IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change
House, K.Z.; House, C.H.; Schrag, D.P.; Aziz, M.J. (2007). Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environ. Sci. Technol. 41(24): 8464-8470. https://dx.doi.org/10.1021/es0701816
In: Environmental Science and Technology. American Chemical Society: Easton. ISSN 0013-936X; e-ISSN 1520-5851, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • House, K.Z.
  • House, C.H.
  • Schrag, D.P.
  • Aziz, M.J.

Abstract
    We describe an approach to CO2 capture and storage from the atmosphere that involves enhancing the solubility of CO2 in the ocean by a process equivalent to the natural silicate weathering reaction. HCl is electrochemically removed from the ocean and neutralized through reaction with silicate rocks. The increase in ocean alkalinity resulting from the removal of HCl causes atmospheric CO2 to dissolve into the ocean where it will be stored primarily as HCO3 without further acidifying the ocean. On timescales of hundreds of years or longer, some of the additional alkalinity will likely lead to precipitation or enhanced preservation of CaCO3, resulting in the permanent storage of the associated carbon, and the return of an equal amount of carbon to the atmosphere. Whereas the natural silicate weathering process is effected primarily by carbonic acid, the engineered process accelerates the weathering kinetics to industrial rates by replacing this weak acid with HCl. In the thermodynamic limit—and with the appropriate silicate rocks—the overall reaction is spontaneous. A range of efficiency scenarios indicates that the process should require 100–400 kJ of work per mol of CO2 captured and stored for relevant timescales. The process can be powered from stranded energy sources too remote to be useful for the direct needs of population centers. It may also be useful on a regional scale for protection of coral reefs from further ocean acidification. Application of this technology may involve neutralizing the alkaline solution that is coproduced with HCl with CO2 from a point source or from the atmosphere prior to being returned to the ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors