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Abstract Whereas several well-established proxies are available for reconstructing past temperatures,
salinity remains challenging to assess. Reconstructions based on the combination of (in)organic
temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which
may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera
showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for
salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal
specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser
ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural
laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water
mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit
with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for
both species from a salinity of ~36.8 up to ~39.6, while values for G. sacculifer deviate from this trend in the
northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are
(partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in
foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations
are still required and more research on the effect of temperature is needed.

1. Introduction

Seawater salinity is set by several processes, including river discharge, waxing and waning of continental ice
sheets, sea ice formation, and the balance between evaporation and precipitation. Salinity, together with
temperature, plays a major role in setting sea water density, determining seawater circulation patterns both
on a global and regional scale. This makes salinity one of the key parameters for reconstructing past ocean
functioning and its relation to past climate. At the same time, a proxy for salinity is necessary to correct for
the impact of salinity on other proxies, for example, temperature reconstructions based on foraminiferal
shell 880 [Rohling, 2007] and Mg/Ca [e.g., Dissard et al., 2010]. Current reconstructions of past salinity are
mostly based on combining stable isotopes (e.g., 5D of long chained ketones or foraminiferal §'20) with
independent reconstructions for seawater temperature (e.g., foraminiferal Mg/Ca or U'§}) [Elderfield and
Ganssen, 2000; Schouten et al., 2006]. The uncertainty in these calibrations and the independent controls
on these proxy signals leads to error propagation which effectively makes most of these approaches hard
to apply [Rohling, 2007]. One of the uncertainties is based on the assumption that the relation between
seawater stable isotopes and salinity remained constant over the time interval studied. On geological time-
scales, however, this relation likely varied, as it does spatially [e.g., Gat, 1996; Zahn and Mix, 1991]. To circum-
vent this problem, the relation between salinity and stable isotopes is often modeled [e.g., Rohling and Bigg,
1998], using assumptions on several hydrological factors and thereby increasing the uncertainty in recon-
structed salinity.

Ideally, a proxy for salinity directly depends on the elements that determine ocean salinity, e.g., Na, Cl, and K,
or is covarying strongly with salinity. For several elements, a direct relation was found between the
element/Ca ratio in foraminiferal calcite and that in the ambient seawater (e.g., Mg/Ca [Segev and Erez,
2006; Evans et al., 2015], Ba/Ca [Hdnisch et al., 2011], Cu/Ca [De Nooijer et al., 2007], and Ba/Ca [Lea and
Boyle, 1991]). For some (e.g., conservative) elements, their incorporation is generally dependent not (only)
on the concentration of these elements in seawater but (also) on other environmental factors, such as
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Figure 1. Salinity map (WOA 2001, average April-June) with (a) annual average salinities of the Red Sea and (b) aquaflow
temperatures for the used plankton pump (PP) transects of R/V Pelagia cruise 64PE158. To the left of the temperature
graph, the PP samples are also indicated.

temperature (Mg/Ca [e.g., Anand et al., 2003; Niirnberg et al., 1996]) or pH (B/Ca [Yu et al., 2007, and references
therein]). Na incorporation was found to be correlated to salinity in the carbonate of Atlantic oysters [Rucker
and Valentine, 1961] and barnacle shells [Gordon et al., 1970]. For inorganically precipitated calcite and arago-
nite this relation was shown to be dependent on Na concentration rather than the medium's Na/Ca ratio
[Kitano et al., 1975; Ishikawa and Ichikuni, 1984]. Recently, it was found that the [Na+] composition of calcite
of cultured benthic and planktonic species of foraminifera also positively correlates with salinity (Wit et al.
[2013] and Allen et al. [2016], respectively), which was explained by a relative increase in activity of free
[Na*] compared to [Ca®*] activity with increasing salinity [Wit et al., 2013]. Robust application of this proxy
would, however, require finding this relationship in other cultured species (planktonic and benthic) and in
the natural environment. For this purpose, we investigate Na/Ca of living planktonic foraminifera collected
across a steep salinity gradient in the Red Sea. The Red Sea provides a natural laboratory with a broad salinity
range (36 to 40), from which living specimens of the planktonic foraminifera Globigerinoides ruber (white) and
Globigerinoides sacculifer were analyzed for their Na/Ca composition.

2. Materials and Methods
2.1. Study Area and Sample Collection

The Red Sea, with a total length of approximately 2100 km, is enclosed by deserts (Figure 1). The only connec-
tion to the open ocean is through the shallow and narrow straits of Bab el Mandeb, connecting the Red Sea
with the Gulf of Aden and ultimately the Indian Ocean. Due to the very high evaporation rates in this basin
(up to ~2 m/yr) [Sofianos et al., 2002, Morcos, 1970], low mean annual rainfall from 3 mm/yr (N) to 150 mm/yr
(S) [Zahran, 2010] and no significant rivers flowing into the basin, the basin is characterized by a pronounced
antiestuarine circulation [Rohling, 1994, and references therein]. Surface waters flow northward while evapor-
ating, resulting in a strong south-north gradient in salinity. Monsoonal winds cause seasonal contrasts, also
influencing exchange through Bab el Mandeb. During the summer monsoon, circulation becomes three
layered due to a wind-driven upper surface layer flowing into the Gulf of Aden [Siccha et al., 2009, and
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Table 1. Details per Transect?

Transect Latitude Begin—-End (°N) Longitude Begin-End (°E) Average SSS Average SST TA DIC co¥ pH

PP1 14.16-15.66 42.36-41.46 36.8 295 23336 20433 208.0 7.93
PP2 15.66-17.12 41.46-40.47 373 294 2354.6 2051.6 2163 7.94
PP4 19.06-20.57 39.10-38.21 384 28.5 2370.6 2061.9 2193 7.95
PP5 20.57-22.29 38.21-37.46 38.8 28.0 2376.5 20654 2204 7.95
PP7 23.70-25.40 37.78-35.68 39.6 26.3 2409.2 2084.1 229.1 7.99
PP9 27.03-28.49 34.67-33.14 40.1 24.2 2425.7 2107.6 2241 8.00

#Temperatures (sea surface temperature), alkalinities (TA), and dissolved inorganic carbon (DIC) were measured during RV Pelagia cruise 64PE158. Sea surface
salinities (SSS) were obtained from the world ocean atlas (WOA_2001_average April-June Boyer et al. [2005]). Carbonate ion content (CO%’) and pH values were
calculated from the measured DIC and TA values using CO2SYS [Lewis and Wallace, 1998].

references therein]. This change in monsoonal strength between summer and winter does not affect sali-
nities noticeably (World Ocean Atlas (WOA) 2001) [Boyer et al., 2005]. However, maximum temperatures
become ~2°C lower at the southernmost position [Boyer et al., 2005]. The temperature gradient opposes
the salinity gradient, with temperatures increasing from north to south. Still, to avoid as much as possible off-
sets in calibration due to such minor variations in salinity, we here calibrate to seasonal salinity data (April-
June 2001). The carbonate ion content (CO%’) and pH were calculated from measured dissolved inorganic car-
bon (DIC) and alkalinity (TA) values recorded during the cruise, using CO2SYS software [Lewis and Wallace,
1998].

Nine plankton pump (PP) samples were collected in May 2000 (RV Pelagia cruise 64PE158), with each
sampling interval covering ~225 km on the S to N transect (Figure 1). Aquaflow sea surface temperatures
were continuously recorded during the cruise, whereas salinity data were retrieved from average values
from April to June from the World Ocean Atlas 2001 (WOAOQ1; Table 1) [Boyer et al., 2005]. Salinity measure-
ments from CTD casts at five stations were available, with salinity values in close agreement with those
obtained from the WOAO1 database. Upon collection samples were sieved over a 75 pm mesh, shortly
rinsed with ultrapure water to remove the salts and stored at —40°C. Subsequently, samples were freeze
dried and a low-temperature asher was used to concentrate the foraminiferal specimens and remove
organic matter (for samples PP2, PP4, and PP7) [Fallet et al., 2009]. After ashing, samples were treated with
a few drops of ethanol and ultrapure water to disaggregate the residue, wet sieved over a 63 um mesh, and
dried. Samples PP1, PP5, and PP9 were processed earlier and treated differently: after defrosting the sam-
ples, organic matter was removed using hot alkaline H,0, for several hours based on the protocol of Fallet
et al. [2009], after which they were rinsed three times with ultrapure water, ultrasonicated with each rinse
and dried. Fallet et al. [2009] showed that both methods successfully remove all organic material from
foraminiferal shells and yield equal isotope and Mg/Ca values. No offsets in averages for the measured
elements were observed between the different methods and scanning electron microscopy (Hitachi,
SEM3000) pictures showed a clean foraminiferal surface with no organic films remaining (Figure 2).
Foraminifera were handpicked and species identified using the species concept of Brummer et al. [1987]
for G. sacculifer (Brady) and G. ruber (d'Orbigny). Foraminiferal sizes were determined by measuring the
diameter, from the top of the final chamber (F) to the bottom. Calculating chamber number in the size
fraction employed here (100-460 um) is very challenging: only a small change in diameter may offset the
chamber number appreciably [Brummer et al.,, 1987]. This is due to the exponential increase in size with
chamber number [e.g., Hemleben and Bijma, 1994; Brummer et al, 1987]. Based on measured sizes,
the chamber number was determined for G. sacculifer using the study of Hemleben and Bijma [1994]. For
G. ruber, there is unfortunately no such study to base the chamber number over the measured size range.
Therefore, we used an extrapolation of the ontogenetic measurements given by Brummer et al. [1987] to
estimate the chamber number.

2.2. LA-Q-ICP-MS Analyses

Prior to analysis, the foraminifera isolated from the plankton pump samples were cleaned with ultrapure
water (>18.2 MQ) and mounted on a stub with double-sided tape. Elemental composition of their calcite
was measured by laser ablation quadrupole inductively coupled plasma mass spectrometry (LA-Q-ICP-MS)
at the Royal NIOZ (Figure 2). This setup consists of a NWR193UC (New Wave Research) laser, containing an
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Figure 2. Example of (a) a laser ablated specimen of G. ruber and (b) the corresponding laser ablation profile with values for Na, Al, and Ca in counts per second.

ArF Excimer laser (Existar) with deep UV 193 nm wavelength and <4 ns pulse duration, coupled to a quadru-
pole ICP-MS (iCAP-Q, Thermo Scientific). Laser ablation of calcite was performed with a circular spot size of
60 pm and a fluence of 1J/cm? at a repetition rate of 6 Hz. A fluence higher than 1J/cm? increases the abla-
tion rate and hence limits the run time length. For the glass NIST-610 and NIST-612 standards, the ablation
threshold is at a fluence of 1J/cm? [Brokmann et al., 2002; Hiilsenberg et al,, 2008]. However, since ablation
just above this threshold potentially causes fractionation and the fractionation index of Na and Ca remains
constant over the range 5-19J/m? [Li et al., 2015], a fluence of 5J/cm? is used. This difference in fluence is
shown not to influence the results [DueAas-Bohdrquez et al., 2011; Hathorne et al., 2008]. All samples were
ablated for between 40 to 60 s, depending on the chamber thickness and size of the shell. The laser ablation
system was equipped with a dual-volume cell, using helium as a carrier gas with a flow rate of 0.7 L/min. The
optimum He flow was determined by several tests, focusing on stability of the signal, intensity, peak shape,
and washout time. Between the ablation cell and mass spectrometer, a smoother was placed to avoid inter-
ferences between ablation pulses and cycle time of the MS [Fehrenbacher et al., 2015]. From the laser cham-
ber to the ICP-MS, the He flow was mixed with ~0.4L/min Ar makeup gas and 0.003 mL/min N,. Before
measuring the samples, the makeup gas, extraction lens, focus lens, and torch position were automatically
tuned for the highest sensitivity of 233U, '*°La, *°Co, and low ThO/Th ratios (<0.5%) by laser-ablating
NIST-610 glass. The masses measured by the ICP-MS were ''B, 2*Na, **Mg, 2°Mg, *’Al, *°K, **Ca, **Ca, **Mn,
57Fe, 885y, 13883, and 228U. The duration of one cycle of these 13 isotopes was 0.13 5. Every sample run lasted
approximately 100's, of which the first 20s consisted of a gas blank. Intensity data were integrated, back-
ground subtracted, standardized internally to **Ca and calibrated against the NIST-610 signal using
Thermo Qtegra software version 2.2.1465.44 and reference values from Jochum et al. [2011]. Since ablation
of the NIST-610 and NIST-612 standards could increase the sodium background, they were only ablated
and analyzed at the end of every sequence and cones were cleaned before the next sequence. The powders
JCp-1, the synthetic CaCO3 MACS-3, and an in-house (foraminiferal) calcite standard (NFHS-1, supporting
information Text S1) were pressed to a tablet and used for monitoring drift and quality control and measured
every 10 foraminiferal samples [Okai et al., 2002; Wilson et al., 2008]. The NFHS-1 standard was made primarily
to create a powdered standard as close as possible in composition to foraminiferal calcium carbonate (Na/Ca:
~3-12 mmol/mol).

Relative precision of the Na/Ca analyses was better than 9%, based on the three different calcium carbo-
nate standards (two international, one in-house) used (MACS-3: 27.5+ 0.8 mmol/mol Na/Ca; JCp-1:
19.5 £+ 1.4 mmol/mol Na/Ca; NFHS-1: 5.8 4+ 0.5 mmol/mol Na/Ca). Accuracy of the analyses, based on com-
paring the carbonate standards with internationally reported values [Okai et al., 2002; Wilson et al., 2008],
was 101 +3% and 97 +7% for MACS-3 and JCp-1, respectively. The measurements of Mg and Na per
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standard were also normally distributed, except for Mg for the NFHS-1 (supporting information Figure S1
and Table S1). The fact that the NFHS-1 is not normally distributed is somewhat puzzling. It does suggest
multiple phases of carbonate present (i.e,, low and high Mg carbonates) but is here irrelevant due to the
very small grain size (<1 um) the standard was ground to (supporting information Text S1).

A comparison of our data with solution sector field inductively coupled plasma mass spectrometry
(SF-ICP-MS, Thermo Scientific, Element-2) shows no offsets caused by laser ablation (supporting information
Text S2, Figure S2, and Tables S2 and S3). We compared these two methods on standard material and artificial
pressed pellets with a Na addition series. The linearity (* =0.99) of the plot and the slope of 0.98 indicate that
LA-Q-ICP-MS delivers accurate Na/Ca data. Although the very low Na/Ca values for the lower part of the
intercomparison are somewhat off, these values are much lower than the range found for foraminifera
(3-12 mmol/mol). With concentrations similar to those found for foraminiferal carbonate, Na/Ca values are
very close to the reference and solution analyses based values.

2.3. Data Processing

Foraminiferal signals were screened for surface contamination, and parts of the outside or inside of the shell
with elevated Mg, often accompanied by a small peak in Na and Al, were eliminated from the area selected
for integration. Since shells were collected from living specimens and have never been in contact with the
sediment, surface contaminations must be caused during the sample processing. Measurements were
discarded in cases when the shell (test) wall was very thin and the analytical sequence was too short
(<55). Only the last three shell chambers were analyzed to minimize potential impacts of migration of the
collected specimens. Outliers are identified routinely by the average -2SD and average +2SD per transect.
In total 153 specimens of G. ruber (white) were analyzed, varying between 5 and 50 per transect. For G. ruber
a total of 171 analyses, including duplicates and outliers, provided the data for calculating the average
foraminiferal shell chemical composition per transect (Figures 3-5, and S3-S8). For G. sacculifer, in total 46
specimens were analyzed, varying between 2 and 19 specimens per transect, to a total of 70 single-spot
analyses including outliers and duplicates. No significant differences were found between the analyzed
chambers' position (respectively F and F-1). Values deviating from the average by more than twice the
standard deviation of the whole population of a species per transect were considered outliers and excluded
from further calculations. Even though the internal variability expressed as relative standard deviation
(RSD(%) = average/SD x 100) per single-spot analysis for Mg/Ca was relatively high with an average
below 40% for both species, the standard error of the mean (=RSD/v/n) per single-spot measurement was
~2.5%. For Sr/Ca, the variability per measurement was below 30% on average for both species with a standard
error of ~1.8%. The variability per single-spot measurement for Na/Ca was always less than 35% for both
species with a standard error of ~2.1%.

Ratios for Mg/Ca, Sr/Ca, and Na/Ca per sampled transect are either normally or randomly distributed for both
G. sacculifer and G. ruber (supporting information Figures S3-S8 and Table S4 and S5). Relative standard
deviations for these elements per group of single-spot analyses per transect vary around 10%, which is close
to the analytical error. Due to the large number of replicates, standard errors are considerably lower (Table 2).
Before calculating correlations or applying statistics, elemental ratios for both species per transect were first
tested for normality with the Shapiro-Wilk test.

3. Results
3.1. Na/Ca

Values for single-chamber Na/Ca for G. ruber are either normally distributed within transects (PP1, PP2, PP5,
and PP9), slightly skewed (PP7), or randomly (PP4) distributed (supporting information Figure S3 and Table
S4). However, despite the positive results for PP9 Na/Ca values in the Shapiro-Wilk test, the distribution
appears randomly instead of normally distributed. Standard deviations within transects vary from 8 to 17%
(Table 2). For G. sacculifer, Na/Ca values are normally distributed for all transects except for PP7, with standard
deviations varying between 4 to 14% (supporting information Figure S6 and Table 2 and supporting informa-
tion Table S5).

A significant positive correlation is found between salinity and average Na/Ca values for G. ruber, while for G.
sacculifer only a positive trend is observed (Figure 3). Linear regressions equal: Na/Ca=0.66 X S-15.75
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Figure 3. G. ruberand G. sacculifer Na/Ca values, plotted against salinity (WOAOQ1, average April-June), measured temperatures, and calculated CO%™. For reasons further
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temperatures and calculated CO§‘. For further explanations, see captions of Figures 3 and 4.

(=088, p < 0.001) for G. ruber and the nonsignificant Na/Ca=0.229 xS+ 0.67 (*=0.19, p=0.11) for G.

sacculifer. Na/Ca of both species follows the same positive trend up to a salinity of 39.6, while values for
the northernmost transect PP9 for G. sacculifer deviate strongly from this trend. When excluding the north-
ernmost transect (section 4.1.2), linear regressions equal Na/Ca=0.57 x $-12.38 (*=0.91, p < 0.001) for G.

ruber and Na/Ca = 0.60 x 5-13.49 (* =0.999, p < 0.001) for G. sacculifer.
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Table 2. Mg/Ca, Sr/Ca, and Na/Ca Values for G. ruber and G. sacculifer®

Mg/Ca Sr/Ca Na/Ca

Species Salinity mmol/mol n 2xSD SE mmol/mol n 2xSD SE mmol/mol n 2xSD SE

G. ruber 36.8 4.09 7 0.93 0.35 1.75 7 0.47 0.18 8.10 7 2.06 0.39
G. sacculifer 3.93 6 0.71 0.27 1.90 6 0.28 0.11 8.67 5 0.76 0.17
G. ruber 373 5.1 45 1.84 0.69 1.64 43 0.17 0.03 9.07 43 142 0.11
G. sacculifer 4.37 7 1.21 0.46 1.67 7 0.35 0.13 9.08 7 1.51 0.29
G. ruber 384 4.67 49 1.38 0.52 1.61 50 0.22 0.03 9.57 51 2.87 0.20
G. sacculifer 3.97 13 1.24 047 1.51 13 0.12 0.03 9.66 10 213 0.34
G. ruber 38.8 3.85 8 0.85 0.32 1.53 9 0.14 0.05 933 8 1.85 0.33
G. ruber 39.6 4.65 39 1.74 0.66 1.50 37 0.15 0.02 10.30 39 349 0.28
G. sacculifer 3.84 18 1.10 042 1.47 20 0.16 0.04 10.45 18 2.84 0.33
G. ruber 40.1 3.73 11 1.58 0.60 1.72 13 0.37 0.10 11.34 11 3.74 0.56
G. sacculifer 3.03 21 1.01 0.38 1.69 22 0.44 0.09 9.23 20 248 0.28

Standard deviations (SD), standard errors (SE = o/+/n), and number of specimens per transect (n).

Since salinity and temperature are anticorrelated in our data set, increasing Na/Ca toward the North of the
Red Sea may also be interpreted as a negative correlation between Na/Ca and temperature. When including
the northernmost transect, the correlation between Na/Ca and temperature has an r* of 0.90 for G. ruber,
p <0.001,and r*=0.02, and p = 0.56 for G. sacculifer. The relationship between Na/Ca and temperature, when
excluding the northernmost transect (Figure 3), has r* values of 0.84 and p < 0.001 for G. ruber and r* =0.95
and p < 0.001 for G. sacculifer. For the correlation between Na/Ca and CO?~, »=0.71 and p < 0.001 for G.
ruber, and r*=0.64 and p=0.003 for G. sacculifer. When excluding PP9, r*=0.92 and p < 0.001 for G. ruber
and r*=0.97 with a p < 0.001 for G. sacculifer.

3.2. Mg/Ca and Sr/Ca

For G. ruber, values for Mg/Ca are normally distributed (supporting information Figure S4 and Table S4).
Standard deviations for Mg/Ca for each transect vary between 11 and 21% (supporting information Figure
S4 and Table 2). The Sr/Ca results are also normally distributed for all transects and standard deviations vary
between 4.5 and 13.5% (supporting information Figure S5 and Tables 2 and S4). Single-spot measurements
for G. sacculifer showed that Mg/Ca values are normally distributed for all transects with standard deviations
varying from 9 to 17% (supporting information Figure S7 and Tables 2 and S5). Values for Sr/Ca are normally
distributed as well, with standard deviations varying between 4 and 13% (supporting information Figure S8
and Tables 2 and S5). Despite the positive results for PP9 Sr/Ca values for the Shapiro-Wilk test, the distribu-
tion looks randomly instead of normally distributed.

The correlation between temperature and Mg/Ca is not significant for either species when excluding the
northernmost transect (=0.12 and p=0.1 for G. ruber and r*=080 and p=0.15 for G. sacculifer)
(Figures 4 and 5). However, this correlation is significant for both species when including the northernmost
transect (P =0.38 and p < 0.001 for G. ruber and r* =0.84 and p < 0.001 for G. sacculifer) due to the consider-
ably lower Mg/Ca for specimens from the northernmost section of the Red Sea, especially for G. sacculifer.
Also, the correlation between salinity and Mg/Ca is not significant for either species when excluding PP9
(*=0.15, p=0.07 for G. ruber and r*=0.54, p=0.15 for G. sacculifer) and significant when including this
transect (r*=0.29 and p=0.02 for G. ruber and ?=0.59 and p < 0.001 for G. sacculifer). A significant negative
correlation with salinity was found for Sr/Ca, again with deviating values for the northernmost station
(P =0.90, p < 0.001 for G. ruber and r*=0.53, p<0.001 for G. sacculifer excluding PP9, and r*=0.25 and
p <0.001 for G. ruber and r»=0.53 and p <0.001 for G. sacculifer including PP9 (Figures 4 and 5)). With
increasing temperatures, Sr/Ca values increase, except for the northernmost transect (*=0.86, p < 0.001
for G. ruber and r*=0.34, p <0.001 for G. sacculifer without PP9, and r*=0.06 and p=0.09 for G. ruber
and *=0.02 and p=0.93 for G. sacculifer including PP9). The correlation between carbonate ion content
(CO%’) and Mg/Ca is not significant for either species, whether the northernmost transect is included or
excluded (r*=0.02 and p=0.54 for G. ruber and r*=0.25 and p=0.006 for G. sacculifer excluding PP9 and
r?=0.04 and p=0.24 for G. ruber and r*=0.13 and p=0.06 for G. sacculifer including PP9). A significant
negative correlation is observed between Sr/Ca and CO2~ for both scenarios and both species (r* =0.94,
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Figure 6. Na/Ca values for G. ruber and G. saccullfer, plotted against chamber ~ OPserved (=061, p<0.001 for G.
number, with 95% confidence interval. The chamber number is calculated ruber and r*=0.99, p <0.001 for G.
based on the measured shell diameter [Hemleben and Bijma, 1994; Brummer  sgcculifer). Including the northern-

et al, 1987]. most transects does not result in a

significant correlation between size and salinity (* = 0.06, p=0.8 for G. ruber and r* =0.0003, p = 0.92 for G.
sacculifer).

4, Discussion

Currently, few Na/Ca values are reported for planktonic foraminifera to compare our data to, but overall
values correspond well to those reported before for G. sacculifer [Delaney et al., 1985; Allen et al., 2016], G.
ruber (pink) [Allen et al, 2016] and the benthic foraminiferal species Ammonia tepida [Wit et al., 2013],
albeit with an offset toward higher absolute values. Both planktonic foraminifera and A. tepida are known
to build shells relatively low in minor and trace elements compared to the composition of large benthic
foraminifera [Lea et al, 1999; Munsel et al., 2010]. Measured Mg/Ca and Sr/Ca are similar to values
reported previously for G. ruber and G. sacculifer (e.g., from a sediment trap study reporting values for
10 planktonic species in Anand et al. [2003], Fallet et al. [2010], Hénisch et al. [2013], Kisakiirek et al.
[2008], and Steinhardt et al. [2014]).
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Figure 7. Salinity (transects) versus size for G. ruber and G. sacculifer; r?
was calculated using weighted average size values per salinity.
Horizontal error bars for salinity indicate values at the start and end of Na/Ca values between chambers was
each transect. The dotted (light blue) trend lines show the non-significant  up to 14%, which is comparable to or
correlations between salinity and size, when including the northernmost  smaller than that observed for Mg/Ca
transect. in other studies using LA-(Q)-ICP-MS

[e.g., Duefas-Bohdrquez et al., 2009; De
Nooijer et al., 2014a]. So far, there is no consensus on the cause of this small-scale variability in com-
position for other elements. Environmental variability cannot account for (all) element variability between
single-chamber analyses. Possibly, the same process responsible for small-scale heterogeneity (i.e., band-
ing) in Mg/Ca [e.g., Eggins et al., 2004] could also partially explain the observed scatter in Na. Since the
calcite precipitated during each chamber addition also envelops the rest of the foraminiferal shell, higher
Na concentrations associated with earlier stages of chamber addition could offset element/Ca ratios
between chambers. In this case small changes in thickness of these bands could affect elemental ratios
measured at a single-spot or between chambers due to the nature of foraminifera to add chambers.
However, within the ablation profiles no evidence for such banding was observed and studies specifically
addressing the microscale distribution in a smaller scale than laser ablation of Na in a calcite foraminifer
shell are necessary to understand the potential role of the observed small-scale variability in element/Ca
ratios.
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Figure 8. Our Na/Ca data for G. sacculifer and G. ruber, compared to the benthic species Ammonia tepida from culturing
(Na/Ca=0.22 xS — 0.75 [Wit et al., 2013]), values from culture experiments for G. sacculifer from Delaney et al. [1985]

and culture study results for G. ruber (pink) and G. sacculifer from Allen et al. [2016]. Averages (large dots), standard errors,
linear regressions (straight lines), and the 95% confidence interval (shaded areas) are also indicated. The error bars of Allen
et al. [2016] are based on the largest % difference among three consistency standards or the 1o of replicate
measurements.

Foraminiferal sizes do not correlate with measured Na/Ca ratios in this study. However, for G. sacculifer calcu-
lated chamber numbers do show a correlation with Na/Ca ratios (Figure 6). The apparent correlation between
Na/Ca ratios and chamber position suggests that chamber position, rather than absolute size, might influence
Na incorporation. However, even though a significant negative trend is observed between chamber number
and Na/Ca, many other factors covary as well along the Red Sea (e.g., salinity, temperature, and CO%’). Also,
although Wit et al. [2013] did show a correlation between size and Na/Ca for A. tepida, they argued that this
correlation is spurious. Since final size of the cultured foraminifera changed with salinity, it was argued that
this was an indirect relation, with salinity being the main contributor to the observed trend in size versus
Na/Ca. This observation may also explain the trend in Na/Ca with chamber number in our data set. As all
our specimens were collected from surface waters using a plankton pump, we can exclude such trends
related to gradual changes with water depth during foraminiferal life (ontogenetic vertical migration).

Comparing the Na/Ca-salinity relationship of both planktonic species with the previously reported benthic
species, A. tepida [Wit et al., 2013] shows a positive response of Na incorporation for all species with salinity
(Figure 8), albeit that the sensitivity reported here is higher for the planktonic than for the benthic species. For
the culture study with Globigerinoides ruber (pink) and G. sacculifer of Allen et al. [2016], as well as the benthic
A. tepida [Wit et al., 2013], the correlations of this study show a slight offset toward higher absolute values and
a significantly steeper slope (one-way analysis of covariance, p < 0.5) (Figure 8). Also, Allen et al. [2016] found
that only the relation between salinity and Na/Ca for G. ruber is significant although different absolute values
for G. ruber and G. sacculifer were measured. Potential explanations for the observed offset between these
studies include (1) the limited overlap of salinity intervals studied in these studies and with the benthic A.
tepida, (2) different biomineralization controls or life stage, or (3) an effect of carbonate chemistry and
temperature in the field-collected specimens.
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First, there is only limited overlap in salinity intervals between this study (from 36.8 to 40.1 in this study and
from 30.0 to 38.6 in Wit et al. [2013]). This complicates comparing responses to salinity (Figure 8). However,
recent culture results on the same species suggest that this proxy for G. ruber can be extended to a salinity
of 33 [Allen et al., 2016], albeit with a less steep slope.

Second, partition coefficients (D, = Na/Caforaminifer/Na/Caseawater in mmol/mol) of this study (Dy,=0.18-
0.25x1073) are slightly higher than for Wit et al. [2013] (Dn,=0.12-0.16 X 1073) and Allen et al. [2016]
(Dna=0.1 % 1073, but comparable to inorganic precipitation experiments (0.07-0.20 x 10 — 3) [Kitano et al.,
1975; Ishikawa and Ichikuni, 1984, Okumura and Kitano, 1986], suggesting no major impact of biology.
However, although the two planktonic species here are comparable in their calibration (up to a salinity of
~39.6, Figure 3), we do observe a difference with results presented by Allen et al. [2016]. This difference
between our field-collected G. ruber and G. sacculifer and their cultured specimens may be caused by addi-
tional controls in the field environment (e.g., the effect of a particular combination of salinity, temperature,
and carbonate chemistry in the Red Sea), which is discussed later in this section, or a difference in size/life
stage [e.g., Anand et al., 2003]. At different foraminiferal developmental stages, also the partitioning of ele-
ments from seawater to calcite could change [e.g., Duerias-Bohdrquez et al., 2011]. Furthermore, terminal cal-
cification features (e.g., cortex or crust) for many planktonic species are found to have a different structure
and thickness and differ in Mg and probably also other elements [e.g., Niirnberg et al., 1996; Steinhardt
et al.,, 2015]. Also, when applying a linear correlation for the combined planktonic species of this study, the
extrapolated calibration intersects the Y axis (i.e., at a foraminiferal Na/Ca of 0 mmol/mol) at a salinity of
20.7, implying that Na/Ca decreases more strongly with salinity below ~36.5. Extrapolating the correlation
from the benthic foraminiferal culturing study [Wit et al., 2013], results in a zero Y axis intercept at a salinity
approximating zero, suggesting that incorporation of Na as a function of salinity follows a linear trend over
a large salinity range and, moreover, is consistent with inorganic precipitation experiments [Kitano et al.,
1975; Ishikawa and Ichikuni, 1984]. The observed offset between species and between benthic and plank-
tonic foraminifera from this study might be caused by differences in biomineralization controls. Possibly,
Na incorporation in benthic foraminifera resembles inorganic partitioning, whereas biomineralization in
planktonic species is offset by a process responsible for a slight enrichment in Na during chamber
formation. However, this contradicts with the study by Allen et al. [2016] for the same planktonic species,
in which the absolute values are similar to A. tepida [Wit et al.,, 2013]. Also, the presence of symbionts in
the studied planktonic species, in contrast to the benthic A. tepida studied by Wit et al. [2013] might affect
Na partitioning. Photosynthesis by foraminiferal symbionts influences uptake of inorganic carbonate spe-
cies, thereby potentially enhancing calcification and affecting element incorporation [Rink et al., 1998,
Kéhler-Rink and Kiihl, 2005; De Nooijer et al., 2014b]. This does not, however, explain the difference between
our results and those of Allen et al. [2016].

The most probable explanation for the different Na/Ca calibrations between our results and those from
previous studies is that the Red Sea has many covarying factors and an unusual environmental setting
compared to those applied in culturing studies. Also, several parameters from the sea water carbonate
system (calcite saturation state (Q), DIC, and alkalinity) from the Red Sea differ markedly from the open
ocean, since these factors increase with increasing salinities [e.g., Sarmiento and Gruber, 2006], favoring
calcium carbonate shell precipitation and possibly enhance incorporation of Na and other elements as
a result of enhanced growth rates. Although observed trends in Na incorporation can be fully explained
using changes in Na and Ca activities [Wit et al., 2013], a (minor) role of carbonate chemistry cannot be
fully excluded. Recent culture results suggest a positive trend in Na/Ca values with increasing [CO§’]
[Allen et al., 2016], which is opposite of the trend observed here. Still, the range in carbonate ion concen-
trations sampled here is relatively limited. Comparing the carbonate ion content in the study of Wit et al.
[2013], on average 246.5 umol/kg seawater, which is much higher than that of the Red Sea (219.5 pmol/kg
seawater), would imply a stronger impact on the benthic foraminiferal values, which is not observed here.
Temperature may also have an effect on Na incorporation. Recent culture results using the same two
planktonic species cultured in different temperatures, carbonate chemistry, and salinities suggest that
temperature has a negative effect on Na/Ca values [Allen et al., 2016]. The negative trend suggested by
Allen et al. [2016] between temperature and Na/Ca might have resulted in a slightly steeper slope com-
pared to the Wit et al. [2013] data and Allen et al. [2016], but this offset is not enough to explain the
overall observed difference. Moreover, the only significant correlation between environmental variables
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and Na/Ca in cultured planktonic foraminifera [Allen et al., 2016] was with salinity, which is in line with Wit
et al. [2013].

Still, because of the many covarying factors compared to culture experiments, it remains challenging to fully
compensate for all potential additional effects in a natural environment like the Red Sea. The correlations sug-
gested between Na/Ca values, temperature, and carbonate ion content are more likely the consequence of
environmentally covarying factors (e.g., carbonate chemistry and salinity) (Figure 3).

