

Marine Science contribution to Society and Industry

EurOCEAN 2010, Oostende, 12-13 October 2010

Jean-Yves Perrot IFREMER C.E.O. French Research Institute for Exploitation of the Sea

The food challenge: Fisheries and Aquaculture The global stakes at EU level:

EU fisheries (~ 4 Mt / y) + aquaculture (~ 1.3 Mt / y) production is not sufficient to satisfy consumer demand (~ 15 Mt / y, of which 5 are from the aquaculture)

- => seafood importation rate > 65%, still increasing
- => Aquaculture is a high potential sector in terms of employment and of sustainable development within the European market.

Marine sciences contribution to the Common Fisheries Policy:

- Stock assessment and fleet capacities
- Ecosystem approach, how to decrease the impact of fisheries?
- From a stochastic to a deterministic approach

The vision for fisheries research:

- Need for more integration of ecosystem and economic models to anticipate crisis
- Need for more cooperation among fishermen and scientists at the local/regional level to reach the "maximum sustainable yield" of an eco-region
- Use the DCF (Data Collection Fisheries) for indication of biodiversity trends in the context of the MSFD (Marine Strategy Framework Directive).

Marine Science Contribution to Society and Industry

The food challenge: Fisheries and Aquaculture

Marine science contributions to aquaculture:

Feeding substitutes

Healthy products

Conservation of the nutritional characteristics

Energy efficient and low discharges production systems

Resistance/resilience to environmental conditions

The vision for aquaculture research:

To overcome a paradox: European aquaculture is acknowledged for its research and its quality, but the sector growth is not there.

=> A new stimulus is needed at different levels :

Space competition (=> policy issue)

Research & Development (=> energy efficient production, closed circuit systems, off-shore aquaculture)

Production cost (=> in tune with the international market)

lfremer

Marine Renewable Energy opportunities The global stakes:

A lot of potential resources and promising concepts

Marine Renewable Energy can be a significant contributor to EU energy objective of 20% renewables by 2020

Marine Science contributions:

- Resources evaluation (wind and waves resources, spatial planning, ...)
- Models and prototypes testing activities, demonstration sites, materials
- Monitoring of meteo/ocean environment and energy converters behaviour, and related modelling

And of course ... Environmental impact !

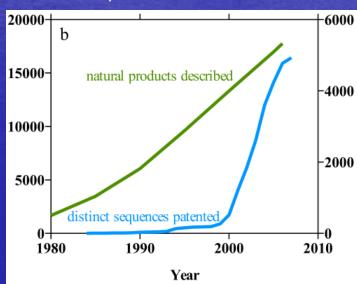
Marine Renewable Energy opportunities

The vision:

- Such quantitative objectives can only become reality through a joint mobilisation of all public and private actors on the right scale
- > The key roles of the public stakeholders in the next decade
 - o A ten years funding effort from the public research,
 - The development and consolidation of enabling policies,
 - A maritime spatial planning bringing into force,
 - A communication strategy to ensure public support,

Official launch of the Marine Board Vision Document on Marine Renewable Energy, today at 17h40, don't miss it !!!

Marine biotechnology


The global stakes:

Economic opportunities based on biodiscovery and innovation:

Food, Health (drugs and cosmetics), Energy, Innovative products (biopolymers, ...), Marine environment (Bioremediation)

More than 18000 natural products and 4900 patents associated with genes of marine organisms, a market estimation of more than 2 billions \$ per year (1 billion \$ for only enzymes) >>>>>>

(Ref: What lies underneath: conserving the oceans' genetic resiources Jesus M. Arrieta, Sophie Arnaud-haond, Carlos M. Duarte)

But extraction / conservation / exploitation of oceans' genetic resources and species is a challenge

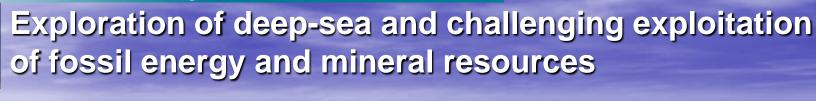
Marine biotechnology

Marine science contributions:

- Discovery of the marine biodiversity
- Metagenomics
- Screening of genes roles and product
- Investigating in the metabolism of promising species
- Developping innovative processes to master the production of selected species

 The vision:

A vast repertory of life and genomic diversity lies underneath, calling for increased research and protection efforts


Need a constant support and a critical masses of resources to discover the « blockbusters » => Huge potential for a public-private partnership, e.g. using the tax credit for research

Need a clear statement about the « patentability of the living resources »

This vision will be unveiled in tomorrow's presentation : « Blue Biotechnology - New opportunities for Europe », don't miss it !!!

Marine Science Contribution to Society and Industry

The global stakes:

- Fossil energy resources represent about 30% of the world production
- The potential mineral resources of the oceans is really significant, it may contribute to supply critical raw materials (Ref : EC COM(2008) 699))
- Europe need to define its own strategic approach at a time when the international context is quickly evolving

Exploration of deep-sea and challenging exploitation of fossil energy and mineral resources

Marine Science contributions:

RIDGES

Massive polymetalic sulphides (thin metallic particles precipitate : Copper, Zinc, Silver, Gold, Cobalt, Lead, ...)

Natural hydrogene(Serpentinisation)

Chemiosynthesis

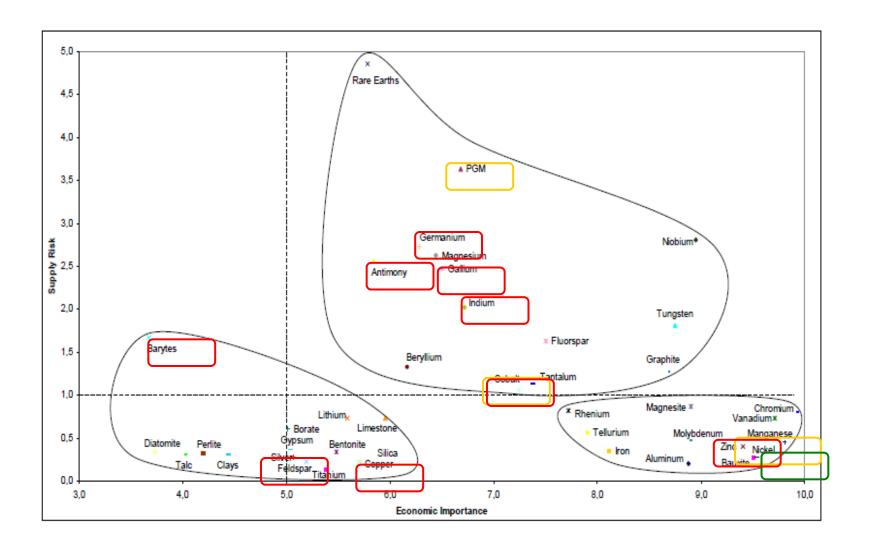
ABBYSAL PLAINS

Polymetallic nodules: Iron, Manganese, Copper, Cobalt, Nickel,...

MARGINS

Oil, gaz, hydrates, sands and gravels, crusts, ...

T.O.C.


continental crust

Critical raw materials issue - 2030 EC vision Thermae Palace Présence REMIMA significative

Encroutements

Nodules

Exploration of deep-sea and challenging exploitation of fossil energy and mineral resources

The vision:

- Better organise the R/D capacities existing in EU
- Increase cooperation with a powerful private sector
- Develop a common approach at EU level to ISA to promote EU interest

The global stakes:

The need for a consistent and sustainable data and scientific information service in support of :

- policies (Integrated Maritime Policy, Marine Strategy Framework Directive),
- management (spatial planning),
- industry (transport & security, offshore facilities, aquaculture)
- research (inc. climate change impact)
- ... and for the information of the public.

Marine science contributions to monitoring:

The capture of geo-referenced parameters: Physics, Chemistry, Geology, Biology, Living resources,

Through different acquisition methods: *In situ* sampling + land lab analysis (=> coastal stations, scientific cruises, *In situ* automated sensing (=> network of fixed and mobile observatories), Remote sensing (=> satellites)

Marine Science Contribution to Society and Industry

Marine science contributions to data access:

- Marine Research institutes are deeply involved in marine « public » data service, originally in a scientific-to-scientific intention and now more in a scientific-to-any public one : data saving, validation, storage, accessibility, portal development.
- Marine Research institutes are also usually committed for a marine « legally obliged » data service by their state trustees: they report a set of specific data and indicators on a regular operational basis.

The vision: "Marine Knowledge 2020" COM(2010)461 => a timely vision which cover marine data collection, assembly and access issues (e.g. EMODNET)

Critical issues to solve within the next decade:

- •Standards for data and meta data, to move towards a european network of distributed data centres
- •Coordination of existing initiatives, to move towards a common marine data architecture
- •Regular funding of the *in situ* data acquisition, the core condition for a permanent public service

Conclusion:

Marine Sciences play a crucial role with the key involvment of industrial partnerships in addressing those societal challenges

This will require rethinking the networking of all concerned contributors:

- the implementation within the research community of an European Joint Programming of the Member States for "Healthy and productive oceans and seas",

- the development of a truly integrated and consistently funded "**European**Ocean Observing System" providing data and information under regulated access

- the promotion for the maritime and industrial sector of innovation and development of new marine/maritime products, processes, services

Thank you for your attention!

