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ABSTRACT: Here we introduce the Spiralling Inverse Method (SIM) that provides estimates of

the small-scale and mesoscale mixing strength. The SIM uses a vertical integral over a balance

between the watermass transformation equation and the thermal wind equation. The result is an

equation where all terms, except for the mixing strengths, can be obtained from hydrographic data

of temperature and salinity. As an advantage, the SIM estimates the mixing strengths without the

need of further knowledge of a reference velocity or streamfunction. Here we apply the SIM to

a small region in the North Atlantic. We find that the estimates obtained by the SIM compare

well to observations and other (inverse) estimates of the mixing strength. The SIM therefore has

potential to improve and constrain parameterizations used for climate and ecosystem modelling

using readily available hydrographic data.
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SIGNIFICANCE STATEMENT: Ocean mixing is a combination of many different physical18

processes over a large range of scales in time (seconds to years) and space (millimeter to 100 km).19

Most of these processes are too small to compute in climate models and need to be simplified20

(parameterized). These parameterizations have a strong influence on climate projections and their21

shape and magnitude needs to be constrained using observations and indirect estimates of ocean22

mixing strength. The Spiralling Inverse Method (SIM) is a new method to obtain such constraints23

of mixing strengths using readily available observations of temperature and salinity. We here test24

the SIM and confirm its potential to improve mixing estimates and therewith ultimately climate25

simulations.26

1. Introduction27

Ocean mixing affects the uptake, transport and storage of tracers such as heat and carbon in28

the ocean, subsequently impacting the climate and its future changes (Clément et al. 2022; Melet29

et al. 2022; MacGilchrist et al. 2020; Tatebe et al. 2018; Pradal and Gnanadesikan 2014; Munk30

and Wunsch 1998). Ocean mixing is caused by many different physical processes that take place31

on a large range of spatiotemporal scales (Moum 2021; De Lavergne et al. 2022). This makes32

mixing difficult to observe, or resolve in numerical ocean models. Consequently, ocean models33

use parameterizations of mixing that determine its strength and distribution (Fox-Kemper et al.34

2019). However, it turns out that models are very sensitive to unconstrained choices required35

for construction of these parameterizations (Pradal and Gnanadesikan 2014; Holmes et al. 2022).36

These mixing parameterizations can be improved by using observationally based constraints (Fox-37

Kemper et al. 2019).38

In studies of ocean mixing, and especially in numerical modelling, mixing parameterizations39

generally split mixing into mesoscale isoneutral mixing of which the strength is represented by40

a diffusion coefficient 𝐾 , and small-scale dianeutral mixing of which the strength is given by the41

diffusion coefficient 𝐷 (Fox-Kemper et al. 2019; Griffies 1998). Isoneutral (dianeutral) movement42

refers to movement along (across) surfaces of constant neutral density rather than along (across)43

surfaces of potential density, which is referred to by isopycnal (diapycnal) movement. For a more44

complete description of the differences between isoneutral (dianeutral) and isopycnal (diapycnal)45

the reader is referred to McDougall (1987a). The mesoscale mixing is directed along neutral tangent46
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planes, while small-scale mixing is isotropic, and often approximated as vertical or dianeutral47

(McDougall et al. 2014). Neutral surfaces are surfaces along which a water parcel can be moved a48

small distance without experiencing a buoyant restoring force (McDougall 1987a). The mesoscale49

isoneutral diffusion coefficient 𝐾 acts on scales of O(10−100𝑘𝑚) and is characterised by typical50

values ranging between O(101 − 103 𝑚2 𝑠−1), though higher values of O(104 𝑚2 𝑠−1) can occur51

(Abernathey et al. 2021). The dianeutral diffusion coefficient 𝐷 has many different sources, such as52

wind-generated mixing by the breaking of near-inertial waves (Alford et al. 2016), the dissipation53

of internal tides (De Lavergne et al. 2019) or the dissipation of lee-waves (MacKinnon 2013; Legg54

2021). Typical values of 𝐷 are in the order of O(10−6 − 10−3 𝑚2 𝑠−1) (Waterhouse et al. 2014),55

with the lowest values being found in the quiescent ocean interior, and increased values over rough56

topography. Though values of 𝐷 can in some cases even exceed 10−3 𝑚2 𝑠−1. Here we aim to find57

observationally based constraints for the parameterizations of the diffusion coefficients with the58

help of a new inverse method.59

Inverse methods traditionally have been developed and used to obtain estimates of large scale60

circulation and transport rates from hydrographic data, e.g. the box inverse method (Wunsch61

1978), the beta-spiral inverse method (Stommel and Schott 1977; Schott and Stommel 1978)62

and the Bernouilli inverse method (Killworth 1986). At a later stage the existing methods were63

extended by including the dianeutral diffusion coefficient 𝐷 (Ganachaud and Wunsch 2000; Sloyan64

and Rintoul 2000, 2001) or both 𝐾 and 𝐷 (Zhang and Hogg 1992; Hautala 2018). Yet, even for65

these methods, the main focus remained on solving the circulation, leading to less accurate mixing66

results (Zika et al. 2010a). More recently developed inverse methods were specifically designed67

to estimate mixing coefficients (Zika et al. 2010a; Groeskamp et al. 2014, 2017; Mackay et al.68

2018). Regardless of these improvements, these inverse methods also required the estimation of69

streamfunctions or velocities, which can potentially add more uncertainty and error to the mixing70

estimates. In this study, we will provide the derivation of the new Spiralling Inverse Method (SIM)71

that is explicitly designed to estimate only the diffusion coefficients 𝐾 and 𝐷, without the need to72

estimate any other variables.73

The Spiralling Inverse Method (SIM) is a vertical integral over a balance on a neutral tangent74

plane, between the water mass transformation equation and the thermal wind balance. The SIM75

uses the spiralling of temperature contours on neutral surfaces, with depth, to eliminate an unknown76
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reference velocity. The result is a balance where all terms can be determined based on hydrographic77

data except for the diffusion coefficients that we estimate using the inverse method. The SIM also78

differs from other inverse methods, as it is a semi-local method. That is, one needs only the79

isoneutral gradients of 𝑇, 𝑆, 𝑝 on a vertical cast. In contrast, other existing methods are either80

global (Groeskamp et al. 2014, 2017), basin-scale (Mackay et al. 2018) or regional (Zika et al.81

2010b; Hautala 2018).82

This paper is structured as follows; in Section 2 we will introduce the new inverse method.83

Section 3 is reserved for a description of the data that is used in an application of this method.84

Section 4 focusses on the inversion process of the method, while the results of applying the method85

to a region in the North Atlantic are presented in Section 5. Section 6 then compares these results86

to other studies in this area. Discussions and conclusions follow in Section 7.87

2. Methods - The Spiralling Inverse Method88

The Spiralling Inverse Method (SIM) is an inverse method that produces estimates for the89

isoneutral diffusion coefficient 𝐾 and the dianeutral diffusion coefficient 𝐷. These estimates are90

obtained using observed temperature and salinity data. Here we will use Conservative Temperature,91

Θ ([◦C]), and Absolute Salinity, 𝑆𝐴 ([g kg−1]), as variables for ’heat’ and salinity respectively.92

Conservative Temperature is proportional to potential enthalphy (by the constant heat capacity93

factor 𝑐0
𝑝, in [J kg−1 K−1]), representing the heat content per unit mass of seawater (McDougall94

2003; Graham and McDougall 2013). Absolute Salinity is designed to approximate the ratio95

between the mass of dissolved material and the mass of seawater ([g kg−1], (Wright et al. 2011;96

McDougall et al. 2012)). It is measured on the Reference Composition Salinity Scale (Millero97

et al. 2008). It is also the salinity variable of IOC et al. (2010), the thermodynamic description98

of seawater. These variables are considered on neutral tangent planes. Because the neutrality99

condition defines Θ and 𝑆A contours to be aligned, the direction in the neutral tangent plane normal100

to these contours (or cross-contour direction) is defined as:101

τ =
∇𝑛Θ
|∇𝑛Θ| ≡

∇𝑛𝑆𝐴
|∇𝑛𝑆𝐴 |

. (1)
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Here ∇𝑛 is the two-dimensional non-orthogonal projected operator in the neutral tangent plane.102

Note that this vector has only horizontal components, as described by McDougall (1987a) and103

McDougall et al. (2014).104

Ocean mixing is dominated by downgradient diffusive fluxes (Redi 1982; McDougall 1987a),105

therefore it makes sense to write the Eulerian-averaged horizontal velocity vector v, in terms of its106

cross-contour and along-contour components (indicated by superscript ⊥ and ∥, respectively) in107

the neutral tangent plane (McDougall 1995):108

v = 𝑣⊥τ + 𝑣∥k×τ , (2)

with k = (0,0,1) being the vertical unit vector, and where109

𝑣⊥ = v · 𝜏, and 𝑣∥ = v · (k×τ ) (3)

Taking the vertical derivative of 𝑣⊥ gives110

𝑣⊥𝑧 = vz ·τ +v ·τz . (4)

a. Finding an expression for 𝑣⊥𝑧 using the thermal wind balance.111

vz, and with that also 𝑣⊥𝑧 can be found using the thermal wind balance. The thermal wind112

equation can be found by taking the vertical derivative of the geostrophic velocity and combining113

it with the hydrostatic balance. This can be expressed as (see also Section 3.12.3 of IOC et al.114

(2010)):115

vz = − 𝑔

𝑓 𝜌
k×∇𝑝𝜌. (5)

Here, 𝑓 is the Coriolis parameter, 𝑔 the gravitational acceleration and 𝜌 is density. Vertically116

integrating vz gives another expression for v:117

v =

∫ 𝑧𝑢

𝑧𝑙

vz 𝑑𝑧
′︸      ︷︷      ︸

vrel

+vref (𝑧𝑙) ≡ vrel(𝑧𝑢) +vref (𝑧𝑙) (6)
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Here the integral indicated with the underbrace, in combination with Eq. 5, is defined as the118

relative velocity 𝑣𝑟𝑒𝑙 . Also v becomes the integral of vz plus an integration constant, which needs119

to be a known reference velocity. Or equivalently, v then consists of a depth-dependent relative120

velocity vrel and a depth-independent reference velocity vref . Inserting Eq. (6), into Eq. (4) leaves,121

𝑣⊥𝑧 = (vrel ·τ )𝑧 +vref ·τz . (7)

Vertically integrating this equation results in an expression for 𝑣⊥,122

[𝑣⊥]𝑧𝑢𝑧𝑙 = [vrel ·τ ]𝑧𝑢𝑧𝑙 +vref · (τ (𝑧𝑢) −τ (𝑧𝑙)). (8)

The relative velocity vrel can be obtained from Θ, 𝑆𝐴 and 𝑝 fields alone. Methods to determine123

vref from data, or eliminate this term completely, will follow in Section 2c. In the next step we first124

show how to obtain the cross-contour velocity on the left hand side (𝑣⊥) as an expression with only125

the mixing coefficients K and D as unknowns.126

b. Finding an expression for 𝑣⊥ in terms of K and D127

An equation that describes the cross-contour velocity as a function of the mixing coefficients 𝐾128

and 𝐷 was first derived by McDougall (1984), who referred to this as the water-mass transformation129

equation. We however, use the form as described in IOC et al. (2010), with the difference being130

the 𝐾𝐺𝑀-term. This term follows from parameterization of the quasi-Stokes velocity. The full131

derivation of the equation that will be used here, can be found in Appendix A:132

𝑣⊥ =
1

|∇𝑛Θ̂|
𝛾𝑧∇𝑛 ·

(
𝛾−1
𝑧 𝐾∇𝑛Θ̂

)
+ 1
|∇𝑛Θ̂|

𝐾𝑔𝑁−2Θ̂𝑧

(
𝐶Θ
𝑏 ∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇Θ

𝑏 ∇𝑛Θ̂ · ∇𝑛𝑃
)

+ 1
|∇𝑛Θ̂|

𝐷𝛽Θ𝑔𝑁−2
(
Θ̂𝑧𝑆𝐴𝑧𝑧 − 𝑆𝐴𝑧Θ̂𝑧𝑧

)
−
(
𝐾𝐺𝑀∇𝑧𝛾

𝛾𝑧

)
𝑧

· ∇𝑛Θ̂
|∇𝑛Θ̂|

(9)

In this equation, 𝛾𝑧 is the vertical derivative of neutral density (𝛾𝑛) (Jackett and McDougall 1997).133

Here the first term on the right hand side is the isoneutral mixing. The second term is a result of134

non-linearities in the equation of state. That is, cabbeling and thermobaricity processes will cause135

a dianeutral motion due to isoneutral mixing along the neutral tangent plane (McDougall 1987b;136
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Klocker and McDougall 2010; Groeskamp et al. 2016). The third term accounts for the turbulent137

dianeutral mixing. The last term on the right hand side is the result of splitting the velocity into138

the Eulerian mean component and a fluctuating component that has been parameterized as the139

quasi-Stokes velocity. It can be argued that this 𝐾𝐺𝑀 should be taken as different from 𝐾 (see e.g.140

Smith and Marshall (2009)), but, as in many studies of ocean circulation and mixing (Holmes et al.141

2022), we here make the approximation that both coefficients are similar. In Equation (9), the only142

unknowns in the expression for the cross-contour velocity are the diffusivities (𝑣⊥ = [ 𝑓 (𝐾,𝐷)]),143

while other terms can all be found using Θ, 𝑆𝐴 and 𝑝 data. There have been other studies that144

also used some form of Eq. (9) to infer the diffusivities. McDougall (1991) assumed a third145

conservative tracer equation to eliminate the advective terms from the equation. Zika et al. (2009)146

zonally integrated the equation along closed (circumpolar) tracer contours and found a ratio of147

the diapycnal and isopycnal diffusivities, 𝐷/𝐾 . Here we combine the assumptions above with148

Equations (8) and (9), this allows us to write the combination as:149

[𝑣⊥]𝑧𝑢𝑧𝑙 = [ 𝑓 (𝐾,𝐷)]𝑧𝑢𝑧𝑙 = [vrel ·τ ]𝑧𝑢𝑧𝑙 +vref · (τ (𝑧𝑢) −τ (𝑧𝑙)). (10)

Note that here all the terms in 𝑓 (𝐾,𝐷) can be obtained from hydrographic data, except for the150

unknown 𝐾 and 𝐷 coefficients. The relative velocity term on the right hand side can be determined151

using Equation (5), but the reference velocity term remains usually unknown or highly uncertain.152

In the next section, it will be discussed how the reference velocity can be obtained or eliminated153

from the equations.154

c. Eliminating the unknown 𝑣𝑟𝑒 𝑓 -term.155

While the relative velocity vrel can be determined using Equation (5), the reference velocity156

vref remains unknown. This is not a problem when one has knowledge of the reference velocity,157

for example from a data product (e.g. Gray and Riser (2014); Lebedev et al. (2007)) or through158

observations of a moored current meter in the area of interest. For this study, our goal is to entirely159

eliminate the reference velocity from the SIM (Equation (10)). This has the advantage that the160

inversion does not have to deal with the uncertainties related to finding such reference velocity.161

Therefore our approach is to carefully select the upper and lower depths (𝑧𝑢, 𝑧𝑙 respectively)162

between which the equation are being integrated. These ’pairs’ of depths are being selected such163
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that τ (𝑧𝑢) = τ (𝑧𝑙), so that the term containing the reference velocity drops out of Eq. (10). Then,164

the only unknowns in Equation (10) are the diffusivities 𝐾 and 𝐷, while the other terms can all be165

written in terms of the fields of Θ, 𝑆𝐴 and 𝑝.166

d. An expression for the SIM including structure functions167

For the application of the SIM in this study, we make use of structure functions of the isopycnal168

and diapycnal diffusivities. Structure functions are a-priori determined vertical profiles for 𝐾169

and 𝐷, that we make dependent on only one unknown diffusion coefficient with which these170

profiles will be scaled. As a consequence of using structure functions, all pairs in one vertical171

profile are connected and combined. As such we have more equations available to solve for fewer172

unknowns. A downside to using structure functions is that more a-priori knowledge is required or173

that alternatively, the resolution with which we resolve the vertical structure of the diffusivities is174

reduced. The SIM can also operate without structure functions, but regardless, choices will still175

have to be made about vertical resolution of diffusivities and which pairs are suitable for estimating176

a diffusivity. We here derive the equations for the SIM, including the structure functions (because177

this will be used in Section 4), using 𝑓𝐾 (𝑧) = 𝐾struc (𝑧)
𝐾struc

max
and 𝑓𝐷 (𝑧) = 𝐷struc (𝑧)

𝐷struc
max

. These are vertical178

profiles of 𝐾&𝐷 scaled by their maximum, to obtain structure functions for 𝐾 and 𝐷 respectively.179

With 𝐾 inv and 𝐷inv being the unknown constants of the inverse method, we can write the estimated180

diffusivity as;181

𝐾est(𝑧) = 𝐾 inv 𝑓𝐾 (𝑧) and 𝐷est(𝑧) = 𝐷inv 𝑓𝐷 (𝑧) (11)

Reordering the terms of Equation (9) and applying the structure functions results in,182

𝑣⊥ =𝐾 inv
[

1
|∇𝑛Θ̂|

𝛾𝑧∇𝑛 ·
(
𝛾−1
𝑧 𝑓𝐾 (𝑧)∇𝑛Θ̂

)
+ 1
|∇𝑛Θ̂|

𝑓𝐾 (𝑧)𝑔𝑁−2Θ̂𝑧

(
𝐶Θ
𝑏 ∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇Θ

𝑏 ∇𝑛Θ̂ · ∇𝑛𝑃
)

−
(
𝑓𝐾 (𝑧)

∇𝑧𝛾
𝛾𝑧

)
𝑧

· ∇𝑛Θ̂
|∇𝑛Θ̂|

]
+𝐷inv

[
1

|∇𝑛Θ̂|
𝑓𝐷 (𝑧)𝛽Θ𝑔𝑁−2

(
Θ̂𝑧𝑆𝐴𝑧𝑧 − 𝑆𝐴𝑧Θ̂𝑧𝑧

)]
.

(12)
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Here 𝑓𝐾 (𝑧) and 𝑓𝐷 (𝑧) are scaling factors between 0 and 1, based upon the used structure function.183

𝐾 inv and 𝐷inv are the diffusivities that will be estimated by the SIM and basically rescale the a-priori184

assumed structure to fit the observational data.185

In the next section, we discuss the data products used, as well as the structure functions that we186

use for 𝐾 and 𝐷.187

3. Data188

We choose to apply the SIM to a globally gridded climatology of hydrographical data. Annual189

means of in situ temperature and practical salinity data from the World Ocean Atlas 2018190

(WOA18) (Locarnini et al. 2019; Zweng et al. 2019) gridded climatology are used. The data191

has a grid spacing of 1◦ with 102 vertical levels. The in situ temperature and practical salinity192

data are converted to Conservative Temperature (Θ) and Absolute Salinity (𝑆𝐴) using the GSW193

software toolbox (McDougall and Barker 2011; IOC et al. 2010). Static stability of the data is194

reached by applying a vertical stabilization algorithm (Barker and McDougall 2017). Neutral195

density (𝛾𝑛) is calculated according to Jackett and McDougall (1997). The neutral gradients of196

Θ and 𝑆𝐴 are calculated using the ’Vertical Non-local Method (VENM)’ of Groeskamp et al. (2019).197

198

When the neutral tracer gradients of Θ and 𝑆𝐴 are known and regridded to WOA18 depths, the199

different terms of Equations (5) and (9) can be calculated. First and second vertical derivatives of200

Θ, 𝑆𝐴 and 𝛾𝑛 are obtained using a second order vertical differences scheme and smoothed with201

a vertical 3 point running mean. Remaining small-scale oscillations are removed by applying a202

vertical 11 point running mean smoother to the final terms over a cast. No additional horizontal203

smoothing between casts is applied. The sensitivity of the final estimates to the amount of204

smoothing is explored in Appendix B1. The results are somewhat sensitive to this smoothing205

process, but not once the main spikes are removed.206

Equation (12) shows the water-mass transformation equation at a given geographical location207

with the structure functions included. In this application of the SIM we use two data-based fields208

(latitude, longitude, depth) for K and D respectively, and calculate the structure functions 𝑓𝐾 (𝑧)209

and 𝑓𝐷 (𝑧) at each location from these fields. We will base the spatial variation of the isoneutral210

eddy diffusion coefficient K on the estimate of Groeskamp et al. (2020). The study of Groeskamp211
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et al. (2020) provides a parameterization for the isoneutral eddy diffusion coefficient based upon212

mixing length theory (Prandtl 1925) and mean flow suppression theory (Ferrari and Nikurashin213

2010) and the theory of vertical modes (LaCasce and Groeskamp 2020).214

As a structure function for the dianeutral turbulent diffusion coefficient D we will use the product215

of De Lavergne et al. (2020). The product of De Lavergne et al. (2020) is a parameterization based216

on the turbulence production due to internal tides. De Lavergne et al. (2020) uses four different217

pathways to account for both near-field and far-field dissipation of internal tides.218

4. Inversion219

To test and showcase the SIM, we apply it to the region where also the North Atlantic Tracer220

Release Experiment (NATRE) took place (Ledwell et al. 1993). This region spans the area between221

38◦−27◦ 𝑊 and 21◦−29◦ 𝑁 (red box, Fig. 1). Due to NATRE and subsequent studies, there are222

direct observations and indirect estimates of the mixing available for both 𝐾 and 𝐷, that we can223

use to compare the SIM against (Section 6).224

First we will focus on defining suitable combinations of depths, that is, locations where the225

second term on the right hand side of Equation (10) is approximately zero. After this we will226

discuss the several choices and considerations that have been made during the inversion process.227

a. Finding combinations of 𝑧𝑢 and 𝑧𝑙228

Using the neutral gradients of Θ and 𝑆𝐴, the orientation of the contours 𝜏 on the neutral surfaces229

can be calculated using Equation (1). As described in Section 2.c, the reference velocity vref is230

eliminated by finding combinations of depths, where 𝜏 has the same orientation. We make the231

approximation that a difference of Δ𝜏 = 𝜏𝑢 − 𝜏𝑙 < 0.0075 [𝑟𝑎𝑑] can be considered negligible and232

therefore both contours would have the same orientation. The choice for a certain Δ𝜏 does have233

impact on the amount of pairs that can be found as well as on the uncertainty of the estimates. All234

in all the SIM is not particularly sensitive to this choice and the choice of 𝑐𝑟𝑡 = 0.0075 [𝑟𝑎𝑑] is235

appropriate (Appendix B2).236

This condition is calculated for all the different gridpoints within the study area. Starting at the237

surface, the difference Δ𝜏 is checked for all levels below. If the condition is met, that combination238

of depths can be used for the inversion. We will refer to all combinations of depths that meet239
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the condition as ’pairs’. As air-sea fluxes are not (yet) included in the WMT equation (see also240

Appendix A), we only consider pairs that start below 300m depth, as this is below the maximum241

mixed layer depth in the area and below any incoming shortwave radiation (Groeskamp and Iudicone242

2018). The incoming shortwave radiation can lead to significant watermass transformation rates243

not accounted for in Eq. 9.244

The total depth integrated number of pairs for each gridpoint of WOA, that meet the criterium245

Δ𝜏 < 0.0075 𝑟𝑎𝑑, shows strong regional variation (Fig. 1). Note that this is before any selection246

is performed. In the study region (indicated by the red box) there is a relatively low number of247

suitable pairs when compared to some other areas around the world (e.g. the Southern Ocean). Yet,248

even within this small area there is significant variation in the amount of pairs left after applying249

the signal-to-noise criteria (Fig. 2).250

For one gridpoint in the study area (marked with the red × in Fig. 2), the used signal-to-noise251

criteria were too strict (Section 4.c) and an insufficient number of pairs remained to obtain estimates252

for 𝐾 and 𝐷. Most of the pairs found in the study area are concentrated between 1000m and 2000m,253

with especially limited number of pairs in the deeper parts of the watercolumn that remain after254

the signal-to-noise criteria (Fig.3). Even though the pairs are not evenly distributed over depth,255

the used structure functions (Section 2.d), link different pairs over the whole water column. That256

is, each pair will contribute to find the unknown diffusivity such that even for a low amount of257

pairs, or with an uneven vertical distribution, there will still be a full depth estimate of 𝐾est(𝑧) and258

𝐷est(𝑧).259

b. Applying structure functions to the equations266

Equation (10) can be written for a large number of combinations of 𝑧𝑢 and 𝑧𝑙 , that meet the criteria267

τ (𝑧𝑢) = τ (𝑧𝑙). All these equations can be combined to a system of equations of the form A x = b.268

Here, A is a 𝑁 ×𝑀 matrix, with 𝑁 being the number of combinations of an upper and lower depth,269

for which 𝜏𝑢 − 𝜏𝑙 < 0.0075. And 𝑀 is the number of unknowns, which in this application is only270

𝐾 inv and 𝐷inv. Here x is a 𝑀 × 1 vector, containing the 𝑀 unknown diffusivities. Finally, b is a271

𝑁 × 1 vector containing the rhs of Equation (10) for each equation. Because τ (𝑧𝑢) = τ (𝑧𝑙), the272

term containing the reference velocity thus drops out.273
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Fig. 1. Global distribution for the number of possible combinations between 𝑧𝑢 and 𝑧𝑙 , before any reduction

based on signal-to-noise or other criteria. The study area of this paper is marked by the red box.

260

261

For the structure functions we use the geographical map of Groeskamp et al. (2020) for 𝐾 and274

De Lavergne et al. (2020) for 𝐷. For each vertical cast (on a x,y grid) these values are scaled275

with their maximum value and used as described in Equation (12) and now included in the factors276

multiplying the unknowns in the matrix A.277

c. Signal to noise criteria278

Before carrying out the inversion on the system of equations that follows from finding the pairs,279

the number of equations is reduced. Reducing the number of equations is done in order to avoid280

having one or a few equations, with a relatively large error, disturbing the estimate provided by the281

method. For example, an estimate of the order of magnitude of the unknowns can be obtained by282

dividing the b-term by the terms in the A-matrix. That is 𝐾 ≈ b/A𝐾 and 𝐷 ≈ b/A𝐷 . If this initial283

estimate of 𝐾 or 𝐷 is already many order of magnitude larger or smaller than what can be expected284

for this area, we can conclude that the signal to noise ratio for this pair is too large. That is, if A is285

too small compared to b, it holds no information and will only lead to noise.286

To determine if an equation contains too much noise, we make use of existing estimates of287

mixing, i.e. we use the structure functions. The structure functions provide a reasonable estimate288
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Fig. 2. The number of available pairs in the study area, after reduction based on the signal-to-noise criteria.

For the red cross, insufficient pairs remain.

262

263

D K

Lower limit max(1𝑒−6, 𝐷𝑚𝑎𝑥/10) max(25, 𝐾𝑚𝑎𝑥/10)

Upper limit min(5𝑒−3, 10 ·𝐷𝑚𝑎𝑥 ) min(5000, 10 ·𝐾𝑚𝑎𝑥 )

Table 1. The used lower and upper limits for the signal to noise criteria.

of the expected magnitude of 𝐾 and 𝐷 in this area. Although the actual 𝐾 and 𝐷 are unknown,289

these estimates can be used as a guideline. Hence, we use the maximum value from the structure290

function and assume that these are within a factor 10 of the actual 𝐾 and the actual 𝐷. We also291

set minimum values under which we don’t expect to be able to distinguish our results from zero.292

When the signal to noise value exceeds these boundaries (Table 1), we remove the equations.293

Second, when either both terms in the A matrix are positive and the b term is negative, or vice294

versa, when both terms in the A matrix are negative and the b term is positive, it means that at least295

K or D, but possibly both, need to be negative. As the SIM is applied to annual-mean data, we296

assume that negative diffusivities are not physically realistic over such large timescales and remove297

related equations. Hence in these situations the data quality or the assumptions in the derivation,298

lead to an unphysical situation.299
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Fig. 3. Distribution of the pairs over the water column for a location in the study area. Pairs with red endpoints

will be removed by the signal to noise criteria, pairs with green endpoints remain and are used for the inversion.

264

265

d. Solving for the unknowns300

The data products used for estimating the diffusivities contain inaccuracies. Hence, for each301

equation there is equation error to minimize. Adding this to the system of equations (A x = b) adds302

N values to minimize, to the 𝑀 unknown variables to estimate. There are only N equations in the303

system, so the system is per definition underdetermined. An underdetermined system has infinite304

solutions (Wunsch 1978). Finding the solution can be done by minimizing 𝜒2, which is the sum of305

the equation errors and the solution error. It also provides a way of obtaining an error or sensitivity306

estimate of the solution. Here 𝜒2 is given by (McIntosh and Rintoul 1997; Menke 2018),307

𝜒2 = (x−x0)𝑇Wc
−2(x−x0) + e𝑇Wr

2e. (13)

x0 is an initial estimate for the unknowns, and the error e can be written as e = Ax−b. A solution308

for x is found by minimizing 𝜒2:309

x = x0 +W2
cA𝑇

(
AW2

cAT +W−2
r

)−1
(b−Ax0) (14)
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Here, Wc and Wr are the column and row weighting matrices. These matrices are diagonal with310

elements 𝜎𝑥 and 1/𝜎𝑒. With that, Equation (14) can be rewritten to,311

𝜒2 = 𝜒2
𝑥 + 𝜒2

𝑒

=

𝑀∑︁
𝑚=1

(𝑥𝑚 − 𝑥0,𝑚)2

𝜎2
𝑥𝑚

+
𝑁∑︁
𝑛=1

𝑒2
𝑛

𝜎2
𝑒𝑛

(15)

Equation (14) gives an estimate of x and an estimate of the random error in this estimate can be312

found using the posterior covariance matrix.313

Cp = Wc
2 −Wc

2AT(AWc
2AT +Wr

−2)−1AWc
2 (16)

The standard deviation of the estimates can then be obtained by taking the square root of the314

diagonal elements of the matrix Cp (McIntosh and Rintoul 1997).315

e. Sensitivity analysis316

The standard deviation of the estimates obtained from the posterior covariance matrix Cp is a317

statistical interpretation of the uncertainty of the method. However, this standard deviation may318

be physically unrealistic at the same time, and not fairly represent the sensitivity of the different319

variables that are subject to the modellers choices. This is especially the case when prior statistics320

are not well known (Groeskamp et al. 2014). We will follow the method used by Groeskamp et al.321

(2014) to obtain a physically realistic uncertainty estimate. We will vary the elements of the vector322

x0 (with elements 𝐷0 and 𝐾0, the initial guesses for 𝐷 and 𝐾), 𝜎𝑥 (for both 𝐷 and 𝐾) and 𝜎𝑒. 𝜎𝑥323

is our best guess for the error between x0 and x. 𝜎𝑒 is our best guess for the equation error. We324

will vary each of these five variables over a range of values which we deem realistic and could all325

provide an equally true answer. These values are shown in Table 2.326

By calculating 𝜒2
𝑒 and 𝜒2

𝑥 for all combinations of these five varying variables and selecting those331

for which 𝜒2
𝑒 ≈ 𝑁 and 𝜒2

𝑥 ≈𝑀 , and for which the estimate for both K and D is positive (the influence332

of this constraint is analysed in App. C), we avoid fitting the final estimate to either the equations333

or to x0. This is done by taking the values for which,334

16



Variable Values

𝐷0 𝐷struc
max · ℎ1,with


ℎ1 ∈ [0.1, 0.9], Δℎ1 = 0.1

ℎ1 ∈ [1, 10], Δℎ1 = 1


𝐾0 𝐾 struc

max · ℎ2,with

ℎ2 ∈ [0.2, 0.8], Δℎ2 = 0.2

ℎ2 ∈ [1, 5], Δℎ2 = 1


𝜎𝑥,𝐷 𝐷0 · ℎ3,with

{
ℎ3 ∈ [1, 10], Δℎ3 = 1

}
𝜎𝑥,𝐾 𝐾0 · ℎ4,with

{
ℎ4 ∈ [1, 10], Δℎ4 = 1

}
𝜎𝑒 |𝑒0 | · ℎ5,with


ℎ5 ∈ [0.1, 1], Δℎ5 = 0.1

ℎ5 ∈ [1.5, 5], Δℎ5 = 0.5

ℎ5 ∈ [6, 10], Δℎ5 = 1


Table 2. Used range of values for the variables used as sensitivity analysis. With 𝑒0 = b−Ax0. Note that

after defining a-priori estimates of 𝐷0 and 𝐾0, the tested range for 𝜎𝑥,𝐷 and 𝜎𝑥,𝐾 are a function of this choice.

The interval-width used to define 𝐷0, 𝐾0 and the 𝜎-values are chosen such that the covered ranges (e.g. 0.1-1,

or 1-10) all have approximately equal importance in the solution space.

327

328

329

330

𝑁

5
≤ 𝜒2

𝑒 ≤ 5𝑁 and
𝑀

5
≤ 𝜒2

𝑥 ≤ 5𝑀 (17)

Following this procedure leads to a set of values of 𝐾 and 𝐷 that are physically realistic.335

The values for 𝐾 inv and 𝐷inv are taken to be the median of this set. In Figures 6 and 7, the336

variation in estimates by this sensitivity analysis is marked by the 25th and 75th percentile values.337

Respectively, the range spanned by the 25th and 75th percentiles (average over the study area) is338

between 782 [𝑚2/𝑠] and 1026 [𝑚2/𝑠] for 𝐾 inv, and 9.8×10−5 [𝑚2/𝑠] and 3.5×10−4 [𝑚2/𝑠] for339

𝐷inv. Whereas the standard deviation provided by the posterior covariance method gives an average340

uncertainty of ±1.5 [𝑚2/𝑠] for 𝐾 inv and ±5×10−7 [𝑚2/𝑠] for 𝐷inv.341

As a test, we also solve the system using the formally overdetermined problem A x = b, without342

the addition of weights and prior estimates of 𝑥. The results are found to be close to the estimates343

from our method described in section 4, though the over-determined problem does occasionally find344

negative estimates (Table 3). As outlined above, the negative results are considered mathematically345

valid, though not physically realistic.346

The general agreement between the results give confidence that overall the theoretical model347

works, while the occasional negative results argue for guiding the inverse method to obtain the348

physically realistic estimates (e.g., by varying x0, and the row and column weights) of the solution349

space. We will further discuss the results of the study area in Section 5.350
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Estimates D (All values ×10−4) Estimates K

Location 25𝑡ℎ percentile Median 75𝑡ℎ percentile A\b 25𝑡ℎ percentile Median 75𝑡ℎ percentile A\b

(330E, 27N) 2, 46 3, 32 3, 69 3, 67 1062 1152 1194 1192

(324E, 24N) 1, 20 1, 61 1, 79 1, 63 949 994 1011 997

(333E, 22N) 0, 12 0, 31 0, 47 0, 44 1224 1530 1897 1389

(331E, 23N) 0, 06 0, 16 0, 50 −2, 29 1199 1915 2890 −600

(332E, 27N) 0, 47 1, 17 2, 20 −3, 19 657 679 711 558

Table 3. Estimates for 5 random locations in the study area as shown by the median value and 25𝑡ℎ/75𝑡ℎ

percentile values and the estimates obtained by solving the formally overdetermined problem A\b.

351

352

5. Results - Application of the SIM to a region in the Northern Atlantic353

Following the steps as outlined in Section 4, results in an estimate for 𝐾 inv and 𝐷inv through354

performing an inversion for each gridpoint in the study area. As outlined, the values presented for355

𝐾 inv and 𝐷inv are the median values found in the sensitivity analysis. The averaged (over the study356

area) median values are 917 [𝑚2/𝑠] for 𝐾 inv (full range of the sensitivity study is 0−8101 [𝑚2/𝑠])357

and 2×10−4 [𝑚2/𝑠] for 𝐷inv (full range of the sensitivity study is 5.9×10−11 −1×10−2 [𝑚2/𝑠]).358

Note that the full range gives the ends of a narrow, longtailed distribution.359

We find that 𝐾 inv shows a larger spread and a different spatial distribution than 𝐾struc
max (Fig. 4).360

The maximum value for 𝐾 inv is with a value of 2239 [𝑚2/𝑠] about a factor three larger than the361

maximum value for the structure function (1194 [𝑚2/𝑠]) in this study area. Though the maximum362

for 𝐾 𝑖𝑛𝑣 might be considered an outlier, it is not an unrealistic high value. For 𝐷 (Fig. 5), the363

spread of the values for 𝐷inv is about the same order of magnitude when compared to the values364

for 𝐷struc
max . A different spatial distribution can be observed in the figure. Note that an exact match365

with the structure functions, both in magnitude and spatial distribution, is not required. Instead,366

the SIM indicates that, when we look at the balance of Eq. (10), which includes both 𝐾 and367

𝐷, this is only possible to fullfill when both the values of 𝐾 and 𝐷 are altered a bit compared368

to the original structure functions as shown in Eq. (12). The structure functions themselves are369

independent estimates of 𝐾 and 𝐷, not accounting for any such balance. The estimates for K are370

generally within a factor 2 or 3 from the original structure function. Which is arguably also within371

the range of uncertainty that such estimates currently have. A similar argument could be made for372

estimates of 𝐷 that are mostly within an order of magnitude from the original structure function.373

Even the best estimates of 𝐷 (e.g., from a vertical microstructure profiler) are only accurate within374
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a factor 2 at most (Oakey 1982). In Figure 6 we explore in more detail the accuracy of the inverse375

estimates and the difference with the structure function. We find that the inverse estimates of 𝐾376

(with uncertainty estimate from the 𝜒-criteria of Section (4)) tend to be at most a factor 4 different377

from the structure function, while mainly staying within a factor 3. For 𝐷, the values for both378

𝐷struc
max and 𝐷inv range from 10−5−10−3 [𝑚2/𝑠], which are common values for the dianeutral mixing379

coefficient. Most estimates fall within a factor 5 from the corresponding values for 𝐷struc
max . And even380

with the uncertainty estimate provided based upon the 𝜒-criteria from Section (4), the estimates381

are well within the range of what can be considered acceptable.382

The results indicate that for estimates of 𝐷inv, a larger maximum value of the structure function,383

also provides a larger estimate of 𝐷inv, while this is not the case for estimates of 𝐾 inv. Especially384

for lower values of 𝐾struc
max , there is a large spread in values of 𝐾 inv. Fig. 4a shows that these values385

can mostly be found on the northern side of the study area. Fig. 2 shows that these are also the386

casts for which only a limited number of equations remain after the signal to noise criteria. This387

indicates that with a lower number of equations the results are possibly more sensitive to noise, or388

that the pairs in this region themselves contain more noise.389

The SIM and the two structure functions are three ways to obtain estimates, that all have their own390

assumptions and limitations. The fact the estimates for 𝐾 and 𝐷 are close to those of the structure391

functions indicates that the SIM has skill to estimate diffusion coefficients from observations and392

can help to constrain mixing parameterization theories with observations. Note that the influence393

of using different structure functions (see App. D) shows that, even though the shape is retained by394

construction, the magnitude can vary strongly if required by the balance that we are estimating. We395

conclude that while the selection of the structure function has influence on the final solution, the396

additional constraints of the SIM provide new information that can improve the existing estimates397

of 𝐾 and 𝐷.398

6. Comparing to different studies402

After averaging all profiles of 𝐾est(𝑧) and 𝐷est(𝑧) (see Eq. (11)) over the study area, we can403

compare it against other studies (Fig. 7). We find that the SIM compares well against diffusivities404

obtained from direct observations (in black) or indirect estimates (in color).405
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Fig. 4. The values for (a) 𝐾struc
max and (b) 𝐾 inv in the study area.

The dianeutral diffusivity 𝐷 (Fig. 7, (a)), overlaps with both previous estimates as well as direct406

observations, even though the median is on the larger end of other estimates. Especially when407

including the uncertainty range of the SIM (red background shading, which is somewhat distorted408

due to the logarithmic scaling). The direct observations consist of microstructure profiles (Toole409
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Fig. 5. The values for (a) 𝐷struc
max and (b) 𝐷inv in the study area.

et al. 1994) and the vertical spread of a released tracer (Ledwell et al. 1998). The indirect estimates410

are the Tracer Contour Inverse Method (Zika et al. 2010b), estimates based on internal wave411

energy (De Lavergne et al. 2020) (upon which the structure function is based), and based upon the412

application of the finescale parameterization to Argo data (Whalen et al. 2018). The uncertainty413
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Fig. 6. The inverse estimates (blue dots) for (a) 𝐾 inv and (b) 𝐷inv plotted against the value of the used structure

functions. The orange shading represents the ratio between estimated value and the value of the structure function.

Gray lines mark the uncertainty of the estimate, given by the 25𝑡ℎ and 75𝑡ℎ percentiles.

399

400

401

range provided by the SIM compares well to the variability as shown by the microstructure data414

(e.g, between 2700 and 3000 meters depth). Note that for all these studies, the timescales over415
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which these small-scale mixing measurements are taken, or estimates are made, vary largely. For416

example, the microstructure measurements provide an instantaneous observation, while the tracer417

experiment is an average over many months.418

The average profile of the isoneutral diffusivity 𝐾 compares well with the available direct419

observations (in black), and does not differ much from the structure function used. The estimate420

provided by Cole et al. (2015), seems to be overestimating the diffusivity in this region, while421

the inverse estimates of Thermohaline Inverse Method (THIM) of Groeskamp et al. (2017) and422

Tracer Contour Inverse Method (TCIM) of Zika et al. (2010b) are underestimates compared to423

the observations. One possible explanation for the difference between these methods, is the scale424

or region that is considered. The THIM is a global estimate, while the TCIM provides regional425

estimates. Instead, the SIM provides a balance that obtains quasi-local estimates of the diffusivities426

for scales larger than the Rossby radius (due to the use of the geostrophic balance). Also note that427

when different structure functions are used (App. D), the SIM does find different estimates. For428

example, with the study of Cole et al. (2015) as structure function, the SIM lowers the estimate429

compared to the structure function. This shows that the SIM is capable of finding a physically430

realistic estimate and is not restricted too much to the original magnitude of the structure functions.431

7. Discussion and conclusions440

We here introduced the Spiralling Inverse Method, a new inverse method for estimating the441

isoneutral and dianeutral mixing coefficients 𝐾 and 𝐷, respectively. It does so by relating the wa-442

termass transformation equation to the thermal wind balance. It is the first inverse method designed443

for estimating the mixing strength that does not require estimates of velocities or streamfunctions444

of any kind. We here applied it to a small region in the North Atlantic to showcase its potential,445

which is discussed below, together with the caveats.446

The SIM was applied to the hydrographic data from WOA18. The observational data included447

in WOA18 has been averaged horizontally, which introduced additional mixing in the results, as448

opposed to averaging on neutral surfaces. For now, this will influence the results in an unknown449

way. This additional mixing can be avoided by using neutrally averaged data when such data450

products become available. In this application of the SIM, we have omitted equations from the451

upper 300m, as the current form of the SIM does not include air-sea fluxes. Although this can be452
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Fig. 7. Mean of the estimates of the SIM (in red) compared to other studies. Colored shadings mark the

uncertainty of the corresponding study (colored solid lines). The uncertainty of the SIM is given by the average

of 25𝑡ℎ and 75𝑡ℎ percentiles, With (a) the diapycnal estimate compared to (in black) direct observations (Toole

et al. 1994; Ledwell et al. 1998) and (in color) indirect estimates (Zika et al. 2010b; De Lavergne et al. 2020;

Whalen et al. 2018), and (b) the isopycnal estimate compared to (in black) direct observations (Joyce et al. 1998;

Ledwell et al. 1998; Jenkins 1987, 1998; Armi and Stommel 1983; Spall et al. 1993; Roach et al. 2018) and (in

color) indirect estimates (Cole et al. 2015; Groeskamp et al. 2017; Zika et al. 2010b; Zika and McDougall 2008;

Groeskamp et al. 2020; Klocker and Abernathey 2014; Abernathey and Marshall 2013).
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added in both the theory (see App. A) and the data, air-sea fluxes are known to cause large errors453

in WMT estimates (Groeskamp and Iudicone 2018) and may not improve the results, even when454

more equations are added as a result. Hence we choose to present the SIM without air-sea fluxes.455

Although overlapping pairs of the SIM would contribute to provide multiple equations to estimate456

the unknowns, many pairs do only overlap over small ranges of depths (Fig. 3). Consequently we457

here used a structure function of the vertical shape of the diffusivities, which has the following458

advantages:459

• It connects all pairs to estimate fewer unknowns.460

• It provides an estimate where pairs do not exist.461

• It provides a-priori information.462

The caveat is that the result has fewer degrees of freedom and is more pre-determined by the463

chosen structure function. In future work, these structure functions can perhaps be less restrictive464

by adding more degrees of freedom, such that the mixing estimates are more determined by the465

data rather than the structure function. At the moment, the pairs that form the basis of the inversion466

are found based upon two important criteria; the first is the accuracy with which we want to satisfy467

the criterium τ𝑢−τ𝑙 ≈ 0, this was explored in App. B. It turns out that the SIM is not very sensitive468

to this choice, though one needs to be careful by not making this too strict or wide. The second469

criterion is related to the depth resolution at which the WOA-data is provided. When interpolating470

WOA onto different depths, or using a different dataset it might be possible to find more and more471

accurate pairs. More equations (information) could be obtained when more pairs are found with472

an increased vertical resolution of the dataset or when the reference velocity is included. However,473

that is with the caveat that the reference velocity might introduce another source of error.474

The application of the SIM in this study, results in estimates of 𝐾 and 𝐷 that are within a realistic475

range from other estimates and observations of these diffusivities. This provides confidence in476

the potential for the SIM to be more widely used, possibly in combination with other inverse477

estimates. This could result in global inverse estimates of mixing and potentially observational478

based constraints for new and improved mixing parameterizations in (ocean) models. Thus reducing479

the uncertainty associated with the parameterizations and model outcomes.480
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APPENDIX A492

Watermass Transformation Equation493

Here we derive the Water Mass Transformation equation as it is used in Section 2. The starting494

point are the conservation equations for Conservative Temperature Θ and Absolute Salinity 𝑆𝐴 (see495

e.g. (IOC et al. 2010; McDougall 1984)).496

Θ̂𝑡 |𝑛 + v̂ · ∇𝑛Θ̂+ 𝑒Θ̂𝑧 = 𝛾̃𝑧∇𝑛 ·
(
𝛾̃−1
𝑧 𝐾∇𝑛Θ̂

)
+
(
𝐷Θ̂𝑧

)
𝑧

(A1a)

𝑆𝐴𝑡 |𝑛 + v̂ · ∇𝑛𝑆𝐴 + 𝑒𝑆𝐴𝑧 = 𝛾̃𝑧∇𝑛 ·
(
𝛾̃−1
𝑧 𝐾∇𝑛𝑆𝐴

)
+
(
𝐷𝑆𝐴𝑧

)
𝑧
+ 𝑆𝑆𝐴 (A1b)

Θ̂ and 𝑆𝐴 are thickness-averaged Conservative Temperature and Absolute Salinity (the thickness-497

averaging being marked by theˆ) and v̂ is the thickness-weighted velocity. 𝑒 is the dianeutral velocity498

temporally averaged on a neutral surface (the temporal average being marked by the ˜ ). Because499

unresolved motions in ocean models are assumed to move along locally referenced potentional500

density surfaces, the temperature and salinity variables in ocean models are best interpreted as501

being the thickness-weighted averages where the averaging is done between pairs of locally defined502

potential density surfaces (McDougall and McIntosh 2001), with the thickness between successive503

surfaces being part of the averaging procedure. The last term in the conservation equation for504
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Absolute Salinity 𝑆𝐴 is an additional source term because Absolute Salinity is not completely505

conserved (IOC et al. 2010). For our purposes this term is negligible since the isoneutral gradient506

of the difference between Absolute Salinity and Preformed Salinity is less than a percent of the507

isoneutral gradient of Absolute Salinity (Pawlowicz et al. 2012; IOC et al. 2010). This implies508

that the diffusivities (either 𝐾 or 𝐷) that are needed to balance these isoneutral gradients would be509

different by less than one percent. The vertical gradients of the difference between these salinity510

variables is also very small, particular in the North Atlantic.511

In this current derivation of the watermass transformation equation air-sea fluxes have not been512

included. At the sea surface the air-sea heat (Groeskamp and Iudicone 2018) and salt fluxes (Nurser513

and Griffies 2019) take the place of the parameterized diapycnal mixing terms in Eqs. (A1a) and514

(A1b) (IOC et al. 2010). Including air-sea fluxes in the SIM is left for future work.515

Multiplying Equation (A1a) with the thermal expansion coefficient 𝛼 and Equation (A1b) with516

the saline contraction coefficient 𝛽, followed by substracting Equation (A1b) from Equation (A1a)517

results in,518

𝛼Θ̂𝑡 |𝑛− 𝛽𝑆𝐴𝑡 |𝑛︸            ︷︷            ︸
=0

+v̂ (𝛼∇𝑛Θ̂− 𝛽∇𝑛𝑆𝐴)︸                ︷︷                ︸
=0

+𝑒̃ (𝛼Θ̂𝑧 − 𝛽𝑆𝐴𝑧)︸           ︷︷           ︸
=𝑔−1𝑁2

=

𝛼𝛾̃𝑧∇𝑛 · (𝛾̃−1
𝑧 𝐾∇𝑛Θ̂) − 𝛽𝛾̃𝑧∇𝑛 · (𝛾̃−1

𝑧 𝐾∇𝑛𝑆𝐴) +𝛼(𝐷Θ̂𝑧)𝑧 − 𝛽(𝐷𝑆𝐴𝑧)𝑧 − 𝛽𝑆𝑆𝐴 .

(A2)

Note that on a neutral plane the following relations hold: 𝛼∇𝑛Θ̂− 𝛽∇𝑛𝑆𝐴 = 0 and 𝛼Θ̂𝑡 |𝑛− 𝛽𝑆𝐴𝑡 |𝑛 =519

0 (McDougall 1987a), and the definition of the buoyancy frequency: 𝑔−1𝑁2 = (𝛼Θ𝑧 − 𝛽𝑆𝐴𝑧 )520

(McDougall 1987a). These reduce the equation above to an expression for the dianeutral velocity;521

𝑒̃𝑔−1𝑁2 = 𝛼𝛾̃𝑧∇𝑛 · (𝛾̃−1
𝑧 𝐾∇𝑛Θ̂) − 𝛽𝛾̃𝑧∇𝑛 · (𝛾̃−1

𝑧 𝐾∇𝑛𝑆𝐴) +𝛼(𝐷Θ̂𝑧)𝑧 − 𝛽(𝐷𝑆𝐴𝑧 )𝑧 − 𝛽𝑆𝑆𝐴 (A3)

We use the following definitions for the cabbeling and thermobaricity parameters (IOC et al.522

2010),523
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𝐶𝑏 =
𝜕𝛼

𝜕Θ̂

����
𝑆𝐴,𝑝

+ 2
𝛼

𝛽

𝜕𝛼

𝜕𝑆𝐴

����
Θ̂,𝑝

−
(
𝛼

𝛽

)2
𝜕𝛽

𝜕𝑆𝐴

�����
Θ̂,𝑝

(A4a)

and 𝑇𝑏 =
𝜕𝛼

𝜕𝑃

����
𝑆𝐴,Θ̂

− 𝛼
𝛽

𝜕𝛽

𝜕𝑃

����
𝑆𝐴,Θ̂

(A4b)

and combine these with Equation (A3), to obtain,524

𝑒̃𝑔−1𝑁2 = −𝐾
(
𝐶𝑏∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇𝑏∇𝑛Θ̂ · ∇𝑛𝑃

