<td>Cadmium</td>
<td>Boor</td>
</tr>
<tr>
<td>Fluorantheen</td>
<td>TBT</td>
<td>Arseen</td>
</tr>
<tr>
<td>Kwik</td>
<td></td>
<td>Pyreen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aacenafteen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fenantreen</td>
</tr>
</tbody>
</table>

Overige relevante stoffen

Voor de overige relevante stoffen zijn er een aantal metalen die voor overschrijdingen zorgen in het Schelde estuarium. Dit zijn kobalt, uranium en boor. Gehalen aan boor in het Vlaams deel van het estuarium nemen over het algemeen af. Gehalen aan kobalt vertonen verschillende trends op de locaties in het Vlaams deel van het Schelde estuarium. Voor uranium zijn over het algemeen nog weinig data beschikbaar voor trendanalyses. Ook in het Nederlands deel van het estuarium zijn er, behalve voor de locatie Schaar van Ouden Doel, nog weinig data beschikbaar voor een trendbepaling van overige relevante stoffen in de Westerschelde.

Stroomgebied relevante stoffen

PCB’s zijn slecht meetbaar in water vanwege hun fysisch-chemische karakteristieken. Dit is goed zichtbaar in Figuur 7.6 in Bijlage 7 (PCB-153) in het Vlaams deel van het Schelde estuarium, waar de gehalten in het water over het algemeen rond de 0 ng/l liggen. Trendbepaling van PCB’s kan beter bepaald worden in zuwvende stof, waterbodem of biota.

Koper gehalten laten in het Vlaams deel van het estuarium een dalende trend zien in totaal water. Voor koper gehalten in de opgeloste vorm zijn over het algemeen te weinig datapunten beschikbaar voor een trendanalyse. In de Westerschelde zijn m.n. kopergehalten in de opgeloste fractie beschikbaar, die een licht
stijgende trend laten zien. Gehalten zijn het hoogste bij Schaar van Ouden Doel aan de Vlaams-Nederlandse grens.
Zink gehalten zijn in het Vlaams deel van het estuarium m.n. beschikbaar in totaal water. Afhankelijk van de locatie zijn er dalende dan wel stijgende trends te zien. In de Westerschelde worden de hoogste gehalten aan zink in de opgeloste fractie gemeten bij Schaar van Ouden Doel. Gehalten zijn over het algemeen relatief stabiel, maar laten bij Schaar van Ouden Doel een licht stijgende trend zien.

7.5.3.5 BEOORDELING T2009

PAK's als benzo(b)fluorantheen, benzo(k)fluorantheen, benzo(g,h,i)peryleen en indeno(1,2,3-cd)pyreene in het oppervlaktewater van het Schelde estuarium overschrijden regelmatig de MKN-JG. Trends van PAK's in oppervlaktewater zijn lastig te meten vanwege hun fysisch-chemische karakteristieken en over het algemeen variabel in tijd. Deze kunnen beter worden bepaald in zwevende stof, waterbodem of biota. Daarnaast overschrijden kobalt, uranium en boor als overige relevante stoffen in oppervlaktewater regelmatig de norm. Gehalten zijn variabel (afhankelijk van de locatie stijgend, stabiel of dalend), maar nemen over het algemeen voor boor in het Vlaamse deel van het estuarium af.
PCB's kunnen niet goed worden gemeten in oppervlaktewater. Trendbepaling van PCB's kan beter bepaald worden in zwevende stof, waterbodem of biota.
Koper gehalten laten in het Vlaams deel van het estuarium een dalende trend zien in totaal water en in de Westerschelde in de opgeloste fractie een licht stijgende trend.
Afhankelijk van de locatie zijn er in het Vlaams deel van het estuarium dalende dan wel stijgende trends van zink in oppervlaktewater (totaal) te zien. In de Westerschelde worden de hoogste gehalten aan zink in de opgeloste fractie gemeten bij Schaar van Ouden Doel. Gehalten zijn over het algemeen relatief stabiel, maar laten bij Schaar van Ouden Doel een licht stijgende trend zien.

7.5.4 REKENPARAMETER ZWEMWATERKWALITEIT

De zwemwaterkwaliteit wordt bepaald door twee parameters: intestinale enterokokken (kve/100 ml) en Escheria coli (kve/100 ml). Voor kust- en overgangswater zijn er strengere normen dan in binnenwateren. Aangezien zwemwaterkwaliteit minder van toepassing is voor het Schelde-estuarium is in overleg met de opdrachtgever besloten dat zwemwaterkwaliteit niet wordt uitgewerkt.

7.5.5 REKENPARAMETER MILIEUVERONTREINIGENDE STOFFEN IN VOEDSELWEBS

7.5.5.1 INLEIDING

Er bestaat geen gezamenlijk grensoverschrijdend monitoringsprogramma voor milieuverontreinigende stoffen in biota van het Schelde-estuarium. In de afgelopen jaren zijn milieuverontreinigende stoffen in paling (Anguilla anguilla) gemeten in het Vlaamse deel van het Schelde-estuarium. Echter deze monitoring is recentelijk gestopt. In het Nederlandse deel van het Schelde-estuarium (Westerschelde) worden jaarlijks zowel metalen als een aantal organische microverontreinigingen gemeten in mossel (Mytilus edulis) en bot (Platichthys flesus).

In de evaluatiemethodiek is niet opgenomen op welke wijze de data voor milieuverontreinigende stoffen in voedswelbs getoetst dienen te worden. In overleg is besloten om in de huidige rapportage de gehalten te toetsen aan vastgestelde KRW-normen en Europese consumptienormen. Momenteel is er onder de KRW voor drie stoffen een milieukwaliteitsnorm in biota vastgesteld (kwik, hexachlooreen en hexachloorbucineen)(zie Tabel 7-13). Daarnaast zijn er in een voorstel tot wijziging van de lijst van

Tabel 7-13: Bestaande normen in biota, bestaande uit milieukwaliteitsnormen (MKN) van de Kaderrichtlijn water (KRW) en consumptienormen van de Europese Commissie.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Soort norm</th>
<th>Norm</th>
<th>Uitgedrukt als</th>
<th>Specifiek voor</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexachloorbenzeen</td>
<td>MKN-KRW</td>
<td>0.01 mg/kg versgewicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexachloorbutadieen</td>
<td>MKN-KRW</td>
<td>0.055 mg/kg versgewicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>methylkwik</td>
<td>MKN-KRW</td>
<td>0.02 mg/kg versgewicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kwik</td>
<td>EU consumptienorm*</td>
<td>0.5 mg/kg versgewicht</td>
<td>visserijproducten en vlees van vis</td>
<td></td>
</tr>
<tr>
<td>lood</td>
<td>EU consumptienorm*</td>
<td>1.5 mg/kg versgewicht</td>
<td>tweekeppige dieren</td>
<td></td>
</tr>
<tr>
<td>kwik</td>
<td>EU consumptienorm*</td>
<td>0.3 mg/kg versgewicht</td>
<td>vlees van vis</td>
<td></td>
</tr>
<tr>
<td>cadmium</td>
<td>EU consumptienorm*</td>
<td>1 mg/kg versgewicht</td>
<td>tweekeppige weekdieren</td>
<td></td>
</tr>
<tr>
<td>cadmium</td>
<td>EU consumptienorm*</td>
<td>0.5 mg/kg versgewicht</td>
<td>vlees van vis</td>
<td></td>
</tr>
</tbody>
</table>

7.5.5.2 GEBRUIKTE DATA

Voor toetsing van normen en trends zijn de door RWS aangeleverde data voor bot en mosselen uit de Westerschelde verwerkt. Mosselen worden actief uitgehangen op twee locaties in de Westerschelde (actieve monitoring), en er worden op twee locaties in de Westerschelde mosselen uit het veld verzameld (passieve monitoring)(zie Figuur 7-48 en Tabel 7-14). Beschikbare data voor mosselen betrof de periode 1996-2010. Resultaten van de actieve monitoring zijn uitgedrukt op basis van drooggewicht, resultaten van de passieve monitoring op basis van natgewicht. Toetsing van de bestaande normen vindt plaats op basis van versgewicht (natgewicht). Daarom zijn voor normtoetsing de resultaten op natgewicht van de passieve monitoring gebruikt. Voor trendbepaling van organotin zijn gehalten op drooggewicht basis uit de actieve monitoring gebruikt. Hexachloorbutadieen is niet gemeten in mosselen.

Figuur 7-48: Overzicht van locaties waar mosselmonster werden genomen (Vroom e.a., 2012). Rood = actieve bemosterings (uithangen van mosselen), blauw = passieve bemosterings (verzamelen van mosselen uit het veld).

Tabel 7-14: Meetlocaties voor monitoring van milieuverontreinigende stoffen in mosselen uit de Westerschelde

<table>
<thead>
<tr>
<th>Soort monitoring</th>
<th>Analyse</th>
<th>Locaties</th>
<th>Periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosselen ABM</td>
<td>metalen: Cd, Cr, Cu, Hg, Ni, Pb, Zn; organische micro’s: 13 PCB’s, HCB</td>
<td>1. Vlissingen Boei SSVH 2. Hansweert Boei B40</td>
<td>1996-2010</td>
</tr>
<tr>
<td>Mosselen PBM</td>
<td>metalen: Cd, Cr, Cu, Hg, Ni, Pb, Zn; organische micro’s: 13 PCB’s, HCB</td>
<td>1. Hooge Platen 2. Hoek van Ossenisse (Nijspolder) / Hoedekenskerke</td>
<td>1996-2010</td>
</tr>
</tbody>
</table>

7.5.5.3 ANALYSE

Trends van milieuverontreinigende stoffen in mosselen uit de Westerschelde en toetsing van gehalten aan bestaande KRW en consumptienormen zijn weergegeven in Figuur 7-49 tot Figuur 7-53. Voor de stroomgebied relevante stoffen van het Schelde-estuarium zijn geen normen in biota beschikbaar. Voor deze stoffen (PCB-153, koper en zink) zijn de trends weergegeven (Figuur 7-54 tot Figuur 7-56). Teven zijn de trends van Tributyltin (TBT) en Trifenyltin (TFT) weergegeven (Figuur 7-57 en Figuur 7-58).
Figuur 7-49: Gehalten aan kwik (mg/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010 in vergelijking tot de MKN en consumptienorm.

Figuur 7-50: Gehalten aan kwik (mg/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010 in vergelijking tot de MKN.

Figuur 7-51: Gehalten aan hexachloorbenzeen (microgram/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010 in vergelijking tot de MKN.
Figuur 7- 52: Gehalten aan cadmium (mg/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoeksewaard) in de periode 1996-2010 in vergelijking tot de consumptienorm.

Figuur 7- 53: Gehalten aan lood (mg/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010 in vergelijking tot de consumptienorm.

Figuur 7- 54: Gehalten aan PCB-153 (microgram/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010.
Figuur 7- 55: Gehalten aan koper (mg/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010.

Figuur 7- 56: Gehalten aan zink (mg/kg natgewicht) in mosselen uit de Westerschelde (locatie Hoedekenskerke) in de periode 1996-2010.

Figuur 7- 57: Gehalten aan tributyltin (TBT) (mg/kg natgewicht) in mosselen uit de Westerschelde in de periode 1996-2010, op de locaties Hansweert en Vlissingen.
Trends van milieuvontreinigende stoffen in bot uit de Westerschelde en toetsing van gehalten aan bestaande KRW en consumptienormen zijn weergegeven in Figuur 7-59 - Figuur 7-63. Voor de stroomgebied relevante stoffen van het Schelde-estuarium zijn geen normen in biota beschikbaar. Voor deze stoffen (PCB-153, koper en zink) zijn de trends weergegeven (Figuur 7-64 - Figuur 7-66).

Figuur 7-58: Gehalten aan trifenylltln (TFT) (mg/kg natgewicht) in mosselen uit de Westerschelde in de periode 1996-2010, op de locaties Hansweert en Vlissingen.

Figuur 7-59: Gehalten aan kwik (mg/kg natgewicht) in bot uit de Westerschelde in de periode 1996-2011.

Figuur 7-60: Gehalten aan hexachloorbenzeen (mg/kg natgewicht) in bot uit de Westerschelde in de periode 1996-2011.
Figuur 7-61: Gehalten aan hexachloorbutadiene (mg/kg natgewicht) in bot uit de Westerschelde in de periode 1996-2011.

Figuur 7-62: Gehalten aan cadmium (mg/kg natgewicht) in bot uit de Westerschelde in de periode 1996-2011.

Figuur 7-63: Gehalten aan lood (mg/kg natgewicht) in bot uit de Westerschelde in de periode 1996-2011.
7.5.5.4 **INTERPRETATIE**

MKN toetsing
Voor toetsing van kwik gehalten in mosselen aan de MKN is eerst een omrekening nodig. De gehalten zoals weergegeven in Figuur 7-49 en Figuur 7-50 betreffen totaal kwik in de zoutwater mossel. In schelpdieren is ongeveer 50% van het totaal-kwik aanwezig in de vorm van methyl-kwik (Pieters & Geuke, 1994). Als deze halvering van de kwikgehalten in mossel vergeleken wordt met de MNK is er geen normoverschrijding zichtbaar. Kwikgehalten in mossel in de periode 2002-2010 laten verder geen af- of toenemende trend zien. Gehalten aan hexachloorbutadien liggen ver onder de MKN en laten geen af- of toenemende trend zien.

Gehalten aan kwik in spier van botten liggen vanaf het begin van de monitoring boven de MKN van de KRW (Figuur 7-59). Er is geen duidelijke af- of toenemende trend zichtbaar. Gehalten aan

Toetsing consumptienormen
Gehalten aan kwik in spier en cadmium en lood in lever van bot liggen onder de Europese consumptienormen. Voor cadmium is in 2010 een overschrijding van de consumptienorm in lever van bot uit de Westerschelde aangetroffen. De consumptienorm voor cadmium is echter opgesteld voor vlees van vis, terwijl men de consumptienorm in lever van bot. Gehalten in lever van vis zijn over het algemeen hoger dan gehalten in vlees van vis. Gehalten in vlees van dezelfde bot zijn dus mogelijk niet hoger geweest dan de consumptienorm voor cadmium.

Stroomgebied relevante stoffen
Voor PCB-153, koper en zink zijn er geen normen in biota beschikbaar.
PCB-153 in mosselen varieert in de periode 1996-2010 tussen ~10-~27 microgram/kg versgewicht (Figuur 7-54). Ook koper in mosselen varieert tussen ~0.8-~1.7 mg/kg versgewicht met wellicht een licht stijgende trend (Figuur 7-55). Zink in mosselen vertoont een piek gehalte van ~45 mg/kg versgewicht in 2000 en neemt daarna weer geleidelijk af tot ~21 mg/kg versgewicht in 2010 (Figuur 7-56).
Gehalten aan tributyltin (TBT) en trienyltin (TFI) vertonen duidelijke afnemende trends in gehalten in mosselen (Figuur 7-57 en Figuur 7-58).

7.5.5.5 BEOORDELING T2009
Er zijn weinig normen voor biota beschikbaar, waardoor toetsing van gehalten in biota aan normen slechts beperkt mogelijk is. Daarnaast zijn er alleen data beschikbaar uit de Westerschelde (bot en mosselen).

Toetsing aan de beschikbare MKN (kwik, hexachloorbenzeen en hexachloorbutadieen) laat zien dat in bot uit de Westerschelde kwik continu de MKN overschrijdt. In mosselen zijn geen overschrijdingen van de MKN aangetroffen.

Toetsing aan de beschikbare consumptienormen (kwik, lood en cadmium) laat enkele malen een overschrijding van de cadmium norm in mosselen zien en in 2010 in bot.

In de toekomst is mogelijk een uitgebreidere toetsing van gehalten aan chemische stoffen aan normen in biota mogelijk, zodra de Europese Commissie een voorstel tot wijziging van normen officieel goedkeurt. Stroomgebied relevante stoffen (PCB'S, koper en zink) in mosselen en bot geven over het algemeen geen duidelijke trends in gehalten weer.

7.6 VERKLARENDE PARAMETERS
ZOUT

Het zoutgehalte wordt in het estuarium op verschillende wijzen bestudeerd. In de Westerschelde (mondingszone, polyhaliene zone en mesohaliene zone), waar het zoutgehalte uiteraard het grootst is, wordt met klassieke salinititeit gewerkt. In de Zeeschelde, waar het zoutgehalte afneemt van de oligohaliene zone naar de zoete zones, is het zoutgehalte te laag om de soms toch relevante maar kleine verschillen goed weer te geven via salinititeit. Hier wordt meestal specifieke geleidbaarheid gemeten, of wordt het gehalte aan chloride ionen bepaald.

De geleidbaarheid en salinititeit worden in hoofdzaak bepaald door de aanwezige Cl⁻-ionen, maar in het zoete, waar het gehalte aan chloride veel lager is, vormen ook andere ionen een belangrijke bijdrage aan de geleidbaarheid. Daarom stelt de evaluatiemethodiek voor om trends in salinititeit in het zoete te rapporteren als trends in geleidbaarheid. In de brakke en zoute zone kan wel met salinititeit (berekend of rechtstreeks gemeten) gewerkt worden. Echter, hierdoor kunnen Westerschelde en Zeeschelde niet op een grafiek weergegeven worden. Daarom is hier gekozen om alles weer te geven in chloride. Data voor chloride zijn beschikbaar in de Zeeschelde, niet in de Westerschelde. Maar omdat salinititeit hier in hoofdzaak wordt bepaald door chloride, is de relatie tussen salinititeit en chloride gekend en bruikbaar.

VERSCHUIVINGEN IN ZOUTGEHALTE

Figuur 7-67: Surface plot van het chloride gehalte, met aanduiding van de saliniteitsklassen volgens het Venice system.

Als verklarend parameter stelt de methodiek voor om per compartiment op niveau 3 de seizoensgemiddelde salinititeit te bepalen. Hier is voor de eenvormigheid in het estuarium, het chloride
gehalte bepaald (Figuur 7-70 en Figuur 7-71 voor winter en zomer gemiddeld. Voor de resultaten in elk compartiment, wordt verwezen naar de digitale bijlage). Tussen 1996 en 2009 wordt geen duidelijke trend waargenomen. Wel zijn er duidelijke schommelingen van jaar tot jaar, die het sterkst tot uiting komen in de zone met sterke saliniteitsgradiënt. De schommelingen zijn negatief gecorreleerd met het zoetwaterdebit, zowel in zomer ($r=-0.94; p<0.001$) als in winter ($r=-0.90; p<0.001$) (Figuur 7-68) over de beschouwde periode. Ook over een langere periode wordt de correlatie waargenomen (Figuur 7-69; $r=-0.91; p<0.001$).

![Graph](image1)

Figuur 7-68: correlatie tussen gemiddeld chloridegehalte en debiet in de zone met sterke saliniteitsgradiënt

![Graph](image2)

Figuur 7-69: correlatie tussen jaargemiddeld chloridegehalte en debiet ter hoogte van de Belgisch-Nederlandse grens
7.6.1.2 SCHOMMELINGEN IN ZOUTGEHALTE

Grote schommelingen in het zoutgehalte kunnen negatieve gevolgen hebben voor het ecosysteem. Enerzijds zijn er de schommelingen in die tijd: ten gevolge van debietenveranderingen kan het zoutgehalte plots wijzigen. Anderzijds zijn er schommelingen met het getij. Bij grote longitudinale saliniteitsgradiënten treden sterke schommelingen in salinitie op binnen 1 tij beweging. Om tschommelingen te evalueren stelt de methodiek voor om in het zomerhalfjaar voor elke campagne het longitudinale saliniteitsprofiel op te stellen in de brakke en oligohaliene zone. Dit werd uitgewerkt door de afname van het chloride gehalte per kilometer langs de lengtes van het estuarium te bepalen. Figuur 7-72 toont in een surface plot die afname van de mondingszone tot en met de oligohaliene zone. De zoete zones kennen een zeer beperkte schommeling en zijn niet weergegeven. Een sterke longitudinale gradiënt betekent dat grote tidale zoutschommelingen zullen voorkomen en is dus een maat voor zoutstress. Op de figuur is duidelijk dat, in absolute cijfers, de sterkste gradiënt zich in de polyhaliene zone bevindt. Echter, beschouwen we de procentuele afname (Figuur 7-73), dan liggen de sterkste gradiënten in de zone met sterke saliniteitsgradiënt (vooral in winter) en de oligohaliene zone (vooral in zomer). Hoge debieten verschuiven de gradiënt meer afwaarts, door de tij onafhankelijke staalname in de Zeeschelde ontstaat wel ruis op de gradiëntbepaling. Staalname in de Westerschelde door RWS is wel tijgebonden. Tabel 7-15 toont de jaarlijkse maximale gradiënt. Er wordt geen trend waargenomen.
Figuur 7-72: Saliniteitsgradiënt: afname (per km) van het chloride gehalte (mg/l)

Figuur 7-73: Saliniteitsgradiënt: procentuele afname (per km) van het chloride gehalte

Tabel 7-15: Jaarlijkse maximale gradiënt (procentuele afname van chloride per km) met vermelding van de maand en locatie (afstand tot Vlissingen in km) van dit maximum

<table>
<thead>
<tr>
<th>jaar</th>
<th>maand</th>
<th>afstand</th>
<th>gradiënt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>9</td>
<td>78</td>
<td>12%</td>
</tr>
<tr>
<td>1997</td>
<td>7</td>
<td>89</td>
<td>13%</td>
</tr>
<tr>
<td>1998</td>
<td>5</td>
<td>85</td>
<td>13%</td>
</tr>
<tr>
<td>1999</td>
<td>6</td>
<td>94</td>
<td>16%</td>
</tr>
<tr>
<td>2000</td>
<td>8</td>
<td>78</td>
<td>11%</td>
</tr>
<tr>
<td>2001</td>
<td>4</td>
<td>58</td>
<td>11%</td>
</tr>
</tbody>
</table>
Jaarafsplitsing Schelde-estuarium

<table>
<thead>
<tr>
<th>Jaar</th>
<th>Maand</th>
<th>Afstand</th>
<th>Gradiënt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>5</td>
<td>85</td>
<td>14%</td>
</tr>
<tr>
<td>2003</td>
<td>7</td>
<td>85</td>
<td>13%</td>
</tr>
<tr>
<td>2004</td>
<td>5</td>
<td>78</td>
<td>11%</td>
</tr>
<tr>
<td>2005</td>
<td>7</td>
<td>78</td>
<td>12%</td>
</tr>
<tr>
<td>2006</td>
<td>8</td>
<td>64</td>
<td>11%</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>78</td>
<td>10%</td>
</tr>
<tr>
<td>2009</td>
<td>5</td>
<td>71</td>
<td>12%</td>
</tr>
</tbody>
</table>

Bovenvermelde methode geeft de zones aan met de sterkste zoutgradiënt. Om een andere inschatting van de zoutstress te bekomen, kunnen we ook nagaan welke de maximale zoutschommeling binnen 1 tijdbeweging is. Dit kan aan de hand van continue metingen. Voor 2009 werd met de continue saliniteitsdata van de stations Kruibeke, Baalhoek en Hansweert gewerkt. In Kruibeke werd een keer per 15 minuten gemeten, in Baalhoek en Hansweert een keer per 10 minuten. In Baalhoek en Hansweert bestrijkt deze data zo goed als het ganse jaar, in Kruibeke zijn er grote gaten in de data set. Op basis van deze sondaardata zijn voor elke tijcyclus de maximum en minimum saliniteitswaarden bepaald. Het verschil tussen de maximale salineiteit en de minimale salineiteit die in een tijcyclus gemeten wordt geeft een indicatie van de zoutstress op die locatie in het estuarium. In Figuur 7-74 wordt de gemiddelde en de maximale zoutstress weergegeven voor de maand februari en de maand juli in 2009, voor de genoemde stations.

Figuur 7-74: Zoutstress: gemiddelde en de maximale zoutstress weergegeven voor de maand februari (links) en de maand juli (rechts) in 2009

Wanneer we veronderstellen dat de maandelijks opgemeten saliniteitsprofielen langsdeel het estuarium indicatief en relatief constant zijn voor de maand waarin ze opgemeten zijn, kunnen we continue saliniteitsdata rechtstreeks omzetten naar de tij-excurse. Immers, onder deze veronderstelling volgt uit het opgemeten saliniteitsprofiel een eenduidig verband tussen salineiteit en de locatie langsdeel het estuarium. Uit de saliniteitsfluctuaties kan dan de horizontale beweging van de watermassa afgeleid worden. Door opnieuw de extrema te bepalen en het verschil ertussen kennen we voor elke tijbeweging de tij-excurse.
Wanneer we dit doen voor alle continue data dan leiden we een gemiddelde tijexcursie af van \(6.4\) km (sd=3.9 km) in Kruibeke, \(12.6\) km (sd=3.5 km) in Baalhoek en \(10.8\) km (sd=3.3 km) in Hansweert. De relatieve lage waarde in Kruibeke is echter met de nodige omzichtigheid te interpreteren. Bij hoge debieten zijn de saliniteiten erg laag, en in die gevallen zijn de afgeleide tij-excursies onbetrouwbaar en zorgen waarschijnlijk voor een onderschatting.

Bij een volgende evaluatie, wanneer sensordata beschikbaar zijn op meerdere locaties langsheen de zoutgradiënt, zouden we op deze manier een indicatie kunnen krijgen van de evolutie langsheen de estuariene as van de tij-excursie. Hiervoor is verder onderzoek, en de analyse van meerdere continue sensordata nodig. Uit de bovenstaande analyse kunnen we geen gefundeerde uitspraak doen over de evolutie langsheen het estuarium van de tij-excursie, en we stellen daarom voor om in eerste instantie de tij-excursie gemiddeld als constant langsheen de estuariene as te beschouwen.

Met bovenstaande resultaten kunnen we een indicatieve waarde van de zoutstress langsheen het hele estuarium bepalen. Hiervoor veronderstellen we een constante tij-excursie van \(10\) km. Elk opgemeten saliniteitprofiel kunnen we dan omzetten naar een profiel van saliniteitsstress. Hiervoor nemen we voor elke staalname-locatie het verschil tussen saliniteit \(5\) km stroomafwaarts en \(5\) km stroomopwaarts, waarbij we lineair interpoleren tussen de staalnamelocaties. Op deze manier kunnen we de surface plot met zoutstress samenstellen (Figuur 7-75). Deze geeft als maat voor zoutstress voor elke maand tijdens de voorbije jaren per km de variatie per getij in saliniteit weer. Figuur 7-76 geeft de gemiddelde zoutstress (periode 1996 – 2009) weer langsheen het estuarium.

![Zoutstress: maximale zoutschommeling (PSU) per getij](image)

Figuur 7-75: Zoutstress: surface plot met maximale zoutschommeling (PSU) per getij
Figuur 7.76: Gemiddelde zoutstress (maximale zoutschommeling in PSU per getij) voor de periode 1996 – 2009 in een box Whisker plot.

7.6.1.3 **STRATIFICATIE**

In de beschikbare datasets werden geen aanwijzingen gevonden voor het bestaan van een belangrijke stratificatie. De methodiek geeft ook aan geen stratificatie te verwachten.

7.6.2 **LICHTLIMITATIE**

Voor primaire productie is licht vereist. Algengroei is bijgevolg sterk afhankelijk van de hoeveelheid licht die kan doordringen in de waterkolom. In het Schelde-estuarium is de concentratie aan nutriënten doorgaans meer dan voldoende voor fytoplanktongroei, maar licht blijkt de limiterende factor te zijn voor het gros van de primaire productie. Veranderingen in lichtklimaat zullen dus bepalend zijn voor de primaire productie en bijgevolg voor het ganse ecosysteem. Lichtlimitatie vormt dus een belangrijke verklarende parameter.

Ondanks het zeer grote belang van het lichtklimaat voor het ganse ecosysteemfunctioneren, is de kennis hierover relatief beperkt en de monitoring niet consistent. De beste wijze om een goed beeld te krijgen van het lichtklimaat is een meting van de extinctiecoëfficiënt (k_d). In de Zeeschelde wordt dit vanaf 2009 consequent gemeten, maar voor die datum zijn de metingen onvolledig. Inschattingen van ontbrekende ko- waarden kan op basis van de correlatie met zwevende stof. Voor de Westerschelde zijn ook gedeeltelijke ko-data als zintuiglijke waarnemingen van doorzicht met een Secchi schijf beschikbaar. Voor de ontbrekende ko-waarden reikt de evaluatiemethodiek wel een methode aan om eufotische diepte in te schatten op basis van Secchi data.

7.6.2.1 **SEIZOENSGEMIDDELDE EUFOTISCHE DIEPTE**

De eufotische diepte wordt gedefinieerd als de diepte waarop nog slechts 1% van het licht kan doordringen. Ze kan berekend worden uit k_d:

$$Z_{eu} = -1/k_d \times \ln(0.01) \approx 4.6/k_d$$

of ingeschat worden via de Secchi diepte:

$$Z_{eu} = 4.6 / (1.36251 \times Z_{secchi}^{-1.14325})$$
Aan het station “Grens” zijn voor verschillende maanden zowel ku-waarden als secchi data beschikbaar, wat een interkalibratie mogelijk maakt (Figuur 7-77). Er lijkt echter geen verband te bestaan. Daarom wordt niet verder gewerkt met de inschatting van eufotische diepte op basis van Secchi diepte, maar worden deze data as such gepresenteerd.

![seizoensgemiddelde eufotische diepte](image)

Figuur 7-77: correlatie tussen seizoensgemiddelde eufotische diepte gebaseerd op ku-metingen en eufotische diepte ingeschat uit Secchi diepte, ter hoogte van het station grens (km 58).

7.6.2.2 DOORZICHT IN WESTERSCHELDE

Seizoensgemiddeld doorzicht voor elke zone in de Westerschelde werd bepaald. Omdat doorzicht in de lente in de Westerschelde het meest relevant is, worden enkele deze data weergegeven (Figuur 7-78). Voor de andere data wordt verwezen naar de digitale bijlage. Het doorzicht is gemiddeld groter in de mondingszone en neemt af naar de mesohaliene zone. In monding en polyhaliene zone wordt geen trend waargenomen, in mesohaliene zone is wel een verbetering van doorzicht gemeten: de toename van doorzicht is significant in lente (p=0,02). In de andere seizoenen werden geen significante trends waargenomen, met uitzondering van de polyhaliene zone, waar doorzicht afneemt in de zomer (p=0,04).

![doorzicht mondingszone in lente](image)
doornzicht polyhaliene zone in lente

Figuur 7-78: Seizoen gemiddeld doornzicht (secchi diepte in dm) voor de lente in mondings-, polyhaliene en mesohaliene zone

7.6.2.3 **EUFOTISCHE DIEPTE**

Figuur 7-79 toont de eufotische diepte in het estuarium. De eufotische diepte vertoont een minimum in de zoete zone met lange verblijftijd rond km 100. In deze zone worden de hoogste tijstanden bereikt. De grote tijdynamiek ligt wellicht mee aan de basis van de verhoogde turbiditeit die aan de basis ligt van het slechte lichtklimaat. In het zoete met korte verblijftijd is de eufotische diepte is groter maar nog steeds zeer beperkt. Ze lijkt ook af te nemen. Enkel in de lente en winter in het zoete met korte verblijftijd is deze afname van de seizoens gemiddelde eufotische diepte significant (lente: p=0,015; winter: p=0,0067). In de Westerschelde is de eufotische diepte het grootst.
Figuur 7.79: Eufotische diepte (cm) (grijze zone bevat te weinig datapunten voor een goede weergave).

7.6.2.4 SEIZOENSGEMIDDELDE LICHTLIMITATIE

Lichtlimitatie wordt bepaald door de eufotische diepte en mengdiepte. Hoe groter de mengdiepte van een estuarium, hoe langer een alg zich in de diepe en dus donkere zone zal bevinden. Aangezien de Schelde goed gemengd wordt verondersteld, wordt de mengdiepte benaderd door de gemiddelde diepte van een compartment (Figuur 7-80). De verhouding eufotische diepte / mengdiepte wordt als maat gehanteerd voor de lichtbeschikbaarheid, of omgekeerd voor de lichtlimitatie: hoe kleiner de waarde, hoe groter de lichtlimitatie.

Ondanks de zeer beperkte eufotische diepte rond km 100 en de beperkte eufotische diepte in de rest van het zoete, is door de geringe diepte in deze zone de lichtlimitatie vrij vergelijkbaar met de lichtlimitatie in de veel heldere maar ook veel diepere Westerschalde. Enkel het meest opwaartse deel van de zoete zone heeft, door de zeer geringe diepte, duidelijk een beter lichtklimaat. De zone met sterke saliniteitsgradiënt kent het slechts lichtklimaat: een combinatie van hogere troebelheid en grotere diepte.
Figuur 7- 80: verhouding eufotische diepte / mengdiepte (grijze zone bevat te weinig datapunten voor een goede weergave). Lage waarden wijzen op lichtlimitatie.

7.6.2.5 MAXIMALE EN MINIMALE EUFOTISCHE DIEPTE PER JAAR

Om fluctuaties binnen een jaar in te schatten, stelt de methodiek voor om ook de jaarlijkse minimale en maximale eufotische dieptes te registeren. In onderstaande tabel wordt de minima en maxima, alsook gemiddelde eufotische diepte en standaarddeviatie gegeven. Wegens de beperktere databeschikbaarheid in de Westerschelde, beperkt deze analyse zich tot de Zeeschelde.

Tabel 7-16: minimale, maximale en gemiddelde eufotische diepte (cm) per omes compartiment voor 2009 en voorgaande periode.

<table>
<thead>
<tr>
<th>OMES</th>
<th>2009</th>
<th>1996-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
<td>251</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>235</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>202</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>125</td>
</tr>
<tr>
<td>13</td>
<td>29</td>
<td>102</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>235</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>176</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>148</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>131</td>
</tr>
<tr>
<td>19</td>
<td>26</td>
<td>153</td>
</tr>
</tbody>
</table>
7.6.2.6 ZWEVENDE STOF

Figuur 7-81 toont het zwevende stofhalte in het Schelde-estuarium, nabij het wateroppervlak. Nabij het oppervlak worden de grootste zwevende stof concentraties waargenomen rond km 100, dit is de regio van de Durmemonding en tevens de zone waar de hoogste waterstanden worden bereikt. Figuur 7-81 illustreert voor de periode 1996–2009 een toename van de zwevende stof nabij de oppervlakte, vooral in de zoete zone. In Figuur 7-83 en Figuur 7-84 worden de jaargemiddelde zwevende stofconcentraties nabij het wateroppervlak weergeven voor diverse stations, met aanduiding van de standaard deviatie. Aan de monding wordt een beperkte maar significante (p<0.037) stijging waargenomen van het zwevende stof gehalte, ook de standaard deviatie neemt licht toe (p<0.025). Aan de grens worden geen significante wijzigingen waargenomen. In de Zeeschelde is de trendanalyse op een veel kortere tijdreeks uitgevoerd. Doorheen de jaren zijn veranderingen in het monitoringsprogramma geweest, die de verwerking als 1 coherente dataset onmogelijk maken. Sinds 2000 bestaat er wel een onveranderd monitoringsprogramma. Deze data laten een stijging zien die significant is in de Rupel (p<0.0055) en aan de Durmemonding (zone met tijmmaximum) (p<0.017). Ook de standaard deviatie neemt toe, zij het enkel significant te Kruiibeke (p<0.035) en aan de Durmemonding (p<0.046). De monitoring vertoont laatste jaren immers meer zeer hoge en soms lage waarden. Dit is een belangrijk aandachtspunt. Zulke zogenaamde flickering kan een voorbode zijn voor een grondige verandering in het systeem.

Figuur 7-82 toont de zwevende stof nabij de bodem (ca 90% van de waterdiepte). Hier is slechts een beperkte dataset voorhanden, zodat deze figuur enkel de Zeeschelde beslaat voor de periode 2002-2009. Op deze beperktere schaal zijn geen opvallende trends waarnembaar.

![Zwevende stof (oppervlaktewater in mg/l)](image)

Figuur 7-81: Zwevende stof in het water nabij de oppervlakte (mg/l)
Figuur 7-82: Zwevende stof (mg/l) in het water nabij de bodem (90% van de waterdiepte)

Figuur 7-83: Jaargemiddelde zwevende stof concentratie (met standaard deviatie) aan de monding, te Hansweert en aan de grens.
7.6.3 TEMPERATUUR

7.6.3.1 MAXIMUM TEMPERATUUR

De maximale watertemperatuur gemeten tijdens longitudinale campagnes is per seizoen weergegeven in Tabel 7 - 17 tot Tabel 7 - 20. In 2009 wordt nergens de grens van 28°C overschreden. In 2006 wel (gemarkeerd met rood in de tabellen), enkel in de maand juli in zowel de zoete zone met korte verblijftijd als die met lange verblijftijd. In de periode 1996-2009 is er geen sprake van een stijgende trend in maximale temperatuur. Voor het meetstation “Grens”, aan km 58, bestaat een langere dataset voor temperatuur (Figuur 7-85). Over een periode van ruim 40 jaar wordt wel een significante stijging van de maximum temperatuur waargenomen (p=1,4*10⁻⁴).

Op basis van de continue data werd geen overschrijding van de maximale temperatuur waargenomen. De gebruikte data komen van het station te Kruijbeke in de oligohaline zone, waar ook met de longitudinale campagnes geen overschrijding werd vastgesteld.
T2009-rappoit Schelde-estuarium

Figuur 7-85: Jaarlijkse maximum temperatuur van het water aan station grens (km 58).

7.6.3.2 SEIZOENSGEMIDDELDE TEMPERATUUR

Figuur 7-86: Seizoensgemiddelde temperatuur, met aanduiding van lineaire trendlijn, aan station grens (km 58)

Naast trendanalyse is een er een toetsing van de seizoensgemiddelde temperatuur aan volgende criteria:

- Winter: seizoensgemiddelde maximaal 8°C
- Lente: seizoensgemiddelde maximaal 15°C
- Zomer: seizoensgemiddelde maximaal 21,5°C
- Herfst: seizoensgemiddelde maximaal 15°C

Een overschrijding van deze criteria werd oranje gemarkeerd in de tabellen. Wanneer toetsing aan criteria wordt gedaan, zal de evaluatie in grote mate beïnvloed worden door de definitie van begin en einde van elk seizoen. Lente begint bijvoorbeeld op 21 maart, maar voor een praktische werkbaarheid wordt steeds met volledige maanden gerekend. Door de lente te definiëren als de maanden april, mei en juni heb je de maanden met de meeste “lentedagen”. Het Koninklijk Meteorologisch Instituut hanteert echter maart, april en mei als lente maanden. Hieronder werd deze definitie gehanteerd.

In de herfst wordt de grens van 15 °C zeer vaak overschreden, in alle delen van het estuarium. Het is niet meteen duidelijk welke schadelijke effecten een te hoge temperatuur in de herfst kan hebben.

Tabel 7-17: Gemiddelde, minimum en maximum temperatuur tijdens de winter

<table>
<thead>
<tr>
<th>winter</th>
<th>monding</th>
<th>polyhalien</th>
<th>mesohalien</th>
<th>gradiënt</th>
<th>oligohalien</th>
<th>zoet lang</th>
<th>zoet kort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 7-18: Gemiddelde, minimum en maximum temperatuur tijdens de lente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lente</td>
<td>monding</td>
<td>polyhalien</td>
<td>mesohalien</td>
<td>gradiënt</td>
<td>oligohalien</td>
<td>zoet lang</td>
<td>zoet kort</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1996</td>
<td>3,7</td>
<td>7,3</td>
<td>0,7</td>
<td>4,7</td>
<td>7,8</td>
<td>0,7</td>
<td>3,0</td>
</tr>
<tr>
<td>1997</td>
<td>3,5</td>
<td>8,6</td>
<td>-0,7</td>
<td>3,9</td>
<td>8,4</td>
<td>-1,0</td>
<td>2,7</td>
</tr>
<tr>
<td>1998</td>
<td>5,5</td>
<td>6,6</td>
<td>4,7</td>
<td>5,3</td>
<td>6,3</td>
<td>4,5</td>
<td>5,3</td>
</tr>
<tr>
<td>1999</td>
<td>6,3</td>
<td>7,3</td>
<td>5,2</td>
<td>6,3</td>
<td>7,4</td>
<td>5,2</td>
<td>6,1</td>
</tr>
<tr>
<td>2000</td>
<td>6,9</td>
<td>9,2</td>
<td>4,9</td>
<td>6,8</td>
<td>8,1</td>
<td>5,1</td>
<td>8,4</td>
</tr>
<tr>
<td>2001</td>
<td>5,7</td>
<td>8,7</td>
<td>3,9</td>
<td>5,6</td>
<td>6,6</td>
<td>3,7</td>
<td>7,1</td>
</tr>
<tr>
<td>2002</td>
<td>5,9</td>
<td>8,2</td>
<td>3,5</td>
<td>5,8</td>
<td>8,7</td>
<td>3,4</td>
<td>7,1</td>
</tr>
<tr>
<td>2003</td>
<td>5,0</td>
<td>6,9</td>
<td>3,7</td>
<td>5,1</td>
<td>6,8</td>
<td>4,1</td>
<td>6,6</td>
</tr>
<tr>
<td>2004</td>
<td>6,2</td>
<td>7,4</td>
<td>5,3</td>
<td>6,2</td>
<td>7,0</td>
<td>5,5</td>
<td>6,3</td>
</tr>
<tr>
<td>2005</td>
<td>6,2</td>
<td>6,9</td>
<td>5,3</td>
<td>5,9</td>
<td>6,6</td>
<td>5,2</td>
<td>6,2</td>
</tr>
<tr>
<td>2006</td>
<td>5,5</td>
<td>8,9</td>
<td>3,1</td>
<td>5,3</td>
<td>8,7</td>
<td>3,1</td>
<td>6,2</td>
</tr>
<tr>
<td>2007</td>
<td>7,5</td>
<td>8,0</td>
<td>6,8</td>
<td>7,6</td>
<td>8,0</td>
<td>6,9</td>
<td>8,2</td>
</tr>
<tr>
<td>2008</td>
<td>5,9</td>
<td>7,8</td>
<td>4,7</td>
<td>5,8</td>
<td>6,4</td>
<td>4,7</td>
<td>7,0</td>
</tr>
<tr>
<td>2009</td>
<td>5,4</td>
<td>9,3</td>
<td>2,3</td>
<td>5,8</td>
<td>10,1</td>
<td>1,9</td>
<td>4,4</td>
</tr>
</tbody>
</table>

Tabel 7-18: Gemiddelde, minimum en maximum temperatuur tijdens de lente

<table>
<thead>
<tr>
<th>lente</th>
<th>monding</th>
<th>polyhalien</th>
<th>mesohalien</th>
<th>gradiënt</th>
<th>oligohalien</th>
<th>zoet lang</th>
<th>zoet kort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>10,8</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>1997</td>
<td>13,0</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>1998</td>
<td>15,0</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>1999</td>
<td>13,0</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2000</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2001</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2002</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2003</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2004</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2005</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2006</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2007</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2008</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
<tr>
<td>2009</td>
<td>11,9</td>
<td>15,1</td>
<td>5,6</td>
<td>9,9</td>
<td>15,0</td>
<td>5,6</td>
<td>10,8</td>
</tr>
</tbody>
</table>
Tabel 7-19: Gemiddelde, minimum en maximum temperatuur tijdens de zomer

<table>
<thead>
<tr>
<th>zomer</th>
<th>monding</th>
<th>polyhalien</th>
<th>mesohalien</th>
<th>gradiënt</th>
<th>oligohalien</th>
<th>zoet lang</th>
<th>zoet kort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>17,2</td>
<td>19,6</td>
<td>18,3</td>
<td>19,5</td>
<td>19,2</td>
<td>19,7</td>
<td>20,2</td>
</tr>
<tr>
<td>1997</td>
<td>18,9</td>
<td>22,9</td>
<td>16,0</td>
<td>21,3</td>
<td>21,2</td>
<td>21,7</td>
<td>21,2</td>
</tr>
<tr>
<td>1998</td>
<td>17,9</td>
<td>19,9</td>
<td>16,0</td>
<td>20,3</td>
<td>20,7</td>
<td>21,1</td>
<td>21,3</td>
</tr>
<tr>
<td>1999</td>
<td>19,0</td>
<td>20,4</td>
<td>16,1</td>
<td>21,2</td>
<td>20,9</td>
<td>21,4</td>
<td>21,4</td>
</tr>
<tr>
<td>2000</td>
<td>18,2</td>
<td>20,3</td>
<td>15,2</td>
<td>19,1</td>
<td>19,6</td>
<td>21,6</td>
<td>20,0</td>
</tr>
<tr>
<td>2001</td>
<td>18,8</td>
<td>21,1</td>
<td>15,4</td>
<td>19,5</td>
<td>20,6</td>
<td>21,4</td>
<td>21,4</td>
</tr>
<tr>
<td>2002</td>
<td>18,4</td>
<td>21,0</td>
<td>15,6</td>
<td>18,9</td>
<td>20,6</td>
<td>22,7</td>
<td>21,4</td>
</tr>
<tr>
<td>2003</td>
<td>19,6</td>
<td>22,9</td>
<td>16,1</td>
<td>20,9</td>
<td>22,0</td>
<td>22,5</td>
<td>23,4</td>
</tr>
<tr>
<td>2004</td>
<td>18,1</td>
<td>21,5</td>
<td>14,4</td>
<td>19,0</td>
<td>20,5</td>
<td>23,4</td>
<td>21,0</td>
</tr>
<tr>
<td>2005</td>
<td>18,7</td>
<td>19,9</td>
<td>14,5</td>
<td>19,3</td>
<td>20,1</td>
<td>23,6</td>
<td>21,1</td>
</tr>
<tr>
<td>2006</td>
<td>15,3</td>
<td>25,1</td>
<td>14,9</td>
<td>17,4</td>
<td>21,3</td>
<td>25,5</td>
<td>23,3</td>
</tr>
<tr>
<td>2007</td>
<td>19,4</td>
<td>21,6</td>
<td>15,1</td>
<td>18,6</td>
<td>22,0</td>
<td>26,0</td>
<td>21,9</td>
</tr>
<tr>
<td>2008</td>
<td>18,2</td>
<td>20,9</td>
<td>16,1</td>
<td>19,5</td>
<td>21,1</td>
<td>23,4</td>
<td>22,0</td>
</tr>
<tr>
<td>2009</td>
<td>19,1</td>
<td>20,8</td>
<td>15,7</td>
<td>19,4</td>
<td>21,0</td>
<td>24,2</td>
<td>21,4</td>
</tr>
</tbody>
</table>

Tabel 7-20: Gemiddelde, minimum en maximum temperatuur tijdens de herfst

<table>
<thead>
<tr>
<th>herfst</th>
<th>monding</th>
<th>polyhalien</th>
<th>mesohalien</th>
<th>gradiënt</th>
<th>oligohalien</th>
<th>zoet lang</th>
<th>zoet kort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>13,1</td>
<td>18,2</td>
<td>7,1</td>
<td>15,7</td>
<td>14,1</td>
<td>14,0</td>
<td>15,1</td>
</tr>
<tr>
<td>1997</td>
<td>16,3</td>
<td>21,0</td>
<td>9,6</td>
<td>16,0</td>
<td>16,0</td>
<td>15,7</td>
<td>15,5</td>
</tr>
<tr>
<td>1998</td>
<td>14,0</td>
<td>18,5</td>
<td>9,8</td>
<td>13,6</td>
<td>12,4</td>
<td>12,3</td>
<td>12,2</td>
</tr>
<tr>
<td>1999</td>
<td>15,3</td>
<td>20,1</td>
<td>10,1</td>
<td>15,5</td>
<td>15,4</td>
<td>15,6</td>
<td>15,6</td>
</tr>
<tr>
<td>2000</td>
<td>14,2</td>
<td>18,5</td>
<td>8,4</td>
<td>14,1</td>
<td>14,0</td>
<td>14,2</td>
<td>14,2</td>
</tr>
<tr>
<td>2001</td>
<td>13,7</td>
<td>19,7</td>
<td>9,8</td>
<td>13,8</td>
<td>13,7</td>
<td>13,5</td>
<td>14,0</td>
</tr>
<tr>
<td>2002</td>
<td>14,2</td>
<td>19,2</td>
<td>10,3</td>
<td>15,1</td>
<td>14,8</td>
<td>14,5</td>
<td>15,1</td>
</tr>
<tr>
<td>2003</td>
<td>13,8</td>
<td>19,3</td>
<td>8,9</td>
<td>14,8</td>
<td>14,8</td>
<td>14,2</td>
<td>14,2</td>
</tr>
<tr>
<td>2004</td>
<td>13,4</td>
<td>19,6</td>
<td>7,4</td>
<td>12,5</td>
<td>13,3</td>
<td>14,3</td>
<td>14,4</td>
</tr>
<tr>
<td>2005</td>
<td>15,8</td>
<td>19,4</td>
<td>12,1</td>
<td>16,4</td>
<td>17,2</td>
<td>16,0</td>
<td>15,9</td>
</tr>
<tr>
<td>2006</td>
<td>15,6</td>
<td>19,4</td>
<td>9,2</td>
<td>13,8</td>
<td>16,5</td>
<td>15,0</td>
<td>15,1</td>
</tr>
<tr>
<td>2007</td>
<td>14,5</td>
<td>18,5</td>
<td>10,0</td>
<td>14,1</td>
<td>14,3</td>
<td>13,7</td>
<td>14,4</td>
</tr>
<tr>
<td>2008</td>
<td>14,2</td>
<td>18,4</td>
<td>10,6</td>
<td>14,0</td>
<td>15,1</td>
<td>13,8</td>
<td>15,2</td>
</tr>
<tr>
<td>2009</td>
<td>14,5</td>
<td>17,6</td>
<td>11,1</td>
<td>14,3</td>
<td>16,4</td>
<td>15,5</td>
<td>16,0</td>
</tr>
</tbody>
</table>

7.6.3.3 **WINTERMINIMA**

De methodiek stelt voor om winterminima mee te registreren als verklarende parameter: ze kunnen nuttig zijn bij het verklaren van bijvoorbeeld gewijzigde densiteiten voor bepaalde organismen (bv exoten) na een strenge of zwakke winter. In Tabel 7-17 tot Tabel 7-20 zijn deze minima mee opgenomen (evenals minima voor de andere seizoenen). Significante trends werden niet waargenomen in de periode 1996-2009. Op de langere dataset ter hoogte van de grens (Figuur 7-87) wordt wel een significante stijging van de minimum temperatuur geregistreerd (p=2.4*10⁻⁷).
7.6.3.4 **EERSTE MAAL 12°C**

Strenge winters of opwarming van het ecosysteem hebben ook een invloed op de start van het voortplantingsseizoen. De eerste dag dat de watertemperatuur 12°C overschrijdt is hiervoor een goede maat. Het is duidelijk dat op langere termijn steeds vroeger op het jaar de 12°C wordt bereikt ter hoogte van de grens (Figuur 7-88; daling significant p=1,1*10^-5). Enige voorzichtigheid is wel geboden bij het interpreteren van deze data: de datum van de meetcampagne (maandelijks tot twee maal per maand) heeft natuurlijk een grote invloed. Ideaal wordt dit bepaald op basis van continue data. Voor de Zeeschelde is echter geen lange dataset voorhanden, bovendien zijn de UA data te Kruibeke semi-continu, wat hetzelfde probleem oplevert als de maandelijkse data. Voor Vlissingen is wel een langetermijn dataset voorhanden, waar het vervroegen van de overschrijding van 12°C significant is. Opvallend zijn de twee zeer koude lentes van 1962 en 1963. In de periode 1958 – 1987 verschuift de overschrijdingsdatum eerst naar later op het jaar (p=0,024) om vanaf dan te vervroegen (p=0,004). Ook te Baalhoo, waar een beperktere dataset voorhanden is, kan een significante vervroeging vastgesteld worden (p=0,016).
7.6.4 **ZOÖPLANKTON**

7.6.5 **CHLOROFYL A**

Figuur 7-91: Surface plot van het chlorofyl a gehalte (grijze zones bevatten te weinig datapunten voor een goede weergave).

Figuur 7-92: Jaargemiddeld chl a gehalte in de mondingszone en aan de grens (km 58)

7.6.6 VERBLIJFTIJD

Verblijftijden kunnen berekend worden vanuit hydrodynamische modellen voor het estuarium. De methodiek schrijft echter een inschattingsmethode voor via het eenvoudige quotiënt van volume en netto debiet, waarbij dan een correctie wordt uitgevoerd voor het estuariene menggedrag. Dit laatste kan benaderd worden aan de hand van de saliniteitsgradient die een resultante is van de estuariene menging. Dit geeft volgende formule:

\[T_{verblijf} = \frac{V}{F} \times \frac{(S_0 - S)}{S_0} \]
Waarbij:
V = watervolume in de beschouwde zone
F = netto (zoet)waterflux in de zone (m³/s)
\(T_{verblijf}\) = verblijftijd in de beschouwde zone
S = zoutgehalte in de beschouwde zone
S₀ = zoutgehalte aan de monding

Aan de hand van deze formule werd de verblijftijd per zone per maand bepaald in het estuarium (Figuur 7-93).

Figuur 7-93: Verblijftijd (dag) bepaald per maand, per saliniteitszone

7.7 EVALUATIE T2009 WATERKWALITEIT

De evaluatie voor Waterkwaliteit anno 2009 is negatief. Voor verschillende rekenparameters werden de gestelde criteria niet gehaald, zoals samengevat in onderstaande piramide. Groen en rood geven aan dat wel resp. niet wordt voldaan voor de beschouwde rekenparameter. Voor rekenparameters zonder kleur is evaluatie (nog) niet mogelijk. De tekens + of - geven trend aan: een plus geeft aan dat er een positieve evolutie is, met andere woorden dat het systeem gunstig evolueert in de richting van het criterium voor een positieve evaluatie. De dalende trend voor Nitriet bijvoorbeeld is een gunstige trend en krijgt dus een plus.

Ondanks de negatieve evaluatie voor Waterkwaliteit (alle toetsparameters scoren onvoldoende), is de trend over het algemeen positief. In de Zeeschelde is de evaluatie voor Zuurstof duidelijk nog onvoldoende, maar is duidelijk in stijgende lijn. Toxische stoffen en totale nutriëntvrachten dalen. Een aandachtspunt blijven wel de nutriëntverhoudingen, met potentieel negatieve effecten op algenbloei. De
trend voor DSi is immers negatief, zodat voor IEC geen directe verbetering wordt verwacht. Voor de schadelijke algen *Phaeocystis* en Cyanobacteriën voor dan ook een status quo of verslechtering verwacht.

Toxische stoffen zijn helaas ook nog te vaak en te veel aanwezig in het estuarium, maar ook hier is de trend duidelijk positief. De vervuiling neemt af, zowel in de waterkolom als in de bodem. In biota was eind jaren '90 vaak een dalende trend waarneembaar. In recente jaren is voor diverse pollucenten de trend helaas terug stijgende.

7.8 ALGEMENE INTERPRETATIE WATERKWALITEIT

Lozingen van onbehandeld huishoudelijk en industrieel afvalwater en grote run-off uit landbouwgebieden bezorgden de Schelde en in het bijzonder de Zeeschelde, eind vorige eeuw de reputatie van quasi dode rivier. Het water bevatte hoge vrachten aan nutriënten (N en P). De afbraak van organische koolstofbindingen en de nitrificatie van ammonium onttooook veel zuurstof aan het water. De gevolgen van de toenemende vervuiling leidden eerst in de zoute Schelde tot de vernietiging van het aquatische ecosysteem. In de jaren '60 zakte de jaargemiddelde zuurstofconcentratie meestal onder 2 mg/l (Figuur 7-9). In de zomer verdween quasi alle zuurstof naar de mineralisatie van de organische koolstofvracht (BOD) en de nitrificatie van NH₄⁺. De steeds toenemende vuilvracht oversteg echter het zelf zuiverend vermogen van de zoute Schelde: de zoute zone krijgt niet meer alle BOD en NH₄⁺ verwerkt, zodat steeds grotere vrachten naar afwaartse zones worden overgegeven. Vanaf halfweg de jaren '60 kent ook de oligohaline zone ernstige zuurstoftekorten. In de zone met sterke gradiënt (ter hoogte van de grens), bereikt de vervuiling met BOD en NH₄⁺ pas begin de jaren '70 haar maximum (Figuur 7-15; Figuur 7-21), en zuurstof bijgevolg een triest minimum, met ook hier zomergemiddelde concentraties onder 2 mg/l (Figuur 7-9). Door verdunning met zuurstofrijk zeewater zijn de gevolgen in de Westerschelde nooit zo dramatisch geweest, al wordt toch ook in de mesohaline zone een beperkte daling van zuurstof waargenomen in de jaren '70, en is in die periode een piek in NH₄⁺ meetbaar tot in de mondingszone, zij het wel veel beperker.

De gevolgen zijn merkbaar: aan de grens zien we duidelijk vanaf midden jaren '70 N en P dalen, zuurstof is aan een continue opmars begonnen die doorgaat tot in 2009. Ook in de meso- en polyhaliene zone wordt een beperkt stijgende trend gedetecteerd. In de oligohaliene en zoete zones daarentegen, alle inspanningen inzake waterzuivering ten spijt, blijft het zuurstofgehalte constant laag tot het begin van het nieuwe millennium.

De verhoogde input van stikstof en fosfor leidden in het klassieke eutrofieringsverhaal tot verhoogde algenbloei. In een estuarium moet deze theorie met de nodige omzichtigheid worden benaderd. Daar zijn immers in vele gevallen niet de nutriënten limiterend voor algenbloei, maar wel het lichtklimaat. Estuaria worden vaak gekenmerkt door een hoge troebelheid waardoor zonlicht niet diep kan doordringen en de fotische diepte beperkt blijft. Ook in de Schelde is deze beperkt, vooral in het zeer troebele zoete deel. Maar naast fotische diepte, speelt ook de mengdiepte een rol: hoe dieper, hoe lager een alg in het donker zal zijn en niet aan fotosynthese kan doen. De verhouding fotische diepte/mengdiepte is een goede maat voor de lichtlimitatie. Wanneer lichtlimitatie optreedt, kunnen algen het nutriëntaanbod niet ten volle benutten waardoor een grote vracht kan doorstromen naar afwaartse gebieden en de kustzee.

Vanaf 2006 keert de trend echter en neemt chl a terug toe nabij de grens (Figuur 7-92). Ook de P:B ratio stijgt (Kromkamp et al., 1995). N en P nemen echter niet toe en lichtlimitatie toont geen duidelijke trend. Mogelijk speelt de komst van een nieuwe algensoort, de centrische diatomee Thalassiosira ssp., een rol. Hoe deze soort tot sterke bloei kan komen in deze zone met sterke lichtlimitatie, is nog onduidelijk.
De dalende nutriëntinput in de oligohaliene en zoete zone leidde niet meteen tot een heropleving van het zuurstofgehalte. De nog steeds grote vracht aan NH₄ en BOD bleef tot in de jaren ‘90 de zoete Schelde in een anoxische wurggriep houden. Algenbloei bleef er ondanks de hoge nutriëntvracht, relatief laag (Figuur 7-91). Nochtans werd er geen achteruitgang van het lichtklimaat vastgesteld in de periode ‘96 – ‘09, en is de lichtlimitatie in de meest opwaartse zone van het estuarium beduidend lager dan in afwaartse gebieden (Figuur 7-80), door de geringe diepte van het systeem. Maar de zoete Zeeschelde was blijkbaar zo sterk vervuld dat zelfs algen er niet meer optimaal konden groeien. Licht was wellicht niet meer de enige limiterende factor. De lage zuurstofconcentraties in het water zorgden ervoor dat de zoete Zeeschelde niet alleen onleefbaar was voor de meeste hogere organismen (wormen, schelpdieren, vissen, etc.), maar dus ook voor het fytoplankton. Kortom, de zoete Schelde was oververvuild of hypereutroof. Literatuuronderzoek en modelberekeningen ondersteunen de hypothese dat algen belemmerd waren in hun groei, hetzij rechtstreeks door de extreem lage zuurstofconcentraties, hetzij door andere kenmerken van de hypereutrofe toestand zoals hoge ammonium/ammonia concentraties en de aanwezigheid van sulfiden. Labo-experimenten bevestigen de toxiciteit van de toen aanwezige ammoniumconcentraties voor grote diatoméén. Ook experimenten met anoxie wijzen in de richting van algeninhibitie. Andere klassieke verklarende factoren voor algenbiomassa, zoals licht- en nutriëntenbeschikbaarheid of verblijftijd (Figuur 7-93) verklaren de lange termijntrend in de chlorofyl a concentraties niet.

Hoewel een direct negatief effect van anoxia op fytoplankton op het eerste gezicht tegenstrijdig lijkt (fytoplankton produceert immers zelf zuurstof), zijn er verschillende mechanismen bekend van negatieve effecten van anoxia op het fotosynthetisch apparaat en op het groeimetaabolisme. Herstel van fotoschade en foto-inhibitiie verloopt trager, onvolledig of niet in anoxische omstandigheden. En zo goed als alle organismen hebben een zuurstofsensor die ervoor zorgt dat bij lage zuurstofconcentraties celfuncties worden vertraagd of stilgelegd. In de Schelde, die zeer goed gemengd is, vertoeven algencellen slechts een beperkt gedeelte van de tijd in de bovenste waterlagen waar licht kan doordringen (ongeveer ½ meter). De rest van de tijd vertoeven ze in de donkere, diepere waterlagen. In die omstandigheden produceren algen geen zuurstof en zal ook binnen de cel anoxie optreden wanneer dat in het omliggende water zo is, met de hoger vermelde negatieve effecten. Het netto-effect is een al dan niet geheel belemmerde groei van de algenpopulatie.

De waterkwaliteit van de zoete Zeeschelde is dan wel spectaculair verbeterd in de afgelopen tien jaar, maar in vergelijking met rivieren en estuaria over de hele wereld behoort ze nog steeds tot de sterk ontwrichte ecosystemen. De vervuild toestand waarin de zoete Zeeschelde tot halverwege de jaren negentig verkeerde, was uniek op wereldschaal.

Het bijzondere aan het herstel van de zoete Zeeschelde is, dat de overgang van de over vervuilde, hypereutrofe toestand naar de huidige situatie relatief snel is gebeurd. Na deennia van weinig verandering, ondanks grote inspanningen inzake waterkwaliteit in het bekken, zagen we op enkele jaren tijd (ongeveer vanaf 2003) een evolutie van een rivier met extreem lage zuurstofconcentraties in de zomer, naar een rivier waarin extreem hoge zuurstofconcentraties worden gemeten tijdens die zomermaanden (Figuur 7-8). Oversaturatie komt sinds 2005 frequent voor in de zoete zone. Dat is een gevolg van de herstelde algenbloei. Het evenwicht tussen de processen die zuurstof gebruiken (voornamelijk omzetting van ammonium naar nitraat en de afbraak van organisch materiaal) en de processen die zuurstof in het water brengen (fotosynthese en uitwisseling met de lucht) is in deze periode gekanteld. Vóór 2000 was het zuurstofverbruik door de hoge organische belasting van de Schelde zo hoog dat alle zuurstof in het water werd opgebruikt, waardoor ook algen niet meer konden groeien. Na 2000 was het zuurstofverbruik lang genoeg geworden zodat de algen opnieuw konden bloeien, en ook extra zuurstof in het water konden pompenc.
Deze mechanismen zorgen ervoor dat de overgang van een hypereutrofe naar een klassieke eutrofe toestand als regime shift gekenmerkt kan worden (Cox et al., 2009). Met behulp van een eenvoudig maar realistisch model voor de zoete Zeeschelde bepaalde Cox et al. (2009) de ratio van zuurstofproductie (primaire productie) over zuurstofconsumptie (nitrificatie en respiratie). Wanneer die uitgezet wordt ten opzichte van een tovoer van ammonium, krijgen we een klassieke bifurcatie-figuur (Figuur 7-94). Bij hoge ammonium-input consumeert het systeem netto zuurstof, en bij lage ammonium-input wordt netto zuurstof geproduceerd. Bij tussenliggende ammonium-input kunnen beide situaties voorkomen, afhankelijk van de randvoorwaarden (debit, lichtinstraling, bovenstroomse input van algenbiomassa en zuurstof, etc.). Systemen in zulke toestand vertonen wat men noemt 'flickering': oscillaties van bepaalde variabelen. In de zoete Zeeschelde werd flickering vastgesteld in de gemeten zuurstofconcentraties: op de surface plot is te zien hoe in de periode 2004 - 2006 oversaturatie en acuut zuurstofekort (< 2,5 mg/l) elkaar soms afwisselen.

![Graph](image)

Figuur 7-94: Gemodelleerde ratio van zuurstofproductie over zuurstofconsumptie, uitgezet t.o.v. de bovenstroomse ammonium-inputs. Bij tussenliggende ammonium inputs vertoont het systeem twee alternatieve stabiele toestanden, een netto zuurstof producerende en een netto zuurstof consumerende toestand.

De oligohaline zone geniet mee van de verbetering in het zoete. BOD en NH₄⁺ concentraties die deze zone vanuit het zoete bereiken worden kleiner, zuurstof gaat reeds beperkt omhoog. Vanaf 2007 gaat de verbetering fors verder, wanneer ook Brussel geen ongezuiverd water meer loopt.

De zoete Zeeschelde en de oligohaline zone vertonen anno 2009 de symptomen van een klassieke eutrofe toestand (Figuur 7-95). De huidige algenbloei is op zich een indicator voor overmatige beschikbaarheid van nutriënten en wordt nu, net als in de rest van het estuarium, licht gelimiteerd verondersteld.

Zo'n overmatige algenbloei heeft bekende negatieve effecten, zoals schommelingen in zuurstofconcentraties tussen dag en nacht (overdag produceren de algen zuurstof, 's nachts gebruiken ze daar zelf weer een deel van) en het mogelijk voorkomen van schadelijke algensoorten. Op dit moment veroorzaakt de toch wel zeer grote algenbloei in de Zeeschelde geen acute problemen. Verschuivingen van diatomeeën naar andere groenalgen worden niet gemeld, ondanks de lage siliciumconcentraties. Nachtelijke anoxie komt wellicht ook niet voor, blijkt uit de continue data te Kruibeke. Maar het herstellende ecosysteem is kwetsbaar. De evolutie naar een meer natuurlijke en gezond functionerende Schelde is slechts mogelijk wanneer inspanningen worden gedaan om de toewer van nutriënten naar de Schelde verder te doen dalen. Verder valt het af te wachten of de zich herstelende zoöplanktonpopulatie een rol van betekenis kan spelen in het controleren van de algenbloei. Zoöplankton voedt zich immers met
De communicatie-indicator Leefomgeving voor flora en fauna is een onderdeel van de hoofdfunctie Natuurlijkheid van het Schelde-estuarium. Het uitgangspunt voor de evaluatie van Leefomgeving is dat voor een natuurlijk functionerend Schelde-estuarium (1) het oppervlak aan verschillende habitats evenwichtig verdeeld is, (2) het aanwezige laagdynamisch habitat van voldoende kwaliteit is en (3) sprake is van stabiliteit van habitats. De indicator Leefomgeving bestaat hiermee uit drie toetsparameters: (1) Oppervlak, (2) Kwaliteit en (3) Turn-over.

Basis voor de analyse van leefomgeving zijn de ecotopenkaarten. Essentieel voor een onderling vergelijkbare uitkomst is dat de wijze van opbouwen voor de ecotopenkaarten steeds vergelijkbaar is, zodat daadwerkelijke veranderingen in de leefomgeving worden geanalyseerd. Voor de Westerschelde zijn de voorlopige ecotopenkaarten van 2008 en 2010 onderling vergeleken. Omdat de ecotopenkaarten nog niet definitief beschikbaar zijn, wordt geen oordeel gegeven over de waargenomen veranderingen. In aanvulling op het voorliggende rapport zal begin 2014 een addendum beschikbaar komen waarin de definitieve ecotopenkaarten voor de Westerschelde worden geëvalueerd.

Voor de Zeeschelde zijn de ecotopenkaarten van 2001 en 2010 vergeleken. In de Beneden Zeeschelde is het diep sublitoraal toegenomen ten koste van het ondiep sublitoraal en het litoraal. Het schor is overweldigend toegenomen. De toename van het totale areaal van de Beneden Zeeschelde heeft betrekking op de ingebruikneming van dokken en havenbingangen.

De kwaliteit van de habitats kan nog niet worden vastgesteld met de parameters laagwaterlijn, hoogtegradient, omdat de variatie die in de waarden verwacht kan worden nog niet bekend is en dat geldt ook voor de toetsparameter turnover. Voor schor- en oeverbreedte is geconstateerd dat deze op veel plekken niet de gewenste breedte hebben.

8.1 INLEIDING

In figuur 8.1 is de communicatie-indicator leefomgeving weergegeven, zoals deze is opgenomen in de Evaluatiemethodiek Schelde-estuarium (Holzhauer e.a., 2011). Tabel 8.11 laat voor de toets- en parameter zien welk ruimtelijk bereik deze betreffen. In dit hoofdstuk worden van de parameters waarvan de gegevens beschikbaar zijn de ontwikkelingen tot en met het jaar 2010 weergegeven (er is geen ecotopenkaart 2009).
8.2 OPPERVLAK

8.2.1 INLEIDING

De leefomgeving van het Schelde-estuarium wordt gekenmerkt door een grote variatie aan habitats, die het gevolg zijn van de aanwezige gradaties. Er is een gradatie van volledig zoet in de rivierarmen naar brak in het oosten en dan naar volledig zout in het westen. Ook zijn er verticale gradaties van het diepste punt van de geul tot de hoogste delen van de schorren. In tabel 8.1 zijn de geaggregeerde habitats opgenomen waarvan de oppervlaktes zijn bepaald. De habitats en hun kenmerken zijn de resultante van morfo- en hydrodynamiek en de aanwezigheid van flora en fauna. De schorvegetatie speelt bijvoorbeeld een rol bij het invangen van sedimenten en het aframmelen van erosie.

8.2.1.1 ECOTOPEN

In het Schelde-estuarium worden de habitats beschreven in ecotopen. De basis hiervoor ligt in het Zoutwater Ecotopen Stelsel (ZES, Bouma e.a., 2005). Het ecotopenstelsel is een hiërarchisch opgebouwde indeling waarin de meest belangrijke abiotische omgevingsfactoren (mate van droogvallen, type substraat, salinititeit) en biotische aspecten (aanwezigheid begroeiing) van de habitats worden weergegeven. In deze studie wordt niet het volledige detail van de indeling gebruikt, er wordt vereenvoudigde logica gemaakt, zodat de ontwikkelingen op hoofdlijnen worden gevolgd. De belangrijkste onderscheid in ecotopen zijn:

Sublitoraal: de geulen. In de Westerschelde wordt onderscheid gemaakt tussen hoogdynamische en laagdynamische geuldeling. In de box op de volgende pagina wordt het onderscheid in dynamiek toegelicht. In de Zeeschelde is het onderscheid in de geul gemaakt op de diepte. Er wordt geen
onderscheid gemaakt naar substraat, hoewel in de geulen hard substraat aanwezig is in de vorm van geulwandbestortingen en natuurlijke erosiebestendige lagen.

Litoraal: platen en slikken die bij vloed onder water staan en bij eb droogvallen. In de Westerschelde wordt onderscheid gemaakt tussen hoog- en laagdynamisch litoraal en dat onderscheid wordt hieronder toegelicht. In de Zeeschelde wordt dit onderscheid niet gemaakt. Verder worden drie hoogtezones onderscheiden, die vaker (laag) of minder vaak (hoog) overstromen.

Supralitoraal en schor: De gebieden die alleen tijdens zeer hoge waterstanden (springtij en stormen) worden onderscheiden in het onbegroeide supralitoraal en de begroeide delen, de schorren. In de Westerschelde wordt schor en pionierschor onderscheiden, in de Zeeschelde is dit onderscheid niet gemaakt.

Dynamiek in het litoraal
In het ecotypenstelsel wordt een onderscheid gemaakt in de dynamiek van de bodem. Hoogdynamisch areaal wordt gekenmerkt door weinig bodemleven en laagdynamisch door veel bodemleven. In gebieden met een hoge dynamiek is de bodem door golven of getijstroming dusdanig veel en vaak in beweging dat de aanwezigheid van en het foerageren door bodemdieren wordt beperkt of zelfs onmogelijk is. De aanwezigheid van het bodemleven wordt dus gecorreleerd aan de bewegelijkheid van de bodem, door de optredende sedimenttransporten en de verplaatsing van (mega)ribbels. Deze dynamiek van de bodem speelt op de tijdschaal van het getij, de dynamiek die bijvoorbeeld optreedt door de verplaatsing van geulen en die optreedt op een tijdschaal van jaren, wordt hier niet gevat onder dynamiek (dit komt bij de turnover ter sprake).

Op basis van de ecotopenkaarten is voor de Westerschelde vastgesteld dat het areaal hoogdynamische plaat is toegenomen en dat het areaal laagdynamische plaat is afgenomen (van Eck & Holzhauser, 2007; Cleveringa, 2007). De dynamiek in het sublitoraal, zoals getoond in de ecotopenkaarten is gebaseerd op de stroomsnelheden uit modelberekeningen. De veranderingen daarin zijn een gevolg van veranderingen in de bodemligging en in het getij. De dynamiek in het litoraal is gekarteerd op basis van luchtfoto’s, in combinatie met veldwaarnemingen.

In de figuur in dit tekstblok zijn uitsnedes weergegeven van de ecotopenkaarten 2008 en 2010 van de Rug van Baarland. In deze ecotopenkaarten is te zien dat het patroon in het hoog- en laagdynamische litoraal op sommige locaties heel standvastig is (onder andere bij de 1), terwijl op andere plaatsen veel variatie optreedt (o.a. bij 2). De variaties die optreden in de aanwezigheid van hoog- en laagdynamisch areaal zijn groot en het is nog niet goed bekend welke onderliggende (a)biotische factoren hiervoor verantwoordelijk zijn.

De toename van het hoogdynamische areaal ten koste van het laagdynamisch areaal in het litoraal is in het verleden verklaard met een toename van de stroomsnelheden op het litoraal. Via het sedimenttransport en de aan- of afwezigheid van (mega)ribbels is dynamiek gekoppeld aan het optreden van bepaalde stroomsnelheden gedurende een bepaalde periode (Ysebaert e.a., 2009). Maar ook andere factoren dan de aanwezigheid en dynamiek van (mega)ribbels en het sedimenttransport kunnen de aanwezigheid van bodemleven beperken. Het optreden van relatief veel golfligging wordt bij het westen van de Hooge Platen verondersteld beperkend te zijn voor het bodemleven (persoonlijk communicatie Dick de Jong). Verder is het sedimenttransport en de aanwezigheid van ribbels op de plaat- en slikbodem niet alleen afhankelijk van de optredende stroomsnelheden, maar ook van de korrelgrootte en de waterdiepte. Omdat de omstandigheden in het litoraal voortdurend veranderen, vanwege de variabele waterstand,
variabele stroomsnelheden en de wisseling van stroomrichting tijdens en eb- en voed is het in ieder geval lastig om te duiden onder welke omstandigheden representatieve stroomsnelheden optreden.

Door Baas (1993) is aangetoond dat bij de vorming van ribbels ook de factor tijd een rol speelt. Bij een langdurige blootstelling aan lage stroomsnelheden verandert de vorm van kleine ribbels in een vorm die normaal bij hoge stroomsnelheden past. Ook is vastgesteld dat aanwezigheid van bodemleven een rol speelt bij de stabiliteit van bodemstructuren (zie bijvoorbeeld het klassieke experiment in de Oosterschelde, dat is beschreven in Vos e.a., 1988).

Het is vanwege de verschillende factoren (stroomsnelheid, duur van de stroming, biotiek) die een rol spelen niet zonder meer te duiden waarom de veranderingen in het hoog- en laagdynamisch litoraal zich voordoen.
GEBRUIKTE GEGEVENS

De belangrijkste gegevens voor het bepalen van de toets- en rekenparameter Oppervlakte zijn de ecotopenkaarten.

Tabel 8.1: Toetsparameters, rekenparameters en hun ruimtelijk bereik (uit Holzhauer e.a, 2011).

<table>
<thead>
<tr>
<th>Toetsparameter</th>
<th>Rekenparameter</th>
<th>Ruimtelijk bereik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppervlakte</td>
<td>• Hoogdynamisch sublitoraal</td>
<td>• Zoute en brakke segmenten</td>
</tr>
<tr>
<td></td>
<td>• Laagdynamisch sublitoraal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hoogdynamisch litoraal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ondiep sublitoraal</td>
<td>• Zoete segmenten</td>
</tr>
<tr>
<td></td>
<td>• Diep sublitoraal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Laagdynamisch laaggelegen litoraal</td>
<td>• Onderscheid naar laagdynamische gebieden in de zoute en brakke segmenten.</td>
</tr>
<tr>
<td></td>
<td>• Laagdynamisch middelhooggelegen litoraal</td>
<td>• Geen onderscheid naar laagdynamische gebieden in de zoete segmenten.</td>
</tr>
<tr>
<td></td>
<td>• Laagdynamisch hooggelegen litoraal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pionierschor</td>
<td>• Zoute, brakke en zoete segmenten</td>
</tr>
<tr>
<td></td>
<td>• Schor</td>
<td></td>
</tr>
<tr>
<td>Kwaliteit (abiotiek)</td>
<td>• Laagwaterlijn plaat langs laagdynamische habitats</td>
<td>• Laagdynamisch plaathabitat in de zoute en brakke segmenten</td>
</tr>
<tr>
<td></td>
<td>• Hoogtegradient litoraal habitat</td>
<td>• Geulen, platen, slikken, en schorren in de zoute, brakke en zoete segmenten</td>
</tr>
<tr>
<td></td>
<td>• Helling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zoneverdeling schorhabitat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oeverbreedte schorhabitat</td>
<td></td>
</tr>
<tr>
<td>Kwaliteit (biota)</td>
<td>• Diversiteit soorten (indicator Flora en fauna)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Biomassa op platen, slikken en geulen (indicator Flora en fauna)</td>
<td></td>
</tr>
<tr>
<td>Turn-over</td>
<td>• Gemiddelde turn-over</td>
<td>• Zoute, brakke en zoete segmenten</td>
</tr>
<tr>
<td></td>
<td>• Turn-over plaat, slik of schorgebied</td>
<td></td>
</tr>
</tbody>
</table>

De waarden van ecotopenkaarten van 1996 en 2004, zoals gerapporteerd in het MOVE rapport (van Eck Holzhauer, 2007) worden vergeleken, maar niet gebruikt voor het bepalen van de trends, omdat deze op een andere manier zijn samengesteld. Combineren van de ecotopenkaarten van 2004 en eerder met die van 2008 en verder zou ontwikkelingen in beeld brengen die een weergave zijn van de gehanteerde methodieken en niet van de werkelijke ontwikkelingen van de leefomgeving. In 2014 wordt een
aanvulling gepresenteerd op deze voorliggende analyse waarin een nieuwe set consistent vervaardigde ecotopenkaarten van de Westerschelde zal worden vergeleken en geëvalueerd.

De ruimtelijke weergave van de toets- en rekenparameters bestaat uit een aantal gecombineerde OMES-segmenten, die weergegeven zijn in tabel 8-2.

Tabel 8.2: Gehanteerde ruimtelijke indeling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OMES zones</td>
<td>1 t/m 5</td>
<td>zone 6</td>
<td>zone 9</td>
<td>zone 13,14</td>
<td>zone 15,16</td>
<td>zone 17 t/m 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morfologie</td>
<td>Meergeulensysteem</td>
<td>Eengeulensysteem</td>
<td></td>
<td>(Westerschelde)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WESTERSCHELDE

In de figuur 8.2 zijn de ecotopenkaarten van 2008 en 2010 weergegeven, waarbij een aantal klassen uit het zoutwaternootopenstelsel (ZES) is samengenomen tot de geaggregeerd habitats die geëvalueerd zijn. De ecotopenkaarten zijn als GIS-bestand beschikbaar en deze zijn gecombineerd met de OMES-indenting. Daarna zijn de arealen per OMES-segment bepaald uit de GIS-bestanden.

Tabel 8-3 geeft de arealen weer voor een beperkt aantal klassen overeenkomstig de evaluatiemethodiek (Holzhauer, 2011), binnen de OMES compartimenten 1 tot en met 9 (de Westerschelde). In de tabel zijn ook de veranderingen in de arealen weergegeven.
Ecotoop 2008

- Laagwaterlijn 2008
- Overige
- Hoogdynamisch sublitoraal
- Laagdynamisch sublitoraal
- Hard substraat
- Hoogdynamisch litoraal
- Laagdynamisch laaglitoraal
- Laagdynamisch middenlitoraal
- Laagdynamisch hooglitoraal
- Supralitoraal
- Pionierzone
- Schor

Figuur 8-2a: Ecopen in de Westerschelde 2008 (gegevensbron Rijkswaterstaat).
Figuur 8-2b: Ecotopen in de Westerschelde 2010 (gegevensbron Rijkswaterstaat).
Tabel 8-3: Oppervlakte voor de verschillende ecotopen in hectaren voor de gehele Westerschelde.

<table>
<thead>
<tr>
<th>Totaal Westerschelde</th>
<th>2008</th>
<th>2010</th>
<th>2010-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoogdynamisch sublitoraal</td>
<td>16.588</td>
<td>16.894</td>
<td>306</td>
</tr>
<tr>
<td>Laagdynamisch sublitoraal</td>
<td>3.828</td>
<td>3.551</td>
<td>-277</td>
</tr>
<tr>
<td>Hoogdynamisch litoraal</td>
<td>3.705</td>
<td>3.185</td>
<td>-520</td>
</tr>
<tr>
<td>Laagdynamisch laaggelegen litoraal</td>
<td>477</td>
<td>521</td>
<td>43</td>
</tr>
<tr>
<td>Laagdynamisch middelhooggelegen litoraal</td>
<td>2.729</td>
<td>3.073</td>
<td>344</td>
</tr>
<tr>
<td>Laagdynamisch hooggelegen litoraal</td>
<td>491</td>
<td>582</td>
<td>91</td>
</tr>
<tr>
<td>Pionierschor</td>
<td>411</td>
<td>213</td>
<td>-198</td>
</tr>
<tr>
<td>Schor</td>
<td>2.820</td>
<td>3.194</td>
<td>374</td>
</tr>
<tr>
<td>Supralitoraal</td>
<td>285</td>
<td>96</td>
<td>-189</td>
</tr>
<tr>
<td>Hard</td>
<td>325</td>
<td>334</td>
<td>9</td>
</tr>
<tr>
<td>Overige</td>
<td>61</td>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>Totaal</td>
<td>31.722</td>
<td>31.722</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabel 8-3 laat zien dat de veranderingen en verschuivingen in de ecotopen in de periode 2008 tot 2010 maximaal 520 ha bedragen, dat is de afname van het hoogdynamisch litoraal. In termen van relatieve veranderingen springt de afname met bijna 200 ha van het supralitoraal in het oog, omdat het areaal hiermee bijna drie keer zo klein is geworden. Tabel 8-4 laat zien dat de veranderingen voor de Westerschelde in zowel de polyhalien als in de mesohalien zone hebben plaatsgevonden. Dat betekent bijvoorbeeld dat de toename van het schorareal en de afname van het pionierschor (inclusief potentiële pionierzone) op meerdere plekken heeft plaatsgevonden en niet beperkt is gebleven tot één locatie. Zonder aanvullende informatie van de verschillende bronnen die zijn gebruikt voor het samenstellen van de ecotopenkaart is niet vast te stellen hoe (en waarom) veranderingen zich hebben voorgedaan. De omzetting van pionierschor in schor zal bijvoorbeeld volgen uit de geomorfologische kartering op basis van de luchtfoto’s. De verschuiving van hoog- naar laagdynamisch in het sublitoraal volgt uit modellering van de waterbeweging, maar het is niet vast te stellen of dit dan volgt uit een verandering van de bodemligging of uit een verandering van de waterstanden (het getij).

Tabel 8-4: Oppervlakte voor de verschillende ecotopen in hectaren voor de polyhalien en de mesohalien zones van de Westerschelde.

<table>
<thead>
<tr>
<th>1. Polyhalien (zone 1 t/m 5)</th>
<th>2008</th>
<th>2010</th>
<th>2010-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoogdynamisch sublitoraal</td>
<td>13.585</td>
<td>13.858</td>
<td>273</td>
</tr>
<tr>
<td>Laagdynamisch sublitoraal</td>
<td>3.051</td>
<td>2.817</td>
<td>-234</td>
</tr>
<tr>
<td>Hoogdynamisch litoraal</td>
<td>2.342</td>
<td>2.022</td>
<td>-320</td>
</tr>
<tr>
<td>Laagdynamisch laaggelegen litoraal</td>
<td>371</td>
<td>390</td>
<td>19</td>
</tr>
<tr>
<td>Laagdynamisch middelhooggelegen litoraal</td>
<td>1.887</td>
<td>2.069</td>
<td>182</td>
</tr>
<tr>
<td>Laagdynamisch hooggelegen litoraal</td>
<td>267</td>
<td>319</td>
<td>52</td>
</tr>
<tr>
<td>Pionierschor</td>
<td>253</td>
<td>134</td>
<td>-119</td>
</tr>
<tr>
<td>Schor</td>
<td>179</td>
<td>464</td>
<td>285</td>
</tr>
<tr>
<td>Supralitoraal</td>
<td>238</td>
<td>90</td>
<td>-148</td>
</tr>
<tr>
<td>Hard</td>
<td>186</td>
<td>191</td>
<td>5</td>
</tr>
<tr>
<td>Overige</td>
<td>28</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>Totaal</td>
<td>22.386</td>
<td>22.386</td>
<td>0</td>
</tr>
</tbody>
</table>
In tabel 8-5 zijn de relatieve oppervlaktes van het sublitoraal, litoraal en supralitoraal weergegeven voor de Westerschelde, voor de jaren 1996 en 2004 zijn deze ontleend aan het MOVE-rapport en voor 2008 en 2010 aan de Ecotopenkaarten. De absolute waarden uit Move en uit de nieuwe ecotopenkaarten mogen niet zonder meer worden vergeleken, omdat een deel van informatie in de kaarten op een andere wijze is samengesteld (droogvallen, waterlijn en dynamiek van het sublitoraal) en omdat het gekarteerde gebied verschilt. Dergelijke verschillen zijn minder belangrijke als in plaats van de absolute getallen de relatieve aanwezigheid wordt weergegeven, zoals is gedaan in tabel 8-5. In deze tabel is zichtbaar dat de bijdrage van het sublitoraal (de geulen en het ondiepe water, onder de laagwaterlijn), van het litoraal (de slikken en de platen) en de schorren in alle jaren waarden hebben die vrijwel hetzelfde zijn. Wel zijn in 2004, 2008 en 2010 de waarden voor het sublitoraal 1% hoger en die van het litoraal 1% lager. Op de langere termijn heeft in de Westerschelde een verschuiving plaatsgevonden doordat het areaal hoogdynamisch litoraal is toegenomen en het areaal laagdynamisch areaal is afgenomen. Sinds de 21e eeuw vindt schorvorming plaats op de Hooge Platen en de Plaat van Walsoorden (Cleveringa, 2007; van Eck en Holzhauer, 2007).

8.2.4 ZEESCHELDE EN GETIJRIVIEREN

De ecotopenkaarten zijn als GIS-bestand beschikbaar en reeds ingedeeld per OMES-segment, zodat de areaal per OMES-segment eenvoudig uit de GIS-bestanden zijn bepaald. Tabel 8-8 geeft de ontwikkelingen van de totale areaal per OMES segment in de Schelde voor de ecotopenkaarten uit de periode 1870/1880, 1930, 1960, 2001 en 2010. Uit deze areaal kan de overall afname van de areaal tot 2001 worden afgelezen, zoals die voor alle segmenten heeft plaatsgevonden en is beschreven in (Van Braeckel, e.a., 2006). De ontwikkelingen over de langere termijn hebben betrekking op de ontwikkelingen van de areaal sublitoraal, litoraal en schorren. Deze ontwikkelingen worden in de Zeeschelde gedomineerd door areaalveranderingen als gevolg van rechttrekkingen en bedijkingen.
Tabel 8-8: Totale arealen per OMES-segment in de Schelde.

<table>
<thead>
<tr>
<th></th>
<th>1870</th>
<th>1880</th>
<th>1930</th>
<th>1960</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaal 9</td>
<td>1550</td>
<td>1486</td>
<td>1175</td>
<td>1029</td>
<td>1042</td>
<td></td>
</tr>
<tr>
<td>Totaal 10</td>
<td>715</td>
<td>670</td>
<td>672</td>
<td>647</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>Totaal 11</td>
<td>774</td>
<td>781</td>
<td>762</td>
<td>755</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>Totaal 12</td>
<td>335</td>
<td>334</td>
<td>300</td>
<td>296</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Totaal 13</td>
<td>570</td>
<td>545</td>
<td>509</td>
<td>465</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Totaal 14</td>
<td>480</td>
<td>487</td>
<td>444</td>
<td>439</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Totaal 15</td>
<td>605</td>
<td>479</td>
<td>392</td>
<td>373</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Totaal 16</td>
<td>182</td>
<td>178</td>
<td>163</td>
<td>165</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Totaal 17</td>
<td>230</td>
<td>232</td>
<td>157</td>
<td>139</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Totaal 18</td>
<td>815</td>
<td>813</td>
<td>85</td>
<td>74</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Totaal 19</td>
<td>344</td>
<td>84</td>
<td>61</td>
<td>66</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Totaal 19 trGM</td>
<td>677</td>
<td>36</td>
<td>38</td>
<td>45</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Subtotaal</td>
<td>7277</td>
<td>6125</td>
<td>4758</td>
<td>4494</td>
<td>4676</td>
<td></td>
</tr>
<tr>
<td>Totaal Durme</td>
<td>-</td>
<td>993</td>
<td>516</td>
<td>157</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Totaal Rupel</td>
<td>-</td>
<td>403</td>
<td>368</td>
<td>247</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>8471</td>
<td>7521</td>
<td>5642</td>
<td>4898</td>
<td>5076</td>
<td></td>
</tr>
</tbody>
</table>

In de onderstaande tabellen is per segment uit de evaluatiemethodiek de areaalindeling opgenomen voor de jaren 2001 en 2010 en het verschil tussen de opnamen. Het globale beeld is een toename van het diepe sublitoraal in de Zeeschelde tot en met OMES-zone 16. In de zoete eindtakken neemt de waterdiepte af.

Tabel 8.9: Oppervlakte voor de verschillende ecotopen in hectaren in de zone met de saliniteitsgraad (3 uit de evaluatiemethodiek, OMES-zone 9 t/m 12) uit de ecotopenkaarten van INBO.

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2010</th>
<th>2010-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diep sublitoraal</td>
<td>1849</td>
<td>214</td>
<td>3</td>
</tr>
<tr>
<td>Ondiep sublitoraal</td>
<td>213</td>
<td>214</td>
<td>-3</td>
</tr>
<tr>
<td>Lagegelegen litoraal</td>
<td>148</td>
<td>145</td>
<td>-3</td>
</tr>
<tr>
<td>Middelhooggelegen litoraal</td>
<td>-</td>
<td>202</td>
<td>-28</td>
</tr>
<tr>
<td>Hooggelegen litoraal</td>
<td>37</td>
<td>35</td>
<td>-2</td>
</tr>
<tr>
<td>Pionierschor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schor</td>
<td>170</td>
<td>180</td>
<td>11</td>
</tr>
<tr>
<td>Supralitoraal (potentiële pionierenzone)</td>
<td>14</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Hard</td>
<td>59</td>
<td>63</td>
<td>3</td>
</tr>
<tr>
<td>Overige</td>
<td>9</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>Niet in ecotopenareaal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td>2727</td>
<td>2887</td>
<td>160</td>
</tr>
</tbody>
</table>

De toename van het areaal subtidaal en daarmee ook van het totale areaal in het gebied met de sterke saliniteitsgraad bestaat uit veranderingen in de havens en ingangen van de dokken. In de kaart in figuur 8-3 zijn deze gebieden aangeduid met de rode arcering (met de aanduiding “antropogen” in de legenda van de ecotopen.). Het betreft zowel daadwerkelijke fysische veranderingen, zoals de aanleg en in gebruik name van het Deurganckdok (de 2 in figuur 8-3), als veranderingen in het gekarteerde oppervlak.
(onder andere A en C in figuur 8-3). De ingebruikname van het Deurganckdok levert de belangrijkste toename in het areaal. Ondanks deze antropogene aanduiding zijn de gebieden wel opgeteld bij het betreffende habitat. In betreft het 8.6% van het totale areaal, oftewel 158 ha. Overigens zijn directe menselijke ingrepen, zoals de aanleg van het dok, niet onder verklarende parameters opgenomen.

Figuur 8-3: Kaart met een deel van de ecotopenkaart 2010 van de Beneden Zeeschelde.
Tabel 8-10: Oppervlakte voor de verschillende ecotopen in hectaren in de zone met oligohaline (4 uit de evaluatiemethodiek, OMES-zone 13 en 14) uit de ecotopenkaarten van INBO.

<table>
<thead>
<tr>
<th>4. Oligohalien (zone 13,14)</th>
<th>2001</th>
<th>2010</th>
<th>2010-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diep sublitoraal</td>
<td>567</td>
<td>584</td>
<td>17</td>
</tr>
<tr>
<td>Ondiep sublitoraal</td>
<td>71</td>
<td>64</td>
<td>-7</td>
</tr>
<tr>
<td>Laaggelegen litoraal</td>
<td>47</td>
<td>46</td>
<td>-2</td>
</tr>
<tr>
<td>Middelhooggelegen litoraal</td>
<td>52</td>
<td>49</td>
<td>-3</td>
</tr>
<tr>
<td>Hooggelegen litoraal</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Pionierschor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schor</td>
<td>114</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>Supralitoraal (potentiële pionierzone)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hard</td>
<td>45</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>Overige</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Niet in ecotopenareaal</td>
<td>96</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td>1.000</td>
<td>999</td>
<td>-1</td>
</tr>
</tbody>
</table>

Tabel 8-11: Oppervlakte voor de verschillende ecotopen in hectaren in de zoete zone met lange verblijftijd (5 uit de evaluatiemethodiek, OMES-zone 15 en 16) uit de ecotopenkaarten van INBO.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diep sublitoraal</td>
<td>216</td>
<td>233</td>
<td>16</td>
</tr>
<tr>
<td>Ondiep sublitoraal</td>
<td>49</td>
<td>42</td>
<td>-7</td>
</tr>
<tr>
<td>Laaggelegen litoraal</td>
<td>25</td>
<td>20</td>
<td>-6</td>
</tr>
<tr>
<td>Middelhooggelegen litoraal</td>
<td>25</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Hooggelegen litoraal</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Pionierschor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schor</td>
<td>187</td>
<td>195</td>
<td>7</td>
</tr>
<tr>
<td>Supralitoraal (potentiële pionierzone)</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hard</td>
<td>28</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Overige</td>
<td>2</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Niet in ecotopenareaal</td>
<td>38</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td>576</td>
<td>587</td>
<td>10</td>
</tr>
</tbody>
</table>
Tabel 8-12: Oppervlakte voor de verschillende ecotopen in hectaren in de zoete zone met korte verblijftijd (6 uit de evaluatiemethodiek, OMES-zone 17 en 19) uit de ecotopenkaarten van INBO.

<table>
<thead>
<tr>
<th>Ecotope</th>
<th>2001</th>
<th>2010</th>
<th>2010-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diep sublitoraal</td>
<td>138</td>
<td>136</td>
<td>-2</td>
</tr>
<tr>
<td>Ondiep sublitoraal</td>
<td>54</td>
<td>46</td>
<td>-8</td>
</tr>
<tr>
<td>Laaggelegen litoraal</td>
<td>4</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Middenhooggelegen litoraal</td>
<td>14</td>
<td>13</td>
<td>-1</td>
</tr>
<tr>
<td>Hooggelegen litoraal</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Pionierschors</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schor</td>
<td>69</td>
<td>88</td>
<td>19</td>
</tr>
<tr>
<td>Suprallitoraal (potentiële pionierzone)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hard</td>
<td>37</td>
<td>36</td>
<td>-1</td>
</tr>
<tr>
<td>Overige</td>
<td>4</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Niet in ecotopenareaal</td>
<td>161</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td>485</td>
<td>498</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabel 8-13: Oppervlakte voor de verschillende ecotopen in hectaren in de zijrivieren Rupel en Durme uit de ecotopenkaarten van INBO.

<table>
<thead>
<tr>
<th>Ecotope</th>
<th>2001</th>
<th>2010</th>
<th>2010-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diep sublitoraal</td>
<td>115</td>
<td>119</td>
<td>4</td>
</tr>
<tr>
<td>Ondiep sublitoraal</td>
<td>63</td>
<td>44</td>
<td>-20</td>
</tr>
<tr>
<td>Laaggelegen litoraal</td>
<td>15</td>
<td>13</td>
<td>-2</td>
</tr>
<tr>
<td>Middenhooggelegen litoraal</td>
<td>56</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>Hooggelegen litoraal</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pionierschors</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schor</td>
<td>121</td>
<td>123</td>
<td>2</td>
</tr>
<tr>
<td>Suprallitoraal (potentiële pionierzone)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hard</td>
<td>25</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Overige</td>
<td>8</td>
<td>4</td>
<td>-40</td>
</tr>
<tr>
<td>Niet in ecotopenareaal</td>
<td>128</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td>532</td>
<td>528</td>
<td>-3</td>
</tr>
</tbody>
</table>

8.2.5 EVALUATIE

Vooral nog worden de ontwikkelingen in de ecotopen van de Westerschelde niet geëvalueerd, in afwachting van het ter beschikking komen van definitieve ecotopenkaarten. Deze evaluatie op basis van een consistente set ecotopenkaarten zal in 2014 als addendum op het voorliggende rapport verschijnen. Voor de Zeeschelde wordt per ecotoop voor elke saliniteitszone besproken welke trends optreden en of deze wenselijk worden geacht. Hierbij is de Evaluatiemethodiek (Holzhauer e.a., 2011, specifieker tabel 2-2 in het hoofdstuk leefomgeving) leidend.
Ondiep sublitoraal

Evaluatiemethodiek (Holzhauer e.a., 2011): Een toename van ondiep sublitoraal per segment is wenselijk.

Sterke saliniteitsgradiënt: zone 10 t/m12: Toename met 1 ha, gewenste ontwikkeling.

Oligohalien -zones 13 & 14: Afname met 7 ha, dus geen gewenste ontwikkeling.

Zoet verblevijd lang - zone 15 & 16: Afname met 7 ha, dus geen gewenste ontwikkeling.

Zoet verblevijd kort - zones 17 – 19: Afname met 8 ha, dus geen gewenste ontwikkeling.

Zijrivieren Rupel en Durme: Toename met 7 ha, gewenste ontwikkeling.

Diep sublitoraal

Evaluatiemethodiek (Holzhauer e.a., 2011): Een toename van diep sublitoraal ten koste van ondiep sublitoraal per segment is ontwenselijk.

Sterke saliniteitsgradiënt: zone 10 t/m12: Toename met 154 ha maar niet ten kosten van ondiep sublitoraal, dus geen ongewenste ontwikkeling.

Oligohalien -zones 13 & 14: Afname met 17 ha en ten koste van ondiep sublitoraal, dus ongewenste ontwikkeling.

Zoet verblevijd lang - zone 15 & 16: Afname met 16 ha en ten koste van ondiep sublitoraal, dus ongewenste ontwikkeling.

Zoet verblevijd kort - zones 17 – 19: Afname met 2 ha, geen ongewenste ontwikkeling.

Zijrivieren Rupel en Durme: Afname met 23 ha, geen ongewenste ontwikkeling.

Laaggelegen, middelhooggelegen, hooggelegen litoraal

Evaluatiemethodiek (Holzhauer e.a., 2011): Een toename van (laagdynamisch) litoraal laag-, middelhoog- en hooggelegen litoraal per segment is wenselijk.

Sterke saliniteitsgradiënt: zone 10 t/m12: Afname met 19 ha en daarmee ongewenste ontwikkeling.

Oligohalien -zones 13 & 14: Afname met 8 ha en daarmee geen gewenste ontwikkeling.

Zoet verblevijd lang - zone 15 & 16: Afname met 9 ha en daarmee geen gewenste ontwikkeling.

Zoet verblevijd kort - zones 17 – 19: Optelsom van veranderingen per hoogtezone is nul voor het litoraal, dus geen gewenste ontwikkeling.

Zijrivieren Rupel en Durme: Optelsom van veranderingen per hoogtezone is 14 ha voor het litoraal, dus gewenste ontwikkeling.

Schor

Evaluatiemethodiek (Holzhauer e.a., 2011): Een afname van het schorhabitat per segment is onwenselijk.

Sterke saliniteitsgradiënt: zone 10 t/m12: Toename met 8 ha dus geen ongewenste ontwikkeling.

Oligohalien -zones 13 & 14: Vrijwel geen verandering, dus geen ongewenste ontwikkeling.

Zoet verblevijd lang - zone 15 & 16: Toename met 7 ha dus geen ongewenste ontwikkeling.

Zoet verblevijd kort - zones 17 – 19: Toename met 19 ha dus geen ongewenste ontwikkeling.

Zijrivieren Rupel en Durme: Toename met 2 ha dus geen ongewenste ontwikkeling.

Per saliniteitszone en per ecooep verschilt de wenselijkheid van de waargenomen ontwikkelingen. Het aantal enkel gewenselijke ontwikkelingen is groter dan het aantal wenselijke en neutrale ontwikkelingen. Met het schor gaat het in termen van areaal schor in alle saliniteitszones goed. Bij een onveranderlijke totale oppervlakte van de zones moet dit wel leiden tot afnames van de andere zones, waar dit veelal ongewenst is.
8.3 **KWALITEIT**

8.3.1 **INLEIDING**
De abiotische kwaliteit of structurele kwaliteit van het habitat wordt voornamelijk beïnvloed door de fysische processen die zich afspelen in het estuarium. De biologische kwaliteit door de diversiteit van aanwezige soorten en de aanwezigheid van voedsel voor hogere trofische niveaus wordt beschreven onder Flora en fauna. De parameters die onder abiotische kwaliteit zijn gevat zijn de hydrodynamiek en de morfologie van het habitat, de saliniteit en sedimentsamenstelling de aanwezigheid van hoogtegradiënten, de ruimte voor en aanwezigheid van zonering.

Rekenparameters voor kwaliteit zijn:
- Lengte laagwaterlijn grenzend aan laagdynamisch habitat
- Helling
- Hoogtegradiënt
- Zonering van schorren
- Oeverbreedte schorhabitat

8.3.2 **GEBRUIKTE GEGEVENS**
Voor het bepalen van de toets- en rekenparameter onder kwaliteit wordt in aanvulling op de ecotopenkaarten gebruik gemaakt van de bodemligging. Hiervoor is in de Zeeschelde gebruik gemaakt van de profielgenerator van INBO (Van Braeckel e.a. 2010). Verder is gebruik gemaakt van de raaimetingen op de schorren en slikken in de Zeeschelde.

8.3.3 **LENGTE LAAGWATERLIJN GRENZEND AAN LAAGDYNAMISCH HABITAT WESTERSCHELDE**
Sommige soorten steltlopers forageren graag langs de waterlijn. Tijdens het opkomen en afgaan van het water volgen deze steltlopers de waterlijn. Omdat in de laagdynamische gebieden meer voedsel in de vorm van macrozoobenthos beschikbaar is, is met name het laagdynamische areaal van belang voor het forageren. Voor soorten die de waterlijn volgen wordt de forageerduur bepaald door de hoogtegradiënt (zie verderop). Als het laagdynamische areaal doorloopt tot aan de laagwaterlijn, kan het forageren relatief lang door gaan. De lengte van de laagwaterlijn een is daarmee een parameter voor de kwaliteit van het foragerengebied van platen en slikken.

In de GIS-bestanden van de ecotopenkaarten is de laagwaterlijn bepaald als overgang van het litoraal naar het sublitoraal. Daarna is vastgesteld waar de laagwaterlijn grenst aan laagdynamische gebieden. De waarden hiervoor zijn per OMES-segment bepaald. In figuur 8.4 is een ecotopenkaart van een deel van de Westerschelde weergegeven (omgeving Hooge platen en Springers), met de laagwaterlijn. Daar waar de laagwaterlijn grenst aan laagdynamische gebieden is deze rood, in de andere gevallen is deze zwart. De lengte van de totale laagwaterlijn (zwart + rood) is bepaald, evenals de lengte van de laagwaterlijn langs de laagdynamische gebieden. Daarmee is de verhouding tussen beide berekend. Dit is gedaan voor de twee saliniteitsegmenten in de Westerschelde en voor OMES-segment 9. Omdat in de Zeeschelde het onderscheid tussen laag- en hoogdynamische ecotopen niet is gemaakt, is deze analyse daarvoor niet uitgevoerd.

theorie wordt de lengte van de laagwaterlijn grenzend aan laagdynamische habitat bepaald door: de aanwezigheid van laagdynamisch areaal direct aangrenzend aan de plaatrand, het aantal platen, de grilligheid van de laagdynamische plaatrand door de aanwezigheid van kortsluitgeulen en kleinere kreken. Maar ook verschillen in de opbouw van de (onderliggende) kaarten kunnen verschillen opleveren in de lengte van de waterlijn.

Figuur 8.4 Kaart van de omgeving van de Hooge platen met de laagwaterlijn, waarvan de delen die langs het laagdynamische litoraal liggen in rood zijn gemarkeerd.

<table>
<thead>
<tr>
<th>Polyhaliene zone (segment 1 t/m 5)</th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>208.497</td>
<td>218.506</td>
</tr>
<tr>
<td>Lengte van de Waterlijn langs laagdynamisch gebied</td>
<td>36.275</td>
<td>48.471</td>
</tr>
<tr>
<td>Laagdynamisch/totale laagwaterlijn</td>
<td>17,4%</td>
<td>22,2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesohalienne zone (segment 6 t/m 9)</th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>85.006</td>
<td>84.718</td>
</tr>
<tr>
<td>Lengte van de Waterlijn langs laagdynamisch gebied</td>
<td>10.774</td>
<td>11.271</td>
</tr>
<tr>
<td>Laagdynamisch/totale laagwaterlijn</td>
<td>12,7%</td>
<td>13,3%</td>
</tr>
</tbody>
</table>

Tabel 8.14 Totale lengte van de laagwaterlijn en van de laagwaterlijn langs laagdynamische litorale ecotopen in de Westerschelde.

Figuren 8.5 en 8.6 toont de kaart met de laagwaterlijn langs het laagdynamische gebied in respectievelijk 2008 en 2010. In een oogopslag is zichtbaar dat de meeste laagwaterlijn langs laagdynamische gebied wordt aangetroffen bij de slikken en niet rond de platen. De belangrijke verschillen treden met name op daar waar laagdynamische areaal langs de areaal verdwijnt dan wel verschijnt. Deze veranderingen, die nauw samenhangen met het optreden van hoogdynamische ecotopen zijn nog niet voldoende goed begrepen om hiervoor een verklaring te geven.
8.3.4 LENGTE LAAGWATERLIJN GRENZEND AAN ZACHT SUBSTRAAT ZEESCHELDE

In de Zeeschelde is (nog) geen onderscheid gemaakt in het laag- en hoogdynamisch karakter van het tidaal, zodat het niet mogelijk is dezelfde kwaliteitsparameter te hanteren als voor de Westerschelde. Daarom is in plaats van de laagwaterlijn langs het laagdynamisch litoraal gekeken naar de lengte van de laagwaterlijn langs het tidaal dat bestaat uit zacht substraat. In potentie is deze waterlijn beschikbaar voor het foerageren door waadvogels, in tegenstelling tot de laagwaterlijn langs het harde substraat (met uitzondering van het foerageren door soorten zoals de steenloper die hun voedsel vooral op en langs hard substraat vinden). De laagwaterlijn is uit de GIS-bestanden van de ecotopenkaarten afgeleid uit de grens tussen sublitoraal en litoraal. Daarna is vastgesteld waar deze laagwaterlijn aan het zacht substraat grenst. In de figuur 8.6 is zowel de laagwaterlijnen als de laagwaterlijn grenzend aan het zacht substraat aangegeven in 2001 en 2010 weergegeven. Tabel 8-15 geeft de resultaten van deze analyse weer van deze analyse.
<table>
<thead>
<tr>
<th>Segment</th>
<th>2001</th>
<th>2010</th>
<th>2010/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Sterke saliniteitsgradiënt (zone 10 t/m12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>85.630</td>
<td>79.895</td>
<td>93.3%</td>
</tr>
<tr>
<td>Lengte van de waterlijn langs zacht substraat</td>
<td>63.139</td>
<td>47.386</td>
<td>75.1%</td>
</tr>
<tr>
<td>Zachtsustraat/totale laagwaterlijn</td>
<td>73.7%</td>
<td>59.3%</td>
<td></td>
</tr>
<tr>
<td>4. Oligohalien (zone 13,14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>51.709</td>
<td>48.748</td>
<td>94.3%</td>
</tr>
<tr>
<td>Lengte van de waterlijn langs zacht substraat</td>
<td>36.452</td>
<td>35.213</td>
<td>96.6%</td>
</tr>
<tr>
<td>Zachtsustraat/totale laagwaterlijn</td>
<td>70.5%</td>
<td>72.2%</td>
<td></td>
</tr>
<tr>
<td>5. Zoet verblijftijd lang (zone 15,16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>54.331</td>
<td>53.171</td>
<td>97.9%</td>
</tr>
<tr>
<td>Lengte van de waterlijn langs zacht substraat</td>
<td>30.820</td>
<td>29.986</td>
<td>90.8%</td>
</tr>
<tr>
<td>Zachtsustraat/totale laagwaterlijn</td>
<td>56.7%</td>
<td>52.6%</td>
<td></td>
</tr>
<tr>
<td>6. Zoet verblijftijd kort (zone17 t/19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>96.206</td>
<td>95.083</td>
<td>98.8%</td>
</tr>
<tr>
<td>Lengte van de waterlijn langs zacht substraat</td>
<td>25.739</td>
<td>22.250</td>
<td>88.4%</td>
</tr>
<tr>
<td>Zachtsustraat/totale laagwaterlijn</td>
<td>26.8%</td>
<td>23.4%</td>
<td></td>
</tr>
<tr>
<td>7. Zijrivieren Rupel en Durme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale lengte van de laagwaterlijn</td>
<td>69.591</td>
<td>54.079</td>
<td>77.7%</td>
</tr>
<tr>
<td>Lengte van de waterlijn langs zacht substraat</td>
<td>50.736</td>
<td>38.188</td>
<td>75.3%</td>
</tr>
<tr>
<td>Zachtsustraat/totale laagwaterlijn</td>
<td>72.9%</td>
<td>70.6%</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 8.15 Totale lengte van de laagwaterlijn en van de laagwaterlijn langs zacht tidaal in de Zeeschelde in meters.

