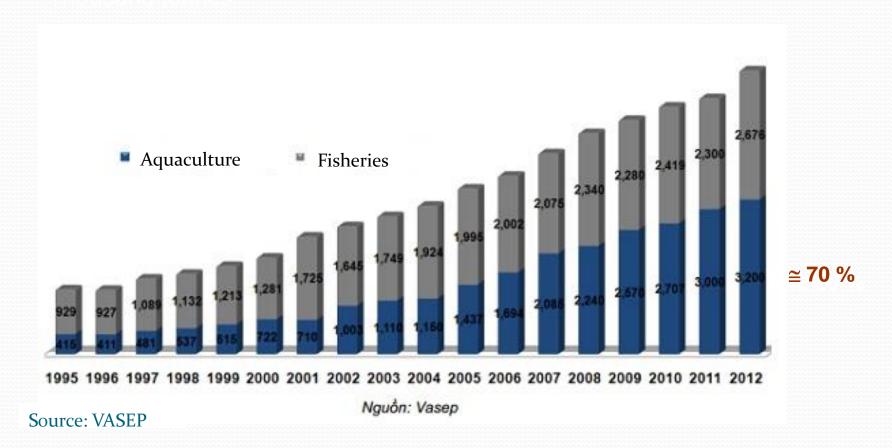

International workshop on "Sustainable use of marine and coastal resources in Kenya: from research to societal benefits"

SUSTAINABLE ARTEMIA POND PRODUCTION IN COASTAL SALTWORKS AS A TOOL TO SOLVE AQUACULTURE CHALLENGES

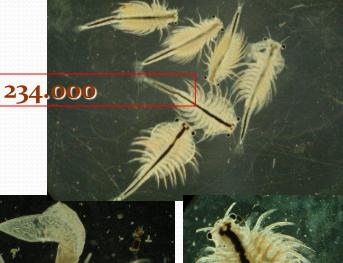
By Nguyen Van Hoa, Nguyen Thi Ngoc Anh, Nguyen Thi Hong Van, Tran Huu Le, Patrick Sorgeloos and Gilbert van Stappen


Kenya, 27 – 29 October 2014

World Fisheries and Aquaculture production

(FAO, 2014)

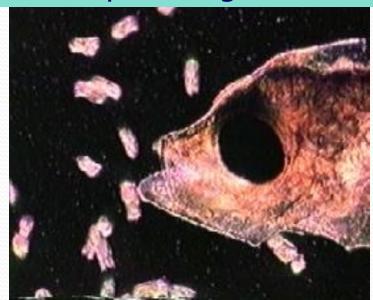
Vietnam Fisheries and Aquaculture production


Total production in Vietnam is **6.05** mill tons in 2013

Why Artemia?

(Search in Google, 11/2011, 9/2014)

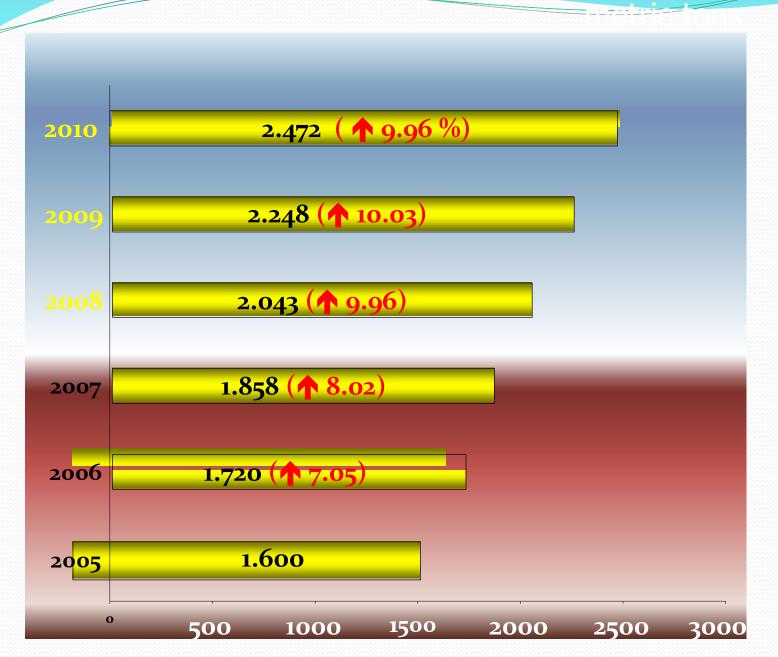
- 1. Environment: 224,000; 257.000 sites
- 2. Flocculation: 14,100; **514.000**
- 3. Water treatment: 56,000; **88.100**
- 4. Toxicology: 48,100; **68.000**
- 5. Genetic: 105,000; 162.000
- 6. Biological: 243,500; 203,000
- 7. Culture systems: 37,200; 40,000
- 8. Nutrient: 103,000; 292,000
- 9. Application in aquaculture: 66,000; 234.000
- 10. Pet-fish: 25,900; 40,900
- 11. As feed for human: 113,000; 103,000
- 12. Biotechnology: 1,030,000; 1.660.000
- 13. Molecular: 162,000; 149,000
- 14. Bacteria: 248,000; 210,000
- 15. Production: 332,000; **3,140,000**
- 16. Cyst production: 2,250,000; 89.900
- 17. Biomass production: 17,300; 59,200

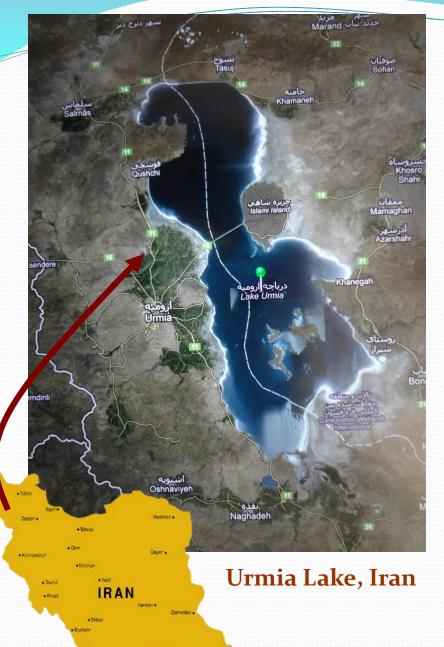


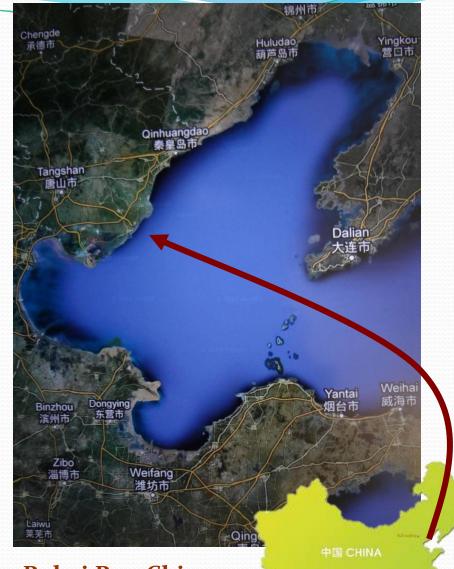
Several aquatic organisms require rotifers as starter food

Demand of Artemia cyst for 1 million of PL's

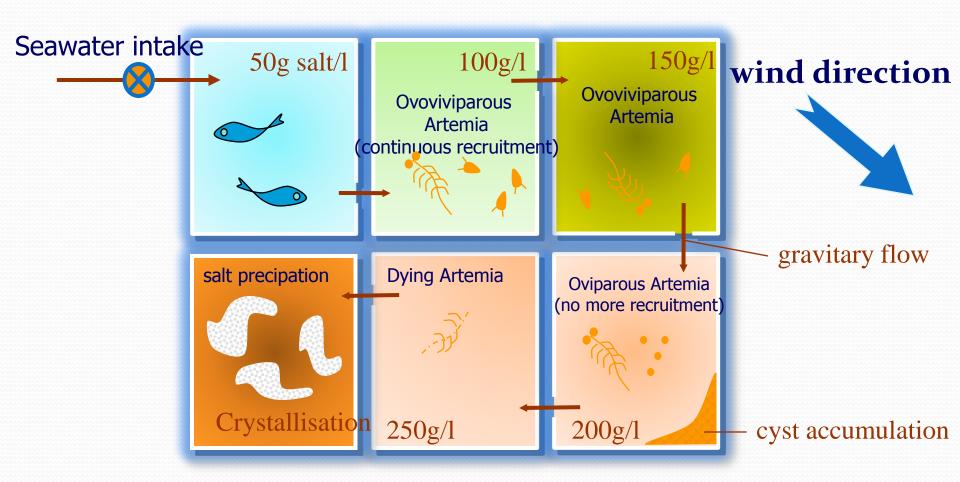
30 kg mud-crab 10-13 kg prawn

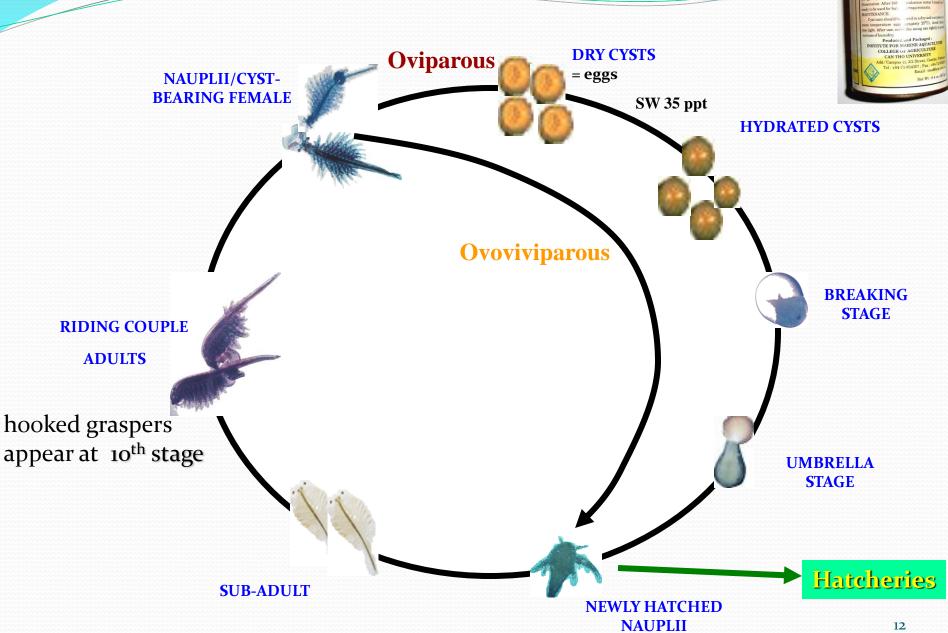

3 kg tiger shrimp 3 kg white shrimp

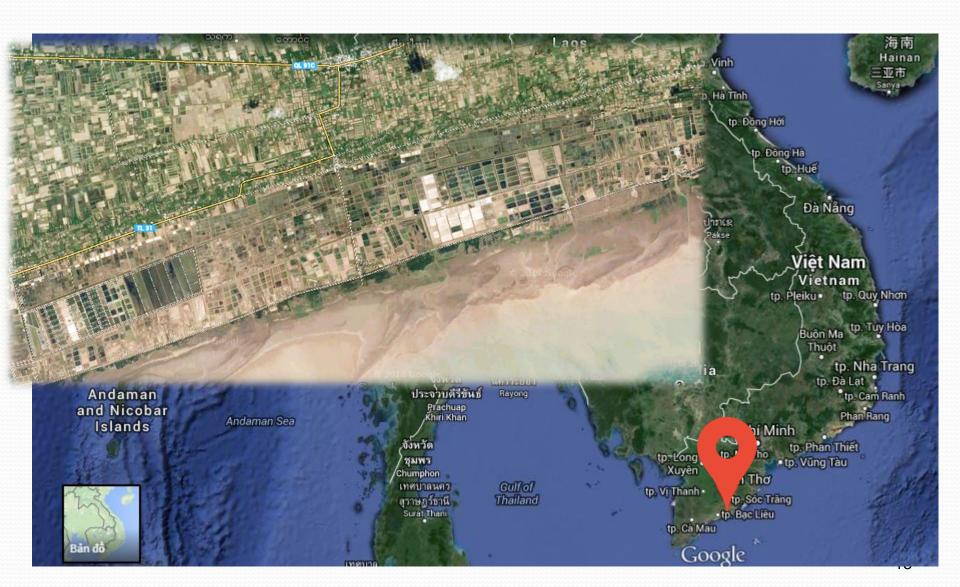



3 kg for 5000 cobia fry 50-days old

Artemia cyst demand forecast


Lake, Iran Bohai Bay, China

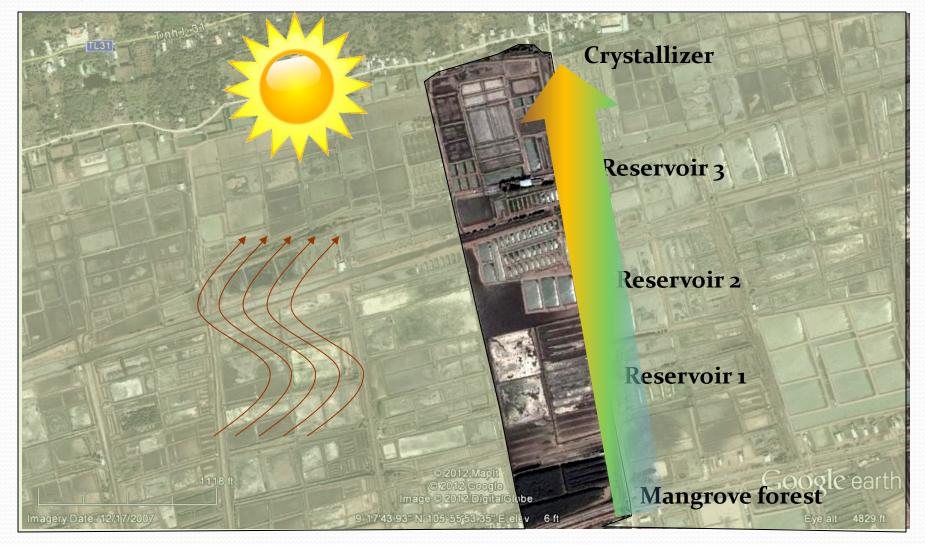


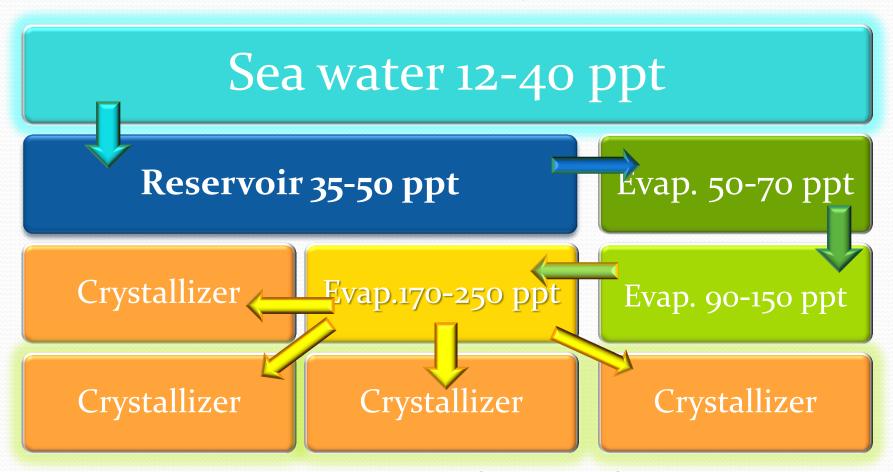

Schematic diagram of a solar salt operation with natural occurrence of Artemia

LIFE CYCLE OF ARTEMIA

Vinh chau solar saltworks

Artemia culture season in Vinh Chau and Bac Lieu




Artemia production season

Experimental station in Vinhchau solar saltworks



Artemia culture in Vinh Chau and Bac Lieu salt-fields, Vietnam

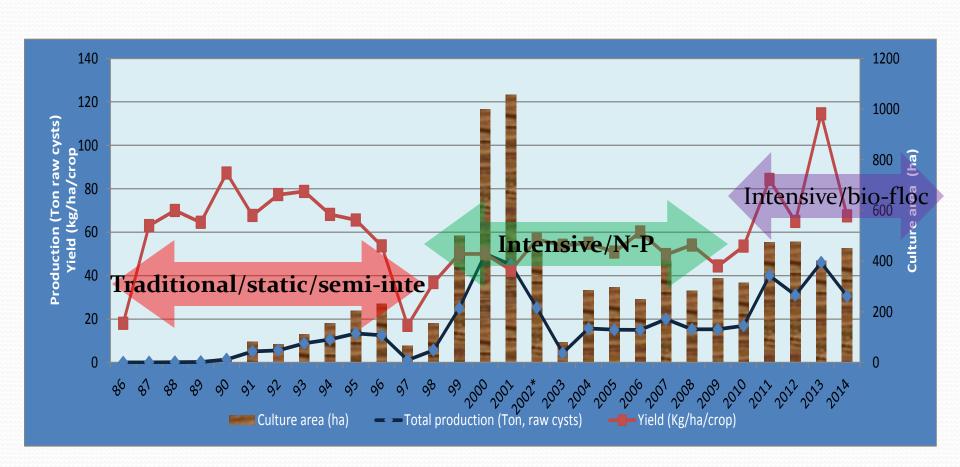
A saltstreets in Vinhchau saltworks (not to scale)

Production

Production

Traditional

- Stagnant
- No fertilizer pond


Semi-/Intensi<u>ve</u>

- Fert. pond
- Extrafeeding

Bio-floc

- N:P
- C:N
- Formulated feed

Artemia cyst production in Vinh chau and Bac lieu

Glance at Artemia production in Vinhchau

- Artemia pond culture
- Solar saltworks
- •Season: dry period
- Earthen pond
- •Salinity 80-100 ppt
- •Feeding: GW, RB
- •Current culture area: 500-700
- Cyst yields: 40-200 kg ww/ha/season
- •Total cyst production: 30-50 Tons/season (year)

Cyst yield related to:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7$$

In which, β_0 : Intercept β_1 , β_2 ,, β_7 : Parameters of respectively independent variables X_{1} :(<u>experiential years</u>), X, :(training), X₃:(risk of weather/materials quality), X_4 : (cost for variety per hectare), **X**₅:(cost for **feed and fertilizers** per hectare). X_6 :(cost for <u>labor</u>) and **X**₇:(cost for **pond modification**) Number of households: 28

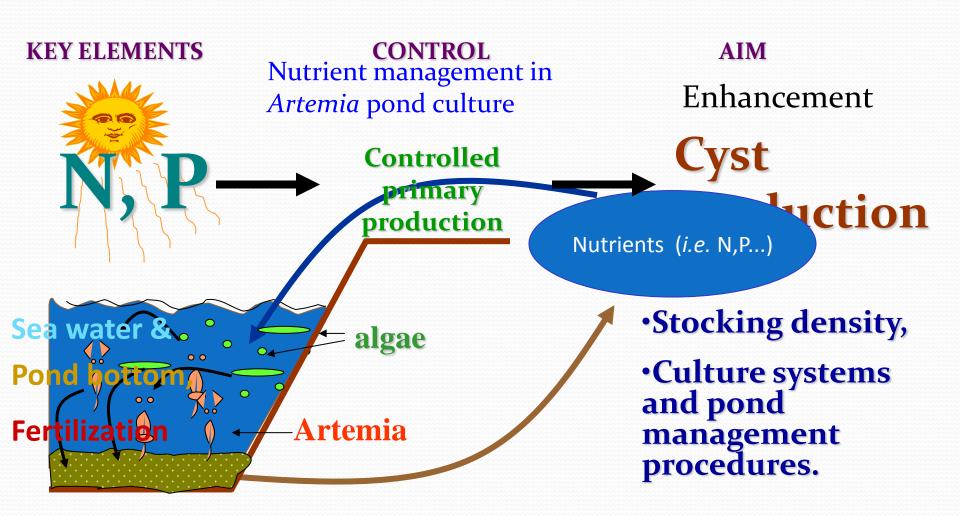
Pond management

- •Pond monitoring
- Pop observation
- Applying GW
- •Raking
- •Feeding

Traditional/static/semi-inte

- Stocking density > 20 naupli litre ⁻¹
- Ponds are managed intensively (*i.e.* inoculation of selected strains, manipulation of primary and secondary production, predator control *etc.*)
- evaporation ponds (0.5-0.7 ha), *i.e.* where salinity varies from 90 ppt to 150 ppt
- a "kitchen pond" to produce green water as feed for Artemia

Vu Do Quynh anh Nguyen, 1987


Traditional/static/semi-inte

- "kitchen pond" to produce green water as feed for *Artemia*, in which
 - basic fert.:
 - Organic manure: 0.5-1.25 Ton/ha
 - Inorg fert: 50-100 kg/ha
 - Additional fert.:
 - Organic manure: 0.5 Ton/ha/wk
 - Inorg fert: 30-50 kg/ha/wk
 - Total:
 - org manure app. 7 Ton/ha/crop
 - Inorg fert app.: o.5-o.7 Ton/ha/crop

Traditional/static/semi-inte

- Recently, rice-bran or formulated feed are used as supplementary feeds to enhance the cyst production.
- In average, cyst production in Vinh Chau varies from less than **5 to 40 kg/ha/month**, depending on the culture system (extensive vs. semi-intensive and intensive, respectively), and the climatic conditions.

Intensive/N-P R11-SUB-PROJECT

Intensive/N-P

Experimental set up

Stocking density ≥ 100 naupli liter -1, Fertilization, food: rice-bran, pig manure

```
•GW5+RB: green water (N:P=5:1) + rice bran;
```

- •GW5+PM: green water (N:P=5:1) + pig manure;
- •GW10+RB: green water (N:P=10:1) + rice bran;
- •GW10+PM: green water (N:P=10:1) + pig manure;

⇒day 5 after inoculation. Pig manure was applied at 200-300 kg DW ha⁻¹ week⁻¹ and rice-bran was added at a rate of 20-30 kg ha⁻¹ day⁻¹

```
Total:
```

```
org manure app. 2-3 Ton/ha/crop
```

Inorg fert app.: o.2-o.3 ???Ton/ha/crop

Rice-bran: 2.4 Ton/ha/crop

Table 7. Estimates of conversion ratio of rice bran, pig manure and chlorophyll a to Artemia biomass (300m² pond⁻¹).

	Treatment		GW5+RB	GW10+RB	GW5+PM	GW10+PM
Total feed applied in Artemia pond	Rice bran (DW)	(kg pond ⁻¹)	40.66	40.66	-	-
		(kg ha ⁻¹)	1355.27	1355.27	-	-
	Pig manure (DW)	(kg pond ⁻¹)	_	-	76.50	76.50
		(kg ha ⁻¹)	-	-	2550.00	2550.00
	Chl a	(mg/L? pond ⁻¹)	52.71	60.72	52.71	60.72
		(g ha ⁻¹)	1.76	2.02	1.76	2.02
Total <i>Artemia</i> biomass yield	kg WW pond ⁻¹		67.5±12.3	63.7±11.4	69.6±19.3	54.6±9.8
	kg ha ⁻¹ crop ⁻¹		2251±410	2123±380	2321±643	1821±327
Conversion ratio (kg rice bran kg ⁻¹ biomass)			0.62 ± 0.12	0.65 ± 0.13	_	_
Conversion ratio (kg pig manure kg ⁻¹ biomass)			_	_	1.17±0.38	1.43±0.26
Conversion ratio (mg/L Chl <i>a</i> kg ⁻¹ biomass)			0.80±0.16	0.98±0.19	0.81±0.27	1.14±0.21

Intensive/N-P

Conclusions

- •applied N:P=5 and 10 in the fertilization pond; No differences in chlorophyll a concentration and algal composition. Bacillariophyta (diatoms) were the dominant group over the sampling period (*Nitzschia longissima*, *N. longissima var reversa and N. acicularis*).
- •using N:P=5 combined with rice bran or pig manure \Rightarrow Artemia growth, fecundity and total yields were enhanced >> N:P=10. However, biomass yield was not sig diff. (p >0.05).
- •N:P=5 gave a slightly higher income, net profit and economic return than the N:P=10 treatments.

```
■N:P=5 + RB \Rightarrow 2251±410 kg ha<sup>-1</sup> crop<sup>-1</sup>
■N:P=5 + PM \Rightarrow 2321±643 kg ha<sup>-1</sup> crop<sup>-1</sup>
■N:P=10 + RB \Rightarrow 2123±380 kg ha<sup>-1</sup> crop<sup>-1</sup>
■N:P=10 + PM \Rightarrow 1821±327 kg ha<sup>-1</sup> crop<sup>-1</sup>
```

Environment

Traditional

- Stagnant
- No fertilizer pond

Semi-/intensi<u>ve</u>

- Fert. pond
- Extrafeeding

Bio-floc

- C:N
- Formulated feed

Intensive/bio-floc

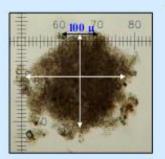
Floc in aquaculture

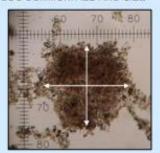
If carbohydrate was added to the water column to enhance heterotrophic bacterial protein production, the protein level in the diet could be reduced from 40% to 25%, without compromising shrimp production.

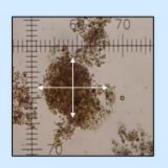
Carbohydrate addition in combination with a decreased dietary protein level **improved the sustainability of shrimp farming** in extensive shrimp.

Hari et al. (2006)

Intensive/bio-floc


Floc in aquaculture


Bio-flocs technology (BFT) offers the possibility to: (1) maintain a good water quality within aquaculture systems and (2) produce additional food for the aquaculture organisms


P. De Schryver, R. Crab, T. Defoirdt, N. Boon, W. Verstraete (2008)

The 'Biofloc (Floc)'

FLOC COMMUNITIES AND SIZE

Nyan Taw, 2009

The biofloc

Defined as macroaggregates – diatoms, macroalgae, facial pellets, exoskeleton, remains of dead organisms, bacteria, protest and invertebrates. (Decamp, O., et al 2002)

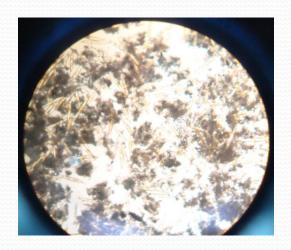
As Natural Feed (filter feeders – L. vannamie & Tilapia): It is possible that microbial protein has a higher availability than feed protein (Yoram, 2005)

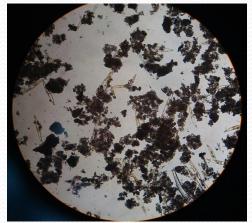
Biochemical Composition of the Floc:

-Crude protein: 35-50 %

-Crude lipid: 0.6-12%

-High ash: 21-32%


Intensive/bio-floc
Recycling of nutrients in eutrophicated coastal waters of the Mekong delta, Vietnam, by Artemia production (Bilateral Project (2009-2010) and RIP project (2012-


2016)

Treat 1

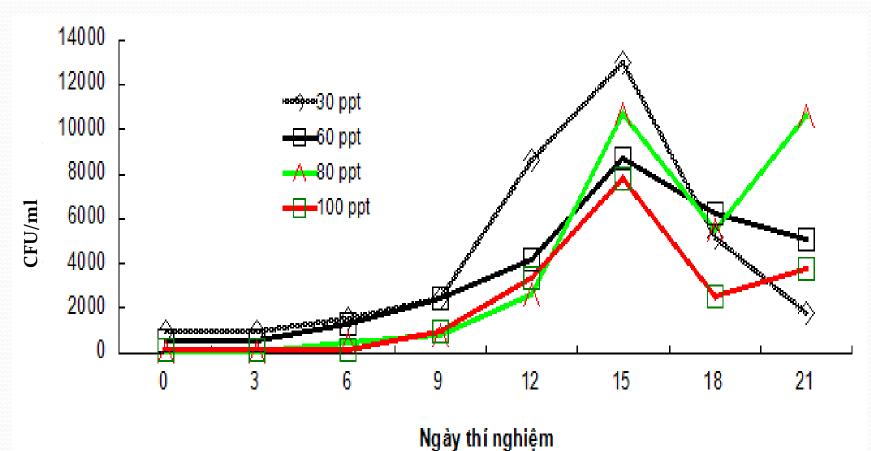
Treat 2

Treat 3

Experiment 1: Formation of biofloc in fertilizer pond at different salinities (35, 60, 80 and 100 %)

- Experimental set-up (3 replicate each).
 - ➤ Treatment 1: 35 ‰ (control)
 - > Treatment 2: 60 %
 - > Treatment 3: 80 %
 - > Treatment 4: 100 %

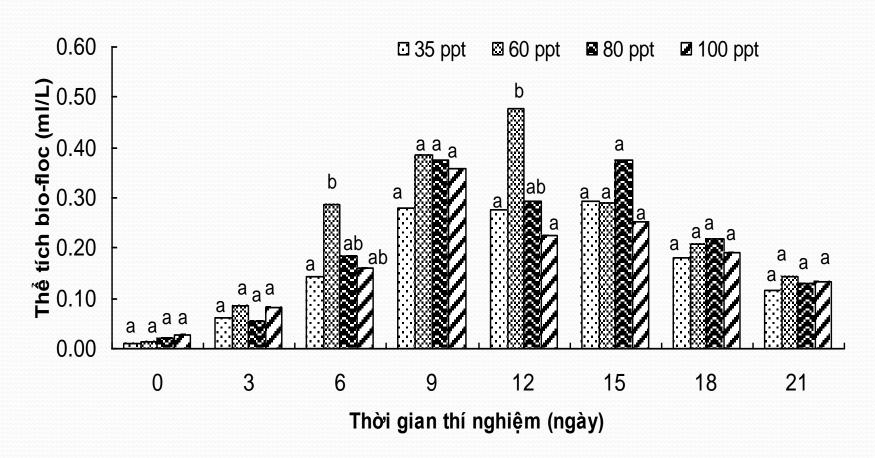
Monitoring


Temp(°C), pH: twice a day (7 am and 2 pm) Oxy, salinity, hardness, turbidity, water level, water color: daily (7 am): TN, NH_4^+ , NO_2^- , TP, PO_4^{3-} , TOC, TSS, VSS, volume bio-floc: every 3 day.

Bacteria.

Alage (composition, density)

Experiment 1: Formation of biofloc in fertilizer pond at different salinities (35, 60, 80 and 100 %)

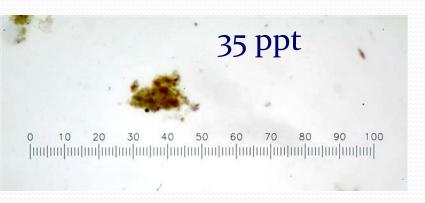

Total count bacteria

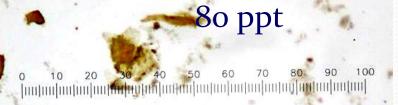
Vibrio, Baccillus, Nitrosomonas and Nitrobacter, Bacillus is dominant group

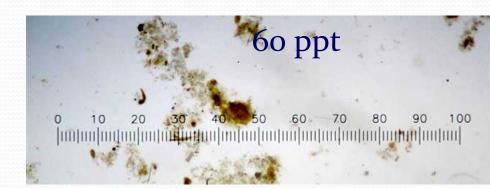
Experiment 1: Formation of biofloc in fertilizer pond at different salinities (35, 60, 80 and 100 %)

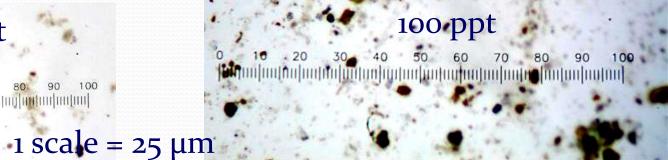
Volume of bio-floc

Shrimp pond varied 2 – 40 ml/L, fish pond goes up to 100 ml/L (Avnimelech, 2009)


Experiment 1: Formation of biofloc in fertilizer pond at different salinities (35, 60, 80 and 100 %)


