Catalogue | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

Catalogue

This search interface gives access to the reference database of VLIZ, an extensive collection of (inter)national marine scientific literature references.

You can limit your search to the Belgian marine literature only or to the VLIZ Library catalogue only by checking the 'VLIZ Library' box.

New search
[ report an error in this record ]basket (0): add | show Print this page

Effects of ocean acidification on sponge communities
Goodwin, C.; Rodolfo-Metalpa, R.; Picton, B.; Hall-Spencer, J.M. (2014). Effects of ocean acidification on sponge communities. Mar. Ecol. (Berl.) 35(s1): 41-49. https://dx.doi.org/10.1111/maec.12093
In: Marine Ecology (Berlin). Blackwell: Berlin. ISSN 0173-9565; e-ISSN 1439-0485, more
Also appears in:
Wilkinson, M. (Ed.) (2014). EMBS 45: European Marine Biology Symposium, 23-27 August 2010, Herriot-Watt University, Edinburgh. Marine Ecology (Berlin), 35(S1). Blackwell: Berlin. III, 110 pp., more
Peer reviewed article  

Available in  Authors 

Keywords
    Porifera [WoRMS]
    Marine/Coastal
Author keywords
    CO2 vents; Mediterranean; ocean acidification; Porifera; sponge; volcanic vents

Authors  Top 
  • Goodwin, C.
  • Rodolfo-Metalpa, R.
  • Picton, B., more
  • Hall-Spencer, J.M.

Abstract
    The effects of ocean acidification on lower invertebrates such as sponges may be pronounced because of their low capacity for acid–base regulation. However, so far, most studies have focused on calcifiers. We present the first study of the effects of ocean acidification on the Porifera. Sponge species composition and cover along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy) was measured at sites with normal pH (8.1–8.2), lowered pH (mean 7.8–7.9, min 7.4–7.5) and extremely low pH (6.6). There was a strong correlation between pH and both sponge cover and species composition. Crambe crambe was the only species present in any abundance in the areas with mean pH 6.6, seven species were present at mean pH 7.8–7.9 and four species (Phorbas tenacior, Petrosia ficiformis, Chondrilla nucula and Hemimycale columella) were restricted to sites with normal pH. Sponge percentage cover decreased significantly from normal to acidified sites. No significant effect of increasing CO2 levels and decreasing pH was found on spicule form in Crambe crambe. This study indicates that increasing CO2 concentrations will likely affect sponge community composition as some demosponge species appear to be more vulnerable than others. Further research into the mechanisms by which acidification affects sponges would be useful in predicting likely effects on sessile marine communities.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors