IMIS | Vlaams Instituut voor de Zee
 

Vlaams Instituut voor de Zee

Platform voor marien onderzoek

IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print-vriendelijke versie

Non-lethal heat shock increases tolerance to metal exposure in brine shrimp
Pestana, J.L.T.; Novais, S.C.; Norouzitallab, P.; Vandegehuchte, M.B.; Bossier, P.; De Schamphelaere, K. (2016). Non-lethal heat shock increases tolerance to metal exposure in brine shrimp. Environ. Res. 151: 663-670. https://hdl.handle.net/10.1016/j.envres.2016.08.037
In: Environmental Research. Elsevier: Amsterdam. ISSN 0013-9351, meer
Peer reviewed article  

Beschikbaar in  Auteurs 
    VLIZ: Open Repository 302892 [ OMA ]

Author keywords
    Artemia franciscana Cadmium DNA methylation Epigenetic markers Heat shock proteins Histone acetylation Induced cross-tolerance Zinc

Auteurs  Top 
  • Pestana, J.L.T.
  • Novais, S.C.
  • Norouzitallab, P., meer
  • Vandegehuchte, M.B., meer
  • Bossier, P., meer
  • De Schamphelaere, K., meer

Abstract
    Pollution and temperature increase are two of the most important stressors that aquatic organisms are facing. Exposure to elevated temperatures and metal contamination both induce heat shock proteins (HSPs), which may thus be involved in the induced cross-tolerance in various organisms. This study aimed to test the hypothesis that exposure to a non-lethal heat shock (NLHS) causes an increased tolerance to subsequent metal exposure. Using gnotobiotic cultures of the brine shrimp Artemia franciscana, the tolerance to Cd and Zn acute exposures was tested after a prior NLHS treatment (30 min exposure to 37 °C). The effects of NLHS and metal exposure were also assessed by measuring 70 kDa-HSPs production, along with the analysis of epigenetic markers such as DNA methylation and histone H3 and histone H4 acetylation. Our results showed that heat-shocked Artemia had increased acute tolerance to Cd and Zn. However, different patterns of HSPs were observed between the two metal compounds and no epigenetic alterations were observed in response to heat shock or metal exposure. These results suggest that HSP production is a phenotypically plastic trait with a potential role in temperature-induced tolerance to metal exposure.

Alle informatie in IMIS valt onder het VLIZ Privacy beleid Top | Auteurs