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ABSTRACT: Here we introduce the Spiralling Inverse Method (SIM) that provides estimates of
the small-scale and mesoscale mixing strength. The SIM uses a vertical integral over a balance
between the watermass transformation equation and the thermal wind equation. The result is an
equation where all terms, except for the mixing strengths, can be obtained from hydrographic data
of temperature and salinity. As an advantage, the SIM estimates the mixing strengths without the
need of further knowledge of a reference velocity or streamfunction. Here we apply the SIM to
a small region in the North Atlantic. We find that the estimates obtained by the SIM compare
well to observations and other (inverse) estimates of the mixing strength. The SIM therefore has
potential to improve and constrain parameterizations used for climate and ecosystem modelling

using readily available hydrographic data.
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SIGNIFICANCE STATEMENT: Ocean mixing is a combination of many different physical
processes over a large range of scales in time (seconds to years) and space (millimeter to 100 km).
Most of these processes are too small to compute in climate models and need to be simplified
(parameterized). These parameterizations have a strong influence on climate projections and their
shape and magnitude needs to be constrained using observations and indirect estimates of ocean
mixing strength. The Spiralling Inverse Method (SIM) is a new method to obtain such constraints
of mixing strengths using readily available observations of temperature and salinity. We here test
the SIM and confirm its potential to improve mixing estimates and therewith ultimately climate

simulations.

1. Introduction

Ocean mixing affects the uptake, transport and storage of tracers such as heat and carbon in
the ocean, subsequently impacting the climate and its future changes (Clément et al. 2022; Melet
et al. 2022; MacGilchrist et al. 2020; Tatebe et al. 2018; Pradal and Gnanadesikan 2014; Munk
and Wunsch 1998). Ocean mixing is caused by many different physical processes that take place
on a large range of spatiotemporal scales (Moum 2021; De Lavergne et al. 2022). This makes
mixing difficult to observe, or resolve in numerical ocean models. Consequently, ocean models
use parameterizations of mixing that determine its strength and distribution (Fox-Kemper et al.
2019). However, it turns out that models are very sensitive to unconstrained choices required
for construction of these parameterizations (Pradal and Gnanadesikan 2014; Holmes et al. 2022).
These mixing parameterizations can be improved by using observationally based constraints (Fox-
Kemper et al. 2019).

In studies of ocean mixing, and especially in numerical modelling, mixing parameterizations
generally split mixing into mesoscale isoneutral mixing of which the strength is represented by
a diffusion coefficient K, and small-scale dianeutral mixing of which the strength is given by the
diffusion coefficient D (Fox-Kemper et al. 2019; Griffies 1998). Isoneutral (dianeutral) movement
refers to movement along (across) surfaces of constant neutral density rather than along (across)
surfaces of potential density, which is referred to by isopycnal (diapycnal) movement. For a more
complete description of the differences between isoneutral (dianeutral) and isopycnal (diapycnal)

the reader is referred to McDougall (1987a). The mesoscale mixing is directed along neutral tangent
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planes, while small-scale mixing is isotropic, and often approximated as vertical or dianeutral
(McDougall et al. 2014). Neutral surfaces are surfaces along which a water parcel can be moved a
small distance without experiencing a buoyant restoring force (McDougall 1987a). The mesoscale
isoneutral diffusion coefficient K acts on scales of O(10— 100km) and is characterised by typical
values ranging between O (10! — 10 m? s71), though higher values of O(10* m? s~!) can occur
(Abernathey et al. 2021). The dianeutral diffusion coefficient D has many different sources, such as
wind-generated mixing by the breaking of near-inertial waves (Alford et al. 2016), the dissipation
of internal tides (De Lavergne et al. 2019) or the dissipation of lee-waves (MacKinnon 2013; Legg
2021). Typical values of D are in the order of O(107 — 1073 m? s~!) (Waterhouse et al. 2014),
with the lowest values being found in the quiescent ocean interior, and increased values over rough
topography. Though values of D can in some cases even exceed 10~ m? s~!. Here we aim to find
observationally based constraints for the parameterizations of the diffusion coefficients with the
help of a new inverse method.

Inverse methods traditionally have been developed and used to obtain estimates of large scale
circulation and transport rates from hydrographic data, e.g. the box inverse method (Wunsch
1978), the beta-spiral inverse method (Stommel and Schott 1977; Schott and Stommel 1978)
and the Bernouilli inverse method (Killworth 1986). At a later stage the existing methods were
extended by including the dianeutral diffusion coefficient D (Ganachaud and Wunsch 2000; Sloyan
and Rintoul 2000, 2001) or both K and D (Zhang and Hogg 1992; Hautala 2018). Yet, even for
these methods, the main focus remained on solving the circulation, leading to less accurate mixing
results (Zika et al. 2010a). More recently developed inverse methods were specifically designed
to estimate mixing coefficients (Zika et al. 2010a; Groeskamp et al. 2014, 2017; Mackay et al.
2018). Regardless of these improvements, these inverse methods also required the estimation of
streamfunctions or velocities, which can potentially add more uncertainty and error to the mixing
estimates. In this study, we will provide the derivation of the new Spiralling Inverse Method (SIM)
that is explicitly designed to estimate only the diffusion coeflicients K and D, without the need to
estimate any other variables.

The Spiralling Inverse Method (SIM) is a vertical integral over a balance on a neutral tangent
plane, between the water mass transformation equation and the thermal wind balance. The SIM

uses the spiralling of temperature contours on neutral surfaces, with depth, to eliminate an unknown
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reference velocity. The result is a balance where all terms can be determined based on hydrographic
data except for the diffusion coeflicients that we estimate using the inverse method. The SIM also
differs from other inverse methods, as it is a semi-local method. That is, one needs only the
isoneutral gradients of 7, S, p on a vertical cast. In contrast, other existing methods are either
global (Groeskamp et al. 2014, 2017), basin-scale (Mackay et al. 2018) or regional (Zika et al.
2010b; Hautala 2018).

This paper is structured as follows; in Section 2 we will introduce the new inverse method.
Section 3 is reserved for a description of the data that is used in an application of this method.
Section 4 focusses on the inversion process of the method, while the results of applying the method
to a region in the North Atlantic are presented in Section 5. Section 6 then compares these results

to other studies in this area. Discussions and conclusions follow in Section 7.

2. Methods - The Spiralling Inverse Method

The Spiralling Inverse Method (SIM) is an inverse method that produces estimates for the
isoneutral diffusion coefficient K and the dianeutral diffusion coefficient D. These estimates are
obtained using observed temperature and salinity data. Here we will use Conservative Temperature,
® ([°C]), and Absolute Salinity, S4 ([gkg™']), as variables for *heat’ and salinity respectively.
Conservative Temperature is proportional to potential enthalphy (by the constant heat capacity
factor cg, in [J kg~! K~!]), representing the heat content per unit mass of seawater (McDougall
2003; Graham and McDougall 2013). Absolute Salinity is designed to approximate the ratio
between the mass of dissolved material and the mass of seawater ([g kg‘l], (Wright et al. 2011;
McDougall et al. 2012)). It is measured on the Reference Composition Salinity Scale (Millero
et al. 2008). It is also the salinity variable of IOC et al. (2010), the thermodynamic description
of seawater. These variables are considered on neutral tangent planes. Because the neutrality
condition defines ® and S contours to be aligned, the direction in the neutral tangent plane normal

to these contours (or cross-contour direction) is defined as:

__ V4O _ VuSa
[V, [VuSal’

(D
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Here V,, is the two-dimensional non-orthogonal projected operator in the neutral tangent plane.
Note that this vector has only horizontal components, as described by McDougall (1987a) and
McDougall et al. (2014).

Ocean mixing is dominated by downgradient diffusive fluxes (Redi 1982; McDougall 1987a),
therefore it makes sense to write the Eulerian-averaged horizontal velocity vector v, in terms of its
cross-contour and along-contour components (indicated by superscript L and ||, respectively) in

the neutral tangent plane (McDougall 1995):

v=vir+vlkxr, 2)

with k = (0,0, 1) being the vertical unit vector, and where

vi=v.r, and vI=v. (kx7) (3)

Taking the vertical derivative of v+ gives

VISV THV T 4)

a. Finding an expression for vy using the thermal wind balance.

V., and with that also v} can be found using the thermal wind balance. The thermal wind
equation can be found by taking the vertical derivative of the geostrophic velocity and combining
it with the hydrostatic balance. This can be expressed as (see also Section 3.12.3 of IOC et al.
(2010)):

V,= -2 kxV,p. (5)

fp

Here, f is the Coriolis parameter, g the gravitational acceleration and p is density. Vertically

integrating v, gives another expression for v:

Zu
V= / v, d7 +Vref (21) = Vrel (2u) + Vret (21) ©)
pa)

—_———

Vrel
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Here the integral indicated with the underbrace, in combination with Eq. 5, is defined as the
relative velocity v,.;. Also v becomes the integral of v, plus an integration constant, which needs
to be a known reference velocity. Or equivalently, v then consists of a depth-dependent relative

velocity vy and a depth-independent reference velocity vyes. Inserting Eq. (6), into Eq. (4) leaves,

V;_ = (Vrel " T)z + Vref * Tz (7

Vertically integrating this equation results in an expression for v+,

[VL]ZA = [Vrer- 7‘]2‘ +Vref - (T(20) — 7 (21)). @)

The relative velocity vye can be obtained from ©, S4 and p fields alone. Methods to determine
vret from data, or eliminate this term completely, will follow in Section 2c. In the next step we first
show how to obtain the cross-contour velocity on the left hand side (v*) as an expression with only

the mixing coefficients K and D as unknowns.

b. Finding an expression for v* in terms of K and D

An equation that describes the cross-contour velocity as a function of the mixing coefficients K
and D was first derived by McDougall (1984), who referred to this as the water-mass transformation
equation. We however, use the form as described in IOC et al. (2010), with the difference being
the Kgp-term. This term follows from parameterization of the quasi-Stokes velocity. The full

derivation of the equation that will be used here, can be found in Appendix A:

1 A 1 A A A A
Le 4V, (y;IKVne)) +— _KgN20, (C?Vn@) V,0+T0V,0- VnP)
|V,0| |V,0| ©)
1 A A A KeuV.y\ V,0
+ ~ DﬁQgN_z (®ZSAZZ - SAZ,®ZZ) - ( G]E z)’) : ~

In this equation, vy, is the vertical derivative of neutral density (y") (Jackett and McDougall 1997).
Here the first term on the right hand side is the isoneutral mixing. The second term is a result of
non-linearities in the equation of state. That is, cabbeling and thermobaricity processes will cause

a dianeutral motion due to isoneutral mixing along the neutral tangent plane (McDougall 1987b;



137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

Klocker and McDougall 2010; Groeskamp et al. 2016). The third term accounts for the turbulent
dianeutral mixing. The last term on the right hand side is the result of splitting the velocity into
the Eulerian mean component and a fluctuating component that has been parameterized as the
quasi-Stokes velocity. It can be argued that this Kgj; should be taken as different from K (see e.g.
Smith and Marshall (2009)), but, as in many studies of ocean circulation and mixing (Holmes et al.
2022), we here make the approximation that both coefficients are similar. In Equation (9), the only
unknowns in the expression for the cross-contour velocity are the diffusivities (vt = [ f(K,D)]),
while other terms can all be found using ®,S4 and p data. There have been other studies that
also used some form of Eq. (9) to infer the diffusivities. McDougall (1991) assumed a third
conservative tracer equation to eliminate the advective terms from the equation. Zika et al. (2009)
zonally integrated the equation along closed (circumpolar) tracer contours and found a ratio of
the diapycnal and isopycnal diffusivities, D/K. Here we combine the assumptions above with

Equations (8) and (9), this allows us to write the combination as:

V15 = [f (K, D)% = [Vrer TIE + Vet - (T (2u) = 7(21)). (10)

Note that here all the terms in f(K, D) can be obtained from hydrographic data, except for the
unknown K and D coeflicients. The relative velocity term on the right hand side can be determined
using Equation (5), but the reference velocity term remains usually unknown or highly uncertain.
In the next section, it will be discussed how the reference velocity can be obtained or eliminated

from the equations.

c. Eliminating the unknown v, r-term.

While the relative velocity vy can be determined using Equation (5), the reference velocity
vref Temains unknown. This is not a problem when one has knowledge of the reference velocity,
for example from a data product (e.g. Gray and Riser (2014); Lebedev et al. (2007)) or through
observations of a moored current meter in the area of interest. For this study, our goal is to entirely
eliminate the reference velocity from the SIM (Equation (10)). This has the advantage that the
inversion does not have to deal with the uncertainties related to finding such reference velocity.
Therefore our approach is to carefully select the upper and lower depths (z,, z; respectively)

between which the equation are being integrated. These ’pairs’ of depths are being selected such



164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

that 7(z,) = 7(z;), so that the term containing the reference velocity drops out of Eq. (10). Then,
the only unknowns in Equation (10) are the diffusivities K and D, while the other terms can all be

written in terms of the fields of ®, S4 and p.

d. An expression for the SIM including structure functions

For the application of the SIM in this study, we make use of structure functions of the isopycnal
and diapycnal diffusivities. Structure functions are a-priori determined vertical profiles for K
and D, that we make dependent on only one unknown diffusion coefficient with which these
profiles will be scaled. As a consequence of using structure functions, all pairs in one vertical
profile are connected and combined. As such we have more equations available to solve for fewer
unknowns. A downside to using structure functions is that more a-priori knowledge is required or
that alternatively, the resolution with which we resolve the vertical structure of the diffusivities is
reduced. The SIM can also operate without structure functions, but regardless, choices will still
have to be made about vertical resolution of diffusivities and which pairs are suitable for estimating

a diffusivity. We here derive the equations for the SIM, including the structure functions (because

struc struc
this will be used in Section 4), using fx(z) = KK%;CZ) and fp(z) = DD%%Z). These are vertical
profiles of K& D scaled by their maximum, to obtain structure functions for K and D respectively.
With K™ and DY being the unknown constants of the inverse method, we can write the estimated

diffusivity as;

K®'(z) =K™ fx(z) and D™(z)=D™ fp(z) (11)

Reordering the terms of Equation (9) and applying the structure functions results in,

1 A
vJ_ :Kmv [ _ V. . ( -1 z V.0
|Vn®|7/z n\7z fxk(2)V, )
1 . C A
s C:)lfK(Z)gN_ZG)Z (C?VnG)‘Vn®+Tf)V,,®'V,,P) (12)

Va

VZ?) Vn(:) :| inv[ 1 (C] 2(A & & A ]
(=) - ===|+D — fp(2)B%N (@S ~$5..0 ) .
(fK( ) . ). v,0| |Vn®|fD( )B°g 79O Azz AzYzz
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Here fx(z) and fp(z) are scaling factors between 0 and 1, based upon the used structure function.
K™ and D™ are the diffusivities that will be estimated by the SIM and basically rescale the a-priori
assumed structure to fit the observational data.

In the next section, we discuss the data products used, as well as the structure functions that we

use for K and D.

3. Data

We choose to apply the SIM to a globally gridded climatology of hydrographical data. Annual
means of in situ temperature and practical salinity data from the World Ocean Atlas 2018
(WOA18) (Locarnini et al. 2019; Zweng et al. 2019) gridded climatology are used. The data
has a grid spacing of 1° with 102 vertical levels. The in situ temperature and practical salinity
data are converted to Conservative Temperature (®) and Absolute Salinity (S4) using the GSW
software toolbox (McDougall and Barker 2011; IOC et al. 2010). Static stability of the data is
reached by applying a vertical stabilization algorithm (Barker and McDougall 2017). Neutral
density (y") is calculated according to Jackett and McDougall (1997). The neutral gradients of
©® and S 4 are calculated using the *Vertical Non-local Method (VENM)’ of Groeskamp et al. (2019).

When the neutral tracer gradients of ® and S4 are known and regridded to WOA18 depths, the
different terms of Equations (5) and (9) can be calculated. First and second vertical derivatives of
0©, S4 and y" are obtained using a second order vertical differences scheme and smoothed with
a vertical 3 point running mean. Remaining small-scale oscillations are removed by applying a
vertical 11 point running mean smoother to the final terms over a cast. No additional horizontal
smoothing between casts is applied. The sensitivity of the final estimates to the amount of
smoothing is explored in Appendix B1. The results are somewhat sensitive to this smoothing
process, but not once the main spikes are removed.

Equation (12) shows the water-mass transformation equation at a given geographical location
with the structure functions included. In this application of the SIM we use two data-based fields
(latitude, longitude, depth) for K and D respectively, and calculate the structure functions fx(z)
and fp(z) at each location from these fields. We will base the spatial variation of the isoneutral

eddy diffusion coeflicient K on the estimate of Groeskamp et al. (2020). The study of Groeskamp

10
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et al. (2020) provides a parameterization for the isoneutral eddy diffusion coefficient based upon
mixing length theory (Prandtl 1925) and mean flow suppression theory (Ferrari and Nikurashin
2010) and the theory of vertical modes (LaCasce and Groeskamp 2020).

As a structure function for the dianeutral turbulent diffusion coefficient D we will use the product
of De Lavergne et al. (2020). The product of De Lavergne et al. (2020) is a parameterization based
on the turbulence production due to internal tides. De Lavergne et al. (2020) uses four different

pathways to account for both near-field and far-field dissipation of internal tides.

4. Inversion

To test and showcase the SIM, we apply it to the region where also the North Atlantic Tracer
Release Experiment (NATRE) took place (Ledwell et al. 1993). This region spans the area between
38°—-27° W and 21° —-29° N (red box, Fig. 1). Due to NATRE and subsequent studies, there are
direct observations and indirect estimates of the mixing available for both K and D, that we can
use to compare the SIM against (Section 6).

First we will focus on defining suitable combinations of depths, that is, locations where the
second term on the right hand side of Equation (10) is approximately zero. After this we will

discuss the several choices and considerations that have been made during the inversion process.

a. Finding combinations of z, and z;

Using the neutral gradients of ® and S4, the orientation of the contours 7 on the neutral surfaces
can be calculated using Equation (1). As described in Section 2.c, the reference velocity vyer is
eliminated by finding combinations of depths, where 7 has the same orientation. We make the
approximation that a difference of At =1, — 1, < 0.0075 [rad] can be considered negligible and
therefore both contours would have the same orientation. The choice for a certain At does have
impact on the amount of pairs that can be found as well as on the uncertainty of the estimates. All
in all the SIM is not particularly sensitive to this choice and the choice of crt = 0.0075 [rad] is
appropriate (Appendix B2).

This condition is calculated for all the different gridpoints within the study area. Starting at the
surface, the difference At is checked for all levels below. If the condition is met, that combination

of depths can be used for the inversion. We will refer to all combinations of depths that meet

11
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the condition as ’pairs’. As air-sea fluxes are not (yet) included in the WMT equation (see also
Appendix A), we only consider pairs that start below 300m depth, as this is below the maximum
mixed layer depth in the area and below any incoming shortwave radiation (Groeskamp and Iudicone
2018). The incoming shortwave radiation can lead to significant watermass transformation rates
not accounted for in Eq. 9.

