IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Red fluorescence in reef fish: a novel signalling mechanism?
Michiels, N.K.; Anthes, N.; Hart, N.S.; Herler, J.; Meixner, A.J.; Schleifenbaum, F.; Schulte, G.; Siebeck, U.E.; Sprenger, D.; Wucherer, M.F. (2008). Red fluorescence in reef fish: a novel signalling mechanism? BMC Ecology 8(16): 1-30. dx.doi.org/10.1186/1472-6785-8-16
In: BMC Ecology. BioMed Central: London. ISSN 1472-6785; e-ISSN 1472-6785, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Aquatic organisms > Marine organisms > Fish > Marine fish > Reef fish
    Luminescence > Fluorescence
    Warning systems > Alarm systems > Distress signals
    Marien/Kust

Auteurs  Top 
  • Michiels, N.K.
  • Anthes, N.
  • Hart, N.S.
  • Herler, J.
  • Meixner, A.J.
  • Schleifenbaum, F.
  • Schulte, G.
  • Siebeck, U.E.
  • Sprenger, D.
  • Wucherer, M.F.

Abstract
    At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it.We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence.We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter-specific variation in red fluorescence and its association with structures used in intra-specific signalling further corroborate this view. Our findings challenge the notion that red light is of no importance to marine fish, calling for a reassessment of its role in fish visual ecology in subsurface marine environments.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs