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Abstract. The MALINA oceanographic campaign was conducted during summer 2009 to investigate the car-
bon stocks and the processes controlling the carbon fluxes in the Mackenzie River estuary and the Beaufort Sea.
During the campaign, an extensive suite of physical, chemical and biological variables were measured across
seven shelf-basin transects (south—north) to capture the meridional gradient between the estuary and the open
ocean. Key variables such as temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chloro-
phyll @ concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and
fluxes were routinely measured onboard the Canadian research icebreaker CCGS Amundsen and from a barge
in shallow coastal areas or for sampling within broken ice fields. Here, we present the results of a joint effort to
compile and standardize the collected data sets that will facilitate their reuse in further studies of the changing
Arctic Ocean. The data set is available at https://doi.org/10.17882/75345 (Massicotte et al., 2020).

1 Introduction

The Mackenzie River is the largest source of terrestrial par-
ticles entering the Arctic Ocean (see Doxaran et al., 2015,
and references therein). During the past decades, tempera-
ture rise, permafrost thawing, coastal erosion and increas-
ing river runoff have contributed to intensifying the export
of terrestrial carbon by the Mackenzie River to the Arctic
Ocean (e.g., Tank et al., 2016). Furthermore, the environ-
mental changes currently happening in the Arctic may have
profound impacts on the biogeochemical cycling of this ex-
ported carbon. On one hand, reduction in sea ice extent and
thickness exposes a larger fraction of the ocean surface to
higher solar radiation and increases the mineralization of
this carbon into atmospheric CO, through photo-degradation
(Miller and Zepp, 1995; Bélanger et al., 2006b). On the other
hand, the possible increase in nutrients brought by Arctic
rivers may contribute to higher autotrophic production and
sequestration of organic carbon (Tremblay et al., 2014).
Given that these production and removal processes are op-
erating simultaneously, the fate of Arctic river carbon transit-
ing toward the Arctic Ocean is not entirely clear. Hence, de-
tailed studies about these processes are needed to determine
if the Arctic Ocean will become a biological source or a sink
of atmospheric CO;. With regard to this question, the MA-
LINA oceanographic expedition was designed to document
and gain insight into the stocks and the processes control-
ling carbon fluxes in the Mackenzie River and the Beaufort
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Sea. Specifically, the main objective of the MALINA oceano-
graphic expedition was to determine how (1) primary pro-
duction, (2) bacterial activity and (3) organic-matter photo-
oxidation influence carbon fluxes and cycling in the Cana-
dian Beaufort Sea. In this article, we present an overview
of an extensive and comprehensive data set acquired from
a coordinated international sampling effort conducted in the
Mackenzie River and in the Beaufort Sea in August 2009.

2 Study area, environmental conditions and
sampling strategy

2.1 Study area and environmental conditions

The MALINA oceanographic expedition was conducted be-
tween 30 July and 25 August 2009 in the Mackenzie River
and the Beaufort Sea systems (Fig. 1). Figure 2 shows an
overview of the sea ice conditions that prevailed during the
expedition. In Fig. 2a, a true-color image from MODIS Terra
reveals how the sea ice pack was fragmented toward the end
of the expedition, specially near the 200 m isobath (identified
by the continuous red line). On the shelf, the sea ice concen-
tration was higher at the beginning of the expedition. During
the 4-week cruise, the ice concentration gradually decreased
toward the north (Fig. 2b).

The Mackenzie River basin is the largest in northern
Canada and covers an area of approximately 1805000 km?,
which represents around 20 % of the total land area of
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Figure 1. (a) Localizations of the sampling sites visited during the MALINA 2009 campaign. The colors of the dots represent the seven
transects visited during the mission. (b) Bathymetric profiles for transects 600 and 300. Bathymetric data from General Bathymetric Chart

of the Oceans (GEBCO) (https://download.gebco.net/).

Canada (Abdul Aziz and Burn, 2006). Between 1972 and
2016, the average monthly discharge (recorded at the Arctic
Red River station) varied between 3296 and 23241 m3s~!
(shaded area in Fig. 3a). The period of maximum discharge
usually occurs at the end of May, with decreasing discharge
until December, whereas the period of low and stable dis-
charge extends between December and May. During the MA-
LINA oceanographic cruise, the daily discharge varied be-
tween 12600 and 15100m>s~! (red segment in Fig. 3a;
see also Ehn et al., 2019). Draining a vast watershed, the
Mackenzie River annually delivers on average 2100 and
1400 Gg C yr~! of particulate organic carbon (POC) and dis-
solved organic carbon (DOC), respectively, into the Arctic
Ocean (Stein and Macdonald, 2004; Raymond et al., 2007).
During the expedition conducted onboard the CCGS Amund-
sen, the air temperature recorded by the foredeck meteoro-
logical tower varied between —2 and 11°C (Fig. 3b). The

Earth Syst. Sci. Data, 13, 1561-1592, 2021

average air temperature was 3 °C and usually remained above
0°C.

2.2 General sampling strategy

The sampling was conducted over a network of sampling
stations organized into seven transects identified with three
digits: 100, 200, 300, 400, 500, 600 and 700 (Fig. 1a). Sta-
tions were sampled across these seven shelf—basin transects
(south—north) to capture the meridional gradient between the
estuary and the open ocean (except for transect 100 across the
mouth of the Amundsen Gulf). Within each transect, station
numbers were listed in descending order from south to north.
Because our goal was to sample in open waters, the order in
which the transects were visited depended on the ice cover.
On 20 July 2009, just before the mission, a relatively large
portion of the shelf was still covered by sea ice (Fig. 2b).
Soon after the beginning of the cruise, most of the shelf area
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Figure 2. (a) True-color image from MODIS Terra (data from
https://wvs.earthdata.nasa.gov, last access: 1 February 2021). (b)
Weekly sea ice concentration from the US National Ice Center (U.S.
National Ice Center, 2020). The red line shows the 200 m isobath
(data from http://www.naturalearthdata.com, last access: 1 Febru-
ary 2021). The dots represent the stations (see Fig. 1 for the legend).

was ice-free. The shelf region was not ice-free before mid-
August. The bathymetry at the sampling stations varied be-
tween 2 and 1847 m (394 £ 512 m, mean =+ standard devia-
tion). The stations located in the Beaufort Sea were sampled
onboard the Canadian research icebreaker CCGS Amundsen.
Biological, chemical and optical water column sampling was
almost always restricted to the first 400 m of the water col-
umn during daytime. Deeper profiles for sampling the whole
water column and bottom sediment were usually repeated

https://doi.org/10.5194/essd-13-1561-2021

during nighttime at the same stations. Sediment sampling
for fauna and biogeochemistry was conducted at eight sta-
tions (110, 140, 235, 260, 345, 390, 680, 690). Two tran-
sects (600 and 300) were extended to very shallow waters on
the shelf and sampled from either a zodiac or a barge (the
bathymetry profiles are shown in Fig. 1b). In the context of
this data paper, these two transects were chosen to present an
overview of the principal variables measured during the MA-
LINA campaign. A summary of the various sampling strate-
gies is presented below.

2.3 CTD and rosette deployment

Onboard the CCGS Amundsen, a general oceanic rosette
equipped with a CTD (instrument for measuring conductiv-
ity, temperature, and depth; Sea-Bird SBE-911+) was de-
ployed at each sampling station (Fig. 1). The rosette was
equipped with twenty-four 12 L Niskin bottles. The rosette
was also equipped with a transmissometer sensor (Wetlabs),
a photosynthetic active radiation (PAR) sensor (Biospheri-
cal), an oxygen sensor (SBE-43), a pH sensor (SBE-18),
a nitrate sensor (Satlantic ISUS), a fluorometer (Seapoint)
and an altimeter (Benthos). A surface PAR (Biospherical)
was also installed on the roof of the rosette control lab-
oratory. A UVPS5 (underwater vision profiler, Hydroptics)
was also mounted on the rosette frame, providing size and
abundance of particles above 200 um and plankton above
700 um. The rosette data processing and quality control are
described in detail in Guillot and Gratton (2010). Data pro-
cessing included the following steps: validation of the cal-
ibration coefficients, conversion of data to physical units,
alignment correction and extraction of useless data. Oxy-
gen sensor calibration was done using Winkler titrations,
and salinity data were compared with water samples ana-
lyzed with a Guildline 8400B Autosal. The quality control
tests were based on the International Oceanographic Com-
mission’s suggested procedures and UNESCO’s algorithm
standards (Commission of the European Community, 1993).
The recorded data were averaged every decibar. On 5 August,
the pH sensor was replaced by a chromophoric dissolved or-
ganic matter (CDOM) fluorometer (excitation: 350-460 nm;
emission: 550 nm; half-width (HW) 40 nm; Dr. Haardt Op-
tik Mikroelektronik). The rosette depth range was restricted
to the first 1000 m when carrying the pH, PAR and nitrate
sensors because of their rating.