In alle segmenten is een afname te zien van zowel de lengte van de laagwaterlijn, als van de lengte van de laagwaterlijn grenzend aan het zachte substraat. Alleen in de oligohaliene zone (OMES-segmenten 13 en 14) is sprake van een relatieve toename van de lengte van de laagwaterlijn grenzend aan zacht substraat. Ter illustratie zijn in de figuren 8.7 en 8.8 de laagwaterlijnen in 2001 en 2010 weergegeven. De meest in het oog springende verschillen op deze grote schaal zijn de aanwezigheid van het Deurganckdok in de kaart van 2010, met een waterlijn die niet aan zacht substraat grenst, en de beperkte lengte van de laagwaterlijn in de Durme in 2010. De afname van de lengte van de laagwaterlijn in de Durme is gerelateerd aan de afname van het areaal sublitoraal, door de opslibbing van deze zijarm.
Figuur 8.7 Kaart met laagwaterlijnen langs de Schelde in 2001.

Figuur 8.8 Kaart met laagwaterlijnen langs de Schelde in 2010.
8.3.5 **HELLING ZEESCHELDE**

De helling van het litorale gebied geeft een indicatie of het gebied voldoende tijd biedt voor vogels om te foerageren, geschikt is voor de ontwikkeling van schor of als schuilplaats kan dienen voor bijvoorbeeld juveniele vissen. Een te steile helling kan ervoor zorgen dat er op de plaat of het slik te weinig tijd beschikbaar is om te foerageren. Ook de vorm van de helling kan consequenties hebben voor de foerageermogelijkheden, bijvoorbeeld als een groot gebied relatief snel droogvalt bij een vlak profiel, of als bij een bol profiel relatief veel areaal hoog in het litoraal ligt. In een natuurlijk estuarium waar voldoende ruimte is voor sedimentatie/erosie cycli treedt sedimentatie op indien de helling niet al te steil is. Het slik en vervolgens schor bouwen zich op, de rand wordt steiler en de erosie start.

In de Westerschelde zijn er tot nu toe geen problemen met te steile hellingen van platen of slikken geconstateerd. De aanwezig van een helling in het tidaal komt bij de kwaliteitsparameter gradiënt aan de orde. In de Westerschelde is er ook geen eenduidige koppeling tussen de helling van de geulwand en de ontwikkelingen van de oever (slik en schor). Helling als kwaliteit-parameter wordt daarom alleen voor de Zeeschelde beschouwd.

De helling van de oever (schor en slik) is per raai beschouwd. Dit zijn de raaien die met DGPS-LRK zijn ingemeten in 2008 en 2009. De aannames zijn dus de gekozen raaien voldoende representatief zijn voor de ontwikkeling van de gehele oever. De vorm van het profiel is genoteerd conform de aanduidingen in figuur 8.9. Daarbij is ook de aanwezigheid van hard antropogeen (stortsteen), dan wel natuurlijk hard substraat genoteerd, omdat de aanwezigheid daarvan medebepalend is voor de mogelijke ontwikkelingen van schor en slik.

Figuur 8.9 Profielvormen herkend in de oever van de Zeeschelde.

Omdat steeds voor een jaar (2008 of 2009) één hoogteopname beschikbaar is per profiel, is het vooralsnog niet mogelijk om eventuele ontwikkelingen of trends vast te stellen.

Voor de locaties van de profielen van de oever is ook het gehele profiel beschouwd, van de oever tot in de geul. Hiervoor is de profielgenerator van INBO gebruikt. Deze profielen omvatten gegevens uit de periode 1910 tot en met 2009, waarbij de databeschikbaarheid van gebied tot gebied varieert. Per profiel is de vorm genoteerd, conform figuur 8.8, verder is gekeken naar de locatie in een binnen- of buitenbocht, of een overgang en is vastgesteld of er sprake is geweest van erosie en of versteiling van het profiel. Voor de analyse van de erosie en versteiling zijn de opnamen na 1980 beschouwd.

In de bijlage bij het rapport zijn alle gebruikte profielen weergegeven. De resultaten zijn opgenomen in de onderstaande twee tabellen 8-16 en 8-17. De bovenste tabel omvat de oever, de onderste tabel het gehele profiel.
<table>
<thead>
<tr>
<th>Code</th>
<th>Naam</th>
<th>Opname jaar</th>
<th>Schor en slik profiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Appels</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>BA</td>
<td>Ballooij</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>BD1</td>
<td>Blokkersdijk-schor</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>BD2</td>
<td>Blokkersdijk-slik</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>BM</td>
<td>Bergenmeersen</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>BO</td>
<td>Boomkens</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>BR</td>
<td>Branst</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>BS</td>
<td>Brede schoren</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>BU</td>
<td>Burcht</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>CRa</td>
<td>Cramp a</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>CRb</td>
<td>Cramp b</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>CRc</td>
<td>Cramp c</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>DKa</td>
<td>Doelkern a</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>DKb</td>
<td>Doelkern b</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>DM</td>
<td>Durmendonding</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>FF</td>
<td>Fort Filip</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>GBSa</td>
<td>Groot buitenschoor a</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>GBSb</td>
<td>Groot buitenschoor b</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>GGr</td>
<td>Grembergen a</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>GRb</td>
<td>Grembergen b</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>GSa</td>
<td>Galgenschoor a</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>GSb</td>
<td>Galgenschoor b-schor</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>GSB1</td>
<td>Galgenschoor b-slik</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>GSH</td>
<td>Groot schor Hamme</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>GW</td>
<td>Galgenschuur</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>HE</td>
<td>Heusden</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>HP</td>
<td>Hooipolder</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>KPa</td>
<td>Ketenisse a</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>KPb</td>
<td>Ketenisse b</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>KPC</td>
<td>Ketenisse c</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>KPD</td>
<td>Ketenisse d</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>KS</td>
<td>Konkelschoor</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>KV</td>
<td>Kijkverdriet-schor</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>KV</td>
<td>Kijkverdriet-slik</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>LH</td>
<td>Lillo haven-schor</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>LH</td>
<td>Lillo haven-slik</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>LP</td>
<td>Lillo potpolder-schor</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>LP</td>
<td>Lillo potpolder-slik</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>MK</td>
<td>Mariekerke</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>NO</td>
<td>Notelaer-schor</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>NO</td>
<td>Notelaer-slik</td>
<td>X</td>
<td>helling</td>
</tr>
<tr>
<td>OD1</td>
<td>Ouden Doel-schor</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>OD2</td>
<td>Ouden Doel-slik</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>PD</td>
<td>Plaat/Drietgen</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>RMA</td>
<td>Rupelmonding a</td>
<td>X</td>
<td>bol</td>
</tr>
<tr>
<td>Code</td>
<td>Naam</td>
<td>Opname jaar</td>
<td>Schor en slik profiel</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>RMb</td>
<td>Rupelmonding b</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>TE</td>
<td>Temse</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>TS</td>
<td>Twaalf sluizen</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>VL</td>
<td>Vliet</td>
<td>X</td>
<td>sprong</td>
</tr>
<tr>
<td>WE</td>
<td>Weert</td>
<td>X</td>
<td>vlak</td>
</tr>
<tr>
<td>WM</td>
<td>Wijmeers</td>
<td>X</td>
<td>hol</td>
</tr>
<tr>
<td>ZE</td>
<td>Zele –schor</td>
<td>X</td>
<td>sprong ?</td>
</tr>
<tr>
<td>ZE2</td>
<td>Zele – slik</td>
<td>X</td>
<td>bol</td>
</tr>
</tbody>
</table>

Tabel 8-16 Kenmerken profielen oever
<table>
<thead>
<tr>
<th>Code</th>
<th>Naam</th>
<th>Vorm</th>
<th>Binnenbocht/Buitenbocht</th>
<th>Erosief/sedimenterend/stabil</th>
<th>Versteiling/verflauwing/geen verandering/Bestort (?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Appels</td>
<td>hol</td>
<td>buitenbocht</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>BA</td>
<td>Ballooii</td>
<td>bol</td>
<td>binnenbocht</td>
<td>sedimenterend</td>
<td>geen verandering</td>
</tr>
<tr>
<td>BD1</td>
<td>Blokkersdijk-schor</td>
<td>hol</td>
<td>buitenbocht</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>BD2</td>
<td>Blokkersdijk-slik</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>BM</td>
<td>Bergenmeersen</td>
<td>bol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>geen verandering</td>
</tr>
<tr>
<td>BO</td>
<td>Boomken</td>
<td>hol</td>
<td>buitenbocht</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>BR</td>
<td>Branst</td>
<td>bol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>BS</td>
<td>Brede schoren</td>
<td>hol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>BU</td>
<td>Burcht</td>
<td>bol</td>
<td>buitenbocht</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>CRa</td>
<td>Cramp a</td>
<td>hol</td>
<td>buitenbocht</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>CRb</td>
<td>Cramp b</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>CRc</td>
<td>Cramp c</td>
<td>"</td>
<td>"</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>DKa</td>
<td>Doelkern a</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>KBb</td>
<td>Doelkern b</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>DM</td>
<td>Durmonding</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>FF</td>
<td>Fort Filip</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>GBSa</td>
<td>Groot buitenschoor a</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>GBSb</td>
<td>Groot buitenschoor b</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>GRa</td>
<td>Greembergen a</td>
<td>bol</td>
<td>binnenbocht</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>GRb</td>
<td>Greembergen b</td>
<td>bol</td>
<td>binnenbocht</td>
<td>sedimenterend</td>
<td>verflauwing</td>
</tr>
<tr>
<td>GSb1</td>
<td>Galgenschoor b-schor</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>GSH</td>
<td>Groot schor Hamme</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>GW</td>
<td>Galgenweel</td>
<td>bol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>HE</td>
<td>Heusden</td>
<td>bol</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>HP</td>
<td>Hoopolder</td>
<td>bol</td>
<td>binnenbocht</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>KPa</td>
<td>Ketenisse a</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>KPb</td>
<td>Ketenisse b</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>KPC</td>
<td>Ketenisse c</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>KPd</td>
<td>Ketenisse d</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>KS</td>
<td>Konkelschoor</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>KV</td>
<td>Kijkverdriet-schoor</td>
<td>"</td>
<td>"</td>
<td>erosief</td>
<td>geen verandering</td>
</tr>
<tr>
<td>KV</td>
<td>Kijkverdriet-slik</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>LH</td>
<td>Lillo haven-schoor</td>
<td>"</td>
<td>"</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>LH</td>
<td>Lillo haven-slik</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>LP</td>
<td>Lillo potpolder-schoor</td>
<td>"</td>
<td>"</td>
<td>erosief</td>
<td>versteiling</td>
</tr>
<tr>
<td>MK</td>
<td>Mariekerke</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>NO</td>
<td>Notelaer-schoor</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>NO</td>
<td>Notelaer-slik</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>OD1</td>
<td>Ouden Doel-schoor</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>OD2</td>
<td>Ouden Doel-slik</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
De resultaten van de analyse van de profielen laten zien dat vrijwel alle combinaties van vormen en bestortingen worden aangetroffen met verschillende combinatie op de onderwateroever. Uit de tabel is voor de bestudeerde tabellen geen samenhang te vinden in de vorm van de helling en het erosieve, stabiele of sedimenterende karakter. Ook een verband tussen de ligging in de binnenbocht of buitenbocht en het erosieve, stabiele of sedimenterende karakter is niet aanwezig in de bestudeerde profielen. De vorm en de ligging (binnenbocht/buitenbocht) lijken voor de profielen geen duidelijke indicator te zijn van de ontwikkeling (erosie, sedimentatie/stabiel).

Table 8-17 Kenmerken profielen subtidaal en tidaal

<table>
<thead>
<tr>
<th>Code</th>
<th>Naam</th>
<th>Vorm</th>
<th>Binnenbocht/Buitenbocht</th>
<th>Erosief/ sedimenterend/stabiel</th>
<th>Verstelling/verflauwing/geen verandering/Bestort (?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Plaat/Driekoten</td>
<td>helling</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>geen verandering</td>
</tr>
<tr>
<td>RMa</td>
<td>Rupelmonding a</td>
<td>hol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>versteilend</td>
</tr>
<tr>
<td>RMb</td>
<td>Rupelmonding b</td>
<td>helling</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>stabiel</td>
</tr>
<tr>
<td>TE</td>
<td>Temse</td>
<td>hol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>versteilend</td>
</tr>
<tr>
<td>TS</td>
<td>Twaalf sluizen</td>
<td>helling</td>
<td>-</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>VL</td>
<td>Vliet</td>
<td>hol</td>
<td>buitenbocht</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>WE</td>
<td>Weert</td>
<td>bol</td>
<td>binnenbocht</td>
<td>erosief</td>
<td>geen verandering</td>
</tr>
<tr>
<td>WM</td>
<td>Wijmeers</td>
<td>hol</td>
<td>binnenbocht</td>
<td>stabiel</td>
<td>geen verandering</td>
</tr>
<tr>
<td>ZE</td>
<td>Zele-schor</td>
<td>hol</td>
<td>buitenbocht</td>
<td>erosief</td>
<td>geen verandering</td>
</tr>
<tr>
<td>ZE2</td>
<td>Zele - slik</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

De hoogtegradiënt betreft de aanwezigheid van een complete overgang in het laagdynamisch litoraal van laag via middel naar hoog litoraal. In figuur 8.10 is voor 2008 weergegeven voor de westelijke Westerschelde in welke laagdynamische delen wel of niet zo’n complete gradiënt aanwezig is. In figuur 8.11 is dit voor 2010 zichtbaar gemaakt. Voor de aanwezigheid van een gradiënt is in deze kaarten alleen berekend of er aansluitend aan het middelhoog dynamische litoraal zowel laaggelegen als hooggelegen litoraal aanwezig is. Daartoe zijn uit de oorspronkelijke GIS-bestanden van de ecotopenkaarten drie bestanden gemaakt van respectievelijk het hooggelegen, middelhooggelegen en laaggelegen laagdynamische litoraal. In een eerste stap is bepaald welke het hooggelegen gebieden aan middelhooggelegen gebieden vastliggen. Van die gebieden is vervolgens vastgesteld welke aan laaggelegen gebieden liggen. Op die manier zijn de laagdynamische litorale gebieden die een aaneengeloten gradient vormen gelabeld en daaruit zijn de oppervlaktes bepaald.

De omvang van het areaal in de drie hoogtezones is daarbij niet als criterium gehanteerd, de aaneengesloten aanwezigheid van een heel klein areaal is de bepalende factor. De aanwezigheid van een hoogtegradiënt is zowel van belang voor het voergeren door vogels als voor de vestiging van bodemdieren. De referentiewaarde bestaat uit het wel of niet aanwezig zijn van een volledige aaneengesloten gradiënt in hoogte zones op een plaat of slik. Een toename van platen en slikken met aaneengesloten laagdynamische hoogte zones wordt gezien als gunstig.
Figuur 8.10 Kaart met het laagdynamische areaal in en niet in een gradenlent van laag naar hooggelegen uit de ecotopenkaarten in 2008 voor de omgeving van de Hooge platen en Springer.

Figuur 8.11 Kaart met het laagdynamische areaal in en niet in een gradenlent van laag naar hooggelegen uit de ecotopenkaarten in 2010 voor de omgeving van de Hooge platen en Springer.
De arealen laagdynamisch intergetijdengebied met een complete gradiënt zijn bepaald voor de twee saliniteitszones in de Westerschelde. Ook de verhouding van de arealen in een gradiënt ten opzichte van het totale areaal laagdynamisch litoraal is bepaald. De resultaten zijn weergegeven in tabel 8-18.

Tabel 8-18 Arealen (ha) in het laagdynamische litoraal in aaneengesloten en niet in aaneengesloten gradiënt, ook aangegeven als percentage totaal/aaneengesloten.

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyhaline zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal laagdynamisch areaal hoog</td>
<td>267</td>
<td>319</td>
</tr>
<tr>
<td>Oppervlakte hoog in aaneengesloten gradiënt</td>
<td>235</td>
<td>278</td>
</tr>
<tr>
<td>Totaal laagdynamisch areaal middelhoog</td>
<td>1.887</td>
<td>2.069</td>
</tr>
<tr>
<td>Oppervlakte middelhoog in aaneengesloten gradiënt</td>
<td>1.002</td>
<td>1.065</td>
</tr>
<tr>
<td>Totaal laagdynamisch areaal laag</td>
<td>371</td>
<td>390</td>
</tr>
<tr>
<td>Oppervlakte laag in aaneengesloten gradiënt</td>
<td>157</td>
<td>131</td>
</tr>
<tr>
<td>Totale laagdynamisch areaal</td>
<td>2.524</td>
<td>2.778</td>
</tr>
<tr>
<td>Laagdynamisch areaal in aaneengesloten gradiënt</td>
<td>1.393</td>
<td>1.475</td>
</tr>
</tbody>
</table>

Mesohaline zone		
Totaal laagdynamisch areaal hoog	225	263
Oppervlakte hoog in aaneengesloten gradiënt	178	177
Totaal laagdynamisch areaal middelhoog	843	1.005
Oppervlakte middelhoog in aaneengesloten gradiënt	524	749
Totaal laagdynamisch areaal laag	107	131
Oppervlakte laag in aaneengesloten gradiënt	86	131
Totale laagdynamisch areaal	1.174	1.399
Laagdynamisch areaal in aaneengesloten gradiënt	788	1.057

Het is lastig om de uitkomsten in tabel 8-18 te duiden, omdat zowel veranderingen in het totale arealen, als kleine veranderingen in drie hoogteklassen al kunnen leiden tot grote veranderingen. In de kaarten met de situatie van 2008 en 2010 valt bijvoorbeeld op dat de westelijke Middelplaat (rechterplaat in de kaarten) in 2008 wel (figuur 8.9) en in 2010 (figuur 8.10) geen onderdeel uitmaakt van een gradiënt. In 2010 ontbreekt namelijk laaggelegen laagdynamisch areaal op die plaat. Ter illustratie is in figuur 8.12 een kaart opgenomen waarin de gradiënt wordt bepaald door de aanwezigheid van een minimaal areaal hooggelegen laagdynamisch litoraal. Betwijfeld wordt of de ecologische waarde van een dergelijk complex daadwerklijk groter is met de aanwezigheid van deze ‘snipper’ hooggelegen gebied.

In de polyhaline zone is sprake van een toename van het areaal laagdynamisch dat in een aangesloten gradiënt aanwezig is. Ook dat sprake is van een nog grotere toename van het laagdynamische areaal, is
het relatieve belang van het areaal in een gradiënt afgenomen met 2 %, van 55% naar 53%. In de mesohaline zone is ook sprake van een toename van het laagdynamische areaal. Omdat hierbij in een gradient aanwezige areaal meer is toegenomen dan het totale areaal laagdynamisch litoraal, is het relatieve belang van het aaneengesloten areaal toegenomen, met 6 %, van 65 tot 71 %.

Figuur 8.12 Kaart met een voorbeeld van laagdynamische areaal in een gradiënt van laag- naar hooggelegen (ecotopenkaart 2010).

In de Zeeschelde is in de ecotopenkaarten geen onderscheid gemaakt naar hoog- en laagdynamisch areaal, zodat de bovenstaande analyse niet op dezelfde wijze kan worden uitgevoerd. Voor de Zeeschelde is daarom gekeken naar de aanwezigheid van een aangesloten gradiënt van laag-midden-hoog zacht substraat in het tidaal. Deze GIS-analyse is op vergelijkbare wijze uitgevoerd als die voor de gradiënt in de Westerschelde, met drie bestanden met laag, midden en hoog zacht substraat in het tidaal. Het resultaat van deze analyse is opgenomen in tabel 8-19.

In vergelijking met de analyse van de Westerschelde valt op dat de percentages met een gradiënt groter zijn in de Zeeschelde. Dat is het gevolg van het maken van het onderscheid tussen hoog- en laagdynamisch in de Zeeschelde. In de Westerschelde doen geïsoleerde stukken laagdynamisch litoraal die worden omgeven door hoogdynamisch areaal niet mee in de gradiënt. Dergelijke geïsoleerde stukken ontbreken in de Zeeschelde. In de Zeeschelde maken de meeste zachte tidale delen onderdeel uit van een complete gradiënt. In de Zeeschelde bestaan geïsoleerde stukken zacht substraat in het tidaal doordat delen worden omsloten door hardsubstraat, dan wel doordat lage of middelhohe delen aansluiten aan hardsubstraat of andere ecotopen. Voorbeelden hiervan zijn te vinden in de kaart in figuur 8.13.
Tabel 8-19 Arealen (ha) in het zachtsubstraat tidaal in aaneengesloten en niet in aaneengesloten gradiënt.

<table>
<thead>
<tr>
<th>3. Sterke saliniteitsgradiënt (zone 10 t/m 12)</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppervlakte hoog in aaneengesloten gradiënt</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Oppervlakte middelhoog in aaneengesloten gradiënt</td>
<td>101</td>
<td>86</td>
</tr>
<tr>
<td>Oppervlakte laag in aaneengesloten gradiënt</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>Zacht substraat tidaal areaal in aaneengesloten gradiënt</td>
<td>190</td>
<td>178</td>
</tr>
<tr>
<td>Totaal areaal zacht substraat tidaal</td>
<td>207</td>
<td>191</td>
</tr>
<tr>
<td>Totaal/aaneengesloten tidaal zacht substraat</td>
<td>92%</td>
<td>94%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Oligohalien (zone 13,14)</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppervlakte hoog in aaneengesloten gradiënt</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Oppervlakte middelhoog in aaneengesloten gradiënt</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>Oppervlakte laag in aaneengesloten gradiënt</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>Zacht substraat tidaal areaal in aaneengesloten gradiënt</td>
<td>84</td>
<td>83</td>
</tr>
<tr>
<td>Totaal areaal zacht substraat tidaal</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>Totaal/aaneengesloten tidaal zacht substraat</td>
<td>90%</td>
<td>92%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Zoet verblijftijd lang (zone 15,16)</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppervlakte hoog in aaneengesloten gradiënt</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Oppervlakte middelhoog in aaneengesloten gradiënt</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>Oppervlakte laag in aaneengesloten gradiënt</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Zacht substraat tidaal areaal in aaneengesloten gradiënt</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>Totaal areaal zacht substraat tidaal</td>
<td>54</td>
<td>46</td>
</tr>
<tr>
<td>Totaal/aaneengesloten tidaal zacht substraat</td>
<td>91%</td>
<td>90%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Zoet verblijftijd kort (zone 17 t/m 19)</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppervlakte hoog in aaneengesloten gradiënt</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Oppervlakte middelhoog in aaneengesloten gradiënt</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Oppervlakte laag in aaneengesloten gradiënt</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Zacht substraat tidaal areaal in aaneengesloten gradiënt</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Totaal areaal zacht substraat tidaal</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Totaal/aaneengesloten tidaal zacht substraat</td>
<td>83%</td>
<td>76%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Zijrivier Rupel (Durme niet beschikbaar)</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppervlakte hoog in aaneengesloten gradiënt</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oppervlakte middelhoog in aaneengesloten gradiënt</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Oppervlakte laag in aaneengesloten gradiënt</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Zacht substraat tidaal areaal in aaneengesloten gradiënt</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Totaal areaal zacht substraat tidaal</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>Totaal/aaneengesloten tidaal zacht substraat</td>
<td>71%</td>
<td>89%</td>
</tr>
</tbody>
</table>
8.3.7 ZONERING VAN SCHORREN IN DE WESTERSCHELDE

De zonering voor schorren betreft de vraag of de oevers breed genoeg zijn om alle gewenste schorvegetatietypen te herbergen. De zonering van de schorren is gekoppeld aan de hellingen van de habitats.

Een schor wordt beschouwd als opgebouwd uit vier opeenvolgende schorzones, met de pionierzone in de laagste delen, via het laag- en middelhohe schor, naar het hoge schor. De zones vertegenwoordigen niet alleen een hoogtezonering binnen een schor, maar ook een leeftijdsontwikkeling.

Er is sprake van een evenwichtige situatie wanneer het oppervlak van iedere zone binnen het schorhabitat (pionierschor, laagschor, middelhoog, hoogschor) minimaal 5% en maximaal 40% van het totaal schoroppervlak binnen een segment is. Voor de pioniervegetatie is dit reeds aangegeven in de rekenparameter oppervlak pioniervegetatie. Binnen elke zone van het schorhabitat is het verder nog van belang dat de climaxvegetatie niet meer dan de helft van het oppervlak van de betreffende schorzone bedekt.

De vegetatiekaarten van de Zeeschelde hebben een opbouw die het niet mogelijk maakt om de hoogtezonering te herleiden. De analyse is daarom uitgevoerd voor de Westerschelde. Bij de Westerschelde is in de beschikbare vegetatiekaarten (nog) geen onderscheid gemaakt naar de climaxvegetatie en daarom is de hoogtezonering beschouwd. Hierbij is gekeken naar drie vegetatiekaarten die het bereik van de Westerschelde dekken, uit 1993, 1998 en 2004. In de figuren 8-13 tot 8-15 is van deze kaarten het gebied rond het Land van Saeftinghe weergegeven. In tabel 8-20 zijn de arealen voor de twee saliniteitszones opgenomen voor de betreffende jaren.

<table>
<thead>
<tr>
<th>ZONEERING</th>
<th>Overig: B; G; O; R; S: Wz; waal; week; water</th>
<th>K - Kwelder niet gespecificeerd</th>
<th>Kp; Kpb - Pionierschor</th>
<th>■ K I; Kib - Laag schor</th>
<th>■ Km; Kmb - Middelhoog schor</th>
<th>■ Kh; Khb - Hoog schor</th>
<th>Buitencontour - basislijn</th>
<th>Laagwaterlijn 2010</th>
</tr>
</thead>
</table>

Tabel 8-20 Arealen uit de vegetatiekaarten (let op OMES-segment 9 is niet opgenomen in het overzicht, omdat dit niet in deze kaarten aanwezig is).

<table>
<thead>
<tr>
<th></th>
<th>1993</th>
<th>1998</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyhalien (OMESegmenten 1-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoge kwelder</td>
<td>41</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Middelhoog kwelder</td>
<td>51</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Lage kwelder</td>
<td>55</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Pionierzone</td>
<td>31</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Kwelder niet gespecificeerd</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totaal kwelder</td>
<td>178</td>
<td>348</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesohalien (OMESegmenten 6-8)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoge kwelder</td>
<td>1.000</td>
<td>989</td>
<td></td>
</tr>
<tr>
<td>Middelhoog kwelder</td>
<td>124</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Lage kwelder</td>
<td>723</td>
<td>948</td>
<td></td>
</tr>
<tr>
<td>Pionierzone</td>
<td>79</td>
<td>413</td>
<td></td>
</tr>
<tr>
<td>Kwelder niet gespecificeerd</td>
<td>373</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Totaal kwelder</td>
<td>2.299</td>
<td>2.457</td>
<td></td>
</tr>
</tbody>
</table>

In de kaarten zijn grote sprongen zichtbaar tussen de opeenvolgende opnamen jaren in de onderverdeling per klasse. In de aangeleverde bestanden voor 1998 zijn delen als middelhoog zijn geclasseificeerd, die eigenlijk hoog zijn. De arealen zijn daarom niet opgenomen in tabel 8-20. Het totaal areaal vertoont per zone een toename die waarschijnlijk samenhangt met de toename van het areaal schorren op de platen. In
de volgende paragraaf wordt de ontwikkeling van het schorareaal gedifferentieerd naar plaat en oever, zodat deze toename gekwantificeerd wordt.

8.3.8 OEVERBREEDTE SCHORHABITAT

Voor het goed functioneren van het schorhabitat is er een minimale breedte nodig, zodat de verschillende kenmerkende onderdelen van het habitat, zoals de verschillende hoogte- en vegetatiezones, maar ook kreken en prielen naast elkaar kunnen bestaan. Voor het Schelde-estuarium wordt aangenomen wordt dat de minimale breedte van een schor 75 tot 100 m is. Bij deze breedte is er voldoende ruimte voor de aanwezigheid van een kreek. Schorren die smaller zijn dan 75-100 m tonen een steiler profiel en zijn vaak onderhevig aan erosieprocessen.

Voor dynamiek van het schor is een voldoende brede oever vereist tot aan de laagwaterlijn. Schordynamiek bestaat uit het de vestiging van pioniervegetatie op een hooggelegen slik, de ontwikkeling daarvan tot een schor en de geleidelijke erosie van het schor door (klif)erosie. De voldoende brede oever is noodzakelijk voor de sedimentatie op het slik, zodanig dat de vestiging van pioniervegetatie mogelijk is en voor verdere ontwikkeling van het schor. De vereiste oeverbreedte is voor de Westerschelde 1000 m, voor de Boven Zeeschelde (tot Wintam) 300 m en voor de rest van Schelde rivier en zijrivieren 230 m. Overigens is op basis van ervaring bekend dat lokaal de vereiste breedte in de Westerschelde kleiner kan zijn dan 1000 m, omdat de omstandigheden ter plaatse gunstig zijn. Dit is bijvoorbeeld het geval bij Paulinaschor, waar de aanwezigheid van een lange dam zorgt voor voldoende luwte, zodat nieuwbouw van schor op het slik voor het bestaande schor kan plaatsvinden.

Voor de analyses zijn de ecotopenkaarten van de Westerschelde en de Zeeschelde gebruikt. Uit deze kaarten is de buitencontour berekend. De buitencontour is gebruikt om zones met een bepaalde breedte (75, 230, 30 en 1000m) te berekenen. De schorren (inclusief het pionierschor) en het litoraal/tidaal zijn samengevoegd tot afzonderlijke bestanden, waarbij de platen een aparte markering hebben gekregen. Daarna is het oppervlak bepaald tussen de zones met een bepaalde breedte en respectievelijk schor en litoraal/tidaal.

Figuur 8-16 toont een kaart van de schorbreedte, waarin schor en pionierschor is gecombineerd tot één schorklasse. De kaart laat de omgeving van het Land van Saeftinghe zien, met de schorren op de Plaat van Waaloord (lichte tint groen), de schorren van Waarde en schorren bij Bath. In de kaart zijn de schorren binnen een bereik 75 m van de teen van de dijk (de buitencontour van de ecotopenkaart) gemarkerd, evenals de schorren op de platen. De areaal per salinithezone van het schor + pionierschor smaller en breder dan 75 m breed zijn bepaald, evenals het areaal schor op de platen voor 2008 en 2010. De resultaten zijn weergegeven in tabel 8-21.
Figuur 8-16 Kaart van de schorren en het pionierschor in de Westerschelde in 2010 in de omgeving van het land van Saeftinghe.

Tabel 8-21 Arealen (in ha) van schor en pionierschor in verschillende deelgebieden van de Westerschelde.

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyhaliene zone (segment 1 t/m 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor en pionier schor</td>
<td>585</td>
<td>597</td>
</tr>
<tr>
<td>Areaal schor en pionierschor op de plaatcomplexen</td>
<td>383</td>
<td>417</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers</td>
<td>202</td>
<td>180</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor meer dan 75 m uit buitencontour</td>
<td>104</td>
<td>87</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor minder dan 75 m uit buitencontour</td>
<td>98</td>
<td>93</td>
</tr>
<tr>
<td>Smal/breed schor en pionierschor</td>
<td>49%</td>
<td>52%</td>
</tr>
<tr>
<td>Mesohaliene zone (segment 6 t/m 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor en pionier schor</td>
<td>2.842</td>
<td>2.809</td>
</tr>
<tr>
<td>Areaal schor en pionierschor op de plaatcomplexen</td>
<td>119</td>
<td>98</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers</td>
<td>2.723</td>
<td>2.712</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor meer dan 75 m uit buitencontour</td>
<td>2.492</td>
<td>2.494</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor minder dan 75 m uit buitencontour</td>
<td>231</td>
<td>217</td>
</tr>
<tr>
<td>Smal/breed (schor en pionierschor langs de oevers)</td>
<td>8%</td>
<td>8%</td>
</tr>
</tbody>
</table>

In tabel 8-21 is zichtbaar dat het totale areaal schor is toegenomen in 2010 ten opzichte van 2008, zoals eerder in dit hoofdstuk ook is vastgesteld. In de polyhaliene zone wordt een belangrijk deel van het schor- en pionierschorareaal aangetroffen op de Hooge platen (65,5% van het totale areaal in 2008 en 69,8% in 2010). De toename van het schorareaal heeft geheel op de platen plaatsgevonden. Deze toename is groter
geweest dan de afname van het schor – en pionierschorareaal langs de oevers. Het schorareaal langs de
oevers is beduidend kleiner (34,5% van het totale areaal in 2008 en 30,2% in 2010). Langs de oevers is het
areaal ongeveer evenredig verdeeld over gebieden breder dan 75 m en gebieden smaller dan 75 m. Van
2008 naar 2010 is het areaal breed schor langs de oevers meer afgenomen dan het areaal smal schor, zodat
de verhouding is verschoven ten faveure van schor smaller dan 75.

Deze analyse is ook uitgevoerd voor de Zeescheelde. Omdat in de Zeeschelde geen plaatcomplexen
aanwezig zijn, is het onderscheid dat in de Westerschelde is gemaakt naar schorren op platen achterwege
gelaten. In tabel 8.22 zijn de resultaten opgenomen. Naarmate de getijrivier smaller wordt, neemt het
percentage schorren dat smaller is dan 75 m toe (figuur 8-17).

Tabel 8.22 Arealen (in ha) van schor en pionierschor in verschillende deelgebieden van de Zeeschelde.

<table>
<thead>
<tr>
<th>Deelgebied</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Sterke saliniteitsgradient (zone 10 t/m12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor</td>
<td>105</td>
<td>115</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers breder dan 75 m</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor smaller dan 75 m</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>Small/breed schor en pionierschor</td>
<td>80%</td>
<td>78%</td>
</tr>
<tr>
<td>4. Oligohalien (zone 13,14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor</td>
<td>114</td>
<td>111</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers breder dan 75 m</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor smaller dan 75 m</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>Small/breed schor en pionierschor</td>
<td>81%</td>
<td>81%</td>
</tr>
<tr>
<td>5. Zoet verblijftijd lang (zone 15,16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor</td>
<td>187</td>
<td>193</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers breder dan 75 m</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor smaller dan 75 m</td>
<td>122</td>
<td>127</td>
</tr>
<tr>
<td>Small/breed schor en pionierschor</td>
<td>65%</td>
<td>66%</td>
</tr>
<tr>
<td>6. Zoet verblijftijd kort (zone17 t l 19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor</td>
<td>69</td>
<td>89</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers breder dan 75 m</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor smaller dan 75 m</td>
<td>64</td>
<td>82</td>
</tr>
<tr>
<td>Small/breed schor en pionierschor</td>
<td>93%</td>
<td>92%</td>
</tr>
<tr>
<td>7. Zijrivieren Rupel en Durme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal areaal Schor</td>
<td>121</td>
<td>124</td>
</tr>
<tr>
<td>Areaal schor en pionierschor langs de oevers breder dan 75 m</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Waarvan areaal schor en pionierschor smaller dan 75 m</td>
<td>105</td>
<td>108</td>
</tr>
<tr>
<td>Small/breed schor en pionierschor</td>
<td>87%</td>
<td>88%</td>
</tr>
</tbody>
</table>
Figuur 8-17 Deel van de Boven-Zeeschelde, bij de aftakking van de Durme, waarin de brede en smalle schorren zijn aangegeven.

Bij de analyse van de oeverbreedte is bij de Westerschelde alleen gekeken naar de slikken en de schorren die grenzen aan oever. De plaatcomplexen zijn buiten deze analyse gehouden. Figuur 8.18 laat voor de oostelijke helft van de Westerschelde zien welke delen zijn beschouwd als oever en welke delen daarvan breder dan wel smaller zijn dan 1000m. Vooral het Land van Saeftinghe en de Plaat van Valkenisse (die tegenwoordig met de oever is verbonden en dus als onderdeel van de oever en niet als plaat is beschouwd) dragen bij aan de aanwezig van oevers die breder zijn dan 1 km. In tabel 8.23 zijn de resultaten van deze analyse opgenomen. Afgezien van het Land van Saeftinghe en de Plaat van Valkenisse, zijn er weinig oevers die breder zijn dan 1 km.

Figuur 8-18 Kaart van de oostelijke helft van de Westerschelde met de brede en smalle oevers.
Tabel 8-23 Arealen (in ha) van de oever in verschillende deelgebieden van de Westerschelde.

<table>
<thead>
<tr>
<th>Segment (1 t/m 5)</th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaliene zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areaal oever</td>
<td>2.079</td>
<td>2.058</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 1000 m</td>
<td>86</td>
<td>59</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 1000 m</td>
<td>1.993</td>
<td>1.999</td>
</tr>
<tr>
<td>Smal/breed oever</td>
<td>96%</td>
<td>97%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment (6 t/m 9)</th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesohaliene zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areaal oever</td>
<td>5.067</td>
<td>5.093</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 1000 m</td>
<td>2.426</td>
<td>2.439</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 1000 m</td>
<td>2.641</td>
<td>2.654</td>
</tr>
<tr>
<td>Smal/breed oever</td>
<td>52%</td>
<td>52%</td>
</tr>
</tbody>
</table>

In de Zeeschelde is voor de OMES-segmenten 10 tot en met 13 een oeverbreedte van 300 m gehanteerd en voor de OMES segmenten 14 tot en met 19 en de zijrivieren is 230 m gehanteerd. De resultaten van deze analyse zijn opgenomen in tabel 8-24. Ook voor de oeverbreedte geldt dat naarmate de getijrivier smaller wordt, het percentage brede oevers afneemt, omdat daar geen ruimte voor is.
Tabel 8-24 Areaal (in ha) van de oever in verschillende deelgebieden van de Zeeschelde.

<table>
<thead>
<tr>
<th>3. Sterke saliniteitsgradient (zone 10 t/m12)</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areaal oever</td>
<td>383</td>
<td>391</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 300 m</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 300 m</td>
<td>370</td>
<td>380</td>
</tr>
<tr>
<td>Smalle oever als % van totaal</td>
<td>96%</td>
<td>97%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Oligohalien -zone 13</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Areaal oever</td>
<td>104</td>
<td>78</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 300 m</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 300 m</td>
<td>104</td>
<td>78</td>
</tr>
<tr>
<td>Smalle oever als % van totaal</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Oligohalien - zone 14</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Areaal oever</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 230 m</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 230 m</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>Smalle oever als % van totaal</td>
<td>99%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Zoet verblijftijd lang (zone 15,16)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Areaal oever</td>
<td>271</td>
<td>270</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 230 m</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 230 m</td>
<td>269</td>
<td>267</td>
</tr>
<tr>
<td>Smalle oever als % van totaal</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Zoet verblijftijd kort (zone17 t/ 19)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Areaal oever</td>
<td>130</td>
<td>155</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 230 m</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 230 m</td>
<td>130</td>
<td>155</td>
</tr>
<tr>
<td>Smalle oever als % van totaal</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Zijrivieren Rupel en Durme</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Areaal oever</td>
<td>218</td>
<td>235</td>
</tr>
<tr>
<td>Waarvan areaal oever breder dan 230 m</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waarvan areaal oever smaller dan 230 m</td>
<td>218</td>
<td>235</td>
</tr>
<tr>
<td>Smalle oever als % van totaal</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
8.3.9 EVALUATIE

Kwaliteit is uitgewerkt in verschillende rekenparameters, die hieronder worden geëvalueerd.

8.3.9.1 LAAGWATERLIJN GRENZEND AAN LAAGDYNAMISCH PLAATHABITAT/ZACHTSUBSTRAAT

Evaluatiemethodiek (naar Holzhauser e.a., 2011): Afname van de laagwaterlijn langs het laagdynamisch/zachtsubsstraat binnen een segment wordt gezien als ongunstig.
Polyhalien – zones1-5: Toename, geen ongunstige ontwikkeling.
Meso halien - zone 6-9: Toename, geen ongunstige ontwikkeling.
Sterke saliniteitsgradient: zone 10 t/m12: Afname, ongunstige ontwikkeling.
Oligohalien -zones 13 & 14: Afname, ongunstige ontwikkeling.
Zoet verblijftijd lang - zone 15 & 16: Afname, ongunstige ontwikkeling.
Zoet verblijftijd kort - zones 17 – 19: Afname, ongunstige ontwikkeling.
Zijrivieren Rupel en Durme: Afname, ongunstige ontwikkeling.

8.3.9.2 HELLLING VAN HET LITORAAL EN HET GEHELE PROFIEL IN DE ZEESCHELDE

Evaluatiemethodiek (naar Holzhauser e.a., 2011): Verstelling of trapsgewijze vorm in het verloop van de helling binnen een segment is ongunstig.
Omdat per profiel één opname beschikbaar is, kan nog geen uitspraak worden gedaan over het optreden van verstelling, vormveranderingen of de ontwikkeling van de helling. Op voorhand kan wel worden bedacht dat het per profiel zal verschillen en dat het doen van generieke uitspraken over de gehele saliniteitszone geen recht zal doen aan de lokale ontwikkelingen.

8.3.9.3 HOOGTEGRADIËNT LAAGDYNAMISCH HABITAT/ZACHTSUBSTRAAT

Evaluatiemethodiek (naar Holzhauser e.a., 2011): Een toename van een aanwezige hoogtegradient in het laagdynamisch habitat is een gunstige ontwikkeling.
Polyhalien – zones 1-5: Absolute toename, relatieve afname, ongunstige ontwikkeling.
Meso halien - zones 6-9: Absolute en relatieve toename, gunstige ontwikkeling.
Sterke saliniteitsgradient: zone 10 t/m12: Absolute afname, relatieve toename, gunstige ontwikkeling.
Oligohalien -zones 13 & 14: Absolute afname, relatieve toename, gunstige ontwikkeling.
Zoet verblijftijd lang - zone 15 & 16: Absolute en relatieve afname, geen, gunstige ontwikkeling.
Zoet verblijftijd kort - zones 17 – 19: Absolute en relatieve afname, geen, gunstige ontwikkeling.
Zijrivieren Rupel en Durme: Absolute en relatieve toename, gunstige ontwikkeling.

8.3.9.4 ZONERING SCHORHABITAT

Evaluatiemethodiek (naar Holzhauser e.a., 2011): Aandeel van iedere zone (pionier, laag schor, middelhoog schor en hoog schor) binnen het schorhabitat per segment is minimaal 5% en maximaal 40% en Het aandeel climaxvegetatie binnen een zone van het schorhabitat is niet meer dan 50%.
Vanwege het ontbreken van voldoende bruikbare gegevens heeft deze evaluatie niet plaatsgevonden.

8.3.9.5 SCHORBREEDTE

Evaluatiemethodiek (naar Holzhauser e.a., 2011): Minimaal breedte 75 meter en schoren langs de oevers en niet op de platen. Er is geen waarderingskader om te schrijven voor de waargenomen veranderingen.
Polyhalien – zones1-5: Afname breed en smal schor, relatieve toename smal schor.
Mesohalien - zone 6-9: Afname smal schor, relatieve afname smal schor.
Sterke saliniteitsgradiënt: zone 10 t/m12: Toename breed en smal schor, relatieve afname smal schor.
Oligohalien - zones 13 & 14: Afname breed en smal schor, relatieve afname smal schor.
Zoet verblijftijd lang - zone 15 & 16: Toename breed en smal schor, relatieve toename smal schor.
Zoet verblijftijd kort - zones 17 – 19: Toename breed en smal schor, relatieve afname smal schor.
Zijrivieren Rupel en Durme: Toename smal schor, relatieve toename smal schor.

8.3.9.6 OEVERBREEDTE

Evaluatiemethodiek (naar Holzhauser e.a., 2011): Minimaal oeverbreedte 1000 meter in de Westerschelde, 300 m in de Beneden-Zeeschelde en 230m in de boven-Zeeschelde.
Polyhalien – zones1-5: Afname brede oever, relatieve toename smalle oever.
Mesohalien - zone 6-9: Toename brede en smalle oever, geen verandering relatieve bijdragen.
Sterke saliniteitsgradiënt: zone 10 t/m12: Afname brede oever en toename smalle oever, relatieve toename smalle oever.
Oligohalien - zones 13 & 14: Geen verandering.
Zoet verblijftijd lang - zone 15 & 16: Afname smalle oever, geen verandering relatieve bijdragen.
Zoet verblijftijd kort - zones 17 – 19: Toename areaal smalle oever, in het geheel geen brede oever.
Zijrivieren Rupel en Durme: Toename areaal smalle oever, in het geheel geen brede oever.

Per saliniteitszone en per ecotoop verschilt de wenselijkheid van de waargenomen ontwikkelingen. Het aantal niet wenselijke ontwikkelingen is groter dan het aantal wenselijke en neutrale ontwikkelingen.

8.4 TURN-OVER

8.4.1 INLEIDING

Estuaria doorlopen steeds een cyclus van ontwikkeling en degeneratie en het bestaan van habitats wordt bepaald door een dynamische wisselwerking van processen die geassocieerd zijn met de accumulatie en erosie van sedimenten. Sedimentatie op plaatsgebieden leidt tot het ophogen ervan en is daarmee één van de belangrijke factoren voor de ecologische processen. Habitat turn-over is de omzetting van het ene habitat naar het andere op een specifieke locatie. Dit geeft inzicht in de vraag of er een evenwicht is tussen de afbrekende en opbouwende processen in het estuarium. In een gezond en dynamisch systeem is er sprake van een zekere mate van habitat turn-over, maar er moet ook sprake zijn van stabiliteit van het habitat op een locatie. Bij de beoordeling wordt gekeken worden naar systematische verandering van het habitat op een locatie. Systematische veranderingen kunnen een lokaal fenomeen zijn, maar kunnen ook worden gestuurd door fysische krachten op de macro- en megaschaal. Een hoge mate van habitat turn-over over een korte tijdsperiode is nadelig voor de vestiging en ontwikkeling van bodemdiergemeenschappen en vegetatieontwikkeling.

8.4.2 GEBRUIKTE GEGEVENS

De turn-over binnen de segmenten is bepaald met de ecotopenkaarten. De periode tussen de twee beschikbare ecotopenkaarten van de Westerschelde bedraagt 2 jaar en voor de Zeeschelde bedraagt deze termijn 9 jaar.
8.4.3 **WESTERSCHELDE**

Voor de Westerschelde is bepaald hoeveel areaal niet is overgegaan in een andere ecotoop en hoeveel areaal wel is overgegaan. De ecotopen zijn geaggregeerd beschouwd, hierbij zijn de overgangen beschouwd die in tabel 8-25 zijn opgenomen.

Tabel 8-25 Turnover Westerschelde 2008-2010 (ha).

<table>
<thead>
<tr>
<th></th>
<th>Naar litoraal</th>
<th>Naar sublitoraal</th>
<th>Naar pionierschor</th>
<th>Naar schor</th>
<th>Naar overig</th>
<th>Naar supralitoraal</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van litoraal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalien (zone 1 t/m 5)</td>
<td>4.568</td>
<td>223</td>
<td>5</td>
<td>0</td>
<td>22</td>
<td>48</td>
<td>4.866</td>
</tr>
<tr>
<td>Mesohalien (zone 6 t/m 9)</td>
<td>2.256</td>
<td>54</td>
<td>7</td>
<td>6</td>
<td>18</td>
<td>22</td>
<td>2.363</td>
</tr>
<tr>
<td>Van sublitoraal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalien (zone 1 t/m 5)</td>
<td>183</td>
<td>16.448</td>
<td>12</td>
<td>16.643</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesohalien (zone 6 t/m 9)</td>
<td>66</td>
<td>2.978</td>
<td>5</td>
<td>3.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van pionierschor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalien (zone 1 t/m 5)</td>
<td>31</td>
<td>0</td>
<td>100</td>
<td>91</td>
<td>2</td>
<td>30</td>
<td>254</td>
</tr>
<tr>
<td>Mesohalien (zone 6 t/m 9)</td>
<td>39</td>
<td>0</td>
<td>57</td>
<td>41</td>
<td>5</td>
<td>12</td>
<td>154</td>
</tr>
<tr>
<td>Van schor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalien (zone 1 t/m 5)</td>
<td>7</td>
<td>9</td>
<td>158</td>
<td>6</td>
<td>1</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Mesohalien (zone 6 t/m 9)</td>
<td>6</td>
<td>11</td>
<td>2.543</td>
<td>9</td>
<td>2</td>
<td>2.571</td>
<td></td>
</tr>
<tr>
<td>Van overig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalien (zone 1 t/m 5)</td>
<td>21</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>192</td>
<td>1</td>
<td>225</td>
</tr>
<tr>
<td>Mesohalien (zone 6 t/m 9)</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>135</td>
<td>0</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Van supralitoraal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalien (zone 1 t/m 5)</td>
<td>79</td>
<td>20</td>
<td>5</td>
<td>2</td>
<td>132</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Mesohalien (zone 6 t/m 9)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>31</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Totaal Westerschelde</td>
<td>7.272</td>
<td>19.724</td>
<td>211</td>
<td>2.846</td>
<td>408</td>
<td>279</td>
<td>30.740</td>
</tr>
</tbody>
</table>

8.4.4 **EVALUATIE**

De (on)gewenste ontwikkelingen zijn vastgesteld als een verandering in de snelheid van de turnover. Omdat voorlopig één waarde beschikbaar is, kan nog geen evaluatie of trendbepaling worden uitgevoerd.

8.5 **VERKLArende PARAMETERS**

In de evaluatiemethodiek (figuur 8-1) zijn onder verklarende parameters opgenomen:
- Substraattype;
- Zoutgehalte;
- Stroomsnellheid;
- Waterstand;
• Sedimentsamenstelling;
• Droogvalduur;
• Natuurontwikkelingsprojecten.

Hierbij horen ook de morfologische ontwikkelingen, zoals die zijn beschreven in de hoofdstukken Dynamiek Waterbeweging en Plaat-geulsysteem. De autonome vestiging en ontwikkeling van de kwelndervegetatie is ook een verklarende factor.

Substraattype als zodanig is onderdeel van de ecotopen, waar het kan bestaan uit natuurlijk hard substraat in de vorm van veenbanken en hardsubstraat dat door mensen is aangebracht in de vorm van stortsteen. Het blootspelen van veenlagen in de slikken heeft op verschillende plaatsen langs de Westerschelde en de Zeeschelde geleid tot een afname van het droogvallend areaal met zacht substraat. Lokaal is dit een verklaring voor de afname van het areaal zacht substraat (zie voor de Westerschelde bijvoorbeeld Cleveringa, 2007) voor de ontwikkeling per macrocel. Ten opzichte van de andere oorzaken voor de areaalveranderingen is dit een kleine bijdrage geweest. De aanwezigheid van antropogeen hardsubstraat heeft vooral gevolgen voor de verjonging en erosie. De erosie van schor en slik wordt beperkt door het hard substraat, maar ook eventuele verjonging en nieuwworming wordt beperkt. In de Westerschelde is dit aan orde bij sommige slikken, waar geulwandbestortingen zijn aangebracht. In de Zeeschelde zijn bestortingen langs veel slikken en schorren aanwezig. Bedenk dat zonder de (geulwand)bestorting het areaal slik en schor hoogstwaarschijnlijk verder was afgenomen.

Zoutgehalte en veranderingen daarin, zijn bij de hier gehanteerde indeling geen verklaring voor veranderingen in de ecotopen, omdat geen onderscheid is gemaakt naar zoete, brakke en zoute ecotopen. Met het hanteren van de vaste saliniteitszones is impliciet uitgegaan van het ontbreeken van een bepalende ontwikkeling in de zoutgehalten.

Stroom snelheden op de platen en slikken zouden een verklaring kunnen bieden voor veranderingen in de dynamiek in het litoraal. Een toename van de stroom snelheden is een mogelijke oorzaak van de toename van het hoogdynamische areaal in de Westerschelde en de afname van het laagdynamische areaal. Deze verandering van de stroom snelheid op de platen en slikken kan zowel een toename van de snelheid betreffen, als een veranderingen van de duur waarmee de snelheid een bepaalde grenswaarde overschrijdt (Ysebaert e.a., 2011). Omdat er ook andere factoren zijn die medebepalend zijn voor de aanwezigheid van bodembeweging en de grootte van het sedimenttransport (onder ander de waterdiepte, de korrelgrootte en de aanwezigheid van slib in het sediment) kan niet worden uitgesloten dat ook deze factoren bijdragen leveren aan veranderingen in de litorale dynamiek. Hoewel stroomsnelheidsinformatie beschikbaar is (uit metingen en modelleringen), kan deze niet worden gebruikt om de eventuele veranderingen in de stroomsnelheden op de platen en slikken te bepalen. Het aantal stroommeetpunten en de kwaliteit van stromingsbepalingen op de platen maken het gebruik als verklarende parameter voorlopig nog niet mogelijk.

De in de hoofdstukken 3 en 5 gerapporteerde veranderingen in de waterstanden hebben gevolgen gehad voor de arealen van de ecotopen, doordat de grenswaarden van hoog- en laagwater zijn veranderd. Voor de ontwikkelingen tot het begin van de jaren 2000 is vastgesteld dat de platen relatief hoger zijn geworden ten opzichte van de waterstanden. De hoogteopname van de platen in de Westerschelde lijkt te zijn gestabiliseerd voor verschillende plaatcomplexen, zoals is vastgesteld in hoofdstuk 6. In hoeverre sinds de jaren 2000 nog sprake is van veranderingen in het droogvallen van de litorale ecotopen is alleen vast te stellen met een kaarten van de droogvalduur, of met de betreffende grenswaarden van hoog- en laagwater. Vooral nog is niet duidelijk hoe groot deze bijdrage in welke saliniteitszone is.
Sedimentsamenstelling als zodanig is voor de hier beschreven ecotopen niet van belang, omdat de sedimentsamenstelling geen onderdeel is van de geëvalueerde eenheden (ecotopen, schorren). Het onderscheid dat in de ecotopenkaarten wordt gemaakt in slikkige en zandige ecotopen is bijvoorbeeld niet in de analyse betrokken. De ecologische waarde van de ecotopen, bijvoorbeeld voor de bodemdieren en daarop foeragerende vogels wordt medebepaald door de sedimentsamenstelling.

Veranderingen in droogvalduur zijn waarschijnlijk een belangrijke verklarende factor voor areaalveranderingen van de ecotopen, zowel van de verschuivingen van sublitoraal naar litoraal en omgekeerd, als voor verschuivingen tussen de hoogtezones in het litoraal.

Morfologische veranderingen vormen samen met veranderingen in de waterstanden de belangrijke verklaringen voor de opgetreden veranderingen in de ecotopen. De toename van de omvang van de geulen in macrocel 5, 6 en 7 in de Westerschelde heeft bijvoorbeeld geleid tot een toename van het areaal sublitoraal en een afname van het areaal litoraal. Andere belangrijke morfologische veranderingen met consequenties voor de ecotopen zijn de afname van het aantal en het areaal kortsuitgeulen in de Westerschelde, waarmee het areaal (ondiep)litoraal is afgenomen en het areaal litoraal is toegenomen.

Het areaal van de schorren en het pionierschor veranderd ook door de vegetatie zelf, die zich kan vestigen en uitbreiden als de hoogte van het litoraal voldoende is toegenomen. Zodra (pionier)vegetatie aanwezig is gaat deze het afzettingsmilieu beïnvloeden, waardoor de hoogte verder kan toenemen. Sommige schorren kunnen ook lateraal uitbreiden. Deze dynamiek van de schorvegetatie kan resulteren in een uitbreiding van de areaal schor en pionierschor.

Op de Hooge platen en de Plaat van Walsoorden is in het begin de jaren 2000 de bedekking met schorvegetatie snel uitgebreid, waarschijnlijk omdat de plathoogte in deze periode voldoende hoog was voor het vestigen van pioniervegetatie. Deze ontwikkeling is in figuur 8-19 geïllustreerd voor de Plaat van Walsoorden, met de twee ‘false colour’ opnamen waarin de vegetatie duidelijk zichtbaar is door de rode kleuren. In de figuur zijn met 1 en 2 de gebieden weergegeven die in 2004 al begroeid waren. Van deze eerste twee kleine gebieden was gebied 2 in 2008 verdwenen door de verplaatsing van de nevengeul (de pijl bij 2). De vegetatie in de rest van het gebied was sterk uitgebreid.

De toename van het schorareaal betekent automatisch dat het areaal van andere ecotopen afneemt. Overigens kan de erosie van de schor optreden, zoals getoond in figuur 8-19 bij de pijl. Door deze erosie neemt het schorareaal af nemen en andere ecotopen in areaal toe.
Natuurontwikkelingsprojecten hebben op verschillende plekken bij de Zeeschelde bijgedragen aan de verandering van de leefomgeving. Bij het Paardenschoor is in de periode 2003-2004 een gedeelte van het Paardenschor hersteld (12 ha) als compensatie voor de strook brak schor die bij de aanleg van het Deurganckdok is verdwenen (figuur 8-20). In het gebied is tegenwoordig schor en litoraal aanwezig.
Figuur 8-20 Twee luchtfoto’s van de ontwikkeling aan de zuidzijde van het Paardenschoor (bron foto’s GISoost.be).

Bij Hamme-Lippenbroek maakt het gecontroleerde getijgebied (GGG) van 10 ha sinds 2006 onderdeel uit van het Schelde-estuarium (figuur 8-21). In het gebied komt schor en slik tot ontwikkeling. Het relatief kleine GGG is een pilotproject voor de grotere GGG’s die na 2009 zijn of worden gerealiseerd.
8.6 EVALUATIE T2009 LEEFOMGEVING

De communicatie-indicator Leefomgeving voor flora en fauna is een onderdeel van de hoofdfunctie Natuurlijkheid van het Schelde-estuarium. Het uitgangspunt voor de evaluatie van Leefomgeving is dat voor een natuurlijk functionerend Schelde-estuarium het oppervlak aan verschillende habitats evenwichtig verdeeld is, het aanwezige laagdynamisch habitat van voldoende kwaliteit is en sprake is van stabiliteit van habitats.

In figuur 8-22 is het resultaat van de evaluatie van leefomgeving samengevat. Voor de Westerschelde zijn de uitspraken in grijs weergegeven voor de arealen, omdat de ecotopenkaarten nog niet definitief beschikbaar zijn en geen oordeel worden gegeven over deze veranderingen. In 2014 zal in een addendum bij de voorliggende rapportage de evaluatie worden gerapporteerd op basis van een set consistent vervaardigde ecotopenkaarten.

In de Beneden Zeeschelde is het diep sublitoraal toegenomen ten koste van het ondiep sublitoraal en het litoraal. Het schor is overwegend toegenomen. De toenam van het totale areaal van de Beneden Zeeschelde heeft betrekking op de ingebruikneming van dokken en haveningangen.

De ontwikkelingen over de langere termijn (afgelopen honderd jaar) hebben betrekking op de ontwikkelingen van de arealen sublitoraal, litoraal en schorren. Deze ontwikkelingen worden in de Zeeschelde gedomineerd door areaalveranderingen als gevolg van rechtrekkingen en bedijkingen. Verder is in de Zeeschelde sprake van een toename van de omvang van de geul die veelal ten koste van het litoraal is gegaan. (Van Braeckel e.a., 2006).
Voor de kwaliteitsparameters laagwaterlijn, hoogtegradiënt en turnover geldt dat de variatie nog niet bekend is, zodat uitspraken over eventuele ontwikkeling niet mogelijk zijn. Naarmate meer kaarten beschikbaar komen zal de variatie duidelijk worden en kunnen uitspraken worden gedaan over de waardering van de waargenomen veranderingen.

Voor schor- en oeverbreedte kan worden geconstateerd dat deze op veel plekken niet de gewenste breedte hebben. De verwachte variatie is klein ten opzichte van de vereiste breedte, zeker in de Boven-Zeeschelde en de zijrivieren.

Figuur 8-22 Overzicht van evaluatie Leefomgeving, (naar Holzhauer e.a., 2011).
De communicatie-indicator flora en fauna is opgebouwd uit de toetsparameters vogels (broedvogels en niet-broedvogels), vissen, zoogdieren, benthos, fytoplankton, zoöplankton en macrofyten. Elk van de toetsparameters wordt beoordeeld aan de hand van drie rekenparameters: trends in de Intactness index (Buckland Arithmetic Occurrence en/of Buckland Arithmetic Abundance index), trends in sleutelsoorten en trends in exoten. Bij het toepassen van de evaluatiemethodiek in het kader van T2009 was het voor de meeste toetsparameters niet mogelijk de voorgestelde methodiek volledig toe te passen, omwille van ontbreken van data, niet geschikt zijn van data, ontbreken van referentielijsten en lijsten met exoten. Hierdoor is in het kader van T2009 geen volledige evaluatie van de indicator mogelijk.

De status en trend van de broedvogels varieert voor de Westerschelde en de Zeeschelde. Gedefinieerde sleutelsoorten in de Westerschelde zijn kustbroedvogels; voor deze groep is de situatie voor de meeste soorten gunstig te noemen, en er sprake van een positieve trend, behalve voor de Strandplevier. In de Zeeschelde blijven, op basis van een gefragmenteerde en beperkte dataset, het aantal broedparen voor de meeste sleutelsoorten achterwege ten opzichte van de instandhoudingsdoelstellingen.

De status van de Gewone zeehond verbetert in de Westerschelde; de trend in het aantal zeehonden is stijgend. De populatie is echter nog afhankelijk van immigratie van individuen van elders.

De diversiteit aan vissoorten in het Schelde-estuarium neemt toe. Dit is het meest uitgesproken in de Zeeschelde, waar een verbeterde waterkwaliteit leidt tot een langzaam herstel van het visbestand. Een goede status (gezonde ecologische toestand) voor vissen is echter nog niet bereikt. De verbetering van de waterkwaliteit is nog onvoldoende opdat jonge zoetwatervis massaal de weg naar de Boven-Zeeschelde vindt. De status van het benthos geeft aan dat er verspreid over het systeem zich enige problemen voor doen. De ontwikkelingen met betrekking tot de exoten worden negatief geëvalueerd omdat een toename in met name de biomassa (zoals waargenomen in de polyhaline zone, waar de exoten zoals in de gehele Westerschelde ook nog
De macrofyten (vegetatie) in de Zeeschelde zijn slechts op basis van een beperkte dataset geëvalueerd. De opnames in een bepaald aantal telvakken laten zien dat de Occurrence Intactness index niet is afgenomen, maar de toegepaste evaluatiemethode is minder geschikt om veranderingen in vegetatiediversiteit per saliniteitzone te identificeren. In de Westerschelde is voor een andere benadering gekozen, met een evaluatie van een aantal karakteristieke vegetatietypes. In de Westerschelde zien we dat schorren ophogen, dat pionierschor toeneemt op de plaatgebieden, en dat heen vegetaties in de brakke zone afnemen, vermoedelijk ten gevolge van de (over)begrazing door Grauwe gans. De sterke ophoging van de schorren en de ontwikkeling van pionierschor op de plaatgebieden wordt negatief geëvalueerd.

Samenvattend laat de indicator Flora en fauna een gemengd beeld zien (Tabel 9). Geen enkele toetsparameter laat voor de evaluatie T2009 een positief beeld zien, op de zeezoogdieren (Gewone zeehond) na. De rekenparameters voor de Gewone Zeehond laten een positief beeld zien, maar de populatie is nog steeds afhankelijk van immigratie van individuen. Voor de overige toetsparameters scoren bepaalde rekenparameters negatief: dit kan voor het volledige estuarium zijn, of voor een bepaalde zone langs het estuarium. De verklaring hiervoor is vaak niet eenduidig. Ook kunnen binnen één rekenparameter bepaalde (sleutel)soorten een positieve evaluatie hebben, andere soorten een negatieve evaluatie. Dit maakt één beoordeling lastig. Het is tevens duidelijk dat in de komende jaren werk gemaakt moet worden van goede referentielijsten, en lijsten met sleutelsoorten en exoten, zoals omschreven in Holzhauer et al. (2011), om een volledige toepassing van de evaluatiemethodiek toe te laten. Welke soorten geëvalueerd dienen te worden moet nader onderzocht worden, met een focus op die soorten die een belangrijke rol, dan wel indicatief (positief, negatief) zijn voor het ecologisch functioneren van het estuarieene systeem (zie evaluatie nota). Hierbij is het belangrijk dat niet alleen naar het voorkomen (Occurrence) gekeken wordt, maar ook de aantallen/biomassa’s (Abundance) meegenomen worden. Deze laatste zullen beter onderscheidend zijn dan een evaluatie enkel op basis van voorkomen, zoals in deze rapportage is toegepast. Dit zou er toe kunnen leiden dat voor bepaalde rekenparameters een andere evaluatie bekomen wordt.

Tabel 9. Samenvatting communicatie-indicator Flora en fauna. De indicator Flora en fauna is opgebouwd uit de toetsparameters vogels (broedvogels en niet-broedvogels), vissen, zoogdieren, benthos, fytoplankton, zoöplankton en macrofyten. Elk van de toetsparameters wordt beoordeeld of geëvalueerd aan de hand van drie rekenparameters: diversiteit (trend in Occurrence Intactness OI), trends in sleutelsoorten en trends in exoten. Voor de evaluatie zijn referentiematrices nodig waartegen de huidige toestand (T2009) kan worden afgezet. Voor een aantal toets- en rekenparameters waren deze referenties niet voorhanden en was een evaluatie niet mogelijk (blauwe kleur). Voor een aantal toetsparameters was er niet voldoende informatie beschikbaar om een evaluatie uit te voeren (grijze kleur). Een positieve evaluatie wordt met een groene kleur aangeduid, een negatieve met een rode kleur. Waar er geen onderscheid gemaakt wordt binnen een rekenparameter, betekent dit dat de evaluatie (groene of rode kleur) geldend is voor het volledige Schelde-estuarium. Daar waar bepaalde zones (mesohaliene zone, zone met sterke saliniteitsgradient, Westerschelde, Zeeschelde) negatief scoren wordt dit apart aangeduid. Tevens kan binnen een rekenparameter de evaluatie voor bepaalde soorten positief zijn, en voor andere negatief. Voor het zoöplankton wordt een licht groene kleur gebruikt: de evaluatie is positief, maar omvaille van de grote onzekerheden omtrent de data is besloten geen evaluatie te geven voor T2009. Voor de macrofyten in de Zeeschelde is ook een licht groene kleur toegekend. Voor nadere toelichting wordt verwijzen naar de aparte hoofdstukken voor elke toetsparameter.
Communicatie-indicator FLORA en FAUNA

<table>
<thead>
<tr>
<th>TOETSPARAMETER</th>
<th>REKENPARAMETER</th>
<th>Diversiteit (OI)</th>
<th>Sleutelsoorten</th>
<th>Exoten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fytoplankton</td>
<td></td>
<td>mesohalien</td>
<td>ws</td>
<td>zs</td>
</tr>
<tr>
<td>Zooplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthos</td>
<td></td>
<td>Sal gradient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vissen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogels (Broedvogels)</td>
<td></td>
<td>ws</td>
<td>ws</td>
<td>zs</td>
</tr>
<tr>
<td>Vogels (Niet-broedvogels)</td>
<td></td>
<td>ws</td>
<td>ws</td>
<td>zs</td>
</tr>
<tr>
<td>Zeezoogdieren</td>
<td></td>
<td>nvt</td>
<td>Gewone zeehond</td>
<td></td>
</tr>
<tr>
<td>Macrofyten (Vegetatie)</td>
<td></td>
<td>zs</td>
<td>ws</td>
<td>ws</td>
</tr>
</tbody>
</table>

Positie-ledingen
- **Positief**
- **Positief maar kennis/informatie onvoldoende geschikt**
- **Negatief**
- **Informatie ontbreekt**
- **Referentielijsten ontbreken**
9.1 INLEIDING

‘Flora en fauna’ is één van de communicatie-indicatoren binnen de hoofdfunctie ‘Natuurlijkheid’. De indicator is opgebouwd uit een aantal toetsparameters, met name vogels (broedvogels en niet-broedvogels), vissen, zoogdieren, benthos, fytoplankton, zoöplankton en macrofyten (Figuur 9-1).

![Diagram](image)

Elk van de toetsparameters wordt beoordeeld aan de hand van drie rekenparameters: trends in de Intactness index (Buckland Arithmetic Occurrence en Buckland Arithmetic Abundance index), trends in sleutelsoorten en trends in exoten.

De Intactness index is een maat waarmee de diversiteit in een gemeenschap kan worden uitgedrukt. De index wordt als volgt berekend:

\[
\text{Intactness index} = \frac{1}{s} \sum \frac{O_i}{R_i} \times 100
\]

waarbij \(s\) staat voor het aantal soorten, \(O_i\) voor de waargenomen occurrence rate (het aantal steunpunten/observaties waar de soort is aangetroffen) en \(R_i\) de referentie Occurrence rate. De Abundance index wordt op dezelfde manier berekend maar \(O_i\) en \(R_i\) betreffen dan waargenomen en referentie dichtheden van de soort. Zie Holzhauer et al. (2011) voor nadere toelichting.

De evaluatie van de trends in flora en fauna hangt sterk af van de gehanteerde referentie. De referentielijsten of -matrices, bestaande uit de soorten die redelijkerwijs kunnen verwacht worden in het gebied, waren bij de aanvang van het T2009 evaluatieproject nog niet beschikbaar. Het opstellen van deze referentielijsten vormde geen onderdeel van de T2009 rapportage. In de loop van het project zijn door de Universiteit Antwerpen voor de meeste toetsparameters (concept)referentielijsten ter beschikking gesteld. Deze referentielijsten bevatten alle soorten die in de volledige, beschikbare waarnemingsperiode in het estuarium, of een specifieke (saliniteit)zone, zijn waargenomen. Deze zijn verder gebruikt binnen deze rapportage voor het berekenen van de Intactness index. Voor de evaluatie is niet zozeer de absolute waarde van de index van belang, maar wel de trend in de index. In deze evaluatie is enkel gebruik
gemaakt van de Occurrenceindex (OI), op basis van de aan- of afwezigheid van soorten in de verschillende zones (de OI zoals beschreven in Holzhauer et al. (2011) wordt berekend op basis van het percentage monsters waarin soorten voorkomen).

Het begrip sleutelsoort is een ruim begrip dat op verschillende manieren kan worden geïnterpreteerd. In deze studie wordt het begrip sleutelsoort gehanteerd voor die soorten die binnen bepaalde richtlijnen zijn opgenomen als belangrijke soorten. Waar mogelijk worden aantallen getoetst aan streefcijfers, in de andere gevallen worden trends in aantallen geëvalueerd. Lineaire trends zijn berekend met de Trend Analyse Tool software, ontwikkeld in Matlab door IMDC; indien niet significant is de significantie van een cyclische trend getest. In elke trendgrafiek in dit hoofdstuk geeft de rode lijn de trend weer, de blauwe lijnen de ‘confidence intervals’ (C.I.), en de groene lijnen ‘prediction intervals’ (P.I.) (zie digitale bijlage 3). Exoten vatten soorten die hier niet van nature voorkomen en die zijn geïntroduceerd door de mens. Zogenaamde ‘verschuivers’ voldoen binnen deze studie niet aan de definitie. Elke toename van het aantal exoten wordt als ongewenst aanzien. Ook zal waar mogelijk naar het aantal individuen of biomassa van exoten worden gekeken. Een sterke toename in één van beide parameters kan duiden op het invasieve karakter van bepaalde exoten.

De verklaring voor de waargenomen patronen zal waar mogelijk gebeuren op basis van informatie die wordt verkregen uit andere piramides, met name Ecologisch functioneren, Waterkwaliteit, Leefomgeving en Flora en fauna.

9.2 BROEDVOGELS

9.2.1 INLEIDING

9.2.2 REKENPARAMETER INTACTNESS INDEX

Voor broedvogels is momenteel geen referentiematrix beschikbaar voor het berekenen van de Intactness index.

9.2.3 REKENPARAMETER SLEUTELSOORTEN

9.2.3.1 INLEIDING

Als sleutelsoorten worden voor de broedvogels die soorten beschouwd waarvoor een instandhoudingsdoelstelling (IHD) geldt. Voor de broedvogels is in Nederland een IHD gedefinieerd op het niveau van de gehele Delta (zgn. regiodoelen). Dit geldt met name voor een aantal kustbroedvogels. In afwijking op de in de Evaluatiemethodiek genoemde aantallen is recent voor de grote stern het regiodoel voor de Delta verhoogd van kwaliteit en draagkracht voor 4000 naar kwaliteit en draagkracht voor 6200 broedparen (concept Natura 2000 ontwerpbeheerplan Deltawateren Westerschelde). In de Evaluatiemethodiek zijn voor de meeste soorten (behalve de grote stern) tevens streefaantallen afgeleid
voor de Westerschelde, gebaseerd op nadere toelichtingen in het aanwijzingsbesluit (Holzhauer et al., 2011). De analyse in dit rapport is gebaseerd op gegevens uit de periode 1979 – 2008 en omvat zeven soorten kustbroedvogels (bontbekplevier, dwergstern, grote stern, kluut, strandplevier, visdief, zwartkopmeeuw).

9.2.3.2 ANALYSE

De IHD’s voor de gehele ZW Delta (regiodoelen) worden in de Westerschelde niet gehaald. Het behalen van het streefdoel voor de Westerschelde verschilt van soort tot soort. Voor de bontbekplevier, kluut en zwartkopmeeuw wordt het streefdoel elk jaar gehaald over de periode 2004-2008 (tabel 9.2.1). Data voor 2009 zijn niet aangeleverd. Om de consistentie doorheen het rapport te behouden, is de beoordeling gehouden over de periode 2004-2008. Elk van deze soorten vertoont een significant stijgende trend (Figuur 9-2-1, bontbekplevier), behalve de kluut die geen significante trend laat zien. De aantallen voor de dwergstern halen over dezelfde periode in twee jaren niet het streefdoel (in 2004 en 2005) en de visdief in één jaar (in 2005). De trend van de visdief is significant positief, terwijl de dwergstern een cyclische trend vertoont. De strandplevier haalt in 4 van de 5 jaren niet het streefdoel, en vertoont bovendien een significant dalende trend (Figuur 9-2-1). Voor de grote Stern is enkel de IHD van de gehele Delta bekend. In de Westerschelde wordt nooit het regiodoel van 6200 broedparen gehaald, de trend is significant positief in de Westerschelde. Zie digitale bijlage 9.2 voor trendfiguren voor de zeven kustbroedvogels.
Tabel 9-2-1: Trends in aantallen broedparen in de Westerschelde (inclusief Saeftinghe). In de eerste kolom staat voor elke soort tussen haakjes het IHD regiodoel voor de volledige ZW Delta en het in Holzhauer et al. (2011) vermelde streefdoel voor de Westerschelde. De tweede kolom geeft het maximaal aantal broedparen waargenomen in de periode 2004-2008 weer, in de derde kolom of de IHD van de gehele Delta (het regiodoel) wordt gehaald in de Westerschelde over de periode 2004-2008 en in de vierde kolom of over diezelfde periode het streefdoel voor de Westerschelde (inclusief Saeftinghe) is gehaald. Indien het aantal broedparen onder het streefdoel voor de Westerschelde is geweest in de periode 2004-2008 wordt dat aangeduid met geel (1 of 2 maal onder het streefdoel), oranje (3 of 4 maal onder het streefdoel) of rood (5 maal onder het streefdoel). De laatste kolom geeft aan welke trend is geobserveerd in de periode 1979-2008. Als de trend in broedparen significant was (p<0.05) werd dit met een - , - of + aangemerkt in de laatste kolom, afhankelijk van of er een cyclische, negatieve of positieve trend gevonden werd. Indien er geen significante trend gevonden werd, is dit met een 0 aangemerkt.

<table>
<thead>
<tr>
<th>soort (IHD Delta, streefdoel Westerschelde)</th>
<th>Max. aantal broedparen 2004-2008</th>
<th>IHD Delta</th>
<th>streefdoel</th>
<th>trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bontbekplevier (100,10)</td>
<td>34</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dwergstern (300,100)</td>
<td>250</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Grote Stern (6200, -)</td>
<td>4405</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kluut (2000,150)</td>
<td>293</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Strandplevier (220,40)</td>
<td>40</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Visdief (6500,1600)</td>
<td>2306</td>
<td>-</td>
<td>+</td>
<td>+1</td>
</tr>
<tr>
<td>Zwartkopmeeuw (400,4)</td>
<td>193</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

De positieve trend gaat gepaard met een cyclische met een periode van 11 jaar.

Figuur 9-2-1: Voorbeeld van een kustbroedvogel die een significante toename (bontbekplevier) laat zien in de Westerschelde en een kustbroedvogel die een significant dalende trend (strandplevier) laat zien (p<0.05).

Omwille van de versnipperde dataset voor de Zeeschelde kan voor de meeste soorten geen trend worden berekend (Tabel 9-2-2). Soorten waarvoor wel een trend berekend is zijn in hoofdzaak zeldzame soorten die sporadisch en in zeer kleine aantallen in het gebied broeden, en die dan ook geen significante trend laten zien; enkel voor baardman wordt een positieve trend gevonden.

Enkel voor 2001 is gebiedsdekkende informatie beschikbaar en voor dit jaar is gekeken of de IHD’s gehaald worden. De broedpaaraantallen in de Zeeschelde liggen in 2001 voor de meeste soorten onder de IHD van de gehele Zeeschelde, met uitzondering van de blauwborst, dodaars, sloop en zomertaling (Tabel 9-2-2). Een aantal soorten, waaronder grote karekiet, kwartelkoning, lepelaar, paapje, purperreiger, roerdomp, en snor, worden zelfs helemaal niet als broedvogel waargenomen in 2001, terwijl IHD’s van 40-
100 broedparen zijn bepaald voor deze soorten. Voor deze soorten geldt overigens dat ze over de hele waarnemingsperiode zeer zeldzaam zijn (tabel 9-2-2), met geen of enkele broedgevallen van maximaal 3 broedparen in een bepaald jaar.

Tabel 9-2-2: Broedvogelpaar aantallen in de Zeeschelde. In de eerste kolom staat per soort de IHD weergegeven. De tweede kolom geeft het maximaal aantal waargenomen broedparen in 2001; een + geeft aan dat in 2001 de IHD gehaald wordt, een – geeft aan dat de IHD in 2001 niet gehaald wordt. Soorten die deels broeden in het estuarium zelf, maar voor het grootste deel in het binnendijkse gebied (de valleien) broeden worden geëvalueerd met een licht rode/groene kleur, soorten die echt gebonden zijn aan het estuarium een donker rode/groen kleur. Soorten die nauwelijks in het estuarium broeden en er weinig of geen gebruik van maken zijn niet geëvalueerd. De derde kolom geeft de trend weer in de periode 1995-2009. Tussen haakjes staat het aantal beschikbare tellingen (op een maximum van 75 waarnemingen, 5 gebieden x 15 jaren) en het aantal positieve waarnemingen van elke soort (bijv. voor baardman zijn 63 tellingen beschikbaar, en in 15 daarvan werd de soort broedend waargenomen). Er is enkel een trend berekend bij >40 waarnemingen en wanneer de dataset niet te versnipperd was (deskundigenoordeel). Als de trend in broedparen significant was (p<0.05) werd dit met een –, – of + aangemerkt, afhankelijk van of er een cyclische negatieve of positieve trend gevonden werd. Indien er geen significante trend gevonden werd, is dit met een 0 aangemerkt. Dit geldt voor heel wat zeldzame soorten. Voor een groot aantal soorten was het niet mogelijk een trend te berekenen voor de volledige Zeeschelde omwille van onvoldoende data.

<table>
<thead>
<tr>
<th>soort (IHD ZS)</th>
<th>(# broedparen in 2001)</th>
<th>trend (#tellingen:#waarneming)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baardman (100)</td>
<td>- (13)</td>
<td>+ (63:15)</td>
</tr>
<tr>
<td>Blauwborst (550)</td>
<td>+ (753)</td>
<td>(24:24)</td>
</tr>
<tr>
<td>Bruine kiekendief (50)</td>
<td>- (25)</td>
<td>0 (41:32)</td>
</tr>
<tr>
<td>Dodaan (50)</td>
<td>+ (78)</td>
<td>(25:13)</td>
</tr>
<tr>
<td>Grote Karekiet (40)</td>
<td>- (0)</td>
<td>0 (62:3)</td>
</tr>
<tr>
<td>Grutto (80)</td>
<td>- (59)</td>
<td>(33:9)</td>
</tr>
<tr>
<td>Klaut (350)</td>
<td>- (87)</td>
<td>(41:9)</td>
</tr>
<tr>
<td>Kwartelkoning (40)</td>
<td>- (0)</td>
<td>0 (75:1)</td>
</tr>
<tr>
<td>Lepelaar (40)</td>
<td>- (0)</td>
<td>0 (75:0)</td>
</tr>
<tr>
<td>Paapje (40)</td>
<td>- (0)</td>
<td>0 (70:1)</td>
</tr>
<tr>
<td>Porseleinhoen (40)</td>
<td>- (14)</td>
<td>(61:2)</td>
</tr>
<tr>
<td>Purperreiger (60)</td>
<td>- (0)</td>
<td>0 (75:0)</td>
</tr>
<tr>
<td>Rietzanger (170)</td>
<td>- (69)</td>
<td>(23:16)</td>
</tr>
<tr>
<td>Roerdomp (20)</td>
<td>- (0)</td>
<td>0 (73:1)</td>
</tr>
<tr>
<td>Scholekster (190)</td>
<td>- (165)</td>
<td>(24:18)</td>
</tr>
<tr>
<td>Slobeend (150)</td>
<td>+ (222)</td>
<td>(24:14)</td>
</tr>
<tr>
<td>Snor (100)</td>
<td>- (0)</td>
<td>0 (65:12)</td>
</tr>
<tr>
<td>Tureluur (130)</td>
<td>- (60)</td>
<td>(28:14)</td>
</tr>
<tr>
<td>Woudaap (20)</td>
<td>- (2)</td>
<td>0 (74:10)</td>
</tr>
<tr>
<td>Zomertaling (20)</td>
<td>+ (35)</td>
<td>(31:2)</td>
</tr>
</tbody>
</table>

9.2.3.3 **INTERPRETATIE**

In het Deltagebied broeden van diverse soorten kustbroedvogels nationaal en internationaal belangrijke populaties (Strucker et al. 2010). Vooral voor de sterns (dwergstern, grote stern, visdief) is de
Westerschelde van groot belang. Voor deze soorten vormt de Hooge Platen een belangrijk broedgebied. Kustbroedvogels vertonen een positieve trend in de Westerschelde, op de dwergsterinen na die een cyclische trend vertoont en de strandplevier die een negatieve trend vertoont in de Westerschelde. Voor deze soort zijn meer gerichte maatregelen noodzakelijk, en op langere termijn is de aanwezigheid van voldoende geschikte broedgebieden voor alle kustbroedvogels een aandachtspunt (Struck et al. 2010).

In het Natura 2000 gebied Westerschelde en Saafthinghe zijn tevens brune kiekendief en blauwborst aangewezen als broedvogelsoorten, met respectievelijk IHD’s van 20 en 450 broedparen. Deze twee soorten zijn nu niet opgenomen in de evaluatiemethode (Holzhauer et al. 2011). Omwille van het andere soort habitat waarin deze soorten broeden in vergelijking met de hierboven behandelde kustbroedvogels is het nuttig deze soorten op te nemen in de evaluatiemethode.

In de Zeeschelde blijkt op basis van de beschikbare data de instandhoudingsdoelstellingen voor de meeste soorten niet gehaald te worden. Enkel blauwborst, dodaars, slobeend en wintertaling voldoen aan de IHD’s op basis van gebiedsdemperende informatie uit 2001. Het probleem is dat het IHD-gebied zoals beschreven in Adriaensen et al. (2005) een veel groter gebied omvat dan enkel het buitendijks gelegen deel, maar ook een groot deel van de vallei meeneemt. Dit maakt het evalueren van het buitendijkse gebied t.b.v. 12009 moeilijk. Er is dan ook geopteerd om niet alle soorten mee te nemen in de evaluatie (zie boven). De soorten die deels of geheel afhankelijk zijn van het estuarium zijn wel geëvalueerd en van deze soorten wordt enkel blauwborst positief geëvalueerd. De overige estuariene soorten halen de IHD duidelijk niet. Daarnaast zijn er heel wat soorten die niet of nauwelijks rechtstreeks afhankelijk zijn van het buitendijkse gebied, maar vooral afhankelijk zijn van de wetlands in de aanpalende valleien. Er wordt voorgesteld een nieuwe lijst met sleutelsoorten en IHD’s te definiëren, specifiek gericht op de het estuariene deel van de Zeeschelde en getijdemijzervieren (zie evaluatie nota).

Daarnaast is het belangrijk om het tot stand komen van deze IHD’s in beschouwing te nemen bij de interpretatie van de resultaten. Bij het opstellen van de IHD’s gaan Adriaensen et al. (2005) ervan uit dat het studiegebied (i.e. de Zeeschelde), indien in goede staat van instandhouding, potentieel leefruimte kan bieden aan meer soorten en aantallen dan momenteel het geval is. Als algemene doelstelling voor zich reproducerende soorten wordt uitgegaan dat er binnen het studiegebied minimaal ruimte zou moeten zijn voor 1 kernpopulatie van elk van deze soorten. Een kernpopulatie leeft in een kerngebied dat zodanig van omvang en kwaliteit is dat de kans op lokaal uitsterven van de populatie kleiner is dan 5% op 100 jaar (Adriaensen et al. 2005). De grootte van een kernpopulatie is uiteraard soort specifiek. Adriaensen et al. (2005) benadrukken dat voor soorten die momenteel niet aanwezig zijn binnen het studiegebied de doelstellingen geen uitspraak willen doen over de effectieve aanwezigheid van deze soorten binnen het studiegebied. Wel zeggen de doelstellingen dat er potentiële leefruimte (areaal, habitat, randvoorwaarden, …) dient aanwezig te zijn om kernpopulaties van deze soorten te onderhouden. M.a.w., voor elk van de soorten wordt dus een oppervlakte habitat vooropgezet met specifieke kwaliteiten. Het studiegebied dient minimaal 450 ha begraasd schor, 1500 ha grasland, 2000ha riet/ruigte in combinatie met plas/oever, en 400 ha moerasbos omvatten als areaal voor de IHD aandachtsoorten broedvogels (Adriaensen et al. 2005). De effectieve terugkeer van deze soorten hangt in belangrijke mate af van populatietoewijkingen op internationaal niveau, meer in de omringende gebieden, of in andere delen van Vlaanderen. Zo bevinden zich belangrijke populaties van grutto, kluut, lepelaar, scholekster en tureluur in het aanpalende vogelrichtlijngebied op de linkeroever van de Schelde.

Het is duidelijk dat momenteel de IHD’s voor de broedvogels in het IHD Zeeschelde gebied niet gehaald worden. Dit geldt vooral voor soorten van het riet/ruigte habitat. Voor heel wat soorten zullen de doelstellingen de komende jaren nog niet gehaald worden, maar verwacht wordt dat de inrichting van nieuwe overstromingsgebieden (al dan niet met gecontroleerd gereduceerd getij) en aangepaste beheersmaatregelen een positief effect zullen hebben op de broedvogelpopulaties langs de Zeeschelde. Het inrichten van nieuwe getijdengebieden (met gecontroleerd gereduceerd getij) zal een positief effect hebben op die soorten die afhankelijk zijn van geschikt estuarien habitat.
9.2.3.4 **BEOORDELING T2009**

De beoordeling voor de kustbroedvogels in de Westerschelde is over het algemeen positief, op de Strandplevier na. De beoordeling voor de broedvogels in de Zeeschelde is over het algemeen negatief.

9.2.4 **REKENPARAMETER EXOTEN**

Voor de Westerschelde en Zeeschelde is geen informatie over exoten broedvogels beschikbaar gesteld.

9.2.5 **EVALUATIE BROEDVOGELS**

De te evalueren rekenparameters voor de indicator Broedvogels zijn de Occurrence index, het voorkomen van sleutelsoorten, en het aantal soorten exoten en het aantal individuen aan exoten. Sleutelsoorten zijn gedefinieerd vanuit de Natura 2000 instandhoudingsdoelstellingen die gelden voor de Westerschelde en Zeeschelde. Er is nog geen referentiematrix beschikbaar de en Occurrence index is in dit evaluatierapport niet berekend. Informatie over exoten is niet beschikbaar.

Voor de Westerschelde is de situatie voor de meeste kustbroedvogels gunstig te noemen, en is er sprake van een positieve trend voor de meeste soorten, vandaar de positieve T2009 evaluatie. Enkel de Strandplevier haalt de doelstelling niet. Op termijn is aanwezigheid van voldoende, geschikte broedgebieden een aandachtspunt. In de Zeeschelde blijven, op basis van een gefragmenteerde en beperkte dataset, het aantal broedparen voor de meeste soorten achterwege ten opzichte van de instandhoudingsdoelstellingen, vandaar de negatieve T2009 evaluatie. Deze evaluatie bevat echter een grote onzekerheid, en voor de Zeeschelde is er een aanpassing van de methodiek nodig (zie evaluatie nota).

Tabel 9.2-3: Evaluatie T2009 Broedvogels. Occurrence index en exoten zijn niet geanalyseerd.

<table>
<thead>
<tr>
<th>2</th>
<th>Broedvogels evaluatie</th>
<th>Rekenparameters</th>
<th>Occurrence index</th>
<th>Sleutelsoorten</th>
<th>Exoten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T2009 trend</td>
<td>evaluatie</td>
<td>T2009 trend</td>
<td>evaluatie</td>
</tr>
<tr>
<td>Westerschelde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeeschelde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3 NIET-BROEDVOGELS

9.3.1 INLEIDING

9.3.2 REKENPARAMETER INTACTNESS INDEX

9.3.2.1 INLEIDING

In de evaluatiemethode staat dat de Occurrence index dient te worden opgesteld per salinitieitszone (niveau 3) op basis van de frequentie van voorkomen (d.i. het aantal tellingen waarbij een soort zou moeten aanwezig zijn, Holzhauer et al. 2011), bij voorkeur voor zomer en winter afzonderlijk. De trend in de tijd wordt hierbij geëvalueerd, waarbij een daling negatief wordt beoordeeld. De (voorlopige) referentielijsten die voor deze beoordeling ter beschikking zijn gesteld, geven enkel de aan- of afwezigheid van soorten (inclusief exoten) per salinitieitszone over het gehele jaar, gebaseerd op de voorkomens in de periode 1987-2008 (Westerschelde) en 1979 – 2009 voor de Zeeschelde. Het gaat hier om alle soorten die in de waarnemingsperiode zijn waargenomen (zie Digitale Bijlage voor gebruikte referentielijsten). De Occurrence index die hier wordt gepresenteerd is dan ook gebaseerd op aan- en afwezigheid en niet op frequentie. In de Zeeschelde zijn de meeuwen buiten beschouwing gelaten omdat deze niet voor de gehele waarnemingsperiode beschikbaar zijn. Na het opstellen van definitieve referentielijsten zal de Occurrence index kunnen worden uitgewerkt zoals beschreven in de methodiek, alsmede ook een Abundance index.
9.3.2.2 ANALYSE

De occurrence index (OI) in de Westerschelde vertoont in de mondingszone en polyhaliene zone een toename, in de mesohaliene blijft de index gelijk (Figuur 9-3-1). Het al dan niet weglaten van exoten uit de referentiematrix heeft slechts een gering effect op de percentages en de waargenomen trend.

In de Zeeschelde schommelt de OI in de zone 4 (zone met sterke salinitheitsgradiente) rond de 80%. In zone 5 (oligohaliene zone, incl. Rupel), zone 6 (zoete zone met lange verblijftijd) en zone 7 (zoete zone met korte verblijftijd) is er sprake van een lichte toename in de periode 2004-2009 ten opzichte van het begin van de waarnemingsperiode 1992-1997; de OI zit nu rond de 80 % (Figuur 9-3-2). In de Durme neemt de OI eerst toe en vertoont daarna een daling.

Figuur 9-3-2: Occurrence Index (%) op basis van voorkomen in 5 OMES-segmenten van de Zeeschelde (zone 4 = zone met sterke salinitheitsgradiente, zone 5 = oligohaliene zone, incl. Rupel), zone 6 = zoete zone met lange verblijftijd, zone 7 = zoete zone met korte verblijftijd, en Durme) in de periode 1992 - 2009, opgedeeld naar drie periodes van zes jaar.
9.3.2.3 **INTERPRETATIE**

In de Westerschelde worden er geen duidelijke trends waargenomen en is er sprake van een lichte toename (mondingsgebied en mesohaliene zone) of mogelijk blijven van de diversiteit aan niet-broedvogels op basis van de OI. In de polyhaline zone worden minder soorten waargenomen ten opzichte van de referentiematrix in vergelijking tot de mondingszone en mesohaliene zone. De reden hiervoor is niet duidelijk, maar de OI zoals hier gebruikt is gevoelig voor het al dan niet waarnemen van zeldzame soorten en dwalgasten. Wel kan gesteld worden dat het overgrote deel van de vogelsoorten (> 70%) in elk deelgebied wordt waargenomen.

In de Zeeschelde is de toenam van de OI in zone 5 (oligohaliene zone, incl. Rupel), zone 6 (zoete zone met lange verblijftijd) en zone 7 (zoete zone met korte verblijftijd) deels te verklaren door het toenemend aantal soorten exoten dat wordt waargenomen. Wanneer de exoten worden weggelaten uit de analyse wordt het verschil in OI kleiner tussen de beschouwde periodes, maar is er nog steeds sprake van een stijging. Dit wijst er op dat in deze zones de diversiteit is toegenomen, wat een gevolg kan zijn van een verbeterde waterkwaliteit. Een duidelijke verklaring voor de daling in de Durne voor de meest recente periode is niet te geven, maar ook hier speelt de gevoeligheid van het waarnemen van zeldzaamheden op de OI. Er kan gesteld worden dat in de laatste periode 2004-2009 de diversiteit op basis van de OI in alle deelgebieden van de Zeeschelde rond de 80% schommelt.

9.3.2.4 **BEOORDELING T2009**

De diversiteit aan niet-broedvogels, bepaald aan de hand van de Occurrence index, vertoont ofwel geen duidelijke verandering dan wel een toename in de tijd in de verschillende saliniteitszones van het Schelde-estuarium, en kan als positief beschouwd worden. Gemiddeld komt tussen de 70 en 90% van de soorten uit de referentiematrix voor in de periode 2004-2009.

9.3.3 **SLEUTELSOORTEN**

9.3.3.1 **INLEIDING**

De sleutelsoorten staan gedefinieerd als de soorten waarvoor een instandhoudingsdoelstelling (IHD) bestaat of die voldoen aan de 1% norm van Ramsar (Holzhauer et al. 2011). IHD’s voor niet-broedvogels zijn enkel gedefinieerd voor de Westerschelde, en niet voor de Zeeschelde (Holzhauer et al. 2011). De IHD’s zijn gebaseerd op seizoengemiddelden.

13300) daalt de populatieschatting over de periode 1994-2006. Voor de vergelijking met de Ramsar 1% normen wordt gerekend met Westerschelde en Zeeschelde seizoenmaxima.

Tabel 9-3-1: 1%-normen voor de relevante soorten (van http://wps.wetlands.org/).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergeend</td>
<td>2500</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Bonte strandloper</td>
<td>14000</td>
<td>14000</td>
<td>13300</td>
<td>13300</td>
<td>13300</td>
</tr>
<tr>
<td>Drieteenstrandloper</td>
<td>1000</td>
<td>1000</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Grauwe gans</td>
<td>1200</td>
<td>2000</td>
<td>4000</td>
<td>5000</td>
<td>6100</td>
</tr>
<tr>
<td>Kluit</td>
<td>700</td>
<td>700</td>
<td>730</td>
<td>730</td>
<td>730</td>
</tr>
<tr>
<td>Kraloeend</td>
<td>250</td>
<td>300</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Lepelaar</td>
<td>30</td>
<td>30</td>
<td>100</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Pijlstaart</td>
<td>700</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Rosse grutto</td>
<td>1000</td>
<td>1000</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Scholdeister</td>
<td>9000</td>
<td>9000</td>
<td>10200</td>
<td>10200</td>
<td>8200</td>
</tr>
<tr>
<td>Smitz</td>
<td>7500</td>
<td>12500</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>Tafeleend</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>3000</td>
</tr>
<tr>
<td>Winterling</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Zilverplevier</td>
<td>1500</td>
<td>1500</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
</tr>
</tbody>
</table>

9.3.3.2 ANALYSE

Voor de soorten die de Ramsar 1% norm overschrijden is gekozen om naar het seizoen maximum te kijken, gemiddeld over een periode van zes jaar, en deze te vergelijken met de beschikbare informatie over populatieschattingen van de soort (zie tabel 9-3-1). In tabel 9.3.1. staat of de trend in de Westerschelde overeenkomt met de internationale trend. Indien de aantallen in de Westerschelde stabiel blijven of afnemen, terwijl internationaal de populatie toeneemt of stabiel blijft, dan wordt voor de 1% Ramsar norm een negatieve beoordeling gegeven.

Uit de analyses blijkt dat voor een aantal soorten de status als negatief kan worden beschouwd: voor zowel fuut, middelste zaagbek, steenloper en strandplevier wordt de IHD nooit gehaald in de periode 2004-2008 en is tevens de trend dalend. Voor tureluur, zwarte ruiter, zeearend, bontbekplevier, goudplevier, grauwe gans, pijlstaart en rosse grutto wordt in de meeste jaren de IHD niet gehaald, maar is er geen significante trend waarnembaar in de periode 1987 – 2008. Voor de laatste drie soorten zien we ook een negatief afwijkende trend t.o.v. de trend in de 1% norm. Een aantal andere soorten halen eveneens de IHD niet in de meeste jaren, maar vertonen wel een positieve trend waaruit een verbetering van hun toestand blijkt: groenpootruiter, wilde eend, slechtsvalk, kraakeend. Eenzelfde scenario geldt voor de drieteenstrandloper die t.o.v. van de 1% norm achteruit gaat, maar waarvoor de trend wel positief is.

Andere soorten die de IHD niet (steeds) halen vertonen een cyclische trend, waardoor het onduidelijk is

In de digitale bijlage 9.3 en aangeleverde excel sheets worden de aantallen over de gehele beschikbare datareeks grafisch weergegeven en vergeleken met respectievelijk de IHD en de 1% Ramsar norm. Daarnaast wordt in dezelfde bijlage een overzicht gegeven van de trendanalyses.

<table>
<thead>
<tr>
<th>Soort (IHD)</th>
<th>IHD</th>
<th>trend</th>
<th>1%-norm</th>
<th>Opmerking7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERGEEND (4500)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>BENTBEPLEIVER (430)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>BONTE STRANDPLEIVER (15100)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>DRIETEENSTRANDPLEIVER (1000)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>FUút (100)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>GOUDPLEIVER (1600)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>GRAUWE GANS (16600)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>GROENPOOTRIETER (90)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>KANOET (600)</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>KIEVIT (4100)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>oorspronkelijke data</td>
</tr>
</tbody>
</table>

7Imputed data: er is een inschatting gemaakt voor ontbrekende data (waarnemingen) in de dataset op basis van de beschikbare data.
<table>
<thead>
<tr>
<th>Soort</th>
<th>IHD</th>
<th>trend</th>
<th>1%-norm</th>
<th>Opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleine zilverreiger (40)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>Kluut (540)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Kolgans (380)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>Krakeend (40)</td>
<td>-</td>
<td>-/+</td>
<td>+</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>Lepelaar (30)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>Middelste zaagbek (30)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Pijlstaart (1400)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>Rosse grutto (1200)</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>Scholkelster (7500)</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>imputed data</td>
</tr>
<tr>
<td>Slechtvalk (8)</td>
<td>-</td>
<td>-/+</td>
<td>+</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>Sloeend (70)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Smient (16600)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>Steenloper (230)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Strandplevier (80)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Tureluur (1100)</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>Wilde eend (11700)</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Wintertaling (1100)</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
<tr>
<td>Wulp (2500)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>imputed data</td>
</tr>
<tr>
<td>Zeearend (2)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>oorspronkelijke data</td>
</tr>
<tr>
<td>Zilverplevier (1500)</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>imputed data</td>
</tr>
<tr>
<td>Zwarte ruiter (270)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>imputed data</td>
</tr>
</tbody>
</table>
Figuur 9.3-3: Trends in aantallen van een aantal niet-broedvogels in de Westerschelde: een positieve trend voor Grauwe gans en Bergeend (bovenste figuren), een cyclische trend voor Scholekster en Smient (middenfiguren), en een negatieve trend voor Middelste Zaagbek en Strandplevier (onderste figuren) (p<0.05).

In de Zeeschelde is er in de periode 1992 tot 2001-2002 sprake van een sterke toename in het aantal watervogels die in de Zeeschelde overwinteren. Daarna beginnen de aantallen terug af te nemen, met vooral sinds 2007 veel lagere aantallen. Begin de jaren 2000 werden nog maandmaxima (januari, december) van ruim 70.000 vogels geteld, sinds 2007 zijn de aantallen gedaald tot onder de 20.000. De belangrijkste soorten in de Zeeschelde zijn een aantal eendensoorten, waaronder wintertaling, krakeend, tafeleend wilde eend en pijnlaat (Tabel 9-3-3). De trend van deze soorten is positief tot begin jaren 2000, waarna een negatieve trend wordt ingezet (Figuur 9-3-5). Enkel bij de pijnlaat is de afname minder uitgesproken. Deze soorten overschrijden tevens de Ramsar 1% norm, maar ook hier stellen we een dalende trend vast (Tabel 9-3-3), vooral bij wintertaling en tafeleend, en in mindere mate bij krakeend en pijnlaat (Figuur 9-3-6). De grauwe gans overschreed de 1% norm net in de periode 1992-1997, waarna het aandeel van de Zeeschelde voor deze soort onder de 1% daalt.

Tabel 9-3-3: Niet-broedvogels Zeeschelde. Trend in seizoen gemiddelde aantallen van de vogelsoorten die in de Zeeschelde overwinteren. Als de trend in seizoens gemiddelde significant was ($p<0.05$) werd dit met een $-$, $-$ of $+$ aangemerkt (berekend over de periode 1992-2009), afhankelijk van of er een cyclische, negatieve of positieve trend gevonden werd. Indien er geen significante trend gevonden werd, is dit met een 0 aangemerkt. Bij het vergelijken van het gemiddelde seizoens maximum met de 1%-norm in de periode 2004-2009 is aangemerkt hoe deze ratio veranderd is t.o.v. de periode daarvoor: $-$: afgenomen, $+$: toegenomen, 0 : gelijk gebleven.

<table>
<thead>
<tr>
<th>Soort</th>
<th>trend</th>
<th>1%-norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwe Gans</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>Krakeend</td>
<td>$+$+$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>Pijnlaat</td>
<td>$+$</td>
<td>0</td>
</tr>
<tr>
<td>Tafeleend</td>
<td>$+$+$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>Wintertaling</td>
<td>$+$+$+$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

9.3.3.3 INTERPRETATIE

Het Schelde-estuarium is een wetland van internationaal belang. Het herbergt meer dan 150 000 watervogels in de winter en doortrekperiodes en van heel wat soorten komen internationaal belangrijke aantallen voor, wat zich uit in het feit dat van deze soorten meer dan 1 % van de populatie voorkomt in het Schelde-estuarium (o.a. Ysebaert et al. 2000). Voor de watervogels (steltlopers, eenden, ganzen, ...) ligt het Schelde-estuarium op de zogenaamde Oost-Atlantische trekroute. Dit is één van de grote vliegwegen waarlangs vogels vanuit hun arctische broedgebieden in Rusland, Groenland en Canada, of de gematigde Noord- en West-Europese streken, naar hun winterkwartieren koers zetten. Afhankelijk van de soort zijn dit de estuaria en kustgebieden van Noordwest-Europa, de Afrikaanse kusten van Mauretanie en Guinee-Bissau, tot de kustlijn van Zuid-Afrika. In het mondingsgebied en de polyhaliene zone van de Westerschelde komen veel steltlopers voor, zoals scholekster, bonte strandloper, drieteenstrandloper en zilverplevier. In de mesohaliene zone speelt het Verdronken Land van Saeftinghe een bijzondere rol voor eenden en ganzen. Door zijn omvang (ruim 3000 ha) biedt het gebied zowel een grote voedselhoeveelheid als rust. De smient is hier een algemene soort, net als de grauwe gans en pijlstaart. Langs de oligohaliene en zoete Zeeschelde domineren dan weer eenden, zoals wintertaling, krakeend, pijlstaart en tafeleend. Langs de oligohaliene en zoete Zeeschelde domineren dan weer eenden, zoals wintertaling, krakeend, pijlstaart en tafeleend. Bij de herbivoren zijn de grauwe gans, smient, wilde eend, pijlstaart en brandgans de talrijkste soorten in de Westerschelde. Bij de grauwe gans, smient, pijlstaart en wilde Eend werden de hoogste aantallen vastgesteld rond de eeuwisseling (Strucker et al. 2012), en nemen daarna af. Voor deze soorten vormt het Verdronken Land van Saeftinghe met omliggende polders veruit het belangrijkste gebied. De afname van de grauwe gans is mogelijk te wijten aan de overbegrazing van de ganzen van hun geprefereerde voedsel, namelijk heenknoten. Het areaal Heen (syn. Zeebies, Scirpus maritimus) is drastisch afgenomen in de brakke zone van de Westerschelde. De Westerschelde is van groot belang als ruigebied van de bergeend. Deze soort neemt sinds begin jaren negentig van de vorige eeuw duidelijk toe, met name in juli en augustus als ze naar de Westerschelde komen om te ruien. De talrijkste soorten viseters (piscivoren) in de Westerschelde zijn aalscholver, lepelaar, kleine zilverreiger en fuut. De trend van de aalscholver is positief, net als voor de lepelaar en kleine zilverreiger. De laatste soort heeft wel te lijden van strenge vorstperioden. De trend van de fuut is dan weer negatief, maar is sinds 2003 redelijk stabiel. In de Zeeschelde is er sprake van een zeer sterke toename van het aantal watervogels van 1992 tot kort na de eeuwisseling, waarna de aantallen van de meeste soorten beginnen te dalen. Opvallend is dat er een (gedeelijke) opschuiving is van watervogels van de Zeeschelde naar de Rupel, eerst tot Boom, en daarna verder stroomopwaarts richting Rumst en de Zenne. We zien dat sinds 2000 het belang van de Rupel toeneemt. Tot 2006 werden er op het traject monding Rupel tot sluis Wintam enkele duizenden watervogels geteld, maar recent zijn hier de aantallen ook sterk gedaald. De grote groepen pijlstaarten, tafeleenden, kuitende en zelfs meerkoeten zijn niet meer aanwezig (Van Rijckegem et al. 2011). De recent waargenomen hoge aantallen overwinterende watervogels in het gedeelte stroomopwaartsBoom getuigen waarschijnlijk van een herstellende waterkwaliteit nu het rioolwater van Brussel gezuiverd wordt. Tegelijk met het afnemen van de aantallen watervogels lijkt ook de biomassa aan bodemdieren
(Oligochaeten) in de Zeeschelde fors af te nemen (zie Macrobronghos). Dit macrobronghos vormt een belangrijke voedselbron voor heel wat van de hierboven genoemde vogelsoorten, en mogelijk verklaart dit de afname in aantallen vogels in de Zeeschelde. Verder onderzoek moet dit uitwijzen.

9.3.4 REKENPARAMETER EXOTEN

9.3.4.1 INLEIDING

Tijdens de vogeltellingen in de Westerschelde en de Zeeschelde worden exoten mee geteld. Er zijn dus voldoende gegevens beschikbaar om zowel trends in aantal soorten als trends in aantal individuen te evalueren. Ideaaliter kent het estuarium geen exoten. Helaas zitten er reeds diverse soorten. Sommige hebben zich reeds permanent gevestigd in de Schelde. Andere soorten zullen wellicht spontaan weer verdwijnen omdat de leefomgeving in de Schelde niet steeds geschikt is om een stabiele populatie op te bouwen. We stellen dat een verdere toename van het aantal soorten ongewenst is. De trend in het aantal soorten wordt berekend en elk toename is ongewenst. Daarnaast wordt voor elke soort de trend in de aantallen berekend en hier geldt evenzeer dat elke toename als negatief wordt beoordeeld.

9.3.4.2 ANALYSE

In de Westerschelde is voor de exoten een significante toename in het aantal individuen waargenomen (Figuur 9-3-7). Vóór 2000 zijn de aantallen nog zeer laag, maar vanaf 2000 nemen de aantallen fors toe. Deze grote toename in aantal individuen is bijna volledig toe te schrijven aan de opkomst van de Canadese gans (89% van alle waargenomen individuen zijn Canadese ganzen), en in mindere mate de Nijlgans (10%). De trend in aantal soorten exoten (Figuur 9-3-7) is significant positief en vooral te wijten aan een paar soorten die af en toe in zeer lage aantallen voorkomen. In totaal zijn 10 soorten exoten waargenomen in de Westerschelde. Uit de analyse blijkt dat steeds meer exoten aanwezig zijn, maar tot nu toe worden niet alle soorten elk jaar waargenomen.

De Zeeschelde vertoont eenzelfde trend als de Westerschelde, met een duidelijke toename van het aantal individuen sinds 1999 (Figuur 9-3-8). In de Zeeschelde is de toename te wijten aan de toename van het aantal Canadese ganzen (47% van alle waargenomen individuen zijn Canadese ganzen) en Nijlganzen (50%). Het aantal soorten exoten in de Zeeschelde neemt significant toe en is te wijten aan een aantal soorten die in toenemende mate maar in zeer lage aantallen voorkomen (Figuur 9-3-8). In totaal zijn 21 soorten exoten waargenomen in de Zeeschelde. Uit de analyse blijkt dat steeds meer exoten aanwezig zijn, maar tot nu toe worden niet alle soorten elk jaar waargenomen.

9.3.4.3 INTERPRETATIE

Canadese ganzen en Nijlganzen hebben zich permanent gevestigd in het Schelde-estuarium en nemen toe in aantallen (ook als broedvogel). Deze ganzen weten zich in de natte delen van Nederland en Vlaanderen uitstekend te handhaven, en het Schelde-estuarium is dan ook een zeer geschikt habitat voor deze soorten. De nadelige effecten van deze soorten doen zich waarschijnlijk eerder voor tijdens de broedperiode (als broedvogel). Daarnaast worden steeds meer andere soorten waargenomen, maar dit steeds in zeer kleine aantallen.
Figuur 9-3-7: Exoten Westerschelde: Trend in het aantal exoten individuen (seizoensmaxima linksboven en seizoengemiddeldes rechtsboven) en trend in het aantal soorten exoten (p<0.05).
Figuur 9-3-8: Exoten Zeeschelde: Trend in het aantal exoten individuen (seizoenmaxima linksboven en seizoengemiddeldes rechtsboven) en trend in het aantal soorten exoten (p<0.05).

