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1 Numerical tools for Multi-Use Platform planning and design 

1.1 Introduction 
Planning of offshore constructions is seldom standard-design and often involves site specific issues. 
This is especially true working with Multi Use Platform, where two or more different types of 
structures must be designed to interact and to utilise all possible synergies in their function. The 
planning and design of MUPS in MERMAID has therefore not only involved standard engineering 
methods, but also advanced numerical tools, that can enable a detailed understanding of the 
environment and the interactions between the MUP and the surrounding water environments. 
 
The intention of this report is to summarise the advanced methods developed and used during 
MERMAID to support the planning and design of MUP’s and form a guideline and inspiration to 
planners on how to meet the challenges that turns up during design of such structures. 
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patterns, whereas the relatively long simulations guarantee that the mesoscale flow is fully in 
equilibrium with the mesoscale characteristic of the terrain.  
 
The wind climatology produced from winds simulated by the WRF model in this analysis mode was 
verified against high-quality tall mast and wind LiDAR measurements over the North and Baltic 
Seas. At most offshore sites where measurements are not contaminated from the presence of a wind 
farm or nearby coastlines, errors in mean annual wind speed are under 0.35 m s−1 or 3.2% at 
heights 65 – 106 m. While the biases in annual mean wind speed are small, the WRF-derived wind 
climatologies exhibit reduced variability as compared to observations. The relative biases in the 
WRF wind speeds are lower than those that will be obtained from using wind fields directly from 
the atmospheric reanalysis and quantify the added value of the WRF model downscaling for ocean 
applications.  
 
Model 
setup 
 

ARW-WRF Version 3.5.1, released 23 September 2013. 

Mother domain (D1; 115 × 108 grid points) with 30 km grid spacing. 

Polar stereographic projection centered at 52.2°N, 10.0°E (Figure 1). 

41 vertical levels with model top at 50 hPa; 9 of these levels are 
placed within 1000 m of the surface; the first 6 levels are located at: 
14, 43, 72, 100, 129 and 190 m AGL. 
MODIS land-cover classification (20 classes) of the International 
Geosphere-Biosphere Programme. 

Simulation 
setup� 
  
 

Initial, boundary conditions and fields for grid nudging come from 
the ERA-Interim reanalysis on pressure levels and 0.75°× 0.75° 
resolution. 
Runs are started (cold start) at 00:00 UTC every 10 days and 
integrated for 11 days, the first 24 h of each simulation are discarded. 
Optimal interpolation SST (OISST; at 1/4°× 1/4° resolution and are 
updated daily. Sea-ice from this dataset also used with possible sea-
ice fraction. 
Hourly model output for the lowest 11 levels.  

Time step 180 s.  

5-grid point boundary nudging zone. 

Grid nudging above level 10 for wind, temperature and water mixing 
ratio; nudging coefficient 0.0003 s−1. 

Model 
physics 
 

Thompson Graupel scheme (option 8), Kain-Fritsch cumulus 
parametrization (option 1). 
RRTM scheme for longwave (option 1); Dudhia scheme for 
shortwave (option 1), activated every 30 minutes. 
Mellor-Yamada-Janjic scheme (Mellor and Yamada, 1982) (option 
2), Eta similarity (option 2) surface layer scheme, Noah Land Surface 
Model (option 2). 
Simple diffusion (option 1); 2D deformation (option 4); 6th order 
positive definite numerical diffusion (option 2); no vertical damping. 
Positive definite advection of moisture and scalars. 
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Consequently, shoaling, refraction, set-up, depth-induced breaking, bottom friction, etc. are omitted. 
In addition, and in order to focus on the effects of seaweed on wave propagation only, currents are 
not taken into consideration.  
 
This computation of energy dissipation caused by underwater vegetation is based on the 
Dalrymple’s formula (Dalrymple et al., 1984), in which the vegetation is schematised as cylinders 
and wave attenuation is realised by the work done by drag force on waves. Compared with this 
vegetation module, the seaweed aquaculture sees a remarkable difference. Unlike the vegetation 
implemented in the SWAN model starting from the bottom, the floating seaweed merely exists 
around the surface. As a result a modification is required to represent the floating seaweed in the 
real situations. This is achieved by implementing two vegetation layers vertically and applying a 
drag coefficient of zero to the lower layer, which is virtually existed. 
 

 
Figure 4 Vegetation schematisation in vertical direction 

 
After setting up this model, sensitivity analysis has been carried out to determine individual impact 
of each parameter on the effect of wave attenuation. The sensitivity analysis follows the following 
configurations: 

1. Impact of wave height on wave attenuation 
2. Impact of wave period on wave attenuation 
3. Impact of vegetation height on wave dissipation 
4. Impact of vegetation diameter on wave dissipation 
5. Impact of vegetation density on wave dissipation 

In general, SWAN computations are able to be performed on a regular, curvilinear and a triangular 
mesh on a Cartesian or spherical coordinate system. In this study, a regular mesh, i.e. a rectangular 
computational area is properly used. An appropriate mesh size of 5 meter is chosen to resolve the 
relevant wave characteristics. 
 
Input parameters are provided along the boundary of computational area. Wave height, wave 
period, wave incidence angle, boundary shape of spectrum in terms of irregular wave, such 
parameters are given in the command file. In the output command, we can prescribe SWAN to give 
outputs of several parameters such as wave height, wave direction, wave period, energy density 
along wave spectrum, etc. Two example results regarding change in wave height and wave height 
diagram for the whole computational area are described in the figures below.  The first example 
represents the vegetation throughout the whole computational area and the second example 
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indicates a smaller patch in the middle of computational area, ranging from 45 m to 75 m in x axis 
and 40 m to 90 m in y axis. The patch is presented by the green area in figure 5. 
 
Result example 1: 

 
Figure 5 Wave height change for full vegetation 

 
With an initial significant wave height of 1 meter (peak wave period 5 s, vegetation height 3 m, 
vegetation density 200 stems per square meter, drag coefficient 0.2), the wave height will reduce to 
somewhat lower than 0.7 meter after going through the applied vegetation field. 

 
Figure 6 Wave height [m] field for the case with vegetation over the full extent of the model domain 
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Result example 2: 

 
Figure 7 Wave height change for vegetation patch 

 
Compared with Figure 5 in which the wave height decreases along the whole domain, the wave 
height in this figure only decreases in the middle range of computational area because the 
vegetation merely exists for that part. Moreover, the wave height reduces to approximately 0.9 
meter, which is remarkably larger than that in example 1. This is reasonable as the wave goes 
through less vegetation field, so less attenuation is obtained. 

 
Figure 8 Wave height diagram for small vegetation patch 

 

 
As can be easily seen from the two example results, at the leeside of the seaweed (from the 
propagation direction of the wave), the waves will be attenuated and therefore a change in the local 
wave climate will be the result. 
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In the planning of MUP installations CFD can be used in a variety of cases. In Mermaid CFD has 
been applied to describe the flow and mixing induced by vertical monopiles in stratified currents 
(see Figure 9). The near-field dispersion of dredging spill from installation of gravity based wind 
turbine foundations or when installing scour protection armoring around foundations is another 
example.  
 

 
Figure 9  Example of flow around a pier visualised by streamlines initialised downstream the 
pier at a depth of 14m calculated using the CFD modeling system OpenFoam. Black lines are 
tracking backwards, red lines are tracking forward. Current angle at 0 degree (run No 1) is shown 
in the top view and 15 degrees (run No 11) in the bottom view. 

The detailed 3-dimensional computational fluid dynamic (CFD) tools are most accurate modelling 
tools in studying the near field behaviour of the buoyant jet/plumes in ambient environment. The 
high levels of sediment concentration in the overflow and disposal plumes indicates significant 
dynamic and occupancy interactions in between the two phases (water, sediment), which then 
requires a multiphase two-way coupled solution. The application of the so-called “Boussinesq ” 
approximation which approximates the presence of the dispersing phase only to that of change in 
gravitational force on the flow, is insufficient. Including the flow displacement due to the sediment 
fall velocity and the forces due to the transient gradients in the density and the momentum transfers 
due to the falling sediments are necessary for detailed calculations of the processes involved in the 
near field behaviour of the plumes.  

The CFD model developed, evaluated and used in Saremi (2014) to study the nearfield behaviour of 
the overflow plumes is based on the multiphase mixture method introduced by Ishii (2006).  The 
model uses the Large Eddy Simulation (LES) approach to resolve the turbulent eddies and solves 
the equations of conservation of mass and momentum for the mixture as a whole. The model was 
used to evaluate the effect of governing parameters on overflow plumes nearfield behaviour. In 
Figure 10 three snapshots of different stages (entrainment, collapse and density current over the 
bed) from the CFD model results simulating a material release experiment has been shown. The 
model is capable of resolving the dynamics of the dumping process and can be used in further 
investigations of various mechanisms involved in plumes evolution.  See Figure 10.        
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Figure 10 CFD simulations of sediment dumping into stagnant ambient (Saremi, 2014) 
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The vertical domain is a combined sigma-z domain with the upper 10 m of the water column 
represented by 10 sigma-layers and the remaining water column represented by a number of z-
layers depending on the local water depth. The adopted vertical resolution allows for the main part 
of the western Baltic Sea and the Belt Sea including Fehmarnbelt to be resolved entirely by 1 m 
layers.  
 
 

 
Figure 13  Section of the computational mesh for a fish farm area consisting of 10 large cages. 
 
Meteorological input data (wind, air temperature, air pressure, clearness and precipitation) is 
provided by StormGeo (Norway) or DMI (Denmark).  
 
Boundary data for the Skagerrak model boundary including water level, current, salinity and 
temperature are provided by DHIs larger operational forecast models: - water level and current from 
the Hydrostatic North Sea-Baltic Sea operational model and temperature and salinity are provided 
by the so-called BANSAI operational model. 
 
In order to account for the freshwater runoff within the model domain, the hydrodynamic model 
includes 82 model sources. These sources represent the total freshwater input to the model domain.  
 
Data is based on combination of modelled and climatological data from SMHIs HBV runoff model 
and from the data sources applied for the Danish NOVANA modeling program. 
 
The model is calibrated by comparing simulated and measured time series of water level, water 
temperature and salinity at various locations (typically 10-15 stations) within the model domain. 
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The risk of waterborne transmission between individual fish farm was analyzed based on hydro-
dynamic modelling predicting the water current in time and space, and transport (~advection-
dispersion) and 1st order decay modeling describing the dissolution and transport of dissolved or 
suspended disease “agents” (e.g. vira , bacteria or parasite). The relative transmission risk between 
sites can be analyzed based on these model results: 1) Disease dispersal maps – for visual pairwise 
comparison of transmission risk between production sites; 2) Similarity index – a statistical method 
for identifying those productions sites with least (or most) risk of waterborne transmission 
 
The disease transmission modelling was carried out using the ECO Lab module for MIKE 3 FM. 
The ECOLab module is an add-module for simulating the reactive transport of dissolved or 
suspended substances in water represented by the computational nodes (~water volumes) in the 
MIKE-3FM model. ECOLab is designed as an open equation solver for full customization and 
specification of model algorithms and variable definitions.  
 
The disease transmission was modelled as simple 1st order decay in combination with advection 
dispersion processes. In order to propose most likely first order decay constants for model 
simulations two common fish diseases were selected, VHS and Furunculosis respectively based on 
available literature.  
 
The model was setup including 35 state variables, each state variable a specific source from each of 
the proposed fish production sites, see Figure 15. 
 

 
 

Figure 15 Disease transmission map for production site no. 9. Source was strength 106 units per 
second from farms neighbouring farm no. 9 (4, 5, 15, 18). First order decay constant of 0.5 per day.  
Yellow-red colour legend indicates simulated Maximum concentrations registered during the 3 
month simulation period June – August 2005 in the upper part of the water column. Blue colours 
indicate depth curves of 10, 15 and 20 meters. Grey area represents land territories 



MERMAID
 

 MIK3.1.4
fis

Medicine a
nets must n
and dilutio
future fish 
other infor
 
Dilution ra
and the No
HD) chara
1000 m in 
current spe
be underes
bottom wa

Figure 16 
aquacultur
 
The model
salinity an
direction in
 
For every 
study by 
downstream
dispersion 
depths we 
real dilutio
medians, a
 

D 

KE-21-HD
h farms  
and biocide
not exceed E
on rates calc

farms. Suc
rmation and

ates in Inne
orth Sea wa
acterised by

the deeper 
eed over de
stimated as

aters compar

Model area
re sites acco

l was execu
nd temperat
n every mod

model cell 
adding a 

m of the r
coefficient
assumed th

on. Yearly 
averages or a

 Screenin

s used in fin
EU EQS ou
culated base
ch informat
d thus be use

er Danish W
as quantified
 fine resolu
parts of the

epth. Hence,
 speed will
red to surfa

a and spatia
ording to di

uted for the
ture at the 
del cell, see

and at ever
tracer in f
release poi
ts. In order
hat tracer c
values of 

any percent

g tool to q

nfish aquac
utside the fa
ed on mode
ion can be 
ed in marine

Waters, Wes
d using a ca
ution (50x 5
e model are
, at larger d
l be lower 
ce waters. 

al (horizont
ilution of dis

e year 2005
boundaries

e Figure 16. 

ry stored tim
fixed conce
int (i.e. the
r to take ac
oncentratio
dilution ca

tile. 

288710

quantify d

culture to tre
arm area. As
els can prov
presented i

e spatial pla

stern Baltic
alibrated 2-d
50 m) in sh
ea (Figure 1
depth (i.e. >

and the cu

tal) resoluti
ssolved was

5 and force
s. The mod

 

me step (1 h
entration an
e fish farm
ccount of th
on in surfac
an subseque

dilution rat

eat infected
s an initial s
vide informa
in GIS form
anning proc

c Sea and in
dimensional

hallow wate
16). Being 2
> 20 m) curr
urrent direc

ion of MIKE
ste (medicin

d by meteo
del provided

h) dilution r
nd calculat

m) assumin
he underest
e waters (0
ently be ca

tes of diss

d fish and as
screening ap
ation on wh

mats which 
ess. 

n the coasta
l hydrodyna
rs gradually

2-dimension
rent speeds 

ction often 

E 21-HD us
ne and bioci

orology, run
d water lev

rate was est
te tracer c

ng default v
timated cur

0-10 m) was
alculated fo

solved wa

s antifouling
pproach cur
here to and 
allow integ

al waters of
amic model
y increasing
nal the mod
 in surface 
opposite in

 
sed to scree
ides) 

n-off, and w
vel, current 

timated as a
concentratio
values of 
rrents speed
s representa

or each mo

19

aste from 

g agents on
rrent speeds
not to plan

gration with

f Skagerrak
l (MIKE 21
g to 1000 x

del averages
waters will

n the saline

en potential

water level,
speed and

a near-field
on 1000 m
momentum
ds at larger
ative of the

odel cell as

9 

n 
s 
n 
h 

k 
 

x 
s 
l 
e 

l 

, 
d 

d 
m 
m 
r 
e 
s 



MERMAID
 

In the mod
Femarn Be
The lowest
 
Intuitively,
speed is ra
temperatur
waters is lo

Figure 17 
the North S

 MIK3.1.5
As

 
Along with
effects resu
aquacultur
models to 
sulphides 
transparenc
approach) 
conservatio
seamless c
(biomass) a
 
A conceptu
composite 
fish cages
spread and
shear stres
translated i

D 

del area th
elt, the Gre
t dilution ra

, all other t
ather high a
res and low
ocated in th

Dilution ra
Sea and Ska

KE-3-HD L
sessment

h release o
ulting from 
e. For alm
estimate im
in sedimen
cy in water
spatial res

on had bee
combining 
approaches

ual diagram
of Lagrang
. Lagrangia

d sedimenta
ss is below
into an Eule

he dilution r
eat Belt, in 
ates were fo

things being
and consiste
w oxygen in
he Great Bel

ate in surfac
agerrak. 

Lagrange-
t of aquac

of medicine
release of n
ost a decad

mpacts from
nts and nea
r column, g
solution of 
n maintaine
Lagrange 

.  

m of the aqua
gian and Eu
an particles
ation of org
w a critical 
erian state v

rates varied
the North S
und in shall

g equal fish
ent to avoid 
 cages. In a
lt where cur

ce waters (0

-Eulerian m
culture farm

e and biocid
nutrients are
de DHI has
m fish and m
r-bed water

growth of be
deposition

ed. During 
(agent-base

aculture spi
ulerian repre
s representi
ganic C from

threshold 
variable repr

288710

d between 
Sea and the
low bays, in

h farmers w
periods of 

accordance,
rrent speeds

0-10 m) in i

model too
ms at high

des, the org
e considered
s applied c
mussel farm
rs), phytop
enthic vege

n below cag
Mermaid, 

ed modelli

ill model is 
esentations 
ing feed wa
m fish cage
particles w
resenting th

1,000 and
e coastal pa
n fjords and

would selec
stagnant w

, the newes
s and dilutio

inner Danis

ol to estim
h resolutio

ganic load 
d as the mai

coupled hyd
ming, includ
lankton gro

etation. Usin
ges has su
the model 
ng of depo

shown in F
of the spill

aste and fe
es onto the 

will settle a
he upper lay

10,000 wit
arts of the S
d in the Sout

ct productio
waters and in

t and large
ons are high

sh waters an

ate Enviro
on 

of sedimen
in environm
drodynamic
ding benthi
owth and b
ng a strict E
ffered som
capability h
osition of 

Figure 18. T
l and fate o
ecal particle

sea bed. O
and particle
yer of the se

th the highe
Skagerrak (
thern Little 

on areas wh
ncreased ris

est fish farm
h. 

 
nd the coas

onmental 

nts and eut
mental impa
c and bio-g
ic effects (o
biomass acc
Eulerean (i

mewhat alth
has been im
faeces) an

The model c
of organic c
es simulate

Once simula
e masses w
ediment.  

20

est rates in
Figure 17).
Belt.  

here current
sks for high

m in Danish

stal parts of

Impact 

trophication
acts of feed-
geochemical
oxygen and
cumulation,
.e. biomass

hough mass
mproved by
nd Eulerian

consists of a
arbon from

e the initial
ated current

will become

0 

n 
. 

t 
h 
h 

f 

n 
-
l 
d 
, 
s 
s 
y 
n 

a 
m 

l 
t 
e 



MERMAID 288710 21 
 

In the Eulerian model the sediment is described by 2 sediment layers that interact with the water 
column through erosion, re-suspension and re-deposition. The second sediment layer is included to 
enable consolidation of deposited material over time. Mineralization of organic carbon and the 
resulting oxygen consumption are simulated as part of the Eulerian model. Oxygen consumption 
from mineralization of “Lagrangian carbon” is also included in the mass balance equation for 
dissolved oxygen. The individual processes are described in more detail below.  

The model was developed using a development version of the ecological modelling software ECO 
Lab providing full access through an open solver environment for equation development, 
implementation and execution on top of DHI’s MIKE 3 FM. The combined ECO Lab – ABM Lab 
supports full integration of Eulerian and Lagrangian representations in a user-friendly environment.  

 

Figure 18 Conceptual diagram of the Aquaculture module as implemented in ECO Lab.  
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4 Use of ESA Earth Online (EO) products in MERMAID 
The chapter describes how satellite data from ESA is used in MERMAID. An introduction to the 
data can be found at https://earth.esa.int/web/guest/home’. Earth Online will be referred to as “EO” 
in the following sections.  
 

4.1 EO products description 
Mediterranean Sea site 
Product name: Earth Observation products over Northern Adriatic sea 
Site: Mediterranean Sea  
Sea name: Northern Adriatic 
Product format: NetCDF 
Product processing level: 3 - Binned Data Products at 1/100  or 1/30 degrees spatial resolution 
 
North Sea site 
Product name: Earth Observation products over North sea 
Site: North Sea  
Sea name: Wadden 
Product format: NetCDF 
Product processing level: 3 - Binned Data Products at 1/100 or 1/30 degrees spatial resolution 
 

4.2 EO dataset generation workflow 
In Figure 19 are reported the main processing steps for the generation and storage of Earth 
Observation products. 
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and on the directional structure of the radiance distribution, and that display enough regular features 
and stability to be useful descriptors of a water body (Mobley, 2010). 
 
Based on the optical properties, waters can be classified in two main classes: Case2 waters, 
vertically mixed coastal waters dominated either by suspended inorganic sedimentary material or 
biogenic particulate material, and Case1 waters, influenced by biogenic materials only. 
 
Depending on the concentrations of the constituents, the water changes its color from blue to green 
to light brown. Different bands from optical multispectral sensors are used to estimate surface 
concentration of photosynthetic pigment chlorophyll-a, yellow substance and suspended inorganic 
sedimentary particles. Algorithms are applied to derive the concentrations of the three different 
groups of substances in Case2 waters from the water-leaving radiance, after an atmospheric 
correction is performed (Doerffer, 2009). 
The propagation of downwelling irradiance at specific wavelengths from surface to a depth in sea 
water is governed by the diffuse attenuation coefficient, Kd(λ). Kd(λ) is an apparent optical 
property (Preisendorfer, 1976), so it varies to some extent with solar zenith angle, sky and surface 
conditions, and depth. The estimation of Kd(490) (Kd at λ = 490 nm) is based on empirical 
relationships involving the blue-to-green ratio of water-leaving radiance (Lee et a., 2005). 
 
Ocean Color family products have been produced using a processing chain specifically created to 
process optical data from MERIS, named MPOC (MERIS Processing Ocean Color). The processing 
chain (Figure 20) is divided in three steps: 1) the generation of L2 standard and experimental OC 
products, 2) generation of fully processed L2 OC products, 3) creation of L3 gridded OC products 
(Filipponi et al., 2014). 
 
Final products have been estimated from data collected by MERIS optical sensor onboard 
ENVISAT satellite. MERIS Full Resolution data at processing level L1b have been requested to 
ESA with a CAT-1 agreement (Category-1 Project, n. 7963). A processing chain for parameter 
estimation has been built in order to produce accurate and validated spatial maps for the study site 
(Mediterranean Sea site, North Sea site). The L2 data are estimated from L1B products, after 
eliminating pixels affected by cloud coverage, sun glint or other abnormalities. After this operation 
an atmospheric correction algorithm is applied to subtract the atmospheric scattering components 
from the total radiance and thus derive the geophysical products. Standard MEGS 8.1 processor has 
been implemented for the computation of Kd490 parameter, which it is not included in standard 
MERIS L2 products. The use of experimental algorithms, based on Neural Network computational 
models, has been experimented for testing their possible improvements in the estimation of 
biological and geophysical parameters. 
 
The L3 data are derived by binning the L2 by means of BEAM Level 3 Binning Operator, based on 
the NASA SeaWiFS binning algorithm as described in Campbell et al. (1995). The binning 
processes allowed to distribute the contributions of Level 2 pixels in satellite coordinates to a fixed 
Level 3 grid using a geographic reference system. 
 
