STARDUST II - Spatial and Temporal Assessment of high Resolution Depth profiles Using novel Sampling Technologies
The fate of pollutants in fluvial and marine sediments in cross-border zones

Data System

People |  Institutes |  Publications |  Datasets |  Data (login)

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Fatty acid bioconversion in harpacticoid copepods in a changing environment: a transcriptomic approach
Boyen, J.; Fink, P.; Mensens, C.; Hablützel, P.I.; De Troch, M. (2020). Fatty acid bioconversion in harpacticoid copepods in a changing environment: a transcriptomic approach. Phil. Trans. R. Soc. Lond. (B Biol. Sci.) 375(1804): 20190645. https://dx.doi.org/10.1098/rstb.2019.0645
In: Philosophical Transactions of the Royal Society of London. Series B, Biological sciences. Royal Society: London. ISSN 0962-8436; e-ISSN 1471-2970
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
Author keywords
    harpacticoid copepods, fatty acid metabolism, transcriptomics, global warming

Auteurs  Top 
  • Boyen, J.
  • Fink, P.
  • Mensens, C.
  • Hablützel, P.I.
  • De Troch, M.

Abstract
    By 2100, global warming is predicted to significantly reduce the capacity of marine primary producers for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. Primary consumers such as harpacticoid copepods (Crustacea) might mitigate the resulting adverse effects on the food web by increased LC-PUFA bioconversion. Here, we present a high-quality de novo transcriptome assembly of the copepod Platychelipus littoralis, exposed to changes in both temperature (+3°C) and dietary LC-PUFA availability. Using this transcriptome, we detected multiple transcripts putatively coding for LC-PUFA-bioconverting front-end fatty acid (FA) desaturases and elongases, and performed phylogenetic analyses to identify their relationship with sequences of other (crustacean) taxa. While temperature affected the absolute FA concentrations in copepods, LC-PUFA levels remained unaltered even when copepods were fed an LC-PUFA-deficient diet. While this suggests plasticity of LC-PUFA bioconversion within P. littoralis, none of the putative front-end desaturase or elongase transcripts was differentially expressed under the applied treatments. Nevertheless, the transcriptome presented here provides a sound basis for future ecophysiological research on harpacticoid copepods. This article is part of the theme issue ‘The next horizons for lipids as ‘trophic biomarkers’: evidence and significance of consumer modification of dietary fatty acids'.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
STARDUST II is a project funded by the INTERREG III A programme (France/Walloon Region/Flanders French-Flemish subprogramme) of the European Community's Regional Development Fund.
Hosted by the Flanders Marine Institute (VLIZ)