9.3.5 EVALUATIE NIET-BROEDVOGELS

De te evalueren rekenparameters voor de indicator Niet-Broedvogels zijn de Occurrence index, het voorkomen van sleutelsoorten, en het aantal soorten exoten en het aantal individuen aan exoten. De Occurrence index neemt in geen enkele zone af, met een positieve evaluatie als gevolg. Sleutelsoorten in de Westerschelde vertonen een wisselend beeld: sommige soorten nemen af, met name een aantal eendachtigen, andere soorten nemen toe zoals de bergeend, wulp en drieteenstrandloper. De evaluatie is dan ook zowel positief als negatief. In de Zeeschelde nemen de meeste sleutelsoorten af, vandaar de negatieve evaluatie. Exoten nemen toe in zowel de Westerschelde als Zeeschelde, en de evaluatie is negatief.

Tabel 9-3-4: Evaluatie T2009 Niet-broedvogels.

<table>
<thead>
<tr>
<th>Niet-broedvogels evaluatie</th>
<th>Rekenparameters</th>
<th>Sleutelsoorten</th>
<th>Exoten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Occurrence index (%)</td>
<td>Trend evaluatie</td>
<td>Trend evaluatie</td>
</tr>
<tr>
<td>Westerschelde</td>
<td>T2009 (2004-2009)</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Zeeschelde</td>
<td>+</td>
<td>-/=</td>
<td>-</td>
</tr>
<tr>
<td>Mondingsgebied</td>
<td>88</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polyhaliene zone</td>
<td>69</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mesohaliene zone</td>
<td>80</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Saliniteitsgradiënt</td>
<td>78</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oligohaliene zone, incl. Rupel</td>
<td>83</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zoet Lang Verblĳf</td>
<td>83</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zoet Kort Verblĳf</td>
<td>79</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>76</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

9.4 ZOOGDIEREN

9.4.1 INLEIDING

In het estuarium lopen diverse monitoringsprogramma’s voor zoogdieren. Het betreft in hoofdzaak het opvolgen van zeezoogdieren, maar ook een beperkt aantal andere zoogdieren die vermeld staan in de annex van de habitatrichtlijn. Hiertoe behoren de Noordse woelmuis, een aantal vleermuizen, de bever en de otter. Omdat hun relatie tot het ecologisch functioneren van het estuariene systeem beperkt is, worden ze binnen deze evaluatiemethodiek buiten beschouwing gelaten (Holzhauer et al. 2011). De zeezoogdieren beperken zich in hoofdzaak tot de Westerschelde. Er zijn weliswaar regelmatig meldingen van zeehonden en bruinvissen in de Zeeschelde en het stijgend aantal waarnemingen zijn uiteraard een indicatie van een verbeterende waterkwaliteit van het ecosysteem. Maar omdat het eerder om dwaalgasten gaat, worden deze waarnemingen in de Zeeschelde niet betrokken in de evaluatie.
Door de jaren heen kunnen we stellen dat zo’n 21 zeezoogdiersoorten (o.a. diverse walvis-, dolfin- en zeehondensoorten) sporadisch in de Westerschelde worden waargenomen (Holzhauer et al. 2011). Er is echter maar voor 3 soorten sprake van permanente aanwezigheid. Het gaat om de gewone zeehond (*Phoca vitulina*), de grijze zeehond (*Halichoerus grypus*) en de bruinvishond (*Phocoena phocoena*). Alle drie deze soorten hebben een bijzondere status met specifieke instandhoudingsdoelstellingen in het kader van Natura 2000. De Vlakte van De Raan is, als onderdeel van het Noordzeesuiggebied, voor alle drie deze soorten aangewezen als leefgebied.

Zeehonden staan aan de top van de voedselketen en stellen belangrijke habitatvereisten. Ze zijn daarom indicatief voor de algemene ecologische kwaliteit. Omdat de grijze zeehond slechts recent is teruggekeerd, is enkel de gewone zeehond als indicatorsoort geselecteerd binnen de evaluatietechniek (Holzhauer et al. 2011).

Bruinvissen zijn eveneens toppredatoren en indicatief voor een goed functionerend voedselweb. Het aantal bruinvissen is echter moeilijker in te schatten dan het aantal zeehonden. Daarom geniet de gewone zeehond de voorkeur om opgenomen te worden voor de toetsparameter Zoogdieren.

Voor het gehele Deltagebied geldt een populatie van ten minste 200 exemplaren als regionaal, waarbij de Vierdelta de grootste bijdrage levert. Er geldt geen aparte doelstelling voor de Westerschelde. In het Natura 2000 gebied Westerschelde en Saeftinghe moet het areaal aan ongestoord gebied wel toenemen zodat het beter geschikt wordt voor de voortplanting van de gewone zeehond.

Voor de bepaling van het aantal zeehonden worden maandelijkse vliegtuigtellingen uitgevoerd tijdens laag water. Voor de Westerschelde zijn gegevens beschikbaar vanaf 1995.

9.4.2 AANTallen TEN OPZICHTE VAN DE REFERENTIESITUATIE

9.4.2.1 INLEIDING

Aangezien de groepen gewone zeehond in de Westerschelde deel uitmaken van Delta-populaties is er een grote uitwisseling en dienen we in de evaluatie ook rekening te houden met de dynamiek van de gehele populatie en met invloeden en ontwikkelingen waarvan de oorzaken zich buiten het Scheldeestuarium kunnen situeren. Evaluatie van de toestand in de Westerschelde moet dan ook steeds relatief aan de volledige populatie gebeuren. Om kleine schommelingen tussen de verschillende jaren op te vangen wordt met een marge gewerkt. Een daling met meer dan 5% ten opzichte van de Delta-populatie wordt als negatief beoordeeld volgens de evaluatietechniek (Holzhauer et al. 2011). In de aangepaste methodiek (zie ‘Evaluatie van de evaluatietechniek’) wordt een ander criterium aanbevolen. De Delta-populatie maakt immers deel uit van de Zuidelijke Noordzee-populatie. De Waddenzee, en vermoedelijk ook de Britse populaties, moeten als bron worden gezien voor de Delta-populatie, die momenteel waarschijnlijk nog niet in staat is zichzelf in stand te houden (door gebrek aan voldoende geboortes en een hoog sterftecijfer) (pers. med. S. Brasseur). Daarom wordt voorgesteld de veranderingen in de Westerschelde te vergelijken met een ruimere populatie. De data van de Britse zeezondentellingen zijn niet vrij toegankelijk, waardoor het niet mogelijk is deze in de methodiek op te nemen. Uit een vergelijking met de Waddenzee populatie blijkt een relevante ondergrens waaran de populatie in de Westerschelde ten opzichte van de Waddenzee moet voldoen de 1% grens te zijn: wanneer de aantallen zeehonden in de Westerschelde lager is dan 1% van de Waddenzee, moet de situatie als negatief beschouwd worden.

9.4.2.2 ANALYSE

Uit figuur 9-4-2 blijkt een stijgende trend van het aandeel zeehonden in de Westerschelde ten opzichte van de referentiesituatie. Het aandeel van de Westerschelde t.o.v. de Waddenzee is de laatste jaren significant toegenomen (zie digitale bijlage 9.4). Eind jaren ’90 lagen de aantallen in de Westerschelde nog onder de
1% t.o.v. de Waddenzee terwijl die na 2002 daarboven blijven (2009 uitgezonderd die op de 1% lijn ligt). Hierbij dient wel te worden opgemerkt dat het aantal locaties dat is geteld tijdens de survey van zeehonden in de Westerschelde in de maand augustus in de jaren 1995-1999 altijd lager geweest (<4, in 1997 zelfs maar 1) dan de periode daarna (tussen 4 en 9), waardoor de aantallen mogelijk een onderschatting geven ten opzichte van de daaropvolgende jaren. Echter is de trend vanaf 2002 ook positief.

Het toenemend aantal zeehonden in de Westerschelde volgt de trend in de zeehondenpopulatie geteld in het Deltagebied. Het zes jaarlijks voortschrijdend gemiddelde van de Westerschelde populatie t.o.v. de Delta populatie varieert tussen 25 en 33% en neemt niet af.

INTERPRETATIE

Het aantalsverloop van gewone zeehonden in Nederland is redelijk goed gedocumenteerd (Geelhoed & van Polanen Petel, 2011). De soort werd bejaagd tot begin jaren zestig (1961 in de Delta, 1962 in de Waddenzee). Vanwege hun pels werden met name jonge dieren bejaagd. Nadat de jacht was gesloten, trad gedurende korte tijd enig herstel op. Door een lage reproductie en een hoge sterfte daalde de populatie vervolgens tot een dieptepunt. Dit werd veroorzaakt door met name de voorzettering van de jacht op de populatie in het Duitse en Deense deel van de Waddenzee tot 1974 en verontreiniging door PCB's. Daarnaast werd de toename van verstoring door beroepsvaart en watertoerisme als oorzaak gezien. Sinds eind jaren negentig is een voorzichtig herstel waarneembaar in de Delta (Reijnders et al., 2000). Deze is vooral te danken aan de immigratie vanuit de snel groeiende populatie in de Waddenzee. In 1994 werden voor het eerst na lange afwezigheid weer jonge zeehonden gevonden in de Westerschelde (Meininger et al., 2003). Sindsdien wordt jaarlijks een klein aantal jongen geboren, dit is echter niet voldoende om de groei te verklaren. Dit wijst er op dat de populatie nog steeds aangewezen is op immigratie vanuit andere gebieden in de Noordzee (Geelhoed & van Polanen Petel, 2011). Gewone zeehonden zijn bij laagwater in de Westerschelde hoofdzakelijk te vinden op droogvallende zandplaten met een steile rand langs vrij diep water. Geliefkoosde rustplaatsen zijn de Hooge Platen, de Molenplaat en de Platen van Valkenisse t.h.v. Rilland.
9.4.2.4 **BEOORDELING T2009**

De trend is positief en het aandeel van de Westerschelde populatie ten opzichte van de Waddenzee populatie is de laatste jaren toegenomen. Dit duidt niet op een verdere verslechtering maar op een langzaam herstel. Het aandeel van de Westerschelde populatie t.o.v. de Delta populatie neemt ook niet af; de laatste jaren ligt het aandeel hoger dan in de beginjaren. Ook na 2009 nemen de aantallen zeehonden nog steeds toe.

9.4.3 **REKENPARAMETER AANTAL ZEEHONDEN IN AUGUSTUS**

9.4.3.1 **INLEIDING**

In de aangepaste methodiek (Zie ‘Evaluatie van de evaluatiemethodiek’) wordt aanbevolen de trendanalyse uit te voeren op het aantal zeehonden dat wordt geobserveerd in augustus i.p.v. juli zoals beschreven in Holzhauer et al. 2011. Uit eerder onderzoek is gebleken dat op dat moment de kleinste variatie in totale aantallen optreedt, en je zo de meest zinvolle uitspraak kunt doen over de evolutie van het aantal zeehonden in de Westerschelde (pers. med. S. Brasseur).

9.4.3.2 **ANALYSE**

Figuur 9-4-1: Trendanalyse van het aantal zeehonden in de Westerschelde geteld in de maand augustus (1995-2010) (p<0.05).

9.4.3.3 **INTERPRETATIE**

Zie 9.4.2.3.
9.4.3.4 BEOORDELING T2009

De trend in de augustus aantallen in de Westerschelde is positief. Jaarlijks wordt tevens een klein aantal jongen geboren, dit is echter niet voldoende om de groei te verklaren. De populatie is dus nog afhankelijk van immigratie van individuen van elders. Aandachtspunt is dus dat het areaal aan ongestoord gebied moet toenemen zodat het beter geschikt wordt voor de voortplanting van de gewone zeehond (zoals gesteld in het Natura 2000 beheerplan).

9.4.4 EVALUATIE ZOOGDIEREN

De te evalueren rekenparameters voor de indicator zoogdieren zijn het aantal zeehonden (relatief t.o.v. de Deltapopulatie of Waddenzee populatie), en het aantal zeehonden in de maand augustus. De trend in het aantal zeehonden is stijgend, en de evaluatie is positief. De populatie is echter nog afhankelijk van immigratie van individuen van elders en aandachtspunt is dat het areaal aan ongestoord gebied moet toenemen zodat het beter geschikt wordt voor de voortplanting van de gewone zeehond.

Huidige evaluatie:

<table>
<thead>
<tr>
<th>Broedvogels evaluatie</th>
<th>Rekenparameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aantal zeehonden</td>
<td>Aantal zeehonden in augustus</td>
</tr>
<tr>
<td>Westerschelde</td>
<td>+ 50-77</td>
</tr>
</tbody>
</table>

9.5 VISSEN

9.5.1 INLEIDING

Vissen zijn zeer geschikt als toetsparameter omdat ze gevoelig zijn voor kwaliteitsveranderingen, gebruik maken van een groot aantal habitats binnen het estuarium en een centrale rol innemen in het voedselweb. Het aanbod aan vis in het estuarium bepaalt mede de draagkracht van het estuarium voor zeezoogdieren zoals de gewone zeehond (Phoca vitulina) en de bruinvis (Phocoena phocoena), en voor een groot aantal piscivore vogels, waaronder een aantal soorten waarvoor instandhoudingsdoelstellingen gelden zoals grote stern (Sterna sandvicensis), visdief (Sterna hirundo), dwergstern (Sterna albifrons) en fuut (Podiceps cristatus) (Holzhauer et al. 2011).

Daarnaast bepaalt het visbestand het rendement van de estuariene visserij en van de visserij in de Noordzee voor soorten waarvan de juventieuze stadia in het estuarium opgroeien (kraamkamerfunctie van het estuarium). Vissoorten die ten minste een gedeelte van hun levenscyclus in het Schelde estuarium
vollbrengen en van commercieel belang zijn, zijn onder andere spiering (*Osmerus eperlanus*), haring (*Clupea harengus*), bot (*Platichthys flesus*), sprot (*Sprattus sprattus*), schol (*Pleuronectes platessa*), paling (*Anguilla anguilla*), tong (*Solea solea*), schar (*Limanda limanda*) en zeebaars (*Dicentrarchus labrax*) (Breine 2009).

Met betrekking tot de implementatie van de Kaderrichtlijnwater zijn een aantal studies uitgevoerd naar vissen als kwaliteitsindicatoren voor de bepaling van de ecologische status van een watersysteem, onder andere in Vlaanderen en Nederland (zie Holzhauer et al. 2011 voor overzicht). Deze studies hebben zich tevens gericht op de gebruikte methodieken in de ons omliggende landen. Al deze studies besluiten dat evaluatie van de visgemeenschappen op basis van meerdere indicatoren moet gebeuren. Dit krijgt binnen deze evaluatiemethodiek invulling door te werken met enerzijds de Intactness Index, en anderzijds te kijken naar de trends in aantallen en biomassa van diverse soorten/groepen (sleutelsoorten) en exoten. De aanpak voor de trends in aantallen/biomassa verschilt voor de diverse zones in het estuarium. Dit heeft te maken met de verschillende bemonsteringsmethodes in de Westerschelde en de Zeeschelde. De Nederlandse methode maakt gebruik van ankerkuil en boomkor als vistuig en beoordeelt in principe het volledige estuarium (Westerschelde). De Belgische methode gebruikt de dubbele schietfuik als vistuig en beoordeelt elke saliniteitszone apart. Daarnaast wordt maandelijks gedurende drie uur rond laagwater de vis van de roosters aan de koelwater inlaat van de kerncentrale in Doel gemonitord.

Het INBO heeft op verschillende locaties in de Schelde monsters verzameld aan de hand van fuiken. Deze locaties kunnen vervolgens ingedeeld worden in saliniteitsklassen (zie tabel 9-5-1).

Tabel 9-5-1: INBO locaties en indeling in saliniteitsklassen

<table>
<thead>
<tr>
<th>INBO locatie</th>
<th>Saliniteitszone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zandvliet</td>
<td>Sterke saliniteitsgraad (Z4)</td>
</tr>
<tr>
<td>Kennedy</td>
<td></td>
</tr>
<tr>
<td>Steendorp</td>
<td>Oligohalien (Z5)</td>
</tr>
<tr>
<td>Kastel</td>
<td>Zoet, lange verblijftijd (Z6)</td>
</tr>
<tr>
<td>Uitbergen</td>
<td>Zoet, korte verblijftijd (Z7)</td>
</tr>
<tr>
<td>Overbeke, Weteren</td>
<td></td>
</tr>
</tbody>
</table>

9.5.2 REKENPARAMETER OCCURRENCE INDEX

9.5.2.1 INLEIDING

Een Intactness index, gebaseerd op Occurrence, is bepaald op niveau 3 (saliniteitszones). Evalueren op basis van een Abundance index geniet wel de voorkeur, waarbij de gemiddelde ‘abundance’ (biomassa/aantal) over een periode van zes jaar wordt beoordeeld (Holzhauer et al. 2011). Door de grote verschillen in monstername strategie in het estuarium is voorlopig enkel het voorkomen (aan/afwezigheid) van de soort opgenomen in de ter beschikking gestelde referentiematrix. Elke afname van de index is ongewenst. De referentielijst die gebruikt is bevat alle soorten die in de beschikbare waarnemingsperiode per saliniteitzone zijn waargenomen (zie Digitale Bijlage voor gebruikte referentielijsten).

9.5.2.2 ANALYSE

De Occurrence index in de Westerschelde vertoont in alle drie saliniteitszones een gelijkaardige toenemende trend in de tijd (Figuur 9-5-1).
In de Zeeschelde zijn voor de zone Z7 (zoet, lange verblijftijd) geen waarnemingen beschikbaar voor de periode 1998-2003. Voor de andere zones neemt de Occurrenceindex toe, wat wijst op een grotere overeenkomst met de referentiematrix en een toename van de diversiteit van de vissen (Figuur 9-5-2).

9.5.2.3 **INTERPRETATIE**

De Occurrence index in het Schelde-estuarium neemt toe in alle saliniteitszones, wat wijst op een grotere overeenkomst met de referentie en een toename van de diversiteit van de vissen. In de Zeeschelde heeft dit te maken met een verbeterde waterkwaliteit, de reden voor de toename in de Westersschelde is niet duidelijk.
9.5.2.4 **BEOORDELING T2009**

De trend in Occurrence index is positief en daarmee is ook de evaluatie positief.

9.5.2.5 **REKENPARAMETER SLEUTELSOORTEN**

Een lijst met sleutelsoorten voor vissen is nog niet beschikbaar.

9.5.3 **REKENPARAMETER TREND IN EXOTEN**

Bij Doel zijn maandelijks monsters genomen op dezelfde locatie vanaf 1991. Hierbij zijn individuen van alle aanwezige soorten geteld. Om een trend in exoten te bepalen is gekeken naar de dichtheid van een aantal in de Zeeschelde voorkomende exoten: blauwband grondel (*Pseudoras boraparva*), snoekbaars (*Sander lucioperca*), giebel (*Carassius gibelio*). Na het bepalen van de gesommeerde dichtheid van deze exoten is geen enkele trend significant bevonden bij Doel.

Om de trends in aantal soorten exoten en biomassa van exoten te bepalen is elke locatie apart gelyzeriseerd om dubbele tellingen zo veel mogelijk te voorkomen. Enkel in Steendorp (oligohaliene zone) en Kennedy (zone met sterke salinitiegradiënt) in de Zeeschelde, en de OMES segmenten Z1 (mondingszone) en Z3 (mesohaliene zone) in de Westerschelde zijn significante trends gevonden (Figuren 9-5-3, 9-5-4, 9-5-5, 9-5-6, 9-5-7). In Steendorp en OMES segment Z1 zijn zowel een positieve trend in biomassa (p=0.030) en aantal soorten exoten (p=0.028) gevonden, terwijl in Kennedy enkel een negatieve trend in aantal soorten exoten gevonden is (figuur in digitale bijlage 9.5), en in OMES segment Z3 enkel een positieve trend in aantallen/ha gevonden is.

Figuur 9-5-3: Trend in biomassa vissen exoten over de periode 2001-2012 in Steendorp (oligohaliene zone). Trendlijn: \[y = -106171.8193 + 0.14524x \] (in dagen), p=0.0301.

![Figuur 9-5-3: Trend in biomassa vissen exoten over de periode 2001-2012 in Steendorp (oligohaliene zone). Trendlijn: \[y = -106171.8193 + 0.14524x \] (in dagen), p=0.0301.](image-url)
Figuur 9.5-4: Trend in aantal soorten exoten in de periode 2001-2012 in Steendorp (oligohaliene zone). Trendlijn: $y = -247.2276 + 0.0003387x$ (in dagen). $p = 0.02768$.

Figuur 9.5-6: Trend in aantallen exoten/ha over de periode 1970-2009 in Omes segment Z3 (mesohaliene zone). Trend: $y = 0.0061417x$ (in jaren). $p = 0.004516$.
9.5.4 EVALUATIE VISSEN

De te evalueren rekenparameters voor de indicator Vissen zijn de Occurrence index, het voorkomen van sleutelsoorten, en het aantal soorten exoten en het aantal individuen aan exoten. Een lijst met sleutelsoorten is nog niet beschikbaar. De Occurrence index neemt in geen enkele zone af, met een positieve evaluatie als gevolg. Ondanks dit feit blijven een aantal soorten nog steeds grotendeels afwezig in de Zeeschelde (Breine et al. 2010, 2012): Atlantische steur, zeeprik, fint, elft, houting en Atlantische zalm. Deze soorten waren vroeger regelmatig tot zeer algemeen aanwezig in de Zeeschelde en haar zijrivieren maar zijn door overbevissing, degradatie van waterkwaliteit, verlies aan habitat en migratieknelpunten verdwenen rond de vorige eeuw wisseling (Vrielynck et al., 2002, Breine et al. 2010).

Breine et al. (2010) gebruikten de visdata om de toestand van het Zeeschelde-ecosysteem te beoordelen via een zone specifieke estuariene index voor biotische integriteit (Z-EBI). De ecosysteemkwaliteit soort ‘slecht’ of ‘onvoldoende’ in het zoutwatergetijdengebied (Overbeke, Uitbergen en Kastel), ‘onvoldoende’ in het oligohaliene gedeelte (Steendorp en Antwerpen) en ‘onvoldoende’ of ‘matig’ in de mesohaliene zone (Zandvliet). De verbetering van de waterkwaliteit is nog onvoldoende opdat jonge zoutwatervis massaal de weg naar de Boven-Zeeschelde vindt. Naast de verbetering van de waterkwaliteit, blijft de toevoeging van habitatdiversiteit zoals het herstel van overstromingsgebieden aan het buitendijkse gebied prioritair om de visfauna in de Boven-Zeeschelde te herstellen (Breine et al. 2010). Op basis van de OI is de evaluatie positief voor de Westerschelde en Zeeschelde, voor exoten is de evaluatie negatief.

Tabel 9-3-4: Evaluatie T2009 Vissen.

<table>
<thead>
<tr>
<th>Vissen evaluatie</th>
<th>Rekenparameters</th>
<th>Occurrence Index (%)</th>
<th>Sleutelsoorten</th>
<th>Exoten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westerschelde</td>
<td>T2009 trend</td>
<td>+</td>
<td>T2009 trend</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T2009 evaluatie</td>
<td>-</td>
<td>T2009 evaluatie</td>
<td>-</td>
</tr>
<tr>
<td>Zeeschelde</td>
<td>T2009 trend</td>
<td>+</td>
<td>T2009 trend</td>
<td>+</td>
</tr>
<tr>
<td>Mondingsgebied</td>
<td>T2009 trend</td>
<td>+</td>
<td>T2009 trend</td>
<td>+</td>
</tr>
<tr>
<td>Polyhaliene zone</td>
<td>T2009 trend</td>
<td>+</td>
<td>T2009 trend</td>
<td>+</td>
</tr>
<tr>
<td>Mesohaliene zone</td>
<td>T2009 trend</td>
<td>+</td>
<td>T2009 trend</td>
<td>+</td>
</tr>
</tbody>
</table>
Vissen evaluatie

Rekenparameters

<table>
<thead>
<tr>
<th>Occurrence Index (%)</th>
<th>Sleutelsoorten</th>
<th>Exoten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trend evaluatie</td>
<td></td>
</tr>
<tr>
<td>Saliniteitsgradient</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oligohaliene zone, incl. Rupel</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zoet Lang Verblijf</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zoet Kort Verblijf</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Durme</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

9.6 BENTHOS

9.6.1 INTEGRITY

9.6.1.1 INLEIDING

De diversiteit van de benthosgemeenschappen wordt beoordeeld aan de hand van een analyse van de Occurrence index (OI), waarbij de samenstelling van de gemeenschappen wordt vergeleken met een referentiegemeenschap. Het macrobenthos is een belangrijke schakel in het ecologisch systeem waar het een rol inneemt als enerzijds een belangrijke grazer van de primaire productie en anderzijds een belangrijke voederschakel voor hogere trofische niveaus. Door de diversiteit te waarborgen wordt aangenomen dat de diverse ecologische functies die de diverse soorten vervullen ook aanwezig zullen zijn. Verder zal een hoge diversiteit van het macrobenthos een reflectie zijn van een hoge diversiteit aan niches en een heterogeen systeem. Het is uiteraard ook een bekend fenomeen dat een hoge diversiteit enkel wordt bereikt in een systeem met een goede kwaliteit en dat verstoring kan leiden tot een afname van de diversiteit, door het (lokaal) verdwijnen of achteruit gaan van soorten en het dominant worden van andere soorten.

9.6.1.2 GEBRUIKTE DATA

De voor de Zeeschelde en de zijrivieren aangeleverde gegevens zijn afkomstig van twee monitoringprogramma’s. Zo is er de VMM monitoring waarbij de monsterneming wordt uitgevoerd met het scheppen, en waar de aanwezige organismen op stenen worden geteld. Dit is een kwalitatieve bemonstering met data beschikbaar vanaf 1989 tot op heden. Hierbij kan wel inzicht worden verkregen in de soortensamenstelling, maar de waargenomen aantallen per soort kunnen niet naar een standaard oppervlak worden omgerekend. Voor berekening van de OI is geen gebruik gemaakt van de VMM data omdat de bemonsteringsinspanning tussen jaren en zones moeilijk te vergelijken is, te meer daar de aantallen beschikbare monsters per zone x jaar laag zijn en sterk variëren. Complicerend is ook dat de taxonomische determinatie veelal niet tot op soortniveau gaat. Het tweede meetprogramma is de monitoring van het INBO welke is gebaseerd op monstername met steekbuizen, box-corers en Van Veen grijpers. De gegevens van dit programma zijn wel kwantitatief en dus om te rekenen naar dichtheden. In de jaren 1999, 2002 en 2005 is er onderscheid gemaakt in de >1 mm zeef fractie (zogen. Benthos stalen) en de 0.25-1 mm zeef fractie (zogen. Oligochaeten stalen). Sinds 2008 wordt er jaarlijks bemonsterd volgens een naar fysiotope geëventueerd design. De monsters worden over een 0.5 mm zeef gehaald (ten opzichte van de oudere monsters mist dus de 0.25-0.5 mm fractie). Voor alle soorten wordt tevens het aanwezige gemiddelde gewicht (asvrijdrooggewicht) bepaald waarbij alle Oligochaeten per monster tezamen worden gewogen. Aanvullend wordt eens per 3 jaar op dezelfde locatie een monster genomen ter identificatie van de Oligochaeten soortensamenstelling. Bij aanvang van de T2009 evaluatie waren de...

De voor de Westerschelde aangeleverde benthos gegevens zijn afkomstig van twee monitoringprogramma’s: MWTL (voorheen BIOMON) en MOVE, die respectievelijk de periodes 1992-2009 en 1994-2006 bedragen. Binnen het MWTL programma is er overgestapt van een voor- en najaarsbemonstering volgens een random gestratificeerd bemonsteringschema volgens diepte strata (1992-2008) naar een random gestratificeerd bemonsteringschema volgens ecotopen, enkel bemonsterd in het najaar en met ongelijke aantallen monsters per ecotop type. Binnen het MOVE programma was er sprake van bemonstering in raaien en random monsternome in geselecteerde gebieden waarbij verschillende types en aantallen steekbuizen zijn gehanteerd voor grotere en kleinere soorten in zowel voor- als najaar. Er is voor gekozen om met het oog op de toekomst enkel de najaarsgegevens te gebruiken voor de beoordeling in deze evaluatie. Wel zijn alle analyses ook nog eens uitgevoerd voor de gecombineerde set aan gegevens voor zowel voor- als najaar om mogelijke verschillen door gebruik van de verschillende datasets te identificeren. De resultaten van de gecombineerde datasets worden niet specifiek gepresenteerd, maar worden enkel vermeld wanneer dit andere resultaten oplevert dan op basis van de najaarsgegevens. In de aangeleverde MOVE dataset is per soort reeds de meest geschikte bemonsteringsstrategie geselecteerd (voor grote dieren enkel de grote steekbuizen, voor kleinere soorten kleinere steekbuizen). Voor berekening van de Occurrence index is geen rekening gehouden met de gehanteerde methodiek (het totaal aantal monsters per jaar is naar verwachting voldoende groot om effecten van bemonsteringsmethodiek te minimaliseren). Het determinatieniveau voor de verschillende monsters, monitoringsprogramma’s en referentiesoortenlijsten is op elkaar afgestemd (zie Digitale Bijlage 9.6.1 Benthos).

De Occurrence index (OI) volgens de ‘Buckland Arithmetic’ methode is berekend ten opzichte van aangeleverde referentiematrices. De referentiematrices worden gevormd door alle per zone in het verleden aangetroffen soorten, aangevuld met soorten die op basis van hun voorkomen in andere (aangrenzende) zones ook in die specifieke zone verwacht zouden kunnen worden. De oorspronkelijk aangeleverde lijsten zijn hier en daar aangevuld met soorten die wel werden aangetroffen gedurende de monitoring maar desondanks niet in de lijsten voorkwamen (de toegevoegde soorten zijn vermeld in de Digitale Bijlage 9.6.1 Benthos). De aan- of afwezigheid van soorten wordt geëvalueerd. Afwijkend van de Evaluatiemethodeik (Holzhauer et al., 2011) is in overleg met de begeleidingsgroep besloten om de aanwezigheid van exoten niet negatief te beoordelen in de berekening van de index, maar om de exoten in hun geheel buiten de berekening van de OI te laten. De soorten die als exoot zijn aangemerkt zijn in de Digitale Bijlagen (9.6.1 Benthos) weergegeven en zijn geselecteerd volgens het ‘worst case’ scenario waarbij eveneens soorten waarover (nog) discussie bestaat als exoot zijn aangemerkt. Eveneens afwijkend van de methodiek is er hier voor gekozen om de evaluatie te baseren op de afzonderlijke jaren (in plaats van jaarlijkse gemiddelden), om het aantal metingen van OI in de tijd te vergroten zodat ook daadwerkelijk een trend kan worden bepaald (voor details en gehanteerde referentielijsten zie Digitale Bijlage 9.6.1 Benthos).

9.6.1.3 ANALYSE

De analyse van de resultaten van de Occurrence index (OI) voor de Zeeschelde en de zijrivieren geeft een wisselend beeld voor de verschillende zones en soms ook voor de verschillende jaren. Waar er sprake is van een significante toename van de OI in de oligohaliene zone en de zoete zone met korte verblijftijd, neemt deze significant af in de zone met een sterke saliniteitsgradiënt (Figuur 9.6.1). Van benedenstrooms naar bovenstrooms in de Zeeschelde soort de OI over het algemeen zeer laag in de mesohaliene zone met een gemiddelde waarde van 16.0 %. In de zone met een sterke saliniteitsgradiënt lijk de situatie net iets
beter, daar is echter sprake van een significante afname en komt de index volgens de regressie vergelijking uit op 23.3 % in 2009 (T2009). In de oligohaliene zone daarentegen is de benthos gemeenschap meer intact, en neemt de OI ook significant toe naar een waarde van 48.6 % in 2009. Er ontbreekt een groot aantal soorten/taxa in de zoete zone met lange verblijftijd, waar de OI gemiddeld op 21.7 % uit komt, maar waar de situatie sterk aan het verbeteren is gezien de scores voor 2008 en 2009. De zoete zone met korte verblijftijd komt in 2009 met een toemnende trend op ongeveer dezelfde waarde uit als gevonden voor de zoete zone met lange verblijftijd (OI van 40.3 % volgens de trend). De OI voor de zoete zone met korte verblijftijd heeft echter in het verleden altijd substantieel boven de OI van de zoete zone met lange verblijftijd gelegen. De hoogste index scores worden bereikt in de Rupel en de Durme, met respectievelijk gemiddeld een OI score van 42.3 en 50.0 %.

De OI voor de 3 zones van de Westerschelde is gedurende de afgelopen 18 jaar (1992-2009) vrij constant (Figuur 9.6.1); er is dan ook geen significante verandering waargenomen. Wel lijken met name het mondingsgebied en de polyhaliene zone een geleidelijke toename van de OI te vertonen vanaf het begin van de jaren 90 tot aan het begin van deze eeuw; daarna is er meer variatie van jaar tot jaar. De OI schommelt tussen de 25 en de 46 %, maar is ondanks dat verrassend vergelijkbaar tussen de 3 zones van de Westerschelde. De gemiddelde OI voor het mondingsgebied bedraagt 33.7 %, voor de polyhaliene zone 32.0 % en voor de mesohaliene zones 33.5 % (zie tevens de Digitale Bijlage 9.6.2 Benthos). Het feit dat de OI niet boven de 46 % uit komt is uiteraard te wijten aan het ontbreken van diverse soorten, waarbij het overigens veelal gaat om soorten die wel sporadisch in een bepaald jaar worden aangetroffen, maar door hun voorkomen in lage dichtheden veelvuldig gemist worden in andere jaren (soorten met lage trefkans).

Er is het één en ander geïxperimenteerd met de wijze van berekening van de OI. Onder andere zijn in eerste instantie, conform de evaluatiemethode, de exoten in de analyse meegenomen waarbij ze dan negatief tellen. Tijdens een thematische bijeenkomst is besloten de exoten uit de analyse te laten (zie Evaluatie van de Evaluatiemethode en de Digitale Bijlage 9.6.1 Benthos). Het effect van het weglaten van de exoten uit de OI op basis van aan-/afwezigheid blijkt gering te zijn; de waarden van de index zijn daarmee over de gehele range enkele procenten hoger geworden. Anderzijds veroorzaakt het weglaten van de voorjaarsgegevens dat de index een paar procent lager uitvalt (er zijn iets meer soorten van de referentielijst die bij weglaten van de voorjaarsgegevens ontbreken, daar ze enkel in het voorjaar zijn waargenomen).

Occurrence Intactness (Benthos + Oligochaeten)

![Graph showing occurrence intactness](image-url)
9.6.1.4 INTERPRETATIE

Met betrekking tot de ontwikkelingen in de Zeeschelde en de zijrivieren blijken er behoorlijke verschillen te zitten in de mate van score wanneer de OI separaat wordt berekend voor het macrobenthos en de Oligochaetaen (zie Digitale bijlagen 9.6.2 Benthos). Daar waar de aanwezigheid van het gewenste aantal Oligochaetaen soorten over het algemeen redelijk tot goed te noemen is, ontbreken er grote aantallen macrobenthos soorten en taxa. Dit is wel iets aan het verbeteren gezien het feit dat vóór 2008 er in zijn geheel geen soorten niet behorende tot de Oligochaetaen zijn gevonden stroomopwaarts van de oligohaliene zone (inclusief de zijrivieren), en in de oligohaliene zone zelf niet voor 2005. Het feit dat Oligochaetaen de overhand hebben geeft aan dat de water- en waterbodemkwaliteit te wensen overlaat en dat we te maken hebben met een sterk verstoorde leefomgeving. In dit geval bestaat de verstoring vooral uit de input van hoge nutriënt gehalten (H 7.3 Nutriënten), de aanwezigheid van verontreinigende stoffen (H 7.5 Toxische stoffen), hypoxische condities (H 7.2 Zuurstof), en onnatuurlijke fluctuaties in rivierafvoeren (met (tijdelijke) effecten op saliniteit en debieten (H 7.6.1 Zout). Het feit dat er significante toenames worden waargenomen in de OI (zoete zone met korte verblijftijd en oligohaliene zone) geeft aan dat de successie van de macrobenthos gemeenschappen in die zones de goede kant op gaat. Zoals ook wordt aangegeven door de verklarende parameter ‘Totale Macrobenthos biomassa’ (H 9.6.4), worden de Oligochaetaen gemeenschappen geleidelijk vervangen door gemeenschappen met meer macrobenthos soorten in plaats van meiobenthos soorten. Echter, de Oligochaetaen aantallen en dus de dominantie van deze groep is recentelijk wel sterk afgenomen, maar de opkomst van macrobenthos soorten zoals weekleppigen, slakken en kreeftachtigen blijft achter bij de verwachtingen. Er wordt gedacht aan mogelijke effecten van toxische stoffen, die ondanks een afname van de concentraties voor diverse substanties voor een flink aantal nog steeds boven de toxische risicogrenzen uitkomen (H 7.5 Toxische stoffen). De kwaliteitsverbeteringen met name op het gebied van de zuurstofcondities (H 7.2 Zuurstof) kunnen zelfs de ontwikkeling van diverse macrobenthosgemeenschappen nog eens extra tegenwerken,
omdat het zuurstofrijker worden kan zorgen voor een hogere biobeschikbaarheid van toxische stoffen die nu vanuit de bodems worden nageleverd (H.7.5 Toxische stoffen). Dat er sprake is van een afname van de OI voor de zone met sterke salinitiegradiënt is wel verontrustend. Waarschijnlijk moet de oorzaak hier ook worden gezocht in onnatuurlijke verschuivingen en fluctuaties in debieten en salinite (H.7.6.1 Zout) en/of grotere hoeveelheden gesuspendeerd materiaal (H.7.6.2 Lichtklimaat), en een mogelijke toename van de dynamiek (onder andere af te leiden uit H.4.4.4 Bathymetrie en geometrie). Een derde optie is dat groepen, die nu weinig aandacht krijgen in de evaluatie, mogelijk de rol als belangrijkste primaire consument in dit gedeelte van het systeem van de Oligochaetaen hebben overgenomen. Te denken valt aan het hyperbenthos. Ook een toegenomen predatiedruk door bijvoorbeeld vissen (zie ook H.9.5 Vissen) kan nog een rol spelen. Uiteraard zijn ook combinaties van deze factoren mogelijk. Het is in ieder geval duidelijk dat deze belangrijke ontwikkeling van een drastische afname in de benthos biomassa ten gevolge van het achteruitgaan van de Oligochaetaen populaties grote gevolgen heeft voor de hogere trofische niveaus en met name de Watervogels (H.9.3 Niet-broedvogels), en dat er onderzoek nodig is om oorzaak en gevolg in relatie tot deze ontwikkelingen te achterhalen.

Waar volgens de huidige methodiek het volgen van de ontwikkelingen in de tijd binnen zones een aardig idee geeft, is het vergelijken van de zones onderling wat lastiger, aangezien daar de mate van compleetheid van de referentiematrices een rol gaat spelen. Er van uitgaand dat de lijsten voor de verschillende zones van de Zeeschelde in dezelfde mate incompleet zijn, betekent dit dat de mesohaliene zone en de zone met een sterke salinitegradiënt het meeste achterblijven bij de gewenste situatie, en dat er meer stroomopwaarts verbeteringen zijn waar te nemen (in de zoete zone met lange verblif tijd, pas heel recentelijk). Dat de Rupel en de Durme ogenschijnlijk goed soorten lijkt meer een effect te zijn van de huidige incompleetheid van de referentielijst: de lijst bestaat voornamelijk uit de te verwachten meest algemene soorten, en bevat minder soorten die eerder in lage dichtheden zullen worden aangetroffen dan bijvoorbeeld de zones van de hoofdstrom. Voor verregaande conclusies is het noodzakelijk dat de referentielijsten nog eens kritisch worden bekeken; dat zeldzame soorten buiten de analyses worden gelaten, dat soorten die op basis van historische data en informatie van andere vergelijkbare systemen aan de lijsten worden toegevoegd, en dat de gewenste distributie van soorten over de salinitiezones nog eens onder de loep wordt genomen. De referentielijsten worden overigens ten tijde van deze rapportage geoptimaliseerd (Maris et al., in prep.).

In de zones van de Westerschelde zijn vooral nog geen noemenswaardige ontwikkelingen in de OIwaargenomen, en de mate van “intactness” van de gemeenschappen is ook vergelijkbaar tussen de zones. Door het grote aantal monsters en de lange reeks van jaren waarin monitoring heeft plaats gevonden, kunnen we rustig stellen dat de referentielijsten voor de Westerschelde zones behoorlijk compleet zullen zijn. Met name voor deze zones (maar ook voor de Zeeschelde zones) zou het waardevol zijn om in de toekomst de Intactness index te gaan berekenen zoals bedoeld; dus niet enkel als aan-/afwezigheid score, maar ook rekening houdende met de trefkans. Uiteraard is een complicerend aspect dat dan dient te worden ingeschat in hoeveel procent van de monsters soorten idealiter zouden moeten kunnen worden aangetroffen, maar met een dergelijke index wordt het wel mogelijk om eventuele effecten van kwaliteitsbeperkende aspecten (zoals exoten invasies, achteruitgang oppervlak en/of kwaliteit bepaalde ecotopen, grootschalige bodemverstorende activiteiten, etc.) te detecteren, die nu over het hoofd worden gezien omdat een groot aantal soorten ondanks mogelijke verstoring toch nog wel ergens kunnen worden gevonden. Anderzijds is ook een behoorlijk aantal soorten dusdanig zeldzaam (wat niet eens zo heel zeldzaam hoeft te zijn), maar ook kan betekenen dat monitoring door middel van het bemonsteren van relatief kleine oppervlaktes niet ideaal is om de ontwikkelingen van de populaties van deze soort te volgen), dat ze frequent gedurende de monitoring worden gemist. Door middel van een Power analyse zou men op basis van de variantie in het gemiddeld aantal waarnemingen of de dichtheden voor de soort kunnen berekenen hoeveel monsters er naar schatting nodig zijn om de soort te detecteren of ontwikkelingen voor de soort op te volgen: voor diverse soorten zal het aantal benodigde monsters in de Westerschelde het huidige monitorsprogramma ruim overtreffen.
9.6.1.5 EVALUATIE 2009

Een over de gehele range vrij constante Occurrence index (en met name het ontbreken van een afname van de index) betekent een positieve evaluatie van deze rekenparameter voor de zones van de Westerschelde. De significante toename van de Occurrence index in 2 van de 6 Vlaamse zones is positief te noemen.

Echter de afname van de index in de zone met een sterke saliniteitsgradiënt betekent een negatieve beoordeling van het Benthos met betrekking tot de Occurrence index voor de T2009.

9.6.2 EXOTEN

9.6.2.1 INLEIDING

Exoten worden gezien als een potentiële bedreiging voor het systeem. Hoewel exoten in potentie kunnen bijdragen aan de verhoging van de diversiteit is het niet ondenkbaar dat bepaalde exoten soorten een bedreiging vormen voor andere soorten middels concurrentie, predatie, overdragen ziektes of parasieten, beïnvloeding leefomgeving, etc. Met het aantreffen van meer exoten soorten zal de kans op negatieve effecten toenemen. Schattingen voor diverse systemen geven aan dat te verwachten valt dat ongeveer 1 op de 10 binnenkomende soorten zich succesvol weet te vestigen in een nieuw systeem; van die 10 % zal ongeveer 10% serieuze problemen gaan veroorzaken (Williamson, 1996); er wordt dan gesproken over invasieve exoten. Invasieve exoten hebben per definitie een negatief effect op het systeem functioneren, tenzij ze enkel grote financiële consequenties tot gevolg hebben of een bedreiging vormen voor de volksgezondheid (Keller et al., 2011). Exoten die invasief zijn zullen zich veelal in korte tijd verspreiden over substantiële delen van het systeem waarbij de populatie omvang exponentieel toeneemt (Hummel & Wijnhoven, 2013). Met exoten onder de Mollusken en eventueel onder de Decapoda kunnen, wanneer zij invasief worden, een substantiële toename van de totale exoten biomass veroorzaken, omdat het vaak om grotere soorten gaat. Het probleem is dat dergelijke exoten wel bepaalde plekken in het systeem innemen, maar niet altijd alle systeemfuncties overnemen. Zo worden exoten in eerste instantie vaak substantieel minder gegeten dan inheemse soorten waardoor zij de energie doorstroom in het voedselweb verstoren. Ook kunnen zij het systeem negatief beïnvloeden doordat ze de aard van de leefomgeving dusdanig veranderen dat de oorspronkelijke soorten daar hun niche niet meer zullen vinden (denk aan rifvormende en woekerende soorten, soorten met massale productie van fæces en pseudo-fæces), en ze eventueel zelfs geschikt biotoop kunnen creëren voor weer andere exoten. Hiermee is een toename van de exoten biomass in één of meerdere OMES zones van het Schelde-estuarium of een toename van het aantal soorten exoten (bepaald door het gemiddelde aantal soorten exoten per monster) onwenselijk.

9.6.2.2 GEBRUIKTE DATA

Met betrekking tot de Westerschelde is er voor gekozen om alle replica’s (MOVE bemonstering) samen te voegen en niet afzonderlijk in de analyses mee te nemen. Aangezien in de toekomst de bemonstering ecotop-gerelateerd plaats vindt, is er hier voor gekozen om de beschikbare monsters aan ecotopen te koppelen (zie Digitale Bijlage 9.6.1 Benthos; voor een overzicht van de ecotopen en relaties tussen de bemonsteringsjaren en ecotopenkaartjaren), en zo de gemiddelden per ecotopo naar oppervlakte ratio op te schalen naar de zones of het gehele systeem. Gezien het voorkomen van verschillen in bemonsterde oppervlaktes per monster, is er waar mogelijk omgerekend naar biomassa per vierkante meter. Bij het rekenen met aangetroffen soorten ligt dit lastiger. Echter, gezien het feit dat de bemonsterde oppervlaktes in dezelfde grootteorde liggen (geschikt voor de bemonstering van macrozoobenthos soorten) en wel voldoende groot zijn om relatief algemene soorten waar te nemen, is er hier voor gekozen om voor de berekening van het aantal exoten, deze per monster te berekenen (zonder omrekening naar oppervlaktes).

9.6.2.3 ANALYSE

Het aantal waargenomen soorten exoten is overwegend laag te noemen in vrijwel alle zones van de Zeeschelde en de zijrivieren. De VMM bemonstering geeft de langste tijdreeks; daar valt op dat gedurende lange tijd (de gehele jaren 90) geen exoten zijn waargenomen, daarna worden zo nu en dan exoten in de monsters aangetroffen. In alle zones met uitzondering van de zoete zone met korte verblijftijd gaat het om her en der een jaar waarin exoten worden gevonden en in de Durme zijn helemaal nog geen exoten aangetroffen. Het gemiddeld aantal exoten soorten per monster komt daarmee in alle zones over de geëvalueerde periode niet boven de 0.1 per monster uit. We dienen er hier echter rekening mee te houden dat het taxonomisch determinatieniveau vaak niet verder gaat dan het genus niveau, en dat daarmee een groot gedeelte van de exoten over het hoofd kan worden gezien. Ondanks dat, is het aantal soorten exoten dat gemiddeld wordt waargenomen in de monsters van de zoete zone met korte verblijftijd significant toegenomen, en komt het gemiddelde aantal in 2009 volgens de trend uit op 1.53 soorten per monster.
Op basis van VMM bemonstering

- Salinititsgradient
- Oligohaliene zone
- Durme
- Rupel
- Zoet Lang Verblijf
- Zoet Kort Verblijf

Op basis van INBO benthos bemonstering

- Mesohaliene zone
- Salinititsgradient
- Oligohaliene zone
- Durme
- Rupel
- Zoet lange verblijftijd
- Zoet korte verblijftijd

Aantal exoten soorten/monster

0 0.1 0.2 0.3 0.4 0.5
Figuur 9.6.2: Ontwikkelingen in aantallen exoten soorten per monster voor de zones van de Zeeschelde + zrijvieren op basis van a) de VMM bemonstering, b) INBO Benthos data en c) INBO Oligochaet data. Alleen significante trends zijn weergegeven.

Het aantal mogelijk te evalueren jaren op basis van de INBO Benthos monsters is beperkt tot 5. Daarbij werd voor 2008 in alle zones stroomopwaarts van de zone met sterke saliniteitsgradient geen macrobenthos aangetroffen niet behorende tot de Oligochaeten, en in de Oligohaliene zone voor 2005. In de zone met een sterke saliniteitsgradient neigt het gemiddeld aantal soorten exoten naar een toename met recentelijk weer een afname (deze afname is echter niet significant gezien het lage aantal jaren met gegevens). Hetzelfde patroon vinden we in de kleine mesohaliene zone gesitueerd in Vlaanderen (iets vergelijkbaars vinden we overigens ook aan de Nederlandse kant van de grens). In de Oligohaliene zone worden in 2005 0.5 soorten exoten aangetroffen per monster, terwijl in de jaren er na exoten ontbreken. In de stroomopwaarts gelegen zones worden in 2008 en 2009 geen exoten soorten onder het benthos waargenomen. Onder de Oligochaeten worden wel geregeld exoten soorten aangetroffen. Uiteraard zijn er geen trends af te leiden bij een databeschikbaarheid van slechts 3 jaar, maar het gemiddelde aantal exoten soorten per monster per zone varieert tussen de 0 en 0.8, waarbij het gemiddeld aantal exoten soorten het laagste is in de zrijvieren en de zoete zone met lange verblijftijd (in Durme zelfs geen enkele exoten soort aangetroffen). Het gemiddeld aantal exoten soorten ligt voor bovengenoemde zones onder de 0.1 per monster. In de overige zones is de treffkans op exoten beduidend hoger (zie tevens Digitale Bijlage 9.6.2 Benthos).
Het aantal waargenomen exoten soorten per monster neemt in de polyhaliene zone significant toe (Figuur 9.6.3). Deze toename bedraagt ongeveer 1 soort per 100 jaar (zie Digitale Bijlage 9.6.2 Benthos). In de mesohaliene zone neigt het patroon naar een toename van het aantal exoten soorten, de trend is echter niet significant. Er dient hier te worden opgemerkt dat bij een analyse van alle beschikbare data (zowel voor- als najaarsgegevens) een de significante toename in het mondingsgebied en de mesohaliene zone wordt gevonden. Het gemiddeld aantal soorten exoten is in ieder van de 3 zones van de Westerschelde steeds substantieel te noemen met 0.36, 0.35 en 0.21 soorten per monster voor het mondingsgebied, de
polyhalien zone en de mesohaliene zone respectievelijk (berekend volgens de trend voor het jaar 2009 of als gemiddelde voor de gehele onderzoekspériode indien geen significante trend is waargenomen). Dat het aantal waargenomen exoten per monster in de mesohaliene zone lager is dan in de andere 2 zones van de Westerschelde heeft mogelijk ook te maken met de van nature lagere soortenrijkdom van brakke wateren (Remane, 1934; Attrill, 2002).

De variatie in de gemiddelde totale biomassa aan exoten per vierkante meter is groot van jaar tot jaar, waardoor er geen significante veranderingen worden waargenomen in het mondingsgebied en de mesohaliene zone (Figuur 9.6.3). De gemiddelde exoten biomassa bedraagt daar 2532 en 875 mg ADW/m² respectievelijk, wat 25.2 en 18.5 % van de totale biomassa vertegenwoordigt (zie 9.6.4.1 Verklarend parameter Totale Macrobenthos biomassa). In de polyhalienne zone is sprake van een sterke toename van de biomassa aan exoten die 442 mg ADW/m² per jaar bedraagt (zie Digitale Bijlage 9.6.2 Benthos). In 2009 kwam daarmee de biomassa aan exoten volgens de bepaalde trend uit op 7575 mg ADW/m². Daar de totale biomassa in de polyhalien zone volgens de berekende trend uitkomt op 12246 mg ADW/m², betekent dit dat momenteel zo’n 62 % van de benthos biomassa uit exoten bestaat.

