

This is a pre-copyedited, author-produced version of an article accepted for publication, following peer review.

Liang, J.; Richter, N.; Xie, H.; Zhao, B.; Si, G.; Wang, J.; Hou, J.; Zhang, G.; Russell, J.M. (2023). Branched glycerol dialkyl glycerol tetraether (brGDGT) distributions influenced by bacterial community composition in various vegetation soils on the Tibetan Plateau. *Palaeogeogr. Palaeoclimatol. Palaeoecol. 611*: 111358. DOI : 10.1016/j.palaeo.2022.111358

Published version: <u>https://dx.doi.org/10.1016/j.palaeo.2022.111358</u>

NIOZ Repository: http://imis.nioz.nl/imis.php?module=ref&refid=361053

[Article begins on next page]

The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the <u>Open Access Movement</u>, and the <u>Open Archive Initiative</u>. Each publication should be cited to its original source - please use the reference as presented.

1	Branched glycerol dialkyl glycerol tetraether (brGDGT)
2	distributions influenced by bacterial community composition
3	in various vegetation soils on the Tibetan Plateau
4	Jie Liang ^{1,2} , Nora Richter ³ , Haichao Xie ¹ , Boyang Zhao ² , Guicai Si ⁴ , Jian
5	Wang ⁵ , Juzhi Hou ^{1*} , Gengxin Zhang ^{1*} , James M. Russell ²
6	1. State Key Laboratory of Tibetan Plateau Earth System, Environment and
7	Resources (TPESER), Institute of Tibetan Plateau Research, Chinese
8	Academy of Sciences, Beijing 100101, China
9	2. Department of Earth, Environmental, and Planetary Sciences, Brown
10	University, Providence 02912, USA
11	3. NIOZ Royal Institute for Sea Research, Department of Marine Microbiology
12	and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, The
13	Netherlands
14	4. Lanzhou Center for Oil and Gas Resources, Institute of Geology and
15	Geophysics, Chinese Academy of Sciences, Lanzhou, 730000, China
16	5. Land and Resource College, China West Normal University, Nanchong,
17	Sichuan, 637002, China
18	
19	
20	
21	* Corresponding author:
22	Gengxin Zhang, zhangg@itpcas.ac.cn
23	Juzhi Hou, houjz@itpcas.ac.cn
24	

25 Abstract

Branched glycerol dialkyl glycerol tetraether (brGDGT) lipids are membrane-26 27 spanning lipids of some bacteria that are sensitive to environmental gradients, which 28 makes it possible to use brGDGT proxies to estimate changes in environmental 29 temperatures in paleoenvironmental studies. However, it is currently unknown 30 whether the observed correlations of temperature and brGDGT distribution in natural 31 samples are driven by directly changing bacterial membrane fluidity and permeability, 32 or by a shift in the bacterial community. Here we present brGDGT distributions along 33 an elevation gradient (704–3760 m) in the southeastern Tibetan Plateau, spanning 34 gradients in temperature and vegetation. Analysis of brGDGTs shows that their 35 distributions are significantly influenced by vegetation-intermediated soil 36 temperature, in addition to mean annual air temperature, soil pH, and other 37 environmental variables. Different vegetation types contribute to soil temperature and 38 bacterial community changes. Consequently, these different groups of bacteria result 39 in changes in the relative abundance of brGDGTs. Our results show that temperature 40 and pH indirectly influence cyclopentane-containing brGDGTs via changes in the 41 bacterial community. Genetic analyses reveal that in addition to Acidobacteria, 42 Proteobacteria, Nitrospira, Bacteroidetes, Actinobacteria, and Verrucomicrobia could 43 be potential candidates as brGDGT producers. These results indicate that changes in 44 the vegetation and bacterial community should be taken into consideration when 45 applying brGDGT proxies to reconstruct past changes in climate. 46

47 Keywords: vegetation; soil brGDGTs; MBT'; Tibetan Plateau; paleoclimate;
48 bacterial community

1. Introduction

50	Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane-
51	spanning lipids that are ubiquitous in the nature world (<u>Raberg et al., 2022</u>), including
52	soils (Wang and Liu, 2021; Weijers et al., 2007; Yang et al., 2014a), lakes (Dang et al.,
53	2018; Russell et al., 2018; Zhao et al., 2021), as well as loess and peat bogs (Naafs et
54	al., 2017b; Wang et al., 2020). BrGDGT distributions correlate with mean annual air
55	temperatures (hereafter MAAT) or growing season temperatures and pH leading to the
56	development of both local and global empirical calibrations for different
57	environmental settings (Crampton-Flood et al., 2020; De Jonge et al., 2014; Naafs et
58	al., 2017a; Peterse et al., 2012). This has led to the application of quantitative
59	brGDGT reconstructions to continental paleoclimate records spanning the Holocene
60	(Wang et al., 2021) and longer geologic timescales (Crampton-Flood et al., 2021;
61	<u>Inglis et al., 2017</u>).
62	Previously, the distributions of brGDGTs were analyzed by high-performance
63	liquid chromatography-mass spectrometry (HPLC-MS) using one Prevail Cyano
64	column (here termed the "old method"). Improved chromatographic techniques using
65	four Alltima silica columns allowed for the separation and quantification of 5- and 6-
66	methyl brGDGTs (De Jonge et al., 2014; Hopmans et al., 2016; hearafter termed "new
67	method"), a hybrid 5/6-methyl isomer (Weber et al., 2015) and H-shaped brGDGTs
68	(Baxter et al., 2019; Naafs et al., 2018; Tang et al., 2021). Evaluation of the global soil
69	dataset found that the relative abundance of 6-methyl brGDGTs was influenced
70	predominantly by pH (<u>De Jonge et al., 2014</u>). Although the latest brGDGT-MAAT
71	calibrations excluding 6-methyl brGDGT have improved the correlation coefficient
72	(R^2) and root mean square error (RMSE), there is still a large warm bias in the

73	calibration when applied to specific regions (Chen et al., 2021; Wang and Liu, 2021).
74	This suggests other natural (e.g., vegetation, soil type, and water content) and human
75	factors (e.g., agriculture and management) may affect soil brGDGT abundances and
76	therefore temperature calibrations. For example, Liang et al. (2019) found that
77	brGDGT distributions in vegetated soil are sensitive to MAAT, whereas brGDGTs in
78	bare soil are mainly controlled by water content. It is well known that vegetation
79	change is critical component to modeling Holocene temperature evolution (Thompson
80	et al., 2022), however, we have a limited understanding of how changes in vegetation
81	may affect the brGDGT-paleothermometer.
82	It is increasingly recognized that changes in the source organism community
83	can directly influence these biomarker composition (De Jonge et al., 2021; De Jonge
84	et al., 2019; Liao et al., 2021). However, most producers of brGDGTs have not been
85	identified, hampering our understanding of how brGDGT production varies with
86	environmental changes. Analyses of brGDGTs in Dutch peat bogs and subsequent
87	culture experiments suggest that brGDGTs are synthesized by heterotrophic bacteria
88	of the phylum Acidobacteria (Sinninghe Damsté et al., 2018; Sinninghe Damsté et al.,
89	2014; Sinninghe Damsté et al., 2011). Although these are the only known brGDGT-
90	producers, other studies suggest that a broader range of microorganisms are involved
91	in brGDGT production (De Jonge et al., 2019; Sinninghe Damsté et al., 2018).
92	The major challenges limiting the application of brGDGT proxies to
93	paleorecords are (1) the complex and wide-range of environmental parameters
94	influencing soil brGDGT distributions (e.g. seasonality, water availability and
95	vegetation); (2) soil reconstructed temperature related to different environmental
96	temperature (in situ soil temperature vs air temperature); (3) lack of knowledge of

97 brGDGT-producing microbial community or a physiological response by certain 98 bacteria. Here, we present investigations of surface soil samples with very distinct 99 vegetation zones across fourteen elevational gradients ranging from 704 to 3760 m on 100 the south Tibetan Plateau. We analyzed both brGDGT composition and bacterial 101 community composition to examine the influence of vegetation, soil pH, and 102 temperature on the distributions of bacterial communities and brGDGT compounds. 103 Our main objectives are to evaluate the potential effects of vegetation on brGDGT 104 distributions, how altitudinal differences impact the temperature bias recorded in our 105 brGDGT proxy, and identifying potential brGDGT-producers.

106

107 **2. Materials and Methods**

108 **2.1 Site description and sample collection**

109 Soil samples were collected on Galongla Mountain in Motuo County, Southeast Tibetan Plateau, China (27°36'-29°50' N, 93°42'-96°36' E; Fig. 1a). There are six 110 111 vegetation zones along the mountain: tropical rainforest (TRF; 600–1100 m), 112 evergreen broad-leaved forest (EBF; 1100-2000 m), evergreen/semi-evergreen broad-113 leaved forest (SEBF; 2000-2500 m), temperate mixed coniferous broad-leaved forest (TCF; 2500-3000 m), frigid-temperate coniferous forest (FCF; 2500-3000 m), and 114 115 frigid-temperate coniferous forest and frigid shrub meadow (FSM; 3700-4000 m) 116 (Fig. 1b; Table 1). Soil samples were collected at 14 sites from 704 to 3760 m above sea level across the vegetation zones. At each site, 10 soil samples were randomly 117 collected within a quadrant (10 m by 10 m in the forests and 5 m by 5 m in the 118 119 shrublands and/or grasslands), for a total of 134 samples. Five hundred grams of soil

120	was collected for each sample after the removal of plant fragments, from which a 50 g
121	subsample was stored at -80 °C prior to DNA and lipid analysis.
122	
123	2.2 Environmental variables
124	Monthly temperature and precipitation at each site were obtained from the
125	Worldclim2 dataset (https://www.worldclim.org/data/). The Worldclim2 dataset
126	interpolates monthly temperature data compiled from globally distributed weather
127	stations to a 30 arc-second spatial resolution across a temporal range from 1970–2000
128	(Fick and Hijmans, 2017). The mean annual soil temperatures were gained from
129	global gridded soil temperature maps according to Lembrechts et al. (2022), which
130	used over 8500 time series of soil temperatures measured in situ across the world and
131	a machine learning approach to model predictor variables of the soil and air
132	temperature offset, and finally interpolate soil temperatures (Lembrechts et al., 2022).
133	We validated this soil temperature dataset in China by comparing the gridded soil
134	temperature with mean annual soil temperatures that were monitored using
135	temperature loggers (Thermochron iButton @DS1922L-F5#) (Wang et al., 2020). We
136	found that the gridded soil temperature and measured soil temperatures have a
137	significant positive correlation ($R = 0.98$, $p < 0.001$; Fig. S1), suggesting that the
138	global gridded soil temperature maps can be used in this study. Soil water content was
139	determined by drying soil samples at 105 °C for 12 h. pH was determined after
140	hydrating the soil to a soil to water ratio of 1:2.5 (v/v) according to Weijers et al.
141	(2007). The soil conductivity was obtained by measuring the supernatants with a
142	conductivity meter. Soil (clay/sand/silt percentage) was digested with H2O2, followed

143 by the determination of the soil particle distribution with a Microtrac S3500 analyzer.

144	Total nitrogen (TN) was determined using a modified Kjeldahl method (Bremner,
145	<u>1960</u>). Total organic carbon (TOC) was measured with air-dried solid soil using a
146	TOC analyzer (TOC-VCPH, Shimadzu, Japan). Total phosphorus (TP) was
147	determined using the molybdenum blue method (Dick and Tabatabai, 1977).
148	
149	2.3 brGDGT analysis
150	Freeze-dried samples (5-6 g) were extracted ultrasonically with
151	dichloromethane/methanol (9:1, v/v) (15 min \times 3, 30 °C) to extract soluble lipids.
152	Activated alumina was used as a stationary phase for separating brGDGTs, and the
153	non-polar and polar fractions (the latter containing brGDGTs) were eluted using n -
154	hexane/dichloromethane (9:1, v/v) and dichloromethane/methanol (1:1, v/v),
155	respectively. After blowing down the polar fraction with N2, the sample was dissolved
156	in <i>n</i> -hexane/isopropanol (99:1, v/v), and a 0.45 μ m PTFE filter was used to remove
157	particulate matter prior to HPLC-MS analysis.
158	BrGDGT analysis was performed using an ultra high-performance liquid
159	chromatograph (Waters ACQUITY UHPLC I-Class/Xevo TQD) with atmospheric
160	pressure chemical ionization coupled to a triple quadrupole mass spectrometer
161	(UHPLC-APCI-MS). BrGDGTs were separated over an Alltech Prevail Cyano
162	column (150 mm \times 2.1 mm, 3 μm). The instrumental setup for the UHPLC was as
163	follows: column temperature 40 °C, injection volume 5 μ L, and flow rate 0.3 mL/min.
164	For the mobile phase <i>n</i> -hexane and <i>n</i> -hexane/isopropanol (9:1, v/v) were used, and the
165	elution procedure followed <u>Yang et al. (2014b)</u> . The analysis was performed in Single
166	Ion Monitoring (SIM) mode via [M+H] ⁺ of brGDGTs (1050, 1048, 1046, 1036, 1034,
167	1032, 1022, 1020, 1018). The definition of the structure and number of brGDGTs

168 follows <u>Peterse et al. (2012)</u>. All brGDGTs were displayed as fractional abundances.

169 The cyclization index of branched tetraethers (CBT), methylation index of

170 branched tetraethers (MBT') and reconstructed mean annual air temperature

171 (MAATre) were calculated as previously defined (<u>Peterse et al., 2012</u>).

172
$$CBT = -\log\left(\frac{Ib + IIb}{Ia + IIa}\right) \tag{1}$$

173
$$MBT' = \frac{Ia + Ib + Ic}{Ia + Ib + Ic + IIa + Ib + Ilc + IIIa}$$
(2)

174
$$MAATre = 0.81 - 5.67 \times CBT + 31.00 \times MBT'$$
 (3)

175

176 **2.4 Bacterial community analysis**

177 DNA was extracted from all samples (0.5 g of fresh soil samples) following the 178 method described by Hu et al. (2020). DNA quality was assessed using a Nanodrop 179 ND-2000c UV-Vis spectrophotometer. PCR amplification of the 16S rRNA gene 180 hypervariable region V4 was performed with the primers 515F and 806R (515F: 5'-181 GTGCCAGCMGCCGCGGTAA-3'); 806R: 5'-GGACTACHVGGGTWTCTAAT-3'). 182 The 2×250 bp paired-end sequencing of PCR amplicons targeting V4 hypervariable regions of the 16S rRNA gene was conducted on a MiSeq platform (Illumina, San 183 Diego, CA) at the Institute for Environmental Genomics, University of Oklahoma. 184 185 The preprocessing of the Illumina sequencing data and the downstream analysis, 186 including taxonomic assignment and diversity analysis, were performed using QIIME 187 (v. 1.8.0; Caporaso et al., 2010) and an in-house Galaxy software platform (IEG sequence analysis pipeline, http://zhoulab5.rccc.ou.edu). All raw sequences were first 188 189 separated into samples via sample-specific barcodes. In the Galaxy analysis pipeline, 190 chimeras were removed using UCHIME (Edgar et al., 2011), chimera-free sequences

were clustered to generate operational taxonomic units (OTUs) with a cutoff value of
97% sequence identity using UPARSE (version usearchV7.0.1001_i86linux64)
(Edgar, 2013), and the final OTU table was further rarefied with an even-sequencing
depth of 13,000. Taxonomic classification was performed in Galaxy with the RDP
Classifier (Cole et al., 2009).