Processing chain for the 1/30 degrees spatial resolution was implemented with a spatial filtering on 
L3 products, in order to remove data noise due to both reprojection artifacts and spectral signal to 
noise ratio which is higher in MERIS Full Resolution products. 
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Ocean Color products have been validated using in situ data collected by moored buoys or during 
cruise campaigns. 
 
Each single observation of every Ocean Color EO product is stored in a separate NetCDF file, 
which contains a bit mask layer indicating valid and not valid pixel (no data values). 
 
Moreover a quality_check layer (l3_qc) in bit format is supplied, containing information for each 
single pixel about both acquired image quality (bit 3,4, and 5) and algorithm accuracy on the 
quantitative estimate value (bit 2). 
 
Mask layer can have the following values: 
0 valid 
1 not_valid 
 
l3_qc layer can have the following values: 
bit0: not valid 
bit1: land 
bit2: low accuracy 
bit3: very good 
bit4: medium 
bit5: poor 
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4.8 EO products validation 
This subsection describes the validation procedure and results of the EO products. 
Earth Observation products have been validated for the Mediterrenean Sea site using in situ data 
collected from buoys, cruise campaigns and water quality monitoring acquisitions.  
Validated products are SST, wind, Chl and TSM, while in situ data for CDOM and Kd490 were not 
available for spatial and temporal range of the dataset. 

4.9 Ocean Color family product validation  
Ocean Color products have been validated, using cruise campaigns data and water quality 
monitoring acquisitions, for the period 13/02/2008 – 20/12/2011.  
As the measurements have not been collected at the same time of the satellite acquisitions, 
differences in the comparison are evident. For this reason, only qualitative comparison have been 
done for Chlorophyll (Chl) and Total Suspended Matter (TSM) EO products.  
 
 

 
Figure 30: Comparison of measured Chlorophyll during cruise campaigns and water quality 
monitoring  and estimated Chlorophyll from satellite data 
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Figure 31: Comparison of measured Total Suspended Matter during water quality monitoring  
and estimated Total Suspended Matter from satellite data 
 

4.10 Sea Temperature family product validation  
SST products have been validated, using in situ acquisition from ISPRA Venice RON buoy, for the 
period 01/04/2010 – 31/10/2012. 
Temporal profile of SST from buoy acquisition has been extracted from multitemporal dataset by 
means of spatial queries and plotted (Figure 32). In situ data have been superimposed in the 
temporal profile in order to visualize the trend of both observed and estimated data. 
Scatterplot have been created to compare observed and estimated SST data, Mean Error (ME), Root 
Mean Square Error (RMSE) and Coefficient of determination (R2) have been calculated for the EO 
product. 
Data comparison showed high precision of SST product estimation from RS data, statistical 
analysis resulted with ME: 1.00 (°C); RMSE: 1.42 (°C); R2: 0.92. 
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Figure 32: Time series of measured and estimated Sea Surface Temperaure 
 
 

 
Figure 33: Comparison of measured and estimated Sea Surface Temperature 
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4.11 Ocean surface wind field family product validation  
Wind speed and direction estimated from SAR measurements has been compared to in situ data 
collected from ISPRA Venice RON buoy, CNR-ISMAR Acqua Alta Tower, GNL terminal and 
ARPAV buoy. Wind fields refer to the acquisitions of the period December 2011 – April for which 
SAR data were collected and processed for the Mediterranean Sea site. 
 
Scatterplot have been created to compare observed and estimated wind field data, Mean Error (ME), 
Root Mean Square Error (RMSE) and Coefficient of determination (R2) have been calculated for 
both wind speed and wind direction products. 
 
Data comparison showed very high precision of wind field products estimation from ENVISAT-
ASAR data, statistical analysis resulted with ME: 1.71 (m/s); RMSE: 1.30 (m/s); R2: 0.76 for wind 
speed and ME: 27.87 (degrees); RMSE: 5.27 (degrees); R2: 0.92 for wind direction. 
 

 
 

Figure 34: Comparison of measured and estimated wind speed 
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Figure 35: Comparison of measured and estimated wind direction 
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