9.6.2.4 INTERPRETATIE

Ondanks de voorspel gebrekke databeschikbaarheid met betrekking tot exoten waarnemingen voor de Zeeschelde en de zrijvieren (dan wel een niet gedetailleerd genoeg taxonomisch determinatie niveau, dan wel een beperkt aantal jaren met bemonstering beschikbaar), wordt duidelijk dat het aantal soorten en de distributie van die exoten neigt naar een toename. We dienen hier te vermelden dat het worst case scenario met betrekking tot de exoten is gehanteerd, door iedere ‘verdachte’ soort waarvan wordt verwacht dat deze niet op eigen kracht Vlaanderen en Nederland heeft kunnen bereiken aan te merken als exoot. Zo wordt bijvoorbeeld hier ook de Strandgaper (Mysa arenaria) als exoot aangemerkt, terwijl deze waarschijnlijk reeds in de 13e eeuw Europa vanuit Noord-Amerika heeft weten te bereiken; een dusdanig lange periode dat menigeen het niet meer als een exoot beschouwt. Voor andere soorten zoals Tubificoides heterochaetus is nog de vraag of de soort alloctoon dan wel autoctoon is (Wolff, 2005; J. Speybroeck, persoonlijke mededeling). Met betrekking tot de Oligochaet fauna kan dit consequenties hebben daar het aantal waargenomen exoten soorten beperkt is, en T. heterochaetus tot de algemeen voorkomende soorten behoort. Met betrekking tot de macrobenthos soorten en het totale beeld (alle benthos soorten inclusief de Oligochaeten) is het effect van een soort meer of minder als exoot aangemerkt minimaal, omdat een behoorlijk aantal exoten soorten wordt waargenomen waarbij over de meest algemeen voorkomende soorten geen twijfel bestaat of het om exoten gaat. In de zoete zone met korte verblijftijd is de waargenomen toename onderdaad significant te noemen. De sterke opkomst van exoten is een mondiaal probleem door de sterke toename van het aantal mogelijkheden voor organismen om zich over de grenzen van hun oorspronkelijke verspreidingsgebied te verspreiden (i.e. mondialisering en toename van vaarwegewijziging met potentiële verspreiding via ballast water en aangroei, toename import van biota van elders voor aquacultuur, aquarium handel en aas voor visserij, grotere connectiviteit tussen stroomgebieden door aanleg kanalen) (Minchin & Gollasch, 2002). Met name in de West-Europese wateren zijn overal toenemende trends voor exoten waar te nemen (Wijnhoven & Hummel, 2009), en veel van deze wateren vertonen een grote connectiviteit met het Schelde-estuarium. Naast de te verwachten binnenkomst van gebiedsvreemde organismen op dagelijkse basis, speelt de mogelijkheid tot overleving en voortplanting in het systeem een grote rol. De vatbaarheid van systemen voor exoten en exoten invasies wordt vaak gerelateerd aan de mate van verstoring van het systeem (Byers, 2002), de mate van intact zijn van de aanwezige gemeenschappen (eventuele open niches; Elton, 1958), en de aanwezigheid van nieuwe substraten (Tyrell & Byers, 2007). Nieuwe substraten (en dan met name harde substraten) zijn alom vertegenwoordigd in het Schelde-estuarium. De Occurrence Index (H 9.6.1) heeft al laten zien dat de benthos gemeenschappen met name in de Zeestad soortenarm zijn en in verandering; wat volop mogelijkheden geeft voor nieuwe soorten. Onnatuurlijke variaties in omstandigheden, door bijv. regulatie
aan de boundaries met effecten op debieten, stroomsnelheden en salinité of directe veranderingen in het systeem zoals baggerwerkzaamheden en vooroorver versterkingen (zie onder andere H 4.4.4 Bathymetrie en geometrie, H 5.2.3 Onderhoudsbaggervolume, H 7.6.1 Zout) geven mogelijkheden voor exoten om zich succesvol te vestigen en te expanderen. Uiteraard geldt dit ook voor de Westerschelde, hoewel het systeem hier door zijn omvang en de hoge dynamiek in zijn geheel mogelijk wat robuuster is, maar op lokaal niveau zijn er volop mogelijkheden voor exoten. In de Zeeschelde komt daar nog eens bij dat toxic stoffen (H 7.5 Toxische stoffen) waarschijnlijk nog een groot effect hebben op de bodemdiergemeenschappen (zie tevens H 9.6.1 Occurrence index), wat kansen biedt voor relatief tolerantere soorten waaronder een aantal potentieel succesvolle invasieve soorten. Anderzijds verbeteren de condities geleidelijk (H7.2 Zuurstoof), waar ook reeds aanwezige exoten van kunnen profiteren (Wijnhoven & Hummel, 2009; Hummel et al., 2010). Een andere potentieel belangrijke factor is de geleidelijke opwarming van het systeem (H7.6.3 Temperatuur). Het effect van een stijgende temperatuur op de inheemse soorten (en het bereiken van hun tolerantiegrenzen) is wellicht nog niet zo heel groot (meest problematisch is dan veelal het zuurstofgehalte, wat juist een positieve ontwikkeling doormaakt), of het moet zijn dat voortplanting en voedselvoorziening scheef gaan lopen. Het systeem wordt echter wel steeds geschikter voor exoten met hun oorsprong in warmere gebieden, die door de veranderingen nu misschien net wel de winter kunnen overleven, of tot voortplanting kunnen komen. Het feit dat er nog geen toename van exoten wordt waargenomen in de brakke delen van de Zeeschelde heeft wellicht nog vooral te maken met het relatief soortenarm zijn van deze zone en de sowieso lage dichtheden die er momenteel worden aangetroffen. Bovengenoemde aspecten spelen allen ook in meer of mindere mate in de Westerschelde, maar de bufferende werking door de grootte van het systeem en de invloed van de zee (mate van open- of geslotenheid van het systeem met betrekking tot de water uitwisseling en vervanging; Guelorget & Pertuisot, 1989) kunnen een positieve uitwerking hebben waardoor exoten vooralsnog minder dominant zijn dan in andere (veel gesloten) systemen (Wijnhoven & Hummel, 2009). Door de grote aanvoer van gebiedsvreemde soorten en de alom vertegenwoordigde veranderingen en vestigingsmogelijkheden wordt er een toename in het aantal exoten soorten waargenomen; deze is significant in de polyhaliene zone. In deze zone neemt ook de biomassa significant toe, wat vrijwel volledig op het conto van *Ensis directus* (de Amerikaanse zwaardschede) kan worden geschreven. Met name in de jaren 2006-2007 was er sprake van een enorme piek in de biomassa, die overigens overwegend juveniele exemplaren betreft. Uitgaande van het klassieke patroon die exoten populaties in een nieuwe omgeving vertonen, met een exponentiële toename na een initiële periode met lage dichtheden gedurende een aantal jaren (Hummel en Wijnhoven, 2013), is het mogelijk dat de dichtheden en biomassa nu weer wat zijn afgenomen en de komende jaren minder hoog zullen zijn. Anderzijds is het het bekend fenomeen dat voor (bank-vormende) schildpadden jaren met succesvolle broedval en vestiging afwisselen met jaren zonder succesvolle broedval, waarbij het laatstgenoemde zich vaak diverse jaren achtereen kan voordoen (zoals waargenomen voor de kokkel (H 10.2.4 Filterfunctie), of voor *E. directus* in andere systemen (De Mesel et al., 2011). Het lijkt er op dat de wisselende zoutgehalten en met name de lage saliniteit er voor zorgen dat er vrijwel alleen juvenielen van *E. directus* worden aangetroffen in de Westerschelde (voor de Japanse Oester *Crassostrea gigas* zien we een vergelijkbaar patroon) en zodoende wordt voorkomen dat er uitgestrekte banken van volwassen *E. directus* worden gevormd. Het valt te verwachten dat dat in de toekomst niet zal veranderen.

EVALUATIE 2009

Een toename van de exoten biomassa of het gemiddeld aantal soorten exoten per monster zoals aangetroffen in de polyhaliene zone van de Westerschelde en de zoete zone met korte verblijftijd van de Zeeschelde (enkel aantal exoten soorten) is ongewenst, waarmee de evaluatie van het benthos met betrekking tot de exoten negatief wordt beoordeeld. Het problematische van exoten met betrekking tot het systeem functioneren is dat zij in potentie concurreren met inheemse soorten, of door middel van predatie en/of het overbrengen van ziektes en/of het substantieel veranderen van het milieu een negatief effect
kunnen hebben op de inheemse gemeenschappen. Dit zou op zich nog niet zo'n heel groot probleem zijn, ware het niet dat de exoten niet alle ecosystem functies van die inheemse soorten noodzakelijkerwijs overnemen. Vaak worden de exoten, ten minste gedurende de eerste jaren, veel minder gegeten dan andere soorten, wat de doorstroom van energie in het voedselweb kan belemmeren en nog eens een extra druk op de inheemse soorten kan geven. Wanneer exoten de aard van hun omgeving veranderen kan dit het op grote schaal verduisteren van de inheemse gemeenschappen betekenen. Denk aan massaal voorkomende rif-vormende soorten die zacht substraat milieu omvormen tot hard substraat milieu, of exoten die grote oppervlaktes inclusief de aanwezige gemeenschappen overwoekeren, of exoten die met de aanwezige aantallen grote hoeveelheden faeces en pseudo-faeces produceren en daarmee het bodemmilieu drastisch veranderen.

9.6.3 SLEUTELSOORTEN
Er zijn vooral nog geen sleutelsoorten gedefinieerd, hoewel de Mossel en de Kokkel een belangrijke rol in de evaluatie van het Ecologisch functioneren innemen (H 10.2.4 Filterfunctie). Daarmee zouden die soorten kunnen worden beschouwd als sleutelsoorten.

9.6.4 VERKLARENDE PARAMETERS

9.6.4.1 TOTALE MACROBENTHOS BIOMASSA
Macrobenthos biomassa gegevens zijn voor de Zeeschelde + zijrivieren alleen beschikbaar voor een 5-tal jaren (1999, 2002, 2005, 2008 en 2009) waarbij overigens ook niet altijd gegevens beschikbaar zijn voor iedere fysiotoop x zone combinatie. Om die reden wordt hier geen ontwikkeling in de biomassa per zone gepresenteerd. Wel wordt de biomassa (namelijk 30 ton asvrijdrooggewicht aan benthos gewenst voor het gehele Vlaamse deel van het estuarium en 2 ton ADW per OMES zone) geëvalueerd in H 10.2.2.2 als onderdeel van de evaluatie ‘Ecologisch functioneren, waarbij via interpolatie de hiatus worden ingevuld. Daaruit blijkt wel dat de totale biomassa voor de Zeeschelde + zijrivieren sinds het begin van deze eeuw sterk is afgenomen. De grootste gemiddelde biomassa per m² was in het verleden vooral te vinden in de oligohaline zone en de Rupel (± 16 g ADW/m²), momenteel liggen de gemiddelde biomassa’s dichter bij elkaar, variërend tussen de 0 en 2 g ADW/m² (zie Digitale Bijlage 10.2.2.2 30 ton ADW benthos).
Er zijn geen significante veranderingen in de totale macrobenthos biomassav van het mondingsgebied en de mesohaliene zone waargenomen. In de polyhaliene zone neemt de totale biomassav echter wel significant toe met gemiddeld 265 mg ADW/m² per jaar (Figuur 9.6.4). Dit wordt voornamelijk veroorzaakt door een significante toename in de biomassav aan exoten. De totale gemiddelde biomassav voor de onderzoekspériode (1992-2009) blijkt ook substantieel lager te zijn in de mesohaliene zone (gemiddeld 4735 mg ADW/m²) dan in het mondingsgebied (gemiddeld 10050 mg ADW/m²) en de polyhaliene zone (waar volgens de trend op T2009 zo'n 12246 mg ADW/m² kon worden aangetroffen; zie tevens Digitale Bijlage 9.6.2 Benthos).

9.6.5 EVALUATIE BENTHOS

De evaluatie van het benthos geeft aan dat er verspreid over het systeem zich problemen voordoen, maar dat het niet zo is dat het over de gehele lijn de verkeerde kant op gaat. De ontwikkelingen met betrekking tot de exoten zijn zorgelijk te noemen, omdat een toename in met name de biomassav (zoals waargenomen in de polyhaliene zone, waar de exoten zoals in de gehele Westerschelde ook nog eens een substantieel deel van de biomassav uitmaken) een groot effect kan hebben op onderdelen van systeem functioneren, zoals een goede energie doorvoer in het voedselweb en effecten op inheemse soorten. In dezelfde zone en in de zoete zone met een korte verblijftijd nemen ook nog het aantal soorten toene. Dit betekent vooral dat verschillende exoten zich aan het uitbreiden zijn en algemeen voorkomend genoemd kunnen worden, en daarmee het risico van effecten op de inheemse gemeenschappen toeneemt. Toennemende exoten aantallen en biomassav duiden over het algemeen ook op een systeem waar frequent (lokale) verstoringen plaats vinden. Anderzijds kan het ook zo zijn dat momenteel exoten in de bovenstroomse delen juist de eerste soorten zijn die weten te profiteren van de verbeterende waterkwaliteit, met name met betrekking tot de zuurstof condities.

Een significante afname van het aantal waargenomen soorten in de toch al niet zo soortenrijke zone met een sterke saliniteitgradiënt kan duiden op een toename van de dynamiek, of onnatuurlijke fluctuaties in
debieten en salinité. De hierboven opgesomde ontwikkelingen zorgen ervoor dat het onderdeel Benthos binnen de evaluatie van Flora & fauna, negatief wordt geëvalueerd.

Tabel 9.7.1: Overzicht evaluatie Macrobenthos.

<table>
<thead>
<tr>
<th>Benthos evaluatie</th>
<th>Rekenparameters</th>
<th>Occurrence Intactness</th>
<th>Aantal soorten exoten (monster⁻¹)</th>
<th>Exoten biomassa (mg ADW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondingsgebied</td>
<td>T2009 trend evaluatie</td>
<td>T2009 trend evaluatie</td>
<td>T2009 trend evaluatie</td>
<td></td>
</tr>
<tr>
<td>Polyhaliene zone</td>
<td>33.7 + 0.36 + 2532 +</td>
<td>32.0 + 0.35 + 7575 +</td>
<td>33.5 + 0.21 +</td>
<td></td>
</tr>
<tr>
<td>Mesohaliene zone</td>
<td>23.3 + 0.078* +</td>
<td>48.6 + 0.019* +</td>
<td>50.0 + 0.053* +</td>
<td></td>
</tr>
<tr>
<td>Saliniteitsgradiënt</td>
<td>42.3 + 0.053* +</td>
<td>40.3 + 0.094* +</td>
<td>40.3 + 1.53* +</td>
<td></td>
</tr>
<tr>
<td>Oligohaliene zone</td>
<td>21.7 + 0.094* +</td>
<td>40.3 + 1.53* +</td>
<td>40.3 + 1.53* +</td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>42.3 + 0.053* +</td>
<td>40.3 + 1.53* +</td>
<td>40.3 + 1.53* +</td>
<td></td>
</tr>
<tr>
<td>Rupel</td>
<td>21.7 + 0.094* +</td>
<td>40.3 + 1.53* +</td>
<td>40.3 + 1.53* +</td>
<td></td>
</tr>
<tr>
<td>Zoet Lang Verblijf</td>
<td>21.7 + 0.094* +</td>
<td>40.3 + 1.53* +</td>
<td>40.3 + 1.53* +</td>
<td></td>
</tr>
<tr>
<td>Zoet Kort Verblijf</td>
<td>21.7 + 0.094* +</td>
<td>40.3 + 1.53* +</td>
<td>40.3 + 1.53* +</td>
<td></td>
</tr>
</tbody>
</table>

*Op basis van VMM bemonstering.

9.7 FYTOPLANKTON

9.7.1 INTACTNESS

9.7.1.1 INLEIDING

De diversiteit van de fytoplanktongemeenschappen wordt beoordeeld aan de hand van een analyse van de Occurrence index (OI) waarbij de samenstelling van de gemeenschappen wordt vergeleken met een referentiegemeenschap. Het fytoplankton vervult een belangrijke rol met betrekking tot de primaire productie in het systeem en is als het ware de basis van het voedselweb. Daarbij is een diverse gemeenschap essentieel, daar diverse consumenten specifiek leven van bepaalde fytoplankton fracties, waarmee verschuivingen in de samenstelling van het fytoplankton grote consequenties kunnen hebben voor het functioneren van het voedselweb. Anderzijds zullen de fytoplanktongemeenschappen de diversiteit en kwaliteit aan aanwezige niches in het systeem reflecteren. Daarbij zijn de gemeenschappen een belangrijke indicatie voor de systeemkwaliteit van bepaalde zones daar de gemeenschappen zich over het algemeen met de waterkolom stroomafwaarts zullen bewegen (tenzij ze via ‘tidal pumping’ in bepaalde delen van het systeem ophopen en daar over het algemeen problemen kunnen veroorzaken), waarbij een ieder van de soorten zo zijn toleranties heeft ten opzichte van omgevingsfactoren. De fytoplanktongemeenschappen spelen ook een grote rol met betrekking tot het aan te treffen lichtklimaat (hoewel de autotrofe soorten ook juist weer afhankelijk zijn van het heersende lichtklimaat). Fytoplankton kan ook de zuurstofcondities beïnvloeden, door productie en consumptie van zuurstof, wat vooral problematisch kan zijn bij massale sterfte. Er zijn uiteraard ook sterke wederzijdse relaties met de nutriënt gehalten en verhoudingen (zie ook H 7.4 Algenbloei).
9.7.1.2 GEBRUIKTE DATA

9.7.1.3 ANALYSE

De Occurrence index (OI) volgens de ‘Buckland Arithmetic’ methode is berekend ten opzichte van aangeleverde referentie-matrices. De referentie-matrices worden gevormd door alle per zone reeds in het verleden aangetroffen soorten, aangevuld met soorten die op basis van hun voorkomen in andere zones ook verwacht zouden kunnen worden. De aan- of afwezigheid van soorten wordt geëvalueerd waarbij exoten buiten de analyses worden gehouden. Enkel jaren met beschikbare gegevens voor tenminste 9 verschillende maanden (dus in totaal ook minimaal 9 monsters) zijn in de evaluatie van de Occurrence index meegenomen. Afwijkend van de methodiek is er hier voor gekozen om de evaluatie te baseren op de afzonderlijke jaren (in plaats van 6-jaarlijkse gemiddelden), om het aantal metingen van OI in de tijd te vergroten (zo dat ook daadwerkelijk een trend kan worden bepaald) en de vergelijkbaarheid van de totstandkoming van de OI te maximaliseren (voor details en gehanteerde referentielijsten zie Digitale Bijlage 9.7.1 Fytoplankton).

Vijf van de 6 zones in het Vlaamse gedeelte van het Schelde estuarium vertonen min of meer een vergelijkbaar patroon in de ontwikkeling van de fytoplankton gemeenschappen (Figuur 9.7.1). De OI is voor alle zones vrij laag te noemen, en blijft min of meer constant in de tijd; er is dan ook geen significante verandering waargenomen voor de periode met voldoende databeschikbaarheid. Voor de zee zone met lange verblijftijd neigen de resultaten naar een lichte toename van de OI (p = 0.051; zie tevens Digitale bijlage 9.7.2 Fytoplankton). Wel lijkt het er op dat met name de jaren 1996, 2006 en 2007 een lagere waarde voor OI geven dan de overige jaren, wat er op duidt dat de diversiteit in die jaren lager is. Aangezien het determinatienniveau in het Vlaamse gedeelte van het Schelde estuarium dusdanig is dat er geen exoten kunnen worden onderscheiden, kan er worden gesteld dat de totale soortenrijkdom in de genoemde jaren lager is. Alleen voor de zone met een sterke salinitiegradiënt kan worden gesteld dat de OI behoorlijk achter blijft bij die van de overige zones. De waargenomen waarde voor de OI is uiteraard afhankelijk van de gebruikte referentie matrix, maar gezien het feit dat de bemosteringsintensiteit niet substantieel verschilt van de overige zones, en de referentielijsten op dezelfde manier zijn samengesteld, kunnen we concluderen dat de soortenrijkdom in deze zone werkelijk meer achter blijft dan in de overige zones. De gemiddelde OI voor de zone met een sterke salinitiegradiënt is 18 % terwijl die in de overige Vlaamse zones tussen de 30 en 37 % uitkomt (Digitale bijlage 9.7.2 Fytoplankton).
Figuur 9.7.1: Ontwikkeling in Occurrence index (OI) volgens de Buckland arithmetic methode op basis van de aan-/afwezigheid van taxa onder het fytoplankton per zone voor het Vlaamse deel van het Schelde-estuarium (a) en de Westerschelde (b). Vanwege een trendbreuk in de gegevens van de Westerschelde van 1999 naar 2000, veroorzaakt door de overstap naar een ander analyserend lab met betrekking tot het uitzoeken van de monsters, zijn de periodes voor en na de trendbreuk afzonderlijk geanalyseerd. Alleen significante trends zijn weergegeven.

Bij analyse van de OI index voor de 3 zones van de Westerschelde dient rekening te worden gehouden met een trendbreuk ten gevolge van een overstap naar een ander analyserend laboratorium van 1999 naar 2000 (Vroom et al., 2012), die overigens ook duidelijk in de resultaten naar voren komt (Figuur 9.7.1). De afgelopen 10 jaar is de OI voor de locaties Hansweert geul en Vlissingen boei SSVH (representatief voor de polyhaline zone en het mondingsgebied respectievelijk) min of meer constant gebleven. De gemiddelde waarde is voor de twee stations respectievelijk 30.9 en 31.9 % (Digitale bijlage 9.7.2), waarbij de laagste waarde te Vlissingen in 2005 werd gehaald en te Hansweert in 2009. De OI is niet direct te vergelijken met de jaren 90 omdat er substantiële verschillen in de determinatie zitten die doorwerken in de waarde voor de OI. Wat wel positief te noemen is dat de significante negatieve trends gevonden in de jaren 90 in beide
zones niet terugkeren in de afgelopen 10 jaar. Voor de mesohaliene zone, vertegenwoordigd door station Schaar van Ouden Doel, geldt het tegenovergestelde; waar er gedurende de jaren 90 geen significant dalende trend werd waargenomen, neemt de afgelopen 10 jaar de Ol wel significant af met 0.85 % per jaar (Digitale bijlage 9.7.2 Fytoplankton). De volgens de trend berekende waarde van de Ol komt op 2009 uit op 22.4 %, wat ook nog eens lager is dan de waargenomen waarden voor de andere twee saliniteitszones in de Westerschelde.

9.7.1.4 INTERPRETATIE

Er dient eerst te worden opgemerkt dat de waarden van de Ol voor de Vlaamse en de Nederlandse zones onderling niet eenvoudig te vergelijken zijn vanwege verschillen in bemonsteringsintensiteit, determinatieniveaus en het wel of niet kunnen identificeren van exoten. Het is echter opvallend dat in Vlaanderen de Ol index lijkt af te nemen van bovenstrooms naar benedenstrooms en deze vervolgens in het Nederlandse deel weer toeneemt. Er is dus mogelijk sprake van een doorlopend patroon voor het gehele estuarium volgens de paraboolvorm met een minimum rond de grens (zone met sterke saliniteitsgraadiënt en mesohaliene zone). De compleetheet van de gemeenschappen lijkt dus stroomafwaarts in het Schelde estuarium af te nemen, om vervolgens met de mate van de invloed van de zee weer toe te nemen. Enerzijds kan men een afname in de soortenrijkdom verwachten wanneer de gradiënten en schommelingen in bijvoorbeeld zoutgehalte afnemen, maar daar de Ol uitgaat van een referentiegemeenschap per zone zou iets dergelijks niet zichtbaar moeten zijn in de resultaten van de Ol. Ondanks dat er geen significante afname wordt gedetecteerd in de zone met sterke saliniteitsgraadiënt (waarschijnlijk meer het resultaat van een beperkte tijdreeks), lijkt het er op dat de fluctuuties in zoutgehalte juist sterker zijn geworden in het middendeel van het estuarium (met name in de zone met een sterke saliniteitsgraadiënt; zie H7.6.1 Zoutgehalte), wat voor diverse soorten kan betekenen dat de omstandigheden ongezichter zijn geworden. In de aangrenzende mesohaliene zone wordt de afname in de Ol wel significant gedetecteerd. Verschillende oorzaken kunnen mogelijk deze verarming in het middendeel van het estuarium verklaren. Een toename van de hydrodynamiek en een versnelde doorstroom van de waterkolom kan er voor zorgen dat de verblijftijd van bepaalde soorten te kort wordt (H7.6.1 Zoutgehalte). Ook een toename of verschuiving van de turbiditeit in het systeem (H7.6.2 Lichtlimitatie), met name in deze zones, kan er voor zorgen dat de gemeenschappen verarmen. Daarnaast kan ook nog de geleidelijke opwarming van het systeem (H7.6.3 Temperatuur) zorgen voor een verarming van de fytoplanktongemeenschappen, of een situatie veroorzaken waarin de soortensamenstelling zich verwijdt van de referentiecondities. Andere aspecten zoals recentelijk verbeterde zuurstofcondities (H7.2 Zuurstof) beginnen mogelijk te leiden tot een toename van de Ol in met name de bovenstroomse delen, maar zijn nog van te recente datum om al tot significante verbeteringen te leiden. Effecten van verlaagde nutriëntgehaltes (H7.3 Nutriënten) zijn in de Vlaamse zones niet zichtbaar (wellicht ook door de beperkte tijdreeks die beschikbaar is), maar kunnen eventueel wel voor het verdwijnen van de afnemende trend in de Ol in de meest zeewaartse delen van het estuarium hebben gezorgd. Verder kan ook een verandering van de begrazingsdruk en dan met name de opkomst van het zoöplankton bovenstrooms (H9.8 Zoöplankton) en de toename van de filtercapaciteit benedenstrooms (H9.6 Benthos; H10.2.4 Filterfunctie) invloed hebben op de Ol, hoewel niet direct een negatief effect van begrazing wordt verwacht.

9.7.1.5 EVALUATIE 2009

De resultaten leiden tot een negatieve beoordeling van de mesohaliene zone op basis van de Occurrence index. De overige zones worden positief beoordeeld omdat geen significante afnames worden geconstateerd en er geen minimum waarde voor de Ol is vastgesteld. Echter de polyhaliene zone en het mondingsgebied dienen kritisch te worden bekeken (overige indicatoren) aangezien er recentelijk wel
sprake is van een dalende trend, en de zone met sterke saliniteitsgradiënt is zorgwekkend vanwege de substantieel lagere waarde voor de OI in die zone in vergelijking tot de overige Zeeschelde saliniteitszones.

9.7.2 EXOTEN

9.7.2.1 INLEIDING

Hoewel exoten in potentie kunnen bijdragen aan de biodiversiteit van een systeem, is een toename van het aantal soorten of de biomassa ook zorgelijk te noemen, omdat in het eerste geval de kans op de binnenkomst van soorten met negatieve effecten (zoals toxische soorten en potentiële plaagalgene) toe neemt, en met name in het tweede geval risico’s voor het systeem functioneren kunnen ontstaan. Zo bestaat de kans dat de nieuwkomers inheemse soorten verdringen, ze minder worden geconsumeerd dan de inheemse tegenhangers wat de doorstroom van energie in het voedselweb blokkeert, of dat ze dusdanig floreren (en ook weer massaal afsterven) dat ze grote effecten hebben op de abiotiek in het systeem (zoals zuurstofcondities en lichtklimaat). Dit laatste proces vereist een hoge biomassa en zal daarom in de Westerschelde niet van belang zijn. Overigens is de opkomst van exoten vaak een indicatie van een systeem in onbalans, waarbij er door verstoorde omstandigheden juist ruimte is voor dergelijke soorten om zich succesvol te vestigen en te expanderen.

9.7.2.2 GEBRUIKTE DATA

Voor de gebruikte data wordt hier verwezen naar H 9.7.1.2. Uiteraard dient met betrekking tot de Westerschelde data ook hier rekening te worden gehouden met de gedetecteerde trendbreuk ten gevolge van een verandering van het analyserende lab. Wellicht doordat het determinatienniveau voor de Vlaamse dataset veelal slechts tot het genus niveau reikt, zijn er geen exoten aangetroffen. Voor de onderscheiden exoten voor de zones van de Westerschelde wordt verwezen naar de Digitale bijlage 9.7.1 Fytoplanктон.

9.7.2.3 ANALYSE

Voor het Vlaamse gedeelte van het Schelde-estuarium is een evaluatie van deze rekenparameter niet mogelijk daar de determinatie van individuen meestal niet tot op het soortniveau reikt en er hierdoor geen exoten zijn gedetermineerd.

Het aantal aangetroffen exoten soorten per liter in de Westerschelde varieert van 0 tot 4 per liter voor de gehele gecentraliseerde periode (1990-2009; Figuur 9.7.2). In het moningsgebied (station Vlissingen boei SSVH) en de polyhaliene zone (station Hansweert geul) is er geen significante verandering in het gemiddeld aantal waargenomen exoten soorten per monster (zowel voor als na de verandering van het analyserend lab). Het gemiddelde aantal aan te treffen soorten exoten per liter bedraagt voor de periode 2000-2009 (T2009): 0.73 ± 0.87 in het moningsgebied en 0.41 ± 0.64 in de polyhaliene zone, waarbij het aantal aangetroffen exoten soorten de afgelopen 10 jaar ook niet hoger is geweest dan 2 per liter (Digitale bijlage 9.7.2 Fytoplanктон). In de mesohaliene zone is sinds 1990 het aantal exoten per monster nooit hoger geweest dan 2, en de afgelopen 10 jaar niet meer hoger dan 1 per liter. Van 1990 tot en met 1999 kon het gemiddeld aantal soorten exoten nog constant genoemd worden, sinds 2000 is er sprake van een significante afname volgens S:\exoten\=-0.0421\(\text{jaar}\)+84.56. Hiermee heeft het gemiddeld aantal exoten soorten per liter volgens de trend inmiddels de 0 bereikt, waarbij de laatste exoten in 2007 in de monsters zijn waargenomen.
Figuur 9.7.2: Ontwikkelingen in aantallen exoten onder het fytoplankton per liter (a, c en e) en exoten dichtheden per liter (b, d, en f) voor 3 stations in de Westerschelde (Ouden Doel; representatief voor de Mesohaliene zone (a, b), Hansweert; representatief voor de Polyhaliene zone (c, d), Vlissingen; representatief voor het Mondingsgebied (e, f)). Vanwege een verandering van analyserend lab van 1999 naar 2000 is er onderscheid gemaakt in de periodes 1990-1999 en 2000-2009. Significante afnames in aantal exoten soorten (Ouden Doel 2000-2009) en exoten dichtheden (Vlissingen 2000-2009 en Ouden Doel 2000-2009) zijn weergegeven.

De totale exoten dichtheden in cellen per liter laten grotendeels het zelfde patroon zien als het gemiddeld aantal exoten soorten per liter; geen significante veranderingen voor en na de trendbreuk (1999-2000) voor het mondingsgebied en de polyhaliene zone en een significante afname voor de periode 2000-2009 in de mesohaliene zone (Figuur 9.7.2). Uitzondering is hier dat ook in het mondingsgebied gedurende de laatste
10 jaar het aantal exoten cellen per liter significant is afgenomen met zo'n 251 cellen per jaar (Digitale bijlage 9.7.2 Fytoplankton). Hiermee kwam het gemiddelde aantal exoten cellen in 2009 uit op 910 per liter in het mondingsgebied. In de mesohaleni zone bedroeg de gemiddelde afname zo'n 968 cellen per jaar waarmee het aantal exoten cellen dat kan worden aangetroffen inmiddels (T2009) de 0 heeft bereikt.

9.7.2.4 INTERPRETATIE

Het is opvallend te noemen dat daar waar het aantal exoten en de biomassa voor andere groepen zoals het benthos (H 9.6) toe neemt, deze voor het fytoplankton voor de geanalyseerde Westerschelde salinititeit zones in een aantal gevallen (mesohaleni zone, aantal soorten en cellendichtheden; mondingsgebied, cellendichtheden) juist afneemt. Dit zou kunnen betekenen dat die soorten inderdaad al langere tijd in de Westerschelde te vinden zijn, dat zij de expansie fase reeds enige tijd gepasseerd zijn, en dat er nu eerder sprake is van een meer gebalanceerde co-existentie tussen de exoten en de inheemse soorten en dat de exoten populaties vergelijkbare fluctuaties vertonen als de populaties van de inheemse soorten. De ontwikkelingen in de exoten kunnen echter niet los worden gezien van de waargenomen algemene afname in de fytoplankton cellen dichtheden in de Westerschelde (H9.7.4.1 Totale fytoplankton biomassa en/of aantal fytoplankton cellen). Een afname in het fytoplankton kan te maken hebben met een verslechtering van het lichtklimaat of een verhoogde doorstroom (korte verblijftijd) waardoor de soorten niet de gelegenheid krijgen om tot volledige bloei te komen. Iets dergelijks zou voor de Westerschelde dan met name kunnen worden verwacht in mesohaleni zone (zoals ook geobserveerd), maar het is dan echter opvallend dat er juist een significant te name wordt waargenomen in de zone met een sterke salinitegradiënt. Om die reden lijkt de oorzaak eerder in de begrazingsdruk te liggen, die met name in de Westerschelde substantieel is toegenomen. Dan hebben we het over een toename in de biomassa van het benthos en filterende twoepleggen in het bijzonder (H9.6 Benthos; H10.2.4 Filterfuncie). Het lijkt er dan op dat de ene exoot (Ensis directus) die grotendeels de benthos biomassa gedurende de laatste jaren bepaald) de aantallen van de andere exoten (de soorten van het fytoplankton) reduceert. Dit zou ook verklaren waarom het patroon niet zichtbaar is in de zones van de Zeeschelde en de zijrivieren; daar is de benthos biomassa juist drastisch afgenomen en spelen filterende twoepleggen geen rol.
We dienen met betrekking tot bovengenoemd patroon wel een slag om de arm te houden, omdat een afname in de aantallen fytoplankton cellen nog geen afname in de fytoplankton biomassa hoeft te betekenen; integendeel, het kan duiden op een verschuiving van talrijke kleine soorten naar iets minder talrijke grote soorten. In dit kader zou een evaluatie van enkele functionele groepen als ‘sleutelgroepen’ een welkome aanvulling zijn.

9.7.2.5 EVALUATIE 2009

Met het constant blijven dan wel afnemen van het aantal exoten (zowel het gemiddeld aantal soorten en de cellen dichtheden) worden de ontwikkelingen met betrekking tot deze twee rekenparameters voor de 3 zones in de Westerschelde positief beoordeeld. Een evaluatie van de ontwikkelingen in de Zeeschelde + zijrivieren is helaas niet mogelijk.

9.7.3 SLEUTELSOORTEN

Voor eventuele overige sleutelsoorten/-groepen is nog geen lijst beschikbaar. Echter, als sleutelsoorten zouden Phaeocystis en cyanobacteriën kunnen worden genoemd, die als rekenparameters functioneren in het Hoofdstuk 7 Waterkwaliteit (respectievelijk 7.4.2 en 7.4.3). Beiden worden nu uitgewerkt als verklarende parameters (respectievelijk 9.7.4.2 en 9.7.4.3).
9.7.4 VERKLARENDE PARAMETERS

9.7.4.1 TOTALE FYTOPLANKTON BIOMASSA EN/OF AANTAL FYTOPLANKTON CELLEN

Voor de Westerschelde zijn de gemiddelde totale aantallen fytoplankton cellen per liter en de ontwikkelingen daar in opgevolgd voor de Zeeschelde + zijrivieren. Er is er hier voor gekozen om geen omrekeningen (met inbreng van extra onzekerheden) uit te voeren om de resultaten met betrekking tot de ontwikkelingen in het totaal aan fytoplankton voor de zones in Vlaanderen en Nederland op elkaar af te stemmen. De originele meetwaarden zullen de meest betrouwbare resultaten opleveren met betrekking tot ontwikkelingen en niveaus per zone, met als enige nadeel dat de niveaus aan beide kanten van grens moeilijk te vergelijken zijn. Zoals uit de effecten van het overstappen naar een ander analyserend lab van 1999 naar 2000 voor de Westerschelde laten zien (er is een sterke trendbreuk zichtbaar), is het sowieso moeilijk om de niveaus van de zones te vergelijken wanneer de monsters door verschillende laboratoria zijn geanalyseerd.

Voor Vlaanderen, waar het totaal aan fytoplankton wordt gemonitord als de aanwezige biomassa aan organisch koolstof per liter, is voor de jaren met gegevens (1996 + 2002-2009 voor de 4 zones van de hoofdkoop van de ZeeSchelde en 2002-2009 voor de Rupel en 2002 + 2006-2009 voor de Durme) overal een seizoenaaliteit waar te nemen (significante cyclische trend met een periode van een jaar). De totale fytoplankton biomassa neemt in de zone met een sterke saliniteitgradiënt, de Rupel en de zoete zone met korte verblijf tijd significant toe (Figuur 9.7.3, voor details zie Digitale bijlage 9.7.2 Fytoplankton). Deze toename behelst 77 μg C/liter per jaar voor de Rupel, 70 μg C/liter per jaar voor de zoete zone met korte verblijf tijd en 21 μg C/liter per jaar voor de zone met sterke saliniteit gradiënt. Het totaal aan aanwezig fytoplankton varieert echter behoorlijk tussen de zones onderling en neemt stroomafwaarts gaande af. In 2009 bedraagt de hoogste gemiddelde biomassa in de zoete zone met korte verblijf tijd, 1318 μg C/liter, Stroomafwaarts bedraagt de gemiddelde biomassa in de zoete zone met lange verblijf tijd 1009 μg C/liter, in de Durme 833 μg C/liter, in de Rupel 477 μg C/liter, in de oligohaliene zone 377 μg C/liter en in de zone met sterke saliniteitgradiënt 195 μg C/liter.
Figuur 9.7.3: Ontwikkelingen in totale fytoplanктон biomass in μg C per liter voor de zones van de Zeeschelde en de zijrivieren; a) Zoete zone met korte verblijftijd, b) Zoete zone met lange verblijftijd, c) Durme, d) Rupel, e) Oligohaline zone, f) Zone met sterke salinitéitgradiënt, en de zones van de Westerschelde; g) Ouden Doel (representatief voor de Mesohaline zone), h) Hansweert (representatief voor de Polyhaline zone), i) Vlissingen (representatief voor het Mondingsgebied). Met betrekking tot de Westerschelde is er onderscheid gemaakt tussen de periodes 1990-1999 en 2000-2009 vanwege de aanwezigheid van een trendbreuk veroorzaakt door de verandering van analyserend lab. Significante trends (toenames in dichtheden voor de zone met Salinitéitgradiënt, Rupel en Zoete zone met korte verblijftijd; afnames in dichtheden voor het Mondingsgebied (station Vlissingen 2000-2009), de Polyhaline zone (station Hansweert 1990-1999 en 2000-2009) en de Mesohaline zone (station Ouden Doel 2000-2009) zijn weergegeven.

In de zones van Westerschelde is die afnemende trend stroomafwaarts niet waar te nemen. Dat kan echter een gevolg zijn van de methodiek, want er bestaat geen één op één relatie in het totaal aantal cellen (meetwaardes voor de Westerschelde) en de fytoplankton biomass (meetwaardes Vlaanderen). Het jaar gemiddelde totaal aantal fytoplankton cellen per liter bedraagt in de mesohaline zone een kleine 6 miljoen, in de polyhaline zone zo’n 8.6 miljoen en in het mondingsgebied 8 miljoen in 2009 (Digitale bijlage 9.7.2 Fytoplankton). In alle 3 de zones is er echter sprake van een significante afname sinds het jaar 2000 (Figuur 9.7.3); in de mesohaline zone met 1.2 miljoen, in de polyhaline zone met 1.3 miljoen en in het mondingsgebied met 5.5 miljoen cellen per jaar. Ondanks dat de gemeten cellen niveaus in de jaren 90 vanwege de determinatie methodiek niet te vergelijken zijn, kan wel worden opgemerkt dat in de polyhaline zone ook in die jaren al een afname van het aantal cellen werd waargenomen; in de andere twee zones niet.

9.7.4.2 PHAEOCYSTIS

Er is geen Phaeocystis in Vlaanderen aangetroffen.
In de mesohaline zone is het aantal Phaeocystis cellen, zoals valt te verwachten voor een overwegend zoutwater organismen ook laag. Er wordt geen significante trend in de ontwikkelingen waargenomen over de afgelopen 20 jaar, en de cellen aantallen benaderen nooit de grens van het maximaal toelaatbare (4*106 cellen/l).

9.7.4.3 CYANOBACTERIËN

De te evalueren parameter ‘Cyanobacteriën’ (verklarende parameter waarvoor evaluatie plaats vindt in hoofdstuk 7.4 Waterkwaliteit) vraagt met betrekking tot de Vlaamse data om een omrekening van biomassa naar dichtheden. Fytoplankton biomassa is daar waar nodig omgekend via de formules weergegeven in VMM (2009), gebruikmakende van bio-volumes en het gemiddelde ekgewicht voor fytoplankton; voor details zie Digitale Bijlage 9.7.1 Fytoplankton. Wellicht kunnen in de toekomst voor Vlaanderen naast de fytoplankton biomassa’s ook de cellendichtheden worden aangeleverd (te meer daar de biomassa’s niet worden gewogen maar reeds worden berekend vanuit de dichtheden).
Cyanobacteriën cellen/dichtheid/ liter-1

Zoet Kort Verblijf
80000000
60000000
40000000
20000000

= Durne
2000000

Zoet Lang Verblijf
60000000
40000000
20000000

= Rupel
2000000

Oligohalien
80000000
60000000
40000000
20000000

= Saliiniteitgradient
60000000
40000000
20000000

200000
Figuur 9.7.5: Ontwikkelingen in Cyanobacteriëndichtheden (aantallen cellen per liter) voor de zones van de Zeeschelde + zijrivieren; a) Zoete zone met korte verblijftijd, b) Zoete zone met lange verblijftijd, c) Durme, d) Rupel, e) Oligohaline zone, f) Zone met een sterke saliniteitsgradiënt, en de zones van de Westerschelde; g) Ouden Doel (representatief voor de Mesohaline zone, h) Hansweert, representatief voor de Polyhaline zone, i) Vlissingen (representatief voor het Mondingsgebied. Met betrekking tot de Westerschelde is er onderscheid gemaakt tussen de periodes 1990-1999 en 2000-2009 vanwege de aanwezigheid van een trendbreuk veroorzaakt door de verandering van analyserend lab. Eveneens is de te evalueren grens van het maximaal toelaatbare aantal cellen van 2*10⁷ per liter weergegeven (rode stippellen). (Let op, de schaal van de figuren c, d en e is afwijkend).

Eventuele problemen met cyanobacteriën zijn hoofdzakelijk/enkel te verwachten in de zoete en brakke zones van het Schelde estuarium. Er is geen significante verandering in het aantal cyanobacteriën voor de zoete zone met korte verblijftijd gevonden. Wel is er een tijdelijk verhogen van de cellendichtheden in het najaar van 2003 wat in september 2003 ook leidt tot een overschrijding van de gestelde kwaliteitsnorm van 2*10⁷ cellen per liter. Het beeld in de zoete zone met lange verblijftijd komt overeen met de het beeld in de zoete zone met korte verblijftijd. Wederom geen trend in de dichtheden, maar wel een overschrijding van de maximaal toelaatbare dichtheden in 2003 (hier in juli van dat jaar). Ondanks een minder goede databeschikbaarheid in de Durme, wordt daar een significante (p=2.29*10⁻⁷) afname van het aantal cyanobacteriën waargenomen (N_cyan=6.09*10⁻⁸-83.0(cellen/jaar)). Ook in de Rupel is dit het geval (p=5.17*10⁻⁸); afname volgens de vergelijking N_cyan=2.75*10⁻⁷-37.5(cellen/jaar). De dichtheden liggen in deze zijrivieren overigens (evenals in de oligohaline zone) substantieel lager dan de gestelde grenswaarde. De ontwikkeling in de oligohaline zone volgt weer min of meer het beeld van de stroomopwaarts gelegen zones. Wederom geen significante trend voor de periode 1996-2009, maar wel jaren met hogere dichtheden aan cyanobacteriën; hier echter met name in 2002. Ook de zone met sterke saliniteitsgradiënt vertoont geen significante trend in de cyanobacterie dichtheden, maar wel een overschrijding van de waarde van 2*10⁷ cellen voor augustus 2007.
In de mesohaline zone is er van 2000 tot en met 2009 sprake van een significante \((p=7\times10^{-5}) \) afname volgens de vergelijking \(N_{\text{cyano}} = 1.14 \times 10^{2} - 1.557 \) (cellen/jaar). De grens van \(2 \times 10^{7} \) cellen/l is de afgelopen 20 jaar in de mesohaline zone 3x overschreden; namelijk in mei en juli van het jaar 2000 en in september van het jaar 2003. In principe valt er geen probleem met cyanobacteriën te verwachten in de polyhaline zone. Het monitoringstation (Hansweert geul) is echter gelegen op de overgang van de mesohaline naar de polyhaline zone. Hier blijkt de afgelopen 20 jaar dan ook één keer een overschrijding van de \(2 \times 10^{7} \) cellen/l grens te hebben plaatsgevonden; namelijk in juli 2003. De cyanobacterie aantallen zijn in het mondingsgebied (station Vlissingen boei SSVH) zoals valt te verwachten altijd laag en laten geen significante ontwikkeling zien.

9.7.5 EVALUATIE FYTOPLANKTON

De te evalueren rekenparameters voor de indicator Fytoplankton zijn de Occurence index, het aantal soorten exoten en het aantal individuen of biomass van exoten. Sleutelsoorten zijn vooral soorten niet aangewezen, maar daar *Phaeocystis* en de Cyanobacteriën rekenparameters zijn in het Hoofdstuk Waterkwaliteit (7.4) zou je ze als sleutel groepen kunnen beschouwen. Genomende verklarende parameters zijn de totale fytoplankton biomassa dan wel fytoplankton dichtheden.

Met uitzondering van de mesohaline zone neemt de Occurrence-index in geen enkele zone af. Voor de geëvalueerde zones in Vlaanderen is de OI redelijk te noemen (waarbij wel dient te worden aangetekend dat deze hoofdzakelijk op genera is berekend waarmee een mogelijk een behoorlijke diversiteit buiten beschouwing wordt gelaten). Enkel in de zone met een sterke salinitietgradiënt blijft de OI achter op de overige zones. Deze indicatie kan mogelijk nuttig zijn bij de evaluatie van andere indicatoren en sluit aan bij de dalende trend waargenomen in de mesohaline zone aan de Nederlandse kant van de grens. De ontwikkelingen in de zones rond de grens zijn vertrouwend en kunnen duiden op problemen met betrekking tot onnatuurlijke fluctuaties in zoutgehalte en debieten of toenemende stroomsnellen. Het ontbreken van gegevens met betrekking tot exoten voor Vlaanderen betekent dat er geen exoten aanwezig zijn; helaas kunnen het aantal exoten en de totale dichtheden aan exoten niet voor Vlaanderen worden geëvalueerd. Voor de 3 zones in de Westerschelde is het beeld positief, met vrij lage aantallen soorten exoten aanwezig (in de mesohaline zone momenteel (T2009) zelfs geen enkele soort aanwezig). In de mesohaline zone is ook een significante afname in het aantal soorten per liter en de totale dichtheden per liter waar te nemen. Het laatste geldt ook voor het mondingsgebied. Hiermee worden de 3 Westerschelde salinitites zones positief beoordeeld met betrekking tot de 2 rekenparameters. De afname van het aantal exoten is niet geheel los te zien van de algemene afname van de fytoplankton biomass (afname in celaaantallen) in de Westerschelde. Deze kan wellicht worden verklaard door een toegenomen begrazing met name door filterende tweekleppigen, met de Amerikaanse zwaardsche kreeft *Ensis directus* (een exoot) als belangrijkste grazer.

De negatieve beoordeling van de OI in de mesohaline zone betekent echter een negatieve beoordeling van de toetsparameter Fytoplankton voor deze zone.

Rekening houdende met de waargenomen trendbreuk is het ook voor de toekomst uiteraard van belang om trend analyses met betrekking tot het fytoplankton van de Westerschelde enkel op de data vanaf het jaar 2000 uit te voeren.
Tabel 9.7.1: Overzicht evaluatie Fytoplankton.

<table>
<thead>
<tr>
<th>Fytoplankton evaluatie</th>
<th>Rekenparameters</th>
<th>Occurrence Intactness</th>
<th>Aantal soorten exoten (liter⁻¹)</th>
<th>Exoten dichtheden (cellen/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondingsgebied</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>31.9 +</td>
<td>0.73 +</td>
</tr>
<tr>
<td>Polyhaliene zone</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>30.9 +</td>
<td>0.41 +</td>
</tr>
<tr>
<td>Mesohaliene zone</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>22.4 -</td>
<td>0 -</td>
</tr>
<tr>
<td>Saliniteitsgradient</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>17.8</td>
<td>0 +</td>
</tr>
<tr>
<td>Oligohaliene zone</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>30.1</td>
<td>0 +</td>
</tr>
<tr>
<td>Durme</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>34.0</td>
<td>0 +</td>
</tr>
<tr>
<td>Rupel</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>36.2</td>
<td>0 +</td>
</tr>
<tr>
<td>Zoet Lang Verblijf</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>35.5</td>
<td>0 +</td>
</tr>
<tr>
<td>Zoet Kort Verblijf</td>
<td>T2009 trend</td>
<td>T2009 trend evaluatie</td>
<td>35.9</td>
<td>0 +</td>
</tr>
</tbody>
</table>

9.8 ZOOPLANKTON

9.8.1 INTACTNESS

9.8.1.1 INLEIDING

De diversiteit van de zoöplankton gemeenschappen wordt beoordeeld aan de hand van een analyse van de Occurrence Intactness index (OI), waarbij de samenstelling van de gemeenschappen wordt vergeleken met een referentiegemeenschap. Dit gebeurt in tegenstelling tot de voorgestelde methodiek vooral nog op basis van de aan- en afwezigheid van soorten. Het zoöplankton is de belangrijke pelagische schakel tussen de primaire productie en de hogere trofische niveaus. Het is dan ook van belang om een diverse gemeenschap in het systeem aanwezig te hebben, zodat de primaire productie ten volle wordt benut, de diverse niches worden ingenomen, en relatief specialistische secundaire consumenten zich kunnen voeden. Uiteraard gaat er ook een belangrijke indicatorwaarde van de diversiteit van de gemeenschappen uit, daar het zoöplankton en de diverse soorten in meer of mindere mate gevoelig zijn voor veranderingen in diverse parameters, met name de waterkwaliteit. De evaluatie van het zoöplankton is in feite een evaluatie van het mesozoöplankton, daar het microzoöplankton en de kwallen buiten beschouwing worden gelaten.

9.8.1.2 GEBRUIJKTE DATA

De zoöplankton monitoring voor de Westerschelde is pas in 2012 opgestart; een T2009 evaluatie volgens de methodiek is dan ook niet mogelijk. Voor de Zeeschelde + zijrivieren bestaat het bestand uit meso- en microzoöplanktonsoorten. Laatstgenoemde groep (diverse Rotifera soorten) is enkel gemonitord in het jaar 2002. Het microzoöplankton is dan ook niet verder in de evaluatie meegenomen. Het taxonomisch determinatienniveau is voor de monsters op elkaar afgestemd, en de taxa zijn ingedeeld in functionele groepen op twee verschillende niveaus (voor details zie Digitale Bijlage 9.8.1 Zoöplankton). Het is wellicht aan te bevelen om in de toekomst 1 of meerdere functionele groepen als sleutelgroepen te evalueren. Er
zijn zoöplankton monsters beschikbaar van december 1995 tot op heden, echter niet continu (maandelijks) voor alle te evalueren zones (data van onder andere de jaren 2000 en 2001 ontbreken grotendeels). De parameter wordt geëvalueerd op niveau 3 (OMES zones).

9.8.1.3 ANALYSE

De Occurence index (OI) volgens de 'Buckland Arithmetic' methode is berekend ten opzichte van aangeleverde referentie-matrices. De referentie-matrices worden gevormd door alle per zone in het verleden aangetroffen soorten, aangevuld met soorten die op basis van hun voorkomen in andere zones ook verwacht zouden kunnen worden. De aan- of afwezigheid van soorten wordt geëvalueerd waarbij exoten buiten beschouwing worden gelaten. Enkel jaren met beschikbare gegevens voor ten minste 9 verschillende maanden zijn in de evaluatie van de Occurence index meegenomen. Afwijkend van de methodiek is er hier voor gekozen om de evaluatie te baseren op de afzonderlijke jaren (in plaats van 6-jaarlijkse gemiddelden), om het aantal metingen van OI in de tijd te vergroten (zodat ook daadwerkelijk een trend kan worden bepaald) en de vergelijkbaarheid van de totstandkoming van de OI te maximaliseren (voor details en gehanteerde referentiemethoden zie Digitale Bijlage 9.8.1 Zoöplankton).

De 4 zones die de hoofdtak van de Zeeschelde vormen, vertonen min of meer een vergelijkbaar patroon in de ontwikkeling van zoöplankton gemeenschappen (Figuur 9.8.1). Het zijn met name de jaren 1996 en 2002 die de grootste overeenkomsten vertonen met de referentiematrix. Het blijkt dat er niet direct een relatie bestaat met de bemonsteringsintensiteit. Navraag heeft echter opgeleverd dat ten minste de oorzaak van de pick voor 2002 moet worden gezocht in verschillen in het determinerende personeel (Dr. M. Tackx, persoonlijke mededeling). Het blijkt dat Dr. F. Aémar juist in dat jaar het zoöplankton van de Zeeschelde heeft uitgewerkt en ten opzichte van de voorafgaande periode een groot aantal nieuwe soorten in de monsters heeft gevonden die daarvoor niet werden opgemerkt. Na 2002 is het werk aan anderen overgelaten die niet in hetzelfde detail de standaard monitoring hebben kunnen uitvoeren. De evaluatie van de OI index voor zoöplankton is hiermee voor de periode tot en met 2009 dus weinig waardevol. Wellicht kan de periode 2003-2009 wel dienen als referentie voor de komende 6 jaar, aangezien de monitoring op dezelfde manier door hetzelfde lab is voortgezet en nu ook de Westerschelde wordt bemonsterd. Er worden overigens ook geen significante trends in de OI per zone aangetroffen. Wanneer de gemiddelde OI tussen de zones onderling wordt vergeleken dan is deze het hoogste in de Durme. Het is echter onduidelijk of dit te maken heeft met de beperkte databeschikbaarheid, en dat toevaligerwijs de OI relatief hoog was gedurende jaren met databeschikbaarheid (2003-2005). Databeschikbaarheid zal een minder grote rol spelen in de resultaten van de 4 zones van de hoofdstroom van de Zeeschelde. Daarbij valt op dat de gemiddelde OI voor de geëvalueerde periode hoger is in de zoete zones met respectievelijk korte en lange verblijftijd, dan in de zone met sterke salinitéigradiënt en de oligohaliene zone. In hoeverre dit een kwaliteit gerelateerd aspect is of te maken heeft met de compleetheid van de referentielijst zal moeten blijken uit eventuele vergelijkbare patronen in verklarende parameters. Voor een overzicht van de gemiddelde waarden per zone zie Digitale bijlage 9.8.2 Zoöplankton.
Figuur 9.8.1: Ontwikkeling in Occurrence Intactness index (OI) volgens de Buckland Arithmetic methode op basis van de aan-/afwezigheid van zoöplankton soorten per zone voor het Vlaamse deel van het Schelde-estuarium.

9.8.1.4 INTERPRETATIE

Gezien de invloed van het determinerende personeel op de gevonden resultaten, is het lastig om gevonden resultaten te koppelen aan systeem gerelateerde ontwikkelingen. Het is wel opvallend dat gedurende de jaren 90 de compleetheid van gemeenschappen in de oligohaliene zone tot de hoogste behoorde in vergelijking tot de overige zones, terwijl het laatste decennium dit eerder het geval is in de zoete zone met korte verblijftijd. De laatstgenoemde zone is juist de zone waar de grootsste verbetering in zuurstofcondities is opgetreden; een factor waar diverse zoöplanktonsoorten zeer gevoelig voor kunnen zijn. Je zou ook kunnen concluderen dat de soortenrijkdom dan juist in de oligohaliene zone achteruit is gegaan. Dit is dan meer in lijn met observaties met betrekking tot het fytoplankton. Mogelijk dat een achteruitgang van de fytoplanktonsoorten in deze zone effect hebben gehad op de soortenrijkdom van de grazers. Ook is het zeer goed mogelijk dat conform het patroon voor *E. affinis* (zie H 9.8.4.2 Biomassa *Eurytemora affinis*), er sprake is van een verschuiving van soorten meer stroomopwaarts nu de waterkwaliteit daar sterk verbeterd is.

9.8.1.5 EVALUATIE 2009

Aangezien er geen sprake is van een dalende trend in de OI index voor de geëvalueerde zones wordt deze rekenparameter voor iedere zone voorlopig positief beoordeeld, met de aantekening dat de continuïteit van de data momenteel ontoereikend is en de beschikbare reeksen te kort om een betrouwbare uitspraak te doen over de periode tot en met 2009. Het is echter wel zorgwekkend dat de soortenrijkdom over de gehele linie laag lijkt.

Deze rekenparameter lijkt wel belangrijk en indicatief genoeg om in de toekomst op te blijven volgen. Het is daarbij echter van belang dat het determinatienniveau gedurende de jaren vergelijkbaar blijft. Om dit te waarborgen lijkt het raadzaam om slechts een aantal goed te onderscheiden soorten en groepen te tellen in combinatie met een bepaling van het totaal gewicht aan zoöplankton. De verhouding tussen functionele groepen is wellicht eenvoudiger te bepalen en daarmee informatiever.
9.8.2 EXOTEN

9.8.2.1 GEBRUIKTE DATA

Het aangeleverde bestand bestaat uit aantallen individuen per soort/taxa per m³. Voor de verklarendere rekenparameters is de biomassa reeds benodigd (voor de evaluatie van de exoten kan zowel voor dichtheden als biomassa worden gekozen). Daarom is er hier ook voor gekozen om alle dichtheden om te rekenen naar biomassa (in μg DW/m³), te meer daar dit in relatie tot andere schakels/niveaus in het voedselweb relevanter is. Hiervoor zijn echter de gemiddelde soortelijke gewichten van de soorten benodigd. Deze zijn berekend gebruikmakende van Dumont et al. (1975) en Bakker et al. (1977); voor details zie Digitale Bijlage 9.8.1 Zoöplankton).

