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 Background  
• In recent years, the impacts of natural disasters are more and more severe 

on coastal lowland areas and barrier islands. Furthermore the impact of 
anthropogenic modifications produce coupled coastal problems. In the 
future, the impact of global warming and climate change (sea level rise, 
storm surges, coastal floods) will become more critical. People are 
increasingly occupying low-lying areas that are exposed to flooding, thus 
exacerbating their vulnerability to extreme events. The importance and 
scale of coastal defense structures will increase accordingly, and thus 
potentially generating greater environmental adverse impacts. 

• At a global scale, effects of accelerated climate changes was demonstrated 
in autumn 2010 when the storm Becky reached the Santander Bay, Spain 
with a peak of nearshore (significant) wave height of about 8 m, and a 
storm surge reached 0.6m. On the Nile Delta Coast, effects of intense 
winter storms on Alexandria coastline and its adjacent shores appeared in 
the last decade to be more  progressive in 2003, 2006 and recently in 
December 2010. The latest storm in December 2010, which hit the Nile 
Delta showed that generated surges, up to 1.0m as well as a maximum of 
7.5m in the offshore presented a major natural hazard in coastal zones. 
The recent  adverse impact of  Super Sandy hurricane in late October 2012 
on the east cost of the US is living example of  progressive global climate 
changes.  
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Location of case studies in the Gulf of Lions, France 
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Beach erosion at barrier 
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Brilliance of the Seas Cruise Ship Faces Heavy 
Mediterranean Weather, Alexandria, Dec. 13, 2010 



Mohamed Ali Seawall 

Beach segment after 2010 storm   

Abu Qir Bay 

Restaurants Complex, Alexandria Coastal 

Road , Dec. 2010 

Alexandria Coastal Road , Dec. 2010 

Flooding  

Flooding at Mohamed Ali 

Seawall, Dec. 2010  



Objectives & Methodology  
 Assess the impact of anthropogenic modifications, such as  the absence 

of river flow on coastal morphology of Deltas. 

 Evaluate impact of recent storm surge and wave overtopping on 

upgrading of seawalls.   

 The second aim is to highlight the opportunities to use coastal soft 

defense measures. 

 Clarify literature controversial impact of the effectiveness of seawalls to 

slow, mitigate or increase coastal erosion at retreating shorelines.  

 The derivation of the results is based on the examination of field data 

collected on the Nile Delta Rosetta seawalls, constructed in 1990, after 

the operation of the Aswan High Dam in 1965, as well as field data on 

seawalls in France and the USA. 

 Use has been made of recent satellite remote sensing data for the 

Rosetta headland in 2007, 2008 and 2012, the numerical prediction of 

GENESIS, and scale analysis of the governing equations of the wave-

river flow to obtain the length scale for reshaping of the Nile Delta 

coastline at Rosetta. Laboratory data are used for verification. 



B. Seawall Case Studies  

Essential Methodology 

 

Review of previous case studies of field monitoring 

of coastal morphology modifications at two seawalls 

located in Monterey Bay, CA, one seawall located at 

Ventura river mouth, CA, USA and one seawall 

located at the Rhone river mouth, the Gulf of Lions, 

French Mediterranean coast.  



CASE STUDIES I - USA 
Seasonal and Storm Erosion Patterns 

Interaction of Seawalls and Monterey Beach, Calif., USA 

Wave refraction analysis:  
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Eight Years of Field Monitoring (1986-
1995) Gary Griggs, UC Santa Cruz, USA 
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Ventura River Delta, California, USA (November 1999) 

River Mouth 



Parking Lot and Bike Path Near the Mouth of the 

Ventura River (1995) 

Shoreline Erosion at Revetment, Surfer’s Point, 

December 1996. 
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Sketch of Original  Design at 

Surfer’s Point. 

Managed Retreat and Restoration 

for Surfer’s Point. 
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CASE STUDY II – France   
Seawall and Longshore Beach Erosion (Véran site, Gulf of Lions, France, 

Mediterranean), Samat Olivier et al, 2005 
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Shoreline Retreat along Véran Seawall 

in the Long Term (1872-2004) 





Morphological Changes at Rosetta Promontory Headland  



Essential Methodology 

 

Analysis of the extensive field data collected by the 

Coastal Research Institute in Alexandria, Egypt and 

Coastal Protection Authority, Cairo, on the coastal 

changes astride Rosetta Branch, Nile Delta Coast. Use 

has been made of the numerical prediction of GENESIS to 

confirm the measured rates of long shore and offshore 

sediment transport in the vicinity of the Rosetta Western 

Seawall. A wave-current momentum index was used to 

estimate the length scale of the coastline reshaping. 
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Sediment Transport Rate (Genesis) along the Shoreline, West of 

Rosetta Headland for One Year Period (2003 – 2005 Wave Data) 
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Flow Visualization of  

Wave Induced Mass Transport Pattern (Ismail, 1980) 

Effects of Wave & Current Interaction on Coastal Circulation  

Flow Visualization of  

Momentum Jet in the Absence of Waves (Ismail, 1980) 

Flow Visualization of  

Momentum Jet in the presence of Waves (Ismail, Wegel 1981) 
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Correlation between Wave-jet Relative Momentum 

Thrust and Length Scale of the Alongshore Zone of 
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Major Results 
Satellite Images of Rosetta Seawalls & the Extent of Coastal Erosion Down-drift the Headland 
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Major Results 
Satellite Images of Rosetta Seawalls & the Extent of Coastal Erosion Down-drift the 

Headland (2012) 
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Wave height is denoted by the color scale in meters and wave direction by arrows. 
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E. Conclusions & Recommendations 

 Modifications of bottom morphology in front of and astride seawalls 

depend on local wave climate and current conditions and sea level 

variations.  Further, the increased rate of longshore sediment 

transport is strongly influenced by the cross-shore location of the 

seawall in the surf zone.   

 Wave reflection and the generated wave patterns in front of seawalls 

enhance the rate of offshore sediment transport as well as the 

alongshore rate.  This trend of increase was confirmed by the results 

of fluorescent tracer experiments at Rosetta Western Seawall as well 

as  the reported results for seawalls located in France and UK. 

“Interaction of waves and seawalls influences coastal processes in 

front of the seawall”. 

 The rate of scour in front of Rosetta Western Seawall appears to be 

diminishing currently after reaching a quasi-steady cross-shore 

beach profiles.  The continuation of collecting field data at Rosetta 

headland is highly recommended to provide reliable basis for future 

coastal zone management of the Nile Delta coastline. 



The results show that current climatic changes and human 

interference require the improvement of existing coastal defense 

structures by upgrading, i.e. by elevating the top level of the rubble 

mound/armor revetments and seawalls as demonstrated  from the 

analysis of the  case study of Mohamed Ali seawall, Abu Quir. 

Further, it is becoming necessary to improve the stability of the 

cross shore-beach segment to create wave overtopping resistance 

conditions under future storm conditions. 

Despite the fact that low crested breakwaters proved to be 

successful in some coastal locations, the shoreline response to their 

placement needs to be identified. The results show that integrated-

innovative systems, composed of hard and soft structures, should 

be explored to achieve the required level of coastal resilience.   

 



Selection of soft protection alternatives for coastal zone 

management should be considered if the use of hard 

structures is proved to be adverse to the sustainability of 

the coastal zone. 

 

The soft engineering alternatives are such as beach 

nourishment, stabilized sand dunes and sustainable  barrier 

islands and coastal lagoons. These natural systems would 

act as a buffer zone to defend main land. The sustainability 

of the integrated natural systems would require (1) barrier 

island with shoreline restoration and (2) quality 

management of hydrologic and vegetation restoration of 

coastal lagoons. 
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Future Outlook 
Passion for Coastal Regions 

“Make no little plans: they have no magic to stir men’s blood and 
probably themselves will not be realized. Make big plans; aim 
high in hope and work, remembering that a noble, logical 
diagram once recorded will never die, but long after we are gone 
will be a living thing, asserting itself with ever growing insistency. 
Remember that our sons and daughters are going to do things 
that would stagger us. Let your watchword be order and your 
beacon beauty.” 

- Daniel Hudson Burnham (1846-1912) 
 

Architect for the 1893 World’s Columbian Exposition held at Chicago and lead author of the 1909 
Plan of Chicago, USA. 