Dimension of bio-floc (x \pm std, μ m; n= 30)


Treatment								
Day	35 ppt		60 ppt		80 ppt		100 ppt	
	Width	Length	Width	Length	Width	Length	Width	Length
7	62,6±30,2	93,6±30,4	59,8±25,9	76,7±27,4	51,6±28,8	81,4±46,6	39,7±11,4	74,5±30,5
14	71,0±20,4	105,3±30,9	57,5±22,3	102,6±36,4	61,5±30.5	97,9±51,4	37,1±26,1	61,3±36,8
21	52,3±18,7	98,2±55,7	55,3±19,4	80,6±41,6	32,5±19,6	66,3±28,3	83,8±15,8	49,7±22,2


Dimension of bio-floc increased slightly at day 14

Experiment 1: Formation of biofloc in fertilizer pond at different salinities (35, 60, 80 and 100 %)

Basic biochemical composition of bio-floc

	Experimental duration									
Treatme nt	Day 7			Day 14			Day 21			
	Protein	Lipid	Tro*	Protein	Lipid	Tro	Protein	Lipid	Tro	

^{1,05} a 12,2^b 0,80 a 69,9 b 17,4 a 67,1 a 9,3 a 0,65^b 86,4 a

0,83 ab

0,91 a

9,6 a

81,0 a

78,9 a

³⁵ ppt 10,5ab 76,2 ab 74,8 a 0,89 a 0,92 a 70,4 a 12,4^b 16,4 a 1,02 a 60 ppt

^{0,77} a 15,6 a 10,4 a 9,8 a 80,6 a 1,08 a 69,9 a 80 ppt 8,5 a 82,2 a 15,9 a 0,94 a 71,7 a 0,67 a 100 ppt

^{*} Na+ (Sodium), K+ (Potassium), and Ca²⁺ (Calcium

Experiment 1: Formation of biofloc in fertilizer pond at different salinities (35, 60, 80 and 100 %)

Conclusion

- •Bacteria were classified into: Baccillus/Nitrosomonas/Nitrobacter; vibrio was negligible and no observation at 100 ppt. However, more than 50% in the sample were not yet identified.
- •Dimension of biofloc at salinity of 35 and 60 ppt > 80 and 100 ppt. Bio-floc at salinity of 80 and 100 ppt (Length x Width) \cong 50 um, are suitable for Artemia.
- •Biochemical of bio-floc: protein content is a bit low (the higher the salinity the lower the protein content be indicated)

Bio-floc as feed to Artemia

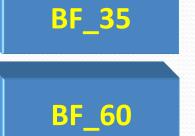
(1) Batch culture to adult: survival and growth

(2) Ind. Couple culture: reproductive characteristics and life-span

Wild algae

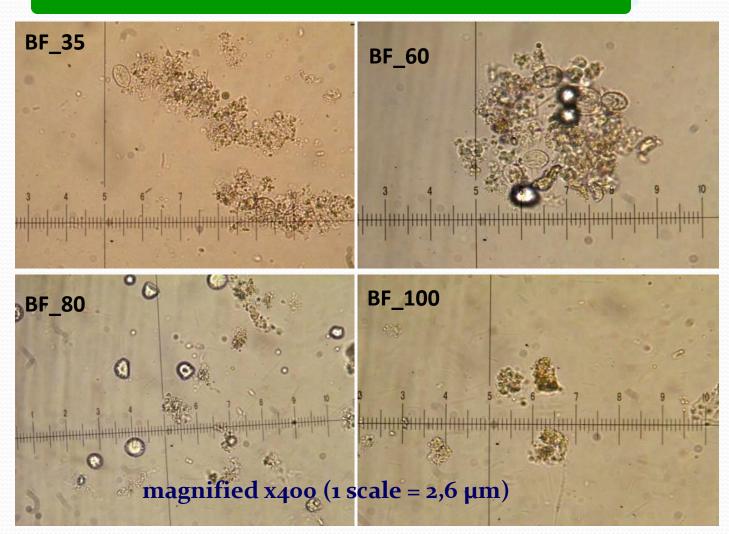
Culture volume: 7 L (x 4)