2.4 Sediment sampling

Surface sediments were sampled using an USNEL box corer
(50 x 50 x 40 cm). Box cores with undisturbed surfaces were
subsampled for (a) lipids (Rontani et al., 2012b) and iso-
topic signature of lipid biomarkers (Tolosa et al., 2013), sta-
ble isotopes (C, N), and manganese and iron oxides (Link
et al., 2013a) in the 1 cm surface layer; (b) sediment pigment
profiles down to 8 cm; and (c) fluxes at the sediment—water

Earth Syst. Sci. Data, 13, 1561-1592, 2021
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Figure 3. (a) Daily discharge of the Mackenzie River at the Arctic Red River junction (station 10LC014). The black line corresponds to
the 2009 discharge, whereas the colored segment identifies the period of the MALINA campaign. The shaded area is the mean discharge
calculated between 1972 and 2016. Discharge data from the government of Canada (https://wateroffice.ec.gc.ca/search/historical_e.html,
last access: 6 September 2019). (b) Hourly air temperature recorded from the foredeck meteorological tower of the Amundsen during the

campaign.

interface using onboard microcosm incubations on subcores
(10 cm diameter, 20 cm deep) (Link et al., 2013a, 2019). At
three stations (140, 345, 390), macrofauna abundance and di-
versity were determined from sieved and conserved samples
(Link et al., 2019). At station 680, a core was subsampled at
1 cm to determine dinocyst abundance and dated using 2!Pb
and '37Cs (Durantou et al., 2012). Samples for (a)—(b) were
stored frozen until analysis in the respective home labs.

3 Data quality control and data processing

Different quality control procedures were adopted to ensure
the integrity of the data. First, the raw data were visually
screened to eliminate errors originating from the measure-
ment devices, including sensors (systematic or random) and
errors inherent from measurement procedures and methods.
Statistical summaries such as average, standard deviation and
range were computed to detect and remove anomalous values
in the data. Then, data were checked for duplicates and re-
maining outliers. The complete list of variables is presented
in Table 1.

Earth Syst. Sci. Data, 13, 1561-1592, 2021

4 Data description: an overview

The following sections present an overview of a subset of
selected variables from the water column. For these selected
variables, a brief description of the data collection methods
is presented along with general results.

4.1 Water mass distribution

According to previous studies (Carmack et al., 1989; Mac-
donald et al., 1989), five main source water types can be
distinguished in the southeastern Beaufort Sea: (1) mete-
oric water (MW; Mackenzie River plus precipitation), (2) sea
ice meltwater (SIM), (3) winter polar mixed layer (WPML),
(4) upper-halocline water (UHW; modified Pacific water
with core salinity of 33.1 PSU) and (5) lower-halocline wa-
ter (LHW; water of Atlantic origin). In this study, we used
the optimum multiparameter (OMP) algorithm to quantify
the relative contributions of the different source water types
to the observed data (https://omp.geomar.de/, last access:
1 February 2021). We used salinity, TA and §'80 as conser-
vative tracers as well as temperature and O, concentration as
non-conservative tracers, to constrain the water mass analy-
sis following Lansard et al. (2012). Briefly, the method finds

https://doi.org/10.5194/essd-13-1561-2021


https://wateroffice.ec.gc.ca/search/historical_e.html
https://omp.geomar.de/

1567

an overview

ition

ic exped

The MALINA oceanograph

P. Massicotte et al.

ST Ve ON “H eemay-esalQ *f Xnof ordures 1o1eM 91950y Kdoosorotur oudssarongidg QUINOA-01q [eLIR)oRg

€T SO ‘@ 10[neA ordures 1o1eM 911950y Anowo1ko morg (eouepunqe) eLL1ORg

SO [ ugg 191go1d anasoy L7 "ou [elIas 6g -0 SIB[OM (spSusjesem 1YS19) JULIOYFA0D FurIeNeosyoRg

te Al ¢4 SO ~d spjoukoy yoopatog  (sqe IGOH) vIOg-8 0M] PUE (}£()L6 "OU [RLIdS) 9-1edSOIPAH (Tenoads ‘syiSuafoaem 1YS19) JUATOYJ00 SuLIaNedsyorg

71T SO ¥ spjoukoy 1orgord oS1eg  (sqeT IFOH) ®Iog- 0M] PUR ($/()L6 "OU [RLIdS) 9-1edSOIPAH (Tenoads ‘syiSuafoem 1YS19) JUATOYJ00 FuLIaNeIsyorg

0T ‘61 SO ‘@ uerexo 1o[goid oS1eg 820 "ou [e112S ¢gg-0Dd SqBPOM (s3us[eARM 9311)) JUSIOYFA0D FULINEOSYORY

0T ‘61 SO ‘@ uerexo 1oryoid oS1eg 8€G "ou [eLas ¢gg-0Dd SqBPOM (T ut syISua[aARMm 9211)) JUSIOYFI00 FuLIaNLIsSYor

8T LI SOK ‘@ uerexo Jeoy Suryoxd Sunjuqg ITa1auoanedsyeq (OJH) SqEpoM wu g6 Suteneosyoeg

ST LI SO ‘@ uerexo jeoy Surgoxd Sunjug I9)oWOSSTWSURT) (19A0YD)) SAR[I9M WU ()99 18 JUIIOYJI00 UOHeNUaNY

I1°01 SOK ‘@ uerexo 1o[yoid oS1eg 6LT "OU [BLIdS 6DV SQRIOM (sypSuafeAem UTU) (JL10)) JUSIOYJI00 UOHBNUNY

SOK [ ugyg 191yo1d anasoy 9G] "OU [BLIdS 6DV SAR[IOM (sypSuafeAem UTU) (JL10)) JUSIOYJI00 UOHBNUNY

6 SOK ‘@ uerexoq 1o[yoid o31eg €0E0 "OU [BLIAS 6DV SqR[IA (Y1 ut sySus[eAeMm JUIU) ([L10)) JUIIOYJI00 UOHBNUNY

91 SOK g pIesue “y 100NN opdwes 191eM SRIPOZ 1a1ourered paALaq QL) UONEINIES :A)UOTRIY

91 SOK g pIesue “y 100NN ordwes 101eM 91950y 1arourered paALIaq QL) UONEINIES :AIUOTRIY

91 SOR g pIesue 'y 100N ordures 1o1em oS1eg 1010urered pasueq QJB)S UONBINIES :2)IUOTeIy

S SOR ‘g [ Kejquial], “H orxX ordures 10jem dvIpoZ Anewmony — Jorepnuis ung  (XOV) PotA wmuenb juaredde uononpoidooyd ( YHN) wnruouwrury

S SOR g [ Aejquidly, “H X orduwres 10em 911050y Anawwony — Jojenuirs ung  (XQV) preif wmuenb juaredde uononpoidojoyd ﬁmmzv wnuowuy

SOX °] 1sseqnonog 12100 OSVD SIN-0D souey[y

SOR '] 1sseqno[nog 12100 X0g (SIN-DD) Anawonodads ssew—AydesSoyeworydp sen souey[y

1€l ‘Tl SOR g plesue 'y 100N Jrdures 1oyem ovIPOZ Anawonuaod (VL) 2101 Aurpeyy

yI €l ‘Tl SOX g pIesue Y 1NN AMNPSOY Answonuaog (VL) 2101 Kureyy

1 ‘€1 ‘Tl SOR g plesue “y 190N ordures 1o1em o31eg Anawonuaod (VL) 2101 Qrurpeyy

SOK ‘L noyeuAyeded  19M0) [BOIS0[0I0910W YOIPAIO] Josuas Aypruingy Aypruny oAne[oI Iy

11°01 SOX ‘@ uerexoq 19[yoid o3reg 6LT "OU [BLIDS 6DV SAR[IOM (SSudRARM dUIL) ([810)) JUSIOYJI0d uondiosqy

6 SOK ‘@ uerexo( 1o[yoid oS1eg €0 "OU [BLIdS 6V SABIIOM (1 uI syISus[oArMm duIl) ([e101) JUAIDYJ00 uondiosqy

SOK [ uyg I1o[go1d onasoy 9G] "OU [BLIdS 6DV SAB[IOM (spSuajeaem duru) ([€103) JULIOYFA0d uondiosqy

SOK “H ouewAa ordures 1o1eM 913050y NVDISd (1e101) uondiosqy

SOR g ourewko| ordwes 1ojem a31eg NVDISd (1e301) uondiosqy

8 L SOK 'S 18ueeg 1o[go1d oerpoz (s19)1y) Jorowojoydondadg (aenonted) uondiosqy

8L SOX. ' IoSuejog ordures 1o1eM 91950y (s19)1y) Iarowojoydondadg (arernonaed) uondiosqy

8L SOX. ' IoSuejog Kem uo snonunuo)) (s191]y) Jojowojoydonoadg (arernonied) uondiosqy

8L SOX. 'S IoSuejog ordwes 1o1em oSreg (s191]y) 1o3owojoydonoadg (arernonaed) uondiosqy

SOX “q ouewAd | ordures 1o1eM 91950y INVIISd (arernonied) uondiosqy

SOX “ ouewAd | opduwes 1o1em o81eg  (NVDISJ) 1010w uondiosqe A1Aed-3unei3our 90Inos-uroq (arernonaed) uondiosqy

9 SO " Jndog D uoyueaf opdures 1o1eM SRIPOZ HSIA ‘Anowony ‘Kdodsororur ¥ (oouepunge) g4vv

9 SO " Jnoog D uoyueaf ordures 1o1eM 91950y HSIA ‘A nourony ‘Kdodsororur ¥ (oouepunge) g4vVVv

S SOK g Iossen) dexn juowipas Sunjuq Sununoo-elog (rR[NONIEd) YLy ¢

SOX g 1ossen) dwnd s ur yoaparog Sununoos-elog (i ()7, < saponred) ULpee

SOX g 1ossen) dwind ny1s ur yoapaiog Sununoo-elog (wr ()7 < soponzed > wrl 1) ULper

1 ON Y uoyooy 12100 OSVD Knawonoads eydpe o 602 sojdures 2105 jo £Sojouoryo0as adg;

1 ON Y Uoyo0y 12100 XOog Knowonoads eydpe og 602 sordures 2105 Jo £Sojouo1yo0as qq, 01z

€T SoX  JInequrey g [ Aejquol],  ourf uononpoid miIs ur 9as0Y Anowonoads sseuwr — uoneqnout — Sunyids N UONE[IWISSE AENIU N ¢

y€T SOX  dInequrey “g [ Aejquiai], SUOTIEQNOUT YOOP — 9NASOY Anowonoads sseur — uoneqnour — Sunyids N UONE[IWISSE AENIU N ¢

€T ON dInequiey “q [ Aejquioi], ordures 1o1eM 913050y Anowonoads sseur — uoneqnour — Sunyids N uonexy IN N

€T SoX  JImequrey g [ Ae[qual],  ourf uononpoid mIs ur 9)Josoy Anowonoads sseur — uoneqnour — Sunyids N UONEIAUOTAT WNTUOWIWE N ¢

€T SOX  dInequrey <y ‘[ Aejquiai], SUONBQNOUT Y0P — 3ISOY Anawonsads ssew — uoneqnout — Sunyids N ¢y UONEISULFAI WnfUOWIWE N ¢y

€T SOX  dInequrey <y °f Aejquiai], SUONBQNOUT YOIP — 3ISOY Anawonsads ssew — uoneqnout — Sunyids N ¢y (O¢y) uondnpoxd Arewrtid winfuowrwe N ¢

A SOX  dInequrey “g [ Ae[qual],  dulf uononpoid mIs Ut 91as0Y Anawonsads ssew — uoneqnout — Sunyids N o (UONEIYLNIU) UONEPIXO WNIUOWIWE N ¢y

v€T SO dmequrey “H [ Aejquialy, SUOIEQNOUL Y3P — 9119S0Y Anawonosads ssew — uoneqnour — Juryids Ney (uoNeOYLNIU) UOTIBPIXO WNIUOWER Ng;

v€T SO dImequrey “F [ Aejquarl,  duip uononpoid ms ur 91950y Anawonoads ssew — uonegnour — Junyids N¢y UONB[IUISSE WNIUOWIWE N ¢ f

a4 SOX  dInequrey “g ‘[ Aejquiai], SUONBQNOUL YOIP — 9NISOY Anawonsads ssew — uoneqnout — Sunyids N ¢ UONB[IUISSE WNIUOWIWE N ¢

I ON Y uoyooy 12100 OSVD Anawonosads ssew J01eI[e00Y so[duwes 2109 Jo Sunep O,

I ON "y uoyooy 12100 XOog Anawonoads ssew 101L19[a00y so[dures 2102 Jo Sunep O, |

1 ON IPIWYOS Y UOYO0Y 12100 XOog Anawonoads ewwen so[dures 2103 Jo SuNEp 3, ¢

1 ON IPIWYOS/ Y UOYo0y 13109 (OSVD) 2renbg osdAe) Iojewondads ewwen) so[dues 2102 Jo SunEp 3, ¢
Kionsodai ejep s101e3NSaAUL

Q0UAIJIY Q) ur papnjouf Tediourig Surdweg sIaWeRIRg

‘KITeonoqeydle poI1opIo ore sIojourered

‘uonipadxa orydeiSourado YNTTVIA U SULINp paInseaul s1sjowered *| ajgqel

Earth Syst. Sci. Data, 13, 1561-1592, 2021

//doi.org/10.5194/essd-13-1561-2021

https



an overview

dition

ic expe

The MALINA oceanograph

P. Massicotte et al.

1568

Table 1. Continued.

Parameters Method Sampling Principal Included in the  Reference
investigators data repository

Bacterial diversity CE-SSCP and 454 tag-pyrosequencing Rosette and zodiac water sample ~ Joux E,, J.F. Ghiglione No 26, 27

Bacterial growth (limitation by nutrients) Leucine->H incubations — cells counts Rosette water sample Joux F, Jeffrey W., Ortega-Retuerta E. No 25,28

Bacterial production Leucine->H incorporation Rosette water sample Joux F., Jeffrey W. Yes 25,29, 30

Bacterial production Leucine->H incorporation Zodiac water sample Joux F., Jeffrey W. Yes 25,29, 30

Bacterial respiration (whole community) O, consumption — Winkler — Incubations Rosette water sample Joux F, Ortega-Retuerta E. Yes 25,31

Benthic ammonium flux Incubations — colorimetry Box corer Link H., Archambault P., Chaillou G. Yes 32,33

Benthic macrofauna abundance Microscopy Box corer Link H., Archambault P., Chaillou G. No 33, 34,35

Benthic macrofauna diversity Microscopy Box corer Link H., Archambault P., Chaillou G. No 33, 34,35

Benthic nitrate flux Incubations — colorimetry, autoanalyzer Box corer Link H., Archambault P., Chaillou G. Yes 32, 33,34

Benthic nitrite flux Incubations — colorimetry, autoanalyzer Box corer Link H., Archambault P., Chaillou G. Yes 32, 33,34

Benthic phosphate flux Incubations — colorimetry, autoanalyzer Box corer Link H., Archambault P., Chaillou G. Yes 32, 33,34

Benthic respiration Incubations — optic — oxygen probe Box corer Link H., Archambault P., Chaillou G. Yes 32,33,34

Benthic silicic acid flux Incubations — colorimetry, autoanalyzer Box corer Link H., Archambault P., Chaillou G. Yes 32, 33,34

Calcite: saturation state Derived parameter Rosette water sample Mucci A., Lansard B. Yes 16

Calcite: saturation state Derived parameter Barge water sample Mucci A., Lansard B. Yes 16

Calcite: saturation state Derived parameter Zodiac water sample Mucci A., Lansard B. Yes 16

Campesterol, cholesterol, sitosterol and products of degradation GC-MS Rosette water sample Sempere R. Yes 36,37, 38

Chromophoric dissolved organic matter (CDOM) absorption PSICAM Barge water sample Leymarie E. Yes

CDOM absorption PSICAM Rosette water sample Leymarie E. Yes

CDOM absorption PSICAM Zodiac water sample Leymarie E. Yes

CDOM absorption Spectrophotometer Barge water sample Matsuoka A., Bricaud A. No 41,42

CDOM absorption Spectrophotometer Rosette water sample Matsuoka A., Bricaud A. No 41,42

CDOM absorption Spectrophotometer Zodiac water sample Matsuoka A., Bricaud A. No 41,42

CDOM absorption Ultrapath Barge water sample Bricaud A. Yes 39, 40

CDOM absorption Ultrapath Rosette water sample Bricaud A. Yes 39, 40

CDOM absorption Ultrapath Zodiac water sample Bricaud A. Yes 39,40

CDOM fluorescence Haardt fluorometer Rosette profiler Benner R., Belanger S., Amon R., Sempere R. ~ Yes 43,44

CDOM fluorescence Wetlabs (ECO?) fluorometer Drifting profiling float Doxaran D. Yes 18

CDOM fluorescence Wetlabs WetStar WSCD Barge profiler Doxaran D. Yes 18

CDOM fluorescence EEM (excitation emission matrix) Spectrofluorometry Rosette water sample Sempere R. No 45

CDOM fluorescence EEM (excitation emission matrix) Spectrofluorometry Zodiac water sample Sempere R. No 45

Chlorophyll a and pheopigment (concentration) Fluorimetry size fractionated Rosette water sample Gosselin M., Belanger S. Yes 46

Chlorophyll a and pheopigment (benthic) Fluorometric analysis Box corer Link H., Archambault P., Chaillou G. Yes 32,33,34

Chlorophyll a fluorescence [Fchla (z)] Chelsea Mini-Track a II fluorometer Barge profiler Doxaran D. Yes 18

Chlorophyll a fluorescence [Fchla (z)] Seapoint fluorometer Rosette profiler Gratton Y., Prieur L., Tremblay J. E. Yes

Chlorophyll a fluorescence [Fchla (z)] Wetlabs ﬁmOOu ) fluorometer Drifting profiling float Doxaran D. Yes 18

CO photoproduction apparent quantum yield for CDOM Sun simulator — reduction gas analyzer Rosette water sample Xie H. Yes 47

CO photoproduction apparent quantum yield for CDOM Sun simulator — reduction gas analyzer Zodiac water sample Xie H. Yes 47

CO photoproduction apparent quantum yield for particulate matter ~ Sun simulator — reduction gas analyzer Rosette water sample Xie H. Yes 47

CO photoproduction apparent quantum yield for particulate matter ~ Sun simulator — reduction gas analyzer Zodiac water sample Xie H. Yes 47

CO, (atm) concentration Infrared Foredeck meteorological tower Papakyriakou T. Yes

COZ%~ concentration Derived parameter Barge water sample Mucci A., Lansard B. Yes 16

CO3™ concentration Derived parameter Rosette water sample Mucci A., Lansard B. Yes 16

CO3™ concentration Derived parameter Zodiac water sample Mucci A., Lansard B. Yes 16

Coccolithophorids Microscopy Rosette water sample Coupel P. Yes

Conductivity (z) Sensor on SBE FastCAT CTD serial no. 175-217 Barge profiler Doxaran D. Yes 48

Conductivity (z) Sensor Sea-Bird 4c on CTD SBE-911 Rosette profiler Gratton Y., Prieur L. Yes

CTD Sea-Bird Drifting profiling float Doxaran D. Yes 48

Cultures of sorted populations Sorted by flow cytometry, serial dilution and single-cell pipetting ~ Rosette water sample Vaulot D. No 49

s13c-pIC Mass spectrometry (IRMS) Barge water sample Mucci A., Lansard B. Yes

s13c-pIC Mass spectrometry (IRMS) Rosette water sample Mucci A., Lansard B. Yes

si3c-pIC Mass spectrometry (IRMS) Zodiac water sample Mucci A., Lansard B. Yes

s13Con suspended particulate matter Mass spectrometry Rosette water sample Tremblay J. E., Raimbault P. No 50

5180 — water Mass spectrometry (IRMS) Barge water sample Mucci A., Lansard B. Yes 13
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Table 1. Continued.

Parameters Method Sampling Principal Included in the ~ Reference
investigators data repository
Major and minor elements X-ray fluorescence spectroscopy (XRF) core scanner ~ CASQ corer Martinez P. Yes
Nanoeukaryotes (abundance) Flow cytometry Rosette water sample Vaulot D. Yes 62
ZEM Fluorescence Rosette water sample Tremblay J. E., Raimbault P. Yes 63
Nitrate (concentration) Satlantic ISUS Rosette profiler Gratton Y., Prieur L., Tremblay J. E.  Yes
NO, Colorimetry, autoanalyzer Rosette water sample Tremblay J. E., Raimbault P. Yes 64
NO3 Colorimetry, autoanalyzer Rosette water sample Tremblay J. E., Raimbault P. Yes 64
Oxygen (dissolved) Discrete samples, Winkler method Rosette water sample Prieur L. Yes
Oxygen (dissolved) Idronaut Ocean Seven O, sensor Continuous horizontal Papakyriakou T. Yes
Oxygen (dissolved) Sea-Bird SBE-43 sensor Rosette profiler Gratton Y., Prieur L. Yes
P-wave speed (sediment core physical properties)  Geotek multi-sensor core logger Box corer Rochon A. No 1
P-wave speed (sediment core physical properties)  Geotek multi-sensor core logger CASQ corer Rochon A. No 1
Paleomagnetism Cryogenic magnetometer Box corer Rochon A. No 1
Paleomagnetism Cryogenic magnetometer CASQ corer Rochon A. No 1
PAR Biospherical sensor Barge profiler Wright V., Hooker S. No 57
PAR Biospherical sensor Rosette profiler Gratton Y., Prieur L., Tremblay J. E.  Yes
PAR PARLite sensor Wheelhouse radiation platform  Papakyriakou T. Yes
Particle size distribution Coulter counter Barge water sample Reynolds R. Yes 21,67
Particle size distribution LISST-100X Barge profiler Reynolds R. Yes 21, 66
Particle size distribution LISST-100X Rosette profiler Reynolds R. Yes 21, 66
Particle size distribution UVP-5 (underwater vision profiler) In-water profiler Picheral M. Yes 65
Particle size distribution Coulter counter Rosette water sample Reynolds R. Yes 21,67
Particulate organic carbon (POC) CHN analyzer on SPM filters Barge water sample Doxaran D., Ehn J., Babin M. Yes 68
Particulate organic carbon (POC) CHN analyzer on SPM filters Rosette water sample Doxaran D., Ehn J., Babin M. Yes 68
Particulate organic carbon (POC) CHN analyzer on SPM filters Zodiac water sample Doxaran D., Ehn J., Babin M. Yes 68
Particulate organic carbon (POC) ‘Wet oxidation Rosette water sample Tremblay J. E., Raimbault P. Yes 69
Particulate organic nitrogen (PON) ‘Wet oxidation Rosette water sample Tremblay J. E., Raimbault P. Yes 69
Particulate organic phosphorus (POP) ‘Wet oxidation Rosette water sample Tremblay J. E., Raimbault P. Yes 69
pH (National Bureau of Standards (NBS) scale) Sea-Bird SBE-18 sensor Rosette profiler Gratton Y., Prieur L., Tremblay J. E.  Yes
pH (total proton scale) Derived parameter Barge water sample Mucci A., Lansard B. Yes 12,16
pH (total proton scale) Derived parameter Rosette water sample Mucci A., Lansard B. Yes 12,16
pH (total proton scale) Derived parameter Zodiac water sample Mucci A., Lansard B. Yes 12,16
pH (total proton scale) Spectrophotometry Barge water sample Mucci A., Lansard B. Yes 12,16
pH (total proton scale) Spectrophotometry Rosette water sample Mucci A., Lansard B. Yes 12, 16
pH (total proton scale) Spectrophotometry Zodiac water sample Mucci A., Lansard B. Yes 12, 16
Photoheterotrophs (DNA diversity) DNA clone library Rosette water sample Jeanthon C., Boeuf D. Yes 6,70
Photosynthetic eukaryotes (diversity) DNA clone library and TRFLP of sorted populations ~ Rosette water sample Vaulot D. No 71
Photosynthetic eukaryotes (diversity) DNA from filters Rosette water sample Vaulot D. No 71
Photosynthetic eukaryotes (morphology) Scanning electron microscopy Rosette water sample Vaulot D. No 72
Photosynthetic parameters 14¢ incubations Rosette water sample Huot Y. Yes 73
Phytoplankton (abundance) Inverted microscope Rosette water sample Gosselin M., Belanger S. Yes 46,74
Phytoplankton (taxonomy) Inverted microscope Rosette water sample Gosselin M., Belanger S. Yes 46, 74
Phytoplankton pigments HPLC Barge water sample Wright V., Hooker S. Yes
Phytoplankton pigments HPLC Rosette water sample Ras J., Claustre H. Yes
Picoeukaryotes (abundance) Flow cytometry Rosette water sample Vaulot D. Yes 62
Picoplankton (diversity) DNA amplicon library Rosette water sample Lovejoy C. No 75, 82,83
Picoplankton (diversity) RNA amplicon library Rosette water sample Lovejoy C. No 75, 82,83
Plankton taxonomy UVP-5 In-water profiler Picheral M., Marec C. Yes
PR-containing bacteria (abundance) Q-PCR Rosette water sample Jeanthon C., Boeuf D. Yes 70
Pressure (barometric) Pressure sensor Foredeck meteorological tower  Papakyriakou T. Yes
Radiance Camera luminance Profile mode Antoine D., Leymarie E. Yes 76
Radiance Camera luminance Surface mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: average cosines Camera luminance Profile mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: average cosines Camera luminance Surface mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: irradiance (E) Camera luminance Profile mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: irradiance (E) Camera luminance Surface mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: Lnadir Camera luminance Profile mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: Lnadir Camera luminance Surface mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: Qnadir Camera luminance Profile mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: Qnadir Camera luminance Surface mode Antoine D., Leymarie E. Yes 76
Radiance: subproduct: scalar irradiance (Escal) Camera luminance Profile mode Antoine D., Leymarie E. Yes 76
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the best-fitting fraction (x) of (n + 1) source water types that
contribute to the n observed values of the selected tracers in
a parcel of water via a solution of an overdetermined system
of linear equations that minimizes the residual error. Bound-
ary conditions were applied to the method to guarantee that
all fractions calculated were positive and that the sum of all
fractions was 100 % (mass conservation).

During MALINA, the Mackenzie Shelf was for the most
part entirely ice-free, and the ice pack was located beyond the
shelf break (Fig. 2). The transition zone was characterized by
different expanses of drifting sea ice. Significant contribu-
tions of meteoric water (> 25 %) to the surface mixed layer
(SML) were only observed close to the Mackenzie River
mouth and on the inner shelf (Fig. 4). A relatively small frac-
tion of sea ice meltwater was detected beyond the shelf break,
mostly along the transect 600. Below the SML, the wPML
was the predominant water mass down to 100 m depth. The
UHW extends from the interior ocean onto the outer shelf
from 120 to 180 m depth. Relatively high fractions of UHW
were also found at 50 m depth along the Mackenzie and Kug-
mallit canyons, which are recognized sites of enhanced shelf-
break upwelling caused by wind- and ice-driven ocean sur-
face stresses. Below 200 m depth, the LHW with an Atlantic
origin was always the prevailing water mass.

4.2 Temperature and salinity from the CTD

Temperature and salinity for the first 100 m of transects 600
and 300, the two transects originating from the Mackenzie
River delta, are presented in Fig. 5. They confirm what was
found by the water mass analysis (Sect. 4.1): most of the
freshwater is coming from the western part of the Mackenzie
River delta. This is also in accordance with many studies that
documented that during the summer, a combination of ice
melting and river runoff was generating a highly stratified
surface layer (Carmack and Macdonald, 2002; Forest et al.,
2013). The signature of an eddy may be observed at 75 m in
the salinity data at 70° N, approximately 70 km from shore
(Fig. 5b).

4.3 Underwater bio-optical data

4.3.1 Inherent optical property (IOP) profiling from the
ship, the barge and the zodiac

The total, non-water, spectral absorption (a), attenuation (c)
and backscattering (by) coefficients were measured using an
AC9 attenuation and absorption meter and a BB9 scattering
meter (Wetlabs), a HydroScat-6, and a-Beta sensors (HOBI
Labs) either attached to the CTD rosette frame onboard the
CCGS Amundsen or deployed separately from the barge or
the zodiac tender. These devices were using either 10 or
25 cm optical path lengths, depending on the turbidity of
the water sampled. Detailed information about the deploy-
ment and the data processing of the IOP data can be found in
Doxaran et al. (2012a).
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Figure 6 shows cross-sections of the total absorption and
backscattering coefficients at 440 nm (a(440) and by (440)),
derived as by = byp + bpw, Where byy, is the backscattering
coefficient of pure seawater (Morel, 1974). Both a(440) and
bp(440) showed the same patterns along the transects 600 and
300. Close to the estuary, higher absorption (Fig. 6a) and to-
tal scattering (Fig. 6b) can be observed at the surface, likely
reflecting the important quantities of dissolved and particu-
late organic matter delivered by the Mackenzie River. Higher
values are also observed in transect 600 compared to transect
300, which is farther away from the mouth of the Macken-
zie River. Both a(440) and by (440) decreased rapidly toward
higher latitudes, where the water of the Mackenzie River
mixes with seawater from the Beaufort Sea.

4.3.2 Particulate and CDOM absorption

Chromophoric dissolved organic matter absorption (acpom)
was measured from water samples filtered with 0.2 ym GHP
(glass fiber hydrophilic polypropylene) filters (Acrodisc Inc.)
using an UltraPath (World Precision Instruments Inc.) be-
tween 200 and 735nm. In most cases, a 2m optical path
length was used for the measurement, except for coastal
waters near the Mackenzie River mouth (Fig. 1), where a
0.1 m optical path length was used. Particulate absorption
(ap) was measured using a filter-pad technique modified from
Rottgers and Gehnke (2012). Briefly, seawater was filtered
through a 25 mm Whatman GF/F (glass fiber filters) less
than 3 h after sampling. Filters were placed in the center of a
150 mm integrating sphere equipped with a handmade Spec-
tralon filter holder. The spectral optical density (OD(})) of
the particles retained on the filter was then measured using
a PerkinElmer Lambda-19 spectrophotometer from 300 to
800nm at 1 nm resolution. More details about particulate-
and dissolved-absorption measurements can be found in
Rottgers and Gehnke (2012), Bélanger et al. (2013b), and
Matsuoka et al. (2012a).

Examples of acpom spectra measured at the surface for
the northernmost and the southernmost stations of transects
600 and 300 are presented in Fig. 7a. The marked influence
of the organic matter of terrestrial origin can be observed for
the stations located at the mouth of the Mackenzie River (697
and 398). Because the organic matter delivered by the river
is highly humic and colored, the absorption at 254 nm was
approximately 15 times higher at the southern shelf stations
for both transects compared to the northern stations (620 and
320). Likewise, the specific UV absorbance of dissolved or-
ganic carbon at 254 nm (SUVA»s54), a metric commonly used
as a proxy for assessing both chemical (Weishaar et al., 2003;
Westerhoff et al., 2004) and biological reactivity (Berggren
et al., 2009; Asmala et al., 2013) of the dissolved organic
matter (DOM) pool in natural aquatic ecosystems, decreased
rapidly along the south—north gradient in both transects 600
and 300 (Fig. 7¢). This observation is in accordance with a
previous study that showed that SUVAjs4 was higher in in-

https://doi.org/10.5194/essd-13-1561-2021
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Figure 4. Distribution of source water types along transects 600 and 300 (see Fig. 1). Station numbers are identified in light gray on top of

each panel.

land ecosystems due to elevated lateral connectivity with the
surrounding terrestrial landscape and organic-matter inputs
from the tributaries (Massicotte et al., 2017). The decrease in
SUVAjs4 toward northern stations (Fig. 7c) suggests that ter-
restrially derived DOM transiting toward the ocean is gradu-
ally degraded into smaller and more refractory molecules.
Particulate-absorption spectra (ap) for the northernmost
and the southernmost stations of transects 600 and 300 are
presented in Fig. 7b. Particulate absorption at the stations lo-
cated in the estuary (697 and 398) was much higher than that
measured at the open-water stations (620 and 320). For in-
stance ap(443) measured at stations 620 (0.03 m~—') and 697
(8.62m™"), the northernmost and the southernmost stations
of transects at the mouth of the Mackenzie River, shows that
ap decreases rapidly along the latitudinal axes. This can be
possibly explained because the drained organic and inorganic

https://doi.org/10.5194/essd-13-1561-2021

material from the surrounding landscape of the Mackenzie’s
watershed is degraded or sediments rapidly as it is transferred
to the ocean.

4.3.3 Other optical measurements and radiometric
quantities

Other optical instruments were attached to the rosette sam-
pler. These include a transmissometer (Wetlabs C-Star, path
25 cm) for beam attenuation measurement, a chlorophyll flu-
orometer (Seapoint) and a CDOM fluorometer (Optic &
Mikro Elektronik, Germany; see Amon, 2003). Additionally,
a LISST-100X (laser in situ scattering and transmissometry,
Sequoia Scientific) was attached to the rosette and provided
beam attenuation (532 nm) and forward light scattering mea-
surements at 32 angles, from which particle size distribution
was estimated. Various optical measurements were also made

Earth Syst. Sci. Data, 13, 1561-1592, 2021
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in the laboratory to determine other IOPs. These include the
absorption of colored dissolved (acpom) and particulate (a;)
organic matter and the absorption coefficients of non-algal
particles (anap) and phytoplankton (aphi). Apparent-optical-
property (AOPs) measurements included light transmittance
(T), photosynthetically available radiation (PAR), downward
irradiance (Eq), upwelled radiance (L,) and global solar ir-
radiance (Eg). The latter three radiometric quantities were
measured simultaneously using a compact optical-profiling
system (C-OPS) manufactured by Biospherical Instruments
Inc. (San Diego, California) that was deployed during MA-
LINA Leg 2b. The principal data products obtained from the
C-OPS data were the diffuse attenuation coefficient (Kq4) plus
the water-leaving radiance (Lw), including all normalized
forms. Detailed methodology and results derived from C-
OPS measurements can be found in Doxaran et al. (2012a),
Antoine et al. (2013a), Bélanger et al. (2013b) and Hooker
et al. (2013).

4.4 Nutrients

Samples for nitrate, nitrite, soluble reactive phosphorus and
silicate determination were collected into 20 mL polyethy-
lene flasks, immediately poisoned with mercuric chloride
(Kirkwood, 1992) and stored for subsequent laboratory anal-

Earth Syst. Sci. Data, 13, 1561-1592, 2021

ysis according to Raimbault et al. (1990) and Aminot and
Kérouel (2007). Ammonium concentrations (40 mL col-
lected into 60 mL polycarbonate tubes) were measured on-
board using the sensitive method of Holmes et al. (1999),
with a detection limit of Snmol L~!. Samples for organic-
matter determination were collected into 50 mL glass Schott
bottles, immediately acidified with 100 uL of 0.5 N HSOg4
and stored in the dark at 5°C. Dissolved organic carbon
(DOC), dissolved organic nitrogen (DON) and dissolved or-
ganic phosphorus (DOP) were determined at the laboratory
using the wet-oxidation procedure according to Raimbault
et al. (1999b).

Nitrate levels were always very low at the surface, with
concentration generally lower than 0.01 umolL~!, except
in the Mackenzie plume (Fig. 8). It is interesting to note
that nitrate was never entirely depleted, and some traces
(0.005 to 0.01 umolL™") were always detectable in sur-
face waters (Fig. 8a). Ammonium distribution showed the
same pattern. Even if concentrations were very low (gener-
ally < 0.03 umol L™!), this nutrient, like nitrate, was always
detected, suggesting that in situ sources of nitrate and am-
monium exist offshore, certainly due to biological processes.
Phosphate concentrations showed the opposite distribution
(Fig. 8b). Despite nitrogen depletion, surface waters were al-
ways phosphate-replete. The highest concentrations, around

https://doi.org/10.5194/essd-13-1561-2021
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square-root-transformed for the visualization.

0.5 pmol L~!, were observed far from Mackenzie’s mouth,
revealing a clear west—east gradient. The silicate distribution
was similar to that of nitrate. But surface waters were al-
ways silicate-replete, with concentrations largely above the
detection limit (>4 umol L™!). The impact of the Macken-
zie River was clear close to the coast for inorganic nutrients
and farther offshore for dissolved organic nutrients. A quar-
ter of the estimated annual nutrient supply by the Mackenzie
River occurred during July—August. The supply of DON was
8 times larger than that of nitrate-N. By contrast, the amount
of DOP supplied was only 2.5 times higher than the amount
of phosphate (Tremblay et al., 2014). The Mackenzie River
enriched the western Canadian Beaufort Shelf with inorganic
and organic N, potentially supporting most of the primary
production but not with phosphate or ammonium. Large de-
liveries of N relative to P by rivers relax coastal communities
from N limitation, allowing them to tap into the excess P
originating from the Pacific Ocean. Then, river inputs locally
rectified the strong regional deficit of inorganic N, i.e., nega-
tive N* (Tremblay et al., 2014).

https://doi.org/10.5194/essd-13-1561-2021

4.5 Dissolved organic carbon, total dissolved nitrogen,
total hydrolyzable amino acids and total dissolved
lignin phenols

Water samples were collected at selected stations and water
masses for analyses of dissolved organic carbon (DOC), to-
tal dissolved nitrogen (TDN), total hydrolyzable amino acid
(THAA) and total dissolved lignin phenol (TDLPg) concen-
trations. Samples for DOC, TDN and THAAs were gravity-
filtered from Niskin bottles using pre-combusted (GF/F) fil-
ters (0.7 um pore size) and stored frozen (—20°C) imme-
diately after collection in pre-combusted borosilicate glass
vials (Shen et al., 2012). Samples for TDLPgy analysis (be-
tween 1 and 10L) were gravity-filtered from Niskin bot-
tles using Whatman Polycap AS cartridges (0.2pum pore
size), acidified to pH between 2.5 and 3 with sulfuric acid,
and extracted within a few hours using C-18 cartridges
(Louchouarn et al., 2000; Fichot et al., 2013). The C-18
cartridges were stored at 4°C until elution with 30 mL
of methanol (high-precision-liquid-chromatography-grade,
HPLC-grade), and the eluent was stored in sealed, pre-
combusted glass vials at —20 °C until analysis. DOC and
TDN concentrations were measured by high-temperature
combustion using a Shimadzu total-organic-carbon analyzer

Earth Syst. Sci. Data, 13, 1561-1592, 2021
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between 300 and 600 nm measured at the surface for the northernmost and the southernmost stations of the transects 600 and 300. (¢) Specific
UV absorbance at 254 nm (SUVA»s4, 1.e., absorption of light at 254 nm per unit of carbon) at surface for stations along transects 600 and 300.
Stations are identified in light gray (see Fig. 1 for an overview of the station locations). Note the difference in the y axes used in panels (a)
and (b), which highlights the important differences in dissolved and particulate absorption between stations in the estuary and those offshore.

(TOC-V) equipped with an inline chemiluminescence nitro-
gen detector and an autosampler (Benner and Strom, 1993).
Blanks were negligible, and the coefficient of variation be-
tween injections of a given sample was typically less than
1 %. Analysis of a deep-seawater reference standard (Univer-
sity of Miami) every sixth sample was used to check the ac-
curacy and consistency of measured DOC and TDN concen-
tration. THAAs were determined as the sum of 18 dissolved
amino acids using an Agilent high-performance liquid chro-
matography system equipped with a fluorescence detector
(excitation: 330 nm; emission: 450 nm). Samples (100 puL) of
filtered seawater were hydrolyzed with 6 mol L~! hydrochlo-
ric acid using a microwave-assisted vapor-phase method
(Kaiser and Benner, 2005). Free amino acids liberated during
the hydrolysis were separated as o-phthaldialdehyde deriva-
tives using a LiCrospher RP-18 or Zorbax SB-C18 column

Earth Syst. Sci. Data, 13, 1561-1592, 2021

(Shen et al., 2012). Detailed methodological information can
be found in Fichot et al. (2013) and Shen et al. (2012).
Surface DOC concentrations along the transects 300 and
600 behaved approximately conservatively with salinity, de-
creasing from 458 umolL~! in the Mackenzie River end-
member (salinity = 0.2 PSU) to 123 umol L™ at a salinity of
26.69 PSU (Fig. 9a). DOC concentrations in surface waters
further decreased to minimum values of A 66 umol L™ off-
shore (Fichot and Benner, 2011). Concentrations generally
increased by a few umolL~! in the upper halocline relative
to surface values but then generally decreased with depth,
reaching 53-57 umol L ™! in the lower halocline and = 43—
50 umol L~! in deep water masses (depth > 1000 m). Simi-
larly to DOC, surface TDLPy concentrations along transects
600 and 300 behaved approximately conservatively with
salinity, decreasing from 22 93-96 nmol L™! in the Macken-
zie River end-member (salinity = 0.2 PSU) to & 12 nmol L!

https://doi.org/10.5194/essd-13-1561-2021
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Figure 8. Cross-sections of (a) NOS_ and (b) POi_ measured from Niskin bottles (gray dots) along transects 600 and 300. (¢) N* defined
as N —rP, withr = N/P = 13.1 (see the text for the details). Station numbers are identified in light gray on top of each panel.

at a salinity of 26.69 PSU (Fig. 9b). Surface concentrations
reached minimum values of ~2.5nmolL~! offshore (Fi-
chot et al., 2016). TDLPg concentrations generally decreased
with depth, reaching minimum values of < 1.5nmol L~! be-
low the halocline. Surface concentrations of THAAs along
the transects 600 and 300 decreased from 576 nmol L™! in
the Mackenzie River end-member (salinity = 0.2 PSU) to
317nmol L™ ! at a salinity of 26.69 PSU (Fig. 9c). Unlike
DOC and TDLPy’s, concentrations of THAAs did not fol-
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low a conservative mixing line along the salinity gradient.
Elevated concentrations of THAAs were observed in mid-
salinity waters in both transects, suggesting plankton produc-
tion in these regions. In comparison, THAA concentrations
in the slope and basin waters were lower and decreased with
depth, reaching minimal values of 2~ 70 nmol L™! below the
halocline (Shen et al., 2012).

Earth Syst. Sci. Data, 13, 1561-1592, 2021
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Figure 9. Surface concentrations of (a) dissolved organic carbon (DOC), (b) total dissolved lignin phenols (TDLPg’s) and (c) total hydrolyz-
able amino acids (THAAs) measured along transects 600 and 300 and plotted against salinity.

4.6 Pigments

Water samples (volumes between 0.25 and 2.27 L) were fil-
tered through glass fiber GF/F filters (25 mm diameter, par-
ticle retention size 0.7 um). They were immediately frozen
at —80°C, transported in liquid nitrogen and then stored at
—80°C until analysis on land. Samples were extracted in
3 mL HPLC-grade methanol for 2h minimum. After sonica-
tion, the clarified extracts were injected (within 24 h) onto
a reversed-phase C8 Zorbax Eclipse column (dimensions:
3 x 150 mm; 3.5 um pore size). The instrumentation com-
prised an Agilent Technologies 1100 series HPLC system
with diode array detection at 450, 667 and 770 nm of phyto-
plankton pigments (carotenoids; chlorophylls a, b and c; and
bacteriochlorophyll a). A total of 22 pigments were analyzed
and quantified. Details of the HPLC analytical procedure can
be found in Ras et al. (2008).

Earth Syst. Sci. Data, 13, 1561-1592, 2021

As illustrated in Fig. 10, the phytoplankton biomass, indi-
cated by total chlorophyll a concentrations, was the highest
at the coast (up to 3.5 mg m—?), decreasing offshore (to about
0.010mgm™3) with the formation of a subsurface chloro-
phyll maximum (SCM) around 60 m. In terms of biomass
integrated over the sampled depth, values range from 6.2 and
8.9mgm~2 at the coast to 14.3 and 13.2mgm~2 offshore
for transects 300 and 600, respectively. In general, the most
predominant accessory pigment was fucoxanthin, indicating
that diatoms constitute a large proportion of the phytoplank-
ton assemblage. However, in offshore waters and around
the SCM, 19’-hexanoyloxyfucoxanthin concentrations were
equivalent to or sometimes higher than fucoxanthin, suggest-
ing that, in these waters, haptophytes can predominate over
diatoms. Other pigments such as chlorophyll b and prasi-
noxanthin suggest the presence of green algae and probably
Micromonas-type cells, especially in coastal waters and at

https://doi.org/10.5194/essd-13-1561-2021
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the surface. For more detailed information, see Coupel et al.
(2015), who used this data set applied to the CHEMTAX
(CHEMical TAXonomy) chemotaxonomic tool to assess the
distribution of phytoplankton communities.

4.7 Phytoplankton abundance and diversity

The abundance of the eukaryotic pico- and nano-
phytoplankton was measured by flow cytometry onboard the
Amundsen with a FACSAria instrument (Becton Dickinson,
San Jose, CA, USA) following the protocol of Marie et al.
(1999).

In transect 300 and 600 (Fig. 11), the abundance of pico-
and nano-phytoplankton reached maximal values around
5000 and 3000 cells mL !, respectively. On transect 600,
pico-eukaryotes’ higher abundances were restricted to the
surface layer, with a 5- to 10-fold drop at 30m. In con-
trast, nano-eukaryotes formed clear deep maxima, especially
at stations 610 and 680. On transect 300, pico-eukaryotes
were also abundant in the surface at the more off-shore
stations. Still, they decreased sharply near shore, while
nano-eukaryotes’ highest concentrations were near the river
mouth, linked to high diatom concentrations (Balzano et al.,
2012a). The composition of eukaryotic phytoplankton was
determined with two different approaches. We isolated 164
cultures using a range of techniques (single-cell isolation,
serial dilution, flow cytometry sorting) that have been char-
acterized morphologically and genetically (Balzano et al.,
2012a, 2017) and deposited to the Roscoff Culture Collec-
tion (http://www.roscoff-culture-collection.org, last access:
16 March 2021). Among these cultures, several new species
have been discovered such as the new species of green al-
gae Mantoniella beaufortii (Yau et al., 2020) or the diatom
Pseudo-nitzschia arctica (Percopo et al., 2016), but more
await description, in particular among Pelagophyceae. One
of the strains isolated (RCC2488, Chlamydomonas malina
nomen nudum) has been recently found to be suitable for
biotechnology applications (Morales-Sanchez et al., 2020).
We also used molecular approaches by sorting pico- and
nano-eukaryotic communities and characterizing their tax-
onomic composition by TRFLP (terminal-restriction frag-
ment length polymorphism) analysis and cloning and se-
quencing of the 18S ribosomal RNA gene (Balzano et al.,
2012a). While the pico-phytoplankton was dominated by the
species Micromonas polaris, the nano-phytoplankton was
more diverse and dominated by diatoms mostly represented
by Chaetoceros neogracilis and C. gelidus, with the former
mostly present at surface waters and the latter prevailing in
the SCM (Balzano et al., 2012a). Furthermore, C. neogra-
cilis sampled from the Beaufort Sea consists of at least four
reproductively isolated genotypes (Balzano et al., 2017). The
comparison between the taxonomy of natural communities
and isolated cultures (Fig. 12) reveals that, although we suc-
ceeded at isolating some dominant species in the field such as
M. polaris, C. neogracilis and C. gelidus, some other impor-
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tant taxa such as the diatom Fragilariopsis or the haptophyte
Chrysochromulina were not recovered.

4.8 Carbon fluxes

In the context of climate change, the main objective of the
MALINA oceanographic expedition was to determine how
(1) primary production, (2) bacterial activity and (3) photo-
degradation influence carbon fluxes and cycling of organic
matter in the Arctic. In the following sections, we present
an overview of these processes in the water column that are
detailed in Ortega-Retuerta et al. (2012a), Xie et al. (2012)
and Tremblay et al. (2014) and refer to Link et al. (2013a),
Tolosa et al. (2013) and Rontani et al. (2012b) for the related
processes at the sediment—water interface.

4.8.1 Phytoplankton primary production

At each station, when productivity was quantified, rates of
carbon fixation (primary production) were determined using
a 13C isotopic technique (Raimbault and Garcia, 2008). For
this purpose, three 580 mL samples were collected at mini-
mum sun elevation or before sunrise at six to seven depths be-
tween the surface and the depth where irradiance was 0.3 %
of the surface value and poured into acid-cleaned polycar-
bonate flasks. Incubations were carried out immediately fol-
lowing the tracer addition in an on-deck incubator. This con-
sisted of six to seven opaque boxes, each with associated
neutral and blue screens, allowing around 50 %, 25 %, 15 %,
8%, 4%, 1% and 0.3 % light penetration. At five stations,
incubations were also performed in situ on a drifting rig with
incubation bottles positioned at the same depth where sam-
ples for on-deck incubations were collected. After 24 h, sam-
ples were filtered through pre-combusted (450 °C) Whatman
GF/F filters (25 mm diameter). After filtration, filters were
placed into 2 mL glass tubes, dried for 24 h in a 60 °C oven
and stored dry until laboratory analysis. These filters were
used to determine the final '3C enrichment ratio in the par-
ticulate organic matter on an Integra CN mass spectrometer.
Filtrates were poisoned with HgCl, and stored to estimate
ammonium regeneration and nitrification rates. The isotopic
enrichment of particulate organic matter and dissolved NHA|r
and NOj3 at the end of incubations were used to calculate net
C and N uptake and the recycling of NHI and NOj;" (Raim-
bault et al., 1999c).

Daily rates of primary production at the surface
were generally very low across the survey area, rang-
ing from 0.1mgCm=3d~! offshore to a maximum of
545mgCm—3d~! in Kugmallit Bay (Fig. 13), associated
with the Mackenzie River discharge (Tremblay et al., 2014).
Ammonification and nitrification followed the same coastal-
offshore pattern, with rates driving most, if not all, of the
NHI and NO; consumption in the surface layer. Primary
production was generally maximum at the surface, but high
rates were often observed at depth in the nitracline layer, as-
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Figure 10. Cross-sections of total chlorophyll ¢ measured from HPLC (gray dots) along transects 600 and 300. Station numbers are identified
in light gray on top of each panel. Note that the data have been square-root-transformed for the visualization.
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Figure 11. Concentrations of photosynthetic (a) pico- and (b) nano-eukaryotes measured by flow cytometry during the MALINA cruise on

transects 600 and 300.

sociated with a chlorophyll maximum. The range of uptake
rates of ammonium at the surface generally overlapped with
the range of nitrate uptake rates. Nitrate uptake below the
surface amounted to 40 %—60 % of total nitrogen uptake, a
proportion that is approximately 2 times greater than at the
surface (Ardyna et al., 2017a).
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Nitrification and ammonium regeneration was detectable
over the whole water column, ranging from 2 to
20nmol L' d~!. The highest rates were generally located
at the base of the euphotic zone, leading to the formation
of subsurface ammonium- and nitrite-maximum layers. Sur-
face communities and especially the accumulation of large
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cells thrived mostly on regenerative NHI, and their reliance
on NOj increased with depth to reach a maximum in the
subsurface chlorophyll maximum, where substantial levels of
primary production occurred (Ardyna et al., 2017a). This is
consistent with Ortega-Retuerta et al. (2012a), who reported
elevated bacterial abundance and bacterial production rates
in association with photoammonification of riverine organic
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matter (Le Fouest et al., 2013). Nitrification accounted for a
variable and sometimes a large share of the NO;' demand,
consistent with the persistence of trace amounts of NO; at
the surface. Collectively, the data indicate that the coastal
Beaufort Sea is an active regenerative system during summer,
probably fueled by large pools of organic matter brought by
rivers. Consequently, new production was very low and of-
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particulate material for stations of transects 600 and 300.

ten close to 0 in the 0-40 m layer. But high nitrate uptake
rates can be observed at depth (Station 135), often associ-
ated with high primary production located in the chlorophyll-
maximum layer, which is the place of significant new pro-
duction. The impact of the Mackenzie River on shelf pro-
ductivity during summer is moderate and associated mostly
with localized nutrient recycling in the near-shore estuarine
transition zone (Tremblay et al., 2014).