197 **2.5 Statistics analysis**

198 All statistical analyses were performed using R statistical software (version 199 4.0.5; R Core Team, 2021). To assess the relationship between vegetation types and 200 brGDGT fractional abundances, we performed indirect principal component analysis 201 (PCA) using the *FactoMineR* package (Husson et al., 2016) and a heatmap with the clustering method performed by the ComplexHeatmap package (Gu et al., 2016). A 202 203 heatmap cluster was generated using z score transformation of brGDGT relative 204 abundance. PCA analyses of the fractional abundance of brGDGTs were performed on 205 centered and standardized abundances. We performed redundancy analysis (RDA) by vegan package (Oksanen et al., 2020) to assess the relationship between 206 environmental variables (MAAT, MAF, Tsoil, pH, conductivity, water content, 207 208 bacterial community, relative content of sand, clay and sand, TOC, TN and TP). 209 Analysis of similarity (ANOSIM) using Bray–Curtis distance with 999 210 permutations in the vegan package under R software (Oksanen et al., 2020) was used 211 to test for differences in bacterial community among vegetation sites. The Bray-Curtis 212 distance quantifies the compositional dissimilarity of the bacterial community. The R 213 (version 4.0.5) vegan package was used to create a Bray–Curtis dissimilarity matrix (based on OTU reads) for statistical analyses (Oksanen et al., 2020). To simplify 214

215	further analyses, OTU data counts for each sample were selected based on the
216	relationship with appropriate sample brGDGT compounds ($R > 0.7$) using a custom R
217	script. The selected OTUs were classified to the phylum level (the Acidobacteria
218	phylum was divided into the class level). The null hypothesis of ANOSIM is "no
219	difference" in community composition between sites and plots. The similarity
220	coefficient $R = 1$ indicates complete separation, and $R = 0$ represents no separation.
221	Strong differences between groups were indicated by $R > 0.51$. P values, also
222	generated by ANOSIM, indicate significance levels. To infer changes in the bacterial
223	community, nonmetric multidimensional scaling (NMDS) analysis was performed
224	using the metaMDS function of the R package vegan (Oksanen et al., 2020). The
225	selected OTUs were converted to a Bray-Curtis distance matrix to make the data
226	accessible for statistical analysis. NMDS has proven to be a useful tool to indicate
227	bacterial community changes (<u>De Jonge et al., 2019</u>).
228	Structural equation models (SEMs) are frequently used to resolve complex
229	multivariate relationships among interrelated variables using a form of path analysis.
230	We undertook piecewise SEMs of our brGDGT proxies with environmental and
231	bacterial data to characterize the statistical relationships and to deduce causal
232	relationships between these variables using a piecewise SEM library (Lefcheck et al.,
233	2016). The factor was correlated with proxies that were selected from the correlation
234	plot to explore the links in the SEMs using forward selected explanatory variables. We
235	use absolute Akaike information criterion (AIC) indices to evaluate the performance
236	of the SEMs, where the lowest AIC value among the sets indicate the optimal model.
237	We also used chi-square and Fisher's C statistics and associated p values to evaluate
238	model fit. If $p > 0.5$ in the selected SEM, the model fit the complex relationships

among the data well (<u>Lefcheck et al., 2016</u>).

240

241 **3. Results**

242 **3.1 BrGDGT analysis of samples**

243 The fractional abundance of hexamethylated brGDGTs (IIIa, IIIb and IIIc) was low in all samples (Fig. 2). Rainforest soils (TRF) were characterized by high 244 245 abundances of tetramethylated brGDGTs (accounting for 82% of brGDGTs), whereas brGDGT IIa and IIIa were the predominant brGDGTs in cold regions with shrub 246 247 meadows (FSM; 45% and 21%, respectively). The different vegetation zones are spread along an altitudinal gradient where MAAT ranges from -2.38 °C at the highest 248 elevation site, FSM to 18.51°C at the lowest elevation site, TRF. In addition, we 249 250 observe various ranges in soil pH (4.51 at TCF to 6.27 at EBF), soil water content 251 (5.68% at FCF to 25.60% at FSM), conductivity (26.68 µs/cm at FSM to 83.05 µs/cm 252 at SEBF), among other environmental parameters (see Table 1), all of which could 253 influence the distribution of brGDGTs. In the heat map (Fig. 3a) and PCA (Fig. 3b), 254 samples from different vegetation groups tend to cluster together although there is some overlap between samples from adjacent sites, such as the high elevation sites, 255 256 FSM and FCF, and the mid-elevation sites, SEBF and TCF. TRF appears to be the 257 only site where the samples cluster separately both in the heatmap and PCA. In the RDA plot, MAAT, mean temperature of months above freezing (MAF) and mean 258 259 annual soil temperature (Tsoil) are positively correlated with brGDGT Ia, but 260 negatively correlated with IIa and IIIa (Fig. 3c). The pH is positively correlated with 261 cyclopentane-containing pentamethylated and hexamethylated brGDGTs, including

262 IIb, IIc, IIIb and IIIc.

263

264**3.2 Genetic data**

265 We selected a strong correlation (R > 0.7) between the relative abundance of

- brGDGTs and OTU-specific DNA concentration (Figs. 4a–4f). There were more than
- 267 264 OTUs correlated with IIb, 46 OTUs from Acidobacteria, and 2 and 27 OTUs with
- 268 Ia and Ib, respectively. The bacterial community composition in our samples was
- dominated by 12 phyla, of which Proteobacteria (53.30%), Acidobacteria (19.91%),
- 270 Nitrospirae (2.88%), Bacteroidetes (2.12%), Actinobacteria (2.04%), and
- 271 Verrucomicrobia (1.59%) are the most abundant phyla. More than half of the OTUs
- displayed a strong relationship with brGDGTs belonging to Proteobacteria and
- 273 Acidobacteria (Figs. 4a-f). Among the Acidobacteria, subdivision 6 and subdivision 7
- were relatively abundant in our samples (Fig. 4h). The analysis of bacterial
- community similarities (ANOSIM-R = 0.381; p < 0.001) confirms that the bacterial
- community composition differs between vegetation types (Fig. 4i).

277

278 **3.3 Relationships among environmental variables and brGDGTs at different**

vegetation sites

Our dataset contains soil samples from fourteen sample sites with six vegetation types that range from -2.38 to 18.92 °C in MAAT, from 5.14 to 18.92 °C in MAF, and from 704 to 3760 m in elevation. Both MAAT and MAF at each site were negatively correlated with elevation (R = -0.99 and -0.98, respectively). The pH for our samples ranged from 3.85 to 7.08, with an average value of 5.31, suggesting that most of our samples were acidic (Table 1). The MBT' values in our samples varied from 0.26 to 286 0.85 (0.51 on average), and CBT varied from 0.44 to 2.69 (1.07 on average).

- 287 Generally, the reconstructed MAAT (MAATre) was positively correlated with the
- observed MAAT (R = 0.73) and MAF (R = 0.77). The brGDGT-derived MAAT
- 289 overestimates temperature at sites above 2000 m, i.e., SEBF, TCF, FCF, and FSM
- 290 (Fig. 5c). BrGDGT-derived MAF temperatures, however, do not show this warm bias
- and fall closer to observed temperature estimates (Fig. 5d). At sites below 2000 m
- 292 (EBF and TRF), mean annual soil temperatures are colder than MAAT and MAF,
- whereas at sites above 2000 m (SEBF, TCF, FCF and FSM) soil temperatures are
- warmer than MAAT and a little colder than MAF (Fig. 5e).
- 295

296 **4. Discussion**

297 4.1 Soil bacterial community composition and brGDGT changes

298 So far the precursors of brGDGTs, ether- and ester-linked iso-diabolic acid

299 (IDA), have only been identified in Acidobacteria cultures (Sinninghe Damsté et al.,

- 300 <u>2018</u>). Previous studies based on brGDGT distributions, stereochemistry and
- 301 subsequent culture experiments have so far only identified subdivisions 1, 3, 4 and 6
- 302 of the Acidobacteria phylum as brGDGT producers (Sinninghe Damsté et al., 2018;
- 303 <u>Sinninghe Damsté et al., 2014; Sinninghe Damsté et al., 2011</u>). We compared
- 304 brGDGT distributions with bacterial community compositions at our study sites to
- 305 identify potential brGDGT producers (Fig. 4), following the approaches of Weber et
- 306 <u>al. (2018)</u> and <u>Wu et al. (2021)</u>. Similar to previous studies, we observed the strongest
- 307 correlation between brGDGTs (Ib, Ic, IIb and IIIb) and OTUs belonging to the
- 308 Acidobacteria phylum in our samples (R is 0.72, 0.57, 0.77 and 0.66 respectively; Fig.

310 (49.93% of Acidobacteria), followed by GP 7 (16.00%), 5 (14.60%), 17 (12.71%) and 311 4 (1.72%). A previous study found that subdivisions 4 and 6 Acidobacteria are 312 potential producers of cyclopentane-containing 5-methyl and 6-methyl brGDGTs, 313 respectively (De Jonge et al., 2021). Cyclopentane-containing brGDGTs (Ib, IIb, IIIb, 314 Ic, IIc, IIIc) were significantly and positively correlated with GP 4 (unicyclic 315 including Ib, IIb, IIIb: R = 0.76, p < 0.01; bicyclic including Ic, IIc and IIIc: R = 0.59, p < 0.01) but not GP 6. In our study we failed to separate 5-methyl and 6-methyl 316 317 brGDGTs, and therefore we cannot correlate GP 6 with 6-methyl brGDGTs, especially 318 if they are present in low abundance. 319 We found the relative abundance of brGDGT-related GP 4 Acidobacteria was

S2). In our samples, GP 6 from the Acidobacteria phylum was the most abundant

309

320 less abundant than GP 6 Acidobacteria in our samples. The soil pH effect on the

321 Acidobacteria community is well documented; for example, subdivisions 4, 6, 7 and

322 17 increase in soils with an increase in soil pH (Kielak et al., 2016; Sinninghe Damsté

323 et al., 2018). Among the Acidobacteria in our samples, GP 4 increased with increased

soil pH, while GP 5 decreased with high pH-levels (Fig. 6). GP 6, however, showed

325 no response to soil temperature or pH. The second dominant strain, GP 7, was

326 negatively correlated with soil temperature and positively correlated with pH.

327 Subdivision 4 is the only subdivision, so far, that was shown to produce 5-methyl iso-

328 diabolic acid (<u>Sinninghe Damsté et al., 2018</u>). The relative abundance of GP 4 was

329 significantly related to soil pH (R = 0.70, p < 0.01; Fig. 6).

The other five main phyla present in our samples also covary with temperature

and pH changes (Fig. 6). Of these phyla, we found that cyclic (Ib, IIb and IIIb) and

332 bicyclic compounds (Ic, IIc and IIIc) are positively correlated with the Proteobacteria

333	phylum in our samples (R is 0.55, 0.71 and 0.59; 0.46, 0.31 and 0.40 respectively, p $<$
334	0.01), while noncyclic compounds (Ia, IIa and IIIa) show negative or no relationship
335	with the OTU data (R is -0.23, -0.04 and -0.11, Fig. S2). The subclass of
336	Proteobacteria (α -Proteobacteria and β -Proteobacteria) show the strongest negative
337	relationship with soil temperature (R = 0.60 and 0.59, p < 0.01, respectively), while γ -
338	Proteobacteria are positively correlated with soil temperature ($R = 0.47$, $p < 0.01$).
339	The relationship between γ -Proteobacteria and soil temperature is opposite to that
340	observed in the inner Mongolia transect (Guo et al., 2022). This dissimilarity may
341	stem from γ -Proteobacteria at high pH and low pH show an opposite response to
342	temperature. In the low pH values (pH < 7.5) and high humidity from our study sites,
343	the relative abundance of γ -Proteobacteria increased with increasing temperature. In
344	contrast, in the high pH values (pH $>$ 7.5) and more arid conditions from inner
345	Mongolia, the relative abundance of γ -Proteobacteria increased with decreasing
346	temperature (<u>Guo et al., 2022</u>). Certain δ -Proteobacteria were shown to transfer the
347	formation of the ether bond gene (Sinninghe Damsté et al. (2018), which are
348	precursors to brGDGTs. Along with Acidobacteria, our results suggest that members
349	of the Proteobacteria phylum likely contribute to brGDGT production.
350	Actinobacteria was present at all of our study sites (Fig. 4g), and is correlated
351	with brGDGT Ib, IIb, and IIIb (Figs. 4a – 4f). A previous study identified intact polar
352	lipids (IPLs) of brGDGTs in the membrane of Actinobacteria (Liu et al., 2010),
353	making this a likely candidate for brGDGT production at our study sites. In our
354	samples, the relative abundance of Actinobacteria is positively correlated with soil pH
355	(R = 0.52, p < 0.01), which contrasts with previous reports from Mongolian soils
356	where the relative abundance of the Actinobacteria phylum was negatively correlated

357 with pH (Guo et al., 2022). The contrast may result from the different pH ranges at 358 these two sample sites (pH of 7.7 to 9.9 in Mongolia and pH 3.85 to 7.08 in our 359 samples) and a difference in the dominant suborders (samples in Mongolia were 360 dominated by Thermoleophilia, Actinomycetales and Nitriliruptoria; in our samples Acidimicrobiales, Actinomycetales and Solirubrobacterales were dominant). The shift 361 362 in the bacterial community due to pH changes responds differently to temperature 363 changes. Thus, we propose that soil pH needs to be considered when performing 364 brGDGT-based climate reconstructions. 365 Both Bacteriodetes and Nitrospira are positively correlated with pH (R = 0.41 and 366 0.54, respectively; p < 0.01; Fig. 6). The relative abundance of Nitrospira is also 367 positively correlated with brGDGTs IIb and IIIb (R = 0.49 and 0.36, respectively; p < 100368 0.01; Fig S2), and negatively correlated with brGDGT Ic (R = 0.41; p < 0.01). De Jonge et al. (2021) found the highest concentrations of brGDGT Ic in soils with high 369 370 autotrophic nitrification rates. However, we do not observe any correlations between 371 Nitrospira and TN in Tibetan soils. The relative abundance of Bacteroidetes is 372 positively correlated with brGDGTs Ib and Ic (R = 0.44 and 0.37; p < 0.01). Although 373 the relationship between brGDGTs and the Bacteroidetes phylum has not yet been 374 reported, members of Bacteroidetes are widely distributed in marine and terrestrial 375 environments (Buckley and Schmidt, 2003; Cottrell and Kirchman, 2000), and thus 376 could be another potential source for the ubiquitous brGDGTs. 377 Though Verrucomicrobia has not been reported to synthesize brGDGTs, 378 previous work found a strong correlation between Verrucomicrobia and 5-methyl 379 brGDGTs in Mongolian soils (Guo et al., 2022). In our study, the Verrucomicrobia 380 phylum at our sites, is significantly and positively correlated to soil temperature (R =

381	0.65, p < 0.01) , and positively related to pH (R = 0.33, p < 0.01) which differs from
382	previous studies on soils (Guo et al., 2022). The relative abundance of
383	Verrucomicrobia in our samples was positively correlated with Ia ($R = 0.58$, $p < 0.01$)
384	and negatively correlated to IIa and IIc (R = 0.64, $p < 0.01$; R = 0.36, $p < 0.01$).
385	Verrucomicrobia have the same aerobic heterotrophic lifestyles as known brGDGT
386	producers belonging to the phylum Acidobacteria. Isolates of Verrucomicrobia were
387	shown to produce iso-C15:0 fatty acids, which are considered potential precursors for
388	iso-diabolic acid and therefore brGDGTs (Sinninghe Damsté et al., 2011). Although
389	we cannot verify that these bacterial phyla are brGDGT-producers, our results indicate
390	Proteobacteria, Verrucomicrobia, Actinobacteria, Nitrospira and Bacteroidetes may be
391	as potential candidates for brGDGT-producers. This information of specific
392	taxonomic groups provides a sight for future laboratory cultivation of bacteria to
393	identify the source of brGDGT producers.

394

395 **4.2 Effect of biotic and abiotic variables on brGDGT distributions**

BrGDGT distributions could be a result of sets of specific bacterial communities 396 397 that inhabit certain temperature and soil conditions (e.g. pH). Alternatively, brGDGT distributions could be a result of specific bacterial communities that adapt to 398 399 environmental changes by adjusting the molecular structure of their membrane lipids. 400 De Jonge et al. (2021) demonstrated how a shift in pH resulted in a change in both 401 brGDGT distributions and the bacterial community. Thus, we compared biotic 402 (bacterial community) and abiotic (soil temperatures, TP, pH and conductivity) variables with changes in brGDGT distributions. Our results show that the variation in 403 404 bacterial communities is strongly related to changes in brGDGT distributions (Fig.

405	7a). However, the correlation and SEM analyses revealed that noncyclic brGDGTs
406	(Ia, IIa and IIIa) were not directly related to the changes in the bacterial community
407	(Fig. 7b). This effect may stem from the strong positive correlation of Ia with
408	temperatures (i.e., Tsoil, MAF, and MAAT) and the strong negative correlations of IIa
409	and IIIa with temperature (Fig. 7a). Unicyclic and bicyclic brGDGTs (Ib, IIb, IIIb and
410	Ic, IIc, IIIc), in contrast, show a strong negative relationship with bacterial community
411	changes (Fig. 7b &7c). Environmental variables, including temperatures, pH, TP and
412	conductivity, could influence unicyclic and bicyclic brGDGTs (Figs. 7c and 7d).
413	Although cyclic brGDGTs are positively correlated with pH, as observed in previous
414	studies of global soil datasets (Peterse et al., 2012; Weijers et al., 2007), our study
415	confirms the relationship between cyclopentane-containing brGDGTs and pH is
416	controlled by bacterial community changes. In this case, increasing levels in pH levels
417	result in changes in the bacterial community of specific phyla (Proteobacteria,
418	Acidobacteria, Nitrospirae, Bacteroidetes and Actinobacteria) and corresponding
419	increase in the relative abundance of cyclic brGDGTs (Ib, IIb, IIIb, Ic, IIc and IIIc).
420	These findings suggest that calibrations including cyclic brGDGTs should consider
421	the effects of bacterial community shifts on brGDGTs distributions.
422	
423	4.3 Vegetation effects on brGDGT distributions and bacterial communities:
424	implications for paleoclimate reconstructions

- 425 In general, the distribution of brGDGTs at our individual sites follow the
- 426 established relationships between environmental gradients, where noncyclic
- 427 tetramethylated brGDGTs (Ia) are abundant at a low elevation with high MAAT (Fig.
- 428 2). In contrast, high elevation sites with colder MAATs, such as FCF and FSM, are

429 characterized by a higher relative abundance of noncyclic pentamethylated brGDGTs 430 (IIa, Fig. 3b). Similarly, noncyclic pentamethylated brGDGT IIa were also found in 431 higher abundance in southern Tibetan soils (Bai et al., 2018), inner Mongolia (Guo et 432 al., 2022), and the Chinese Tianshan Mountains (Duan et al., 2020). This suggests that 433 the spatial variation in the relative abundance of brGDGTs is not only linked to 434 temperature or pH, but could result from changes in the bacterial community that are 435 responding to other environmental factors or niche partitioning due to differences in vegetation, for example, pH, oxygen limitation, and cation exchange capacity 436 437 (Halamka et al., 2021; Halffman et al., 2022). The low relative abundance of IIIa in 438 our samples (Fig. 2a) may respond to redox condition result from water content. 439 Previous environmental observations found that the relative abundance of IIIa is 440 related to changes in oxygen content (Pei et al., 2021; Weber et al., 2018; Yao et al., 441 2020). Alternatively, brGDGT production likely increases during the summer months, 442 particularly at sites with large seasonal variations (Crampton-Flood et al., 2020). All 443 these factors could contribute to the residual scatter observed in global soil brGDGT 444 calibrations with temperature. 445 At sites above 2500 m in our study sites, there is a warm-bias in brGDGT-based

At sites above 2500 m in our study sites, there is a warm-bias in brobG1-based reconstructed temperatures, predicting temperatures up to 5 °C warmer than observed temperatures (Fig. 5c). In contrast, the brGDGT-based temperature reconstructions at the low elevation sites are in line with observed MAAT (Fig. 5c). However, the reconstructed temperature offset with MAF greatly decreased at high altitude sites (Fig. 5d). At the lower elevation sites and warmer regions (TRF and EBF), the mean value of MAAT in these regions was about ~2 °C warmer than Tsoil (Fig. 5e). At these sites, the densely vegetated areas would block radiation inputs to the soil,

453	leading to on average cooler soil temperatures than air temperatures (De Frenne et al.,
454	2021). A similar phenomenon was observed in tropical regions where densely
455	vegetated sites contribute to cooler soil temperatures, and therefore colder brGDGT-
456	based reconstructions relative to the MAAT (Figs. 8a & 8b). At high altitudes (SEBF,
457	TCF and FCF), however, Tsoil was about 1-5 °C higher than MAAT year-round, with
458	the warmest Tsoil values recorded at the shrub meadow site (Tsoil \sim 5 °C warmer than
459	MAAT). Our results are in agreement with the previous study which compared both
460	Worldclim-derived air temperature and <i>in-situ</i> soil temperature with brGDGT-derived
461	temperatures in the northeastern Tibetan Plateau, China and found that soil brGDGTs
462	directly respond to soil temperature variations (Wang and Liu, 2021).
463	To test whether the global brGDGT-derived temperature that was developed
464	using the new method confirms our local observation of vegetation-effects on
465	brGDGT-derived temperatures, we use previously published global soil datasets
466	compiled by Crampton-Flood et al. (2020) and global soil brGDGT calibrations (De
467	Jonge et al., 2014; Naafs et al., 2017a) to reconstruct local temperatures. The results
468	show that the residual value between Tsoil and MAAT match the pattern of bias
469	between reconstructed temperature and MAAT from low latitude to high latitude (Fig.
470	8), and that the residual temperature between soil and air temperature may partly
471	result from vegetation. Vegetation-induced changes in brGDGT distributions have
472	been widely observed in previous studies (Liang et al., 2019; Wang et al., 2020). In
473	addition, we found that there is a significant difference in bacterial communities with
474	vegetation type (ANOSIM, $R = 0.381$, $P < 0.001$), suggesting vegetation-induced
475	changes in brGDGT distribution in soils in response to microbial communities.
476	Changes in plants over time could cause a large shift in soil pH and nutrients (Weijers

477 et al., 2011; Wu et al., 2020). For instance, in wet meadows degradation rates are high, leading to a decrease in aboveground biomass and soil nutrient content (Wu et al., 478 479 2020). Peaple et al. (2022) found in situ measurements of soil temperatures are 480 warmer than interpolated mean annual temperatures in most grassland plains in 481 eastern Africa. Similarly, the vegetation change from Carex to Sphagnum in Swiss 482 peat contributed to the variations in brGDGTs, consistent with a decrease in pH from 483 8 to 4 (Weijers et al., 2011). Thus, the implication for a paleoclimate proxy is that 484 reconstructed soil temperature using brGDGTs should be interpreted with caution, as 485 changes in vegetation could lead to a bacterial community shift and therefore a change 486 in the cyclopentane brGDGT distribution.

487 Soil pH impacts the bacterial community, which in turn influences brGDGT 488 distributions at experimental sites (De Jonge et al., 2021). We further found that pH and nutrients significantly impacted both the bacterial community and cyclized 489 490 brGDGTs. Due to the significant correlation of pH and nutrients with the bacterial 491 community in our soil samples (Fig. 7c), changes in pH and nutrient records may be 492 related to bacterial community changes in paleoclimate reconstructions and changes 493 in pH has a stronger influence. Although molecular dynamics simulations of pure 494 monolayer membranes demonstrate that the brGDGT paleothermometer is based on a 495 homeoviscous adaption, it should be noted that in reality the bacterial membrane 496 consists brGDGT lipid bilayer (Naafs et al., 2021). The effect of shift in the bacterial 497 community on brGDGT distribution should not be ignored. Therefore, to develop a 498 robust reconstructed temperature based on brGDGTs, future efforts on brGDGTs 499 should focus on the relationship between the bacterial communities and other 500 environmental variables.

501

502 Conclusion

503 We test the suitability of brGDGTs as a temperature proxy in soils along a 504 vegetation and altitudinal gradient on the southeastern Tibetan Plateau. A comparison 505 of the bacterial community composition with brGDGTs revealed that Acidobacteria 506 may not be the only producers of brGDGTs in our samples. Instead, Proteobacteria, 507 Nitrospira, Bacteroidetes, Actinobacteria, and Verrucomicrobia could be potential 508 candidates as brGDGT producers. Using the Peterse et al. (2012) soil calibration, we 509 find that reconstructed temperatures are correlated with observed MAAT below 2500 510 m; however, at sites above 2500 m we observe a warm bias. The temperature offsets 511 at our study sites could either be explained by differences in seasonality or vegetation, 512 which could influence the soil chemistry and the amount of radiation reaching the 513 soil. However, at the same study sites, we observe distinct changes in the bacterial 514 communities and shifts in brGDGT distributions across the vegetation zones. Changes 515 in temperature, pH, conductivity and TP directly influence the bacterial community 516 and, therefore, the distribution of cyclopentane-containing brGDGTs. We found that 517 noncyclic brGDGTs may have a strong positive relationship with temperature but are 518 likely not related to specific changes in the lipid membrane independent of the 519 bacteria that produce these brGDGTs in our samples. Finally, we found that the 520 residual value from previously published brGDGT datasets between Tsoil and MAAT 521 match the pattern of bias between brGDGT-derived temperature and MAAT from low 522 latitude to high latitude, suggesting that brGDGT temperature reconstructions directly 523 respond to soil temperatures rather than air temperatures.

524

525 Acknowledgments

526	The authors would like to thank the editors and two anonymous reviewers for
527	their contractive comments. We also thank to Drs. Keshao Liu and Ang Hu for advice.
528	This study was supported by the National Natural Science Foundation of China (Grant
529	NO. 42101158, 41871066, 41471055); the Second Tibetan Plateau Scientific
530	Expedition and Research Program (Grant No. 2019QZKK0503). We also thank the
531	Southeast Tibet Observation and Research Station for the Alpine Environment, CAS,
532	and Motuo Observation and Research Center for Earth Landscape and Earth System,
533	CAS, for field sampling.
534	
525	Figure Contions
222	rigure Captions
536	Figure 1. Sampling sites: (a) Location of the 14 sampling sites at different
537	altitudes. (b) Characterization of plant communities at different altitudes.
538	
539	Figure 2. Bar plot of the relative abundance of brGDGTs in soils (a). The
540	fractional abundance of summed tetramethylated, pentamethylated, and
541	hexamethylated brGDGTs in our soils (b).
542	
543	Figure 3. Heatmap with the clustering method (Euclidean distance) of the relative
544	abundance of brGDGTs in soils with different vegetation types (a). Principal
545	component analysis (PCA) of the standardized fractional abundance of brGDGTs (b)
546	and redundancy analysis (RDA) for environmental variables and the relative
547	abundance of brGDGTs (c).

548

549	Figure 4. Diversity of OTUs that have a strong correlation with one of the major
550	brGDGTs in our samples. Correlation analysis was performed between the
551	concentration of each OTU and the relative abundance of individual brGDGT
552	compounds. Highly correlated OTUs are displayed at the phylum level (large pie
553	charts; a-f) and as subdivisions of Acidobacteria (small pie charts; a-f). "n" refers to
554	the number of OTUs in each chart. Each pie piece was estimated based on OTU-
555	specific DNA concentration of phylum (or subdivisions of Acidobacteria) account for
556	total OTU-specific DNA concentration. The relative abundance of OTU-specific DNA
557	concentration at the phylum level (g) and at the subdivisions of Acidobacteria level
558	(h). ANOSIM with R values and their associated significance (P) between sites and
559	between plot differences in six different vegetation sites in this study based on the
560	selected most correlated OTU concentrations (i). p levels <1.0 indicate significant
561	differences in species composition.
562	
563	Figure 5. Violin plots of MAAT and reconstructed temperature among six
564	different vegetation sites, including (a) MAAT, (b) reconstructed mean annual air

temperatures based on brGDGTs (MAATre) based on brGDGTs [Eq. 3], (c) the offset

between MAATre and MAAT and (d) the offset between MAATre and MAF. Dashed

567 line is the 0 °C for the bias of temperatures. (e) The standard deviations of MAF (dark

568 grey), MAAT (light grey) and Tsoil (red) in our study sites. The plots are ordered

569 according to the altitude and vegetation from the lowest altitude (TRF, ~900 m) to the

570 highest altitude (FSM, ~3700 m).

571

Figure 6. Scatter plot of the relative abundance of bacterial phyla with mean
annual soil temperature and pH. The linear regression lines of correlations with p <
0.05, the 95% confidence intervals are displayed by the gray shaded area. Values
below the limit of quantification are not included in linear regression.

576

577 Figure 7. Stepwise forward selection regression explained the variation between 578 brGDGT fractional abundance and environmental variables (a; top). Spearman 579 correlation matrix for brGDGT fractional abundance with environmental variables (a; bottom). The significant value *** significant at the 0.1% level, and ** significant at 580 the 1% level. Key driver of brGDGT fractional abundance. Structural equation models 581 showing the potential drivers of noncyclic brGDGTs (Ia, IIa and IIIa; b), unicyclic 582 583 brGDGTs (Ib, IIb and IIIb; c) and bicyclic brGDGTs (Ic, IIc and IIIc; d). Arrow color 584 corresponds to positive (red) or negative (blue) of the path coefficient. BC initial for 585 bacterial community change from NMDS1 scores, Tsoil initial for mean annual soil 586 temperature and Cond initial for conductivity.

587

Figure 8. The offset of reconstructed temperatures, MAF and mean annual soil temperatures with MAAT from previous published global datasets compiled by <u>Crampton-Flood et al. (2020)</u>. (a) the offset of brGDGT-reconstructed temperatures based on a calibration developed by (Naafs et al., 2017a) and MAAT; (b) the offset of brGDGT-reconstructed temperatures based on calibration from (De Jonge et al., 2014) and MAAT; (c) the offset of MAF and MAAT; (d) the offset of mean annual soil

temperatures and MAAT. The black dots mean no temperature data.

595

596 Table

597	Table 1. Descriptive statistics of environmental variables in our study sites,
598	including tropical rainforest zone (TRF), evergreen broad-leaved forest zone (EBF),
599	semi-evergreen broad-leaved forest zone (SEBF); temperate mixed coniferous broad-
600	leaved forest zone (TCF), frigid-temperate coniferous forest zones (FCF); and frigid
601	shrubs and meadow zone (FSM).
602	

	TRF	EBF	SEBF	TCF	FCF	FSM
Elevation	892.33±163.14	1626.25±183.96	2299±113.02	2781.67±138.19	3359±186.71	3760
Dominant vegetation type	Altingiaexcelsa and Terminalia myriocarpa	Castanopsishystrix, Altingiaexcelsa, Castanopsisechidnocarpa, Cyclobalanopsisgambleana, Lithocarpusxizangensis, Quercuslodicosa and Cyclobalanopsisoxyodonare	Quercuslanata and Cyclobalanopsislamellosa	Tsugadumosa	Larixspeciosa and Abiesdelavayi	scattered shrubs
MAAT (°C)	18.51±0.38	12.31±0.4	9.24±1.04	5.56±0.33	1.61±1.78	-2.38
MAF T (°C)	18.51±0.38	12.31±0.4	10.15±0.08	9.03±0.12	6.95±0.96	5.14
Tsoil (°C)	17.38±0.55	9.93±0.05	8.89±0.1	7.9±1.1	5.46±1.13	2.9
Water content (%)	68.31±6.52	83.54±28.06	76.98±51.24	96.72±73.75	64.95±63.08	28.8
рН	5.07±0	6.28±0.57	5.63±0.45	4.98±1.13	4.79±0.59	5
Conductivity (µS/cm)	60.28±20.32	62.47±9.9	35.76±10.59	57.5±32.9	40.09±30.07	22.7
TOC (%)	0.02±0	0.02±0	0.02±0	0.02 ± 0	0.02±0	0.02
TN	6.1±1.69	5.3±3.19	3.82±2.62	4.51±1.67	4.53±3.17	1.91±2.19
ТР	1.99±0.26	3.24±0.76	2.29±0.64	1.38±0.45	2.41±0.71	1.9±0.66

604 References

605	Bai, Y., Chen, C., Xu, Q., Fang, X., 2018. Paleoaltimetry Potentiality of Branched
606	GDGTs From Southern Tibet. Geochemistry, Geophysics, Geosystems 19, 551-
607	564.
608	Baxter, A.J., Hopmans, E.C., Russell, J.M., Sinninghe Damsté, J.S., 2019. Bacterial
609	GMGTs in East African lake sediments: Their potential as palaeotemperature
610	indicators. Geochimica et Cosmochimica Acta 259, 155-169.
611	Bremner, J., 1960. Determination of nitrogen in soil by the Kjeldahl method. The
612	Journal of Agricultural Science 55, 11-33.
613	Buckley, D.H., Schmidt, T.M., 2003. Diversity and dynamics of microbial
614	communities in soils from agro-ecosystems. Environmental Microbiology 5,
615	441-452.
616	Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello,
617	E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows
618	analysis of high-throughput community sequencing data. Nature methods 7, 335-
619	336.
620	Chen, C., Bai, Y., Fang, X., Zhuang, G., Khodzhiev, A., Bai, X., Murodov, A., 2021.
621	Evaluating the potential of soil bacterial tetraether proxies in westerlies
622	dominating western Pamirs, Tajikistan and implications for paleoenvironmental
623	reconstructions. Chemical Geology 559, 119908.
624	Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-
625	Mohideen, A., McGarrell, D.M., Marsh, T., Garrity, G.M., 2009. The Ribosomal
626	Database Project: improved alignments and new tools for rRNA analysis.
627	Nucleic acids research 37, D141-D145.
628	Cottrell, M.T., Kirchman, D.L., 2000. Community composition of marine
629	bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence
630	in situ hybridization. Applied and Environmental Microbiology 66, 5116-5122.
631	Crampton-Flood, E.D., Tierney, J.E., Peterse, F., Kirkels, F.M., Sinninghe Damsté,
632	J.S., 2020. BayMBT: A Bayesian calibration model for branched glycerol dialkyl
633	glycerol tetraethers in soils and peats. Geochimica et Cosmochimica Acta 268,
634	142-159.
635	Crampton-Flood, E.D., van der Weijst, C.M., van der Molen, G., Bouquet, M.,
636	Yedema, Y., Donders, T.H., Sangiorgi, F., Sluijs, A., Sinninghe Damsté, J.S.,
637	Peterse, F., 2021. Identifying marine and freshwater overprints on soil-derived
638	branched GDGT temperature signals in Pliocene Mississippi and Amazon River

639	fan sediments. Organic Geochemistry 154, 104200.
640	Dang, X., Ding, W., Yang, H., Pancost, R.D., Naafs, B.D.A., Xue, J., Lin, X., Lu, J.,
641	Xie, S., 2018. Different temperature dependence of the bacterial brGDGT
642	isomers in 35 Chinese lake sediments compared to that in soils. Organic
643	Geochemistry 119, 72-79.
644	De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B.R., Zellweger, F., Aalto, J., Ashcroft,
645	M.B., Christiansen, D.M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C.,
646	Gril, E., Hampe, A., Jucker, T., Klinges, D.H., Koelemeijer, I.A., Lembrechts,
647	J.J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P.,
648	Hylander, K., 2021. Forest microclimates and climate change: Importance,
649	drivers and future research agenda. Global Change Biology 27, 2279-2297.
650	De Jonge, C., Hopmans, E.C., Zell, C.I., Kim, JH., Schouten, S., Damsté, J.S.S.,
651	2014. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol
652	tetraethers in soils: Implications for palaeoclimate reconstruction. Geochimica et
653	Cosmochimica Acta 141, 97-112.
654	De Jonge, C., Kuramae, E.E., Radujković, D., Weedon, J.T., Janssens, I.A., Peterse,
655	F., 2021. The influence of soil chemistry on branched tetraether lipids in mid-
656	and high latitude soils: Implications for brGDGT- based paleothermometry.
657	Geochimica et Cosmochimica Acta 310, 95-112.
658	De Jonge, C., Radujković, D., Sigurdsson, B.D., Weedon, J.T., Janssens, I., Peterse, F.,
659	2019. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial
660	community composition in geothermally heated soils. Organic Geochemistry
661	137, 103897.
662	Dick, W., Tabatabai, M., 1977. An alkaline oxidation method for determination of
663	total phosphorus in soils. Soil Science Society of America Journal 41, 511-514.
664	Duan, Y., Sun, Q., Werne, J.P., Yang, H., Jia, J., Wang, L., Xie, H., Chen, F., 2020.
665	Soil pH Dominates the Distributions of Both 5- and 6-Methyl Branched
666	Tetraethers in Arid Regions. Journal of Geophysical Research: Biogeosciences
667	125, e2019JG005356.
668	Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial
669	amplicon reads. Nature methods 10, 996-998.
670	Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME
671	improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-
672	2200.
673	Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate
674	surfaces for global land areas. International Journal of Climatology 37, 4302-

- 675 4315.
- Gu, Z., Eils, R., Schlesner, M., 2016. Complex heatmaps reveal patterns and
 correlations in multidimensional genomic data. Bioinformatics 32, 2847-2849.
- 678 Guo, J., Ma, T., Liu, N., Zhang, X., Hu, H., Ma, W., Wang, Z., Feng, X., Peterse, F.,
- 679 2022. Soil pH and aridity influence distributions of branched tetraether lipids in680 grassland soils along an aridity transect. Organic Geochemistry, 104347.
- Halamka, T.A., McFarlin, J.M., Younkin, A.D., Depoy, J., Dildar, N., Kopf, S.H.,
- 682 2021. Oxygen limitation can trigger the production of branched GDGTs in683 culture. Geochemical Perspectives Letters 19, 36-39.
- Halffman, R., Lembrechts, J., Radujković, D., De Gruyter, J., Nijs, I., De Jonge, C.,
 2022. Soil chemistry, temperature and bacterial community composition drive
 brGDGT distributions along a subarctic elevation gradient. Organic
- 687 Geochemistry 163, 104346.
- Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 2016. The effect of improved
 chromatography on GDGT-based palaeoproxies. Organic Geochemistry 93, 1-6.
- Hu, A., Wang, J., Sun, H., Niu, B., Si, G., Wang, J., Yeh, C.-F., Zhu, X., Lu, X., Zhou,
 J., Yang, Y., Ren, M., Hu, Y., Dong, H., Zhang, G., 2020. Mountain biodiversity
 and ecosystem functions: interplay between geology and contemporary
 environments. The ISME Journal 14, 931-944.
- Husson, F., Josse, J., Le, S., Mazet, J., Husson, M.F., 2016. Package 'FactoMineR'.
 An R package 96, 698.
- Inglis, G.N., Collinson, M.E., Riegel, W., Wilde, V., Farnsworth, A., Lunt, D.J.,
 Valdes, P., Robson, B.E., Scott, A.C., Lenz, O.K., 2017. Mid-latitude continental
 temperatures through the early Eocene in western Europe. Earth and Planetary
 Science Letters 460, 86-96.
- Kielak, A.M., Scheublin, T.R., Mendes, L.W., Van Veen, J.A., Kuramae, E.E., 2016.
 Bacterial community succession in pine-wood decomposition. Frontiers in
 microbiology 7, 231.
- Lefcheck, J., Byrnes, J., Grace, J., 2016. Package 'piecewiseSEM'. R package version1.
- Lembrechts, J.J., van den Hoogen, J., Aalto, J., Ashcroft, M.B., De Frenne, P.,
 Kemppinen, J., Kopecký, M., Luoto, M., Maclean, I.M.D., Crowther, T.W.,
- 707 Bailey, J.J., Haesen, S., Klinges, D.H., Niittynen, P., Scheffers, B.R., Van
- 708 Meerbeek, K., Aartsma, P., Abdalaze, O., Abedi, M., Aerts, R., Ahmadian, N.,
- 709 Ahrends, A., Alatalo, J.M., Alexander, J.M., Allonsius, C.N., Altman, J.,
- 710 Ammann, C., Andres, C., Andrews, C., Ardö, J., Arriga, N., Arzac, A., Aschero,

711	V., Assis, R.L., Assmann, J.J., Bader, M.Y., Bahalkeh, K., Barančok, P., Barrio,
712	I.C., Barros, A., Barthel, M., Basham, E.W., Bauters, M., Bazzichetto, M.,
713	Marchesini, L.B., Bell, M.C., Benavides, J.C., Benito Alonso, J.L., Berauer, B.J.,
714	Bjerke, J.W., Björk, R.G., Björkman, M.P., Björnsdóttir, K., Blonder, B., Boeckx,
715	P., Boike, J., Bokhorst, S., Brum, B.N.S., Brůna, J., Buchmann, N., Buysse, P.,
716	Camargo, J.L., Campoe, O.C., Candan, O., Canessa, R., Cannone, N.,
717	Carbognani, M., Carnicer, J., Casanova-Katny, A., Cesarz, S., Chojnicki, B.,
718	Choler, P., Chown, S.L., Cifuentes, E.F., Čiliak, M., Contador, T., Convey, P.,
719	Cooper, E.J., Cremonese, E., Curasi, S.R., Curtis, R., Cutini, M., Dahlberg, C.J.,
720	Daskalova, G.N., de Pablo, M.A., Della Chiesa, S., Dengler, J., Deronde, B.,
721	Descombes, P., Di Cecco, V., Di Musciano, M., Dick, J., Dimarco, R.D., Dolezal,
722	J., Dorrepaal, E., Dušek, J., Eisenhauer, N., Eklundh, L., Erickson, T.E.,
723	Erschbamer, B., Eugster, W., Ewers, R.M., Exton, D.A., Fanin, N., Fazlioglu, F.,
724	Feigenwinter, I., Fenu, G., Ferlian, O., Fernández Calzado, M.R., Fernández-
725	Pascual, E., Finckh, M., Higgens, R.F., Forte, T.a.G.W., Freeman, E.C., Frei,
726	E.R., Fuentes-Lillo, E., García, R.A., García, M.B., Géron, C., Gharun, M.,
727	Ghosn, D., Gigauri, K., Gobin, A., Goded, I., Goeckede, M., Gottschall, F.,
728	Goulding, K., Govaert, S., Graae, B.J., Greenwood, S., Greiser, C., Grelle, A.,
729	Guénard, B., Guglielmin, M., Guillemot, J., Haase, P., Haider, S., Halbritter,
730	A.H., Hamid, M., Hammerle, A., Hampe, A., Haugum, S.V., Hederová, L.,
731	Heinesch, B., Helfter, C., Hepenstrick, D., Herberich, M., Herbst, M.,
732	Hermanutz, L., Hik, D.S., Hoffrén, R., Homeier, J., Hörtnagl, L., Høye, T.T.,
733	Hrbacek, F., Hylander, K., Iwata, H., Jackowicz-Korczynski, M.A., Jactel, H.,
734	Järveoja, J., Jastrzębowski, S., Jentsch, A., Jiménez, J.J., Jónsdóttir, I.S., Jucker,
735	T., Jump, A.S., Juszczak, R., Kanka, R., Kašpar, V., Kazakis, G., Kelly, J.,
736	Khuroo, A.A., Klemedtsson, L., Klisz, M., Kljun, N., Knohl, A., Kobler, J.,
737	Kollár, J., Kotowska, M.M., Kovács, B., Kreyling, J., Lamprecht, A., Lang, S.I.,
738	Larson, C., Larson, K., Laska, K., le Maire, G., Leihy, R.I., Lens, L., Liljebladh,
739	B., Lohila, A., Lorite, J., Loubet, B., Lynn, J., Macek, M., Mackenzie, R.,
740	Magliulo, E., Maier, R., Malfasi, F., Máliš, F., Man, M., Manca, G., Manco, A.,
741	Manise, T., Manolaki, P., Marciniak, F., Matula, R., Mazzolari, A.C., Medinets,
742	S., Medinets, V., Meeussen, C., Merinero, S., Mesquita, R.d.C.G., Meusburger,
743	K., Meysman, F.J.R., Michaletz, S.T., Milbau, A., Moiseev, D., Moiseev, P.,
744	Mondoni, A., Monfries, R., Montagnani, L., Moriana-Armendariz, M., Morra di
745	Cella, U., Mörsdorf, M., Mosedale, J.R., Muffler, L., Muñoz-Rojas, M., Myers,
746	J.A., Myers-Smith, I.H., Nagy, L., Nardino, M., Naujokaitis-Lewis, I., Newling,

- 747 E., Nicklas, L., Niedrist, G., Niessner, A., Nilsson, M.B., Normand, S., Nosetto, M.D., Nouvellon, Y., Nuñez, M.A., Ogaya, R., Ogée, J., Okello, J., Olejnik, J., 748 Olesen, J.E., Opedal, Ø.H., Orsenigo, S., Palaj, A., Pampuch, T., Panov, A.V., 749 750 Pärtel, M., Pastor, A., Pauchard, A., Pauli, H., Pavelka, M., Pearse, W.D., Peichl, 751 M., Pellissier, L., Penczykowski, R.M., Penuelas, J., Petit Bon, M., Petraglia, A., 752 Phartyal, S.S., Phoenix, G.K., Pio, C., Pitacco, A., Pitteloud, C., Plichta, R., 753 Porro, F., Portillo-Estrada, M., Poulenard, J., Poyatos, R., Prokushkin, A.S., 754 Puchalka, R., Puscas, M., Radujković, D., Randall, K., Ratier Backes, A., 755 Remmele, S., Remmers, W., Renault, D., Risch, A.C., Rixen, C., Robinson, S.A., Robroek, B.J.M., Rocha, A.V., Rossi, C., Rossi, G., Roupsard, O., Rubtsov, A.V., 756 757 Saccone, P., Sagot, C., Sallo Bravo, J., Santos, C.C., Sarneel, J.M., Scharnweber, 758 T., Schmeddes, J., Schmidt, M., Scholten, T., Schuchardt, M., Schwartz, N., 759 Scott, T., Seeber, J., Segalin de Andrade, A.C., Seipel, T., Semenchuk, P., Senior, R.A., Serra-Diaz, J.M., Sewerniak, P., Shekhar, A., Sidenko, N.V., Siebicke, L., 760 Siegwart Collier, L., Simpson, E., Siqueira, D.P., Sitková, Z., Six, J., Smiljanic, 761 762 M., Smith, S.W., Smith-Tripp, S., Somers, B., Sørensen, M.V., Souza, J.J.L.L., 763 Souza, B.I., Souza Dias, A., Spasojevic, M.J., Speed, J.D.M., Spicher, F., 764 Stanisci, A., Steinbauer, K., Steinbrecher, R., Steinwandter, M., Stemkovski, M., 765 Stephan, J.G., Stiegler, C., Stoll, S., Svátek, M., Svoboda, M., Tagesson, T., Tanentzap, A.J., Tanneberger, F., Theurillat, J.-P., Thomas, H.J.D., Thomas, A.D., 766 767 Tielbörger, K., Tomaselli, M., Treier, U.A., Trouillier, M., Turtureanu, P.D., 768 Tutton, R., Tyystjärvi, V.A., Ueyama, M., Ujházy, K., Ujházyová, M., Uogintas, 769 D., Urban, A.V., Urban, J., Urbaniak, M., Ursu, T.-M., Vaccari, F.P., Van de 770 Vondel, S., van den Brink, L., Van Geel, M., Vandvik, V., Vangansbeke, P., Varlagin, A., Veen, G.F., Veenendaal, E., Venn, S.E., Verbeeck, H., Verbrugggen, 771 772 E., Verheijen, F.G.A., Villar, L., Vitale, L., Vittoz, P., Vives-Ingla, M., von 773 Oppen, J., Walz, J., Wang, R., Wang, Y., Way, R.G., Wedegärtner, R.E.M., 774 Weigel, R., Wild, J., Wilkinson, M., Wilmking, M., Wingate, L., Winkler, M., 775 Wipf, S., Wohlfahrt, G., Xenakis, G., Yang, Y., Yu, Z., Yu, K., Zellweger, F., 776 Zhang, J., Zhang, Z., Zhao, P., Ziemblińska, K., Zimmermann, R., Zong, S., 777 Zyryanov, V.I., Nijs, I., Lenoir, J., 2022. Global maps of soil temperature. Global 778 Change Biology 28, 3110-3144. 779 Liang, J., Russell, J.M., Xie, H., Lupien, R.L., Si, G., Wang, J., Hou, J., Zhang, G., 780 2019. Vegetation effects on temperature calibrations of branched glycerol dialkyl 781 glycerol tetraether (brGDGTs) in soils. Organic Geochemistry 127, 1-11.
- 782 Liao, S., Wang, K.J., Huang, Y., 2021. Extended chain length alkenoates differentiate

783 three Isochrysidales groups. Organic Geochemistry 161, 104303. Liu, X.-L., Leider, A., Gillespie, A., Gröger, J., Versteegh, G.J., Hinrichs, K.-U., 2010. 784 785 Identification of polar lipid precursors of the ubiquitous branched GDGT orphan 786 lipids in a peat bog in Northern Germany. Organic Geochemistry 41, 653-660. 787 Naafs, B.D.A., Gallego-Sala, A.V., Inglis, G.N., Pancost, R.D., 2017a. Refining the 788 global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature 789 calibration. Organic Geochemistry 106, 48-56. 790 Naafs, B.D.A., Inglis, G.N., Zheng, Y., Amesbury, M., Biester, H., Bindler, R., 791 Blewett, J., Burrows, M., Del Castillo Torres, D., Chambers, F.M., 2017b. 792 Introducing global peat-specific temperature and pH calibrations based on 793 brGDGT bacterial lipids. Geochimica et Cosmochimica Acta 208, 285-301. 794 Naafs, B.D.A., McCormick, D., Inglis, G., Pancost, R., 2018. Archaeal and bacterial 795 H-GDGTs are abundant in peat and their relative abundance is positively 796 correlated with temperature. Geochimica et Cosmochimica Acta 227, 156-170. 797 Naafs, B.D.A., Oliveira, A.S.F., Mulholland, A.J., 2021. Molecular dynamics 798 simulations support the hypothesis that the brGDGT paleothermometer is based 799 on homeoviscous adaptation. Geochimica et Cosmochimica Acta 312, 44-56. 800 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., 801 Minchin, P.R., O'Hara, R.B., Gavin L.Simpson, Solymos, P., Stevens, M.H.H., 802 Szoecs, E., Wagner, H., 2020. vegan: Community Ecology Package. URL: 803 https://CRAN.R-project.org/package=vegan Peaple, M.D., Beverly, E.J., Garza, B., Baker, S., Levin, N.E., Tierney, J.E., Häggi, C., 804 805 Feakins, S.J., 2022. Identifying the drivers of GDGT distributions in alkaline soil 806 profiles within the Serengeti ecosystem. Organic Geochemistry, 104433. Pei, H., Zhao, S., Yang, H., Xie, S., 2021. Variation of branched tetraethers with soil 807 808 depth in relation to non-temperature factors: Implications for paleoclimate 809 reconstruction. Chemical Geology 572, 120211. 810 Peterse, F., van der Meer, J., Schouten, S., Weijers, J.W., Fierer, N., Jackson, R.B., 811 Kim, J.-H., Damsté, J.S.S., 2012. Revised calibration of the MBT-CBT 812 paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochimica et Cosmochimica Acta 96, 215-229. 813 814 R Core Team, 2021. R: A language and environment for statistical computing. R 815 Foundation for Statistical Computing, Vienna, Austria. Raberg, J.H., Miller Gifford, H., Geirsdóttir, Á., Sepúlveda, J., 2022. Near-universal 816 trends in brGDGT lipid distributions in nature. Science Advances 8, eabm7625. 817 818 Russell, J.M., Hopmans, E.C., Loomis, S.E., Liang, J., SinningheDamsté, J.S., 2018.

819	Distributions of 5-and 6-methyl branched glycerol dialkyl glycerol tetraethers
820	(brGDGTs) in East African lake sediment: Effects of temperature, pH, and new
821	lacustrine paleotemperature calibrations. Organic Geochemistry 117, 56-69.
822	Sinninghe Damsté, J.S., Rijpstra, W.I.C., Foesel, B.U., Huber, K.J., Overmann, J.,
823	Nakagawa, S., Kim, J.J., Dunfield, P.F., Dedysh, S.N., Villanueva, L., 2018. An
824	overview of the occurrence of ether-and ester-linked iso-diabolic acid membrane
825	lipids in microbial cultures of the Acidobacteria: Implications for brGDGT
826	paleoproxies for temperature and pH. Organic Geochemistry 124, 63-76.
827	Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Foesel, B.U., Wüst, P.K.,
828	Overmann, J., Tank, M., Bryant, D.A., Dunfield, P.F., Houghton, K., 2014. Ether-
829	and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria
830	subdivision 4. Applied and Environmental Microbiology 80, 5207-5218.
831	Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Weijers, J.W., Foesel, B.U.,
832	Overmann, J., Dedysh, S.N., 2011. 13, 16-Dimethyl octacosanedioic acid (iso-
833	diabolic acid), a common membrane-spanning lipid of Acidobacteria
834	subdivisions 1 and 3. Applied and environmental microbiology 77, 4147-4154.
835	Tang, X., Naafs, B.D.A., Pancost, R.D., Liu, Z., Fan, T., Zheng, Y., 2021. Exploring
836	the influences of temperature on "H-Shaped" Glycerol Dialkyl Glycerol
837	Tetraethers in a stratigraphic context: evidence from two peat cores across the
838	late Quaternary. Frontiers in Earth Science 8, 477.
839	Thompson, A.J., Zhu, J., Poulsen, C.J., Tierney, J.E., Skinner, C.B., 2022. Northern
840	Hemisphere vegetation change drives a Holocene thermal maximum. Science
841	advances 8, eabj6535.
842	Wang, H., An, Z., Lu, H., Zhao, Z., Liu, W., 2020. Calibrating bacterial tetraether
843	distributions towards in situ soil temperature and application to a loess-paleosol
844	sequence. Quaternary Science Reviews 231, 106172.
845	Wang, H., Liu, W., 2021. Soil temperature and brGDGTs along an elevation gradient
846	on the northeastern Tibetan Plateau: A test of soil brGDGTs as a proxy for
847	paleoelevation. Chemical Geology 566, 120079.
848	Wang, M., Hou, J., Duan, Y., Chen, J., Li, X., He, Y., Lee, SY., Chen, F., 2021.
849	Internal feedbacks forced Middle Holocene cooling on the Qinghai-Tibetan
850	Plateau. Boreas 50, 1116-1130.
851	Weber, Y., Damsté, J.S.S., Zopfi, J., De Jonge, C., Gilli, A., Schubert, C.J., Lepori, F.,
852	Lehmann, M.F., Niemann, H., 2018. Redox-dependent niche differentiation
853	provides evidence for multiple bacterial sources of glycerol tetraether lipids in
854	lakes. Proceedings of the National Academy of Sciences 115, 10926-10931.

855	Weber, Y., De Jonge, C., Rijpstra, W.I.C., Hopmans, E.C., Stadnitskaia, A., Schubert,
856	C.J., Lehmann, M.F., Damsté, J.S.S., Niemann, H., 2015. Identification and
857	carbon isotope composition of a novel branched GDGT isomer in lake
858	sediments: Evidence for lacustrine branched GDGT production. Geochimica et
859	Cosmochimica Acta 154, 118-129.
860	Weijers, J.W., Schouten, S., van den Donker, J.C., Hopmans, E.C., Sinninghe Damsté,
861	J.S., 2007. Environmental controls on bacterial tetraether membrane lipid
862	distribution in soils. Geochimica et Cosmochimica Acta 71, 703-713.
863	Weijers, J.W., Steinmann, P., Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S.,
864	2011. Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-
865	CBT temperature proxy for climate reconstruction. Organic Geochemistry 42,
866	477-486.
867	Wu, J., Wang, H., Li, G., Ma, W., Wu, J., Gong, Y., Xu, G., 2020. Vegetation
868	degradation impacts soil nutrients and enzyme activities in wet meadow on the
869	Qinghai-Tibet Plateau. Scientific Reports 10, 21271.
870	Wu, J., Yang, H., Pancost, R.D., Naafs, B.D.A., Qian, S., Dang, X., Sun, H., Pei, H.,
871	Wang, R., Zhao, S., 2021. Variations in dissolved O2 in a Chinese lake drive
872	changes in microbial communities and impact sedimentary GDGT distributions.
873	Chemical Geology, 120348.
874	Yang, H., Pancost, R.D., Dang, X., Zhou, X., Evershed, R.P., Xiao, G., Tang, C., Gao,
875	L., Guo, Z., Xie, S., 2014a. Correlations between microbial tetraether lipids and
876	environmental variables in Chinese soils: Optimizing the paleo-reconstructions
877	in semi-arid and arid regions. Geochimica et Cosmochimica Acta 126, 49-69.
878	Yang, H., Pancost, R.D., Tang, C., Ding, W., Dang, X., Xie, S., 2014b. Distributions
879	of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils
880	and a loess-paleosol sequence: Implications for the degradation of tetraether
881	lipids. Organic Geochemistry 66, 70-79.
882	Yao, Y., Zhao, J., Vachula, R.S., Werne, J.P., Wu, J., Song, X., Huang, Y., 2020.
883	Correlation between the ratio of 5-methyl hexamethylated to pentamethylated
884	branched GDGTs (HP5) and water depth reflects redox variations in stratified
885	lakes. Organic Geochemistry 147, 104076.
886	Zhao, B., Castañeda, I.S., Bradley, R.S., Salacup, J.M., de Wet, G.A., Daniels, W.C.,
887	Schneider, T., 2021. Development of an in situ branched GDGT calibration in
888	Lake 578, southern Greenland. Organic Geochemistry 152, 104168.
889	

Highlights

- 1. Bacterial community and brGDGTs are compared along altitudinal vegetational soils
- 2. Bacterial community would directly influence cyclopentane-containing brGDGTs
- 3. Noncyclic brGDGTs have a strong positive relationship with temperature
- 4. Vegetation influence on brGDGTs reconstruction though changing bacterial community and in situ temperature
- 5. Soil brGDGT-derived temperatures directly respond to soil temperatures rather than air temperatures

Figure 5

Figure 6

Supplementary Information for

Branched glycerol dialkyl glycerol tetraether (brGDGT) distributions

influenced by bacterial community composition in various vegetation

soils on the Tibetan Plateau

Jie Liang, Nora Richter, Haichao Xie, Boyang Zhao, Guicai Si, Jian

Wang, Juzhi Hou*, Gengxin Zhang *, James M. Russell

* To whom correspondence should be addressed. Email: Gengxin Zhang, zhangg@itpcas.ac.cn Juzhi Hou, houjz@itpcas.ac.cn

This PDF file includes:

Figures S1 Dataset S1: Dataset S2: Dataset S3:

Figure S1

Figure S1. Linear regression of mean annual soil temperature (Wang et al., 2020) vs. SBIO global mean annual soil temperature (Lembrechts et al., 2022). The red dots in the map indicate the locations of the in situ soil temperature measurements (Wang et al. 2020).

Figure S2

Figure S2. Violin plots of Pearson correlation coefficients between bacteria and brGDGTs compounds.

Dataset S1 Geographical and environmental data for our study sites, including elevation, latitude, longitude, vegetation type, mean annual air temperature (MAAT), mean temperature of months above freezing (MAF), mean annual soil temperature (Tsoil), water content (WC), conductivity, pH, TOC, TN, TP, sand, silt, and clay.

SampleID	Elevation	Lat	Long	Vegetation	MAAT	MAF	Tsoil	WC	Conductivity	pН	TOC	TN	TP	Sand	Silt	Clay
	(m)	(°)	(°)	C	(°)	(°)	(°)	(%)	(us cm-1)	•	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)
MT02_01	704	29.28	95.26	TRF	18.92	18.92	16.80	5.93	29.40	6	1.60	2.80	2.05	74.68	25.32	0.00
MT02_02	704	29.28	95.26	TRF	18.92	18.92	16.80	6.13	24.20	6	1.60	3.29	2.10	76.99	23.01	0.00
MT02_03	704	29.28	95.26	TRF	18.92	18.92	16.80	7.90	37.40	5	1.70	4.91	2.03	76.66	22.01	1.33
MT02_05	704	29.28	95.26	TRF	18.92	18.92	16.80	6.37	30.70	6	1.50	3.95	1.45	78.05	21.23	0.72
MT02_06	704	29.28	95.26	TRF	18.92	18.92	16.80	6.11	31.80	6	1.70	6.82	2.29	74.20	24.50	1.30
MT02_07	704	29.28	95.26	TRF	18.92	18.92	16.80	5.13	35.30	6	2.00	5.06	2.16	77.50	21.80	0.70
MT02_08	704	29.28	95.26	TRF	18.92	18.92	16.80	10.79	44.50	6	1.70	5.60	2.38	71.83	28.17	0.00
MT02_09	704	29.28	95.26	TRF	18.92	18.92	16.80	8.49	59.50	6	1.50	7.31	2.24	59.26	39.95	0.79
MT02_10	704	29.28	95.26	TRF	18.92	18.92	16.80	7.20	30.40	6	1.50	4.74	1.93	67.34	31.85	0.82
MT04_01	877	29.32	95.29	TRF	18.15	18.15	17.90	15.45	65.70	5	1.40	10.48	4.00	53.42	44.53	2.05
MT04_02	877	29.32	95.29	TRF	18.15	18.15	17.90	16.19	59.00	5	1.60	9.78	3.76	47.34	50.22	2.44
MT04_03	877	29.32	95.29	TRF	18.15	18.15	17.90	14.69	54.40	5	1.50	9.86	3.81	54.09	43.74	2.17
MT04_04	877	29.32	95.29	TRF	18.15	18.15	17.90	13.62	49.70	5	1.50	9.82	3.69	40.28	55.39	4.33
MT04_05	877	29.32	95.29	TRF	18.15	18.15	17.90	14.92	52.90	5	1.50	9.86	3.43	53.05	46.10	0.85
MT04_06	877	29.32	95.29	TRF	18.15	18.15	17.90	15.32	55.10	5	1.80	10.00	3.62	39.72	57.77	2.51
MT04_07	877	29.32	95.29	TRF	18.15	18.15	17.90	19.73	62.00	5	1.40	10.80	4.04	49.50	48.61	1.89
MT04_08	877	29.32	95.29	TRF	18.15	18.15	17.90	14.95	43.80	5	1.40	9.43	3.28	56.51	41.96	1.53
MT04_09	877	29.32	95.29	TRF	18.15	18.15	17.90	13.08	39.40	5	1.30	9.20	3.35	46.58	50.85	2.57
MT04_10	877	29.32	95.29	TRF	18.15	18.15	17.90	12.50	31.60	5	1.60	8.23	3.06	56.11	41.95	1.95
MT05_01	1893	29.64	95.49	EBF	11.80	11.80	9.90	12.44	54.30	6	1.40	5.26	4.33	63.82	36.18	0.00
MT05_02	1893	29.64	95.49	EBF	11.80	11.80	9.90	17.72	57.90	6	1.50	6.67	4.04	73.93	26.07	0.00
MT05_03	1893	29.64	95.49	EBF	11.80	11.80	9.90	22.56	49.30	6	1.70	8.34	4.53	73.94	25.63	0.43
MT05_04	1893	29.64	95.49	EBF	11.80	11.80	9.90	10.24	29.60	6	1.80	4.69	4.50	61.09	38.17	0.74
MT05_05	1893	29.64	95.49	EBF	11.80	11.80	9.90	7.04	28.10	6	1.70	2.69	3.63	71.19	28.43	0.38
MT05_06	1893	29.64	95.49	EBF	11.80	11.80	9.90	32.53	65.40	5	1.40	8.36	3.53	75.31	24.24	0.45
MT05_07	1893	29.64	95.49	EBF	11.80	11.80	9.90	11.74	39.30	6	1.80	3.77	4.86	57.27	42.73	0.00

SampleID	Elevation	Lat	Long	Vegetation	MAAT	MAF	Tsoil	WC	Conductivity	pН	TOC	TN	TP	Sand	Silt	Clay
	(111)	()	()		()	()	()	(%)	(us cm-1)		(%)	(mg/kg)	(IIIg/Kg)	(%)	(%)	(%)
MT05_08	1893	29.64	95.49	EBF	11.80	11.80	9.90	11.72	29.60	6	1.30	4.20	4.80	67.85	30.69	1.46
MT05_09	1893	29.64	95.49	EBF	11.80	11.80	9.90	19.59	71.10	6	1.40	6.59	4.38	70.88	28.43	0.69
MT05_10	1893	29.64	95.49	EBF	11.80	11.80	9.90	11.92	49.50	6	1.80	5.98	3.76	68.69	30.34	0.97
MT06_01	1669	29.63	95.49	EBF	12.39	12.39	10.00	13.49	73.30	7	2.10	4.18	3.00	70.14	28.62	1.24
MT06_02	1669	29.63	95.49	EBF	12.39	12.39	10.00	7.71	27.50	7	1.80	1.45	3.20	71.04	27.52	1.44
MT06_03	1669	29.63	95.49	EBF	12.39	12.39	10.00	8.51	27.80	7	1.80	2.42	2.68	70.49	27.96	1.56
MT06_05	1669	29.63	95.49	EBF	12.39	12.39	10.00	7.69	33.10	7	1.90	2.26	2.81	67.06	30.70	2.24
MT06_06	1669	29.63	95.49	EBF	12.39	12.39	10.00	9.32	39.60	7	1.70	2.82	2.79	68.91	29.65	1.44
MT06_07	1669	29.63	95.49	EBF	12.39	12.39	10.00	16.77	71.50	7	2.10	3.68	2.68	61.51	36.97	1.51
MT06_08	1669	29.63	95.49	EBF	12.39	12.39	10.00	10.26	36.30	7	1.80	3.59	2.72	63.84	34.15	2.01
MT06_09	1669	29.63	95.49	EBF	12.39	12.39	10.00	15.20	73.00	7	1.50	3.71	2.96	54.29	43.65	2.06
MT06_10	1669	29.63	95.49	EBF	12.39	12.39	10.00	10.22	28.90	7	1.40	2.30	3.37	69.96	28.62	1.41
MT07_01	1546	29.61	95.49	EBF	12.76	12.76	9.90	24.39	65.70	6	1.40	8.97	2.67	58.55	38.76	2.69
MT07_02	1546	29.61	95.49	EBF	12.76	12.76	9.90	37.38	98.10	6	1.50	12.07	2.86	57.49	40.43	2.08
MT07_03	1546	29.61	95.49	EBF	12.76	12.76	9.90	22.40	88.20	6	1.60	8.19	2.70	59.31	39.13	1.55
MT07_04	1546	29.61	95.49	EBF	12.76	12.76	9.90	20.55	77.80	6	1.40	5.37	2.91	35.00	59.61	5.39
MT07_05	1546	29.61	95.49	EBF	12.76	12.76	9.90	40.52	115.50	6	1.60	12.18	3.16	66.89	31.63	1.49
MT07_06	1546	29.61	95.49	EBF	12.76	12.76	9.90	14.81	48.90	6	2.10	4.06	3.00	60.85	36.01	3.13
MT07_07	1546	29.61	95.49	EBF	12.76	12.76	9.90	19.25	57.50	6	1.40	6.12	2.89	56.45	41.27	2.28
MT07_08	1546	29.61	95.49	EBF	12.76	12.76	9.90	6.51	28.50	6	1.90	3.72	2.73	74.88	23.72	1.40
MT07_09	1546	29.61	95.49	EBF	12.76	12.76	9.90	76.61	167.30	6	1.50	14.05	2.62	52.28	45.46	2.25
MT07_10	1546	29.61	95.49	EBF	12.76	12.76	9.90	11.11	42.80	6	1.50	4.46	3.17	56.65	40.59	2.76
MT08_01	2166	29.67	95.50	SEBF	10.23	10.23	8.80	13.15	35.30	5	1.50	4.25	1.84	64.48	33.94	1.58
MT08_02	2166	29.67	95.50	SEBF	10.23	10.23	8.80	13.16	33.30	5	1.60	5.83	2.09	70.15	29.53	0.32
MT08_03	2166	29.67	95.50	SEBF	10.23	10.23	8.80	28.47	49.60	5	1.30	7.32	2.52	64.70	33.09	2.21
MT08_04	2166	29.67	95.50	SEBF	10.23	10.23	8.80	14.35	23.90	6	1.90	5.48	2.28	51.21	45.15	3.64
MT08_05	2166	29.67	95.50	SEBF	10.23	10.23	8.80	23.78	53.30	5	1.60	6.34	1.91	61.95	35.70	2.35
MT08_06	2166	29.67	95.50	SEBF	10.23	10.23	8.80	21.15	38.10	5	1.30	6.80	2.32	42.00	53.75	4.25
MT08_07	2166	29.67	95.50	SEBF	10.23	10.23	8.80	15.03	22.50	6	1.50	3.41	1.64	43.95	51.75	4.30
MT08_08	2166	29.67	95.50	SEBF	10.23	10.23	8.80	24.08	29.80	5	1.30	6.86	2.96	48.19	48.27	3.54

SomelaD	Elevation	Lat	Long	Vegetation	MAAT	MAF	Tsoil	WC	Conductivity	μIJ	TOC	TN	TP	Sand	Silt	Clay
SampleiD	(m)	(°)	(°)	vegetation	(°)	(°)	(°)	(%)	(us cm-1)	рп	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)
MT08_09	2166	29.67	95.50	SEBF	10.23	10.23	8.80	22.17	26.90	5	1.50	5.98	2.33	53.30	43.14	3.56
MT08_10	2166	29.67	95.50	SEBF	10.23	10.23	8.80	25.12	45.80	5	1.50	6.47	2.12	48.08	48.27	3.65
MT09_01	2438	29.70	95.52	SEBF	8.15	10.07	9.00	6.31	48.70	6	1.60	7.21	1.24	71.61	27.90	0.50
MT09_02	2438	29.70	95.52	SEBF	8.15	10.07	9.00	9.15	27.00	5	1.80	8.05	1.12	73.41	25.97	0.62
MT09_04	2438	29.70	95.52	SEBF	8.15	10.07	9.00	28.20	101.80	4	1.60	11.51	1.49	74.17	24.82	1.01
MT09_05	2438	29.70	95.52	SEBF	8.15	10.07	9.00	37.67	176.50	4	1.30	14.01	1.98	64.56	34.16	1.28
MT09_06	2438	29.70	95.52	SEBF	8.15	10.07	9.00	26.30	146.10	4	1.60	12.84	1.77	80.90	18.68	0.42
MT09_07	2438	29.70	95.52	SEBF	8.15	10.07	9.00	46.67	179.50	4	1.40	15.18	2.67	71.86	27.05	1.09
MT09_08	2438	29.70	95.52	SEBF	8.15	10.07	9.00	35.79	209.00	4	1.30	15.26	2.20	67.61	32.06	0.33
MT09_09	2438	29.70	95.52	SEBF	8.15	10.07	9.00	29.69	166.30	4	1.60	14.06	2.13	65.66	33.20	1.14
MT09_10	2438	29.70	95.52	SEBF	8.15	10.07	9.00	35.02	164.50	4	1.40	14.49	2.22	58.62	40.67	0.70
MT12_01	2743	29.70	95.56	TCF	5.88	8.91	9.00	11.88	25.00	5	1.70	2.88	1.42	71.70	28.30	0.00
MT12_02	2743	29.70	95.56	TCF	5.88	8.91	9.00	13.63	36.10	5	1.50	6.02	2.05	73.59	25.75	0.66
MT12_03	2743	29.70	95.56	TCF	5.88	8.91	9.00	13.62	28.40	5	1.80	4.63	1.79	65.11	33.77	1.12
MT12_04	2743	29.70	95.56	TCF	5.88	8.91	9.00	16.38	36.80	5	1.50	5.08	1.72	64.03	34.49	1.47
MT12_05	2743	29.70	95.56	TCF	5.88	8.91	9.00	18.04	54.20	5	2.00	7.07	2.06	65.82	32.65	1.54
MT12_06	2743	29.70	95.56	TCF	5.88	8.91	9.00	17.72	41.80	5	1.30	4.89	1.61	60.52	37.62	1.86
MT12_07	2743	29.70	95.56	TCF	5.88	8.91	9.00	17.51	52.90	4	1.40	6.92	1.93	68.94	29.60	1.46
MT12_08	2743	29.70	95.56	TCF	5.88	8.91	9.00	17.48	51.20	4	1.40	7.54	1.84	70.94	27.84	1.22
MT12_09	2743	29.70	95.56	TCF	5.88	8.91	9.00	14.11	34.10	5	1.40	4.27	1.80	58.89	38.97	2.14
MT12_10	2743	29.70	95.56	TCF	5.88	8.91	9.00	14.67	37.10	5	1.70	5.60	1.73	69.03	29.90	1.07
MT13_01	2964	29.72	95.61	TCF	5.23	9.14	6.80	64.74	115.00	6	1.60	8.97	2.34	66.06	31.45	2.49
MT13_02	2964	29.72	95.61	TCF	5.23	9.14	6.80	17.92	46.00	4	1.40	3.09	0.96	72.07	25.92	2.00
MT13_03	2964	29.72	95.61	TCF	5.23	9.14	6.80	27.88	72.50	4	1.50	4.33	0.86	50.47	46.72	2.81
MT13_04	2964	29.72	95.61	TCF	5.23	9.14	6.80	21.00	55.10	4	1.40	2.67	0.87	78.14	21.86	0.00
MT13_05	2964	29.72	95.61	TCF	5.23	9.14	6.80	22.11	59.20	4	1.60	4.19	0.97	46.02	50.70	3.28
MT13_06	2964	29.72	95.61	TCF	5.23	9.14	6.80	23.37	52.40	4	1.50	2.61	0.83	47.63	49.18	3.19
MT13_07	2964	29.72	95.61	TCF	5.23	9.14	6.80	16.41	39.20	4	1.60	2.76	0.79	43.59	53.16	3.25
MT13_08	2964	29.72	95.61	TCF	5.23	9.14	6.80	20.06	47.80	4	1.40	3.60	1.01	53.23	44.13	2.64
MT13_09	2964	29.72	95.61	TCF	5.23	9.14	6.80	28.66	70.10	4	1.50	6.47	1.23	61.07	36.79	2.14

SampleID	Elevation	Lat	Long	Vegetation	MAAT	MAF	Tsoil	WC	Conductivity	pН	TOC	TN	TP	Sand	Silt	Clay
	(m)	(°)	(°)		(°)	(°)	(°)	(%)	(us cm-1)		(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)
MT13_10	2964	29.72	95.61	TCF	5.23	9.14	6.80	34.09	90.40	4	1.70	4.30	0.87	59.92	38.00	2.07
MT14_01	3144	29.72	95.64	FCF	3.78	7.89	7.10	43.33	68.60	5	1.50	7.95	2.30	86.74	12.86	0.40
MT14_02	3144	29.72	95.64	FCF	3.78	7.89	7.10	29.00	65.50	5	1.70	6.59	1.96	33.76	62.82	3.41
MT14_03	3144	29.72	95.64	FCF	3.78	7.89	7.10	20.50	58.60	5	1.50	4.81	1.68	68.80	30.39	0.81
MT14_04	3144	29.72	95.64	FCF	3.78	7.89	7.10	16.74	40.30	5	1.90	2.23	1.09	44.80	52.73	2.47
MT14_05	3144	29.72	95.64	FCF	3.78	7.89	7.10	29.48	59.00	5	1.40	8.96	2.42	45.35	52.29	2.35
MT14_06	3144	29.72	95.64	FCF	3.78	7.89	7.10	27.87	45.80	5	1.50	5.96	1.95	58.25	40.02	1.74
MT14_07	3144	29.72	95.64	FCF	3.78	7.89	7.10	24.57	54.40	5	1.70	4.59	1.62	58.28	39.95	1.77
MT14_08	3144	29.72	95.64	FCF	3.78	7.89	7.10	22.16	45.10	5	1.70	3.27	1.36	40.19	56.35	3.46
MT14_09	3144	29.72	95.64	FCF	3.78	7.89	7.10	39.58	65.70	5	1.50	8.98	2.40	57.77	40.33	1.89
MT14_10	3144	29.72	95.64	FCF	3.78	7.89	7.10	20.87	87.40	4	1.50	4.68	1.32	64.96	32.76	2.28
MT15_01	3244	29.73	95.66	FCF	2.33	7.70	5.60	7.01	31.10	5	2.00	0.73	2.68	54.83	45.17	0.00
MT15_02	3244	29.73	95.66	FCF	2.33	7.70	5.60	4.06	20.30	5	1.90	0.58	2.79	65.10	34.90	0.00
MT15_03	3244	29.73	95.66	FCF	2.33	7.70	5.60	4.33	19.77	5	1.50	0.59	3.00	69.81	29.69	0.51
MT15_04	3244	29.73	95.66	FCF	2.33	7.70	5.60	12.13	37.50	5	1.30	2.64	1.28	44.64	52.85	2.52
MT15_05	3244	29.73	95.66	FCF	2.33	7.70	5.60	4.87	26.10	5	1.80	1.01	2.60	57.96	42.05	0.00
MT15_06	3244	29.73	95.66	FCF	2.33	7.70	5.60	5.01	27.40	5	2.00	0.65	2.88	66.05	33.95	0.00
MT15_07	3244	29.73	95.66	FCF	2.33	7.70	5.60	3.63	26.00	5	1.70	0.45	2.74	69.63	30.37	0.00
MT15_09	3244	29.73	95.66	FCF	2.33	7.70	5.60	4.81	20.90	5	2.00	0.57	2.85	71.58	28.42	0.00
MT15_10	3244	29.73	95.66	FCF	2.33	7.70	5.60	5.65	23.00	5	1.60	0.71	2.89	67.18	32.82	0.00
MT16_01	3419	29.74	95.68	FCF	1.24	6.70	5.00	37.82	67.40	5	1.70	6.29	2.45	36.00	60.54	3.45
MT16_02	3419	29.74	95.68	FCF	1.24	6.70	5.00	86.77	91.70	5	1.70	10.78	2.76	28.19	66.86	4.96
MT16_03	3419	29.74	95.68	FCF	1.24	6.70	5.00	40.76	59.80	5	1.80	8.30	2.10	58.84	39.34	1.82
MT16_04	3419	29.74	95.68	FCF	1.24	6.70	5.00	41.88	49.70	5	1.40	6.74	1.91	40.77	55.77	3.46
MT16_05	3419	29.74	95.68	FCF	1.24	6.70	5.00	38.93	51.60	5	1.40	7.61	2.14	44.72	52.84	2.44
MT16_06	3419	29.74	95.68	FCF	1.24	6.70	5.00	32.47	45.40	5	2.00	4.30	1.57	51.06	46.77	2.16
MT16_07	3419	29.74	95.68	FCF	1.24	6.70	5.00	67.05	75.60	5	1.30	10.35	2.26	50.43	47.15	2.42
MT16_08	3419	29.74	95.68	FCF	1.24	6.70	5.00	34.81	61.30	5	1.60	5.14	1.67	59.94	37.47	2.59
MT16_09	3419	29.74	95.68	FCF	1.24	6.70	5.00	26.61	48.30	5	1.80	4.63	1.51	61.32	38.68	0.00
MT16_10	3419	29.74	95.68	FCF	1.24	6.70	5.00	91.10	92.20	5	1.40	12.41	2.65	26.96	69.22	3.82

SampleID	Elevation (m)	Lat (°)	Long (°)	Vegetation	MAAT (°)	MAF (°)	Tsoil (°)	WC (%)	Conductivity (us cm-1)	рН	TOC (%)	TN (mg/kg)	TP (mg/kg)	Sand (%)	Silt (%)	Clay (%)
MT17_01	3629	29.74	95.69	FCF	-1.13	5.45	2.90	8.80	18.58	5	1.80	2.52	3.23	53.24	46.76	0.00
MT17_03	3629	29.74	95.69	FCF	-1.13	5.45	2.90	9.23	24.70	5	1.90	2.08	3.23	57.22	42.78	0.00
MT17_04	3629	29.74	95.69	FCF	-1.13	5.45	2.90	12.55	27.50	5	1.30	3.36	3.21	55.01	44.99	0.00
MT17_05	3629	29.74	95.69	FCF	-1.13	5.45	2.90	16.26	16.66	5	1.70	4.03	3.24	56.36	43.64	0.00
MT17_06	3629	29.74	95.69	FCF	-1.13	5.45	2.90	10.48	18.86	5	1.30	2.64	3.10	54.87	45.13	0.00
MT17_07	3629	29.74	95.69	FCF	-1.13	5.45	2.90	19.85	22.00	5	1.40	3.24	2.99	49.13	49.00	1.87
MT17_08	3629	29.74	95.69	FCF	-1.13	5.45	2.90	26.89	114.20	5	1.60	9.88	3.86	51.65	47.29	1.06
MT17_09	3629	29.74	95.69	FCF	-1.13	5.45	2.90	18.98	54.00	5	1.40	8.10	3.70	53.47	46.53	0.00
MT17_10	3629	29.74	95.69	FCF	-1.13	5.45	2.90	25.79	62.80	5	1.40	8.73	3.97	39.42	59.47	1.11
MT18_01	3760	29.74	95.71	FSM	-2.38	5.14	4.00	4.53	29.40	5	2.10	1.10	1.39	78.65	20.94	0.40
MT18_02	3760	29.74	95.71	FSM	-2.38	5.14	4.00	5.21	28.80	5	1.70	1.09	2.15	74.68	24.80	0.51
MT18_03	3760	29.74	95.71	FSM	-2.38	5.14	4.00	7.69	24.70	5	1.70	1.10	1.52	62.36	36.59	1.05
MT18_04	3760	29.74	95.71	FSM	-2.38	5.14	4.00	2.97	24.90	5	1.90	0.94	1.71	76.74	22.22	1.04
MT18_05	3760	29.74	95.71	FSM	-2.38	5.14	4.00	6.22	29.50	5	2.20	1.48	1.59	52.23	45.69	2.09
MT18_06	3760	29.74	95.71	FSM	-2.38	5.14	4.00	7.31	26.60	5	1.30	0.92	1.70	59.10	39.34	1.55
MT18_07	3760	29.74	95.71	FSM	-2.38	5.14	4.00	5.42	27.80	5	2.00	1.15	1.70	70.69	28.21	1.10
MT18_08	3760	29.74	95.71	FSM	-2.38	5.14	4.00	6.03	25.70	5	1.60	1.33	1.66	78.93	20.60	0.47
MT18_09	3760	29.74	95.71	FSM	-2.38	5.14	4.00	5.76	22.70	5	2.10	1.01	1.53	76.81	22.67	0.51

Dataset S2 Relative abundance of brGDGTs from this study.

Sample ID	IIIa	IIIb	IIIc	IIa	IIb	IIc	Ia	Ib	Ic
MT02_01	0.99	0.09	0.04	15.19	1.91	0.13	67.67	11.76	2.22
MT02_02	2.28	0.04	0.05	17.40	2.18	0.28	64.32	10.81	2.64
MT02_03	1.04	0.07	0.04	12.24	1.83	0.17	71.80	10.68	2.13
MT02_05	1.55	0.21	0.03	12.90	1.63	0.28	72.64	8.88	1.87
MT02_06	1.20	0.19	0.05	13.44	1.12	0.15	73.30	7.93	2.61
MT02_07	1.62	0.19	0.03	14.59	2.66	0.35	63.92	13.22	3.41
MT02_08	1.11	0.21	0.03	16.90	1.93	0.20	66.22	10.53	2.88
MT02_09	1.72	0.50	0.04	15.96	2.03	0.43	64.14	11.98	3.20
MT02_10	1.13	0.13	0.00	14.08	1.37	0.42	70.54	10.28	2.04
MT04_01	0.69	0.09	0.01	13.99	0.38	0.13	80.61	3.18	0.91
MT04_02	0.72	0.16	0.02	14.13	0.75	0.04	79.27	3.91	1.00
MT04_03	0.82	0.18	0.02	13.51	0.64	0.04	80.87	3.05	0.88
MT04_04	0.76	0.09	0.02	13.13	0.42	0.10	81.63	2.95	0.92
MT04_05	0.76	0.35	0.07	12.06	0.78	0.11	80.89	3.83	1.15
MT04_06	1.42	0.09	0.04	16.36	1.57	0.12	72.97	5.88	1.55
MT04_07	1.41	0.12	0.05	19.24	1.76	0.24	67.26	7.92	2.00
MT04_08	0.82	0.04	0.03	15.26	1.06	0.15	75.38	5.51	1.76
MT04_09	0.85	0.04	0.02	15.14	0.52	0.12	78.07	4.12	1.12
MT04_10	0.95	0.08	0.06	17.35	0.85	0.16	75.46	4.08	1.02
MT05_01	9.00	0.71	0.16	39.99	5.28	0.83	34.44	7.64	1.95
MT05_02	12.55	1.67	0.38	37.06	10.19	1.90	24.15	9.21	2.87
MT05_03	10.63	0.62	0.11	40.11	7.44	1.28	27.25	9.58	2.98
MT05_04	9.38	0.66	0.21	39.64	6.41	1.14	29.17	7.04	6.36
MT05_05	6.98	0.80	0.46	38.31	5.91	1.10	36.39	8.37	1.68
MT05_06	9.67	0.71	0.09	44.52	4.36	0.42	32.76	4.61	2.85
MT05_07	10.22	0.75	0.01	37.23	6.27	0.74	33.89	8.52	2.36
MT05_08	6.66	0.51	0.14	40.06	6.18	0.94	33.63	8.51	3.36
MT05_09	9.20	0.71	0.28	38.28	7.53	0.69	34.19	7.32	1.79
MT05_10	7.63	0.59	0.05	39.72	4.58	0.66	38.02	7.14	1.61
MT06_01	12.11	1.55	0.49	39.64	11.45	1.09	23.39	8.44	1.84
MT06_02	4.39	0.26	0.12	28.03	3.58	0.50	52.29	9.10	1.72
MT06_03	6.69	0.61	0.25	31.51	5.74	0.88	41.21	10.53	2.57
MT06_05	5.91	0.96	0.63	25.73	11.24	1.90	40.30	10.34	2.99
MT06_06	8.02	0.86	0.32	32.95	10.41	1.40	32.70	10.79	2.55
MT06_07	13.08	1.39	0.22	52.45	6.69	0.89	18.26	5.86	1.17
MT06_08	10.04	1.48	0.54	33.33	11.15	1.53	28.99	10.33	2.61
MT06_09	8.27	1.16	0.24	36.33	7.96	1.20	31.56	10.85	2.43
MT06_10	8.24	1.02	0.23	35.15	7.47	1.11	34.28	9.03	3.45
MT07_01	7.62	1.48	0.29	34.97	9.92	1.03	32.45	9.16	3.08
MT07_02	8.75	1.55	0.52	32.12	11.44	1.38	30.33	11.15	2.76
MT07_03	8.64	1.42	0.23	35.97	9.14	1.73	26.78	12.29	3.81
MT07_04	8.29	1.40	0.04	31.19	9.26	1.32	33.69	10.97	3.84
MT07_05	14.65	1.10	0.66	23.41	15.19	0.66	37.71	5.38	1.23
MT07_06	3.27	0.18	0.04	27.70	1.82	0.34	57.51	8.30	0.85
MT07_07	7.17	1.07	0.20	39.69	7.42	1.09	26.97	13.72	2.67
MT07_08	7.87	0.76	0.36	34.86	9.17	1.13	34.08	8.88	2.89

