

Royal Netherlands Institute for Sea Research

This is a pre-copyedited, author-produced version of an article accepted for publication, following peer review.

Kusters, N., S. Groeskamp, and T. J. McDougall, 2024: Spiralling Inverse Method: A New Inverse Method to Estimate Ocean Mixing. *J. Phys. Oceanogr.*, 54, 2289–2309, <https://doi.org/10.1175/JPO-D-24-0009.1>.

Published version: <https://doi.org/10.1175/JPO-D-24-0009.1>

NIOZ Repository: <http://imis.nioz.nl/imis.php?module=ref&refid=396538>

[Article begins on next page]

The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the [Open Access Movement](#), and the [Open Archive Initiative](#). Each publication should be cited to its original source - please use the reference as presented.

1 Spiralling Inverse Method: A new inverse method to estimate ocean mixing

2 N. Kusters^a

3 S. Groeskamp ^a

4 T.J. McDougall ^b

5 ^a *NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands*

6 ^b *School of Mathematics, University of New South Wales, Sydney, Australia*

7 *Corresponding author:* N. Kusters, niek.kusters@nioz.nl

8 ABSTRACT: Here we introduce the Spiralling Inverse Method (SIM) that provides estimates of
9 the small-scale and mesoscale mixing strength. The SIM uses a vertical integral over a balance
10 between the watermass transformation equation and the thermal wind equation. The result is an
11 equation where all terms, except for the mixing strengths, can be obtained from hydrographic data
12 of temperature and salinity. As an advantage, the SIM estimates the mixing strengths without the
13 need of further knowledge of a reference velocity or streamfunction. Here we apply the SIM to
14 a small region in the North Atlantic. We find that the estimates obtained by the SIM compare
15 well to observations and other (inverse) estimates of the mixing strength. The SIM therefore has
16 potential to improve and constrain parameterizations used for climate and ecosystem modelling
17 using readily available hydrographic data.

18 SIGNIFICANCE STATEMENT: Ocean mixing is a combination of many different physical
19 processes over a large range of scales in time (seconds to years) and space (millimeter to 100 km).
20 Most of these processes are too small to compute in climate models and need to be simplified
21 (parameterized). These parameterizations have a strong influence on climate projections and their
22 shape and magnitude needs to be constrained using observations and indirect estimates of ocean
23 mixing strength. The Spiralling Inverse Method (SIM) is a new method to obtain such constraints
24 of mixing strengths using readily available observations of temperature and salinity. We here test
25 the SIM and confirm its potential to improve mixing estimates and therewith ultimately climate
26 simulations.

27 1. Introduction

28 Ocean mixing affects the uptake, transport and storage of tracers such as heat and carbon in
29 the ocean, subsequently impacting the climate and its future changes (Clément et al. 2022; Melet
30 et al. 2022; MacGilchrist et al. 2020; Tatebe et al. 2018; Pradal and Gnanadesikan 2014; Munk
31 and Wunsch 1998). Ocean mixing is caused by many different physical processes that take place
32 on a large range of spatiotemporal scales (Moum 2021; De Lavergne et al. 2022). This makes
33 mixing difficult to observe, or resolve in numerical ocean models. Consequently, ocean models
34 use parameterizations of mixing that determine its strength and distribution (Fox-Kemper et al.
35 2019). However, it turns out that models are very sensitive to unconstrained choices required
36 for construction of these parameterizations (Pradal and Gnanadesikan 2014; Holmes et al. 2022).
37 These mixing parameterizations can be improved by using observationally based constraints (Fox-
38 Kemper et al. 2019).

39 In studies of ocean mixing, and especially in numerical modelling, mixing parameterizations
40 generally split mixing into mesoscale isoneutral mixing of which the strength is represented by
41 a diffusion coefficient K , and small-scale dianeutral mixing of which the strength is given by the
42 diffusion coefficient D (Fox-Kemper et al. 2019; Griffies 1998). Isoneutral (dianeutral) movement
43 refers to movement along (across) surfaces of constant neutral density rather than along (across)
44 surfaces of potential density, which is referred to by isopycnal (diapycnal) movement. For a more
45 complete description of the differences between isoneutral (dianeutral) and isopycnal (diapycnal)
46 the reader is referred to McDougall (1987a). The mesoscale mixing is directed along neutral tangent

47 planes, while small-scale mixing is isotropic, and often approximated as vertical or dianeutral
48 (McDougall et al. 2014). Neutral surfaces are surfaces along which a water parcel can be moved a
49 small distance without experiencing a buoyant restoring force (McDougall 1987a). The mesoscale
50 isoneutral diffusion coefficient K acts on scales of $\mathcal{O}(10 - 100\text{km})$ and is characterised by typical
51 values ranging between $\mathcal{O}(10^1 - 10^3 \text{ m}^2 \text{ s}^{-1})$, though higher values of $\mathcal{O}(10^4 \text{ m}^2 \text{ s}^{-1})$ can occur
52 (Abernathy et al. 2021). The dianeutral diffusion coefficient D has many different sources, such as
53 wind-generated mixing by the breaking of near-inertial waves (Alford et al. 2016), the dissipation
54 of internal tides (De Lavergne et al. 2019) or the dissipation of lee-waves (MacKinnon 2013; Legg
55 2021). Typical values of D are in the order of $\mathcal{O}(10^{-6} - 10^{-3} \text{ m}^2 \text{ s}^{-1})$ (Waterhouse et al. 2014),
56 with the lowest values being found in the quiescent ocean interior, and increased values over rough
57 topography. Though values of D can in some cases even exceed $10^{-3} \text{ m}^2 \text{ s}^{-1}$. Here we aim to find
58 observationally based constraints for the parameterizations of the diffusion coefficients with the
59 help of a new inverse method.

60 Inverse methods traditionally have been developed and used to obtain estimates of large scale
61 circulation and transport rates from hydrographic data, e.g. the box inverse method (Wunsch
62 1978), the beta-spiral inverse method (Stommel and Schott 1977; Schott and Stommel 1978)
63 and the Bernoulli inverse method (Killworth 1986). At a later stage the existing methods were
64 extended by including the dianeutral diffusion coefficient D (Ganachaud and Wunsch 2000; Sloyan
65 and Rintoul 2000, 2001) or both K and D (Zhang and Hogg 1992; Hautala 2018). Yet, even for
66 these methods, the main focus remained on solving the circulation, leading to less accurate mixing
67 results (Zika et al. 2010a). More recently developed inverse methods were specifically designed
68 to estimate mixing coefficients (Zika et al. 2010a; Groeskamp et al. 2014, 2017; Mackay et al.
69 2018). Regardless of these improvements, these inverse methods also required the estimation of
70 streamfunctions or velocities, which can potentially add more uncertainty and error to the mixing
71 estimates. In this study, we will provide the derivation of the new Spiralling Inverse Method (SIM)
72 that is explicitly designed to estimate only the diffusion coefficients K and D , without the need to
73 estimate any other variables.

74 The Spiralling Inverse Method (SIM) is a vertical integral over a balance on a neutral tangent
75 plane, between the water mass transformation equation and the thermal wind balance. The SIM
76 uses the spiralling of temperature contours on neutral surfaces, with depth, to eliminate an unknown

77 reference velocity. The result is a balance where all terms can be determined based on hydrographic
78 data except for the diffusion coefficients that we estimate using the inverse method. The SIM also
79 differs from other inverse methods, as it is a semi-local method. That is, one needs only the
80 isoneutral gradients of T, S, p on a vertical cast. In contrast, other existing methods are either
81 global (Groeskamp et al. 2014, 2017), basin-scale (Mackay et al. 2018) or regional (Zika et al.
82 2010b; Hautala 2018).

83 This paper is structured as follows; in Section 2 we will introduce the new inverse method.
84 Section 3 is reserved for a description of the data that is used in an application of this method.
85 Section 4 focusses on the inversion process of the method, while the results of applying the method
86 to a region in the North Atlantic are presented in Section 5. Section 6 then compares these results
87 to other studies in this area. Discussions and conclusions follow in Section 7.

88 **2. Methods - The Spiralling Inverse Method**

89 The Spiralling Inverse Method (SIM) is an inverse method that produces estimates for the
90 isoneutral diffusion coefficient K and the dianeutral diffusion coefficient D . These estimates are
91 obtained using observed temperature and salinity data. Here we will use Conservative Temperature,
92 Θ ($^{\circ}\text{C}$), and Absolute Salinity, S_A ($\text{[g kg}^{-1}\text{]}$), as variables for 'heat' and salinity respectively.
93 Conservative Temperature is proportional to potential enthalphy (by the constant heat capacity
94 factor c_p^0 , in $\text{[J kg}^{-1} \text{ K}^{-1}\text{]}$), representing the heat content per unit mass of seawater (McDougall
95 2003; Graham and McDougall 2013). Absolute Salinity is designed to approximate the ratio
96 between the mass of dissolved material and the mass of seawater ($\text{[g kg}^{-1}\text{]}$, (Wright et al. 2011;
97 McDougall et al. 2012)). It is measured on the Reference Composition Salinity Scale (Millero
98 et al. 2008). It is also the salinity variable of IOC et al. (2010), the thermodynamic description
99 of seawater. These variables are considered on neutral tangent planes. Because the neutrality
100 condition defines Θ and S_A contours to be aligned, the direction in the neutral tangent plane normal
101 to these contours (or cross-contour direction) is defined as:

$$99 \tau = \frac{\nabla_n \Theta}{|\nabla_n \Theta|} \equiv \frac{\nabla_n S_A}{|\nabla_n S_A|}. \quad (1)$$

102 Here ∇_n is the two-dimensional non-orthogonal projected operator in the neutral tangent plane.
 103 Note that this vector has only horizontal components, as described by McDougall (1987a) and
 104 McDougall et al. (2014).

105 Ocean mixing is dominated by downgradient diffusive fluxes (Redi 1982; McDougall 1987a),
 106 therefore it makes sense to write the Eulerian-averaged horizontal velocity vector $\bar{\mathbf{v}}$, in terms of its
 107 cross-contour and along-contour components (indicated by superscript \perp and \parallel , respectively) in
 108 the neutral tangent plane (McDougall 1995):

$$\bar{\mathbf{v}} = v^\perp \boldsymbol{\tau} + v^\parallel \mathbf{k} \times \boldsymbol{\tau}, \quad (2)$$

109 with $\mathbf{k} = (0, 0, 1)$ being the vertical unit vector, and where

$$v^\perp = \bar{\mathbf{v}} \cdot \boldsymbol{\tau}, \quad \text{and} \quad v^\parallel = \bar{\mathbf{v}} \cdot (\mathbf{k} \times \boldsymbol{\tau}) \quad (3)$$

110 Taking the vertical derivative of v^\perp gives

$$v_z^\perp = \bar{\mathbf{v}}_z \cdot \boldsymbol{\tau} + \bar{\mathbf{v}} \cdot \boldsymbol{\tau}_z. \quad (4)$$

111 a. *Finding an expression for v_z^\perp using the thermal wind balance.*

112 $\bar{\mathbf{v}}_z$, and with that also v_z^\perp can be found using the thermal wind balance. The thermal wind
 113 equation can be found by taking the vertical derivative of the geostrophic velocity and combining
 114 it with the hydrostatic balance. This can be expressed as (see also Section 3.12.3 of IOC et al.
 115 (2010)):

$$\bar{\mathbf{v}}_z = -\frac{g}{f \rho} \mathbf{k} \times \nabla_p \rho. \quad (5)$$

116 Here, f is the Coriolis parameter, g the gravitational acceleration and ρ is density. Vertically
 117 integrating $\bar{\mathbf{v}}_z$ gives another expression for $\bar{\mathbf{v}}$:

$$\bar{\mathbf{v}} = \underbrace{\int_{z_l}^{z_u} \bar{\mathbf{v}}_z dz'}_{\bar{\mathbf{v}}_{\text{rel}}} + \bar{\mathbf{v}}_{\text{ref}}(z_l) \equiv \bar{\mathbf{v}}_{\text{rel}}(z_u) + \bar{\mathbf{v}}_{\text{ref}}(z_l) \quad (6)$$

118 Here the integral indicated with the underbrace, in combination with Eq. 5, is defined as the
 119 relative velocity v_{rel} . Also \bar{v} becomes the integral of \bar{v}_z plus an integration constant, which needs
 120 to be a known reference velocity. Or equivalently, \bar{v} then consists of a depth-dependent relative
 121 velocity \mathbf{v}_{rel} and a depth-independent reference velocity \mathbf{v}_{ref} . Inserting Eq. (6), into Eq. (4) leaves,

$$v_z^\perp = (\mathbf{v}_{rel} \cdot \boldsymbol{\tau})_z + \mathbf{v}_{ref} \cdot \boldsymbol{\tau}_z. \quad (7)$$

122 Vertically integrating this equation results in an expression for v^\perp ,

$$[v^\perp]_{z_l}^{z_u} = [\mathbf{v}_{rel} \cdot \boldsymbol{\tau}]_{z_l}^{z_u} + \mathbf{v}_{ref} \cdot (\boldsymbol{\tau}(z_u) - \boldsymbol{\tau}(z_l)). \quad (8)$$

123 The relative velocity \mathbf{v}_{rel} can be obtained from Θ , S_A and p fields alone. Methods to determine
 124 \mathbf{v}_{ref} from data, or eliminate this term completely, will follow in Section 2c. In the next step we first
 125 show how to obtain the cross-contour velocity on the left hand side (v^\perp) as an expression with only
 126 the mixing coefficients K and D as unknowns.

127 *b. Finding an expression for v^\perp in terms of K and D*

128 An equation that describes the cross-contour velocity as a function of the mixing coefficients K
 129 and D was first derived by McDougall (1984), who referred to this as the water-mass transformation
 130 equation. We however, use the form as described in IOC et al. (2010), with the difference being
 131 the K_{GM} -term. This term follows from parameterization of the quasi-Stokes velocity. The full
 132 derivation of the equation that will be used here, can be found in Appendix A:

$$v^\perp = \frac{1}{|\nabla_n \hat{\Theta}|} \gamma_z \nabla_n \cdot \left(\gamma_z^{-1} K \nabla_n \hat{\Theta} \right) + \frac{1}{|\nabla_n \hat{\Theta}|} K g N^{-2} \hat{\Theta}_z \left(C_b^\Theta \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b^\Theta \nabla_n \hat{\Theta} \cdot \nabla_n P \right) + \frac{1}{|\nabla_n \hat{\Theta}|} D \beta^\Theta g N^{-2} \left(\hat{\Theta}_z \hat{S}_{Azz} - \hat{S}_{Az} \hat{\Theta}_{zz} \right) - \left(\frac{K_{GM} \nabla_z \bar{\gamma}}{\bar{\gamma}_z} \right)_z \cdot \frac{\nabla_n \hat{\Theta}}{|\nabla_n \hat{\Theta}|} \quad (9)$$

133 In this equation, γ_z is the vertical derivative of neutral density (γ^n) (Jackett and McDougall 1997).
 134 Here the first term on the right hand side is the isoneutral mixing. The second term is a result of
 135 non-linearities in the equation of state. That is, cabbeling and thermobaricity processes will cause
 136 a dianeutral motion due to isoneutral mixing along the neutral tangent plane (McDougall 1987b;

137 Klocker and McDougall 2010; Groeskamp et al. 2016). The third term accounts for the turbulent
 138 dianeutral mixing. The last term on the right hand side is the result of splitting the velocity into
 139 the Eulerian mean component and a fluctuating component that has been parameterized as the
 140 quasi-Stokes velocity. It can be argued that this K_{GM} should be taken as different from K (see e.g.
 141 Smith and Marshall (2009)), but, as in many studies of ocean circulation and mixing (Holmes et al.
 142 2022), we here make the approximation that both coefficients are similar. In Equation (9), the only
 143 unknowns in the expression for the cross-contour velocity are the diffusivities ($v^\perp = [f(K, D)]$),
 144 while other terms can all be found using Θ, S_A and p data. There have been other studies that
 145 also used some form of Eq. (9) to infer the diffusivities. McDougall (1991) assumed a third
 146 conservative tracer equation to eliminate the advective terms from the equation. Zika et al. (2009)
 147 zonally integrated the equation along closed (circumpolar) tracer contours and found a ratio of
 148 the diapycnal and isopycnal diffusivities, D/K . Here we combine the assumptions above with
 149 Equations (8) and (9), this allows us to write the combination as:

$$[v^\perp]_{z_l}^{z_u} = [f(K, D)]_{z_l}^{z_u} = [\mathbf{v}_{\text{rel}} \cdot \boldsymbol{\tau}]_{z_l}^{z_u} + \mathbf{v}_{\text{ref}} \cdot (\boldsymbol{\tau}(z_u) - \boldsymbol{\tau}(z_l)). \quad (10)$$

150 Note that here all the terms in $f(K, D)$ can be obtained from hydrographic data, except for the
 151 unknown K and D coefficients. The relative velocity term on the right hand side can be determined
 152 using Equation (5), but the reference velocity term remains usually unknown or highly uncertain.
 153 In the next section, it will be discussed how the reference velocity can be obtained or eliminated
 154 from the equations.

155 *c. Eliminating the unknown v_{ref} -term.*

156 While the relative velocity \mathbf{v}_{rel} can be determined using Equation (5), the reference velocity
 157 \mathbf{v}_{ref} remains unknown. This is not a problem when one has knowledge of the reference velocity,
 158 for example from a data product (e.g. Gray and Riser (2014); Lebedev et al. (2007)) or through
 159 observations of a moored current meter in the area of interest. For this study, our goal is to entirely
 160 eliminate the reference velocity from the SIM (Equation (10)). This has the advantage that the
 161 inversion does not have to deal with the uncertainties related to finding such reference velocity.
 162 Therefore our approach is to carefully select the upper and lower depths (z_u, z_l respectively)
 163 between which the equation are being integrated. These 'pairs' of depths are being selected such

164 that $\tau(z_u) = \tau(z_l)$, so that the term containing the reference velocity drops out of Eq. (10). Then,
 165 the only unknowns in Equation (10) are the diffusivities K and D , while the other terms can all be
 166 written in terms of the fields of Θ, S_A and p .

167 *d. An expression for the SIM including structure functions*

168 For the application of the SIM in this study, we make use of structure functions of the isopycnal
 169 and diapycnal diffusivities. Structure functions are a-priori determined vertical profiles for K
 170 and D , that we make dependent on only one unknown diffusion coefficient with which these
 171 profiles will be scaled. As a consequence of using structure functions, all pairs in one vertical
 172 profile are connected and combined. As such we have more equations available to solve for fewer
 173 unknowns. A downside to using structure functions is that more a-priori knowledge is required or
 174 that alternatively, the resolution with which we resolve the vertical structure of the diffusivities is
 175 reduced. The SIM can also operate without structure functions, but regardless, choices will still
 176 have to be made about vertical resolution of diffusivities and which pairs are suitable for estimating
 177 a diffusivity. We here derive the equations for the SIM, including the structure functions (because
 178 this will be used in Section 4), using $f_K(z) = \frac{K^{\text{struc}}(z)}{K_{\max}^{\text{struc}}}$ and $f_D(z) = \frac{D^{\text{struc}}(z)}{D_{\max}^{\text{struc}}}$. These are vertical
 179 profiles of $K \& D$ scaled by their maximum, to obtain structure functions for K and D respectively.
 180 With K^{inv} and D^{inv} being the unknown constants of the inverse method, we can write the estimated
 181 diffusivity as;

$$K^{\text{est}}(z) = K^{\text{inv}} f_K(z) \quad \text{and} \quad D^{\text{est}}(z) = D^{\text{inv}} f_D(z) \quad (11)$$

182 Reordering the terms of Equation (9) and applying the structure functions results in,

$$\begin{aligned} v^\perp = & K^{\text{inv}} \left[\frac{1}{|\nabla_n \hat{\Theta}|} \gamma_z \nabla_n \cdot \left(\gamma_z^{-1} f_K(z) \nabla_n \hat{\Theta} \right) \right. \\ & + \frac{1}{|\nabla_n \hat{\Theta}|} f_K(z) g N^{-2} \hat{\Theta}_z \left(C_b^\Theta \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b^\Theta \nabla_n \hat{\Theta} \cdot \nabla_n P \right) \\ & \left. - \left(f_K(z) \frac{\nabla_z \bar{\gamma}}{\bar{\gamma}_z} \right)_z \cdot \frac{\nabla_n \hat{\Theta}}{|\nabla_n \hat{\Theta}|} \right] + D^{\text{inv}} \left[\frac{1}{|\nabla_n \hat{\Theta}|} f_D(z) \beta^\Theta g N^{-2} \left(\hat{\Theta}_z \hat{S}_{Azz} - \hat{S}_{Az} \hat{\Theta}_{zz} \right) \right]. \end{aligned} \quad (12)$$

183 Here $f_K(z)$ and $f_D(z)$ are scaling factors between 0 and 1, based upon the used structure function.
184 K^{inv} and D^{inv} are the diffusivities that will be estimated by the SIM and basically rescale the a-priori
185 assumed structure to fit the observational data.

186 In the next section, we discuss the data products used, as well as the structure functions that we
187 use for K and D .

188 3. Data

189 We choose to apply the SIM to a globally gridded climatology of hydrographical data. Annual
190 means of in situ temperature and practical salinity data from the World Ocean Atlas 2018
191 (WOA18) (Locarnini et al. 2019; Zweng et al. 2019) gridded climatology are used. The data
192 has a grid spacing of 1° with 102 vertical levels. The in situ temperature and practical salinity
193 data are converted to Conservative Temperature (Θ) and Absolute Salinity (S_A) using the GSW
194 software toolbox (McDougall and Barker 2011; IOC et al. 2010). Static stability of the data is
195 reached by applying a vertical stabilization algorithm (Barker and McDougall 2017). Neutral
196 density (γ^n) is calculated according to Jackett and McDougall (1997). The neutral gradients of
197 Θ and S_A are calculated using the 'Vertical Non-local Method (VENM)' of Groeskamp et al. (2019).

198
199 When the neutral tracer gradients of Θ and S_A are known and regridded to WOA18 depths, the
200 different terms of Equations (5) and (9) can be calculated. First and second vertical derivatives of
201 Θ , S_A and γ^n are obtained using a second order vertical differences scheme and smoothed with
202 a vertical 3 point running mean. Remaining small-scale oscillations are removed by applying a
203 vertical 11 point running mean smoother to the final terms over a cast. No additional horizontal
204 smoothing between casts is applied. The sensitivity of the final estimates to the amount of
205 smoothing is explored in Appendix B1. The results are somewhat sensitive to this smoothing
206 process, but not once the main spikes are removed.

207 Equation (12) shows the water-mass transformation equation at a given geographical location
208 with the structure functions included. In this application of the SIM we use two data-based fields
209 (latitude, longitude, depth) for K and D respectively, and calculate the structure functions $f_K(z)$
210 and $f_D(z)$ at each location from these fields. We will base the spatial variation of the isoneutral
211 eddy diffusion coefficient K on the estimate of Groeskamp et al. (2020). The study of Groeskamp

et al. (2020) provides a parameterization for the isoneutral eddy diffusion coefficient based upon mixing length theory (Prandtl 1925) and mean flow suppression theory (Ferrari and Nikurashin 2010) and the theory of vertical modes (LaCasce and Groeskamp 2020).

As a structure function for the dianeutral turbulent diffusion coefficient D we will use the product of De Lavergne et al. (2020). The product of De Lavergne et al. (2020) is a parameterization based on the turbulence production due to internal tides. De Lavergne et al. (2020) uses four different pathways to account for both near-field and far-field dissipation of internal tides.

4. Inversion

To test and showcase the SIM, we apply it to the region where also the North Atlantic Tracer Release Experiment (NATRE) took place (Ledwell et al. 1993). This region spans the area between $38^\circ - 27^\circ W$ and $21^\circ - 29^\circ N$ (red box, Fig. 1). Due to NATRE and subsequent studies, there are direct observations and indirect estimates of the mixing available for both K and D , that we can use to compare the SIM against (Section 6).

First we will focus on defining suitable combinations of depths, that is, locations where the second term on the right hand side of Equation (10) is approximately zero. After this we will discuss the several choices and considerations that have been made during the inversion process.

a. Finding combinations of z_u and z_l

Using the neutral gradients of Θ and S_A , the orientation of the contours τ on the neutral surfaces can be calculated using Equation (1). As described in Section 2.c, the reference velocity \mathbf{v}_{ref} is eliminated by finding combinations of depths, where τ has the same orientation. We make the approximation that a difference of $\Delta\tau = \tau_u - \tau_l < 0.0075$ [rad] can be considered negligible and therefore both contours would have the same orientation. The choice for a certain $\Delta\tau$ does have impact on the amount of pairs that can be found as well as on the uncertainty of the estimates. All in all the SIM is not particularly sensitive to this choice and the choice of $crt = 0.0075$ [rad] is appropriate (Appendix B2).

This condition is calculated for all the different gridpoints within the study area. Starting at the surface, the difference $\Delta\tau$ is checked for all levels below. If the condition is met, that combination of depths can be used for the inversion. We will refer to all combinations of depths that meet

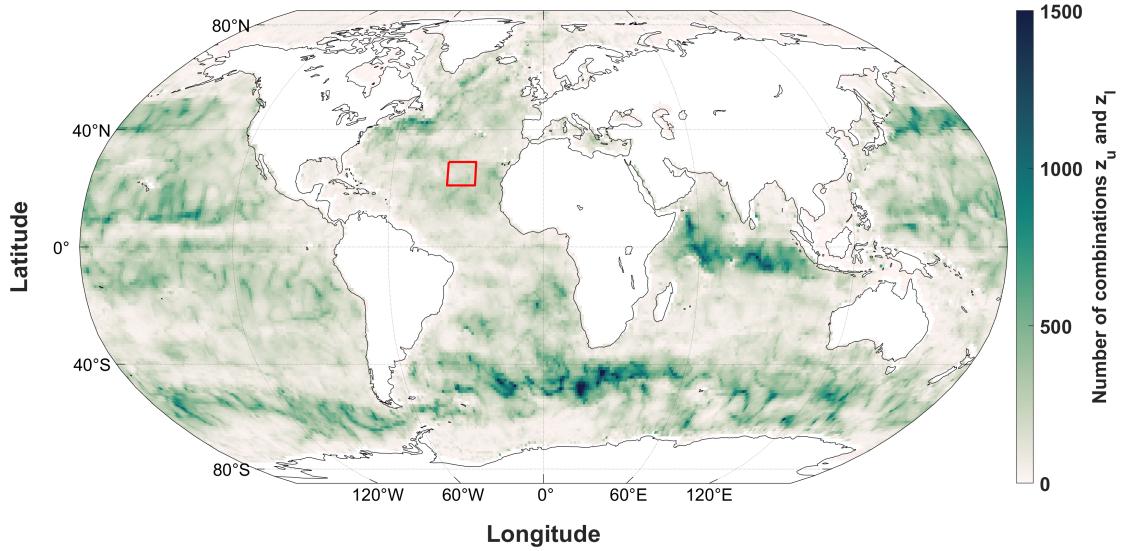
240 the condition as 'pairs'. As air-sea fluxes are not (yet) included in the WMT equation (see also
241 Appendix A), we only consider pairs that start below 300m depth, as this is below the maximum
242 mixed layer depth in the area and below any incoming shortwave radiation (Groeskamp and Iudicone
243 2018). The incoming shortwave radiation can lead to significant watermass transformation rates
244 not accounted for in Eq. 9.

245 The total depth integrated number of pairs for each gridpoint of WOA, that meet the criterium
246 $\Delta\tau < 0.0075 \text{ rad}$, shows strong regional variation (Fig. 1). Note that this is before any selection
247 is performed. In the study region (indicated by the red box) there is a relatively low number of
248 suitable pairs when compared to some other areas around the world (e.g. the Southern Ocean). Yet,
249 even within this small area there is significant variation in the amount of pairs left after applying
250 the signal-to-noise criteria (Fig. 2).

251 For one gridpoint in the study area (marked with the red \times in Fig. 2), the used signal-to-noise
252 criteria were too strict (Section 4.c) and an insufficient number of pairs remained to obtain estimates
253 for K and D . Most of the pairs found in the study area are concentrated between 1000m and 2000m,
254 with especially limited number of pairs in the deeper parts of the watercolumn that remain after
255 the signal-to-noise criteria (Fig.3). Even though the pairs are not evenly distributed over depth,
256 the used structure functions (Section 2.d), link different pairs over the whole water column. That
257 is, each pair will contribute to find the unknown diffusivity such that even for a low amount of
258 pairs, or with an uneven vertical distribution, there will still be a full depth estimate of $K^{\text{est}}(z)$ and
259 $D^{\text{est}}(z)$.

266 *b. Applying structure functions to the equations*

267 Equation (10) can be written for a large number of combinations of z_u and z_l , that meet the criteria
268 $\tau(z_u) = \tau(z_l)$. All these equations can be combined to a system of equations of the form $\mathbf{A} \mathbf{x} = \mathbf{b}$.
269 Here, \mathbf{A} is a $N \times M$ matrix, with N being the number of combinations of an upper and lower depth,
270 for which $\tau_u - \tau_l < 0.0075$. And M is the number of unknowns, which in this application is only
271 K^{inv} and D^{inv} . Here \mathbf{x} is a $M \times 1$ vector, containing the M unknown diffusivities. Finally, \mathbf{b} is a
272 $N \times 1$ vector containing the rhs of Equation (10) for each equation. Because $\tau(z_u) = \tau(z_l)$, the
273 term containing the reference velocity thus drops out.



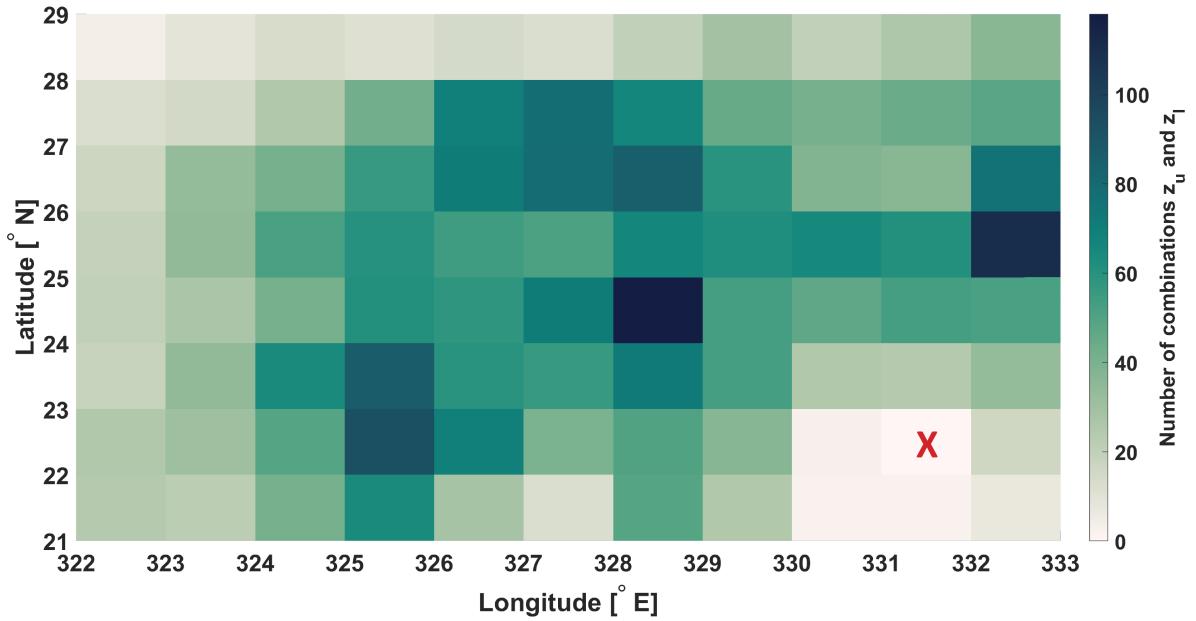
260 FIG. 1. Global distribution for the number of possible combinations between z_u and z_l , before any reduction
 261 based on signal-to-noise or other criteria. The study area of this paper is marked by the red box.

274 For the structure functions we use the geographical map of Groeskamp et al. (2020) for K and
 275 De Lavergne et al. (2020) for D . For each vertical cast (on a x,y grid) these values are scaled
 276 with their maximum value and used as described in Equation (12) and now included in the factors
 277 multiplying the unknowns in the matrix \mathbf{A} .

278 *c. Signal to noise criteria*

279 Before carrying out the inversion on the system of equations that follows from finding the pairs,
 280 the number of equations is reduced. Reducing the number of equations is done in order to avoid
 281 having one or a few equations, with a relatively large error, disturbing the estimate provided by the
 282 method. For example, an estimate of the order of magnitude of the unknowns can be obtained by
 283 dividing the \mathbf{b} -term by the terms in the \mathbf{A} -matrix. That is $K \approx \mathbf{b}/\mathbf{A}_K$ and $D \approx \mathbf{b}/\mathbf{A}_D$. If this initial
 284 estimate of K or D is already many order of magnitude larger or smaller than what can be expected
 285 for this area, we can conclude that the signal to noise ratio for this pair is too large. That is, if \mathbf{A} is
 286 too small compared to \mathbf{b} , it holds no information and will only lead to noise.

287 To determine if an equation contains too much noise, we make use of existing estimates of
 288 mixing, i.e. we use the structure functions. The structure functions provide a reasonable estimate



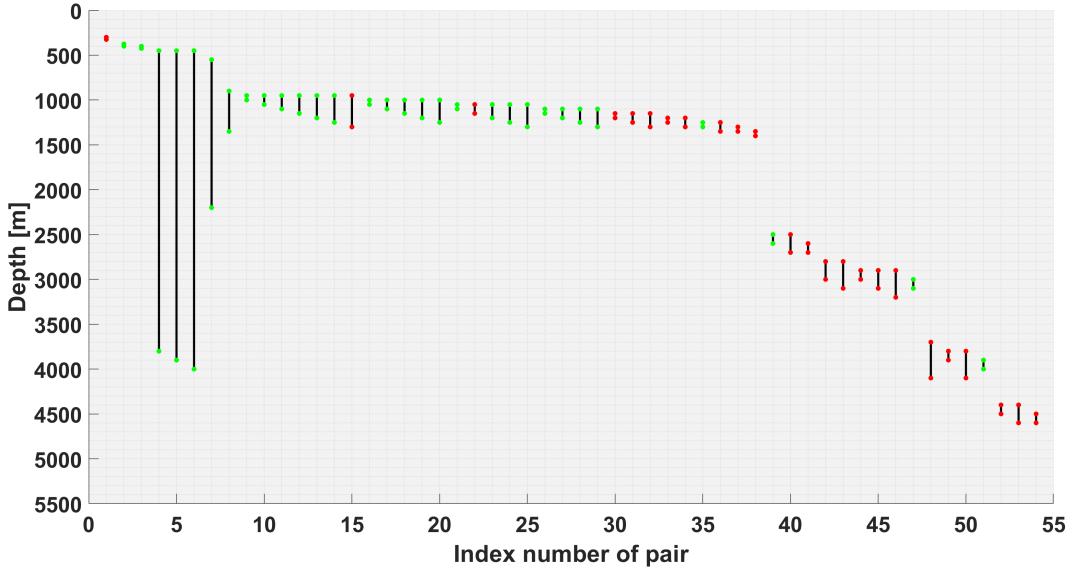
262 FIG. 2. The number of available pairs in the study area, after reduction based on the signal-to-noise criteria.
 263 For the red cross, insufficient pairs remain.

	D	K
Lower limit	$\max(1e^{-6}, D_{max}/10)$	$\max(25, K_{max}/10)$
Upper limit	$\min(5e^{-3}, 10 \cdot D_{max})$	$\min(5000, 10 \cdot K_{max})$

TABLE 1. The used lower and upper limits for the signal to noise criteria.

289 of the expected magnitude of K and D in this area. Although the actual K and D are unknown,
 290 these estimates can be used as a guideline. Hence, we use the maximum value from the structure
 291 function and assume that these are within a factor 10 of the actual K and the actual D . We also
 292 set minimum values under which we don't expect to be able to distinguish our results from zero.
 293 When the signal to noise value exceeds these boundaries (Table 1), we remove the equations.

294 Second, when either both terms in the A matrix are positive and the b term is negative, or vice
 295 versa, when both terms in the A matrix are negative and the b term is positive, it means that at least
 296 K or D , but possibly both, need to be negative. As the SIM is applied to annual-mean data, we
 297 assume that negative diffusivities are not physically realistic over such large timescales and remove
 298 related equations. Hence in these situations the data quality or the assumptions in the derivation,
 299 lead to an unphysical situation.



264 FIG. 3. Distribution of the pairs over the water column for a location in the study area. Pairs with red endpoints
 265 will be removed by the signal to noise criteria, pairs with green endpoints remain and are used for the inversion.

300 *d. Solving for the unknowns*

301 The data products used for estimating the diffusivities contain inaccuracies. Hence, for each
 302 equation there is equation error to minimize. Adding this to the system of equations ($\mathbf{A} \mathbf{x} = \mathbf{b}$) adds
 303 N values to minimize, to the M unknown variables to estimate. There are only N equations in the
 304 system, so the system is per definition underdetermined. An underdetermined system has infinite
 305 solutions (Wunsch 1978). Finding the solution can be done by minimizing χ^2 , which is the sum of
 306 the equation errors and the solution error. It also provides a way of obtaining an error or sensitivity
 307 estimate of the solution. Here χ^2 is given by (McIntosh and Rintoul 1997; Menke 2018),

$$\chi^2 = (\mathbf{x} - \mathbf{x}_0)^T \mathbf{W}_c^{-2} (\mathbf{x} - \mathbf{x}_0) + \mathbf{e}^T \mathbf{W}_r^{-2} \mathbf{e}. \quad (13)$$

308 \mathbf{x}_0 is an initial estimate for the unknowns, and the error \mathbf{e} can be written as $\mathbf{e} = \mathbf{Ax} - \mathbf{b}$. A solution
 309 for \mathbf{x} is found by minimizing χ^2 :

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{W}_c^2 \mathbf{A}^T \left(\mathbf{A} \mathbf{W}_c^2 \mathbf{A}^T + \mathbf{W}_r^{-2} \right)^{-1} (\mathbf{b} - \mathbf{A} \mathbf{x}_0) \quad (14)$$

310 Here, \mathbf{W}_c and \mathbf{W}_r are the column and row weighting matrices. These matrices are diagonal with
 311 elements σ_x and $1/\sigma_e$. With that, Equation (14) can be rewritten to,

$$\begin{aligned}\chi^2 &= \chi_x^2 + \chi_e^2 \\ &= \sum_{m=1}^M \frac{(x_m - x_{0,m})^2}{\sigma_{x_m}^2} + \sum_{n=1}^N \frac{e_n^2}{\sigma_{e_n}^2}\end{aligned}\quad (15)$$

312 Equation (14) gives an estimate of \mathbf{x} and an estimate of the random error in this estimate can be
 313 found using the posterior covariance matrix.

$$\mathbf{C}_p = \mathbf{W}_c^2 - \mathbf{W}_c^2 \mathbf{A}^T (\mathbf{A} \mathbf{W}_c^2 \mathbf{A}^T + \mathbf{W}_r^{-2})^{-1} \mathbf{A} \mathbf{W}_c^2 \quad (16)$$

314 The standard deviation of the estimates can then be obtained by taking the square root of the
 315 diagonal elements of the matrix \mathbf{C}_p (McIntosh and Rintoul 1997).

316 *e. Sensitivity analysis*

317 The standard deviation of the estimates obtained from the posterior covariance matrix \mathbf{C}_p is a
 318 statistical interpretation of the uncertainty of the method. However, this standard deviation may
 319 be physically unrealistic at the same time, and not fairly represent the sensitivity of the different
 320 variables that are subject to the modellers choices. This is especially the case when prior statistics
 321 are not well known (Groeskamp et al. 2014). We will follow the method used by Groeskamp et al.
 322 (2014) to obtain a physically realistic uncertainty estimate. We will vary the elements of the vector
 323 \mathbf{x}_0 (with elements D_0 and K_0 , the initial guesses for D and K), σ_x (for both D and K) and σ_e . σ_x
 324 is our best guess for the error between \mathbf{x}_0 and \mathbf{x} . σ_e is our best guess for the equation error. We
 325 will vary each of these five variables over a range of values which we deem realistic and could all
 326 provide an equally true answer. These values are shown in Table 2.

327 By calculating χ_e^2 and χ_x^2 for all combinations of these five varying variables and selecting those
 328 for which $\chi_e^2 \approx N$ and $\chi_x^2 \approx M$, and for which the estimate for both K and D is positive (the influence
 329 of this constraint is analysed in App. C), we avoid fitting the final estimate to either the equations
 330 or to \mathbf{x}_0 . This is done by taking the values for which,

Variable	Values
D_0	$D_{\max}^{\text{struc}} \cdot h_1$, with $\begin{cases} h_1 \in [0.1, 0.9], \Delta h_1 = 0.1 \\ h_1 \in [1, 10], \Delta h_1 = 1 \end{cases}$
K_0	$K_{\max}^{\text{struc}} \cdot h_2$, with $\begin{cases} h_2 \in [0.2, 0.8], \Delta h_2 = 0.2 \\ h_2 \in [1, 5], \Delta h_2 = 1 \end{cases}$
$\sigma_{x,D}$	$D_0 \cdot h_3$, with $\{h_3 \in [1, 10], \Delta h_3 = 1\}$
$\sigma_{x,K}$	$K_0 \cdot h_4$, with $\{h_4 \in [1, 10], \Delta h_4 = 1\}$
σ_e	$ \overline{e_0} \cdot h_5$, with $\begin{cases} h_5 \in [0.1, 1], \Delta h_5 = 0.1 \\ h_5 \in [1.5, 5], \Delta h_5 = 0.5 \\ h_5 \in [6, 10], \Delta h_5 = 1 \end{cases}$

327 TABLE 2. Used range of values for the variables used as sensitivity analysis. With $e_0 = \mathbf{b} - \mathbf{Ax}_0$. Note that
 328 after defining a-priori estimates of D_0 and K_0 , the tested range for $\sigma_{x,D}$ and $\sigma_{x,K}$ are a function of this choice.
 329 The interval-width used to define D_0 , K_0 and the σ -values are chosen such that the covered ranges (e.g. 0.1-1,
 330 or 1-10) all have approximately equal importance in the solution space.

$$\frac{N}{5} \leq \chi_e^2 \leq 5N \quad \text{and} \quad \frac{M}{5} \leq \chi_x^2 \leq 5M \quad (17)$$

335 Following this procedure leads to a set of values of K and D that are physically realistic.
 336 The values for K^{inv} and D^{inv} are taken to be the median of this set. In Figures 6 and 7, the
 337 variation in estimates by this sensitivity analysis is marked by the 25th and 75th percentile values.
 338 Respectively, the range spanned by the 25th and 75th percentiles (average over the study area) is
 339 between 782 [m^2/s] and 1026 [m^2/s] for K^{inv} , and 9.8×10^{-5} [m^2/s] and 3.5×10^{-4} [m^2/s] for
 340 D^{inv} . Whereas the standard deviation provided by the posterior covariance method gives an average
 341 uncertainty of ± 1.5 [m^2/s] for K^{inv} and $\pm 5 \times 10^{-7}$ [m^2/s] for D^{inv} .

342 As a test, we also solve the system using the formally overdetermined problem $\mathbf{A} \mathbf{x} = \mathbf{b}$, without
 343 the addition of weights and prior estimates of x . The results are found to be close to the estimates
 344 from our method described in section 4, though the over-determined problem does occasionally find
 345 negative estimates (Table 3). As outlined above, the negative results are considered mathematically
 346 valid, though not physically realistic.

347 The general agreement between the results give confidence that overall the theoretical model
 348 works, while the occasional negative results argue for guiding the inverse method to obtain the
 349 physically realistic estimates (e.g., by varying \mathbf{x}_0 , and the row and column weights) of the solution
 350 space. We will further discuss the results of the study area in Section 5.

Location	Estimates D (All values $\times 10^{-4}$)				Estimates K			
	25 th percentile	Median	75 th percentile	A\b	25 th percentile	Median	75 th percentile	A\b
(330E, 27N)	2,46	3,32	3,69	3,67	1062	1152	1194	1192
(324E, 24N)	1,20	1,61	1,79	1,63	949	994	1011	997
(333E, 22N)	0,12	0,31	0,47	0,44	1224	1530	1897	1389
(331E, 23N)	0,06	0,16	0,50	-2,29	1199	1915	2890	-600
(332E, 27N)	0,47	1,17	2,20	-3,19	657	679	711	558

351 TABLE 3. Estimates for 5 random locations in the study area as shown by the median value and 25th/75th
 352 percentile values and the estimates obtained by solving the formally overdetermined problem A\b.

353 5. Results - Application of the SIM to a region in the Northern Atlantic

354 Following the steps as outlined in Section 4, results in an estimate for K^{inv} and D^{inv} through
 355 performing an inversion for each gridpoint in the study area. As outlined, the values presented for
 356 K^{inv} and D^{inv} are the median values found in the sensitivity analysis. The averaged (over the study
 357 area) median values are 917 [m^2/s] for K^{inv} (full range of the sensitivity study is 0–8101 [m^2/s])
 358 and 2×10^{-4} [m^2/s] for D^{inv} (full range of the sensitivity study is $5.9 \times 10^{-11} – 1 \times 10^{-2}$ [m^2/s]).
 359 Note that the full range gives the ends of a narrow, longtailed distribution.

360 We find that K^{inv} shows a larger spread and a different spatial distribution than K_{\max}^{struc} (Fig. 4).
 361 The maximum value for K^{inv} is with a value of 2239 [m^2/s] about a factor three larger than the
 362 maximum value for the structure function (1194 [m^2/s]) in this study area. Though the maximum
 363 for K^{inv} might be considered an outlier, it is not an unrealistic high value. For D (Fig. 5), the
 364 spread of the values for D^{inv} is about the same order of magnitude when compared to the values
 365 for D_{\max}^{struc} . A different spatial distribution can be observed in the figure. Note that an exact match
 366 with the structure functions, both in magnitude and spatial distribution, is not required. Instead,
 367 the SIM indicates that, when we look at the balance of Eq. (10), which includes both K and
 368 D , this is only possible to fullfill when both the values of K and D are altered a bit compared
 369 to the original structure functions as shown in Eq. (12). The structure functions themselves are
 370 independent estimates of K and D , not accounting for any such balance. The estimates for K are
 371 generally within a factor 2 or 3 from the original structure function. Which is arguably also within
 372 the range of uncertainty that such estimates currently have. A similar argument could be made for
 373 estimates of D that are mostly within an order of magnitude from the original structure function.
 374 Even the best estimates of D (e.g., from a vertical microstructure profiler) are only accurate within

375 a factor 2 at most (Oakey 1982). In Figure 6 we explore in more detail the accuracy of the inverse
376 estimates and the difference with the structure function. We find that the inverse estimates of K
377 (with uncertainty estimate from the χ -criteria of Section (4)) tend to be at most a factor 4 different
378 from the structure function, while mainly staying within a factor 3. For D , the values for both
379 D_{\max}^{struc} and D^{inv} range from $10^{-5} - 10^{-3}$ [m^2/s], which are common values for the dianeutral mixing
380 coefficient. Most estimates fall within a factor 5 from the corresponding values for D_{\max}^{struc} . And even
381 with the uncertainty estimate provided based upon the χ -criteria from Section (4), the estimates
382 are well within the range of what can be considered acceptable.

383 The results indicate that for estimates of D^{inv} , a larger maximum value of the structure function,
384 also provides a larger estimate of D^{inv} , while this is not the case for estimates of K^{inv} . Especially
385 for lower values of K_{\max}^{struc} , there is a large spread in values of K^{inv} . Fig. 4a shows that these values
386 can mostly be found on the northern side of the study area. Fig. 2 shows that these are also the
387 casts for which only a limited number of equations remain after the signal to noise criteria. This
388 indicates that with a lower number of equations the results are possibly more sensitive to noise, or
389 that the pairs in this region themselves contain more noise.

390 The SIM and the two structure functions are three ways to obtain estimates, that all have their own
391 assumptions and limitations. The fact the estimates for K and D are close to those of the structure
392 functions indicates that the SIM has skill to estimate diffusion coefficients from observations and
393 can help to constrain mixing parameterization theories with observations. Note that the influence
394 of using different structure functions (see App. D) shows that, even though the shape is retained by
395 construction, the magnitude can vary strongly if required by the balance that we are estimating. We
396 conclude that while the selection of the structure function has influence on the final solution, the
397 additional constraints of the SIM provide new information that can improve the existing estimates
398 of K and D .

402 6. Comparing to different studies

403 After averaging all profiles of $K^{\text{est}}(z)$ and $D^{\text{est}}(z)$ (see Eq. (11)) over the study area, we can
404 compare it against other studies (Fig. 7). We find that the SIM compares well against diffusivities
405 obtained from direct observations (in black) or indirect estimates (in color).

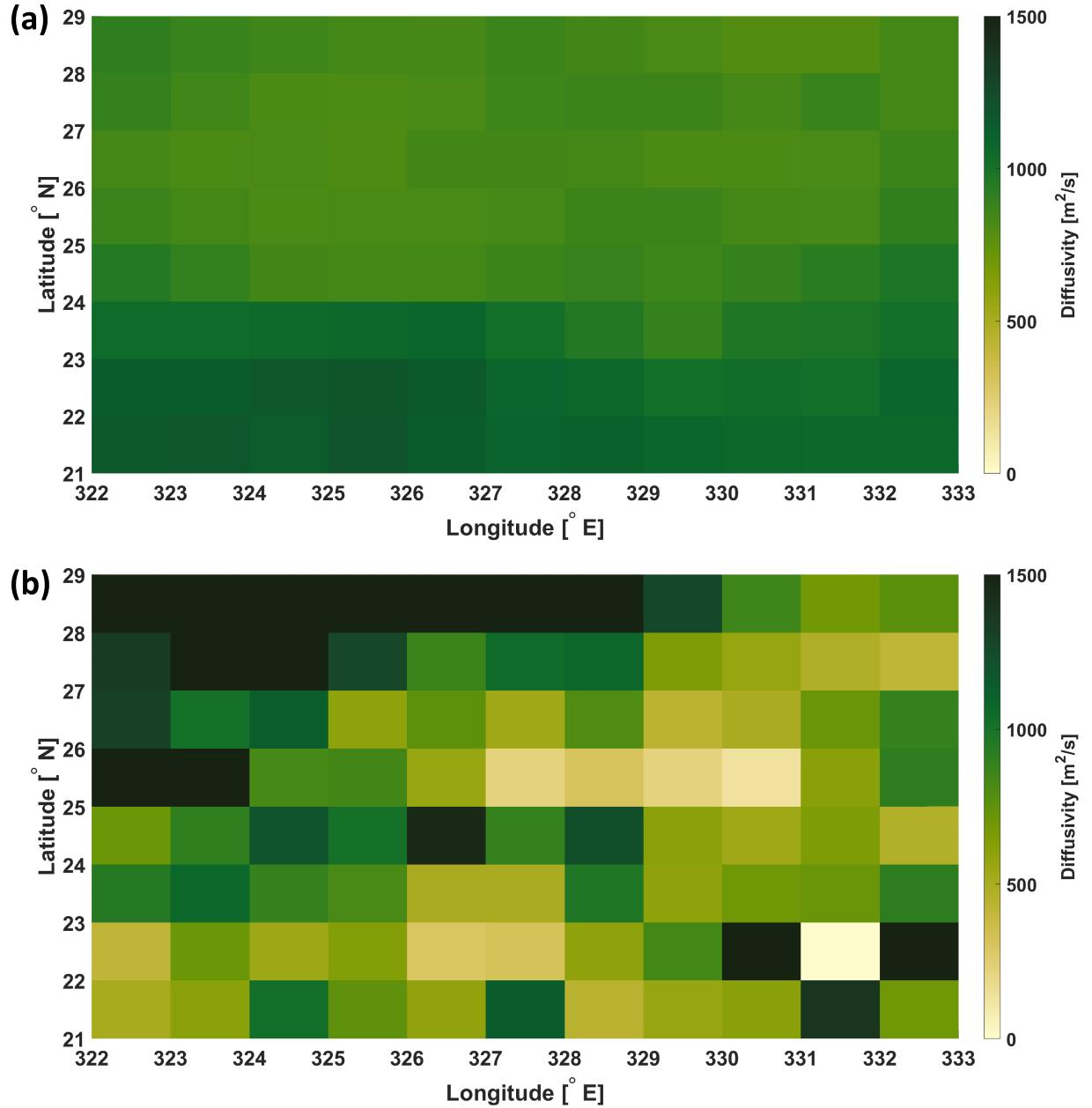


FIG. 4. The values for (a) K_{\max}^{struc} and (b) K^{inv} in the study area.

406 The dianeutral diffusivity D (Fig. 7, (a)), overlaps with both previous estimates as well as direct
 407 observations, even though the median is on the larger end of other estimates. Especially when
 408 including the uncertainty range of the SIM (red background shading, which is somewhat distorted
 409 due to the logarithmic scaling). The direct observations consist of microstructure profiles (Toole

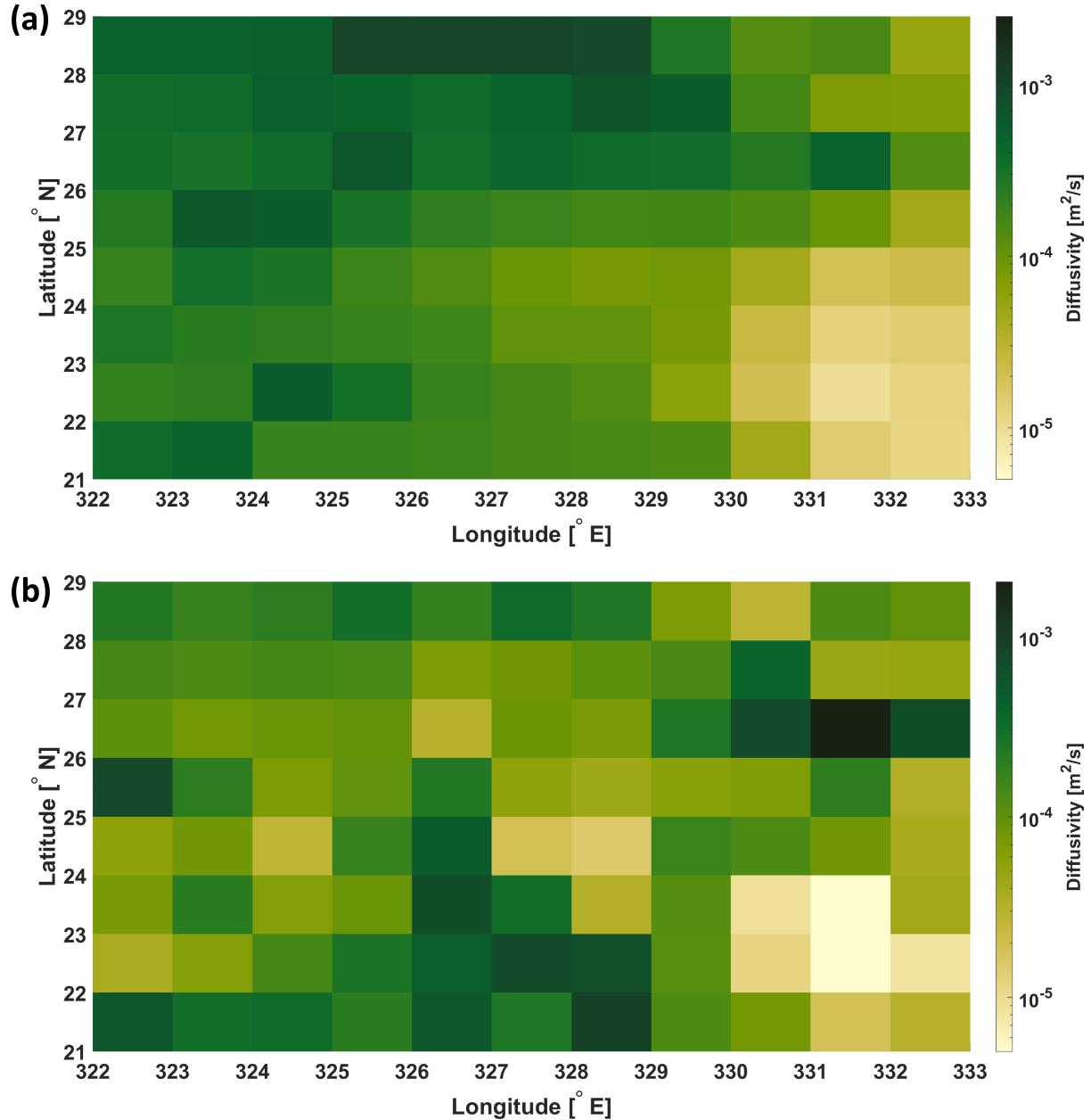
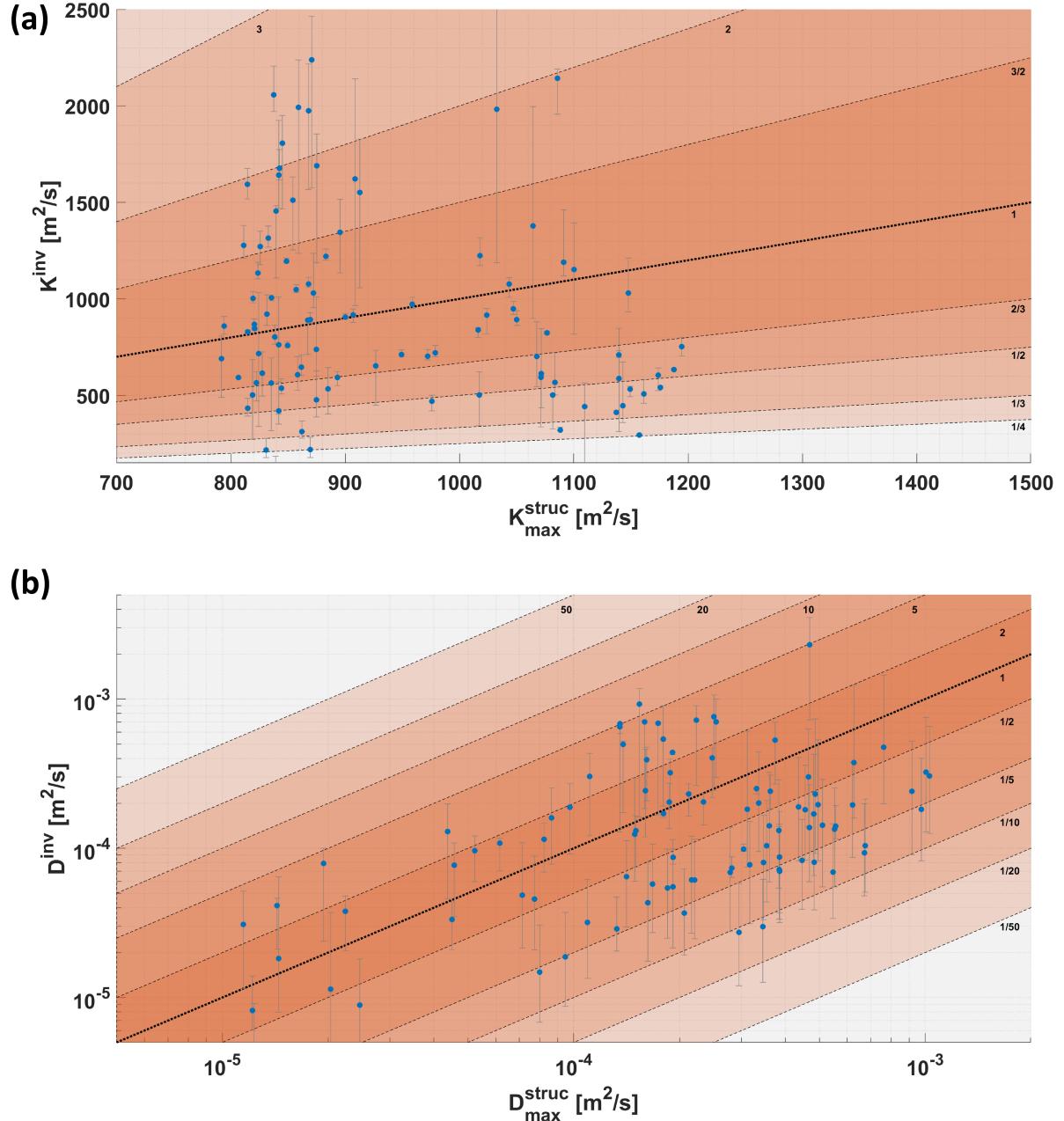


FIG. 5. The values for (a) D_{\max}^{struc} and (b) D^{inv} in the study area.

et al. 1994) and the vertical spread of a released tracer (Ledwell et al. 1998). The indirect estimates are the Tracer Contour Inverse Method (Zika et al. 2010b), estimates based on internal wave energy (De Lavergne et al. 2020) (upon which the structure function is based), and based upon the application of the finescale parameterization to Argo data (Whalen et al. 2018). The uncertainty



399 FIG. 6. The inverse estimates (blue dots) for (a) K^{inv} and (b) D^{inv} plotted against the value of the used structure
400 functions. The orange shading represents the ratio between estimated value and the value of the structure function.
401 Gray lines mark the uncertainty of the estimate, given by the 25th and 75th percentiles.

414 range provided by the SIM compares well to the variability as shown by the microstructure data
415 (e.g, between 2700 and 3000 meters depth). Note that for all these studies, the timescales over

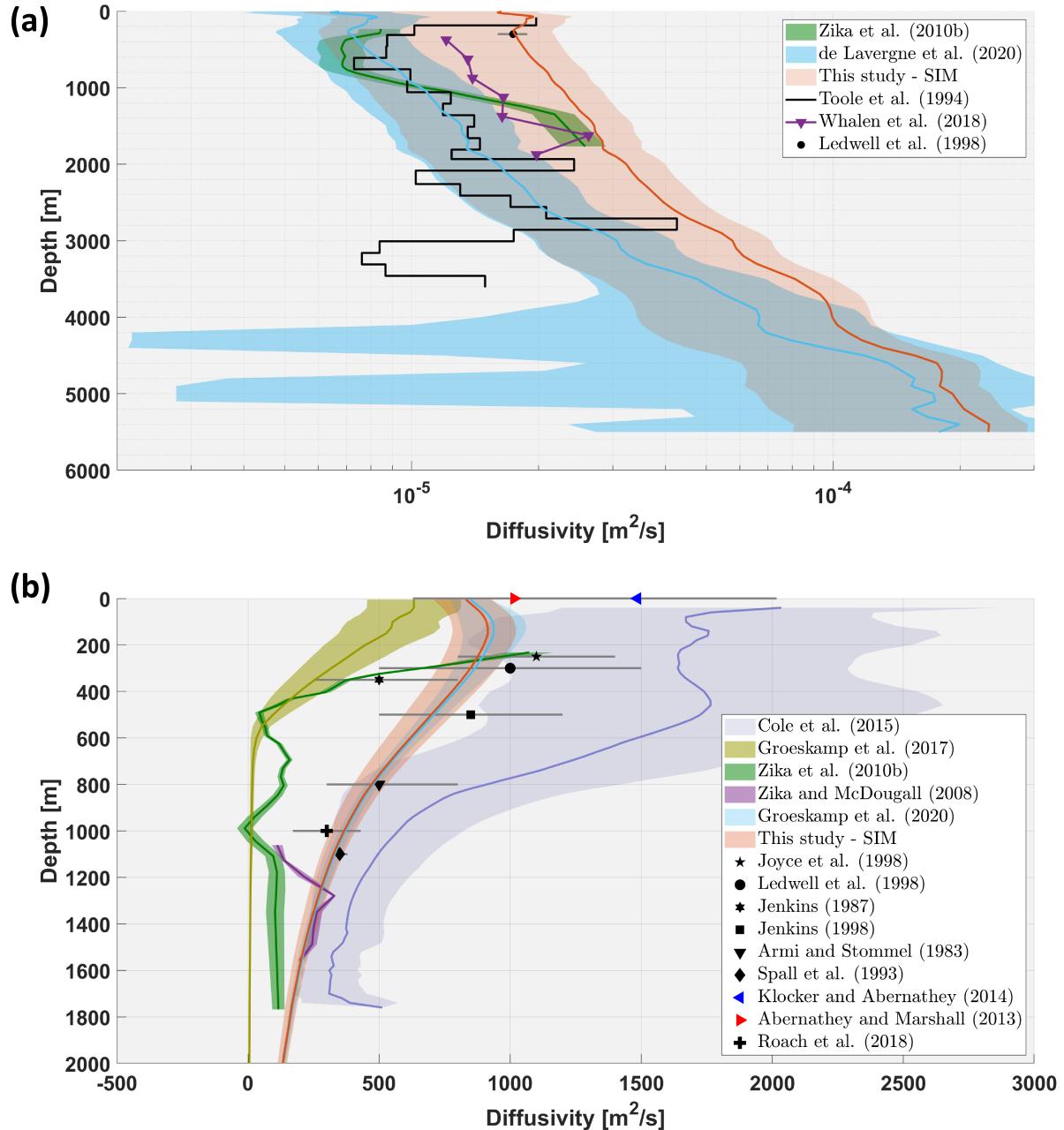
416 which these small-scale mixing measurements are taken, or estimates are made, vary largely. For
417 example, the microstructure measurements provide an instantaneous observation, while the tracer
418 experiment is an average over many months.

419 The average profile of the isoneutral diffusivity K compares well with the available direct
420 observations (in black), and does not differ much from the structure function used. The estimate
421 provided by Cole et al. (2015), seems to be overestimating the diffusivity in this region, while
422 the inverse estimates of Thermohaline Inverse Method (THIM) of Groeskamp et al. (2017) and
423 Tracer Contour Inverse Method (TCIM) of Zika et al. (2010b) are underestimates compared to
424 the observations. One possible explanation for the difference between these methods, is the scale
425 or region that is considered. The THIM is a global estimate, while the TCIM provides regional
426 estimates. Instead, the SIM provides a balance that obtains quasi-local estimates of the diffusivities
427 for scales larger than the Rossby radius (due to the use of the geostrophic balance). Also note that
428 when different structure functions are used (App. D), the SIM does find different estimates. For
429 example, with the study of Cole et al. (2015) as structure function, the SIM lowers the estimate
430 compared to the structure function. This shows that the SIM is capable of finding a physically
431 realistic estimate and is not restricted too much to the original magnitude of the structure functions.

440 7. Discussion and conclusions

441 We here introduced the Spiralling Inverse Method, a new inverse method for estimating the
442 isoneutral and dianeutral mixing coefficients K and D , respectively. It does so by relating the wa-
443 termass transformation equation to the thermal wind balance. It is the first inverse method designed
444 for estimating the mixing strength that does not require estimates of velocities or streamfunctions
445 of any kind. We here applied it to a small region in the North Atlantic to showcase its potential,
446 which is discussed below, together with the caveats.

447 The SIM was applied to the hydrographic data from WOA18. The observational data included
448 in WOA18 has been averaged horizontally, which introduced additional mixing in the results, as
449 opposed to averaging on neutral surfaces. For now, this will influence the results in an unknown
450 way. This additional mixing can be avoided by using neutrally averaged data when such data
451 products become available. In this application of the SIM, we have omitted equations from the
452 upper 300m, as the current form of the SIM does not include air-sea fluxes. Although this can be



432 FIG. 7. Mean of the estimates of the SIM (in red) compared to other studies. Colored shadings mark the
 433 uncertainty of the corresponding study (colored solid lines). The uncertainty of the SIM is given by the average
 434 of 25th and 75th percentiles. With (a) the diapycnal estimate compared to (in black) direct observations (Toole
 435 et al. 1994; Ledwell et al. 1998) and (in color) indirect estimates (Zika et al. 2010b; De Lavergne et al. 2020;
 436 Whalen et al. 2018), and (b) the isopycnal estimate compared to (in black) direct observations (Joyce et al. 1998;
 437 Ledwell et al. 1998; Jenkins 1987, 1998; Armi and Stommel 1983; Spall et al. 1993; Roach et al. 2018) and (in
 438 color) indirect estimates (Cole et al. 2015; Groeskamp et al. 2017; Zika et al. 2010b; Zika and McDougall 2008;
 439 Groeskamp et al. 2020; Klocker and Abernathey 2014, ²⁴Abernathey and Marshall 2013).
 440

453 added in both the theory (see App. A) and the data, air-sea fluxes are known to cause large errors
454 in WMT estimates (Groeskamp and Iudicone 2018) and may not improve the results, even when
455 more equations are added as a result. Hence we choose to present the SIM without air-sea fluxes.

456 Although overlapping pairs of the SIM would contribute to provide multiple equations to estimate
457 the unknowns, many pairs do only overlap over small ranges of depths (Fig. 3). Consequently we
458 here used a structure function of the vertical shape of the diffusivities, which has the following
459 advantages:

- 460 • It connects all pairs to estimate fewer unknowns.
461 • It provides an estimate where pairs do not exist.
462 • It provides a-priori information.

463 The caveat is that the result has fewer degrees of freedom and is more pre-determined by the
464 chosen structure function. In future work, these structure functions can perhaps be less restrictive
465 by adding more degrees of freedom, such that the mixing estimates are more determined by the
466 data rather than the structure function. At the moment, the pairs that form the basis of the inversion
467 are found based upon two important criteria; the first is the accuracy with which we want to satisfy
468 the criterium $\tau_u - \tau_l \approx 0$, this was explored in App. B. It turns out that the SIM is not very sensitive
469 to this choice, though one needs to be careful by not making this too strict or wide. The second
470 criterion is related to the depth resolution at which the WOA-data is provided. When interpolating
471 WOA onto different depths, or using a different dataset it might be possible to find more and more
472 accurate pairs. More equations (information) could be obtained when more pairs are found with
473 an increased vertical resolution of the dataset or when the reference velocity is included. However,
474 that is with the caveat that the reference velocity might introduce another source of error.

475 The application of the SIM in this study, results in estimates of K and D that are within a realistic
476 range from other estimates and observations of these diffusivities. This provides confidence in
477 the potential for the SIM to be more widely used, possibly in combination with other inverse
478 estimates. This could result in global inverse estimates of mixing and potentially observational
479 based constraints for new and improved mixing parameterizations in (ocean) models. Thus reducing
480 the uncertainty associated with the parameterizations and model outcomes.

481 *Acknowledgments.* This publication is supported by the project "Measuring the immeasurable:
 482 mapping of ocean mixing" with project number OCENW.M20.196 of the research programme Open
 483 Competition Domain Science (ENW) which is financed by the Dutch Research Council (NWO).
 484 This publication is supported by the project "The intermittency of large-scale ocean mixing" with
 485 project number 2020.3 financed by the Utrecht University and NIOZ research collaboration fund.
 486 T. McD gratefully acknowledges support from the Australian Research Council through grant
 487 FL150100090.

488 The authors thank two anonymous reviewers whose comments helped improve the manuscript.

489 *Data availability statement.* World Ocean Atlas data can be downloaded from <https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/>

491 The mixing estimates presented in this manuscript are available as DOI:10.25850/nioz/7b.b.gh.

492 **APPENDIX A**

493 **Watermass Transformation Equation**

494 Here we derive the Water Mass Transformation equation as it is used in Section 2. The starting
 495 point are the conservation equations for Conservative Temperature Θ and Absolute Salinity S_A (see
 496 e.g. (IOC et al. 2010; McDougall 1984)).

$$\hat{\Theta}_{t|n} + \hat{\mathbf{v}} \cdot \nabla_n \hat{\Theta} + \tilde{e} \hat{\Theta}_z = \tilde{\gamma}_z \nabla_n \cdot \left(\tilde{\gamma}_z^{-1} K \nabla_n \hat{\Theta} \right) + \left(D \hat{\Theta}_z \right)_z \quad (A1a)$$

$$\hat{S}_{At|n} + \hat{\mathbf{v}} \cdot \nabla_n \hat{S}_A + \tilde{e} \hat{S}_{Az} = \tilde{\gamma}_z \nabla_n \cdot \left(\tilde{\gamma}_z^{-1} K \nabla_n \hat{S}_A \right) + \left(D \hat{S}_{Az} \right)_z + \hat{S}^{SA} \quad (A1b)$$

497 $\hat{\Theta}$ and \hat{S}_A are thickness-averaged Conservative Temperature and Absolute Salinity (the thickness-
 498 averaging being marked by the $\hat{\cdot}$) and $\hat{\mathbf{v}}$ is the thickness-weighted velocity. \tilde{e} is the dianeutral velocity
 499 temporally averaged on a neutral surface (the temporal average being marked by the $\tilde{\cdot}$). Because
 500 unresolved motions in ocean models are assumed to move along locally referenced potential
 501 density surfaces, the temperature and salinity variables in ocean models are best interpreted as
 502 being the thickness-weighted averages where the averaging is done between pairs of locally defined
 503 potential density surfaces (McDougall and McIntosh 2001), with the thickness between successive
 504 surfaces being part of the averaging procedure. The last term in the conservation equation for

505 Absolute Salinity \hat{S}_A is an additional source term because Absolute Salinity is not completely
 506 conserved (IOC et al. 2010). For our purposes this term is negligible since the isoneutral gradient
 507 of the difference between Absolute Salinity and Preformed Salinity is less than a percent of the
 508 isoneutral gradient of Absolute Salinity (Pawlowicz et al. 2012; IOC et al. 2010). This implies
 509 that the diffusivities (either K or D) that are needed to balance these isoneutral gradients would be
 510 different by less than one percent. The vertical gradients of the difference between these salinity
 511 variables is also very small, particular in the North Atlantic.

512 In this current derivation of the watermass transformation equation air-sea fluxes have not been
 513 included. At the sea surface the air-sea heat (Groeskamp and Iudicone 2018) and salt fluxes (Nurser
 514 and Griffies 2019) take the place of the parameterized diapycnal mixing terms in Eqs. (A1a) and
 515 (A1b) (IOC et al. 2010). Including air-sea fluxes in the SIM is left for future work.

516 Multiplying Equation (A1a) with the thermal expansion coefficient α and Equation (A1b) with
 517 the saline contraction coefficient β , followed by subtracting Equation (A1b) from Equation (A1a)
 518 results in,

$$\underbrace{\alpha\hat{\Theta}_t|_n - \beta\hat{S}_{At}|_n}_{=0} + \hat{\mathbf{v}} \underbrace{(\alpha\nabla_n\hat{\Theta} - \beta\nabla_n\hat{S}_A)}_{=0} + \tilde{e} \underbrace{(\alpha\hat{\Theta}_z - \beta\hat{S}_{Az})}_{=g^{-1}N^2} = \alpha\tilde{\gamma}_z\nabla_n \cdot (\tilde{\gamma}_z^{-1}K\nabla_n\hat{\Theta}) - \beta\tilde{\gamma}_z\nabla_n \cdot (\tilde{\gamma}_z^{-1}K\nabla_n\hat{S}_A) + \alpha(D\hat{\Theta}_z)_z - \beta(D\hat{S}_{Az})_z - \beta\hat{S}^{S_A}. \quad (A2)$$

519 Note that on a neutral plane the following relations hold: $\alpha\nabla_n\hat{\Theta} - \beta\nabla_n\hat{S}_A = 0$ and $\alpha\hat{\Theta}_t|_n - \beta\hat{S}_{At}|_n =$
 520 0 (McDougall 1987a), and the definition of the buoyancy frequency: $g^{-1}N^2 = (\alpha\Theta_z - \beta S_{Az})$
 521 (McDougall 1987a). These reduce the equation above to an expression for the dianeutral velocity;

$$\tilde{e}g^{-1}N^2 = \alpha\tilde{\gamma}_z\nabla_n \cdot (\tilde{\gamma}_z^{-1}K\nabla_n\hat{\Theta}) - \beta\tilde{\gamma}_z\nabla_n \cdot (\tilde{\gamma}_z^{-1}K\nabla_n\hat{S}_A) + \alpha(D\hat{\Theta}_z)_z - \beta(D\hat{S}_{Az})_z - \beta\hat{S}^{S_A} \quad (A3)$$

522 We use the following definitions for the cabbeling and thermobaricity parameters (IOC et al.
 523 2010),

$$C_b = \frac{\partial \alpha}{\partial \hat{\Theta}} \Big|_{\hat{S}_A, p} + 2 \frac{\alpha}{\beta} \frac{\partial \alpha}{\partial \hat{S}_A} \Big|_{\hat{\Theta}, p} - \left(\frac{\alpha}{\beta} \right)^2 \frac{\partial \beta}{\partial \hat{S}_A} \Big|_{\hat{\Theta}, p} \quad (\text{A4a})$$

$$\text{and } T_b = \frac{\partial \alpha}{\partial P} \Big|_{\hat{S}_A, \hat{\Theta}} - \frac{\alpha}{\beta} \frac{\partial \beta}{\partial P} \Big|_{\hat{S}_A, \hat{\Theta}} \quad (\text{A4b})$$

524 and combine these with Equation (A3), to obtain,

$$\tilde{e}g^{-1}N^2 = -K \left(C_b \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b \nabla_n \hat{\Theta} \cdot \nabla_n P \right) + \alpha (D \hat{\Theta}_z)_z - \beta (D \hat{S}_{A_z})_z - \beta \hat{S}^{S_A} \quad (\text{A5})$$

525 Rewriting Equation (A5) results in,

$$(\tilde{e} - D_z) g^{-1} N^2 = -K \left(C_b \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b \nabla_n \hat{\Theta} \cdot \nabla_n P \right) + D \left(\alpha \hat{\Theta}_{zz} - \beta \hat{S}_{Azz} \right) - \beta \hat{S}^{S_A} \quad (\text{A6})$$

526 Substituting Equation (A6) into Equation (A1a), and reordering the terms gives,

$$\begin{aligned} \hat{\Theta}_{t|n} + \hat{\mathbf{v}} \cdot \nabla_n \hat{\Theta} &= \tilde{\gamma}_z \nabla_n \cdot \left(\tilde{\gamma}_z^{-1} K \nabla_n \hat{\Theta} \right) + K g N^{-2} \hat{\Theta}_z \left(C_b \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b \nabla_n \hat{\Theta} \cdot \nabla_n P \right) \\ &\quad - D g N^{-2} \hat{\Theta}_z \left(\alpha \hat{\Theta}_{zz} - \beta \hat{S}_{Azz} \right) + D \hat{\Theta}_{zz} + \frac{\beta}{\alpha} \frac{R}{R-1} \hat{S}^{S_A}, \end{aligned} \quad (\text{A7})$$

527 where $R = \frac{\alpha \hat{\Theta}_z}{\beta \hat{S}_{A_z}}$.

528 The two diapycnal mixing terms in the equation above can be merged to get either

$$\begin{aligned} -D g N^{-2} \hat{\Theta}_z \left(\alpha \hat{\Theta}_{zz} - \beta \hat{S}_{Azz} \right) + D \hat{\Theta}_{zz} &= D \beta g N^{-2} \hat{\Theta}_z^3 \frac{d^2 \hat{S}_A}{d \hat{\Theta}^2} \\ &= D \beta g N^{-2} \left(\hat{\Theta}_z \hat{S}_{Azz} - \hat{S}_{A_z} \hat{\Theta}_{zz} \right) \end{aligned} \quad (\text{A8})$$

529 With the assumption of a steady state, the first term of Equation (A7) $\hat{\Theta}_{t|n}$ can be ignored. The
 530 last term on the rhs. in (A7), which reflects that Absolute Salinity is not conserved, is small and
 531 will be ignored (IOC et al. 2010). This results in,

$$\hat{\mathbf{v}} \cdot \nabla_n \hat{\Theta} = \tilde{\gamma}_z \nabla_n \cdot \left(\tilde{\gamma}_z^{-1} K \nabla_n \hat{\Theta} \right) + K g N^{-2} \hat{\Theta}_z \left(C_b \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b \nabla_n \hat{\Theta} \cdot \nabla_n P \right) + D \beta g N^{-2} \left(\hat{\Theta}_z \hat{S}_{Azz} - \hat{S}_{Az} \hat{\Theta}_{zz} \right). \quad (\text{A9})$$

Now the thickness-weighted mean horizontal velocity $\hat{\mathbf{v}}$ will be replaced in favour of the Eulerian-mean horizontal velocity. When this is done, the thickness-weighted mean horizontal velocity $\hat{\mathbf{v}}$ is decomposed into the Eulerian-mean horizontal velocity and the quasi-Stokes horizontal velocity: $\hat{\mathbf{v}} = \bar{\mathbf{v}} + \mathbf{v}^+$. The quasi-Stokes velocity \mathbf{v}^+ can be parameterized by the vertical derivative of the quasi-Stokes streamfunction (McDougall and McIntosh 2001):

$$\mathbf{v}^+ = \Psi_z = \left(-\frac{\bar{v}' \bar{\gamma}'}{\bar{\gamma}_z} + \frac{\bar{v}_z}{\bar{\gamma}_z} \frac{\bar{\phi}}{\bar{\gamma}_z} \right)_z \quad (\text{A10})$$

In this equation, $\bar{\phi} \equiv \frac{1}{2} \overline{(\gamma')^2}$, is half the density variance at height z (McDougall and McIntosh 2001). The quasi-Stokes streamfunction can also be considered as the product of the eddy diffusivity (written as K_{GM}) and the neutral slope (Gent et al. 1995; Griffies 1998). For the definition of the neutral tangent plane we take $\mathbf{S} = (S_x, S_y) \equiv \nabla_n z = -\frac{\nabla_z \bar{\gamma}}{\bar{\gamma}_z}$.

$$\begin{aligned} \Psi_z &= \left(\frac{K_{GM} \nabla_z \bar{\gamma}}{\bar{\gamma}_z} \right)_z \\ &= (K_{GM})_z \mathbf{S} - K_{GM} \left(\frac{\partial \mathbf{S}}{\partial z} \right) \\ &= (K_{GM})_z \mathbf{S} - K_{GM} \nabla_n \log \bar{\gamma}_z^{-1} \end{aligned} \quad (\text{A11})$$

To get from the second line of Eq. (A11) to the third line, we can write the vertical derivative of the slope as $-S_z = \frac{(\nabla_z \bar{\gamma})_z}{\bar{\gamma}_z} - \frac{\bar{\gamma}_{zz}}{\bar{\gamma}_z} \frac{\nabla_z \bar{\gamma}}{\bar{\gamma}_z}$. This can be shown, in combination with Equation (10a) of McDougall et al. (2014), to be $\frac{(\nabla_z \bar{\gamma})_z}{\bar{\gamma}_z} - \frac{\bar{\gamma}_{zz}}{\bar{\gamma}_z} \frac{\nabla_z \bar{\gamma}}{\bar{\gamma}_z} = -\bar{\gamma}_z \nabla_z (1/\bar{\gamma}_z) - \bar{\gamma}_z \mathbf{S} (1/\bar{\gamma}_z)_z = -\nabla_n \ln(1/\bar{\gamma}_z)$.

In order to be completely correct, one should besides the quasi-Stokes velocity also account for the differences between thickness-weighted temperature and salinity and the Eulerian mean temperature and salinity: $\hat{\Theta} = \bar{\Theta} + \Theta^+$ and $\hat{S}_A = \bar{S}_A + S_A^+$. However, where the quasi-Stokes velocity can be parameterized following Eq. A10, to our knowledge no such parameterizations for Θ^+ and S_A^+ currently exist. These averaging procedures represent best practice, but in this present paper

549 we have used an existing hydrographic atlas which has not been averaged in a thickness-weighted
 550 manner. While this is undesirable, this difference is unlikely to impact our results, given all the
 551 other limitations in the data.

552 Replacing the thickness-weighted mean horizontal velocity for the Eulerian-mean horizontal
 553 velocity and the parameterization of the quasi-Stokes velocity of Equation (A11), and adding this
 554 to Equation (A9) results in the final expression for the cross-contour velocity, as it is used in this
 555 paper:

$$v^\perp = \frac{1}{|\nabla_n \hat{\Theta}|} \gamma_z \nabla_n \cdot \left(\gamma_z^{-1} K \nabla_n \hat{\Theta} \right) + \frac{1}{|\nabla_n \hat{\Theta}|} K g N^{-2} \hat{\Theta}_z \left(C_b^\Theta \nabla_n \hat{\Theta} \cdot \nabla_n \hat{\Theta} + T_b^\Theta \nabla_n \hat{\Theta} \cdot \nabla_n P \right) \\ + \frac{1}{|\nabla_n \hat{\Theta}|} D \beta \hat{\Theta} g N^{-2} \left(\hat{\Theta}_z \hat{S}_{Azz} - \hat{S}_{Az} \hat{\Theta}_{zz} \right) - \left(\frac{K_{GM} \nabla_z \bar{\gamma}}{\bar{\gamma}_z} \right)_z \cdot \frac{\nabla_n \hat{\Theta}}{|\nabla_n \hat{\Theta}|} \quad (A12)$$

556 This equation has previously also been used, in slightly different form, by other studies (E.g.
 557 McDougall (1984); IOC et al. (2010); Zika et al. (2010a)).

Window size for vertical derivatives	Window size for final terms	(All values $\times 10^{-4}$)			Estimated K		
		25 th percentile	Median	75 th percentile	25 th percentile	Median	75 th percentile
1	7	2,00	3,02	3,42	581	642	667
1	11	4,38	5,80	6,08	1000	1080	1103
1	15	2,51	3,00	3,17	1305	1365	1391
3	7	0,32	0,68	1,31	495	514	545
3	11	2,46	3,32	3,69	1062	1152	1194
3	15	1,40	1,61	1,73	1304	1346	1368
5	7	1,52	2,06	2,39	601	647	672
5	11	2,35	2,91	3,13	1165	1232	1262
5	15	1,70	1,93	2,03	1257	1289	1305

569 TABLE B1. Estimates obtained with various window sizes in the smoothing process for calculated vertical
 570 derivatives and the final terms of the Watermass Transformation equation. All estimated values are in [m^2/s].

558 **APPENDIX B**

559 **Sensitivity studies**

560 **B1. Sensitivity of estimates to data smoothing**

561 In Section 3 it was highlighted that some smoothing was applied when calculating vertical
 562 derivatives of Θ , S_A and γ_n , as well as to the final terms that form the Watermass Transformation
 563 equation. In this section, the sensitivity of the final estimates to this degree of smoothing is
 564 explored. Table B1 shows for a random location in the study area ($27^\circ N$, $330^\circ E$), the estimates
 565 with various amounts of smoothing. The window size of the running mean smoothing process is
 566 varied for both smoothing processes. The window size is the indication how many points are taken
 567 into account for the calculation of the mean value. The estimates are obtained following the steps
 568 as in Section 4.

571 Besides the values in Table B1, we also made a visual inspection of the smoothed profiles and
 572 of the proportion of negative diffusivities (that passed the χ -criteria of Eq. 17) obtained in our
 573 inversions. We found that for the least amount of smoothing the diffusivity estimates were lower
 574 and there were more negative values. Therefore we deduced that some amount of smoothing was
 575 desirable. Of the three choices we made of window size, we found that the large and intermediate
 576 window gave similar results, and so we selected the window sizes of 3 and 11 points.

577 **B2. Sensitivity of the τ -criterium**

578 The combinations of depths z_u and z_l , that are used in the inversion process of the SIM fullfill
579 the condition $\tau_u - \tau_l \approx 0$. In the process of selecting the pairs, it is approximated that this is the
580 case for combinations of depths for which $\tau_u - \tau_l < crt$. The results presented in Sections 4, 5 and
581 6 the crt was set to 0.0075 [rad]. In this Appendix, the sensitivity of the results with respect to
582 this choice is analysed.

583 The number of pairs, the reduction based on the signal-to-noise criteria, and the results for a
584 range of different crt values will be compared. The crt values for 0.004, 0.0075, 0.015 and 0.05
585 are selected for this.

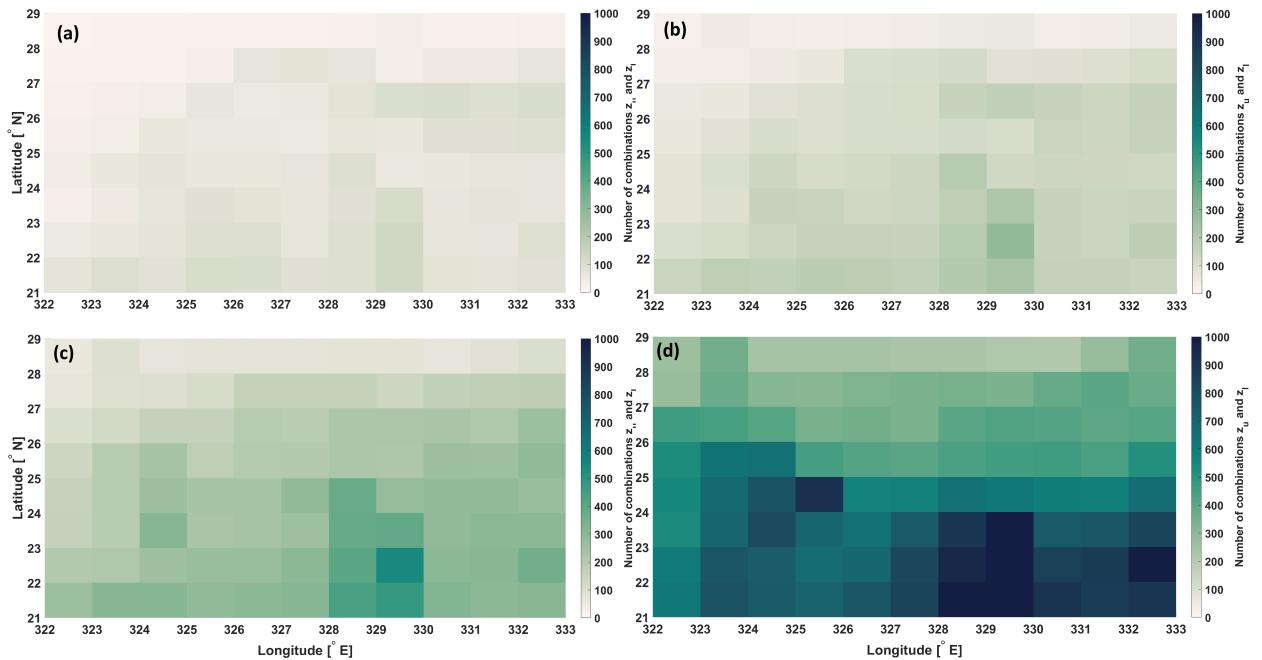
586 *a. Number of pairs*

587 When increasing the critical value for $\tau_u - \tau_l \approx 0$, the number of pairs increases (Fig. B1). Also
588 the number of pairs that remain after the signal-to-noise criteria increases (Fig. B2). However,
589 they differ less from each other than without also using this criteria. For the smallest crt -value
590 the number of available pairs, after the signal-to-noise removal, starts to become too low for some
591 locations to get an estimate. We consider this too strict. In general, more pairs correspond to more
592 equations that can be used in the inversion process. However, it can be expected that the error that
593 these equations contain also increases with a larger crt -value, as the approximation of $\tau_u - \tau_l \approx 0$
594 becomes less accurate for larger crt values.

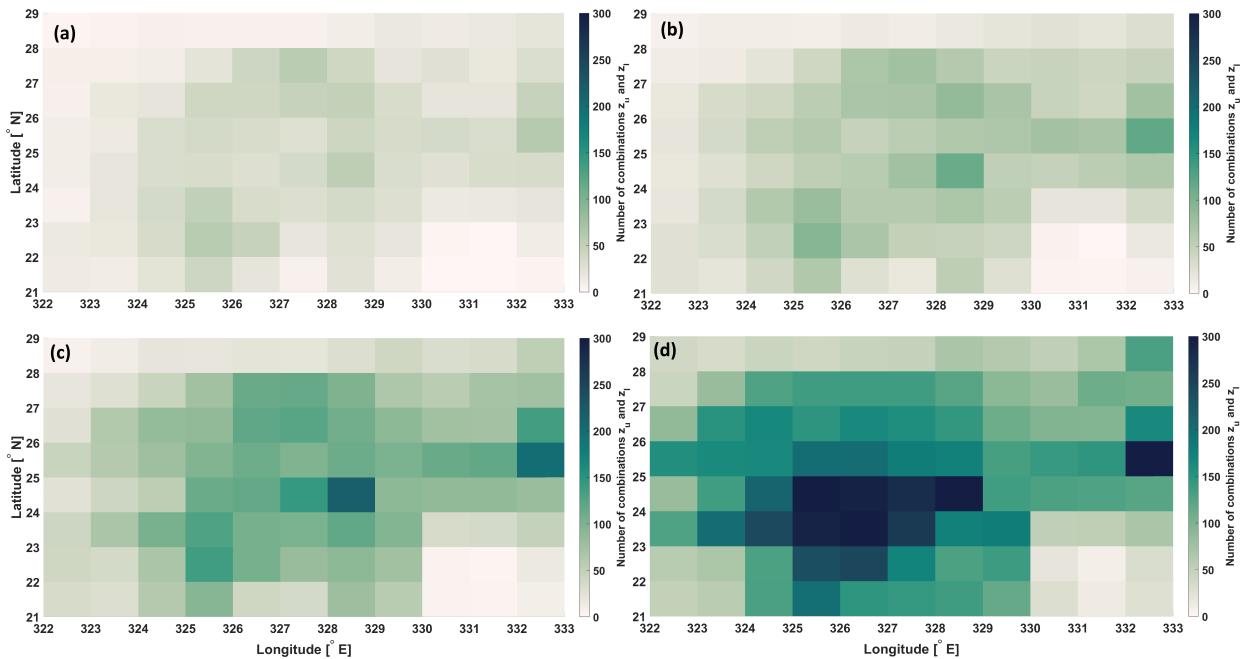
600 *b. Accuracy of the estimates*

601 A scatterplot of the estimated values compared to the maximum from the structure function,
602 show that the estimated values for K and D are not too sensitive for the choice of crt (Figs. B3
603 and B4). In some cases the values for K^{inv} are small compared to the maximum from the structure
604 function (B3d). A possible explanation is that with larger critical values, more error is introduced
605 by the dataset allowing for a wider range of estimates.

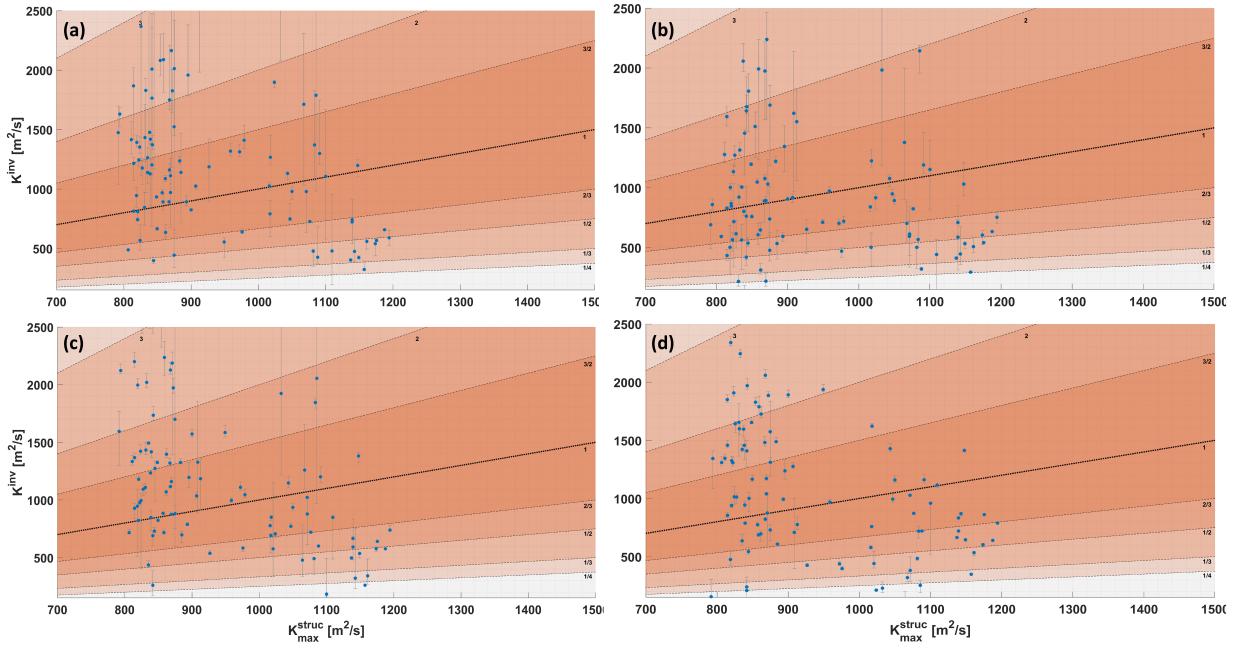
614 Overall the SIM is not very sensitive to the choice of crt . Using a too small value can reduce
615 the number of equations we can construct (fewer pairs). A too large critical value introduces more
616 error and a larger spread of the results. The chosen value $crt = 0.0075$, as used in Sections 4,5 and
617 6 is therefore a reasonable choice.



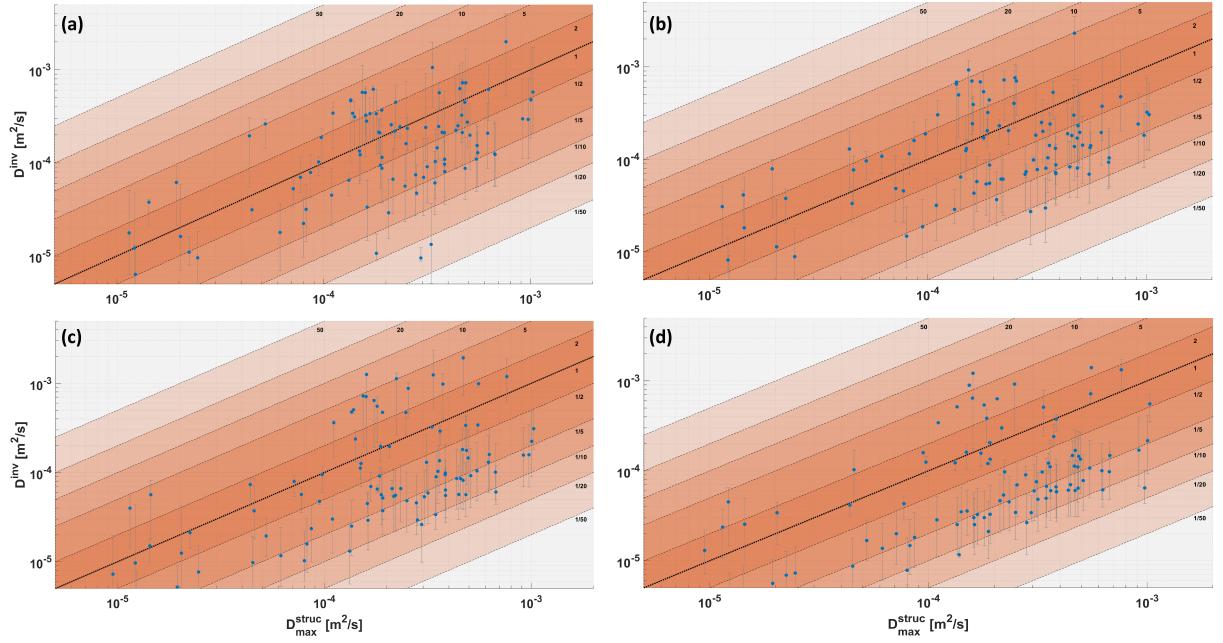
595 FIG. B1. The number of pairs based on the *crt* criterium. a) $crt = 0.004$, b) $crt = 0.0075$, c) $crt = 0.015$, d)
596 d) $crt = 0.05$. The maximum number of pairs in panel d) is 1283



597 FIG. B2. The number of pairs based on the *crt* criterium, after reduction based on the signal-to-noise criteria
 598 as described in Section 4. a) $crt = 0.004$, b) $crt = 0.0075$, c) $crt = 0.015$, d) $crt = 0.05$. The maximum number
 599 of pairs in panel d) is 416.



606 FIG. B3. The values for K^{inv} plotted against the value of the used structure function. With a) $crt = 0.004$, b)
 607 c) $crt = 0.0075$, c) $crt = 0.015$, d) $crt = 0.05$. The orange shading represents the ratio between estimated value and
 608 the value of the structure function. Gray lines mark the uncertainty of the estimate, given by the 25th and 75th
 609 percentiles.

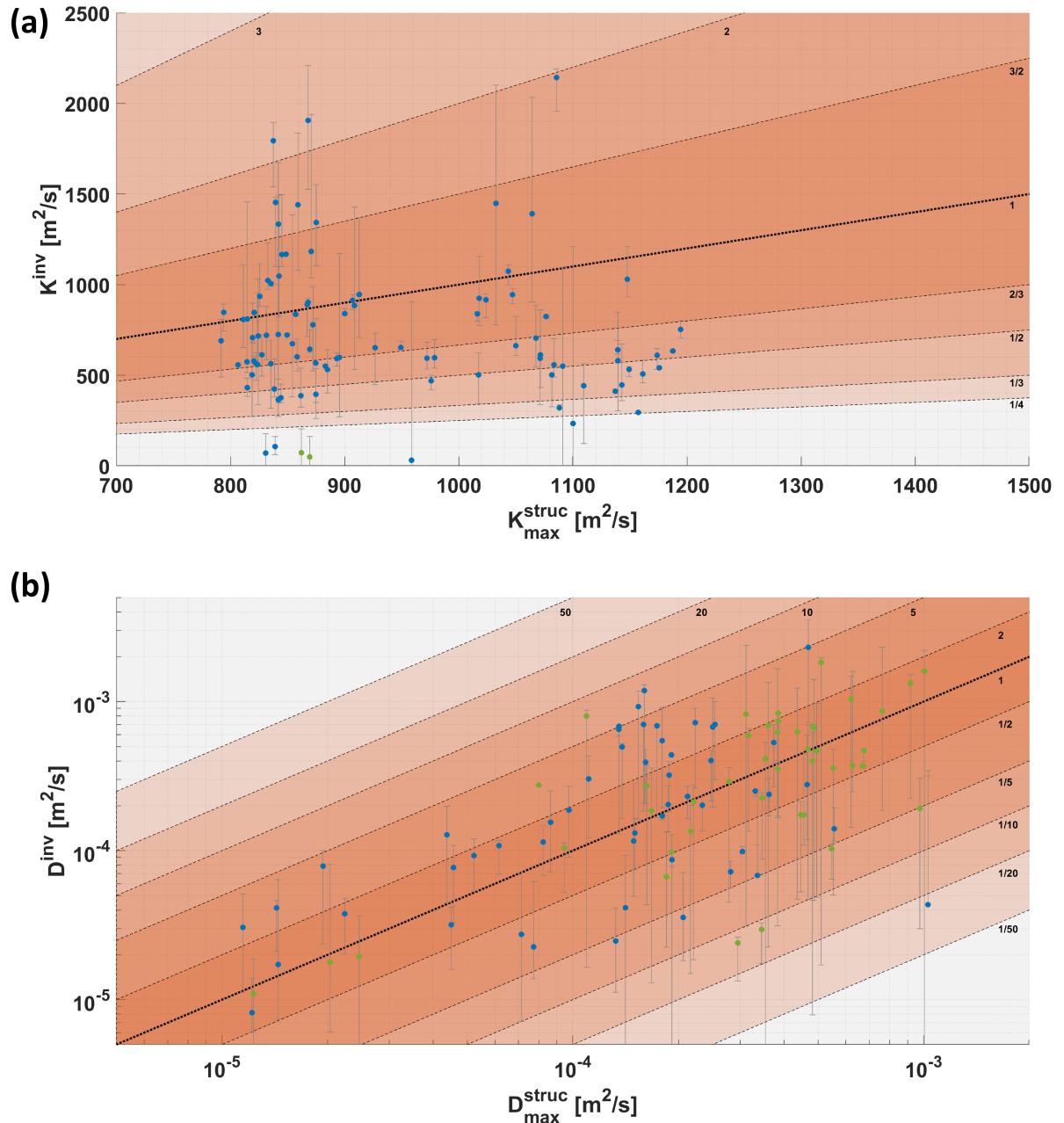


610 FIG. B4. The values for D^{inv} plotted against the value of the used structure function. With a) $crt = 0.004$, b)
 611 c) $crt = 0.0075$, c) $crt = 0.015$, d) $crt = 0.05$. The orange shading represents the ratio between estimated value and
 612 the value of the structure function. Gray lines mark the uncertainty of the estimate, given by the 25th and 75th
 613 percentiles.

Range of solutions

620 Section 4e explored a wide range of input variables to the inversion, which was aimed at gaining
621 a physically realistic estimate for K and D . Despite the removal of equations that contained too
622 much noise, based on the signal to noise criteria of Section 4c, the estimates by this sensitivity
623 analysis spanned a wide range. This solution space contained also negative estimates. While math-
624 ematically, these estimates are valid, these are considered to be outside the space that is physically
625 realistic. This is because the results are obtained from an annual mean gridded climatology that
626 inherently represents an ocean mean state in which diffusion is down gradient. For this reason an
627 additional positivity constraint was added besides the chi-criteria (see Sec. 4e). Without this con-
628 straint, about 45% of the estimates for D^{inv} are negative, while the estimates for K^{inv} are practically
629 unaffected. Fig. C1 shows the results without the constraint. The estimates with this positivity
630 constraint were shown in Fig. 6.

634 The casts that return negative estimates also show a larger spread of the estimates from the
635 sensitivity analysis. This can indicate that these casts possibly are still more affected by noise in
636 the data or that it would be beneficial if more equations were available for the inversion. Either
637 way, these estimates should be treated with caution.



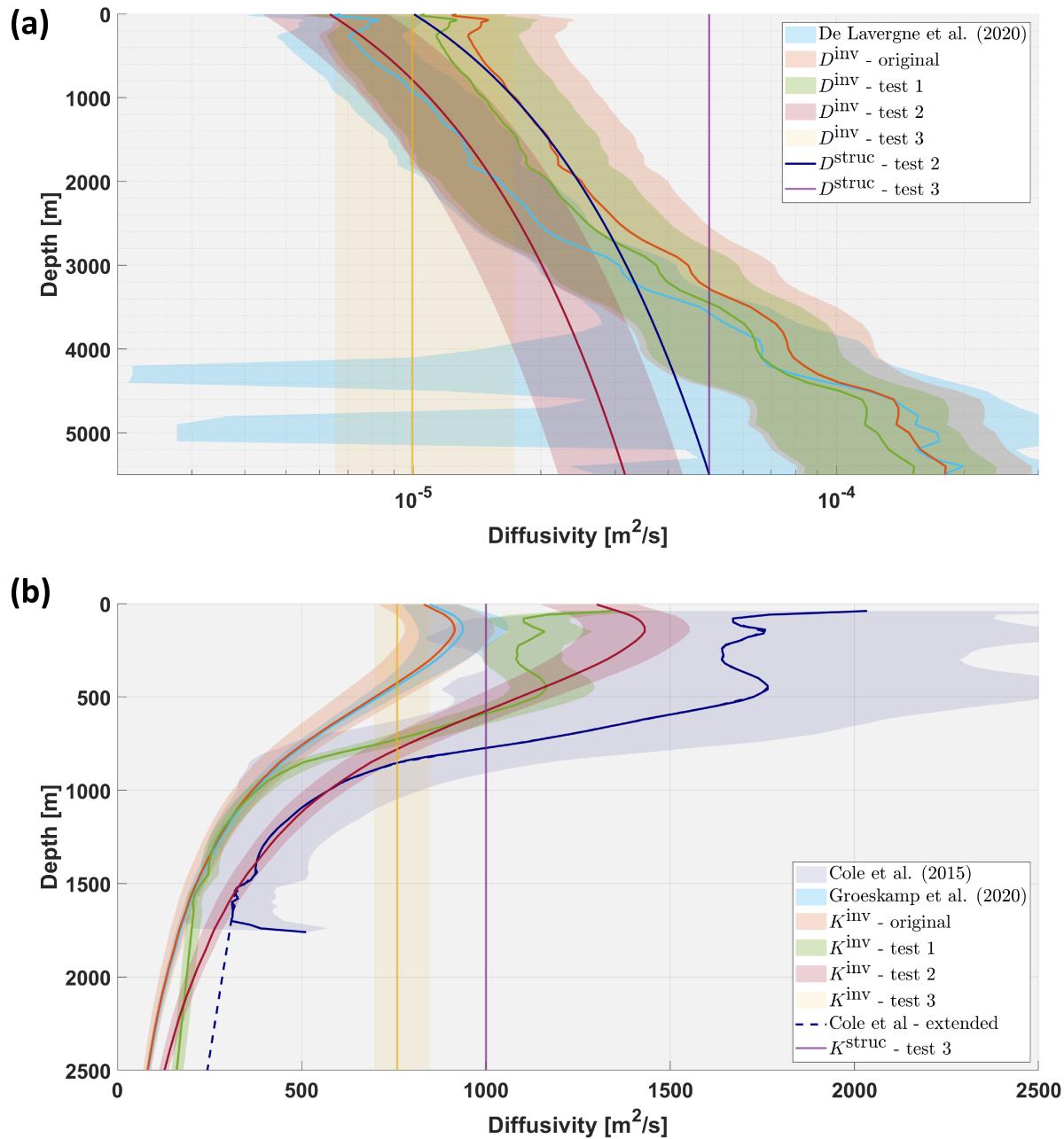
631 FIG. C1. Results without the positivity constraint. With (a) K^{inv} without constraint. (b) D^{inv} without constraint,
 632 negative estimates are shown as absolute values, marked with a green dot. For both panels, whiskers mark the
 633 25th and 75th percentiles.

Other structure functions

640 Here we test the sensitivity of the SIM to the choice of structure function used by estimating K
 641 and D using different structure functions according to the following set-up:

- 642 • **Original:** The structure functions are as presented in Sections 3 and the results of Fig. 7.
- 643 • **Test 1:** For K the structure is based on Cole et al. (2015). But as their data reaches to 1700 m
 644 depth, we have linearly extrapolated this to be 0 at the ocean floor. This is combined with the
 645 structure function of De Lavergne et al. (2020) for D .
- 646 • **Test 2:** For K the used structure function is the same as presented in Section 3 and the results
 647 of Fig. 7, so the study by Groeskamp et al. (2020). This is combined with a profile for D based
 648 on a linear interpolation from $10^{-5} [m^2/s]$ at the surface to $5 \times 10^{-5} [m^2/s]$ at the bottom.
- 649 • **Test 3:** A constant value of $1000 [m^2/s]$ is used for K and a constant value of $5 \times 10^{-5} [m^2/s]$
 650 is used for D as structure functions.

656 The choice of structure function influences the results of both K and D and affects the final
 657 estimates by impacting the signal to noise criteria and a-priori estimates such as \mathbf{x}_0 . However,
 658 these tests clearly indicate that the SIM finds solutions that are not restricted to the original
 659 magnitude of the structure functions, even while the shape is maintained by construction (Fig. D1).



651 FIG. D1. Estimates of K and D from the SIM, using different structure functions, including those presented in
652 Section 6. The estimates of the SIM are given by their median values, the shadings indicate the 25th and 75th
653 percentiles. For the studies of Cole et al. (2015) and De Lavergne et al. (2020) and Groeskamp et al. (2020), the
654 shading indicates the uncertainty given by the study. In (a), the results of D^{inv} are presented, similarly in (b) the
655 results of K^{inv} .

660 **References**

- 661 Abernathey, R., A. Gnanadesikan, M. A. Pradal, and M. A. Sundermeyer, 2021: Isopycnal mixing.
662 *Ocean Mixing: Drivers, Mechanisms and Impacts*, Elsevier, 215–256, <https://doi.org/10.1016/B978-0-12-821512-8.00016-5>.
- 664 Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite
665 altimetry. *Journal of Geophysical Research: Oceans*, **118**, 901–916, <https://doi.org/10.1002/jgrc.20066>.
- 667 Alford, M. H., J. A. Mackinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal
668 gravity waves in the ocean. *Annual Review of Marine Science*, **8**, 95–123, <https://doi.org/10.1146/annurev-marine-010814-015746>.
- 670 Armi, L., and H. Stommel, 1983: Four views of a portion of the north atlantic subtropical gyre.
671 *Journal of Physical Oceanography*, **13**, 828–857, [https://doi.org/10.1175/1520-0485\(1983\)013<0828:FVOAPO>2.0.CO;2](https://doi.org/10.1175/1520-0485(1983)013<0828:FVOAPO>2.0.CO;2).
- 673 Barker, P. M., and T. J. McDougall, 2017: Stabilizing hydrographic profiles with minimal
674 change to the water masses. *Journal of Atmospheric and Oceanic Technology*, **34**, 1935–1945,
675 <https://doi.org/10.1175/JTECH-D-16-0111.1>.
- 676 Clément, L., E. L. McDonagh, J. M. Gregory, Q. Wu, A. Marzocchi, J. D. Zika, and A. J. Nurser,
677 2022: Mechanisms of ocean heat uptake along and across isopycnals. *Journal of Climate*, **35**,
678 4885–4904, <https://doi.org/10.1175/JCLI-D-21-0793.1>.
- 679 Cole, S. T., C. Wortham, E. Kunze, and W. B. Owens, 2015: Eddy stirring and horizontal diffusivity
680 from argo float observations: Geographic and depth variability. *Geophysical Research Letters*,
681 **42**, 3989–3997, <https://doi.org/10.1002/2015GL063827>.
- 682 De Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global
683 maps of internal tide energy sinks. *Ocean Modelling*, **137**, 52–75, <https://doi.org/10.1016/j.ocemod.2019.03.010>.
- 685 De Lavergne, C., S. Groeskamp, J. Zika, and H. L. Johnson, 2022: The role of mixing in the
686 large-scale ocean circulation. *Ocean Mixing: Drivers, Mechanisms and Impacts*, M. Meredith,

- 687 and A. Naveira Garabato, Eds., Elsevier, 35–63, <https://doi.org/10.1016/B978-0-12-821512-8.00010-4>.
- 689 De Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing.
690 *Journal of Advances in Modeling Earth Systems*, **12**, <https://doi.org/10.1029/2020MS002065>.
- 691 Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the
692 southern ocean. *Journal of Physical Oceanography*, **40**, 1501–1519, <https://doi.org/10.1175/2010JPO4278.1>.
- 693 Fox-Kemper, B., and Coauthors, 2019: Challenges and prospects in ocean circulation models.
694 *Frontiers in Marine Science*, **6**, <https://doi.org/10.3389/fmars.2019.00065>.
- 696 Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat
697 transport and mixing from hydrographic data. *Nature*, **408**, 453–457, <https://doi.org/10.1038/35044048>.
- 698 Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-
699 induced tracer transports in ocean circulation models. *Journal of Physical Oceanography*, **25**,
700 463–474, [https://doi.org/10.1175/1520-0485\(1995\)025<0463:PEITTI>2.0.CO;2](https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2).
- 701 Graham, F. S., and T. J. McDougall, 2013: Quantifying the nonconservative production of conser-
702 vative temperature, potential temperature, and entropy. *Journal of Physical Oceanography*, **43**,
703 838–862, <https://doi.org/10.1175/JPO-D-11-0188.1>.
- 704 Gray, A. R., and S. C. Riser, 2014: A global analysis of sverdrup balance using absolute geostrophic
705 velocities from argo. *Journal of Physical Oceanography*, **44**, 1213–1229, <https://doi.org/10.1175/JPO-D-12-0206.1>.
- 706 Griffies, S. M., 1998: The gent-mcwilliams skew flux. *Journal of Physical Oceanography*, **28**,
707 831–841, [https://doi.org/10.1175/1520-0485\(1998\)028<0831:TGMSSF>2.0.CO;2](https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSSF>2.0.CO;2).
- 708 Groeskamp, S., R. P. Abernathey, and A. Klocker, 2016: Water mass transformation by cabbeling
709 and thermobaricity. *Geophysical Research Letters*, **43**, <https://doi.org/10.1002/2016GL070860>.

- 712 Groeskamp, S., P. M. Barker, T. J. McDougall, R. P. Abernathey, and S. M. Griffies, 2019:
713 Venm: An algorithm to accurately calculate neutral slopes and gradients. *Journal of Advances*
714 *in Modeling Earth Systems*, **11**, 1917–1939, <https://doi.org/10.1029/2019MS001613>.
- 715 Groeskamp, S., and D. Iudicone, 2018: The effect of air-sea flux products, shortwave radiation
716 depth penetration, and albedo on the upper ocean overturning circulation. *Geophysical Research*
717 *Letters*, **45**, 9087–9097, <https://doi.org/10.1029/2018GL078442>.
- 718 Groeskamp, S., J. H. LaCasce, T. J. McDougall, and M. Rogé, 2020: Full-depth global estimates
719 of ocean mesoscale eddy mixing from observations and theory. *Geophysical Research Letters*,
720 **47**, 1–12, <https://doi.org/10.1029/2020GL089425>.
- 721 Groeskamp, S., B. M. Sloyan, J. D. Zika, and T. J. McDougall, 2017: Mixing inferred from
722 an ocean climatology and surface fluxes. *Journal of Physical Oceanography*, **47**, 667–687,
723 <https://doi.org/10.1175/JPO-D-16-0125.1>.
- 724 Groeskamp, S., J. D. Zika, B. M. Sloyan, T. J. McDougall, and P. C. McIntosh, 2014: A thermohaline
725 inverse method for estimating diathermohaline circulation and mixing. *Journal of Physical*
726 *Oceanography*, **44**, 2681–2697, <https://doi.org/10.1175/JPO-D-14-0039.1>.
- 727 Hautala, S. L., 2018: The abyssal and deep circulation of the northeast pacific basin. *Progress in*
728 *Oceanography*, **160**, 68–82, <https://doi.org/10.1016/j.pocean.2017.11.011>.
- 729 Holmes, R. M., S. Groeskamp, K. D. Stewart, and T. J. McDougall, 2022: Sensitivity of a coarse-
730 resolution global ocean model to a spatially variable neutral diffusivity. *Journal of Advances in*
731 *Modeling Earth Systems*, **14**, <https://doi.org/10.1029/2021MS002914>.
- 732 IOC, SCOR, and IAPSO, 2010: The international thermodynamic equation of seawater – 2010:
733 Calculation and use of thermodynamic properties. *Manuals and Guides No. 56*, Intergovern-
734 mental Oceanographic Commission, 196.
- 735 Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world's oceans. *Journal*
736 *of Physical Oceanography*, **27**, 237–263, [https://doi.org/10.1175/1520-0485\(1997\)027<0237:ANDVFT>2.0.CO;2](https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2).

- 738 Jenkins, W. J., 1987: ^{3}h and ^{3}He in the beta triangle: Observations of gyre ventilation and
739 oxygen utilization rates. *Journal of Physical Oceanography*, **17**, 763–783, [https://doi.org/10.1175/1520-0485\(1987\)017<0763:AITBTO>2.0.CO;2](https://doi.org/10.1175/1520-0485(1987)017<0763:AITBTO>2.0.CO;2).
- 740
- 741 Jenkins, W. J., 1998: Studying subtropical thermocline ventilation and circulation using tritium
742 and ^{3}He . *Journal of Geophysical Research: Oceans*, **103**, 15 817–15 831, <https://doi.org/10.1029/98jc00141>.
- 743
- 744 Joyce, T. M., J. R. Luyten, A. Kubryakov, F. B. Bahr, and J. S. Pallant, 1998: Meso-to large-scale
745 structure of subducting water in the subtropical gyre of the eastern north atlantic ocean. *Journal
746 of Physical Oceanography*, **28**, 40–61, [https://doi.org/10.1175/1520-0485\(1998\)028<0040:MTLSSO>2.0.CO;2](https://doi.org/10.1175/1520-0485(1998)028<0040:MTLSSO>2.0.CO;2).
- 747
- 748 Killworth, P. D., 1986: A bernoulli inverse method for determining the ocean circulation. *Journal
749 of Physical Oceanography*, **16**, 2031–2051, [https://doi.org/10.1175/1520-0485\(1986\)016<2031:ABIMFD>2.0.CO;2](https://doi.org/10.1175/1520-0485(1986)016<2031:ABIMFD>2.0.CO;2).
- 750
- 751 Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and
752 diffusivities. *Journal of Physical Oceanography*, **44**, 1030–1046, <https://doi.org/10.1175/JPO-D-13-0159.1>.
- 753
- 754 Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global
755 estimates of dianeutral advection and diffusion. *Journal of Physical Oceanography*, **40**, 1690–
756 1709, <https://doi.org/10.1175/2010JPO4303.1>.
- 757
- 758 LaCasce, J. H., and S. Groeskamp, 2020: Baroclinic modes over rough bathymetry and the
759 surface deformation radius. *Journal of Physical Oceanography*, **50**, 2835–2847, <https://doi.org/10.1175/JPO-D-20-0055.1>.
- 760
- 761 Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: Yomaha'07: Velocity
762 data assessed from trajectories of argo floats at parking level and at the sea surface.
- 763
- 764 Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline
from an open-ocean tracer-release experiment. *Nature*, **364**, 701–703, <https://doi.org/10.1038/364701a0>.

- 765 Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. *Journal*
766 *of Geophysical Research*, **103**, 21 499–21 529, <https://doi.org/10.1029/98JC01738>.
- 767 Legg, S., 2021: Mixing by oceanic lee waves. *Annual Review of Fluid Mechanics*, **53**, 173–201,
768 <https://doi.org/10.1146/annurev-fluid-051220-043904>.
- 769 Locarnini, R., and Coauthors, 2019: World ocean atlas 2018, volume 1: Temperature. *NOAA Atlas*
770 *NESDIS 81*, A. Mishonov Technical Editor, 52.
- 771 MacGilchrist, G. A., H. L. Johnson, D. P. Marshall, C. Lique, M. Thomas, L. C. Jackson, and R. A.
772 Wood, 2020: Locations and mechanisms of ocean ventilation in the high-latitude north atlantic
773 in an eddy-permitting ocean model. *Journal of Climate*, **33**, 10 113–10 131, <https://doi.org/10.1175/JCLI-D-20-0191.1>.
- 775 Mackay, N., C. Wilson, J. Zika, and N. P. Holliday, 2018: A regional thermohaline inverse method
776 for estimating circulation and mixing in the arctic and subpolar north atlantic. *Journal of Atmo-*
777 *spheric and Oceanic Technology*, **35**, 2383–2403, <https://doi.org/10.1175/JTECH-D-17-0198.1>.
- 778 MacKinnon, J., 2013: Mountain waves in the deep ocean. *Nature*, **501**, 321–322, <https://doi.org/10.1038/501321a>.
- 780 McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface
781 water mass conversion. *Journal of Physical Oceanography*, **14**, 1577–1589, [https://doi.org/10.1175/1520-0485\(1984\)014<1577:TRRODA>2.0.CO;2](https://doi.org/10.1175/1520-0485(1984)014<1577:TRRODA>2.0.CO;2).
- 783 McDougall, T. J., 1987a: Neutral surfaces. *Journal of Physical Oceanography*, **17**, 1950–1964,
784 [https://doi.org/10.1175/1520-0485\(1987\)017<1950:NS>2.0.CO;2](https://doi.org/10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2).
- 785 McDougall, T. J., 1987b: Thermobaricity, cabbeling, and water-mass conversion. *Journal of*
786 *Geophysical Research*, **92**, 5448–5464, <https://doi.org/10.1029/JC092iC05p05448>.
- 787 McDougall, T. J., 1991: Water mass analysis with three conservative variables. *Journal of Geo-*
788 *physical Research: Oceans*, **96**, 8687–8693, <https://doi.org/10.1029/90JC02739>.
- 789 McDougall, T. J., 1995: The influence of ocean mixing on the absolute velocity vector. *Journal*
790 *of Physical Oceanography*, **25**, 705–725, [https://doi.org/10.1175/1520-0485\(1995\)025<0705:TIOOMO>2.0.CO;2](https://doi.org/10.1175/1520-0485(1995)025<0705:TIOOMO>2.0.CO;2).

- 792 McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat
793 content and heat fluxes. *Journal of Physical Oceanography*, **33**, 945–963, [https://doi.org/10.1175/1520-0485\(2003\)033<0945:PEACOV>2.0.CO;2](https://doi.org/10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2).
- 795 McDougall, T. J., and P. M. Barker, 2011: Getting started with teos-10 and the gibbs seawater
796 (gsw) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp.
- 797 McDougall, T. J., S. Groeskamp, and S. M. Griffies, 2014: On geometrical aspects of interior
798 ocean mixing. *Journal of Physical Oceanography*, **44**, 2164–2175, <https://doi.org/10.1175/JPO-D-13-0270.1>.
- 800 McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker, 2012: A global
801 algorithm for estimating absolute salinity. *Ocean Science*, **8**, 1123–1134, <https://doi.org/10.5194/os-8-1123-2012>.
- 803 McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. part ii: Isopycnal
804 interpretation and the tracer and momentum equations. *Journal of Physical Oceanography*, **31**,
805 1222–1246, [https://doi.org/10.1175/1520-0485\(2001\)031<1222:TTRMVP>2.0.CO;2](https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2).
- 806 McIntosh, P. C., and S. R. Rintoul, 1997: Do box inverse models work? *Journal of Physical
807 Oceanography*, **27**, 291–308, [https://doi.org/10.1175/1520-0485\(1997\)027<0291:DBIMW>2.0.CO;2](https://doi.org/10.1175/1520-0485(1997)027<0291:DBIMW>2.0.CO;2).
- 809 Melet, A. V., R. Hallberg, and D. P. Marshall, 2022: The role of ocean mixing in the climate
810 system. *Ocean Mixing: Drivers, Mechanisms and Impacts*, Elsevier, 5–34, <https://doi.org/10.1016/B978-0-12-821512-8.00009-8>.
- 812 Menke, W., 2018: *Geophysical Data Analysis: Discrete Inverse Theory*. 3rd ed., Elsevier Science &
813 Technology, 293 pp., <https://ebookcentral.proquest.com/lib/uunl/detail.action?docID=5347046>.
- 814 Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008: The composition of standard
815 seawater and the definition of the reference-composition salinity scale. *Deep-Sea Research Part
816 I*, **55**, 50–72, <https://doi.org/10.1016/j.dsr.2007.10.001>.
- 817 Moum, J. N., 2021: Variations in ocean mixing from seconds to years. *Annual Review of Marine
818 Science*, **13**, 201–226, <https://doi.org/10.1146/annurev-marine-031920-122846>.

- 819 Munk, W., and C. Wunsch, 1998: Abyssal recipes ii: energetics of tidal and wind mixing. *Deep-Sea*
820 *Research I*, **45**, 1977–2010, [https://doi.org/10.1016/S0967-0637\(98\)00070-3](https://doi.org/10.1016/S0967-0637(98)00070-3).
- 821 Nurser, A. J. G., and S. M. Griffies, 2019: Relating the diffusive salt flux just below the ocean
822 surface to boundary freshwater and salt fluxes. *Journal of Physical Oceanography*, **49**, 2365–
823 2376, <https://doi.org/10.1175/JPO-D-19-0037.1>.
- 824 Oakey, N., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous
825 temperature and velocity shear microstructure measurements. *Journal of Physical Oceanog-
826 raphy*, **12**, 256–271, [https://doi.org/10.1175/1520-0485\(1982\)012%3C0256:DOTROD%3E2.0.CO;2](https://doi.org/10.1175/1520-0485(1982)012%3C0256:DOTROD%3E2.0.
827 CO;2).
- 828 Pawlowicz, R., T. McDougall, R. Feistel, and R. Tailleux, 2012: An historical perspective on
829 the development of the thermodynamic equation of seawater-2010. *Ocean Science*, **8**, 161–174,
830 <https://doi.org/10.5194/os-8-161-2012>.
- 831 Pradal, M.-A., and A. Gnanadesikan, 2014: How does the redi parameter for mesoscale mixing
832 impact global climate in an earth system model? *Journal of Advances in Modeling Earth
833 Systems*, **6**, 586–601, <https://doi.org/10.1002/2013MS000273>.
- 834 Prandtl, L., 1925: Report on investigation of developed turbulence. *Journal of Applied Mathematics
835 and Mechanics*, **5**, 136–139.
- 836 Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. *Journal of Physical Oceanog-
837 raphy*, **12**, 1154–1158, [https://doi.org/10.1175/1520-0485\(1982\)012%3C1154:OIMBCR%3E2.0.CO;2](https://doi.org/10.1175/1520-0485(1982)012%3C1154:OIMBCR%3E2.0.CO;2).
- 838 Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from argo
839 float and surface drifter trajectories. *Journal of Geophysical Research: Oceans*, **123**, 4560–4575,
840 <https://doi.org/10.1029/2018JC013750>.
- 841 Schott, F., and H. Stommel, 1978: Beta spirals and absolute velocities in different oceans. *Deep-Sea*
842 *Research*, **25**, 961–1010, [https://doi.org/10.1016/0146-6291\(78\)90583-0](https://doi.org/10.1016/0146-6291(78)90583-0).
- 843 Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from
844 basin-scale budgets. *Journal of Physical Oceanography*, **30**, 2320–2341, [https://doi.org/10.1175/1520-0485\(2000\)030%3C2320:EOAADF%3E2.0.CO;2](https://doi.org/10.1175/1520-0485(2000)030%3C2320:EOAADF%3E2.0.CO;2).

- 846 Sloyan, B. M., and S. R. Rintoul, 2001: The southern ocean limb of the global deep
847 overturning circulation. *Journal of Physical Oceanography*, **31**, 143–173, [https://doi.org/10.1175/1520-0485\(2001\)031<0143:TSOLOT>2.0.CO;2](https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2).
- 849 Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the southern
850 ocean. *Journal of Physical Oceanography*, **39**, 50–69, <https://doi.org/10.1175/2008JPO3880.1>.
- 851 Spall, M. A., P. L. Richardson, and J. Price, 1993: Advection and eddy mixing in the mediterranean
852 salt tongue. *Journal of Marine Research*, **51**, 797–818.
- 853 Stommel, H., and F. Schott, 1977: The beta spiral and the determination of the absolute velocity
854 field from hydrographic station data. *Deep-Sea Research*, **24**, 325–329, [https://doi.org/10.1016/0146-6291\(77\)93000-4](https://doi.org/10.1016/0146-6291(77)93000-4).
- 856 Tatebe, H., Y. Tanaka, Y. Komuro, and H. Hasumi, 2018: Impact of deep ocean mixing on
857 the climatic mean state in the southern ocean. *Scientific Reports*, **8**, <https://doi.org/10.1038/s41598-018-32768-6>.
- 859 Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal
860 ocean. *Science*, **264**, 1120–1123, <https://doi.org/10.1126/science.264.5162.1120>.
- 861 Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measure-
862 ments of the turbulent dissipation rate. *Journal of Physical Oceanography*, **44**, 1854–1872,
863 <https://doi.org/10.1175/JPO-D-13-0104.1>.
- 864 Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale
865 environment on mixing from wind-driven internal waves. *Nature Geoscience*, **11**, 842–847,
866 <https://doi.org/10.1038/s41561-018-0213-6>.
- 867 Wright, D. G., R. Pawlowicz, T. J. McDougall, R. Feistel, and G. M. Marion, 2011: Absolute
868 salinity, "density salinity" and the reference-composition salinity scale: Present and future use
869 in the seawater standard teos-10. *Ocean Science*, **7**, 1–26, <https://doi.org/10.5194/os-7-1-2011>.
- 870 Wunsch, C., 1978: The north atlantic general circulation west of 50 w determined by inverse
871 methods. *Reviews of Geophysics and Space Physics*, **16**, 583–620, <https://doi.org/10.1029/RG016i004p00583>.

- 873 Zhang, H.-M., and N. G. Hogg, 1992: Circulation and water mass balance in the brazil basin.
874 *Journal of Marine Research*, **50**, 385–420, <https://doi.org/10.1357/002224092784797629>.
- 875 Zika, J. D., and T. J. McDougall, 2008: Vertical and lateral mixing processes deduced from the
876 mediterranean water signature in the north atlantic. *Journal of Physical Oceanography*, **38**,
877 164–176, <https://doi.org/10.1175/2007JPO3507.1>.
- 878 Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010a: A tracer-contour inverse method for estimat-
879 ing ocean circulation and mixing. *Journal of Physical Oceanography*, **40**, 26–47, <https://doi.org/10.1175/2009JPO4208.1>.
- 880 Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010b: Weak mixing in the eastern north atlantic:
881 An application of the tracer-contour inverse method. *Journal of Physical Oceanography*, **40**,
882 1881–1893, <https://doi.org/10.1175/2010JPO4360.1>.
- 883 Zika, J. D., B. M. Sloyan, and T. J. McDougall, 2009: Diagnosing the southern ocean overturning
884 from tracer fields. *Journal of Physical Oceanography*, **39**, 2926–2940, <https://doi.org/10.1175/2009JPO4052.1>.
- 885 Zweng, M., J. Reagan, D. Seidov, T. Boyer, R. Locarnini, H. Garcia, and A. Mishonov, 2019:
886 World ocean atlas 2018, volume 2: Salinity. *NOAA Atlas NESDIS 82*, A. Mishonov Technical
887 Editor, 50.