Open Marien Archief | Vlaams Instituut voor de Zee

Vlaams Instituut voor de Zee

Platform voor marien onderzoek


Open Marien Archief

Het Open Marien Archief van België (OMA) biedt vrije toegang tot de digitale publicaties over de Vlaamse kust en het Belgisch deel van de Noordzee, en alle andere mariene, estuariene en kustgebonden publicaties van Belgische auteurs en wetenschappers en van buitenlandse wetenschappers geaffilieerd aan een Belgische instelling.

Meer info

Nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print-vriendelijke versie

Estimation of heteroscedastic measurement noise variances
de Brauwere, A.; Pintelon, R.; De Ridder, F.; Schoukens, J.; Baeyens, W.F.J. (2007). Estimation of heteroscedastic measurement noise variances. Chemometr. Intell. Lab. Syst. 86(1): 130-138.
In: Chemometrics and Intelligent Laboratory Systems. Elsevier: Amsterdam; New York; Oxford; Tokyo. ISSN 0169-7439, meer
Peer reviewed article

Beschikbaar in Auteurs 

    Variance analysis

Auteurs  Top 
  • de Brauwere, A., meer
  • Pintelon, R.
  • De Ridder, F., meer
  • Schoukens, J.
  • Baeyens, W.F.J., meer

    For any quantitative data interpretation it is crucial to have information about the noise variances. Unfortunately, this information is often unavailable a priori. We propose a procedure to estimate the noise variances starting from the residuals. The method takes two difficulties into account. (i) The noise can be heteroscedastic (not constant over the measurement domain). This implies that one number is not enough anymore to characterise the total noise variance structure. (ii) The initial model used to generate the residuals may be imperfect. As a consequence, the residuals contain more than only stochastic information. The outcome of our procedure is an estimate of the noise variances which depends on the sample number, but is independent of the postulated model. A by-product of the procedure is information about the distribution of the degrees of freedom over the measurement domain. Indeed, as a consequence of the heteroscedastic noise, the model parameters will be fitted more to those data with low uncertainty and most of the degrees of freedom are lost at these locations.

 Top | Auteurs