)
+𝛼(𝐷Θ̂𝑧)𝑧 − 𝛽(𝐷𝑆𝐴𝑧 )𝑧 − 𝛽𝑆𝑆𝐴 (A5)

Rewriting Equation (A5) results in,525

(𝑒̃−𝐷𝑧) 𝑔−1𝑁2 = −𝐾
(
𝐶𝑏∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇𝑏∇𝑛Θ̂ · ∇𝑛𝑃

)
+𝐷

(
𝛼Θ̂𝑧𝑧 − 𝛽𝑆𝐴𝑧𝑧

)
− 𝛽𝑆𝑆𝐴 (A6)

Substituting Equation (A6) into Equation (A1a), and reordering the terms gives,526

Θ̂𝑡 |𝑛 + v̂ · ∇𝑛Θ̂ = 𝛾̃𝑧∇𝑛 ·
(
𝛾̃−1
𝑧 𝐾∇𝑛Θ̂

)
+𝐾𝑔𝑁−2Θ̂𝑧

(
𝐶𝑏∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇𝑏∇𝑛Θ̂ · ∇𝑛𝑃

)
−𝐷𝑔𝑁−2Θ̂𝑧

(
𝛼Θ̂𝑧𝑧 − 𝛽𝑆𝐴𝑧𝑧

)
+𝐷Θ̂𝑧𝑧 +

𝛽

𝛼

𝑅

𝑅−1
Ŝ𝑆𝐴,

(A7)

where 𝑅 =
𝛼Θ̂𝑧

𝛽𝑆𝐴𝑧
.527

The two diapycnal mixing terms in the equation above can be merged to get either528

−𝐷𝑔𝑁−2Θ̂𝑧

(
𝛼Θ̂𝑧𝑧 − 𝛽𝑆𝐴𝑧𝑧

)
+𝐷Θ̂𝑧𝑧 = 𝐷𝛽𝑔𝑁

−2Θ̂3
𝑧

𝑑2𝑆𝐴

𝑑Θ̂2

= 𝐷𝛽𝑔𝑁−2
(
Θ̂𝑧𝑆𝐴𝑧𝑧 − 𝑆𝐴𝑧Θ̂𝑧𝑧

) (A8)

With the assumption of a steady state, the first term of Equation (A7) Θ̂𝑡 |𝑛 can be ignored. The529

last term on the rhs. in (A7), which reflects that Absolute Salinity is not conserved, is small and530

will be ignored (IOC et al. 2010). This results in,531
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v̂ · ∇𝑛Θ̂ = 𝛾̃𝑧∇𝑛 ·
(
𝛾̃−1
𝑧 𝐾∇𝑛Θ̂

)
+𝐾𝑔𝑁−2Θ̂𝑧

(
𝐶𝑏∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇𝑏∇𝑛Θ̂ · ∇𝑛𝑃

)
+𝐷𝛽𝑔𝑁−2

(
Θ̂𝑧𝑆𝐴𝑧𝑧 − 𝑆𝐴𝑧Θ̂𝑧𝑧

)
.

(A9)

Now the thickness-weighted mean horizontal velocity v̂ will be replaced in favour of the Eulerian-532

mean horizontal velocity. When this is done, the thickness-weighted mean horizontal velocity v̂ is533

decomposed into the Eulerian-mean horizontal velocity and the quasi-Stokes horizontal velocity:534

v̂ = v+ v+. The quasi-Stokes velocity v+ can be parameterized by the vertical derivative of the535

quasi-Stokes streamfunction (McDougall and McIntosh 2001):536

v+ = Ψ𝑧 =

(
−𝑣

′𝛾′

𝛾𝑧
+ 𝑣𝑧
𝛾𝑧

𝜙

𝛾𝑧

)
𝑧

(A10)

In this equation, 𝜙 ≡ 1
2 (𝛾′)2, is half the density variance at height 𝑧 (McDougall and McIntosh537

2001). The quasi-Stokes streamfunction can also be considered as the product of the eddy diffusivity538

(written as 𝐾𝐺𝑀) and the neutral slope (Gent et al. 1995; Griffies 1998). For the definition of the539

neutral tangent plane we take S = (𝑆𝑥 , 𝑆𝑦) ≡ ∇𝑛𝑧 = −∇𝑧𝛾
𝛾𝑧

.540

Ψ𝑧 =

(
𝐾𝐺𝑀∇𝑧𝛾

𝛾𝑧

)
𝑧

= (𝐾𝐺𝑀)𝑧S −𝐾𝐺𝑀
(
𝜕S

𝜕𝑧

)
= (𝐾𝐺𝑀)𝑧S −𝐾𝐺𝑀∇𝑛 log𝛾−1

𝑧

(A11)

To get from the second line of Eq. (A11) to the third line, we can write the vertical derivative541

of the slope as −S𝑧 = (∇𝑧𝛾)𝑧
𝛾𝑧

− 𝛾𝑧𝑧
𝛾𝑧

∇𝑧𝛾
𝛾𝑧

. This can be shown , in combination with Equation (10a) of542

McDougall et al. (2014), to be (∇𝑧𝛾)𝑧
𝛾𝑧

− 𝛾𝑧𝑧
𝛾𝑧

∇𝑧𝛾
𝛾𝑧

= −𝛾𝑧∇𝑧 (1/𝛾𝑧) −𝛾𝑧S (1/𝛾𝑧)𝑧 = −∇𝑛 ln(1/𝛾𝑧).543

In order to be completely correct, one should besides the quasi-Stokes velocity also account544

for the differences between thickness-weighted temperature and salinity and the Eulerian mean545

temperature and salinity: Θ̂ = Θ+Θ+ and 𝑆𝐴 = 𝑆𝐴 + 𝑆+𝐴. However, where the quasi-Stokes velocity546

can be parameterized following Eq. A10, to our knowledge no such parameterizations for Θ+ and547

𝑆+
𝐴

currently exist. These averaging procedures represent best practice, but in this present paper548
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we have used an existing hydrographic atlas which has not been averaged in a thickness-weighted549

manner. While this is undesirable, this difference is unlikely to impact our results, given all the550

other limitations in the data.551

Replacing the thickness-weighted mean horizontal velocity for the Eulerian-mean horizontal552

velocity and the parameterization of the quasi-Stokes velocity of Equation (A11), and adding this553

to Equation (A9) results in the final expression for the cross-contour velocity, as it is used in this554

paper:555

𝑣⊥ =
1

|∇𝑛Θ̂|
𝛾𝑧∇𝑛 ·

(
𝛾−1
𝑧 𝐾∇𝑛Θ̂

)
+ 1
|∇𝑛Θ̂|

𝐾𝑔𝑁−2Θ̂𝑧

(
𝐶Θ
𝑏 ∇𝑛Θ̂ · ∇𝑛Θ̂+𝑇Θ

𝑏 ∇𝑛Θ̂ · ∇𝑛𝑃
)

+ 1
|∇𝑛Θ̂|

𝐷𝛽Θ̂𝑔𝑁−2
(
Θ̂𝑧𝑆𝐴𝑧𝑧 − 𝑆𝐴𝑧Θ̂𝑧𝑧

)
−
(
𝐾𝐺𝑀∇𝑧𝛾

𝛾𝑧

)
𝑧

· ∇𝑛Θ̂
|∇𝑛Θ̂|

(A12)

This equation has previously also been used, in slightly different form, by other studies (E.g.556

McDougall (1984); IOC et al. (2010); Zika et al. (2010a)).557

30



Window size for Window size for Estimated 𝐷 (All values ×10−4) Estimated 𝐾

vertical derivatives final terms 25𝑡ℎ percentile Median 75𝑡ℎ percentile 25𝑡ℎ percentile Median 75𝑡ℎ percentile

1 7 2, 00 3, 02 3, 42 581 642 667

1 11 4, 38 5, 80 6, 08 1000 1080 1103

1 15 2, 51 3, 00 3, 17 1305 1365 1391

3 7 0, 32 0, 68 1, 31 495 514 545

3 11 2, 46 3, 32 3, 69 1062 1152 1194

3 15 1, 40 1, 61 1, 73 1304 1346 1368

5 7 1, 52 2, 06 2, 39 601 647 672

5 11 2, 35 2, 91 3, 13 1165 1232 1262

5 15 1, 70 1, 93 2, 03 1257 1289 1305

Table B1. Estimates obtained with various window sizes in the smoothing process for calculated vertical

derivatives and the final terms of the Watermass Transformation equation. All estimated values are in [𝑚2/𝑠].

