IMIS | Vlaams Instituut voor de Zee
 

Vlaams Instituut voor de Zee

Platform voor marien onderzoek

IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Space-borne synthetic aperture radar of intertidal flat surfaces as a basis for predicting benthic macrofauna distribution
van der Wal, D.; Herman, P.M.J.; Ysebaert, T.J. (2004). Space-borne synthetic aperture radar of intertidal flat surfaces as a basis for predicting benthic macrofauna distribution. EARSeL eProc. 3(1): 26-33
In: EARSeL eProceedings. European Association of Remote Sensing Laboratories: Paris. ISSN 1729-3782; e-ISSN 1729-3782, meer
Peer reviewed article  

Beschikbaar in  Auteurs | Dataset 

Trefwoorden
    Aquatic communities > Benthos
    Dimensions > Size > Grain size
    Equipment > Remote sensing equipment > Radar > Microwave radar > Synthetic aperture radar
    Sediments
    Marien

Auteurs  Top | Dataset 
  • van der Wal, D., meer
  • Herman, P.M.J., meer
  • Ysebaert, T.J., meer

Abstract
    High resolution, synoptic information on sediment characteristics of tidal flats is required for habitat mapping, and for assessing the distribution of benthic macrofauna. This study aims to derive information on surface characteristics of tidal flats from space-borne Synthetic Aperture Radar (SAR). Estimates of the backscatter coefficient were extracted from ERS-1 SAR and ERS-2 SAR PRI imagery of two tidal flats in the Westerschelde. They were related to field measurements of surface roughness, moisture conditions, sediment characteristics (median grain-size and silt content) and densities of benthic macrofauna. As predicted by the IEM backscattering model, a significant positive relationship was found between surface roughness and the backscatter coefficient: rougher surfaces were associated with higher backscatter values. In addition, median grain-size was positively correlated with backscatter, and silt content was negatively correlated with backscatter. Surface roughness was related to sediment characteristics: sandy sediment was found to be rougher than finer sediment, because surface ripples were more pronounced in the former. Significant relationships were also found between the sediment characteristics and macrofauna density. Relationships between sediment characteristics and backscatter were generally consistent in time. This demonstrates the potential of SAR for habitat mapping.

Dataset
  • Radartidalflats: Sedimentkarakteristieken van getijdenplaten te Westerschelde verkregen via satelliet "Synthetic Aperture Radar" (SAR), meer

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs | Dataset