IMIS | Vlaams Instituut voor de Zee
 

Vlaams Instituut voor de Zee

Platform voor marien onderzoek

IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print-vriendelijke versie

Validation of a confirmatory method for lipophilic marine toxins in shellfish using UHPLC-HR-Orbitrap MS
Orellana, G.; Vanden Bussche, J.; Van Meulebroek, L.; Vandegehuchte, M.; Janssen, C.R.; Vanhaecke, L. (2014). Validation of a confirmatory method for lipophilic marine toxins in shellfish using UHPLC-HR-Orbitrap MS. Anal. Bioanal. Chem. 406(22): 5303-5312. dx.doi.org/10.1007/s00216-014-7958-6
In: Analytical and Bioanalytical Chemistry. Springer: Heidelberg. ISSN 1618-2642, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien
Author keywords
    Ultra-high-performance liquid chromatography high-resolution Orbitrapmass spectrometry; Lipophilic marine toxins; Okadaic acid; CommissionDecision 2002/657/EC; Azaspiracids; Yessotoxins

Auteurs  Top 
  • Orellana, G., meer
  • Vanden Bussche, J., meer
  • Van Meulebroek, L., meer
  • Vandegehuchte, M., meer
  • Janssen, C.R., meer
  • Vanhaecke, L., meer

Abstract
    Lipophilic marine toxins are produced by harmful microalgae and can accumulate in edible filter feeders such as shellfish, leading to an introduction of toxins into the human food chain, causing different poisoning effects. During the last years, analytical methods, based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), have been consolidated by interlaboratory validations. However, the main drawback of LC-MS/MS methods remains the limited number of compounds that can be analyzed in a single run. Due to the targeted nature of these methods, only known toxins, previously considered during method optimization, will be detected. Therefore in this study, a method based on ultra-high-performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry (UHPLC-HR-Orbitrap MS) was developed. Its quantitative performance was evaluated for confirmatory analysis of regulated lipophilic marine toxins in shellfish flesh according to Commission Decision 2002/657/EC. Okadaic acid (OA), dinophysistoxin-1 (DTX-1), pectenotoxin-2 (PTX-2), azaspiracid-1 (AZA-1), yessotoxin (YTX), and 13-desmethyl spirolide C (SPX-1) were quantified using matrix-matched calibration curves (MMS). For all compounds, the reproducibility ranged from 2.9 to 4.9 %, repeatability from 2.9 to 4.9 %, and recoveries from 82.9 to 113 % at the three different spiked levels. In addition, confirmatory identification of the compounds was effectively performed by the presence of a second diagnostic ion (13C). In conclusion, UHPLC-HR-Orbitrap MS permitted more accurate and faster detection of the target toxins than previously described LC-MS/MS methods. Furthermore, HRMS allows to retrospectively screen for many analogues and metabolites using its full-scan capabilities but also untargeted screening through the use of metabolomics software.

Alle informatie in IMIS valt onder het VLIZ Privacy beleid Top | Auteurs