569

570

APPENDIX B558

Sensitivity studies559

B1. Sensitivity of estimates to data smoothing560

In Section 3 it was highlighted that some smoothing was applied when calculating vertical561

derivatives of Θ, 𝑆𝐴 and 𝛾𝑛, as well as to the final terms that form the Watermass Transformation562

equation. In this section, the sensitivity of the final estimates to this degree of smoothing is563

explored. Table B1 shows for a random location in the study area (27◦ 𝑁 , 330◦ 𝐸), the estimates564

with various amounts of smoothing. The window size of the running mean smoothing process is565

varied for both smoothing processes. The window size is the indication how many points are taken566

into account for the calculation of the mean value. The estimates are obtained following the steps567

as in Section 4.568

Besides the values in Table B1, we also made a visual inspection of the smoothed profiles and571

of the proportion of negative diffusivities (that passed the 𝜒-criteria of Eq. 17) obtained in our572

inversions. We found that for the least amount of smoothing the diffusivity estimates were lower573

and there were more negative values. Therefore we deduced that some amount of smoothing was574

desirable. Of the three choices we made of window size, we found that the large and intermediate575

window gave similar results, and so we selected the window sizes of 3 and 11 points.576
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B2. Sensitivity of the 𝜏-criterium577

The combinations of depths 𝑧𝑢 and 𝑧𝑙 , that are used in the inversion process of the SIM fullfill578

the condition 𝜏𝑢 − 𝜏𝑙 ≈ 0. In the process of selecting the pairs, it is approximated that this is the579

case for combinations of depths for which 𝜏𝑢 − 𝜏𝑙 < 𝑐𝑟𝑡. The results presented in Sections 4, 5 and580

6 the 𝑐𝑟𝑡 was set to 0.0075 [𝑟𝑎𝑑]. In this Appendix, the sensitivity of the results with respect to581

this choice is analysed.582

The number of pairs, the reduction based on the signal-to-noise criteria, and the results for a583

range of different 𝑐𝑟𝑡 values will be compared. The 𝑐𝑟𝑡 values for 0.004, 0.0075, 0.015 and 0.05584

are selected for this.585

a. Number of pairs586

When increasing the critical value for 𝜏𝑢 − 𝜏𝑙 ≈ 0, the number of pairs increases (Fig. B1). Also587

the number of pairs that remain after the signal-to-noise criteria increases (Fig. B2). However,588

they differ less from each other than without also using this criteria. For the smallest 𝑐𝑟𝑡-value589

the number of available pairs, after the signal-to-noise removal, starts to become too low for some590

locations to get an estimate. We consider this too strict. In general, more pairs correspond to more591

equations that can be used in the inversion process. However, it can be expected that the error that592

these equations contain also increases with a larger 𝑐𝑟𝑡-value, as the approximation of 𝜏𝑢 − 𝜏𝑙 ≈ 0593

becomes less accurate for larger 𝑐𝑟𝑡 values.594

b. Accuracy of the estimates600

A scatterplot of the estimated values compared to the maximum from the structure function,601

show that the estimated values for K and D are not too sensitive for the choice of 𝑐𝑟𝑡 (Figs. B3602

and B4). In some cases the values for 𝐾 𝑖𝑛𝑣 are small compared to the maximum from the structure603

function (B3d). A possible explanation is that with larger critical values, more error is introduced604

by the dataset allowing for a wider range of estimates.605

Overall the SIM is not very sensitive to the choice of 𝑐𝑟𝑡. Using a too small value can reduce614

the number of equations we can construct (fewer pairs). A too large critical value introduces more615

error and a larger spread of the results. The chosen value 𝑐𝑟𝑡 = 0.0075, as used in Sections 4,5 and616

6 is therefore a reasonable choice.617
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Fig. B1. The number of pairs based on the 𝑐𝑟𝑡 criterium. a) 𝑐𝑟𝑡 = 0.004, b) 𝑐𝑟𝑡 = 0.0075, c) 𝑐𝑟𝑡 = 0.015, d)

𝑐𝑟𝑡 = 0.05. The maximum number of pairs in panel d) is 1283

595

596
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Fig. B2. The number of pairs based on the 𝑐𝑟𝑡 criterium, after reduction based on the signal-to-noise criteria

as described in Section 4. a) 𝑐𝑟𝑡 = 0.004, b) 𝑐𝑟𝑡 = 0.0075, c) 𝑐𝑟𝑡 = 0.015, d) 𝑐𝑟𝑡 = 0.05. The maximum number

of pairs in panel d) is 416.
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598
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Fig. B3. The values for 𝐾 𝑖𝑛𝑣 plotted against the value of the used structure function. With a) 𝑐𝑟𝑡 = 0.004, b)

𝑐𝑟𝑡 = 0.0075, c) 𝑐𝑟𝑡 = 0.015, d) 𝑐𝑟𝑡 = 0.05. The orange shading represents the ratio between estimated value and

the value of the structure function. Gray lines mark the uncertainty of the estimate, given by the 25𝑡ℎ and 75𝑡ℎ

percentiles.
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Fig. B4. The values for 𝐷𝑖𝑛𝑣 plotted against the value of the used structure function. With a) 𝑐𝑟𝑡 = 0.004, b)

𝑐𝑟𝑡 = 0.0075, c) 𝑐𝑟𝑡 = 0.015, d) 𝑐𝑟𝑡 = 0.05. The orange shading represents the ratio between estimated value and

the value of the structure function. Gray lines mark the uncertainty of the estimate, given by the 25𝑡ℎ and 75𝑡ℎ

percentiles.
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APPENDIX C618

Range of solutions619

Section 4e explored a wide range of input variables to the inversion, which was aimed at gaining620

a physically realistic estimate for 𝐾 and 𝐷. Despite the removal of equations that contained too621

much noise, based on the signal to noise criteria of Section 4c, the estimates by this sensitivity622

analysis spanned a wide range. This solution space contained also negative estimates. While math-623

ematically, these estimates are valid, these are considered to be outside the space that is physically624

realistic. This is because the results are obtained from an annual mean gridded climatology that625

inherently represents an ocean mean state in which diffusion is down gradient. For this reason an626

additional positivity constraint was added besides the chi-criteria (see Sec. 4e). Without this con-627

straint, about 45% of the estimates for 𝐷inv are negative, while the estimates for 𝐾 inv are practically628

unaffected. Fig. C1 shows the results without the constraint. The estimates with this positivity629

constraint were shown in Fig. 6.630

The casts that return negative estimates also show a larger spread of the estimates from the634

sensitivity analysis. This can indicate that these casts possibly are still more affected by noise in635

the data or that it would be beneficial if more equations were available for the inversion. Either636

way, these estimates should be treated with caution.637
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Fig. C1. Results without the positivity constraint. With (a)𝐾 inv without constraint. (b) 𝐷inv without constraint,

negative estimates are shown as absolute values, marked with a green dot. For both panels, whiskers mark the

25𝑡ℎ and 75𝑡ℎ percentiles.

631
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APPENDIX D638

Other structure functions639

Here we test the sensitivity of the SIM to the choice of structure function used by estimating 𝐾640

and 𝐷 using different structure functions according to the following set-up:641

• Original: The structure functions are as presented in Sections 3 and the results of Fig. 7.642

• Test 1: For 𝐾 the structure is based on Cole et al. (2015). But as their data reaches to 1700 m643

depth, we have linearly extrapolated this to be 0 at the ocean floor. This is combined with the644

structure function of De Lavergne et al. (2020) for 𝐷.645

• Test 2: For 𝐾 the used structure function is the same as presented in Section 3 and the results646

of Fig. 7, so the study by Groeskamp et al. (2020). This is combined with a profile for 𝐷 based647

on a linear interpolation from 10−5 [𝑚2/𝑠] at the surface to 5×10−5 [𝑚2/𝑠] at the bottom.648

• Test 3: A constant value of 1000 [𝑚2/𝑠] is used for 𝐾 and a constant value of 5×10−5 [𝑚2/𝑠]649

is used for 𝐷 as structure functions.650

The choice of structure function influences the results of both 𝐾 and 𝐷 and affects the final656

estimates by impacting the signal to noise criteria and a-priori estimates such as x0. However,657

these tests clearly indicate that the SIM finds solutions that are not restricted to the original658

magnitude of the structure functions, even while the shape is maintained by construction (Fig. D1).659
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Fig. D1. Estimtes of 𝐾 and 𝐷 from the SIM, using different structure functions, including those presented in

Section 6. The estimates of the SIM are given by their median values, the shadings indicate the 25𝑡ℎ and 75𝑡ℎ

percentiles. For the studies of Cole et al. (2015) and De Lavergne et al. (2020) and Groeskamp et al. (2020), the

shading indicates the uncertainty given by the study. In (a), the results of 𝐷inv are presented, similarly in (b) the

results of 𝐾 inv.
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