MT07_09 6.34 1.25 0.20 36.96 8.23 0.95 33.91 9.52 2.62 MT07_10 8.93 1.23 0.17 37.81 9.09 1.58 62.82 10.05 4.31 MT08_01 3.36 0.18 0.07 28.89 0.24 0.38 62.95 3.23 0.69 MT08_03 6.30 0.10 0.04 30.63 1.81 0.48 53.23 6.59 0.81 MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 6.27 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.94 0.78 MT08_09 8.33 1.16 0.31 34.02 10.04 1.08 43.48 6.25 3.08 MT08_09 8.33 1.16 0.31 34.02 10.04 53.63 5.74 0.95 MT09_01 6.11 0.15 0.94 <td< th=""></td<>
MT07_10 8.93 1.23 0.17 37.81 9.09 1.58 26.82 10.05 4.31 MT08_02 3.36 0.18 0.07 28.89 0.24 0.38 62.95 3.23 0.69 MT08_02 3.82 0.32 0.04 29.39 1.10 0.23 59.59 4.65 0.81 MT08_04 5.39 0.11 0.19 32.86 1.36 0.35 50.91 8.02 0.82 MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 62.7 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.94 0.78 MT08_06 8.33 1.16 0.31 34.02 10.04 1.20 30.49 1.18 2.55 MT08_09 8.33 1.16 0.31 34.02 10.44 1.20 30.49 1.28 MT09_01 6.11 0.15 0.94 <td< td=""></td<>
MT08_01 3.36 0.18 0.07 28.89 0.24 0.38 62.95 3.23 0.69 MT08_02 3.82 0.32 0.04 29.39 1.10 0.23 59.59 4.65 0.85 MT08_03 6.30 0.10 0.04 30.63 1.81 0.48 53.23 6.59 0.81 MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 6.27 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 8.45 6.94 0.78 MT08_07 3.86 0.21 0.04 29.61 1.63 0.40 55.84 7.49 0.92 MT08_08 6.29 0.72 0.37 33.89 4.84 1.08 43.48 6.25 3.08 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.0
MT08_02 3.82 0.32 0.04 29.39 1.10 0.23 59.59 4.65 0.85 MT08_03 6.30 0.10 0.04 30.63 1.81 0.48 53.23 6.59 0.81 MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 6.27 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.94 0.78 MT08_07 3.86 0.21 0.04 29.61 1.63 0.40 55.84 7.49 0.92 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.00 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.61 60.27 2.79 1.35 MT09_05 2.94 0.18
MT08_03 6.30 0.10 0.04 30.63 1.81 0.48 53.23 6.59 0.81 MT08_04 5.39 0.11 0.19 32.86 1.36 0.35 50.91 8.02 0.82 MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 6.27 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.44 0.78 MT08_06 6.29 0.72 0.37 33.89 4.84 1.08 43.48 6.25 3.08 MT08_10 4.91 0.19 0.08 32.35 1.70 0.45 53.63 5.74 0.95 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.48 MT09_05 2.94 0.18 0.
MT08_04 5.39 0.11 0.19 32.86 1.36 0.35 50.91 8.02 0.82 MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 6.27 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.94 0.78 MT08_07 3.86 0.21 0.04 29.61 1.63 0.40 55.84 7.49 0.92 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_05 2.94 0.18 0.05 30.45 1.35 0.61 60.27 2.79 1.35 MT09_07 3.59 0.15
MT08_05 5.73 0.18 0.08 35.86 1.42 0.39 49.30 6.27 0.78 MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.94 0.78 MT08_07 3.86 0.21 0.04 29.61 1.63 0.40 55.84 7.49 0.92 MT08_08 6.29 0.72 0.37 33.89 4.84 1.08 43.48 6.25 3.08 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_05 2.94 0.18 0.05 30.45 1.35 0.61 60.27 2.79 1.35 MT09_07 3.59 0.15
MT08_06 4.30 0.10 0.09 27.29 1.78 0.27 58.45 6.94 0.78 MT08_07 3.86 0.21 0.04 29.61 1.63 0.40 55.84 7.49 0.92 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_05 2.94 0.18 0.03 28.60 1.34 0.74 61.04 3.64 1.69 MT09_06 2.73 0.12 0.02 31.82 1.35 0.87 56.76 4.41 1.79 MT09_08 2.86 0.12 <t< td=""></t<>
MT08_07 3.86 0.21 0.04 29.61 1.63 0.40 55.84 7.49 0.92 MT08_08 6.29 0.72 0.37 33.89 4.84 1.08 43.48 6.25 3.08 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT08_10 4.91 0.19 0.08 32.35 1.70 0.45 53.63 5.74 0.92 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_04 2.29 0.06 0.02 25.31 1.61 0.57 65.14 3.54 1.45 MT09_05 2.94 0.18 0.03 28.60 1.34 0.74 61.04 3.64 1.69 MT09_08 2.86 0.12
MT08_08 6.29 0.72 0.37 33.89 4.84 1.08 43.48 6.25 3.08 MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT08_10 4.91 0.19 0.08 32.35 1.70 0.45 53.63 5.74 0.95 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_05 2.94 0.18 0.05 30.45 1.35 0.61 60.27 2.79 1.35 MT09_06 2.73 0.18 0.03 28.60 1.34 0.74 61.04 3.64 1.69 MT09_08 2.86 0.12 0.02 31.82 1.35 0.87 56.76 4.41 1.79 MT09_10 3.12 0.11
MT08_09 8.33 1.16 0.31 34.02 10.04 1.20 30.49 11.89 2.55 MT08_10 4.91 0.19 0.08 32.35 1.70 0.45 53.63 5.74 0.95 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_05 2.94 0.18 0.05 30.45 1.35 0.61 60.27 2.79 1.35 MT09_06 2.73 0.18 0.03 28.60 1.34 0.74 61.04 3.64 1.69 MT09_08 2.86 0.12 0.02 31.82 1.35 0.87 56.76 4.41 1.79 MT09_09 2.75 0.12 0.02 29.67 1.54 0.64 60.18 3.56 1.52 MT12_01 6.41 0.13
MT08_10 4.91 0.19 0.08 32.35 1.70 0.45 53.63 5.74 0.95 MT09_01 6.11 0.15 0.94 39.92 1.25 1.13 45.60 3.89 1.02 MT09_02 6.12 0.27 0.09 36.50 1.37 0.76 49.27 4.34 1.28 MT09_04 2.29 0.06 0.02 25.31 1.61 0.57 65.14 3.54 1.45 MT09_05 2.94 0.18 0.03 28.60 1.34 0.74 61.04 3.64 1.62 MT09_06 2.73 0.18 0.03 28.60 1.35 0.61 60.27 2.79 1.35 MT09_07 3.59 0.15 0.01 33.04 1.64 0.83 55.58 3.54 1.62 MT09_09 2.75 0.12 0.02 29.67 1.54 0.64 60.18 3.56 1.52 MT09_10 3.12 0.11 0.05 28.48 1.13 0.75 60.88 3.89 1.59 <th< td=""></th<>
MT09_016.110.150.9439.921.251.1345.603.891.02MT09_026.120.270.0936.501.370.7649.274.341.28MT09_042.290.060.0225.311.610.5765.143.541.45MT09_052.940.180.0530.451.350.6160.272.791.35MT09_062.730.180.0328.601.340.7461.043.641.69MT09_073.590.150.0133.041.640.8355.583.541.62MT09_082.860.120.0231.821.350.8756.764.411.79MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_066.590.110.0936.551.901.1047.633.822.21MT12_06<
MT09_026.120.270.0936.501.370.7649.274.341.28MT09_042.290.060.0225.311.610.5765.143.541.45MT09_052.940.180.0530.451.350.6160.272.791.35MT09_062.730.180.0328.601.340.7461.043.641.69MT09_073.590.150.0133.041.640.8355.583.541.62MT09_082.860.120.0231.821.350.8756.764.411.79MT09_092.750.120.0229.671.540.6460.183.561.52MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_08<
MT09_04 2.29 0.06 0.02 25.31 1.61 0.57 65.14 3.54 1.45 MT09_05 2.94 0.18 0.05 30.45 1.35 0.61 60.27 2.79 1.35 MT09_06 2.73 0.18 0.03 28.60 1.34 0.74 61.04 3.64 1.69 MT09_07 3.59 0.15 0.01 33.04 1.64 0.83 55.58 3.54 1.62 MT09_08 2.86 0.12 0.02 31.82 1.35 0.87 56.76 4.41 1.79 MT09_09 2.75 0.12 0.02 29.67 1.54 0.64 60.18 3.56 1.52 MT09_10 3.12 0.11 0.05 28.48 1.13 0.75 60.88 3.89 1.59 MT12_02 10.23 0.11 0.14 40.77 2.10 0.63 40.62 4.44 0.95 MT12_03 9.84 0.16 0
MT09_052.940.180.0530.451.350.6160.272.791.35MT09_062.730.180.0328.601.340.7461.043.641.69MT09_073.590.150.0133.041.640.8355.583.541.62MT09_082.860.120.0231.821.350.8756.764.411.79MT09_092.750.120.0229.671.540.6460.183.561.52MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_099.290.170.0740.091.691.2241.993.971.51MT12_00<
MT09_062.730.180.0328.601.340.7461.043.641.69MT09_073.590.150.0133.041.640.8355.583.541.62MT09_082.860.120.0231.821.350.8756.764.411.79MT09_092.750.120.0229.671.540.6460.183.561.52MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_099.290.170.0740.091.691.2241.993.971.51MT12_099.290.170.0740.091.691.2241.993.971.51MT12_0121.051.000.3340.644.551.1226.323.771.22MT13_01
MT09_07 3.59 0.15 0.01 33.04 1.64 0.83 55.58 3.54 1.62 MT09_08 2.86 0.12 0.02 31.82 1.35 0.87 56.76 4.41 1.79 MT09_09 2.75 0.12 0.02 29.67 1.54 0.64 60.18 3.56 1.52 MT09_10 3.12 0.11 0.05 28.48 1.13 0.75 60.88 3.89 1.59 MT12_01 6.41 0.13 0.17 31.50 2.22 0.63 55.67 2.45 0.82 MT12_02 10.23 0.11 0.14 40.77 2.10 0.63 40.62 4.44 0.95 MT12_03 9.84 0.16 0.07 43.67 1.74 0.80 37.93 4.99 0.81 MT12_04 5.88 0.04 0.06 34.93 1.45 0.72 52.77 2.90 1.24 MT12_06 6.59 0.11 0
MT09_082.860.120.0231.821.350.8756.764.411.79MT09_092.750.120.0229.671.540.6460.183.561.52MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_086.090.060.1433.351.280.8153.254.120.90MT13_0121.051.000.3340.644.551.1226.323.771.22MT13_027.570.660.0934.711.550.6549.992.752.03MT13_046.290.140.0826.540.150.576.1282.221.43MT13_04
MT09_092.750.120.0229.671.540.6460.183.561.52MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_086.090.060.1433.351.280.8153.254.120.90MT12_099.290.170.0740.091.691.2241.993.971.51MT12_108.290.210.0836.521.440.5147.753.891.30MT13_0121.051.000.3340.644.551.1226.323.771.22MT13_037.930.560.1235.553.180.9048.122.221.43MT13_04
MT09_103.120.110.0528.481.130.7560.883.891.59MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_086.090.060.1433.351.280.8153.254.120.90MT12_108.290.210.0836.521.440.5147.753.891.30MT13_0121.051.000.3340.644.551.1226.323.771.22MT13_037.930.560.1235.553.180.9048.122.221.43MT13_046.290.140.0826.540.150.5761.282.532.42
MT12_016.410.130.1731.502.220.6355.672.450.82MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_086.090.060.1433.351.280.8153.254.120.90MT12_108.290.210.0836.521.440.5147.753.891.30MT13_0121.051.000.3340.644.551.1226.323.771.22MT13_027.570.660.0934.711.550.6549.992.752.03MT13_046.290.140.0826.540.150.5761.282.532.42MT13_055.250.140.0826.540.150.5761.282.532.42
MT12_0210.230.110.1440.772.100.6340.624.440.95MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_086.090.060.1433.351.280.8153.254.120.90MT12_099.290.170.0740.091.691.2241.993.971.51MT13_0121.051.000.3340.644.551.1226.323.771.22MT13_027.570.660.0934.711.550.6549.992.752.03MT13_046.290.140.0826.540.150.5761.282.532.42MT13_055.250.250.4120.202.060.6151.272.751.42
MT12_039.840.160.0743.671.740.8037.934.990.81MT12_045.880.040.0634.931.450.7252.772.901.24MT12_056.360.080.0925.622.340.4661.592.590.86MT12_066.590.110.0936.551.901.1047.633.822.21MT12_076.930.080.1038.291.400.7646.374.761.31MT12_086.090.060.1433.351.280.8153.254.120.90MT12_099.290.170.0740.091.691.2241.993.971.51MT12_108.290.210.0836.521.440.5147.753.891.30MT13_0121.051.000.3340.644.551.1226.323.771.22MT13_037.930.560.1235.553.180.9048.122.221.43MT13_046.290.140.0826.540.150.5761.282.532.42MT13_050.250.140.0826.540.150.5761.282.532.42
MT12_04 5.88 0.04 0.06 34.93 1.45 0.72 52.77 2.90 1.24 MT12_05 6.36 0.08 0.09 25.62 2.34 0.46 61.59 2.59 0.86 MT12_06 6.59 0.11 0.09 36.55 1.90 1.10 47.63 3.82 2.21 MT12_07 6.93 0.08 0.10 38.29 1.40 0.76 46.37 4.76 1.31 MT12_08 6.09 0.06 0.14 33.35 1.28 0.81 53.25 4.12 0.90 MT12_09 9.29 0.17 0.07 40.09 1.69 1.22 41.99 3.97 1.51 MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 <t< td=""></t<>
MT12_05 6.36 0.08 0.09 25.62 2.34 0.46 61.59 2.59 0.86 MT12_06 6.59 0.11 0.09 36.55 1.90 1.10 47.63 3.82 2.21 MT12_07 6.93 0.08 0.10 38.29 1.40 0.76 46.37 4.76 1.31 MT12_08 6.09 0.06 0.14 33.35 1.28 0.81 53.25 4.12 0.90 MT12_09 9.29 0.17 0.07 40.09 1.69 1.22 41.99 3.97 1.51 MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 <t< td=""></t<>
MT12_06 6.59 0.11 0.09 36.55 1.90 1.10 47.63 3.82 2.21 MT12_07 6.93 0.08 0.10 38.29 1.40 0.76 46.37 4.76 1.31 MT12_08 6.09 0.06 0.14 33.35 1.28 0.81 53.25 4.12 0.90 MT12_09 9.29 0.17 0.07 40.09 1.69 1.22 41.99 3.97 1.51 MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42
MT12_07 6.93 0.08 0.10 38.29 1.40 0.76 46.37 4.76 1.31 MT12_08 6.09 0.06 0.14 33.35 1.28 0.81 53.25 4.12 0.90 MT12_09 9.29 0.17 0.07 40.09 1.69 1.22 41.99 3.97 1.51 MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42 MT13_05 5.25 0.25 0.11 22.02 2.06 0.64 54.22 2.75 1.40
MT12_08 6.09 0.06 0.14 33.35 1.28 0.81 53.25 4.12 0.90 MT12_09 9.29 0.17 0.07 40.09 1.69 1.22 41.99 3.97 1.51 MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42
M112_09 9.29 0.17 0.07 40.09 1.69 1.22 41.99 3.97 1.51 MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42
MT12_10 8.29 0.21 0.08 36.52 1.44 0.51 47.75 3.89 1.30 MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42
MT13_01 21.05 1.00 0.33 40.64 4.55 1.12 26.32 3.77 1.22 MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42 MT13_05 5.25 0.25 0.11 22.02 2.06 0.64 54.22 2.75 1.42
MT13_02 7.57 0.66 0.09 34.71 1.55 0.65 49.99 2.75 2.03 MT13_03 7.93 0.56 0.12 35.55 3.18 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42 MT13_05 5.25 0.25 0.11 22.02 2.06 0.64 54.22 2.75 1.40
MT13_03 7.95 0.36 0.12 35.35 5.16 0.90 48.12 2.22 1.43 MT13_04 6.29 0.14 0.08 26.54 0.15 0.57 61.28 2.53 2.42 MT13_05 5.25 0.25 0.11 22.02 2.06 0.64 54.22 2.75 1.40
MT12_04 0.29 0.14 0.08 20.34 0.15 0.57 01.28 2.55 2.42
- $ -$
MT12_05 5.25 0.55 0.11 52.02 2.00 0.04 54.52 5.75 1.49 MT12_06 6.52 0.20 0.10 26.07 2.10 0.02 48.70 2.52 1.67
MT13_00 0.55 0.50 0.19 50.07 2.10 0.95 48.70 5.52 1.07 MT12_07 8.24 0.17 0.04 27.75 1.55 0.67 46.00 2.22 2.28
MT13_07 8.24 0.17 0.04 37.75 1.55 0.07 40.99 2.22 2.38 MT13_08 0.50 0.15 0.07 28.15 1.40 0.73 45.55 2.03 1.45
MT13_00 5.87 0.40 0.07 30.64 2.28 0.83 55.75 2.78 1.39
MT13_09 5.23 0.12 0.03 34.66 1.56 1.69 51.56 3.58 1.57
MT12_10 5.25 0.12 0.05 54.00 1.50 1.09 51.50 5.58 1.57 MT14_01 9.97 0.04 0.05 42.30 1.37 0.48 41.62 3.27 0.90
MT14_02 11.86 0.15 0.06 39.91 1.52 0.60 42.71 2.61 0.58
MT14_03 21.43 0.15 0.01 45.87 2.16 0.49 27.45 2.04 0.39
MT14_04 18.81 2.12 0.21 45.17 7.82 0.85 20.57 3.88 0.58
MT14_05 15.87 0.08 0.03 44.47 1.22 0.96 34.34 2.52 0.52
MT14_06 14.04 0.47 0.09 42.62 2.18 0.79 35.84 3.25 0.70
MT14 07 15.81 0.23 0.25 31.34 1.89 0.78 46.87 2.17 0.67

Sample ID	IIIa	IIIb	IIIc	IIa	IIb	IIc	Ia	Ib	Ic
MT14_08	11.10	0.19	0.01	42.49	1.71	0.55	39.21	3.99	0.74
MT14_09	18.72	0.49	0.07	42.14	1.12	0.07	35.54	1.47	0.39
MT14_10	5.57	0.17	0.04	34.63	1.89	0.71	54.20	1.89	0.91
MT15_01	17.90	0.28	0.12	49.25	2.97	0.60	26.82	1.73	0.33
MT15_02	21.75	0.25	0.25	44.59	2.23	0.55	25.66	3.76	0.98
MT15_03	22.14	0.22	0.13	40.05	2.01	0.71	31.29	3.17	0.27
MT15_04	23.62	0.24	0.26	43.59	2.38	3.49	24.74	1.52	0.15
MT15_05	22.13	0.08	0.02	45.11	1.74	0.58	28.03	1.90	0.42
MT15_06	20.16	0.35	0.09	47.60	0.11	0.07	31.49	0.05	0.07
MT15_07	24.36	0.25	0.28	45.46	1.83	0.42	26.57	0.51	0.31
MT15_09	23.45	0.38	0.02	42.91	2.19	2.67	26.65	1.47	0.26
MT15_10	21.20	0.28	0.05	49.60	2.38	0.52	24.48	1.20	0.29
MT16_01	21.06	0.19	0.27	38.97	1.52	0.97	34.58	2.05	0.39
MT16_02	17.04	0.15	0.14	34.95	1.66	1.16	42.21	2.28	0.43
MT16_03	8.81	0.40	0.04	40.18	1.27	0.69	45.64	2.38	0.59
MT16_04	22.08	0.21	0.03	42.44	1.00	0.70	31.89	1.28	0.37
MT16_05	20.86	0.32	0.14	37.28	1.33	1.15	35.37	2.88	0.67
MT16_06	26.76	0.24	0.22	38.47	1.50	0.86	29.84	1.70	0.40
MT16_07	26.43	0.40	0.11	42.06	1.09	0.63	28.05	0.98	0.25
MT16_08	14.84	0.17	0.04	43.49	1.56	1.09	37.96	0.17	0.69
MT16_09	16.97	0.23	0.12	43.10	1.28	0.82	34.48	2.57	0.45
MT16_10	25.26	0.42	0.13	39.18	1.29	0.71	31.80	0.99	0.21
MT17_01	10.29	0.17	0.12	35.09	1.51	0.48	47.23	4.49	0.62
MT17_03	8.56	0.58	0.21	36.92	1.79	0.43	46.76	4.21	0.54
MT17_04	16.31	0.41	0.26	42.01	2.01	0.47	33.80	4.28	0.45
MT17_05	8.61	0.32	0.09	36.72	2.09	0.06	46.74	4.42	0.94
MT17_06	7.95	0.39	0.06	34.90	2.48	0.44	47.61	5.62	0.56
MT17_07	11.79	0.89	0.88	35.97	2.65	1.06	40.86	5.05	0.85
MT17_08	24.78	0.30	0.03	46.81	2.18	0.46	21.77	3.24	0.43
MT17_09	19.04	0.42	0.07	46.28	2.92	0.61	26.98	3.28	0.39
MT17_10	26.15	0.33	0.05	43.71	1.88	0.56	23.97	2.84	0.51
MT18_01	21.25	0.07	0.10	47.76	1.03	0.38	27.60	1.37	0.44
MT18_02	22.63	0.35	0.07	43.89	1.86	0.52	27.03	3.08	0.56
MT18_03	18.85	0.39	0.09	45.05	2.19	0.39	30.55	1.87	0.61
MT18_04	25.73	0.07	0.03	45.64	1.29	0.29	24.63	1.87	0.46
MT18_05	21.92	0.27	0.03	45.90	1.76	0.33	27.83	1.70	0.27
MT18_06	17.22	0.21	0.05	44.70	2.01	0.50	32.02	2.75	0.55
MT18_07	23.33	0.16	0.06	45.44	1.56	0.46	26.68	1.85	0.46
МТ18_08	18.56	0.38	0.10	43.65	2.27	0.56	31.08	2.59	0.80
 MT18_09	18.11	0.22	0.01	47.26	1.55	0.53	29.87	2.12	0.34