Aeration

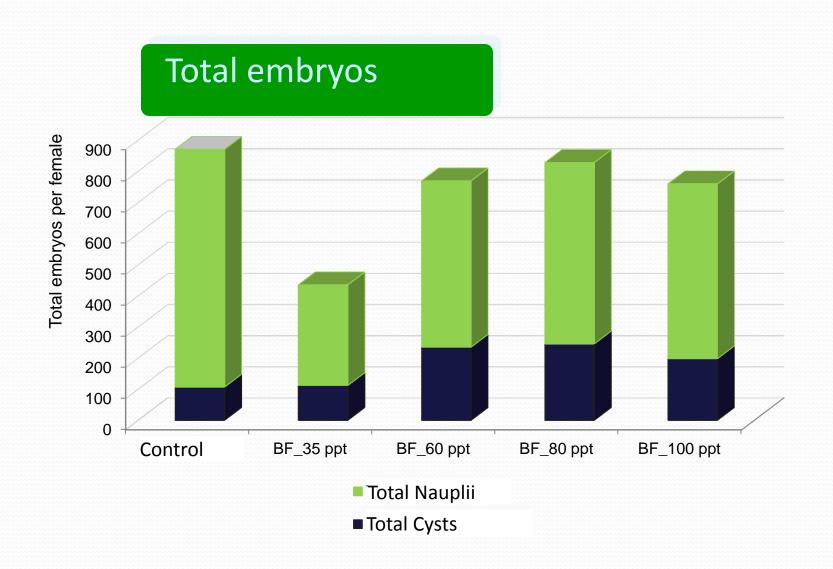

salinty: 80 ppt

density: 100 ind./L

feeding: bio-floc was screened with 50 μm mesh-size prior feeding


duration: 13 day

ARTEMIA LAB CULTURE



dimension of bio-floc

Reproductive characteristics of Artemia

Parameters	Wild algae (control)	BF_35	BF_60	BF_80	BF_100
Total embryo/ female	870,3±25,2 ^b	435,1±40,1 ^a	768,8±52,8 ^b	764,5±100,4 ^b	728,5±65,8 ^b
Cyst ratio /life span (%)	12,4±4,8 ^a	26,2±11,0 ^a	29,8±15,3 ^a	33,9±8,5 ^a	26,4±6,4 ^a
No of brood	7,6±0,3 ^b	5,3±0,4 ^a	7,2±0,4 ^b	7,2±0,5 ^b	7,4±0,6 ^b

Culture volume: 150 m2 (x3)

salinty: 80 and 100 ppt

density: 100 ind./L

feeding: bio-floc Vs control

duration: 6 weeks

ARTEMIA POND CULTURE

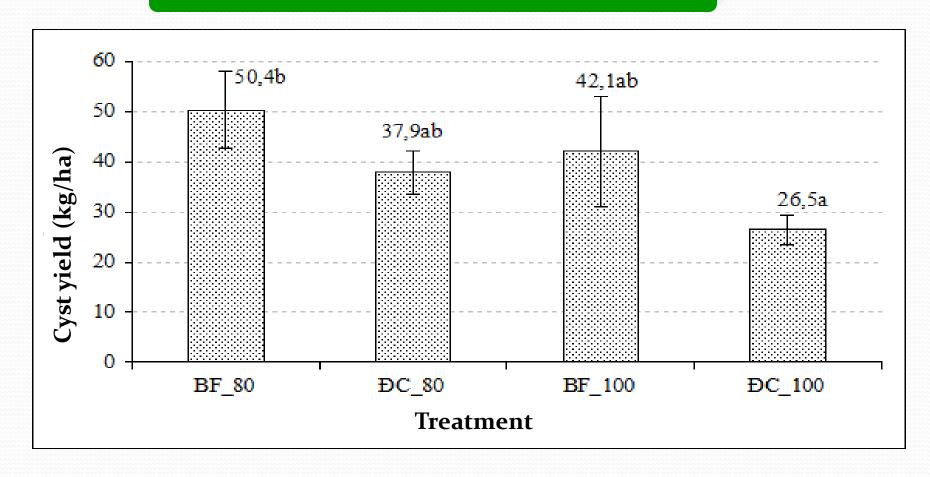
Control_80

BF_80

BF_100

Control_100

Experiment 3: formation and development of bio-floc in Artemia pond


Fecundity of Artemia

	Treatment	Week 2	Week 3	Week 5	Week 6
Fecundity (No Cyst/ female)	ĐC_80	36,1±16,3ª	48,8±22,0 ^a	90,5±20,2°	77,1±10,0 ^b
	BF_80	58,9±57,9 ^b	60,8±28,2b	73,8±16,9 ^b	92,6±15,1°
	ĐC_100	60,3±39,9 ^b	62,2±38,8 ^b	66,8±8,5ª	70,9±8,6ª
	BF_100	112,7±40,5°	104,3±27,0°	75,9±11,2 ^b	78,1±9,8 ^b

ĐC: control

Experiment 3: formation and development of bio-floc in Artemia pond

Cyst yield (kg/ha)

Experiment 3: formation and development of bio-floc in Artemia pond

Conclusion

- Bio-floc developed well at 8o -100 ppt.
- Bio-floc formed at 80-100 ppt are suitable feed for Artemia.
- Bio-floc improved water quality and enhanced cyst production of Artemia (37,9 up to 50,4 kg/ha and 26,5 up to 42,1 kg/ha at 80 ppt and 100 ppt, respectively).

Conclusion

Extensive >> Semi-Int >> Intensive

Extensive

org manure app. 7 Ton/ha/crop

Inorg fert app.: o.5-o.7

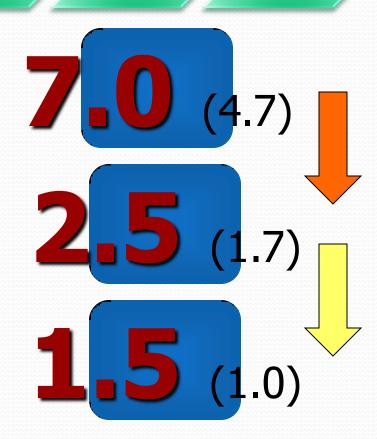
Ton/ha/crop

Semi-Int

org manure app. 2-3 Ton/ha/crop

Inorg fert app.: **0.2-0.3**

Ton/ha/crop


Rice-bran: 2.4 Ton/ha/crop

Intensive (BFT)

org manure app. 1.5 Ton/ha/crop

Inorg fert app.: **negligible**

Tapioca: 0.72 Ton/ha/crop

Conclusion

Ext

Semi

Int

Manure (T)

Yield (kg/ha)

Profit (x 1000 usd)

7.0

30-50

1.5-2.0

2.5

60-120

3.5-4.0

1.5

150-200

6.0-7.5

Don't forget ... Artemia biomass is also an excellent food for human being!!!

Please....

Enjoy with us...