The total depth integrated number of pairs for each gridpoint of WOA, that meet the criterium
At < 0.0075 rad, shows strong regional variation (Fig. 1). Note that this is before any selection
is performed. In the study region (indicated by the red box) there is a relatively low number of
suitable pairs when compared to some other areas around the world (e.g. the Southern Ocean). Yet,
even within this small area there is significant variation in the amount of pairs left after applying
the signal-to-noise criteria (Fig. 2).

For one gridpoint in the study area (marked with the red X in Fig. 2), the used signal-to-noise
criteria were too strict (Section 4.c) and an insufficient number of pairs remained to obtain estimates
for K and D. Most of the pairs found in the study area are concentrated between 1000m and 2000m,
with especially limited number of pairs in the deeper parts of the watercolumn that remain after
the signal-to-noise criteria (Fig.3). Even though the pairs are not evenly distributed over depth,
the used structure functions (Section 2.d), link different pairs over the whole water column. That
is, each pair will contribute to find the unknown diffusivity such that even for a low amount of
pairs, or with an uneven vertical distribution, there will still be a full depth estimate of K*(z) and

Dest(z)_

b. Applying structure functions to the equations

Equation (10) can be written for a large number of combinations of z,, and z;, that meet the criteria
7(z4) = T(z;7). All these equations can be combined to a system of equations of the form A x =b.
Here, A is a N x M matrix, with N being the number of combinations of an upper and lower depth,
for which 7, —7; < 0.0075. And M is the number of unknowns, which in this application is only
K™ and D™. Here x is a M x 1 vector, containing the M unknown diffusivities. Finally, b is a
N x 1 vector containing the rhs of Equation (10) for each equation. Because 7(z,) = 7(z;), the

term containing the reference velocity thus drops out.

12
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based on signal-to-noise or other criteria. The study area of this paper is marked by the red box.

For the structure functions we use the geographical map of Groeskamp et al. (2020) for K and
De Lavergne et al. (2020) for D. For each vertical cast (on a x,y grid) these values are scaled
with their maximum value and used as described in Equation (12) and now included in the factors

multiplying the unknowns in the matrix A.

c. Signal to noise criteria

Before carrying out the inversion on the system of equations that follows from finding the pairs,
the number of equations is reduced. Reducing the number of equations is done in order to avoid
having one or a few equations, with a relatively large error, disturbing the estimate provided by the
method. For example, an estimate of the order of magnitude of the unknowns can be obtained by
dividing the b-term by the terms in the A-matrix. That is K ~ b/Agx and D ~ b/Ap. If this initial
estimate of K or D is already many order of magnitude larger or smaller than what can be expected
for this area, we can conclude that the signal to noise ratio for this pair is too large. That is, if A is
too small compared to b, it holds no information and will only lead to noise.

To determine if an equation contains too much noise, we make use of existing estimates of

mixing, i.e. we use the structure functions. The structure functions provide a reasonable estimate
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Lower limit | max(le™®, Dyuax/10) max(25, Kpax/10)

Upper limit min(5¢ 3,10 Dynax) | min(5000,10 - Knax)

TaBLE 1. The used lower and upper limits for the signal to noise criteria.

of the expected magnitude of K and D in this area. Although the actual K and D are unknown,
these estimates can be used as a guideline. Hence, we use the maximum value from the structure
function and assume that these are within a factor 10 of the actual K and the actual D. We also
set minimum values under which we don’t expect to be able to distinguish our results from zero.
When the signal to noise value exceeds these boundaries (Table 1), we remove the equations.
Second, when either both terms in the A matrix are positive and the b term is negative, or vice
versa, when both terms in the A matrix are negative and the b term is positive, it means that at least
K or D, but possibly both, need to be negative. As the SIM is applied to annual-mean data, we
assume that negative diffusivities are not physically realistic over such large timescales and remove
related equations. Hence in these situations the data quality or the assumptions in the derivation,

lead to an unphysical situation.
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Fic. 3. Distribution of the pairs over the water column for a location in the study area. Pairs with red endpoints

will be removed by the signal to noise criteria, pairs with green endpoints remain and are used for the inversion.

d. Solving for the unknowns

The data products used for estimating the diffusivities contain inaccuracies. Hence, for each
equation there is equation error to minimize. Adding this to the system of equations (A x = b) adds
N values to minimize, to the M unknown variables to estimate. There are only N equations in the
system, so the system is per definition underdetermined. An underdetermined system has infinite
solutions (Wunsch 1978). Finding the solution can be done by minimizing y2, which is the sum of
the equation errors and the solution error. It also provides a way of obtaining an error or sensitivity

estimate of the solution. Here )(2 is given by (Mclntosh and Rintoul 1997; Menke 2018),

x> =(x—x0) W2 (x—x¢) +el W, 2e. (13)

X is an initial estimate for the unknowns, and the error e can be written as e = Ax—b. A solution

for x is found by minimizing y?:

-1
x = x0+ W2A" (AW%AT + W;Z) (b - Axg) (14)
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Here, W, and W, are the column and row weighting matrices. These matrices are diagonal with

elements o, and 1/0,. With that, Equation (14) can be rewritten to,

X =xi+x;
 (om—Xom)? < €2 (15)
_Z 2 +Z 2
m=1 o-xm n=1 O-en

Equation (14) gives an estimate of x and an estimate of the random error in this estimate can be

found using the posterior covariance matrix.

Cp=WZ-WIAT(AWAT + W, 2) AW, 2 (16)

The standard deviation of the estimates can then be obtained by taking the square root of the

diagonal elements of the matrix C, (Mclntosh and Rintoul 1997).

e. Sensitivity analysis

The standard deviation of the estimates obtained from the posterior covariance matrix C, is a
statistical interpretation of the uncertainty of the method. However, this standard deviation may
be physically unrealistic at the same time, and not fairly represent the sensitivity of the different
variables that are subject to the modellers choices. This is especially the case when prior statistics
are not well known (Groeskamp et al. 2014). We will follow the method used by Groeskamp et al.
(2014) to obtain a physically realistic uncertainty estimate. We will vary the elements of the vector
X (with elements D¢ and K, the initial guesses for D and K), o (for both D and K) and 0. o
is our best guess for the error between x¢ and X. o, is our best guess for the equation error. We
will vary each of these five variables over a range of values which we deem realistic and could all
provide an equally true answer. These values are shown in Table 2.

By calculating y2 and y? for all combinations of these five varying variables and selecting those
for which y2 ~ N and y? ~ M, and for which the estimate for both K and D is positive (the influence
of this constraint is analysed in App. C), we avoid fitting the final estimate to either the equations

or to Xg. This is done by taking the values for which,
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TaBLE 2. Used range of values for the variables used as sensitivity analysis. With eg = b — Axy. Note that
after defining a-priori estimates of Dy and K, the tested range for o p and oy g are a function of this choice.
The interval-width used to define Dy, Ky and the o--values are chosen such that the covered ranges (e.g. 0.1-1,

or 1-10) all have approximately equal importance in the solution space.

M
<x’<5N and ?SfoSM (17)

Following this procedure leads to a set of values of K and D that are physically realistic.
The values for K™ and D™ are taken to be the median of this set. In Figures 6 and 7, the
variation in estimates by this sensitivity analysis is marked by the 25™ and 75" percentile values.
Respectively, the range spanned by the 25 and 75" percentiles (average over the study area) is
between 782 [m?/s] and 1026 [m?/s] for K'™, and 9.8 x 10> [m?/s] and 3.5x 10~* [m?/s] for
D™ Whereas the standard deviation provided by the posterior covariance method gives an average
uncertainty of 1.5 [m?/s] for K" and +5x 1077 [m?/s] for D™™.

As a test, we also solve the system using the formally overdetermined problem A x = b, without
the addition of weights and prior estimates of x. The results are found to be close to the estimates
from our method described in section 4, though the over-determined problem does occasionally find
negative estimates (Table 3). As outlined above, the negative results are considered mathematically
valid, though not physically realistic.

The general agreement between the results give confidence that overall the theoretical model
works, while the occasional negative results argue for guiding the inverse method to obtain the
physically realistic estimates (e.g., by varying Xg, and the row and column weights) of the solution

space. We will further discuss the results of the study area in Section 5.
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Estimates D (All values x10™%) Estimates K
Location 25" percentile  Median 75" percentile  A\b 25" percentile ~ Median  75'" percentile ~ A\b
(330E, 27N) | 2,46 3,32 3,69 3,67 1062 1152 1194 1192
(324E, 24N) | 1,20 1,61 1,79 1,63 949 994 1011 997
(333E,22N) | 0,12 0,31 0,47 0,44 1224 1530 1897 1389
(331E, 23N) | 0,06 0,16 0,50 -2,29 | 1199 1915 2890 —-600
(332E,27N) | 0,47 1,17 2,20 -3,19 | 657 679 711 558

TasLE 3. Estimates for 5 random locations in the study area as shown by the median value and 25" /75"

percentile values and the estimates obtained by solving the formally overdetermined problem A\b.

5. Results - Application of the SIM to a region in the Northern Atlantic

Following the steps as outlined in Section 4, results in an estimate for K'™ and D'™ through
performing an inversion for each gridpoint in the study area. As outlined, the values presented for
K™ and D™ are the median values found in the sensitivity analysis. The averaged (over the study
area) median values are 917 [m?/s] for K™ (full range of the sensitivity study is 0— 8101 [m?/s])
and 2x 107 [m?/s] for D'™ (full range of the sensitivity study is 5.9 x 10~ =1 x 1072 [m?/s]).
Note that the full range gives the ends of a narrow, longtailed distribution.

We find that K™ shows a larger spread and a different spatial distribution than K3 (Fig. 4).
The maximum value for K™ is with a value of 2239 [m?/s] about a factor three larger than the
maximum value for the structure function (1194 [m?/s]) in this study area. Though the maximum
for K™ might be considered an outlier, it is not an unrealistic high value. For D (Fig. 5), the
spread of the values for D™ is about the same order of magnitude when compared to the values
for D¢ A different spatial distribution can be observed in the figure. Note that an exact match
with the structure functions, both in magnitude and spatial distribution, is not required. Instead,
the SIM indicates that, when we look at the balance of Eq. (10), which includes both K and
D, this is only possible to fullfill when both the values of K and D are altered a bit compared
to the original structure functions as shown in Eq. (12). The structure functions themselves are
independent estimates of K and D, not accounting for any such balance. The estimates for K are
generally within a factor 2 or 3 from the original structure function. Which is arguably also within
the range of uncertainty that such estimates currently have. A similar argument could be made for
estimates of D that are mostly within an order of magnitude from the original structure function.

Even the best estimates of D (e.g., from a vertical microstructure profiler) are only accurate within
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a factor 2 at most (Oakey 1982). In Figure 6 we explore in more detail the accuracy of the inverse
estimates and the difference with the structure function. We find that the inverse estimates of K
(with uncertainty estimate from the y-criteria of Section (4)) tend to be at most a factor 4 different
from the structure function, while mainly staying within a factor 3. For D, the values for both
DS and D™ range from 107> — 1073 [m?/s], which are common values for the dianeutral mixing
coefficient. Most estimates fall within a factor 5 from the corresponding values for DS'™. And even
with the uncertainty estimate provided based upon the y-criteria from Section (4), the estimates
are well within the range of what can be considered acceptable.

The results indicate that for estimates of D"V, a larger maximum value of the structure function,
also provides a larger estimate of D™, while this is not the case for estimates of K'". Especially
for lower values of K3, there is a large spread in values of K'™. Fig. 4a shows that these values
can mostly be found on the northern side of the study area. Fig. 2 shows that these are also the
casts for which only a limited number of equations remain after the signal to noise criteria. This
indicates that with a lower number of equations the results are possibly more sensitive to noise, or
that the pairs in this region themselves contain more noise.

The SIM and the two structure functions are three ways to obtain estimates, that all have their own
assumptions and limitations. The fact the estimates for K and D are close to those of the structure
functions indicates that the SIM has skill to estimate diffusion coefficients from observations and
can help to constrain mixing parameterization theories with observations. Note that the influence
of using different structure functions (see App. D) shows that, even though the shape is retained by
construction, the magnitude can vary strongly if required by the balance that we are estimating. We
conclude that while the selection of the structure function has influence on the final solution, the

additional constraints of the SIM provide new information that can improve the existing estimates

of K and D.

6. Comparing to different studies

After averaging all profiles of K*'(z) and D*'(z) (see Eq. (11)) over the study area, we can
compare it against other studies (Fig. 7). We find that the SIM compares well against diffusivities

obtained from direct observations (in black) or indirect estimates (in color).
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max

«s  The dianeutral diffusivity D (Fig. 7, (a)), overlaps with both previous estimates as well as direct
«7 Observations, even though the median is on the larger end of other estimates. Especially when

4

=}

s including the uncertainty range of the SIM (red background shading, which is somewhat distorted

4

=3

o due to the logarithmic scaling). The direct observations consist of microstructure profiles (Toole
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max

et al. 1994) and the vertical spread of a released tracer (Ledwell et al. 1998). The indirect estimates
are the Tracer Contour Inverse Method (Zika et al. 2010b), estimates based on internal wave
energy (De Lavergne et al. 2020) (upon which the structure function is based), and based upon the

application of the finescale parameterization to Argo data (Whalen et al. 2018). The uncertainty
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FiG. 6. The inverse estimates (blue dots) for (a) K™ and (b) D™ plotted against the value of the used structure
functions. The orange shading represents the ratio between estimated value and the value of the structure function.

Gray lines mark the uncertainty of the estimate, given by the 25" and 75'" percentiles.

range provided by the SIM compares well to the variability as shown by the microstructure data

(e.g, between 2700 and 3000 meters depth). Note that for all these studies, the timescales over
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which these small-scale mixing measurements are taken, or estimates are made, vary largely. For
example, the microstructure measurements provide an instantaneous observation, while the tracer
experiment is an average over many months.

The average profile of the isoneutral diffusivity K compares well with the available direct
observations (in black), and does not differ much from the structure function used. The estimate
provided by Cole et al. (2015), seems to be overestimating the diffusivity in this region, while
the inverse estimates of Thermohaline Inverse Method (THIM) of Groeskamp et al. (2017) and
Tracer Contour Inverse Method (TCIM) of Zika et al. (2010b) are underestimates compared to
the observations. One possible explanation for the difference between these methods, is the scale
or region that is considered. The THIM is a global estimate, while the TCIM provides regional
estimates. Instead, the SIM provides a balance that obtains quasi-local estimates of the diffusivities
for scales larger than the Rossby radius (due to the use of the geostrophic balance). Also note that
when different structure functions are used (App. D), the SIM does find different estimates. For
example, with the study of Cole et al. (2015) as structure function, the SIM lowers the estimate
compared to the structure function. This shows that the SIM is capable of finding a physically

realistic estimate and is not restricted too much to the original magnitude of the structure functions.

7. Discussion and conclusions

We here introduced the Spiralling Inverse Method, a new inverse method for estimating the
isoneutral and dianeutral mixing coefficients K and D, respectively. It does so by relating the wa-
termass transformation equation to the thermal wind balance. It is the first inverse method designed
for estimating the mixing strength that does not require estimates of velocities or streamfunctions
of any kind. We here applied it to a small region in the North Atlantic to showcase its potential,
which is discussed below, together with the caveats.

The SIM was applied to the hydrographic data from WOA18. The observational data included
in WOA18 has been averaged horizontally, which introduced additional mixing in the results, as
opposed to averaging on neutral surfaces. For now, this will influence the results in an unknown
way. This additional mixing can be avoided by using neutrally averaged data when such data
products become available. In this application of the SIM, we have omitted equations from the

upper 300m, as the current form of the SIM does not include air-sea fluxes. Although this can be
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added in both the theory (see App. A) and the data, air-sea fluxes are known to cause large errors
in WMT estimates (Groeskamp and Iudicone 2018) and may not improve the results, even when
more equations are added as a result. Hence we choose to present the SIM without air-sea fluxes.

Although overlapping pairs of the SIM would contribute to provide multiple equations to estimate
the unknowns, many pairs do only overlap over small ranges of depths (Fig. 3). Consequently we
here used a structure function of the vertical shape of the diffusivities, which has the following

advantages:

* It connects all pairs to estimate fewer unknowns.
* It provides an estimate where pairs do not exist.

* It provides a-priori information.

The caveat is that the result has fewer degrees of freedom and is more pre-determined by the
chosen structure function. In future work, these structure functions can perhaps be less restrictive
by adding more degrees of freedom, such that the mixing estimates are more determined by the
data rather than the structure function. At the moment, the pairs that form the basis of the inversion
are found based upon two important criteria; the first is the accuracy with which we want to satisfy
the criterium 7, — 77 = 0, this was explored in App. B. It turns out that the SIM is not very sensitive
to this choice, though one needs to be careful by not making this too strict or wide. The second
criterion is related to the depth resolution at which the WOA-data is provided. When interpolating
WOA onto different depths, or using a different dataset it might be possible to find more and more
accurate pairs. More equations (information) could be obtained when more pairs are found with
an increased vertical resolution of the dataset or when the reference velocity is included. However,
that is with the caveat that the reference velocity might introduce another source of error.

The application of the SIM in this study, results in estimates of K and D that are within a realistic
range from other estimates and observations of these diffusivities. This provides confidence in
the potential for the SIM to be more widely used, possibly in combination with other inverse
estimates. This could result in global inverse estimates of mixing and potentially observational
based constraints for new and improved mixing parameterizations in (ocean) models. Thus reducing

the uncertainty associated with the parameterizations and model outcomes.
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APPENDIX A
Watermass Transformation Equation

Here we derive the Water Mass Transformation equation as it is used in Section 2. The starting
point are the conservation equations for Conservative Temperature ® and Absolute Salinity S, (see

e.g. (I0C et al. 2010; McDougall 1984)).

Oy +9-V,0+0.=7.V, - (7;1Kvn@)) + (D(:)Z)Z (Ala)

Sprn+ 9V, Sa+884.= 7., (77;1KV,L§A) + (DSAZ) +§54 (Alb)
Z

® and S, are thickness-averaged Conservative Temperature and Absolute Salinity (the thickness-
averaging being marked by the”) and V is the thickness-weighted velocity. € is the dianeutral velocity
temporally averaged on a neutral surface (the temporal average being marked by the™). Because
unresolved motions in ocean models are assumed to move along locally referenced potentional
density surfaces, the temperature and salinity variables in ocean models are best interpreted as
being the thickness-weighted averages where the averaging is done between pairs of locally defined
potential density surfaces (McDougall and McIntosh 2001), with the thickness between successive

surfaces being part of the averaging procedure. The last term in the conservation equation for
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Absolute Salinity S4 is an additional source term because Absolute Salinity is not completely
conserved (IOC et al. 2010). For our purposes this term is negligible since the isoneutral gradient
of the difference between Absolute Salinity and Preformed Salinity is less than a percent of the
isoneutral gradient of Absolute Salinity (Pawlowicz et al. 2012; IOC et al. 2010). This implies
that the diffusivities (either K or D) that are needed to balance these isoneutral gradients would be
different by less than one percent. The vertical gradients of the difference between these salinity
variables is also very small, particular in the North Atlantic.
In this current derivation of the watermass transformation equation air-sea fluxes have not been
included. At the sea surface the air-sea heat (Groeskamp and Iudicone 2018) and salt fluxes (Nurser
and Griffies 2019) take the place of the parameterized diapycnal mixing terms in Eqs. (Ala) and
(A1b) (OC et al. 2010). Including air-sea fluxes in the SIM is left for future work.