4.1.2. Na/Ca in G. ruber versus G. sacculifer

Results show a significant positive correlation between Na/Ca and salinities for G. ruber, but not for G. saccu-
lifer (Figure 3). This is similar to the results found by Allen et al. [2016], also showing that only Na/Ca in G. ruber
has a significant positive correlation with salinity. The observed difference between these two species could
be due to Na/Ca for G. sacculifer simply not being correlated to salinity or to a larger uncertainty in the regres-
sion in the Allen et al. [2016] study. Also clearly visible is the fact that average Na/Ca values in foraminifera
from the northernmost transect for G. sacculifer strongly deviate from the observed overall trend and from
the trend observed for G. ruber. This offset in the northernmost location is observed not only for Na/Ca but
also for Mg/Ca and Sr/Ca, as well as shell size for both species studied. In addition, at this transect the distri-
bution of element concentrations also displays slightly more variability and/or clustering into two groups,
especially for the Na/Ca in G. ruber and Sr/Ca in G. sacculifer (Figures 3-5, 7, S3, and S8). The overall difference
of the last transect suggests that the foraminifera sampled are somehow not representative for the environ-
ment they were collected from. Possible explanations for these deviating values and distribution of element
concentrations in the northernmost transect are the following: (1) postmortem inorganic overgrowths
[Hoogakker et al., 2009] and/or (2) advection of an expatriate population/specimens [Auras-Schudnagies
et al., 1989] and/or (3) prevalence of specimens with a different life stage in this area and/or (4) high temporal
or spatial environmental variability in this part of the Red Sea.

Inorganic overgrowths are known to affect elemental ratios measured on foraminifera from core top material
[Hoogakker et al., 2009]. However, since all foraminifera were collected from surface waters using plankton
pumping, diagenesis can be ruled out as a potential source for the observed offset. Upon collection samples
were directly washed and stored to minimize potential impacts on the foraminiferal calcite elemental
composition after sample collection (see section 2). Hence, the reported Na/Ca, Mg/Ca, and Sr/Ca represent
the primary signal as precipitated by the foraminifera while still living.

Second, the difference in (monsoonal) intensity, source, and distribution of surface water currents, as already
found by Auras-Schudnagies et al. [1989], or exchange with another water mass might explain the distribution
of species in an area. Using stable oxygen isotopes, Auras-Schudnagies et al. [1989] discovered that the
species Globorotalia menardii survives transport from the south to the north of the Red Sea but stops
calcifying during this journey. If this were also true for G. ruber and G. sacculifer, this would also explain the
larger sizes in the northernmost transect, corresponding to the larger sized foraminifera in the southernmost
transect. Also, the lower Na/Ca values and Mg/Ca values in the northernmost transect would respectively
indicate lower salinities and colder temperatures from the southern Red Sea. The change in monsoonal
strength between summer and winter does not affect salinities noticeably (World Ocean Atlas (WOA) 2001)
[Boyer et al., 2005] and maximum temperatures only become ~2°C lower at the southernmost position
[Boyer et al., 2005]. Therefore, the deviating values could not be fully explained by a change in monsoonal
strength. Moreover, one would expect similar effects in all of the transects in between, which is not observed.

Another, and to our opinion more probable source for expatriates, involves inflow from the less saline
Mediterranean, which would introduce an anti-Lessepsian population into this area. Such a population
would be influenced by geochemical signals recorded in the Suez Canal (with salinities of to 45) and/or
the eastern Mediterranean (S=~20.8, T=~38.9, WOAO1 [Boyer et al. 2005]). Even though transport through
the Suez Canal is found to be mostly from south to north [e.g. Por, 2012], the flow through the Bitter
Lakes does change its flow direction from July to September [Biton, 2015]. This is confirmed using ocean
modeling and environmental observations [e.g., Golani, 1998]. The presence of two living G. ruber (pink)
specimens in our northernmost sample also suggests inflow from north to south. This species has not been
observed in the Red Sea area since 120,000 years B.P. [Thompson et al., 1979] but is still common in the
Mediterranean. Being expatriated from the Mediterranean, these foraminifera would also (partially) be
affected by lower salinities and temperatures, which is in line with the observed lower Na/Ca and Mg/Ca
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values (Figures 3-5). Furthermore, temperatures decrease very sharply northward of the last sampled trans-
ect, compared to the rest of the Red Sea (Figure 1b), potentially indicating inflow from colder Mediterranean
Sea water. The overall larger shell sizes found in the northernmost transect also suggest a later moment in
ontogeny compared to the specimens sampled on the other transects (Figure 7), which is in line with a popu-
lation largely being made up of expatriates.

Third, even though the specimens analyzed here were selected based on shell size, with the larger ones being
more suitable for analyses and a size fraction <75 um not taken into account, this does not explain the overall
differences in element uptake. Although the “larger” sized foraminiferal assemblage could explain part of the
offset (Figures 7 and 8), the observed difference is much larger. Moreover, not all elements showing contrast-
ing elemental ratios are also correlated to shell size. Hence, shell size alone cannot explain the observed offset
for the northernmost transect.

Fourth, it is unlikely that all specimens collected at the northernmost transect derive from a specific event such
as upwelling or a local rainfall and freshwater event, since upwelling typically occurs in the southern Red Sea
and rainfall is extremely low in this area (3 mm/yr) [Zahran, 2010]. Still, since the population of analyzed forami-
nifera for each transect was collected over a distance of approximately 225 km and foraminiferal densities
(specimens per liter seawater) were not necessarily evenly distributed along these transects, element ratios
might be biased toward specific intervals. Short-lived events and or local phenomena might hence be dispro-
portionally represented. A detailed temperature record obtained during the cruise (Figure 1b) shows that at least
temperature increased gradually over the transect (Figure 1). Salinities within this transect vary no more than
0.02 units, which would only explain an offset of 0.01 mmol/mol in Na/Ca, based on the calibration in Figure 3.

The deviating sizes, Mg/Ca, Sr/Ca, and Na/Ca values of the foraminifera at the northernmost transect, in con-
junction with the observation of living G. ruber (pink) specimens, indicating inflow from the colder, less saline
Mediterranean, argue for excluding the northernmost transect from the calibrations. This results in similar,
positive, and significant correlations for both planktonic species, respectively, Na/Ca (mmol/mol) =0.57 x S—
1238 (=091, p < 0.001) for G. ruber and Na/Ca = 0.60 x S-13.49 (r* = 0.999, p < 0.001) for G. sacculifer.

4.2. Mg/Ca and Sr/Ca

Values for Mg/Ca of G. ruber closely correspond to those given by Kisakirek et al. [2008] and are somewhat
lower than in the sediment trap study (for 10 planktonic species) by Anand et al. [2003]. For the reported sali-
nities, G. ruber Mg/Ca values are comparable to Honisch et al. [2013] and Kisaktirek et al. [2008]. Globigerinoides
sacculifer shows somewhat lower Mg/Ca values compared to G. ruber, which is in line with previous observa-
tions [Anand et al., 2003; Niirnberg et al., 1996]. For the measured temperatures and salinities, Mg/Ca values of
G. sacculifer are somewhat lower than that measured by Niirnberg et al. [1996], Anand et al. [2003], Hénisch
et al. [2013], and Duerias-Bohdrquez et al. [2009]. In our data set, Mg/Ca values for both species are signifi-
cantly positive correlated to temperature and negative to salinity. For reasons mentioned in section 4.1.2,
we think that specimens collected at the northernmost transect might not be representative for the environ-
ment they were collected in. When excluding this transect from the regressions, this results in nonsignificant
correlations between Mg/Ca and temperature as well as salinity for both species. As salinity and temperature
both positively affect foraminiferal Mg/Ca [e.g., Duefias-Bohdérquez et al., 2009; Anand et al., 2003; Wit et al.,
2013] and are inversely correlated in the Red Sea, their influence on the specimens measured here counteract
the incorporation of Mg. Even though the relative impact of salinity on Mg/Ca is small (respectively 0.11 mmol/
mol per salinity unit [Duefas-Bohdrquez et al., 2009, and references therein], 0.15 mmol/mol per salinity unit
[Hénisch et al., 2013], and 0.16 mmol/mol per salinity unit [Kisakiirek et al., 2008]), this could explain the
absence of a significant correlation between temperature and Mg/Ca in our data set when excluding PP9.
Accordingly, when applying species-specific salinity corrections for a salinity of 35 on the Mg/Ca ratios, the
calibrations between temperature and Mg/Ca ratios become steeper and also (more) significant, also when
including the northernmost transect (respectively r*=0.51 and p < 0.001 for G. ruber and r*=0.88 and
p < 0.001 for G. sacculifer without PP9 and r*=0.69 and p < 0.001 for G. ruber and r>=0.96 and p < 0.001 for
G. sacculifer with PP9) [Kisakdirek et al., 2008; Hénisch et al., 2013] (Figure 9). In total, Mg/Ca values after the sali-
nity corrections decreased by 9% (south) to 31% (north) for G. ruber and by 8.5% (south) to 34.5% (north) for G.
sacculifer. This implies that although Mg/Ca values in the sediment are not well connected to temperature
[Hoogakker et al., 2009], surface water temperatures are well registered by foraminiferal Mg/Ca values.
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brations of Kisaktirek et al. [2008] for G. ruber and Hénisch et al. [2013] for
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indicate temperatures recorded at the start and end of each transect. The
vertical error bars are the standard errors of the mean, except for the Allen
et al. [2016] data, where they represent the long-term relative standard

deviation. Calibrations from other studies are also added [Kisakirek et al.,

2008; Anand et al., 2003; Niirnberg et al., 1996; Allen et al., 2016].

Also, size could have an effect on the
Mg/Ca, as well as on the Sr/Ca ratio. It
was found by Elderfield et al. [2002] that
Mg/Ca increases with size whereas
Sr/Ca decreases with size for both G.
ruber and G. sacculifer. However, this
would only account for a maximum
Mg/Ca difference of 0.49 mmol/mol for
G. ruber and 0.16 mmol/mol for G. saccu-
lifer in the size ranges measured in this
study. Since sizes decrease toward the
north as well as temperatures and
Mg/Ca values, one would expect the size
effect to result in a steeper relation add-
ing to the correlation with temperature,
which is not the case. Hence, we
refrained from correcting for size here.

According to Steinke et al. [2005], mor-
photypes could influence the Mg/Ca
composition with ~0.37 mmol/mol dif-
ference between the G. ruber in a strict
sense (sensu stricto) and in a broad
sense (sensu lato) morphotype. We
were not able to distinguish between
morphotypes among G. ruber in our
samples as distinctive morphological
traits are restricted to terminal (repro-
ductive) stages typically found in sedi-
ments, while our samples are from a
growing population of late neanic to
late adult (nonreproductive) stages
[Brummer et al., 1987]. However, as also
suggested by Steinke et al. [2005], either
depth habitat or seasonality plays a role
in the distribution of these subspecies.
The G. ruber in a strict sense morpho-
type records higher temperatures (Mg/
Ca and 5'®0) than G. ruber in a broad
sense. Since the in a strict sense mor-
photype is identified to dwell in the
upper 30m of the water column and
the in a broad sense morphotype at
greater depths [Wang, 2000], our sur-
face water specimens most likely mainly

consists of the G. ruber in a strict sense morphotype. Therefore, it is very unlikely that different morphotypes

influenced our data.

Obtained Sr/Ca values are similar or somewhat higher compared to those reported in previous studies [Lea
et al., 1999, Dissard et al., 2010; Wit et al., 2013; Duerias-Bohdrquez et al., 2009; Kisakiirek et al., 2008; Russell
et al., 2004]. However, the observed negative trend with salinity, both with and without the northernmost
transect, differs remarkably from other studies, previously suggesting a (sometimes slightly) positive correla-
tion [Dissard et al., 2010; Wit et al., 2013; Duerias-Bohdrquez et al., 2009, Lea et al., 1999, Kisakdirek et al., 2008].
This implies that other factors along the Red Sea from south to north must somehow override an impact of
salinity on Sr incorporation. Other potential known impacts for Sr incorporation are (1) sea water carbonate
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chemistry, (2) temperature, salinity, and size, (3) sea water Sr/Ca values, and (4) sea water Ca to carbonate
ion stoichiometry.

First, carbonate chemistry (dissolved inorganic carbon (DIC) and total alkalinity (TA)) is found in controlled
growth experiments to affect Sr incorporation positively with higher TA or DIC values [Dissard et al., 2010;
Duerias-Bohdrquez et al., 2009]. In general, with increasing salinities, DIC and seawater alkalinity also increase
[Sarmiento and Gruber, 2006] and thus higher DIC, alkalinity, and related carbonate ion values are found in the
north (Table 1). This would therefore result in increased Sr incorporation toward the north, which is opposite
to the observed negative correlation.

Second, temperature has been suggested to impact foraminiferal Sr/Ca values as well [Kisakiirek et al., 2008;
Lea et al., 1999]. The incorporation of Sr was shown to increase with increasing temperatures, with a slope for
G. ruber of A(Sr/Ca)/AT=0.01 mmol/mol/°C [Kisakirek et al., 2008]. The difference in temperature from south
to north is 5.3°C, which would result in a decrease of 0.053 mmol/mol Sr/Ca (and without northernmost
transect 4.2°C, resulting in a difference of 0.042 mmol/mol). The difference in temperature across the Red
Sea could hence account for not more than 10% of the observed decrease in Sr values toward the northern
Red Sea. Also, salinity has been suggested to have a small impact on Sr/Ca ratios, with an increase of
0.008 mmol/mol Sr per °C [Duefas-Bohérquez et al., 2009, and references therein]. However, an opposite
trend is observed between salinity and Sr/Ca in these samples, suggesting an overriding effect of another
variable on the incorporation of Sr. The difference in salinity between south and north is 3.3, which would
only account for an increase of 0.03 mmol/mol Sr/Ca from south to north. The effect of size on Sr/Ca is
negligible: within the size range measured in this study, the Sr/Ca ratio could differ 0.02 mmol/mol for G. ruber
and 0.03 mmol/mol for G. sacculifer [Elderfield et al., 2002].

Third, even though Sr is considered to be a conservative element in seawater (residence time 4.9 x 10° years),
changes in Sr/Ca values are observed in both depth profiles as well as in aging surface waters. Acantharians,
abundant marine planktonic protists, incorporate Sr into their skeletons and cysts in the form of celestite
(SrSO,), thereby transporting Sr from the sea surface toward deeper layers of the ocean and/or seas where
Sr is enriched through the subsequent remineralization/dissolution of these frustules [Bernstein et al., 1987;
North, 1974; Odum, 1951; Hurd and Spencer, 1991]. The Sr concentration in the Red Sea surface seawaters
could thus gradually deplete in Sr as it slowly flows from Bab el Mandeb toward the north. De Deckker
[2004] calculated that with a hypothetical 10 specimens per liter, up to 7.6 ug of Sr would be taken up in
one generation of acantharids. For the Red Sea, assuming two generations per year and a residence time
of Red Sea water of 36 years, this would remove up to ~547 ug/L [Cember, 1988; De Deckker, 2004] and hence
result in an ~7% offset in Sr concentrations. With a constant Ds, this would result in gradually lower forami-
niferal Sr/Ca values, with similar amplitude as observed. A potential temperature effect could thus be
enhanced by a gradual Sr depletion toward the north. Still, no actual proof exists for such offsets being pre-
sent in Red Sea surface water and a role of acantharians therein.

Fourth, also, the calcium to bicarbonate ratio is known to affect Srincorporation [Nehrke et al.,, 2007]. The [Ca**]:
[CO27] stoichiometry is known to affect growth rate of calcite [Nehrke et al.,, 2007, with highest growth rates fora
CaCO? ratio close to 1. Growth rates, on the other hand, influence the partition coefficient of Srinto calcite posi-
tively. However, one would not expect this ratio to change significantly in sea water as both Ca and carbonate
ion concentration are intimately tied through carbonate production. Either way, the negative correlation
between salinity and foraminiferal Sr/Cais sufficiently significantin the Red Sea to warrant further investigation.

4.3. Sodium as a Direct Proxy for Salinity and Future Application

Even though Na/Ca values of calcite of living planktonic species from the Red Sea show a promising signifi-
cant linear correlation with salinity for either both species (G. sacculifer and G. ruber) or only G. ruber, several
issues need further research. Since the plankton pump samples are collected over intervals of approximately
225 km along which foraminiferal densities most likely varied, specimens analyzed might not have produced
their shells at the average recorded salinity of that transect (Figure 1). An offset from the average salinity
toward the minimum or maximum salinity of a transect could account for at most a 0.62 mmol/mol offset
in Na/Ca within a transect (PP2: difference minimum and maximum salinity is 1.15). Most transects cover
much less change in salinity, varying from 0.02 to 0.5 between the minimum and maximum salinity, and
could account for at most 0.27 mmol/mol of the observed Na/Ca ranges. Additional controlled growth
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experiments isolating individual parameters are necessary to reduce uncertainties in planktonic Na/Ca and
potentially reconcile observed differences between cultured and field-derived calibrations. Furthermore,
for the wider applicability of this proxy, it is necessary to test whether the correlation, and offset with the ear-
lier reported calibration, is specific to the Red Sea area. Bijma et al. [1990a] showed that G. sacculifer grows
between salinities of 19-48 and G. ruber between 19 and 50, making an extension of the salinity range for this
Na/Ca-salinity proxy theoretically possible. Recent results from a culture study for the same species [Allen
et al., 2016] show that a relationship to salinity for G. ruber holds down to salinities of 33. Extrapolation to
the natural environment would need to be verified using samples from outside the Red Sea.

The large intraspecimen and interspecimen variability is currently limiting the precision of Na-based salinity
reconstructions. The observed variability in Na/Ca between individuals and/or foraminiferal shell chambers
might be considerable but is in line with previous studies using single-spot foraminiferal shell analyses
[e.g., Reichart et al., 2003; Wit et al., 2013; Duerias-Bohdrquez et al., 2009; Dissard et al., 2010; De Nooijer
et al, 2014a; Sadekov et al, 2008]. The uncertainty in reconstructed salinities associated with the here
established Na/Ca to salinity calibration is still considerable at ~0.8 and ~1.2 for G. ruber and G. sacculifer,
respectively (95% confidence intervals of calibration in central part of the calibration). This uncertainty does
not affect reconstructed relative changes, which would mainly suffer from uncertainties in Na/Ca values at a
specific interval. The standard errors of the averages are relatively low due to the number of specimens
measured in this study. By increasing the number of specimens analyzed, the precision (not accuracy) of
these reconstructions improves considerably. Based on the measured SD, the amount of specimens needed
for estimating past salinity better than 0.1 unit (SE=~0.05 mmol/mol) is between 14 and 37 for G. ruber and
between 7 and 28 for G. sacculifer (supporting information Figure S9). Within the open ocean salinity
variations are, however, small and other analytical approaches and or calibrations would be necessary.
However, application of Na/Ca to areas experiencing large salinity changes, such as more marginal settings
and estuaries, is with the existing calibrations now within reach.

5. Conclusions

This study represents the first field calibration on incorporation of Na in foraminiferal calcite as a potential
proxy for salinity. The Red Sea area is particularly suitable for this purpose, since it covers a broad salinity
range in a steep gradient within the same water mass. Values for Na/Ca of the planktonic foraminifera G. ruber
(white) and G. sacculifer collected alive from Red Sea surface waters correlate positively and significantly with
salinity. Furthermore, absolute values and slopes are similar for both species. Based on (1) the deviating
Na/Ca, Mg/Ca, Sr/Ca, (2) the larger size of the specimens, and (3) the occurrence of G. ruber (pink), it is
hypothesized that specimens in the northernmost transect are likely expatriated (i.e., from the Eastern
Mediterranean) and should therefore be excluded from the Na/Ca-salinity calibration. However, Na/Ca values
differ significantly from previously reported values for a cultured benthic species and for the planktonic spe-
cies G. sacculifer and G. ruber (pink), which may be due to differences in biomineralization controls between
these groups or the additional effects of covarying environmental variables in the Red Sea. Due to the oppos-
ing gradients in salinity and temperature in the Red Sea, the absence of a correlation between Mg/Ca values
and temperature is an indication of the dampening effect of salinity over temperature on the incorporation of
Mg into planktonic foraminiferal calcite. As was already found for other elements in previous studies, intras-
pecimen and interspecimen variability in Na/Ca (as for other elements) is considerable even though the aver-
age is very accurate, which could result in relatively large uncertainties in salinity reconstructions when not
measuring sufficient specimens. Future research should therefore focus on the cause(s) for the observed
variability between chambers, should quantify the impact of other environmental variables on Na incorpora-
tion, include other species, and investigate Na incorporation across planktonic foraminiferal life stages. Based
on this study, incorporation of Na in foraminiferal calcite appears a valuable proxy for salinity, although
species-specific calibrations seem necessary.
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