9.8.2.2 ANALYSE

De complete soortenlijst blijkt slechts één exoot te bevatten; Acartia tonsa. Hiermee wordt de T2009 evaluatie met betrekking tot dit onderdeel gereduceerd tot de evaluatie van de aan-/afwezigheid van deze soort en de ontwikkelingen in aanwezige biomassa van deze soort. De soort is niet in de Durme en de Rupel aangetroffen. In de overige zones is A. tonsa wel aangetroffen, echter het voorkomen van de soort in de monsters is sinds 1995 overal significant afgenomen en volgens de berekende trends nu zelfs 0. In de zone met een sterke saliniteitsgradiënt, de oligohaliene zone en de zoete zone met korte verblijftijd, is de soort voor het laatst in de monsters aangetroffen in 2002, in de zoete zone met lange verblijftijd zelfs voor het laatst in 1996. De gemiddelde exoten biomassa per m³ per jaar (en dus de gemiddelde biomassa aan A. tonsa) is in de zone met een sterke saliniteitsgradiënt, de oligohaliene zone en de zoete zone met lange verblijftijd significant afgenomen en volgens de berekende trend in 2009 ook 0 μg DW/m³/jaar. Enkel in de zoete zone met korte verblijftijd is geen significante verandering waargenomen daar de soort sporadisch is aangetroffen en bedraagt de gemiddelde biomassa aan A. tonsa 1.67 μg DW/m³/jaar (Figuur 9.8.2). Voor grafieken, trends en exacte waarden per zone zie tevens de Digitale bijlage 9.8.2 Zoöplankton.
Figuur 9.8.2: Ontwikkelingen in het aantal soorten exoten per monster en de biomassa aan exoten per m³ voor respectievelijk de Zoete zone met korte verblijftijd (a, b), de Zoete zone met lange verblijftijd (c, d), de Oligohaliene zone (e, f) en de Zone met een sterke saliniteitgradiënt (g, h). Afnemende significante trends in het vinden van exoten soorten (= A. tonsa) en de exoten biomassa van 1995 tot en met 2009 zijn gevonden in 3 van de 4 zones die de hoofdstroom van de Schelde in Vlaanderen vormen. Er zijn geen exoten aangetroffen in de Durme en de Rupel.
9.8.2.3 INTERPRETATIE

Het feit dat er slechts één exoot in het Vlaamse deel van het Schelde estuarium wordt aangetroffen lijkt een positief teken, hoewel het wel in het licht van de relatief lage soortenrijkdom dient te worden gezien (zie de schijnbare incompleetheid van de gemeenschappen). We gaan er van uit dat er nauwelijks problemen zijn geweest in het detecteren van *A. tonsa* in het verleden en dat de waargenomen trends niet een gevolg zijn van wisselingen in determinerend personeel. Dit wordt ondersteund door het feit dat de soort al achteruit lijkt te gaan sinds de jaren negentig naar 2002 (het jaar waarin veruit het grootste aantal soorten is gedetecteerd). De ontwikkelingen lijken dan ook gunstig daar *A. tonsa* (de enige exoot) grotendeels is verdwenen. Echter de totale zoöplankton biomassa lijkt af te nemen, maar daarvoor is het weer onduidelijk of genomen monsters wel even goed zijn uitgezocht (mogelijk dat kleine exemplaren na 2002 niet meer zijn meegenomen in de determinaties, wat een behoorlijk effect op de biomassa kan hebben, omdat we die vanuit de aantallen hebben berekend aan de hand van het gemiddelde soortelijke gewicht).

9.8.2.4 EVALUATIE 2009

De ontwikkelingen in het aantal soorten exoten en de exoten biomassa voor alle zones in Vlaanderen wordt positief beoordeeld. Maar de toekomst zal moeten uitwijzen wat de rol van het determinerend personeel (en daarmee mogelijke verschillen in taxonomisch niveau) in deze is geweest.

9.8.3 SLEUTELSOORTEN

Als sleutelsoort wordt in de methodiek *Eurytemora affinis* genoemd. In de methodiek gaat het echter om de opvolging van veranderingen in het soortelijke gewicht. Daar de huidige monitoring daar niet geschikt voor is, beperken we ons hier tot de analyse van veranderingen in de aanwezige biomassa aan *E. affinis*. Dit kan een verklarende parameter of eerder indicator zijn voor abiotische ontwikkelingen in de verschillende zones van de Zeeschelde + de zijrivieren. Voor de uitwerking wordt hier dan ook verwezen naar H 9.8.4.2 Biomassa *Eurytemora affinis*.

9.8.4 VERKLArende PARAMETERS

9.8.4.1 TOTALE ZOÖPLANKTON BIOMASSA

De totale zoöplanktonbiomassa vertoont een sterke seizoenaliteit die tot uiting komt in de aanwezigheid van een cyclische trend met een periode van 1 jaar (12 maanden); deze is significant voor ieder van de zones. Hierdoor, en door lokale verschillen, vertoont de totale zoöplanktonbiomassa grote fluctuaties die tot uiting komen in een grote standaarddeviatie rond jaargemiddelde waarden. De jaargemiddelde zoöplanktonbiomassa is het grootst in de zoete zone met lange verblijftijd (305 mg DW/m³) (Tabel 9.8.1). In de zoete zone met korte verblijftijd lag de jaargemiddelde biomassa eind jaren 90 in dezelfde orde van grootte, maar is deze sinds 1995 significant afgenomen tot 149 mg DW/m³. Ook de Durme bevat een grote biomassa aan zoöplankton, gemiddeld 220 mg DW/m³/jaar, in verhouding tot de stroomafwaarts gelegen zones en de Rupel. In de Rupel neemt de laatste jaren de gemiddelde biomassa significant af met 5,8 mg DW/m³/jaar, en was de jaargemiddelde zoöplanktonbiomassa in 2009 gelijk aan 26,1 mg DW/m³. Voor gedetailleerde grafieken per zone zie Digitale bijlage 9.8.2 Zoöplankton.
Tabel 9.8.1: Overzicht ontwikkelingen in totale zoöplankton biomassa (µg DW/m³*jaar) per zone.

<table>
<thead>
<tr>
<th>Zoöplankton</th>
<th>Biomassa (µg DW/m³*jaar)</th>
<th>trend</th>
<th>sign</th>
<th>toe-/afname</th>
<th>T2009</th>
<th>gemiddelde ± stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saliniteitsgradiënt</td>
<td>26890</td>
<td>41590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligohaliene zone</td>
<td>72100</td>
<td>124500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>220000</td>
<td>338500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupel</td>
<td>p=0.020</td>
<td>-5772</td>
<td>26102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoet Lang Verblijf</td>
<td>p=0.023</td>
<td>-14136</td>
<td>149112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoet Kort Verblijf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wij dienen hier wel rekening te houden met de eerder genoemde beperkingen van de dataset met betrekking tot het determinatienniveau, en mogelijk het niet meenemen van kleine organismen in de tellingen. Het is dan ook moeilijk aan te geven of de geobserveerde achteruitgang van de biomassa een gevolg is van problemen met de waterkwaliteit (bv. toxische stoffen conform de effecten van eventuele verhoogde beschikbaarheid zoals beschreven voor het benthos; H 7.5 Toxische stoffen; H 9.6 Benthos), dan wel verhoogde begrazing door een toename van de zoöplanktivore vissen en vogels (H 9.5 Vissen; H 9.3 Niet-broedvogels; H10.3 Vissen en vogels), of toch een effect van het determinerende personeel.

9.8.4.2 BIOMASSA EURYTEMORA AFFINIS

De sleutelsoort *Eurytemora affinis* blijkt met name in de Rupel een zeer belangrijke soort, daar de soort daar meer dan 50% van de biomassa uit maakt. Ook in de oligohaliene zone vertegenwoordigt de soort een aanzienlijk deel van de totale zoöplankton biomassa (17%). De soort is voornamelijk talrijk aanwezig in de zoete zone met lange verblijftijd, waar in 2009 zo’n 16.1 mg DW/m³ kon worden aangetroffen, maar ook in de oligohaliene zone en in de Rupel lag de gemiddelde biomassa rond de 10 mg DW/m³ (Tabel 9.8.2). De soort vertoont de afgelopen jaren een significante toename in de oligohaliene zone, de Rupel en de zoete zones met lange en korte verblijftijd, waarbij de toename in de zoete zone met lange verblijftijd, met ruim 1.7 à 1.8 mg DW/m³*jaar.*

Tabel 9.8.2: Overzicht ontwikkelingen in *E. affinis* biomassa (µg DW/m³*jaar) per zone.

<table>
<thead>
<tr>
<th>Zoöplankton</th>
<th>Biomassa E. affinis (µg DW/m³*jaar)</th>
<th>trend</th>
<th>sign</th>
<th>toe-/afname</th>
<th>T2009</th>
<th>gemiddelde ± stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saliniteitsgradiënt</td>
<td>4165</td>
<td>9462</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligohaliene zone</td>
<td>p=0.000</td>
<td>923</td>
<td>10929</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>p=0.000</td>
<td>1792</td>
<td>9159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupel</td>
<td>p=0.000</td>
<td>1702</td>
<td>16061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoet Lang Verblijf</td>
<td>p=0.000</td>
<td>560</td>
<td>5378</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De soort is als sleutelsoort aangemerkt omdat in het verleden de soort in zijn geheel ontbrak in het zoete gedeelte van het estuarium door de slechte zuurstofcondities, en met name in de brakke zones te vinden was. Appeltans et al. (2003) melden al een verplaatsing van de *E. affinis* populaties richting de zoete gedeelten ten gevolge van waterkwaliteitsverbeteringen waardoor de biomassa in het brakke gedeelte iets af neemt rond de eeuwwisseling. De huidige evaluatie laat een duidelijke toename van de *E. affinis*
biorrassa in de zoete delen zien, en het constant blijven van de biomassa in de zone met sterke salinitiegraad. Enkel voor de Durme lijkt de *E. affinis* biomassa achter te blijven, maar we moeten ons realiseren dat er enkel zoöplankton gegevens voor de jaren 2003 tot en met 2005 beschikbaar waren waardoor de huidige situatie of een eventuele trend onduidelijk is. Voor gedetailleerde grafieken per zone: zie Digitale bijlage 9.8.2 Zoöplankton. De huidige ontwikkelingen met betrekking tot *E. affinis* lijken aan te geven dat de waterkwaliteit in het bovenstromse deel zeer waarschijnlijk niet de waargenomen achteruitgang van de zoöplankton biomassa kunnen verklaren.

9.8.5 EVALUATIE ZOOPLANKTON

De te evalueren rekenparameters voor de indicator Zoöplankton zijn de Occurrence index, het aantal soorten exoten en het aantal individuen of biomassa aan exoten. Genoemde verklarende parameters zijn de totale zoöplanktonbiomassa en de biomassa en soortelijk gewicht van *Eurytemora affinis*. De gemiddelde waarden van de OI index zijn voor iedere zone behoorlijk laag te noemen. Het blijkt echter dat het effect van het determinerende personeel en daarmee het taxonomisch niveau voor deze groep aanzienlijk kan zijn, wat de bepaling van de OI index op basis van de soortensamenstelling voor deze dataset weinig zinvol maakt. Het valt te overwegen de OI index voor zoöplankton in de toekomst op genus- of zelfs familieniveau uit te voeren, of een index te ontwikkelen die eerder verhoudingen tussen taxonomische en/of functionele groepen analyseert (en de OI index achterwege te laten). Daar er nergens een significant dalende trend wordt waargenomen wordt de rekenparameter OI voor T2009 onder voorbehoud als positief aangewezen, maar de toekomst zal moeten uitwijzen hoe de werkelijke ontwikkelingen er uitzien zullen.

Het aantal soorten exoten per zone is hooguit 1 en er zijn geen exoten waargenomen in de Durme en de Rupel. Daarbij is het gemiddeld aantal soorten exoten per monster significant afgenomen in 3 van de 4 zones van de hoofdstroom en heeft deze volgens de trend in 2009 het nulpunt bereikt. Daarmee wordt de rekenparameter ‘Aantal exoten’ voor iedere zone positief beoordeeld. Een zelfde patroon wordt waargenomen met betrekking tot de exoten biomassa. Enkel voor de zoete zone met korte verblijftijd is geen significant dalende trend waargenomen, maar ligt de gemiddelde exoten biomassa voor de geëvalueerde periode wel laag. Daarmee wordt de rekenparameter ‘Exoten biomassa’ voor de T2009 ook overal positief beoordeeld.

Vanwege de grote onzekerheden met betrekking tot de evaluatie van het zoöplankton lijkt het raadzaam om voor de T2009 niet te veel waarde aan de resultaten, en met name aan de geobserveerde recente ontwikkelingen, te hechten.

Tabel 9.8.3: Overzicht evaluatie Zoöplankton

<table>
<thead>
<tr>
<th>Zoöplankton evaluatie</th>
<th>Rekenparameters</th>
<th>Occurrence Intactness</th>
<th>Aantal exoten</th>
<th>Exoten biomass (µg DW/m³*jaar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinitiegraadent</td>
<td>18.0 + 0 + 0</td>
<td>18.0 + 0 + 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligohaliene zone</td>
<td>20.8 + 0 + 0</td>
<td>20.8 + 0 + 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durme</td>
<td>34.3 + 0 + 0</td>
<td>34.3 + 0 + 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupel</td>
<td>15.2 + 0 + 0</td>
<td>15.2 + 0 + 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoet Lang Verblijf</td>
<td>23.6 + 0 + 0</td>
<td>23.6 + 0 + 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoet Kort Verblijf</td>
<td>26.4 + 0 + 0</td>
<td>26.4 + 0 + 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.9 MACROFYTEN (VEGETATIE)

9.9.1 INLEIDING

Met vegetatie wordt bedoeld de macrofyten die groeien op de schorren in het estuarium (Holzhauer et al. 2011). Zeegrassen zouden een onderdeel van de evaluatiemethodiek kunnen uitmaken, maar momenteel vinden we nauwelijks zeegrassen in het Schelde-estuarium, en hun belang in het Schelde-ecosysteem is dan ook te verwaarlozen (Holzhauer et al. 2011). Er zijn ook geen aanwijzingen uit het verleden dat zeegrassen vroeger wel in grotere mate voorkwamen. Er wordt slechts sporadisch melding gemaakt van hun aanwezigheid en dan steeds als sporadisch voorkomend (bv J Massart, 1907; Essai de géographie botanique des districts littoraux et alluviaux de la Belgique; Extrait du Recueil de l’Institut botanique Leo Errera, Bruxelles, pag. 428 en 42). Macroalgen worden ook niet mee beoordeeld. Macroalgen spelen, in verhouding tot het fytoplankton en het microfytoenbenthos, een geringe rol in het Schelde-ecosysteem, met name door het geringe doorzicht in het systeem en de hoge dynamiek (Brys et al., 2005; Altenburg et al., 2007). Macroalgen worden daarom niet specifiek in de huidige evaluatiemethodiek meegenomen, maar het is mogelijk dat in de toekomst dient te worden geconcludeerd dat hun rol in het systeem te groot is geworden, om er in de evaluatie aan voorbij te gaan. Het niet mee beoordelen van de macroalgen hangt ook samen met het ontbreken van een afdoend monitoringsprogramma (mede een gevolg van hun geringe voorkomen).

Macrofyten vormen de structurerende levensvorm op de schorren van het Schelde-estuarium. De soortensamenstelling en productie bepalen in belangrijke mate het belang en de functie van de schorren in het ecosysteem. Hierbij speelt het areaal van de schorren (en vegetatietypes), de structurele habitatkwaliteit (topografische index, connectiviteit) en de biologische habitatkwaliteit (vegetatie-diversiteit en de verdeling van de vegetatiezones) een rol. Deze elementen komen reeds aan bod in Leefomgeving. Voor de evaluatie van de vegetatie binnen Flora en fauna ligt de klemtoon op de soortendiversiteit (aan de hand van een Intactness index), exoten en sleutelsoorten (waaronder de beoordeling van habitatrichtlijnsoorten). Bij de toepassing van de methodiek zijn echter een aantal aanpassingen doorgevoerd (zie verder).

9.9.2 REKENPARAMETER INTACTNESS INDEX ZEESCHELDE

9.9.2.1 INLEIDING

Voor de Zeeschelde wordt regelmatig een inventarisatie van de vegetatie uitgevoerd in een aantal vaste telvakken (pq’s). Deze data zijn gebruikt voor het berekenen van de Occurrence index. De extra monitoring die in een aantal jaren is uitgevoerd is in deze analyse niet meegenomen, omdat het verschillend aantal telvakken per jaar een te grote impact heeft op de OI (wanneer het aantal vakken toeneemt, neemt de trefkans van (zeldzame) soorten toe, waardoor ook de OI in dat jaar groter wordt).

9.9.2.2 ANALYSE

Na een daling van de OI van 1995 naar 1997, is in de alle vakken een toename van de OI waargenomen. De ontwikkeling van de diversiteit blijft echter in Zone 5 wat achter op de andere gebieden (Figuur 9.9-1). Dit is het enige vak waar de OI lager ligt dan bij het begin van de waarnemingen.
Voor de Westerschelde zijn geen bruikbare data beschikbaar gesteld voor de berekening van de Occurrence index. Er is besloten om niet met de Occurrence index te werken, maar de evaluatie te baseren op veranderingen in bepaalde vegetatietypes (zie 9.9.3.) (pers. comm. Dick de Jong).

9.9.2.3 **INTERPRETATIE**

De berekening van de OI voor vegetatie is gebeurd zonder onderscheid te maken in types of structuurklassen. Een onderscheid in bijv. pionier, ruigte, rietvegetatie, zilt grasland, struweel en bos, zoals toegepast in de KRW methodiek, wordt in de evaluatiemethodiek niet voorgesteld. De ontwikkeling zoals gepresenteerd in Figuur 9-9-1 laat eerder een natuurlijke successie zien in de geselecteerde permanente kwadraten, en is daarom moeilijker te interpreteren voor mogelijke trends in plantendiversiteit binnen een saliniteitszone. De berekening van de OI zou dan ook beter op het niveau van types of structuurklassen gebeuren, met een gelijk aantal PQ's geselecteerd per type (zie evaluatie van de evaluatiemethodiek).

9.9.2.4 **REKENPARAMETER VEGETATIETYPES WESTERSCHELDE**

Er is in een zeer laatstijd stadium van het project beslist om niet met een OI te werken voor de schorvegetatie in de Westerschelde, maar in plaats daarvan te kijken naar veranderingen in bepaalde vegetatietypes. Hiermee sluit het deels aan bij wat in het hoofdstuk Leefomgeving behandeld wordt, maar hier wordt meer vanuit een soortperspectief geëvalueerd. De aanpak dient in de toekomst nog verder uitgewerkt te worden maar figuur 9-9-2 laat zien hoe bepaalde vegetatietypes veranderen in de periode 1993 – 2010, op basis van vier beschikbare vegetatiekaarten voor de Westerschelde. Hieruit is het volgende af te leiden:

- Zeekweek of Strandkwiek (*Elytrigia atherica*) neemt sterk toe
- Riet (*Phragmites australis*) neemt langzaam toe
- pionier schor neemt sterk toe, met name op de platen.
- Slijkgras (*Spartina anglica*) neemt toe
- Heen (*Scirpus maritimus*) neemt af (waarschijnlijk door vraat door Grauwe gans)
Lage schortypes nemen af
Dit alles duidt op een sterke ophoging van de schorren in de Westerschelde. De toename van pionier schor op de plaatgebieden duidt op een sterke hoogte toenam e op een aantal platen, met name Hooge Platen en Plaat van Walsoorden. De afname van heenvegetaties in de brakke zone is vermoedelijk het gevolg van overbegrazing door de sterk gegroeide populatie Grauwe gans.

9.9.3 REKENPARAMETER SLEUTELSOORTEN EN EXOTEN

Voor de Westerschelde en Zeeschelde is geen informatie over sleutelsoorten en exoten bij de macrofyten beschikbaar gesteld. Vermoedelijk zijn in de Westerschelde exoten ook niet systematisch aanwezig (pers. comm. Dick de Jong).

9.9.4 EVALUATIE VEGETATIE

De te evalueren rekenparameters voor de indicator vegetatie zijn de Occurence index, het voorkomen van exoten en het voorkomen van sleutelsoorten. Deze laatste twee parameters zijn wegens een gebrek aan referentielijsten niet bepaald. De OI is bepaald voor de Zeeschelde en laat geen afname zien, behalve in de oligohaliene zone. De relevante van de huidige manier van berekenen van de OI kan echter in vraag worden gesteld en de waargenomen ontwikkeling zegt weinig over een mogelijke trend in de plantendiversiteit binnen een saliniteitszone.

In de Westerschelde is geen OI bepaald, maar is een alternatieve methode voorgesteld om de vegetatie te evalueren. Duidelijke criteria voor de evaluatie moeten nog vastgelegd worden, maar de ontwikkelingen zoals ze zich voordoen, met name het steeds verder ophogen van de schorren, en geen toename van pionier schor (behalve op de plaatgebieden waar het als ongewenst wordt beschouwd omdat foerageergebied voor steltlopers verdwijnt), leiden tot een negatieve evaluatie voor de Westerschelde. Eenzelfde benadering, met een evaluatie van vegetatietypes i.p.v. soorten, zou in de toekomst ook voor de Zeeschelde kunnen toegepast worden. Dit dient nader onderzocht te worden.
9.10 EVALUATIE T2009 FLORA EN FAUNA

In conclusie laat de communicatie-indicator Flora en fauna een gemengd beeld zien (zie ook Tabel 9). Geen enkele toetsparameter laat voor de evaluatie T2009 een volledig positief beeld zien, op de zeezogdieren (gewone zeehond) na. De rekenparameters voor de gewone zeehond laten een positief beeld zien, maar de populatie is nog steeds afhankelijk van immigratie van individuen van elders. Voor de overige toetsparameters scoren bepaalde rekenparameters negatief: dit kan voor het volledige estuarium zijn, of voor een bepaalde zone langs het estuarium. De verklaring hiervoor is vaak niet eenduidig. Ook kunnen binnen één rekenparameter bepaalde (sleutel)soorten een positieve status hebben, andere soorten een negatieve status. Dit maakt één beoordeling lastig. Het is tevens duidelijk dat in de komende jaren werk gemaakt moet worden van goed onderbouwde referentielijsten, en lijsten met sleutelsoorten en exoten, zoals omschreven in Holzhauer et al. (2011), om een volledige toepassing van de evaluatiemethode te laten. Dit dient per toetsparameter op maat worden vastgesteld. Welke soorten geëvalueerd dienen te worden moet nader onderzocht worden, met een focus voor die soorten die een belangrijke rol, dan wel indicatief (positief, negatief) zijn voor het ecologisch functioneren van het estuarine systeem (zie evaluatie nota). Hierbij is het belangrijk dat niet alleen naar het voorkomen (Occurrence) gekeken wordt, maar ook de aantallen/biomassa's (Abundance) meegenomen worden. Deze laatste zullen beter onderscheidend zijn dan een evaluatie enkel op basis van voorkomen, zoals in deze rapportage is toegepast. Niet alle rekenparameters zijn waarschijnlijk noodzakelijk voor een goede evaluatie van iedere toetsparameter.
10 Ecologisch functioneren

Uit de evaluatie met betrekking tot het Ecologisch functioneren blijkt dat met name de doorstroom van de primaire productie naar de primaire consumenten, met als belangrijkste vertegenwoordigers de algemeen voorkomende tweekleppigen, in diverse jaren niet optimaal verloopt daar succesvolle broedval en uitgroei van schelpdierpopulaties te weinig frequent voorkomt. Dit is tevens zichtbaar in de negatieve beoordeling met betrekking tot de filterfunctie die grotendeels afhangt van dezelfde organismen. De doorstroom van energie naar de secundaire consumenten (met als belangrijkste groep de benthivore en zooplanktivore vissen) lijkt voorlopig wel in balans. Verder worden er grote problemen geconstateerd in de benthische productie in de bovenstroomse delen, die ver achter blijft bij wat er in potentie kan worden verwacht in een goed functionerend systeem. Dit heeft dan ook al zijn weerslag gehad op de op benthos foeragerende vogels (met name de benthivore eenden) in dit deel van het estuarium. Van het feit dat in bepaalde zones de exoten (aantal soorten of biomassa) toenemen dient een waarschuwingssignaal uit te gaan aangezien dit consequenties kan hebben voor de inheemse soortendiversiteit en potentieel een risico is voor de energie doorvoer naar hogere trofische niveaus. Ook is het een fenomeen dat kan worden gerelateerd aan onnatuurlijke verstoringen in het milieu. Een afnemende soortenrijkdom is inderdaad waargenomen in de Zone met een sterke saliniteitsgradient waar (onnatuurlijke) fluctuaties en verschuivingen in gradienten naar verwachting ook al zichtbaar zullen zijn.

10.1 INLEIDING

Het Ecologisch Functioneren is de Communicatie indicator waarin de aspecten van de andere Communicatie indicatoren met betrekking tot de Hoofdfunctie Natuurlijkheid bij elkaar komen. Enerzijds betekent dit dat wanneer de gedefinieerde toetsparameters hier allemaal positief worden beoordeeld, het zeer waarschijnlijk is dat de toetsparameters uit de andere piramides met betrekking tot Natuurlijkheid overwegend positief zullen zijn beoordeeld, en dat er wellicht hoogstens lokale of tijdelijke problemen zullen worden gedetecteerd. Anderzijds zijn er bij een negatieve beoordeling van één of beide toetsparameters wellicht een legio aan mogelijke waarschijnlijkheden die hier een verklaring voor kunnen geven. Dit wordt ook duidelijk uit het grote aantal Verklarende parameters dat in de weergave van Figuur 10.1.1 worden genoemd. Zodoende kan deze piramide nauwelijks los worden gezien van de overige piramides en is het hier waar de thema’s bij elkaar komen.

Het Ecologisch Functioneren is opgedeeld in 2 toetsparameters, waarbij de toetsparameter Vis & vogels werkelijk gaat leiden tot één waarde per te evalueren jaar waarin de energie doorstroom door het gehele systeem in de vorm van biomassa verhoudingen wordt bevat. De toetsparameter Macrozoobenthos bestaat uit 4 rekenparameters die veelal ook weer zijn opgebouwd uit meerdere onderdelen. Met betrekking tot beide toetsparameters geldt dat de toetswaarden weliswaar her en der worden gebruikt in de wetenschappelijke literatuur, maar dat naast de beoordeling van de T2009 aan de hand van de parameters nu ook zal moeten blijken of de gestelde grenzen naar verwachting indicatief zullen zijn en goed gepositioneerd. De huidige toepassing voor het Schelde-systeem is dus ook in belangrijke mate een toetsing van de methodiek (meer nog dan voor de andere piramides). Aanvullend zal het hierbij ook
belangrijk zijn om nu de methodiek goed te documenteren aangezien de Evaluatiemethodiek (Holzhauer et al., 2011) hierin nog aardig wat interpretatiemogelijkheden en keuzes laat, en ook de databeschikbaarheid een grote rol zal spelen.

MACROZOOBENTHOS

MACROBENTHISCHE BIOMASSA - PRIMAIRE PRODUCTIE (WESTERSCHELDE)

INLEIDING

De evaluatie van de macrobenthische biomassa ten opzichte van de primaire productie geeft inzicht in de mate van evenwicht tussen productie en begrazing en wordt specifiek voor de Westerschelde uitgewerkt. De methodiek verwijst naar Van Hoey et al. (2007) waar de rekenparameter als onderdeel van de BEQI-index is uitgewerkt. In de huidige beoordelingsmethodiek dient de macrobenthische biomassa (in grammen asvrijdrooggewicht per vierkante meter) zich tot de primaire productie (in grammen koolstof per vierkante meter per jaar) te verhouden als $ADW_{benthos} = 1.5 + 0.105 \times PP$. De methodiek (evenals de achterliggende literatuur; Van Hoey et al., 2007 en Herman et al., 1999) is echter niet als een handleiding geschreven en geeft ruimte voor keuze en/of interpretatie mogelijkheden.

Figuur 10-1: Weergave Communicatie indicator Ecologisch functioneren met onderliggende toetsparameters, rekenparameters en verklarende parameters (Holzhauer et al., 2011).
10.2.1.2 **GEBRUIKTE DATA**

Daar het macrobenthos van de Westerschelde met ingang van 2009 enkel nog in het najaar wordt bemonsterd, hebben we er hier voor gekozen om de totale biomassa in het najaar als de gemiddelde macrobenthische biomassaproduktie te zien. De gemiddeld waargenomen biomassa is daarvoor berekend per biotoop x OMES-zone en naar oppervlakte ratio gemiddeld voor de gehele Westerschelde (zie Digitale Bijlage 10.2.1.1).

De primaire productie bestaat uit een bentische en een pelagische component. Beiden zullen als gemiddelde voor de gehele Westerschelde dienen te worden berekend om vervolgens te worden opgeteld.

Met betrekking tot het fytobenthos wordt de primaire productie niet als zodanig in de Westerschelde gemeten, maar is er wel een uitgebreide dataset met chlorofyll-a concentraties. Het betreft hier veelal een groot aantal metingen per maand van chlorofyll-a in microgram per gram sediment voor de bovenste centimeter van het substraat. Met behulp van de door De Jong et al. (1994) bepaalde gemiddelde dichtheid voor sediment voor de Oosterschelde (1.55 g/cm²) is vanuit de gemiddelde chlorofyll-a concentraties per jaar per gram sediment de biomassa aan chlorofyll-a per m² berekend. De jaargemiddelde primaire productie wordt berekend via de formule PP_fytobenthos = 1.13 B_chlorofyll-a + 8.23, met PP_fytobenthos = de primaire productie in gram koolstof per vierkante meter per jaar, en B_chlorofyll-a = de eerder berekende chlorofyll-a biomassa in milligram per vierkante meter per jaar in de bovenste centimeter van het sediment (De Jong et al., 1994). Aangezien de fytobenthosproductie hoofdzakelijk plaats vindt in het laagdynamische sublitoral is de jaarproductie vermenigvuldigd met het aandeel aan oppervlak voor de laagdynamische sublitorale ecotopen op het totaal voor de Westerschelde.

De macrobenthos biomassa (ADW_{sub}) wordt getoetst ten opzichte van de totale gemiddelde primaire productie (PP: fytoplankton + fytobenthos) waarbij de 2 idealiter zich dienen te verhouden volgens de vergelijking ADW_{sub} = 1.5 + 0.105 * PP. Volgens de beoordelingsmethodiek is er sprake van een positieve beoordeling wanneer de macrobenthos biomassa zich inderdaad volgens deze vergelijking tot de primaire productie verhoudt, of wanneer er meer macrobenthos aanwezig is dan volgens de vergelijking zou kunnen worden verwacht. Er is dan overigens sprake van enige overbegrazing ofwel een dergelijke situatie is waarschijnlijk niet langdurig houdbaar daar het suggereert dat er sprake is van een voedselsektork. Onderbegrazing, hetgeen in feite betekent dat er met betrekking tot het voedselaanbod ruimte is voor met name schelpdierpopulaties om uit te breiden, wordt negatief beoordeeld.

Aangezien we niet over macrobenthos biomassa gegevens voor het jaar 1991 beschikken maar wel over waardevolle gegevens met betrekking tot de primaire productie die we graag zouden willen evalueren, worden de PP-waarden voor 1991 met de Macrobenthos gegevens van 1992 gecombineerd en geëvalueerd.

10.2.1.3 **ANALYSE**

De resultaten laten zien dat er een grote mate van jaar tot jaar variatie in de rekenparameter op treed (Figuur 10.2). Voor de gecombineerde evaluatie voor de jaren 1991-1992 blijkt de verhouding enige
onderbegrazing aan te duiden. Dat geldt eigenlijk voor alle geevalueerde jaren met uitzondering van het jaar 2006. Ook het jaar 2007 benadert overigens nog de lijn volgens het evenwicht. De jaren 2008 en 2009 duiden er echter op dat er ruimte is voor met name de schelpdierbestanden om zich uit te breiden (sterke onderbegrazing), en enkele voor het jaar 2001 kan worden gesteld dat de mate van onderbegrazing groter was dan in 2009.

\[ADW_{mb} = 1.5 + 0.105 \times PP \]

De reden waarom dat er in 2006 geen sprake van onderbegrazing is geweest zit hem vooral in het feit dat de primaire productie in dat jaar sterk achter bleef. Het fytoplankton heeft het grootste aandeel in het totaal aan primaire productie in de Westerschelde, en het is juist de fytoplankton productie die in dat jaar sterk achter bleef, terwijl de bentische primaire productie juist groter was dan in andere jaren. Waar er verder juist behoorlijke variatie in de macrobenthische biomassa kan worden waargenomen, is de primaire productie in die jaren minder variabel. De \(ADW_{mb} \) tot PP verhoudingen zoals met stippellijnen in de figuur weergeven zijn achtereenvolgens van links naar rechts volgens de verhoudingen 1:1, 1:2.5, 2:15, 1:15, 1:40 en 1:100, zijn volgens de indeling van Van Hoey et al. (2007) en lijken nuttig bij de interpretatie van de resultaten.

10.2.1.4 **INTERPRETATIE**

Het feit dat er behoorlijke jaar tot jaar verschillen kunnen optreden geeft al aan dat de parameter jaarlijks dient te worden opgevolgd zodat ontwikkelingen kunnen worden waargenomen. De gemiddelde

![Graph showing ADWmb and PP relationship](image_url)
primaire productie in een systeem is veelal veel stabiler in een systeem dan de macrobenthische biomassa. Eerstgenoemde zal normaliter in een goed gemengd systeem als de Westerschelde enkel substantieel gereduceerd zijn wanneer extremen in debieten optreden waardoor salinititeizons verschuiven. Een indicatie hiervoor zal onder andere een verschil in de respons van de pelagische en benthische primaire productie zijn.

Daar waar de primaire productie een directe respons zal vertonen op veranderende omstandigheden, zal de respons in de macrobenthische biomassa (afhankelijk van de oorzaak) eerder een vertraging vertonen. Jaar tot jaar fluctuaties kunnen het gevolg zijn van jaren met succesvolle broedval (effect in biomassa ook weer met vertraging) of het uitblijven van broedval van relatief algemene schelpdiersoorten. Een structurele lage biomassa resulterend in structurele onderbegrazing duidt echter op een onbalans in het systeem. Veelal blijft het aandeel filterende organismen in de gemeenschappen dan achter bij het aandeel detritivoren; ook wel aangeduid met de term ‘verwarming’. Verklaringen hiervoor kunnen zijn: slechte zuurstofcondities, lange retenentietijd en/of geringe circulatie, maar dat is onwaarschijnlijk in de Westerschelde zoals respectievelijk weergegeven in H 7.2 (Zuurstof) en 7.6.6 (Vermeljetijd). Effecten van verontreiniging zijn niet geheel te sluiten. Ondanks dat concentraties voor de meeste stoffen zijn afgenomen, zijn er nog altijd stoffen in potentieel toxische concentraties aanwezig waaronder enkele zware metalen, bestrijdingsmiddelen en cyclische koolwaterstoffen (H 7.5.2 Chemische waterkwaliteit). Zeker zo relevant zijn overigens de bodemconcentraties en de mate van biobeschikbaarheid van de substanties (H 7.5.1).

Naast de toxische stoffen en waarschijnlijk belangrijker dan de toxische stoffen is het zwevend stof gehalte (gesuspendeerd materiaal) en het lichtklimaat in de Westerschelde. Ondanks een lichte verbetering van het lichtklimaat in de mesohaline zone is er sprake van erg slechte zichtcondities in de polyhaline en de mondingszones (de meest productieve zones met betrekking tot het macrobenthos op basis van de saliniteit) onder andere in 2004. Mogelijk dat zwevende stof gehaltes in die tijd uitzonderlijk hoog waren. In ieder geval zorgt het zwevend stof gehalte voor een sterke lichtlimitatie en het is dan ook de vraag of een structureel evenwicht tussen benthische biomassa en primaire productie realistisch is voor de Westerschelde. De sterke onderbegrazing in 2009 (ook al zichtbaar in 2008) is echter reden voor zorg aangezien dramatische effecten van een drastische stijging van de zwevend stof concentraties ten gevolge van verdieping en kanalisatie bekend is van de Eems. Daar is in zeer korte tijd (in enkele jaren rond het jaar 2000) het systeem omgeslagen van acceptabele slibconcentraties (enkele 10- tot 100-tal milligrammen per liter) in de waterkolom van de ‘Maximum Tubidity Zone’ naar een systeem met een vrijwel met slib verzadigde waterkolom (enkele 100-tal grammen per liter) in het bovensstroomse gedeelte (Spiteri et al., 2011). Dus met name desastreus voor de bovenloop; maar structurele onderbegrazing kan het ‘early-warning’ signaal zijn.

De sterke terugval in macrobenthische biomassa in 2008 en 2009 is overigens een effect van pickende E. directus (Amerskaanse zwaardschade) biomassa in de jaren daar voor zoals zichtbaar in de pickende exoten biomassa (H 9.6.4.2 Exoten) en een sterke teruggang van de kokkelbestanden (Cerastoderma) sinds 2006 (H 9.6.5.1 Totale macrobenthos biomassa; H10.2.2.4 Filterfunctie). We dienen hier echter op te merken dat er enige onzekerheden zijn met betrekking tot de aanwezige bestanden van de Amerikaanse zwaardschade. Vanaf 2008 is er namelijk overgegaan op een andere bemonsteringsstrategie binnen MWTL wat er voor heeft gezorgd dat het aantal genomen subtidale monsters per jaar sterk is afgenomen waardoor de mogelijkheid van het missen van de E. directus banken is toegenomen. In dat geval zou er toch sprake kunnen zijn van een redelijke balans tussen de primaire productie en de benthische biomassa in 2008 en 2009. We verwachten echter dat het toch om een werkelijke teruggang in de populaties gaat omdat een vergelijkbaar patroon van fluctuaties is waargenomen in de voordelta (De Mesel et al., 2011; NIOZ – Monitor Taakgroep, eigen data).
10.2.1.5 **EVALUATIE 2009**

In 2009 blijkt er duidelijk geen sprake te zijn van een evenwicht (laag niveau); in potentie zouden de schelpdierbestanden veel groter kunnen zijn (de macrobenthos biomassa is bijna 4x te laag ten opzichte van de primaire productie). Er was sprake van een verslechtering van de situatie ten opzichte van 2008, en zeker ten opzichte van 2007 en 2006, hetgeen een negatieve beoordeling voor deze rekenparameter betekent.

10.2.2 **30 TON ADW AAN BENTHOS (ZEE SCHELDE)**

INLEIDING

De evaluatiemethodiek geeft aan dat ter beoordeling van de draagkracht van de Zeeschelde er minimaal 30 ton aan asvrijdrooggewicht aan benthos aanwezig dient te zijn waarbij iedere OMES-zone ook ten minste 2 ton ADW benthos dient te bevatten. De genoemde waarden zijn gebaseerd op situatie rond 1950 die als referentie heeft gediend.

GEbruikte data

Ter berekening van de totale benthos biomassa zijn beschikbaar de INBO-benthos monsters (=stalen in Vlaanderen) en de INBO-oligochaeten monsters voor de jaren 1999, 2002 en 2005. Tesamen geven die een beeld van de benthos biomassa die op de 0.25 mm zeeef achter blijft (onderscheid benthos en oligochaetens fractie op basis van 1mm zeeef. Voor de jaren 2008 en 2009 (zo zal het monitoringsprogramma in de toekomst ook worden voortgezet) is er gebruik gemaakt van een 0.5 mm zeeef en is alle benthos inclusief de oligochaetens voor die monsters gewogen (afzonderlijke oligochaetens monsters worden enkel nog gebruikt voor het bepalen van de soortensamenstelling van de oligochaetengemeenschappen). De beschikbare monsters zijn aan de fysiotopen gekoppeld waarbij voor de jaren 1999, 2002 en 2005 de link is gelegd naar de fysiotopenkaart van 2001, en voor de jaren 2008 en 2009 naar de fysiotopenkaart van 2010. Per fysiotoop per OMES-zone per te analyseren jaar is de gemiddelde biomassa bepaald. Ontbrekende waarden voor bepaalde fysiotoop x zone x jaar combinaties zijn daarbij ingeschat (zie Digitele Bijlage 10.2.1.2) op basis van ontwikkelingen in de andere fysiotopen of op basis van verhoudingen in waarden voor fysiotopen tussen jaren.

Gebruiksmakende van het totale aanwezige oppervlak per fysiotoop per zone is de totale biomassa per OMES-zone berekend, waaruit de totale systembiomassa kan worden berekend. Men dient er rekening mee te houden dat er een kleine onderschatting van de biomassa zal zijn voor de jaren 2008 en 2009 (of een overschatting van de jaren 1999, 2002 en 2005 omdat de 0.25-0.5 mm zeeffracitie ontbreekt. Gedurende de analyse van de rekenparameter hebben we de bevindingen kunnen vergelijken met eigen berekeningen van het INBO (Speybroeck et al., 2012). Aangezien op het moment van berekening/rapportage de INBO studie nog gaande was en het niet geheel duidelijk was of en waar dezelfde data werden gebruikt zijn de berekeningen afzonderlijk uitgevoerd. Uiteraard zal de INBO-studie mogelijk op een andere manier met de hiaten in de dataset zijn omgesprongen. Wel komen de INBO-studie en deze (T2009 evaluatie) studie tot vergelijkbare conclusies en verschilt de berekende biomassa slechts enkele procenten. Wel is ons tegen het einde van het T2009-project vanuit het INBO medegedeeld dat er fouten zaten in de aangeleverde data voor 2009 en zijn er nieuwe biomassa gegevens aangeleverd. (Bij de volgende evaluatie dient gebruik gemaakt te worden van de nieuwe dataset hetgeen waarschijnlijk tot kleine verschillen in de resultaten kan leiden).
10.2.2.3 **ANALYSE**

De evaluatiemethodiek geeft aan dat ter beoordeling van de draagkracht van de Zeeschelde er minimaal 30 ton aan asvrijdrooggewicht aan benthos aanwezig dient te zijn waarbij iedere OMES-zone ook ten minste 2 ton ADW benthos dient te bevatten. Hierbij is uitgegaan van de ingeschatte productie voor de referentie situatie waarvoor het jaartal 1950 is aangehouden. Sinds 1950 is het meest productieve oppervlak, namelijk het intertidale gebied, afgenomen, maar de primaire productie toegenomen (Adriaensen et al., 2005). Wanneer toe- en afname naar ratio zijn, zal de gewenste 30 ton ADW aan benthos toch kunnen worden gehaald.

Op basis van INBO benthos & Oligochaeten bemonstering

![Figuur 10-3: Ontwikkeling in de total benthos biomassa (ton asvrijdrooggewicht) in de Zeeschelde. De stippellijn geeft de gewenste 30 ton benthos voor een positieve beoordeling weer.](image)

De resultaten laten zien dat in het verleden (1999-2005) de 30 ton ADW aan benthos in de Zeeschelde + zijrivieren ruimschoots werd gehaald (Figuur 10-3). Ondanks dat er een sterke afname van het totale areaal heeft plaats gevonden gedurende de afgelopen 60 jaar (en ook al daarvoor, vanwege de sterke inperking van het systeem; Van Braeckel et al., 2006; H 8.2.3 Leefomgeving, Oppervlak, Zeeschelde en getijrivieren) gepaard gaand met eveneens een achteruitgang van het meest productieve areaal; het intertidale, is de productiviteit van het systeem dusdanig toegenomen dat de benthos productie het verlies overcompenseerd. Ook van 2001 naar 2010 neemt het intertidale oppervlak in een deel van het systeem (Zoete zone met korte verblijftijd en de Rupel en de Durme uitgezonderd) nog af. Echter de benthos productie is volledig ingeklapt. Dit blijkt overigens voornamelijk de Oligohaliene zone en de Rupel te betreffen (de zones met de hoogste benthos productiviteit per m²) (H 9.6.5.1 Totale macrobenthos biomassa).

Wel dient er rekening te worden gehouden met een aanpassing van de monitoringmethodiek die er voor zorgt dat de totale biomassa berekend voor de jaren 1999, 2002 en 2005 de fractie die achterblijft op een 0,25 mm zeef bedraagt, terwijl in 2008 en 2009 (evenals in de toekomst) deze ondergrens 0,5 mm bedraagt. Dit verklaart echter niet de grote afname die al zichtbaar in 2005 gaande was. Speybroeck et al. (in prep.)
schat in dat het dichthedenverlies met de verandering van strategie zo'n 10% bedraagt; aangezien het om de kleinste (= lichtste) individuen gaat, zal het verlies in biomassa niet meer dan een paar procent bedragen.

Naast dat de 30 ton ADW aan benthos in de Zeeschelde + zijrivieren niet wordt gehaald, wordt ook de minimaal vereiste 2 ton ADW aan benthos per OMES-zone niet in iedere zone gehaald. In de Zoete zone met lange verblijftijd en de Durme blijft de benthos biomassa ver van de 2 ton verwijderd (Figuur 10-4). Ook in de Rupel wordt de 2 ton niet gehaald, maar daar is de onzekerheid over de berekende waarde wel groter dan in de andere zones vanwege het ontbreken van monitoringslocaties in 3 van de 6 onderscheiden fysiotopen (wat niet weg neemt dat naar verwachting de benthosbiomassa laag is).

Figuur 10-4: De totale benthos biomassa (in ton asvrijdrooggewicht) in de Zeeschelde in 2009 verdeelt over de OMES-zones. De stippellijn geeft de gewenste 2 ton benthos per zone voor een positieve beoordeling weer.

10.2.2.4 INTERPRETATIE

De verklaring voor de sterke afname in totale benthos biomassa dient werkelijk in het systeemfunctioneren te worden gezocht (verschillen in methodiek verklaren slechts een klein percentage van waargenomen verschillen). Enerzijds heeft de Zeeschelde en de zijrivieren recentelijk een significante kwaliteitsverbetering ondergaan. Met name de zuurstofcondities zijn sterk verbeterd (H 7.2.5 Zuurstof, Trend). Dit kan er voor zorgen dat er een omslag in de benthische gemeenschappen plaats vindt waarbij de vanwege de hoge nutriënten input (met name Stikstof; H 7.3.3 Rekenparameter TDIN) productieve oligochaeten gedomineerde gemeenschappen, geleidelijk worden vervangen door soortenrijker gemeenschappen met een belangrijkere rol voor macrobenthos soorten als Mollusca en Crustacea. Initieel zal dit een sterke achteruitgang in de biomassa kunnen laten zien, temeer dat tegelijkertijd de begrazing door bijvoorbeeld benthivore vissen toe neemt (Digitale Bijlagen 10.3.2 Vissen en vogels resultaten). De
verwachting is dan echter dat de benthos biomass op den duur zal gaan toenemen daar met de groei en toename van met name de mollusken populaties de zwaardere soorten talrijker gaan worden en de biomass gaan bepalen. Dit zou een proces op de korte termijn kunnen zijn, ware het niet dat het lang kan duren voordat de macrobenthische activiteit in voorheen hypoxische bodems werkelijk toe neemt (Van Colen et al., 2008; Wijnhoven et al., 2010). Anderzijds bestaat ook de mogelijkheid dat toxische stoffen nog een rol spelen en de ontwikkeling van de macrobenthische gemeenschappen tegenwerken.

Weliswaar zijn de concentraties van veel toxische stoffen zoals zware metalen in de waterkolom afgenomen en nemen deze ook geleidelijk af in de waterbodems (effect van mixen en verdunnen), maar voor diverse substanties zijn de concentraties nog dusdanig hoog dat effecten niet zijn uit te sluiten. Daar bovenop is met het zuurstofrijker worden van de bodems wellicht ook juist de biobeschikbaarheid van de aanwezige toxische elementen toegenomen, waardoor weliswaar lagere concentraties grotere effecten hebben op het bodemleven (H 7.5 Toxische stoffen; De Lange et al., 2006). De soorten die het nu over zouden moeten nemen van de Oligochaeten (met name de Mollusca) zijn veelal tevens de meest gevoelige soorten voor verontreinigingen. Vanwege de hogere zoutgehaltes en het nimmer problematisch zijn geweest van de zuurstof condities in de Westerschelde speelt dat probleem in zijn geheel niet in dit gedeelte van het estuarium.

Ook de minimaal vereiste 2 ton ADW aan benthos per OMES-zone wordt niet in iedere zone gehaald. De in de methodiek gekozen 2 ton per zone is eerder een lage waarde die, wanneer die niet wordt gehaald, duidt op problemen. Dat de 2 ton ADW in de betreffende zones niet wordt gehaald ligt grotendeels aan de over het algemeen voor de gehele Zeeschelde lage benthos productie. Enkel in de Zoete zone met korte verblijftijd is deze beduidend hoger dan in de andere zones. Dat de benodigde biomass in de Oligohaliene zone en de Zone met sterke saliniteitsgradient dan toch worden gehaald zit hem vooral in het feit dat die zones qua oppervlak beduidend groter zijn dan de overige zones.

De evaluatiemethodiek (Holzhauer et al., 2011) geeft aan dat in de toekomst nog wel dient te worden nagegaan of de 30 ton ADW aan benthos een geschikte referentiewaarde is. Zo ook is de 2 ton ADW per OMES zone een arbitraire waarde die overigens naar ons idee wel voldoende laag is om aan te kunnen geven dat wanneer deze niet wordt gehaald er problemen in die zone zijn. We raden dan ook aan om in de toekomst nog eens naar de genoemde waarden te kijken. Dit geldt ook voor de 30 ton ADW, die momenteel niet wordt gehaald. Een ontwikkeling in de richting van de 30 ton kan in ieder geval ook nu al als een verbetering in de goede richting worden gezien.

10.2.2.5 EVALUATIE 2009

Het mogen duidelijk zijn dat de 30 ton ADW aan benthos in de Zeeschelde + zijrivieren en de 2 ton ADW aan benthos per OMES zone in 2009 niet werden gehaald. Dit is een trend die al zichtbaar werd in 2005 en die in ieder geval ook in 2008 er voor zorgde dat de genoemde waarden niet werden gehaald. Daarmee staat de draagkracht van het systeem in het Vlaamse deel van het estuarium serieus onder druk waarbij met name voor de hogere trofische niveaus (benthivore vissen en vogels) de situatie zorgelijk is. De huidige bevindingen hoeven echter niet te betekenen dat het nu in zijn geheel de verkeerde kant op gaat, maar zijn ook de eerste tekenen van herstel met name met betrekking tot een verbeterende waterkwaliteit en met name de zuurstof condities en wijzen wellicht op het begin van een successie in de bodemdiergemeenschappen, echter (tijdelijk) tegengewerkt door toxische stoffen grotendeels reeds aanwezig in het systeem. Tot dusver blijft dit echter hypothetisch en het is dan ook van groot belang om te onderzoeken wat de terugval in de benthos biomass heeft veroorzaakt of wat de natuurlijke successie naar schelpdier gedomineerde gemeenschappen momenteel nog tegen houdt.
10.2.3 FILTERFUNCTIE

10.2.3.1 INLEIDING

Filterrende macrobenthos soorten zullen in een gezond systeem een groot deel van de macrobenthische biomassa uitmaken en daarmee voor een groot deel het voedselaanbod bepalen voor benthive vissen en vogels. Anderzijds spelen de organismen een belangrijke rol in de filtering van de waterkolom; begrazing van de primaire productie en het tot op zekere hoogte filteren van anorganisch materiaal uit de waterkolom. Echter wanneer de troebelheid van het systeem toe neemt zal dat zijn weerslag hebben op de populaties aan filterende organismen. Van nature zijn de twee dominante filterende soorten in het Schelde-estuarium; de kokkel en de mossel.

De evaluatie van de filterfunctie bestaat uit twee onderdelen. a) Ten eerste wordt nagegaan of er ten minste één mosselbank in het Schelde-estuarium op natuurlijk substraat aanwezig is. b) Vervolgens wordt de aanwezige biomassa (in versgewicht) aan kokkels (Cerastoderma edule) opgevolgd, en dient er voor een positieve evaluatie ten minste 4 miljoen kg aanwezig te zijn (bij voorkeur ook meer dan 8 miljoen kg). Hiermee moet de filtercapaciteit en de voedselvoorziening in het Schelde-estuarium zijn gewaarborgd.

10.2.3.2 GEBRUIKTE DATA

Enerzijds is aan de hand van bestaande literatuur en het informeren bij onderzoekers die frequent het Schelde systeem bezoeken nagegaan of er sprake is van een mosselbank op natuurlijk substraat in de Westerschelde. Anderzijds is gebruik gemaakt van de door Wageningen-IMARIS aangeleverde berekende waarden voor de totaal aanwezige biomassa (versgewicht) aan kokkels op basis van de WOT (Wettelijke OnderzoeksTaken) Schelpdierbestand opnamen (data van enkele algemene soorten) in de Westerschelde (zie tevens Digitale Bijlagen 10.2.1.5 Filterfunctie).

10.2.3.3 ANALYSE

Onlangs is aan de oostkant van een klein plaatje (nu 'Mosselplaat' gedoopt) gelegen ten zuidoosten van de Lage Springer een aantal mosselbanken met een gezamenlijk oppervlak van ca 4,5 ha aangetroffen (Memo RWS-Zeeland, 2011). Het gaat om volwassen mosselbanken met exemplaren tot 5 a 6 cm lang en goed te traceren op falsecolor luchtfoto’s van 2010. Het lijkt er tevens op dat tenminste delen van de banken ook al aanwezig waren in 2008 en 2004 (jaren waarvan luchtfoto’s beschikbaar waren).

10.2.3.4 INTERPRETATIE

Er zijn indicaties dat een deel van de aangetroffen mosselbanken in het verleden mosselpercelen moeten zijn geweest. Dit wordt mogelijk bevestigd door een rapportage die spreekt over voormalige mosselpercelen in de buurt van het vaarwater langs de Paulinapolder (AquaSence, 2004). Daar echter de percelen al lange tijd niet meer in gebruik zijn en de mosselbanken gevestigd zijn op zacht substraat, is er sprake van de aanwezigheid van mosselbanken op natuurlijk substraat. Men kan echter discussiëren over het aantal en het totale oppervlak aan mosselbanken dat men kan verwachten en dat aanwezig dient te zijn om te spreken over een substantiële bijdrage van mosselen aan de filterfunctie. Het is dan ook aan te bevelen om hier een studie naar uit te voeren, zodat de parameter op dit vlak in de toekomst eventueel kan worden aangescherpt.

Kokkelbestanden vertonen van nature grote fluctuaties (zo ook in de Westerschelde). Dit heeft vooral te maken met jaren met succesvolle broedval die worden opgevolgd door perioden zonder substantiële broedval, en jaren met grote sterfte binnen de populaties. Hoewel veel ook nog onduidelijk is over wat nu zorgt voor een jaar met succesvolle broedval, is het opvallend dat zo’n jaar geregeld volgt op een relatief koude winter. Dit zou te maken kunnen hebben met een verminderde predatiedruk (het hyperbenthos verschijnt later in het jaar) na een koude periode, maar dan hebben we het vooral over overlevingskansen na broedval (Beukema, 1992). Het is ook bekend dat strenge winters grote sterfte onder de populaties kunnen veroorzaken; met name wanneer er ook nog sprake is van ijsgang, en intertidale gebieden in feite mechanisch worden geschoord door het schurende ijs. Na zo’n jaar met grote sterfte is de kans op een succesvolle broedval met goede overlevingskansen en snelle uitgroeiemogelijkheden juist weer groter.
(Beukema, 1992). Dit heeft wellicht te maken met verminderde competitie om ruimte en voedsel. Sterker nog, uit kokkelvisserij experimenten is gebleken dat de jonge kokkeljjes sneller groeien in éénmalig bevisste gebieden dan in de onbevisste gebieden. Naast verminderde concurrentie speelt hier wellicht het meer beschikbaar zijn van voedingsstoffen na omwoeling ook nog een rol (Wijnhoven et al., 2011). Een fenomeen wat wellicht ook kan spelen na ijsgang op slikken en platen. Uit laboratorium experimenten is gebleken dat ook de voedselbeschikbaarheid en samenstelling van voedsel het succes van de reproductie kunnen verhogen en het is bekend dat een temperatuursprong de reproductie kan opwekken (Pronker et al., 2013). Kortom de fytoplankton beschikbaarheid en samenstelling in het voorjaar en wellicht ook het temperatuurverloop in zowel de waterkolom als de directe instraalwarmte op de platen en slikken tijdens laag water kunnen bepalend zijn voor een succesvolle broedval. Twee of drie jaar na een succesvolle broedval zou men normaalgesproken de grootste biomassa aan kokkels verwachten.