Multiplying Equation (Ala) with the thermal expansion coefficient @ and Equation (A1b) with
the saline contraction coefficient 5, followed by substracting Equation (A1b) from Equation (Ala)

results in,

a'(:)tln _ﬁS’:Aflﬂ +€7 (CL’V,,(:) _ﬁVnSAA) +z(a(:)z _ﬁSAAZ,) =
0 0 e 1N2 (A2)
¥,V (7' KV,0) = 7.V, (¥ 'KV, S4) +a(DO,), - B(DS4.), — BS54

Note that on a neutral plane the following relations hold: aVn(:) -BV, S 4=0and a(:), |l — ﬁS‘ Aln=
0 (McDougall 1987a), and the definition of the buoyancy frequency: g~ 'N? = (a®, — S A,)
(McDougall 1987a). These reduce the equation above to an expression for the dianeutral velocity;

e 'N* =y, V- (7. 'KV,0) - Y.V, - (7' KV, S4) +a(DB,), - B(DS4,). - BS54 (A3)

We use the following definitions for the cabbeling and thermobaricity parameters (IOC et al.

2010),
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c, =22 el (9) 98 (Ada)
00 Sa.p ﬁ@SA O.p B 0S4 op
and T, = 0% _29B (Adb)
oP $..0 B OP $..0

and combine these with Equation (A3), to obtain,

co IN? = K (c,,vn(i) V,0+T,V,0- VnP) +a(DO,).— B(DSA). - BS5*  (AS)

Rewriting Equation (AS) results in,

(¢-D,)g"'N*>=—K (van@ V,0+T,V,0- VnP) +D (a/@ZZ - ,BSAZZ) _ B85 (A6)

Substituting Equation (A6) into Equation (Ala), and reordering the terms gives,

O +¥-,0=7.9, («y;‘Kvn(:)) +KgN20, (c,,vn@ V,0+T,V,0- VnP)

X X . . B R (A7)
~DgN7?0. (a0~ .:) + DO+ = =851,
aR-1
— a'éz
where R = B
The two diapycnal mixing terms in the equation above can be merged to get either
24 & & A 2434784
~DgN 0. (0. - pSaz) + DO.. = DpgN 20322
de (A8)

= DﬁgN_2 (éngzz - SAZC:)ZZ)

With the assumption of a steady state, the first term of Equation (A7) (:),|n can be ignored. The

s last term on the rhs. in (A7), which reflects that Absolute Salinity is not conserved, is small and

531

will be ignored (IOC et al. 2010). This results in,
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9V,0=7.9,- (7;1Kvn®) +KgN~20, (cbvné) V,0+T,V,0- V,,P)
o (A9)
+DBgN 2 (@ZSAZZ - SAZGZZ) .

Now the thickness-weighted mean horizontal velocity ¥ will be replaced in favour of the Eulerian-
mean horizontal velocity. When this is done, the thickness-weighted mean horizontal velocity V is
decomposed into the Eulerian-mean horizontal velocity and the quasi-Stokes horizontal velocity:

Vv =v+v". The quasi-Stokes velocity v* can be parameterized by the vertical derivative of the

quasi-Stokes streamfunction (McDougall and McIntosh 2001):

V=W, = (—v] +¥_3) (A10)
Yoo Y7/,
In this equation, ¢ = %(7’)2, is half the density variance at height z (McDougall and MclIntosh

2001). The quasi-Stokes streamfunction can also be considered as the product of the eddy diffusivity

(written as Kgj7) and the neutral slope (Gent et al. 1995; Griffies 1998). For the definition of the

neutral tangent plane we take S = (S, S,) =V,z= —V;?.
KeuV.y
\PZ:( GALI z7)
Yz Z
a8
— (Kow). S Ko (a_z) (Al1)

= (Kom). S - KeuValogy;'

To get from the second line of Eq. (A11) to the third line, we can write the vertical derivative

V.7). V.. V.7
of the slope as — G, = (¥ _ Yz Vo¥
: yz yZ yZ

McDougall et al. (2014), to be <V7—7> - 77—? =y, V.(1/7.)-%.8(1/7,). ==V, In(1/7.).

In order to be completely correct, one should besides the quasi-Stokes velocity also account

. This can be shown , in combination with Equation (10a) of

for the differences between thickness-weighted temperature and salinity and the Eulerian mean
temperature and salinity: @ =@+0* and §4 = S, +5 - However, where the quasi-Stokes velocity
can be parameterized following Eq. A10, to our knowledge no such parameterizations for ®* and

S+

%, currently exist. These averaging procedures represent best practice, but in this present paper
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549

550

551

552

553

554

555

556

557

we have used an existing hydrographic atlas which has not been averaged in a thickness-weighted
manner. While this is undesirable, this difference is unlikely to impact our results, given all the
other limitations in the data.

Replacing the thickness-weighted mean horizontal velocity for the Eulerian-mean horizontal
velocity and the parameterization of the quasi-Stokes velocity of Equation (A11), and adding this

to Equation (A9) results in the final expression for the cross-contour velocity, as it is used in this

paper:
1 A l A A A A
phe yZVn-(yZ_IKVn®)+ _KgN“20, (C?Vn®-Vn®+Tb®Vn®-V,,P)
V0| |V, 0| (A12)
1 N (A A A A KouVy\ V.0
+ AD®N2(®S —S@)—( MEY) L 2
IV, LOg 790 Azz AzYzz y. ] V,0]

This equation has previously also been used, in slightly different form, by other studies (E.g.

McDougall (1984); IOC et al. (2010); Zika et al. (2010a)).
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Window size for Window size for Estimated D (All values x10™%) Estimated K

vertical derivatives final terms 25" percentile Median 75" percentile | 25" percentile  Median  75'" percentile
1 7 2,00 3,02 3,42 581 642 667
1 11 4,38 5,80 6,08 1000 1080 1103
1 15 2,51 3,00 3,17 1305 1365 1391
3 7 0,32 0,68 1,31 495 514 545
3 11 2,46 3,32 3,69 1062 1152 1194
3 15 1,40 1,61 1,73 1304 1346 1368
5 7 1,52 2,06 2,39 601 647 672
5 11 2,35 2,91 3,13 1165 1232 1262
5 15 1,70 1,93 2,03 1257 1289 1305

569 TaBLE B1. Estimates obtained with various window sizes in the smoothing process for calculated vertical

o derivatives and the final terms of the Watermass Transformation equation. All estimated values are in [m?/s].

558 APPENDIX B

559 Sensitivity studies

o B1. Sensitivity of estimates to data smoothing

561 In Section 3 it was highlighted that some smoothing was applied when calculating vertical
s« derivatives of ®, §4 and 7y, as well as to the final terms that form the Watermass Transformation
ss equation. In this section, the sensitivity of the final estimates to this degree of smoothing is
s« explored. Table B1 shows for a random location in the study area (27° N, 330° E), the estimates
s With various amounts of smoothing. The window size of the running mean smoothing process is
s varied for both smoothing processes. The window size is the indication how many points are taken
s7 1nto account for the calculation of the mean value. The estimates are obtained following the steps
s as 1n Section 4.

s Besides the values in Table B1, we also made a visual inspection of the smoothed profiles and
s of the proportion of negative diffusivities (that passed the y-criteria of Eq. 17) obtained in our
s inversions. We found that for the least amount of smoothing the diffusivity estimates were lower
s« and there were more negative values. Therefore we deduced that some amount of smoothing was
s desirable. Of the three choices we made of window size, we found that the large and intermediate

s window gave similar results, and so we selected the window sizes of 3 and 11 points.
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B2. Sensitivity of the 7-criterium

The combinations of depths z, and z;, that are used in the inversion process of the SIM fullfill
the condition 7, —7; = 0. In the process of selecting the pairs, it is approximated that this is the
case for combinations of depths for which 7, — 7; < crt. The results presented in Sections 4, 5 and
6 the crt was set to 0.0075 [rad]. In this Appendix, the sensitivity of the results with respect to
this choice is analysed.

The number of pairs, the reduction based on the signal-to-noise criteria, and the results for a
range of different crt values will be compared. The crt values for 0.004, 0.0075, 0.015 and 0.05

are selected for this.

a. Number of pairs

When increasing the critical value for 7, — 7; = 0, the number of pairs increases (Fig. B1). Also
the number of pairs that remain after the signal-to-noise criteria increases (Fig. B2). However,
they differ less from each other than without also using this criteria. For the smallest crz-value
the number of available pairs, after the signal-to-noise removal, starts to become too low for some
locations to get an estimate. We consider this too strict. In general, more pairs correspond to more
equations that can be used in the inversion process. However, it can be expected that the error that
these equations contain also increases with a larger crz-value, as the approximation of 7, —7; = 0

becomes less accurate for larger crt values.

b. Accuracy of the estimates

A scatterplot of the estimated values compared to the maximum from the structure function,
show that the estimated values for K and D are not too sensitive for the choice of crt (Figs. B3
and B4). In some cases the values for K" are small compared to the maximum from the structure
function (B3d). A possible explanation is that with larger critical values, more error is introduced
by the dataset allowing for a wider range of estimates.

Overall the SIM is not very sensitive to the choice of cr¢. Using a too small value can reduce
the number of equations we can construct (fewer pairs). A too large critical value introduces more
error and a larger spread of the results. The chosen value crt = 0.0075, as used in Sections 4,5 and

6 is therefore a reasonable choice.
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59 Fic. B1. The number of pairs based on the crt criterium. a) crt = 0.004, b) crt =0.0075, c) crt =0.015, d)

ss  crt =0.05. The maximum number of pairs in panel d) is 1283
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the value of the structure function. Gray lines mark the uncertainty of the estimate, given by the 25" and 75"
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APPENDIX C

Range of solutions

Section 4e explored a wide range of input variables to the inversion, which was aimed at gaining
a physically realistic estimate for K and D. Despite the removal of equations that contained too
much noise, based on the signal to noise criteria of Section 4c, the estimates by this sensitivity
analysis spanned a wide range. This solution space contained also negative estimates. While math-
ematically, these estimates are valid, these are considered to be outside the space that is physically
realistic. This is because the results are obtained from an annual mean gridded climatology that
inherently represents an ocean mean state in which diffusion is down gradient. For this reason an
additional positivity constraint was added besides the chi-criteria (see Sec. 4e). Without this con-
straint, about 45% of the estimates for D'™ are negative, while the estimates for K'™ are practically
unaffected. Fig. CI1 shows the results without the constraint. The estimates with this positivity
constraint were shown in Fig. 6.

The casts that return negative estimates also show a larger spread of the estimates from the
sensitivity analysis. This can indicate that these casts possibly are still more affected by noise in
the data or that it would be beneficial if more equations were available for the inversion. Either

way, these estimates should be treated with caution.
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638 APPENDIX D

639 Other structure functions

s  Here we test the sensitivity of the SIM to the choice of structure function used by estimating K

«r and D using different structure functions according to the following set-up:

* Original: The structure functions are as presented in Sections 3 and the results of Fig. 7.

642

643 e Test 1: For K the structure is based on Cole et al. (2015). But as their data reaches to 1700 m
" depth, we have linearly extrapolated this to be O at the ocean floor. This is combined with the

645 structure function of De Lavergne et al. (2020) for D.

646 * Test 2: For K the used structure function is the same as presented in Section 3 and the results
647 of Fig. 7, so the study by Groeskamp et al. (2020). This is combined with a profile for D based

o on a linear interpolation from 1075 [m?/s] at the surface to 5x 107> [m?/s] at the bottom.

649 « Test 3: A constant value of 1000 [m?/s] is used for K and a constant value of 5x 107> [m?/s]

650 is used for D as structure functions.

es  Lhe choice of structure function influences the results of both K and D and affects the final
&7 estimates by impacting the signal to noise criteria and a-priori estimates such as xg9. However,
s these tests clearly indicate that the SIM finds solutions that are not restricted to the original

e magnitude of the structure functions, even while the shape is maintained by construction (Fig. D1).
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Fic. D1. Estimtes of K and D from the SIM, using different structure functions, including those presented in
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results of K.
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