Uiteraard is dit een deel van het verhaal, aangezien er ook bevissing van de kokkelbestanden plaats vindt en heeft plaats gevonden. De inschatting in het voorjaar van het verwachte versgewicht aan kokkels in het najaar (op basis van de WOT data) is altijd bepalend geweest voor het wel of niet mechanisch bevissen en de mate van bevisserij in de Westerschelde. De 4 miljoen kg versgewichtgrens wordt tevens aangehouden (Kesteloo et al., 2009). Het Compendium voor de Leefomgeving (CBS et al., 2012) geeft op basis van data van IMARES een overzicht van de ingeschatte hoeveelheid kokkelvlees voor de Westerschelde. De gerapporteerde verhouding aanzienlijk kunnen we een duidelijk zichtbaar effect van de mechanische visserij op de kokkelbestanden voor details zie Digitale Bijlagen 10.2.2.4 Filterfunctie). Men zou verwachten dat als er veel wordt opgevist, dit laat een jaar later zichtbaar zal worden in het water. Dit is in een aantal jaren zichtbaar, maar in andere jaren (wellicht volgend op een eerdere succesvolle broedval of met optimale groeicondities) is het effect minder duidelijk zichtbaar of wordt er zelfs in zijn geheel geen afname in de biomassa waargenomen (Figuur 10-6). De laatste 4 jaar heeft er geen mechanische kokkelvisserij meer plaats gevonden, maar de kokkelbestanden hebben zich (nog) niet hersteld; in tegendeel, in 2009 werd voorlopig het dieptepunt van de afgelopen 18 jaar bereikt. Het is overigens niet zo dat er in die jaren helemaal geen kokkels worden geoogst, want het handkokkelen (wat ook commercieel met complete teams wordt uitgevoerd) vindt in die jaren wel plaats.

Andere aspecten die nog een rol kunnen spelen bij de resulterende kokkelbiomassa die wordt aangetroffen is de ontwikkeling van geschikt biotoop. In de Westerschelde hebben de kokkels een voorkeur voor slikkige intergetijde gebieden en ondiepe wateren (Daan et al., 2013). Dit betekent dat ze een voorkeur hebben voor enigszins laagdynamische gebieden, maar de dynamiek mag ook weer niet te laag zijn. In de Voordelta worden kokkelbanken veelal op zandige substraten aangetroffen, wat wellicht een indicatie is dat de dynamiek belangrijker is dan het slibgehalte. Ysebaert et al. (2002) geven aan dat de kokkel in de Westerschelde voornamelijk in de Polyhaline zone en het Mondingsgebied wordt gevonden, namelijk bij een gemiddelde saliniteit van boven de 15 ‰ en ieder geval boven de 10 ‰. Onder de 5 m NAP wordt de soort nog nauwelijks aangetroffen. De trekkans voor de soort is groter dan 10% als de stroomsnelheid in een gebied tussen 0.1 en 0.6 m/s ligt. De grootste trekkans is in gebieden met een maximale eb stroomsnelheid van 0.35 m/s. Ook de korrelgrootte van het sediment speelt een rol. De grootste trekkans voor de soort is bij een mediane korrelgrootte van het sediment tussen de 100 en 150 μm. Maar ook bij veel fijner (in slib) en grover sediment tot een mediane korrelgrootte van boven de 250 μm wordt de soort nog aangetroffen.

Ondanks de verschillen in de methodiek waarmee de ecotopenkaarten zijn gemaakt (zie voor problematiek H 8 ‘Leefomgeving’ waaruit blijkt dat de ecotopenkaarten van 1996, 2001 en 2004 enerzijds, niet één op één zijn te vergelijken met de ecotopenkaarten van 2008 en 2010 anderzijds) waardoor ecotoop-ontwikkelingen in de Westerschelde lastig te evalueren zijn kan worden geconcludeerd dat de afgelopen
decennia het oppervlak aan laagdynamische intertidale en laagdynamische ondiep subtidale milieus geleidelijk is afgenomen ten gunste van de hoogdynamische milieus en diepere delen (H 8.2 Oppervlak, onderdeel van Leefomgeving). Dit verlaagt uiteraard de vestigingsmogelijkheden voor kokkels, maar het lijkt er niet op dat dit de reductie van de kokkelbestanden van de laatste jaren kan verklaren. Ook kunnen veranderingen in stromingsrichtingen en stroom snelheden (die naar verwachting zijn toegenomen) mogelijk de larven distributie van de kokkel tegenwerken.

Een ander aspect is mogelijk toenemende concurrentie van andere schelpdieren zoals de exoot *Ensis directus* (Amerikaanse zwaardschede) die recentelijk massaal is opgekomen in de Westerschelde (zie tevens H 9.6 Benthos, onderdeel van Flora & Fauna). De piekbio massa werd inderdaad aangetroffen in 2006 en 2007 (is nu weer wat op zijn retour), maar van competitie om ruimte lijkt nauwelijks sprake gezien het overwegend voorkomen van *E. directus* in het subtidiaal (Daan et al., 2013), en van *C. edule* toch vooral in het intertidaal. Wel kan er uiteraard competitie om voedsel (met name fytoplankton) plaats vinden. De waargenomen significante afname in fytoplanktoncellen in alle 3 de zones van de Westerschelde zou daar op kunnen wijzen (H 9.7 Fytoplankton, onderdeel van Flora en Fauna). Dan zou ook een eventueel toegenomen predatie op de volwassen schelpen, maar met name op de larven nog parten kunnen spelen.

Met betrekking tot predatie op de volwassen exemplaren is de benthivore en omnivore vogel biomass in het estuarium inderdaad licht toegenomen. De benthivore en zooplanktivore vissen biomass in de Westerschelde zet wellicht meer zoden aan de dijk, en ook die vertoont een toenemende trend, juist met een dip rond de laatste piek in de kokkel biomass. Trends in krabben (met mogelijk een behoorlijke impact) zijn minder duidelijk (H 10.3 Vissen & vogels, onderdeel van Ecologisch functioneren). Met betrekking tot de predatie op larven spelen mogelijk het Hyperbenthos (maar zover we er zicht op hebben, is daar geen significante toename in de biomass; H 10.3 Vissen & vogels, onderdeel van Ecologisch functioneren) en de filterende schelpdieren een rol. Mogelijk dat *E. directus* dan toch een negatieve impact op de nieuwe aanwas van de kokkel heeft.

Wat de impact van filterende Amerikaanse zwaardschedes op het voorkomen van larven in de waterkolom is, is onduidelijk, maar experimenten tonen aan dat naast de Japanse oester ook inheemse soorten als de mossel en de kokkel larvifaga zijn en behoorlijke aantallen larven kunnen wegfilteren (Troost et al., 2008); er is geen reden om aan te nemen dat dit voor de Amerikaanse zwaardsche anders zou zijn. Al met al is onduidelijk wat de kokkels zo heeft gedeclineerd, maar het lijkt een combinatie van overbevissing, het uitblijven van succesvolle broedval, een afname van het voedselaanbod en een toename van de predatiedruk en concurrentie.
Er kan worden geconcludeerd dat er momenteel (T2009) een mosselbank op natuurlijk substraat in de Westerschelde aanwezig is op de ‘Mosselplaat’, waarmee dit onderdeel van de rekenparameter een positieve beoordeling krijgt.

Met betrekking tot de kokkelbestanden in de Westerschelde mogen het duidelijk zijn dat wanneer het gaat om het voedselaanbod voor hogere trofische niveaus het niet halen van de minimale hoeveelheid van 4 miljoen kg versgewicht gedurende de afgelopen 4 jaar grote gevolgen kan hebben. Er is door de grote jaarlijkse variatie geen significante trend waargenomen waarbij het gemiddeld over de periode 1992-2009 aanwezige kokkelbestand wordt berekend op 5.63*10^6 kg versgewicht. De gewenste biomassa versgewicht aan kokkels is gesteld op 8 miljoen kg; een waarde waar idealiter het gemiddelde voor langere periodes boven zou moeten blijven. Die 8 miljoen kilogram zou eigenlijk moeten waarborgen dat ondanks de natuurlijke fluctuaties in de kokkelbestanden de ondergrens van 4 miljoen kilogram toch jaarlijks wordt gehaald; dit vraagt dan echter om een aanpassing van het huidige kokkelvisserij beleid.

Met het reeds 4 jaar niet halen van de 4 miljoen kg aan kokkels en de ogenschijnlijke neerwaartse trend wordt de rekenparameter Filterfunctie negatief beoordeeld. De resultaten met betrekking tot dit onderdeel van de rekenparameter Filterfunctie zijn dus vooralsnog niet hoopgevend.
10.2.4 DIVERSITEIT BENTHOS

10.2.4.1 INLEIDING

De evaluatiemethodiek geeft aan dat wordt verwacht dat het ecologisch functioneren van het Scheldeestuarium niet in orde kan zijn wanneer er iets schort aan de macrobenthos diversiteit. Deze dient op basis van alle rekenparameters (Intactness, Exoten en eventueel Sleutelsoorten) in zowel de Westerschelde als de Zeeschelde + zijrivieren in orde te zijn.

10.2.4.2 GEBRUIKTE DATA

Voor de gebruikte data en methodiek wordt verwezen naar H9.6 Benthos; onderdeel van de evaluatie Flora en Fauna, waar deze rekenparameter volledig wordt uitgewerkt.

10.2.4.3 ANALYSE

Voor de gedetailleerde analyses en de resultaten wordt verwezen naar H9.6 Benthos; onderdeel van de evaluatie Flora en Fauna, waar deze rekenparameter volledig wordt uitgewerkt. Er zijn geen significante veranderingen in de Occurrence Intactness index waargenomen voor ieder van de OMES zones in zowel Nederland als Vlaanderen. Zowel het aantal exoten soorten per monster (trefkans exoten soorten) als de exoten biomassa is toegenomen in de Polyhaliene zone van de Westerschelde, en het aantal exoten soorten is tevens significant toegenomen in de Zoete zone met korte verblijftijd (Zeeschelde).

10.2.4.4 INTERPRETATIE

Voor de interpretatie en mogelijke verklaringen voor de bevindingen wordt verwezen naar H9.6 Benthos; onderdeel van de evaluatie Flora en Fauna, waar deze rekenparameter volledig wordt uitgewerkt.

10.2.4.5 EVALUATIE 2009

Vanwege de significante toenames in de trefkans op exoten soorten in de Zoete zone met korte verblijftijd en de Polyhaliene zone, de significante toename in de exoten biomassa in laatstgenoemde zone en een significante afname van de Occurrence Intactness index in de Zone met een sterke saliniteitsgradiënt, wordt deze rekenparameter hier negatief beoordeeld. Wel is het de vraag of het Schelde-estuarium niet toch prima zou kunnen functioneren ondanks de aanwezigheid en toenam van exoten. Met name wanneer er geen effect wordt gevonden op de intactness en de exoten een vergelijkbare positie in het voedselweb innemen als (andere) inheemse soorten, zou het geen probleem hoeven te geven. Dit laatste is echter wel een cruciaal punt daar exoten veelal wel gebruik maken van de productie in het systeem (en daarom concurreren met andere (inheemse) soorten), maar niet altijd in dezelfde mate worden geconsumeerd door hogere trofische niveaus, en dus de doorstroom van energie naar hogere trofische niveaus wordt belemmerd. Het is veelal een kwestie van tijd vooraleer ook de exoten populaties in vergelijkbare mate worden geconsumeerd als de populaties van inheemse soorten. Dit betekent dus in feite dat er verschil is in recentelijk gevestigde en nog expanderende exoten populaties, en reeds gevestigde exoten soorten waarvan de aantallen niet meer zo hoog liggen als net na de expansie fase (Hummel & Wijnhoven, 2013). In die zin lijkt het detecteren van trends in de trefkans voor exoten soorten en de totale exoten biomassa wel indicatief om juist expanderende exoten aan te tonen. Ondanks dat er nog kan worden gediscussieerd over de referentielijsten met betrekking tot de Occurrence Intactness index (deze worden momenteel aangescherpt in een parallel lopend project; Maris et al., in prep.), en het wellicht
indicatier is om in de toekomst de Intactness te baseren op de trefkans of abundantie van soorten, is de waargenomen afname van de OI index in de Zone met een sterke saliniteitsgradiënt, zorgelijk te noemen.

10.2.5 EVALUATIE MACROZOOBENTHOS

De toetsparameter Macrozoobenthos is opgebouwd uit een 4-tal rekenparameters die ook nog eens uit verschillende onderdelen bestaan. Enerzijds wordt met deze toetsparameter de doorstroom in het voedselweb van de primaire productie naar de hogere trofische niveaus getoetst voor de Westerschelde, wat op basis van oppervlak en volume wellicht ook het belangrijkste gedeelte van het estuarium is om de hogere trofische niveaus te voeden. Door het toetsen van de totale biomassa aan benthos voor de Zeeschelde, wordt daar ook gekeken of er voldoende draagkracht is voor de hogere trofische niveaus, waarbij de belangrijkste energiestroom (die via het benthos) in kaart wordt gebracht. Door specifieke biomassa te beoordelen, en de verwachting dat schelpdieren het meeste zullen bijdragen aan de biomassa in een gezond systeem, wordt tevens de link gelegd naar de filterende capaciteit. Deze wordt voor de Westerschelde weer specifiek geanalyseerd door de 2 van nature meest abundante soorten van het systeem op te volgen (mosselen en kokkels). Dus naast de toetsing van de belangrijkste primaire consumenten in dit deel van het systeem waarmee de potentiële energiedoorstroom kan worden opgevolgd, wordt ook de belangrijke functie van het filterende vermogen in het systeem getest. Door specifiek te kiezen voor de 2 dominante inheemse weekleppigen wordt er in feite al aangegeven dat vervanging van inheemse soorten door exoten in feite als niet van dezelfde kwaliteit wordt gezien (en initieel is dat ook zeker waar daar exoten niet direct volledig alle functies en rollen innemen; ze worden bijvoorbeeld in eerste instantie minder gegeten). Exoten worden echter ook nog eens specifiek geëvalueerd als onderdeel van de evaluatie van de diversiteit. De opkomst en eventuele dominantie door exoten kan zich reflecteren in de diversiteit van de macrobenthos gemeenschappen, maar deze kan ook gereduceerd zijn door een slechte kwaliteit van diverse omgevingsfactoren. Daarmee is dit cirkeltje rond aangezien algemeen wordt aangenomen dat bij een lage diversiteit het doorstroom van energie vanuit de primaire productie naar de hogere trofische niveaus serieus wordt bedreigd. (De tweede toetsparameter richt zich vervolgens op de doorstroom van energie van het niveau van de primaire consumenten naar de secundaire consumenten; zie H 10.3 Vogels & vissen).

Tabel 10-1: Overzicht evaluatie Macrozoobenthos tbv Ecologisch functioneren

<table>
<thead>
<tr>
<th>Macrozoobenthos evaluatie</th>
<th>Rekenparameters</th>
<th>Macrobenthische biomassa – primaire productie (WS)</th>
<th>30 ton ADW aan benthos (ZS)</th>
<th>Diversiteit benthos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T2009 trend evaluatie</td>
<td>T2009 trend evaluatie</td>
<td>T2009 trend evaluatie</td>
<td>T2009 trend evaluatie</td>
</tr>
<tr>
<td>Zeeschelde</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westerschelde</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zoals aangegeven zijn er diverse relaties tussen de rekenparameters onderling. Het is dan ook niet verwonderlijk dat het niet één rekenparameter is die slecht scoort, maar dat in feite alle rekenparameters een onvoldoende halen.
Het lijkt dat er momenteel sprake is van substantiële onderbegrazing van de primaire productie (in ieder geval in de Westerschelde), waarbij dient te worden aangetekend dat de begrazing momenteel vrijwel volledig afhankelijk is van succesvolle broedval onder de dominante schelpdierenpopulaties. In het recente verleden was de begrazing wel in evenwicht met de productie door florerende Gewone kokkel dan wel Amerikaanse zwaardschede populaties. Nu fluctueert deze parameter met de schelpdierbestanden. Het is wellicht aan te raden om in de toekomst bijvoorbeeld een 3-jaarlijks gemiddelde rond de evenwichtssituatie te evalueren. Een ander aspect waarom de parameter ook kritisch dient te worden bekken is dat de potentiële energie doorstroom niet direct een lineair verband vertoont met de biomassa daar deze mede wordt bepaald door de grootte en turn-over van de organismen die de biomassa uitmaken.

In feite speelt hetzelfde verhaal (substantiële onderbegrazing) ook in de Zeeschelde en de zijrivieren waar de gewenste/benodigde biomassa niet wordt gehaald. Hier kan het echter ook een eerste teken van herstel zijn en een reflectie van een verbetering van enkele waterkwaliteitsparameters (met name de zuurstofcondities). Negatief bij-effect is dat toxische stoffen tijdelijk een probleem kunnen worden (ondanks dat de totaal concentraties zelf niet stijgen). Hier is echter aanvullend onderzoek nodig om inzicht te krijgen in wat de terugval van de oligochaeten populaties, en daarmee de benthos biomassa, heeft veroorzaakt en/of wat de natuurlijke successie van schelpdier-gedomineerde gemeenschappen belemmert. Hoewel de diversiteit, nu uitgedrukt in de vorm van een Occurrence Intactness index op basis van de aan- en afwezigheid van soorten, in de meeste zones stabiel is of zelfs stijgt, neemt deze in de Zone met een sterke saliniteitsgradiënt significant af. Het is de verwachting dat de Occurrence Intactness index in de toekomst in alle zones nog wel wat zal moeten kunnen stijgen. Eigenlijk zou hiervoor in de toekomst de OI index op basis van trefkansen of abundenties moeten worden ingezet, want dan zal waarschijnlijk echter blijken dat de diversiteit nog behoorlijk laag is. Dan wordt wellicht ook een eventuele negatieve impact van exoten zichtbaar, die nu overigens reeds voor een negatieve score zorgen in bepaalde zones van zowel de Zeeschelde als de Westerschelde door toenemende soorten en biomassa's.

In de negatieve score van de filtercapaciteit (een belangrijke factor die juist een eventuele verdere vertroebeling van het systeem zou kunnen tegengaan en de voedselvoorziening zou moeten waarborgen) komen enkele negatieve tendensen in het systeem samen (achteruitgang van de laagdynamische intertidale en ondiepe subtidale gebieden, concurrentie van exoten) met exploitatie van de restanten van de populaties door de mens. Daar bovenop kunnen zelfs positieve ontwikkelingen (zoals toenemingen van diverse groepen op hogere trofische niveaus) een negatieve weerslag hebben omdat daarmee de predatiestructuur ook toeneemt. Wanneer de kokkelpopulaties voorlopig door de mens worden ontzien, is het echter niet ondenkbaar dat een jaar met optimale condities voor een succesvolle broedval de rekenparameter Filterfunctie nog een positieve draai weten te geven (temeer daar er ook aan compensatie van de achteruitgang van de gewenste ecotopen wordt gewerkt).

10.3 VISSEN EN VOGELS

10.3.1 ENERGIE DOORSTROOM VOEDSELWEB

10.3.1.1 INLEIDING

De toetsparameter ‘Vissen en vogels’ bestaat uit 1 rekenparameter; ‘Energie doorstroom voedselweb’ Hier wordt in feite geëvalueerd of er sprake is van een juiste balans tussen primaire consumenten en secundaire consumenten in het voedselweb van het gehele Schelde estuarium. Daarbij worden de gegevens met betrekking tot diverse diergroepen opgeschaald naar het systeemniveau en samengevoegd en opgeteld.
Daarbij wordt voor de energie doorvoer de afgeleide factor biomassagebraukt, waarbij er vanuit wordt
gegaan dat er een balans is in voedsel aanbod en predatieedrukn wanneer de biomassaverhouding tussen de
twee rond de 10% ligt (zie o.a. Pauly & Christensen, 1995). Problematisch is echter dat enerzijds niet alle
soorten generalisten zijn (en voorageren op alle voedsel groepen), maar het anderzijds ook niet eenvoudig
is om zoorten in te delen in trofische groep (omdat diverse soorten schakelmogelijkhebben en
facultatief kunnen voeden op bepaalde groepen), en dat aspecten als predatie binnen de groep der
secundaire consum enten (of zelfs canibalisme) de verhouding enigszins kunnen vertroebelen. Ook is
biomassag een afgeleide van de energiedoorstroom, maar komen aspecten als warmte productie en actieve
mobiliteit hier niet in terug, en zal de grootte en de turn-over van de desbetreffende organismen een rol
spelen. Het is dus zaak om een behoorlijke bandbreedte in de verhouding aan te houden waaraan er
nog sprake is van enige balans. De methodiek geeft aan dat een biomassaverhouding tussen de 1 en de
20% acceptabel is, en dat een waarde onder de 1% duidt op onderbegrazing en een waarde boven de 20%
on overbegrazing. Verder mag de verhouding voor een goede beoordeling niet afnemen.

Cruciaal bij de evaluatie van deze parameter is echter dat dezelfde groepen in de berekeningen voor de te
 evaluieren jaren worden meegenomen. De methodiek geeft aan dat de groep der primaire consum enten
bestaat uit het benthos, het hyperbenthos en het zooplankton, en dat de groep der secundaire
consum enten bestaat uit de benthivore en zooplanktvore vissen, de benthivore en omnivore vogels en de
krabben. Er zullen voor het samenstellen van de totale biomassag per consum enten groep diverse keuzes
dienen te worden gemaakt (die eventueel ook anders hadden kunnen worden gemaakt) en er en der
zullen data ontbreken; dat is echter geen probleem zolang dit maar consequent wordt toegepast.

10.3.1.2 GEbruikte Data

Vooruitlopend op de databeschikbaarheid per diergroep waarvoor biomassag’s dienen te worden
berekend, kunnen we hier al aangeven dat die sterk varieert van aanwezige tijdreeksen vanaf de jaren 70
tot op heden (bv voor de Vogels; H9.3 Niet-broedvogels), tot groepen waarvoor we slechts data hebben
van enkele jaren (bv voor het Benthos van de Zeeschelde + zijrivieren; H9.6 Benthos) of groepen waarvoor
informatie zelfs in zijn geheel ontbreekt, en we aangewezen zijn op literatuur (bv Zooplankton in de
Westerschelde uit de jaren 90). De databeschikbaarheid overzien hebben we er voor gekozen om deze
rekenparameter voor ieder jaar gedurende de periode 1992-2009 te berekenen, waarbij we dan voor
diverse groepen de biomassag voor bepaalde jaren zullen moeten schatten. Indien de biomassag niet te
berekenen was, hebben we er voor gekozen om voor dat jaar en die groep het gemiddelde van het
voorafgaande en het opvolgende jaar te nemen, dan wel bij het ontbreken van oudere data de waarde van
het eerste bekende jaar aan te houden. Verder dient er ook een keuze gemaakt te worden in hoe de
biomassag wordt uitgedrukt. Deze is namelijk voor de verschillende groepen hetzij als drooggewicht (DW)
of asvrij drooggewicht (ADW) of als natgewicht (WW) in de datasets aangegeven, of in verschillende
hoofdstukken in die eenheden vanuit aanwezige aantallen berekend. We hebben er hier voor gekozen om
overal het gewicht indien nodig om te rekenen naar natgewicht.

De totale biomassag aan benthos voor de Zeeschelde + zijrivieren is reeds berekend als rekenparameter in
dit hoofdstuk (Ecologisch functioneren), gebruik makende van Benthos en Oligochaeten data en
berekening van de totale biomassag via gemiddelde waarden per OMESzone en fysiotoop, naar
opervlakte ratio gebruikmakende van de ecotopenkaarten (zie H10.2.2 30 ton ADW aan benthos en
2009; de overige jaren zijn op de eerder omschreven standaard wijze ingevuld. Het asvrijdrooggewicht is
daarbij via een voor benthos gemiddelde conversiefactor (ADW/WW = 0.116, naar Escaravelage et al., 2011)
omperekend in natgewicht (Digitale Bijlagen 10.3.1 Vissen en vogels).
De gemiddelde biomassa aan macrobenthos is met betrekking tot de Westerschelde reeds als Verklarende parameter onder Flora en fauna (H 9.6 Benthos) berekend per OMES zone, waarbij eerst gemiddelden zijn berekend per jaar en per ecotoop, die vervolgens naar oppervlakte ratio van de ecotopen (gebruikmakende van de voor het berekenende jaar meest relevante ecotopenkaart) zijn uitgemiddeld naar de volledige zone (zie Digitale Bijlagen 9.6.1 Benthos). Deze data kunnen naar oppervlakte ratio van de OMES zones worden opgeschaald naar de totale biomassa voor de Westerschelde (zie Digitale Bijlagen 10.3.1 Vissen en vogels). Ook hier is het ADW via een standaardconversie (zelfde factor als voor de Zeeschelde + zijrivieren) omgerekend naar WW. De biomassa is te berekenen voor alle jaren behorende tot de periode 1992-2009. Met betrekking tot de totale biomassa aan hyperbenthos voor de Zeeschelde + zijrivieren zijn geen data aangeleverd, hoewel er naar verluid waarnemingen van aas- en steurgarnalen in de fuikvangsten worden bijgehouden. Aangezien de omrekening van garnaalvasten in fuiken sowieso moeizaam zal zijn (momenteel wordt ook de ankerkuil ingezet voor monitoring zodat voor de toekomst beter te kwantificeren gegevens aanwezig zullen zijn) en de biomassa verhouding gezien de meer dan factor 10 verschil in volume ten opzichte van de Westerschelde, verwaarloosbaar zal zijn, wordt de totale hyperbenthos biomassa van de Zeeschelde + zijrivieren hier buiten beschouwing gelaten (zie Digitale Bijlagen 10.3.1 Vissen en vogels).

Ook met betrekking tot de Westerschelde is er geen compleet overzicht van het hyperbenthos, maar wordt wel de dominante soort; *Crangon crangon* (de Grijze garnaal) met de garnalenkor (Demersal fish survey) gemonitord waardoor de aantallen per hectare per millimeter lengteklasse bekend zijn. Wederom worden de data naar het totale oppervlak van de Westerschelde (aan de hand van ecotopenkaarten waarbij het sublitoraal en de helft van het litoraal als effectief habitat is genomen) omgerekend. De aantallen zijn via een soortspecifieke lengte-gewicht regressie omgerekend naar asvrij drooggewicht en vervolgens via een soortspecifieke conversiefactor omgerekend naar natgewicht (beschikbaar vanuit NIOZ-data, gerapporteerd in Escaravage et al., 2011). Data zijn beschikbaar voor de gehele periode 1992-2009 (zie Digitale Bijlagen 10.3.1 Vissen en vogels).

De zoöplankton monitoring in de Westerschelde is pas recentelijk opgestart (data zullen bij volgende evaluaties dus wel beschikbaar zijn), waardoor we hier afhankelijk zijn van literatuurgegevens. Escaravage & Soetaert (1995) geven de gemiddelde biomassa aan *Eurytemora affinis* en *Acartia tonsa* (de 2 dominante soorten in de Westerschelde) die we hier voor alle jaren hebben overgenomen en hebben omgerekend naar de biomassa voor de gehele Westerschelde via het volume gegeven door Hellings et al. (2001) (zie Digitale Bijlagen 10.3.1 Vissen en vogels).

Vanuit de groep der vissen dienen enkel de benthivoren en de zoöplanktivoren meegewogen te worden. De methodiek geeft reeds een indeling van de soorten in voedingswijzes, echter deze verschillen voor juvenielen en adulten en soorten kunnen foerageren op meerdere voedselgroepen. We hebben dit opgelost
door het aanwezige gewicht per soort te delen door het aantal voedingswijzes, en enkel de benthivore en zoöoplanktivore fracties mee te tellen (we zijn voor de Zeeschelde tevens uitgegaan van een vergelijkbare aanwezigheid van juveniele biomassa ten opzichte van adulte biomassa per soort (voor gedetailleerde beschrijving, indeling en omrekening zie Digitale Bijlagen 10.3.1 Vissen en vogels). De aangeleverde data bevatten totale biomassa per soort in versgewicht per fuikdag. Het omrekenen van fuikdavgangsten naar biomassa dichtheden is een lastige exercitie waarover naar ons weten weinig tot niets is gepubliceerd. Uiteraard is dit een gevolg van de soortafhankelijk vagt-afstand van fuiken en de heersende abiotische omstandigheden. We hebben hier besloten te werken met een default waarde van 25 ha als gemiddelde trap-range voor 1 fuikdag. Dat betekent dat gemiddeld de vissen in een gebied van 500 bij 500 meter worden gevangen met een fuik die 1 dag is uitgezet. Het feit dat daarmee de berekende biomassa dichtheid in 2009 in de zelfde orde van grootte ligt als in de Westerschelde (zie Digitale Bijlagen 10.3.2 Vissen en vogels) ondersteunt de bruikbaarheid van de waarde. Er zijn data beschikbaar voor de jaren 2003-2006 en 2008 en 2009. De berekende biomassa’s per hectare worden opgeschaald naar systeemniveau aan de hand van het beschikbare sublitorale en de helft van het litorale oppervlak per zone (gebruikmakende van de ecotopenkaarten (zie Digitale Bijlagen 10.3.1 Vissen en vogels)

De methodiek met betrekking tot de vissen biomassa van de Westerschelde volgt de hierboven beschreven methodiek voor de Zeeschelde + zijrivieren. De gegevens voor de Westerschelde zijn afkomstig uit de Demersal Fish Survey data (methodiek garnalenkor) en zijn aangeleverd in biomassa per soort per lengte (cm) klasse per hectare. Zodoende kon naast onderscheid in voedingswijzes ook onderscheid worden gemaakt tussen juvenielen en adulten op basis van de lengte zoals geëxtraheerd uit de Fishbase-database (www.fishbase.org) waarbij de meest representatieve gegevens zijn gebruikt (data bij voorkeur afkomstig uit estuaria in Nederland of België, anders andere wateren in West-Europa). Zie details berekeningen in Digitale Bijlagen 10.3.1 Vissen en vogels. Ook hier weer verdere doorrekening naar het systeem (Westerschelde) niveau aan de hand van de ecotopenkaarten en het beschikbare subtidale en de helft van het intertidale oppervlak per zone.

Voor de vogels werd conform de methodiek voor de vissen onderscheid gemaakt in de voedingswijzes waarbij deze reeds zijn verwerkt in een tabel in de methodiek. De vogeldata zijn als gemiddelde aantallen voor het gehele Schelde-estuarium aangeleverd vanuit H 9.3 Niet-broedvogels (Flora en fauna). Aantallen dienden te worden omgerekend naar biomassa (aan de hand van het gemiddelde gewicht voor volwassen exemplaren per soort) waarvoor diverse vogel- en natuur-websites zijn gebruikt (zie Digitale Bijlagen 10.3.1 Vissen en vogels voor een overzicht). In een laat stadium van de T2009 bleek dat er vogeldata van enkele soorten ontbraken. Zodoende zijn hier de aantallen/biomassa’s van de Tafeleend, de Kuifeend, de Krombekstrandloper, de Kemphaan en de Watersnip nog niet in de berekeningen meegenomen. De verwachting is echter dat dit zeer weinig invloed op de berekende vogel biomassa zal hebben (gezien de verwachte lage aantallen danwel het lage soortelijke gewicht); en nog minder invloed op de uitkomst van deze rekenparameter (zie Digitale Bijlagen 10.3.2 Vissen en vogels). Voor alle te evalueren jaren met uitzondering van 2009 waren vogelgegevens voor het gehele systeem beschikbaar; voor 2009 is het totaal van 2008 overgenomen.

De laatste mee te wegen groep is de groep der krabben. Hoewel een klein aantal soorten voor de Zeeschelde en de zijrivieren wordt genoemd in de niet-quantitatieve bemonstering van de VMM, kwamen er geen krabben voor in de INBO bemonstering. Uiteraard is een monitoring met steekbuizen ook niet ideaal voor de opvolging van krabbenpopulaties. Naar verwachting is er één soort die een substantiële biomassa in de bovenstroomse delen kan vertegenwoordigen; namelijk de Chinese wolhandkrab (Eriocheir sinensis). Echter in verhouding tot de Westerschelde (rekening houdende met het 10x zo grote oppervlak) is de verwachting dat het missen van de krabben in de Zeeschelde + zijrivieren minimale invloed zal hebben op de einduitkomst. In de Westerschelde worden 5 soorten krabben frequent in de
monitoringsmonsters aangetroffen; *Carcinus maenas, Liocarcinus arcuatus, Macropodia parva, Pisidia longicornis en Portumnus latipes*. De biomassa voor deze soorten is conform die voor het overige macrobenthos doorberekend naar de gehele Westerschelde (zie Digitaal Bijlagen 10.3.2 Vissen en vogels).

Ook hier dient te worden opgemerkt dat een bemonstering met boxcorer en steekbuisen niet ideaal is om zicht te krijgen op de populaties. Doorrekening van dergelijke monitoringsresultaten kan resulteren in behoorlijke fluctuaties in de berekende totale biomassa die niet noodzakelijkerwijs ook aanwezig hoeft te zijn.

10.3.1.3 ANALYSE

De resultaten laten zien dat de beschikbare totale biomassa grotendeels wordt bepaald door de aanwezige benthos biomassa in de Westerschelde. Zelfs in het verleden toen de biomassa dichtheid in de Zeeschelde hoog was, lag deze nog altijd meer dan een factor 10 hoger in de Westerschelde dan in de Zeeschelde. De benthos biomassa laat grote jaar tot jaar fluctuaties zien, die veelal een patroon vertonen van 2 jaar toenemend gevolgd door 2 jaar afnemend, etcetera (Figuur 10-7). In de Zeeschelde is de laatste jaren de biomassa volledig weggezakt (zie tevens H 9.6 Benthos). Daarmee komt de ingeschatte totale biomassa uit onder die van het zoöplankton in de Westerschelde.

Met betrekking tot de ontwikkelingen in het zoöplankton in de Westerschelde is echter niets bekend en geeft de grafiek enkel de orde van grootte weer, die overigens naar alle waarschijnlijkheid een onderschatting is, gezien het feit dat deze enkel is gebaseerd op de 2 in biomassa dominante soorten, maar er diverse andere soorten aanwezig zijn die door hun aantallen ook behoorlijk kunnen doorwegen. Voor zoöplankton wel weer het zelfde beeld met grofweg een factor 10 lagere totale biomassa in de Zeeschelde dan in de Westerschelde. Er is overigens wel een serieuze evolutie in het zoöplankton van de Zeeschelde zichtbaar zodat de verschillen tussen bijvoorbeeld begin jaren 90 en het begin van deze eeuw, ook wel een factor 10 uit elkaar lopen.

Het hyperbenthos van de Westerschelde, hier ook wel weer onderschat vanwege het slechts meewegen van 1 enkele soort, speelt in het geheel nauwelijks een rol, en er wordt verwacht dat het ontbreken van hyperbenthos data voor de Zeeschelde nauwelijks effect zal hebben op het eindresultaat; ook daarvoor kan wellicht een factor 10 verschil met de Zeeschelde in acht worden genomen.

Met betrekking tot de secundaire consumenten kan worden gesignaleerd dat deze voornamelijk wordt bepaald door de vissen en dan met name die van de Westerschelde. De benthivore en zoöplanktivore vissen vertonen daar een gestage toename gedurende de laatste 20 jaar. Voor de Zeeschelde weten we weinig over de historische situatie (jaren 90), maar de vissenpopulaties (in ieder geval het benthivore en zoöplanktivore aandeel) zijn daar wel duidelijk aan het uitbreiden. Wel is het moeilijk in te schatten wat het huidige niveau van de biomassa dichtheid is in de Zeeschelde ten opzichte van de Westerschelde.
Figuur 10-7: Overzicht van de door de jaren heen gemeten, berekende en geïnterpoleerde biomassa aan a) primaire – en b) secundaire consumenten in de Zeeschelde + zijrivieren (ZS) en de Westerschelde (WS) waarbij het aandeel van de groepen (grafieken met logaritmische schaal op Y-as) in het eindresultaat in perpectief kan worden gezien.

Naast de vissen spelen de krabben wellicht een aanzienlijke rol in de biomassa van de secundaire consumenten in het systeem. Door de gebruikte monitoringmethodiek vertonen de krabben populaties enorme fluctuaties die in sommige jaren boven de vissenbiomassa uit komen. Die pieken, evenals de dalen, zijn misschien niet reëel, waardoor er vooral naar het gemiddelde niveau of de trend dient te worden gekeken. Dan blijkt de krabben biomassa redelijk constant en op een niveau van meer dan een
factor 10 lager dan de vissenbiomassa in de Westerschelde te blijven. De benthivore en omnivore vogels vertegenwoordigen slechts een fractie van de totale biomassa aan secundaire consumenten in het Schelde-estuarium.

De berekende biomassa’s voor de twee niveaus in het voedselweb leiden tot een verhouding die gedurende de jaren 90 consequent onder de 10 % lijkt te liggen, met uitzondering van het jaar 1992 dat ver boven de 20 % uit schiet. Daarmee is 1992 het enige jaar met volgens de berekeningen substantiële overbegrazing. De jaren 90 neigen dus naar enige onderbegrazing, maar deze bevindt zich binnen de marges, die gezien de onzekerheden in de basis gegevens zeker dient te worden aangehouden. Het jaar 2007 wordt gekenmerkt door een hoge biomassa aan primaire consumenten, maar ook de secundaire consumenten biomassa van dat jaar blijkt hoog te zijn, wat leidt tot een positionering rond de 10 % lijn. Daarna (2008 en 2009) wanneer de primaire consumenten biomassa weer behoorlijk lager is, is ook de secundaire consumenten biomassa weer wat lager, maar neigt de ontwikkeling naar een lichte overbegrazing (wel weer ruim binnen de gestelde marges). We dienen hier echter op te merken dat er enige onzekerheden zijn met betrekking tot de aanwezige bestanden van de Amerikaanse zwaardschede,
die in 2008 en 2009 volgens de data een terugval in de biomassa laten zien. Vanaf 2008 is er ook overgegaan op een andere bemonsteringsstrategie binnen MWTL wat er voor heeft gezorgd dat het aantal genomen subtidaal monsters per jaar sterk is afgenomen waardoor de mogelijkheid van het missen van de *E. directus* banken is toegenomen. In dat geval zou er werkelijk sprake kunnen zijn van overbegrazing in 2008 en 2009. We verwachten echter dat het mogelijk toch om een werkelijke teruggang in de populaties gaat omdat een vergelijkbaar patroon van fluctuaties is waargenomen in de voordelta (De Mesel et al., 2011; NIOZ – Monitor Taakgroep, eigen data).

Voor een positieve beoordeling mag de parameter niet afnemen. Voor de gehele periode met databeschikbaarheid (1992-2009) worden er geen significante trends waargenomen, maar het is duidelijk in Figuur 10-9 te zien dat er reeds enkele jaren sprake van een toename is.

![Figuur 10-9: De biomassa verhouding Secundaire consumenten ten opzichte van de Primaire consumenten in procenten voor het gehele Schelde-estuarium. Idealiter verhouden de secundaire consumenten zich tot de primaire consumenten als 1:10 (10 % energie doorstroom). Onder de 1% is er mogelijk sprake van ernstige onderpredatie, boven de 20 % mogelijk ernstige overpredatie.](image)

Figuur 10-9

10.3.1.4 **INTERPRETATIE**

De verhouding tussen de primaire en secundaire consumenten lijkt een waardevolle parameter, ondanks dat het resultaat afhankelijk is van een goede databeschikbaarheid. Ondanks dat de datavoorziening op sommige punten iets zou kunnen verbeteren (en daar wordt ook aan gewerkt in het huidige monitoring programma) zijn op dit moment de grote lijnen in de ontwikkelingen reeds zeer indicatief. Daarbij dient te worden bedacht dat de verhouding ook indien die behoorlijk in evenwicht is niet altijd op de 10 % uit zal komen, omdat het niet onwaarschijnlijk is dat de secundaire consumenten het niveau van de primaire consumenten zullen volgen (echter met enige vertraging) en dat een toename van het secundaire niveau weer kan leiden tot een afname van het primaire niveau, etcetera.

Het is opvallend dat veelal een factor 10 verschil in de totale biomassa van de Westerschelde en de Zeeschelde naar boven komt, wat ook weer niet zo verrassend is gezien het feit dat er ook sprake is van
een factor 10 verschil in oppervlakte van de systemen. Daardoor wordt deze parameter primair met name bepaald door de ontwikkelingen in de biomassa in de Westerschelde, maar het moge duidelijk zijn dat veranderingen in de Zeeschelde wel een groot effect kunnen hebben op de biomassa’s in de Westerschelde; denk aan de nutriënten input en recyclage en de primaire productie. De huidige verhouding (of die van de afgelopen kleine 20 jaar) wordt vrijwel geheel bepaald door de benthivore en zooplanktivore vissen biomassa ten opzichte van de benthos biomassa en dan met name in de Westerschelde. Dit kan betekenen dat voor een vervolg van de toenemende trend in de benthivore en zooplanktivore vissen het cruciaal zou kunnen zijn dat er de komende jaren weer sprake zal zijn van succesvolle broedval; want de benthos biomassa wordt over het algemeen volledig bepaald door enkele dominante schelpdieren. Jaren met hoge biomassa aan primaire consumenten zijn dan ook terug te voeren op pieken in soorten als *Ensis directus* (2007) en *Crassostrea gigas* (2003). Een behoorlijke onzekerheid is wel de rol van de krabben in het geheel. De uitschieter naar de overbegrazing wordt volledig veroorzaakt door een zeer hoge berekende krabben biomassa voor dat jaar, waarbij het de vraag is of de vangstresultaten de werkelijke dichtheden reflecteren.

Mogelijk dat met betrekking tot de krabben maar ook het hyperbenthos een aantal aanvullende schaftrekken (benthische slede monsters) in het monitoringsprogramma kunnen worden overwogen. Verder is een goede inschatting van de aanwezige zooplankton biomassa in de toekomst ook noodzakelijk omdat wanneer die bijvoorbeeld een factor 10 hoger blijkt te liggen en behoorlijk fluctueert, het beeld toch anders kan worden. Voorspelling van deze gebeurtenis is in ieder geval sprake van een balans in de biomassa’s en kan worden geconcuteerd dat het nog goed zit met de energiedoorstroom. Zo lijkt de overvloed aan biomassa ten gevolge van massale Amerikaanse zwartader schede broedval en succesvolle vestiging wel ten goede te komen aan het aanzien van *Ensis directus* en *Crassostrea gigas* (2003). Problemen met de waterkwaliteit in het verleden (de jaren 90) lijken daar, ondanks waarnembare effecten op de primaire consumenten als het zooplankton, vooral effecten te hebben gehad op de secundaire consumenten.

De bovenstroomse gebieden lijken in deze omstandigheden een cruciaal te zijn voor het overleven van de visstand in de Westerschelde. Wel is het de vraag wat het zegt wanneer waarden binnen een dergelijk grote bandbreedte van 1 tot 20% vallen. Het is wellicht zinvol om in de toekomst verschillen tussen 6-jarige perioden te evalueren en dan met name de ontwikkelingen ten opzichte van de periode 2004-2009 (T2009) en met name te focussen op trends en of eventuele ontwikkelingen aanzienlijk in de richting van een evenwichtige verdeling (ongeveer 10%) gaan. Problemen met de waterkwaliteit in het verleden (de jaren 90) lijken daar, ondanks waarnembare effecten op de primaire consumenten als het zooplankton, vooral effecten te hebben gehad op de secundaire consumenten.

10.3.1.5 EVALUATIE 2009

Er kan worden geconcuteerd dat de energiedoorstroom doorheen het voedselweb op basis van de biomassa verhouding tussen primaire en secundaire consumenten in balans is. Over de gehele gegeven periode van 1992 tot en met 2009 wordt geen significante ontwikkeling gevonden (Tabel 10-2), en bevinden alle jaren zich binnen de bandbreedte van tussen de 1 tot 20 % biomassa doorstroom, met uitzondering van het jaar 1992 wat wellicht eerder een artefact is ten gevolge van de monitoringstrategie.

Vanaf 2003 is er wel een significante toename in de biomassa verhouding waar te nemen, die het resultaat is van een fluctuerende biomassa van met name het benthos in de Westerschelde rond een gemiddelde waarde, maar een toename in de benthivore en zooplanktivore vis biomassa. Wanneer deze trend zich voortzet en succesvolle broedval van één van de dominante schelpdiersoorten (momenteel de Kokkel en de Amerikaanse zwartaderschelp) uit blijft kan er uiteindelijk sprake zijn van overbegrazing. Het is echter
aannemelijker dat dan de stijging in de benthivore en zoöplanktvore vissenbiomassa zal stagneren en de populaties weer zullen afnemen.

10.3.2 EVALUATIE VISSEN EN VOGELS

De evaluatie van Vogels en vissen bestaat enkel uit de evaluatie van de rekenparameter ‘Energiedoorstroom voedselweb’. De evaluatie T2009 van deze rekenparameter wordt hier dan ook weer aangehaald; H10.3.1.5.

Tabel 10-2: Overzicht evaluatie Vissen en vogels tbv Ecologisch Functioneren

<table>
<thead>
<tr>
<th>Schelde-estuarium</th>
<th>Rekenparameters</th>
<th>Energiedoorstroom voedselweb</th>
<th>T2009</th>
<th>trend</th>
<th>evaluatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3 %</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.4 EVALUATIE T2009 ECOLOGISCH FUNCTIONEREN

De T2009 evaluatie laat zien dat er sprake is van een behoorlijke onderbegrazing van de primaire productie door het macrobenthos in de Westerschelde in 2009. Dit levert een negatieve beoordeling op wat betreft de rekenparameter ‘Macrobenthische biomassa – Primaire productie’. Er dient echter wel te worden opgemerkt dat de parameter behoorlijke variatie vertoont van jaar tot jaar die voornamelijk samenhangt met succesvolle broedval en vestiging van één van de dominantie twee- en vrekken (nu vooral de Amerikaanse zwaardzak en/of de Kokkel) in voorgaande jaren. In 2006 en 2007 (jaren met hoge benthische biomassa) was de verhouding dan ook wel in balans en het is de verwachting wanneer er in de nabije toekomst weer massale broedval plaats vindt, dit 1 á 2 jaar later weer voor een balans situatie zal zorgen. Men zou kunnen stellen dat er een overmaat aan primaire productie door het systeem wordt gevoerd die enkel in jaren met hoge benthische biomassa optimaal wordt benut.

In de Zeeschelde en de zijrivieren is er sprake van een recentelijk inzakken van de benthos productie tot ver onder de gevraagde 30 ton asvrij drooggewicht. Daar waar zo’n 10 jaar geleden massaal zeer hoge dichtheden (en dus ook biomassa) aan Oligochaeten konden worden aangetroffen, met name in de oligohaline zone en de Rupel, zijn deze dichtheden dramatisch afgenomen terwijl er nauwelijks andere soorten voor in de plaats zijn gekomen. Dit levert een negatieve beoordeling op omdat deze rekenparameter ‘30 ton ADW benthos’ op. Te meer daar in 2009 ook de gevraagde 2 ton ADW per zone niet is gehaald in de Zoete zone met lange verblijftijd, de Rupel en de Durme. Het is niet eenvoudig om hier een verklaring voor te vinden gezien de recentelijke verbeteringen in de waterkwaliteit in dit gedeelte van het estuarium. Mogelijk dat de nutrienten input is afgenomen, maar het lijkt er niet op dat die nu limiterend is. Mogelijk dat verhoogde zuurstofconcentraties en een afgenomen organische input er voor zorgen dat reeds geruime tijd in het sediment aanwezige verontreinigingen nu biologisch beschikbaar zijn en dat de ontwikkelingen het resultaat zijn van toxische effecten. Het is opvallend dat zoöplankton en vissen (de pelagische voedselketen) daar nauwelijks last van lijkt te hebben, maar de op het benthos foeragerende vogels uiteraard wel (die zijn vertrokken vanwege afgenomen voedselbeschikbaarheid). Ook kan toegenomen predatiedruk door bijvoorbeeld vissen, of een verschuiving van het benthos naar het pelagische voedselweb waarbij hyperbenthos de rol van dominante primaire consument kan hebben overgenomen van de oligochaeten, een rol spelen. Er is in ieder geval aanvullend onderzoek nodig om inzicht te krijgen in wat er rond deze drastische verschuivingen in de benthische gemeenschappen heeft afgespeeld.
In de Westerschelde zijn van oorsprong de Kokkel en de Mossel de belangrijkste filtrerende tweekleppigen die voor een goed draaiende filterfunctie zorgen, maar uiteraard ook belangrijk zullen zijn in de voedselvoorziening. De gevraagde mosselbank op natuurlijk substraat blijkt inderdaad al minimaal enkele jaren aanwezig te zijn en de 4,5 hectare lijkt groot genoeg om te mogen aannemen dat de bank normaal ook nog wel enige tijd aanwezig zal blijven. Dit gedeelte van de ‘Filterfunctie’ wordt dus positief beoordeeld. De gevraagde 4 miljoen kilogram versgewicht aan kokkels is echter in 2009 al 4 jaar niet meer aanwezig en bereikt in 2009 het laagste niveau sinds een kleine 20 jaar. De kokkelconditions zijn sterk afhankelijk van een jaar met succesvolle broedval, hetgeen reeds enige jaren is uitgebleven en er op kan duiden dat de kwaliteit en beschikbaarheid van met name de laagdynamische intertidale habitats achteruit is gegaan. Ook kan de bevisstdruk in het verleden net te veel zijn geweest en moet een effect van massaal aanwezig Amerikaanse zwartkaped populaties, die mogelijk aanwezige Kokkel larven wegfilteren, niet worden uitgesloten. Daarmee krijgt de rekenparameter ‘Filterfunctie’ een negatieve beoordeling voor de T2009.

De diversiteit van het benthos is geëvalueerd onder de Communicatie Indicator ‘Flora en fauna’ en krijgt daar een negatieve beoordeling omdat in de Polyhaliene zone en de Zoete zone met korte verblijftijd de exoten soorten dichtheid (het aantal exoten soorten per monster) significant toe neemt, en ook de exoten biomassa in de Polyhaliene zone toeneemt. Dergelijke ontwikkelingen kunnen enerzijds hun weerslag hebben op de diversiteit van de gemeenschappen en ten kost en gaan van inheemse soorten in het

Figuur 10-10: Overzicht beoordeling van de piramide Ecologisch functioneren. Per rekenparameter is aangegeven of deze positief (groen) danwel negatief (rood) is beoordeeld voor de T2009. Eventueel aanwezige trends voor de geëvalueerde periode zijn aangeduid met ‘+’, significant toenemende trend, ‘-’significant afnemende trend en ‘0’ geen significante trend aanwezig.
bijzonder. Ook is het mogelijk dat met een sterke opkomst van exoten de energie doorstroom in het voedselweb wordt belemmerd. Daar komt bij dat een toename van de exoten biomassa over het algemeen duidt op een systeem dat onderhevig is aan onnatuurlijke verstoringen. Verder scoort ook de Occurrence Intactness index negatief (significante afname) in de Zone met een sterke saliniteitsgradiënt, wat betekent dat de inheemse soortenrijkdom in die zone achteruit gaat. Verklaringen dienen te worden gezocht in frequenter optredende onnatuurlijke verschuivingen en variaties in zoutgehalte, debiet, dynamiek en gehalte zwevende stof.

De beoordeling van ‘Vissen en vogels’ wat in de vorm van de biomassa verhouding tussen de primaire en de secundaire consumenten in het systeem de energie doorvoer in het voedselweb in kaart brengt, valt positief uit. Over de afgelopen kleine 20 jaar is er geen sprake van een significante trend, hoewel er sinds 2003 een significante toename van de biomassa verhouding wordt gedetecteerd, waarbij de waarden altijd binnen de 1 tot 20 % marges vallen. Daar waar we hebben gezien dat de doorvoer van de primaire productie naar de primaire consumenten (voornamelijk vertegenwoordigd door het benthos van de Westerschelde) niet optimaal is, is de doorstroom naar de secundaire consumenten (de vissen van de Westerschelde in het bijzonder) wel in balans te noemen. Wel blijft het systeem afhankelijk van een frequente succesvolle broedval en vestiging van tweekleppigen en dus de aanwezigheid van florerende schelpdier populaties.
Bijlage 1 Referenties
Bijlage 1.1 Dynamiek Waterbeweging en Bevaarbaarheid

Cleveringa, J. (2013). Grootschalige sedimentbalans van de Westerschelde. Instandhouding vaarpassen Schelde - Milieuvergunningen terugstorten baggerspecie. IMDC, Deltares, Svasek Hydraulics & Arcadis Nederland i.o.v. VNSC, MOW en RWS.

IMDC i.s.m. VUB (2010). Lithologische en geomorfologische kaart van de Beneden-Zeeschelde.

Kuijper, K. & Lescinski J. (2012). Data analysis and hypotheses Western Scheldt. Instandhouding vaarpassen Schelde - Milieuvvergunningen terugstorten baggerspecie. IMDC, Deltares, Svasek Hydraulics & Arcadis Nederland i.o.v. VNSC, MOW en RWS.

Antwerp, Belgium. Instandhouding vaarpassen Schelde - Milieuvergunningen terugstorten baggerspecie. IMDC, Deltares, Svasek Hydraulics & Arcadis Nederland i.o.v. VNSC, MOW en RWS.

Poortman, S. (2013). Effect morfologie monding Westerschelde op getij. Instandhouding vaarpassen Schelde - Milieuvergunningen terugstorten baggerspecie. IMDC, Deltares, Svasek Hydraulics & Arcadis Nederland i.o.v. VNSC, MOW en RWS.

Bijlage 1.2 **Plaat-geulsysteem**

Bijlage 1.3 Waterkwaliteit

Bijlage 1.4 Leefomgeving

Bijlage 1.5 Flora en fauna

Twisk, F., Verdonschot, P.F.M., Vlek, H., Wolfstein, K., Backx, J.J.G.M., Beers, M.C., Buijse, A.D.,
natuurlijke watertypen voor de Kaderrichtlijn Water. Stichting Toegepast Onderzoek Waterbeheer

Tyrell, M.C., Byers, J.E. (2007). Do artificial substrates favor nonindigenous fouling species over native

VMM (2009). Biologische beoordeling van de natuurlijke, sterk veranderde en de kunstmatige
oppervlakteelichamen in Vlaanderen conform de Europese Kaderrichtlijn Water.

1840-1950 : een historische schets van de referentietoestand van onze waterlopen aan de hand van de
visstand, ingevoerd in een databank en vergeleken met de actuele toestand Rapporten van het instituut
voor bosbouw en wildbeheer - sectie visserij, R.2002.89 Instituut voor Natuurbehoud: Groenendaal. 271
pp.

Taskforce Publication Series 2009-11.

Ysebaert T, Meininger PT, Meire P Devos K, Berrevoets CM, Strucker RCW, Kuijken E. 2000. Waterbird
communities along the estuarine salinity gradient of the Schelde estuary, NW-Europe. Biodiversity and
Conservation 9: 1275-1296
Bijlage 1.6 Ecologisch functioneren