4.8.2 Photo-degradation

CO and CO» production from dissolved organic matter

Surface water samples were gravity-filtered upon collec-
tion through a pre-cleaned Pall AcroPak 1000 filtration cap-
sule sequentially containing 0.8 and 0.2 um polyethersulfone

Earth Syst. Sci. Data, 13, 1561-1592, 2021

membranes. Filtered water was stored in clear glass bot-
tles at 4°C in darkness. CO photoproduction rates (Pco,
nmol L~ "h™') were determined aboard the CCGS Amund-
sen immediately after sample collection, whereas CO» pho-
toproduction rates (Pco,, nmolL~! h~!) were measured
in a land-based laboratory in Rimouski, Québec, within 3
months of sample collection. The sample-pretreatment and
irradiation procedures followed those reported previously
(Bélanger et al., 2006b; Song et al., 2013). Briefly, after mini-
mizing the background CO and CO; concentrations, samples
were transferred into combusted, quartz-windowed cylindri-
cal cells (CO: interior diameter of 3.4 cm, length of 11.4 cm;
COa;: interior diameter of 2.0 cm, length of 14cm) and ir-
radiated at 4°C using a SUNTEST XLS+ solar simulator
equipped with a 1.5kW xenon lamp. The radiation emitted
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from the solar simulator was screened with a Schott long-
pass glass filter to remove UV radiation <295 nm. The ir-
radiations lasted for 10 min to 2h for CO and 24 to 48h
for CO,. The photon flux reaching the quartz windows of
the cells was measured to be 835 umolm~—2s~! for CO and
855 umolm~2s~! for CO, over the wavelength range from
280 to 500 nm.

Both Pco, and Pco increased landward, with the differ-
ence between the most and least saline samples reaching a
factor of ~ 5 along transect 300 and ~ 8 along transect 600
for Pco, and ~7 along transect 600 for Pco (Fig. 14a).
This landward increase in Pco, and Pco was due princi-
pally to the parallel augmentation in CDOM absorption, as
demonstrated by the linear relationships between these two
rates with CDOM absorption: Pco, = 279.1 xacpom(412)—
17.0 (R> =0.964,n =9) and Pco = 17.5 x acpom(412) —
4.8 (R? =0.966,n =17), where acpom(412) (m~') is the
CDOM absorption coefficient at 412nm published previ-
ously (Song et al., 2013; Taalba et al., 2013). The irradiance-
normalized Pco,/Pco ratio gradually decreased landward
along transect 600, from 23.5 at station 691 to 16.2 at station
697, suggesting that the near-shore samples were more effi-
cient at CO photoproduction relative to CO, photoproduction
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than the shelf samples. The Pco,/Pco ratios at the two sta-
tions on transect 300 were, however, similar (18.9 for station
394 and 20.1 for station 396). Combining the Pco,/Pco ra-
tios from both transects results in an average ratio of 19.8
(2.5 SD), with a rather small relative standard deviation of
12.5 %.

It should be pointed out that extrapolating the lab-
determined CO; and CO photoproduction rates to the sam-
pling area is practically infeasible due to the very differ-
ent laboratory and real-environment conditions. For instance,
the water column in the Mackenzie estuary and shelf areas
contains large numbers of particles (Doxaran et al., 2012a),
which are also optically active, whereas the irradiated sam-
ples were particle-free. Furthermore, the photoproduction
rates in the water column would decrease rapidly with depth
because of the strong light attenuation by CDOM and parti-
cles, while the laboratory radiation at best simulated the radi-
ation of the top 1-2 cm layer of the water column even with-
out considering the constant vs. varying irradiance from the
solar simulator and natural sunlight, respectively. Estimating
the areal photoproduction rates in the water column from lab-
derived data often requires coupled optical-photochemical
modeling that incorporates spectral apparent quantum yields

Earth Syst. Sci. Data, 13, 1561-1592, 2021
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of the photoproduct of interest (Bélanger et al., 2006b; Xie
et al., 2009; Fichot and Miller, 2010). Using this approach
and CO data from the MALINA cruise, Song et al. (2013)
estimated a yearly averaged areal CO photoproduction rate
of 9.6 umolm~2d~! in the Mackenzie estuary and shelf ar-
eas, which implies a yearly averaged areal CO, photopro-
duction rate of 191.1umolm—2d~! based on the average
Pco,/ Pco ratio of 19.8 obtained above. Aggregating the
CO; and CO rates gives a total photomineralization rate of
199.7 umolCm~2d~!.

Autoxidation of suspended particulate material

Water samples were filtered immediately after collection
through a pre-combusted glass fiber filter (Whatman GF/F,
0.7 pum) under a low vacuum. The filters were frozen imme-
diately at —20 °C until analysis and transported to the lab-
oratory. Treatment of the filters involved NaBHy4 reduction
and classical alkaline hydrolysis (Rontani et al., 2012a). Re-
duction of labile hydroperoxides to alcohols is essential for
estimating the importance of autoxidative degradation in nat-
ural samples by gas chromatography—electron impact mass
spectrometry (GC-EIMS) (Marchand and Rontani, 2001).
Autoxidative degradation of terrigenous particulate organic
matter (POM) discharged by the Mackenzie River was moni-
tored thanks to specific oxidation products of sitosterol (main
sterol of higher plants) and dehydroabietic acid (a component
of conifers).

The autoxidation state of these tracers increases strongly
at the offshore stations (Fig. 14b) (reaching 89 % and 86 %
at station 690 and station 380, respectively, in the case of
sitosterol; see Rontani et al., 2014). These results allowed us
to demonstrate that in surface waters of the Beaufort Sea,
autoxidation strongly affects vascular plant lipids and prob-
ably also the other components of terrestrial organic matter
(OM) delivered by the Mackenzie River. Initiation of these
abiotic oxidation processes was attributed to the involvement
of some enzymes producing radicals (lipoxygenases), which
are present in higher plant debris and whose activity is en-
hanced at high salinities (Galeron et al., 2018).

Bacterial production and respiration

Bacterial production (BP; assessed by *H-leucine incuba-
tions, n = 171) and respiration (BR; assessed by changes in
O, by Winkler titration, n = 13) were measured from the sur-
face to 200m at 44 sampling locations. Bacterial produc-
tion ranged from 8.8 to 7078 ugCm~—3d~! and showed a
marked decreasing pattern from the mouth of the Mackenzie
to the open Beaufort Sea and from the surface to deep waters
(Fig. 15). Temperature and labile dissolved organic matter
(indicated as dissolved amino acids) controlled BP variabil-
ity (Ortega-Retuerta et al., 2012a), and the nitrogen limita-
tion of surface BP during the summer period was demon-
strated experimentally (Ortega-Retuerta et al., 2012b). BR
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ranged from 5500 to 45500 ugCm™—3 d~!, leading to a bac-
terial growth efficiency of 8 % on average. BP and BR were
low with respect to lower latitudes but within the range of
those in polar ecosystems, suggesting the role of low tem-
peratures driving carbon fluxes through bacteria (Kirchman
et al., 2009). Bacterial carbon demand (BP 4+ BR), which av-
eraged 21500414900 ugCm~3d~!, was higher than pri-
mary production in the whole study area, indicating that the
Mackenzie River platform and the Beaufort Sea are net het-
erotrophic during summer. This may suggest a temporal de-
coupling between carbon fixation and remineralization in the
area.

4.8.3 Bacterial diversity

Spatial variations in bacterial-community structure were ex-
plored in surface waters from the Mackenzie River to the
open Beaufort Sea (n = 20). By using 16S rRNA-based anal-
ysis, we investigated both particle-attached (PA; > 3 um size
fraction) and free-living (FL; size fraction between 3 and
0.2 um) bacteria along a river-to-open-sea transect. Multi-
variate statistical analysis revealed significant differences in
community structure between the river, coastal and open-
sea waters, mainly driven by salinity, particle loads, chloro-
phyll @ and amino acid concentration (Ortega-Retuerta et al.,
2013). Bacterial communities differed between PA and FL
fractions only at open-sea stations, likely due to the higher
organic-carbon content in particles with respect to particles
from the river and coast, which were enriched in miner-
als. Alphaproteobacteria dominated in FL open-sea samples,
while the PA fraction was mainly composed of Gammapro-
teobacteria, Opitutae (Verrucomicrobia) and Flavobacteria.
The coastal and river samples were dominated by Betapro-
teobacteria, Alphaproteobacteria and Actinobacteria in both
the PA and FL fractions (Fig. 15¢). These results highlight
the importance of particle quality, a variable that is pre-
dicted to change along with global warming, in influenc-
ing bacterial-community structure and thus likely altering the
biogeochemical cycles that they mediate.

5 Code and data availability

Metadata and detailed information about measurements
can be found in associated MALINA papers presented in
Table 1. Data are provided as a collection of comma-
separated values (CSV) files that are regrouping measure-
ments associated with a particular type of measure. To
aid the user in merging these files, there is a lookup ta-
ble file called stations.csv that can serve as a table to
join all the data together based on date, time, station,
cast, depth, longitude and latitude. Additionally, original
data provided by all the researchers as well as addi-
tional metadata are available on the LEFE-CYBER repos-
itory (http://www.obs-vlfr.fr/proof/php/malina/x_datalist_1.
php?xxop=malina&xxcamp=malina, last access: 8 Febru-
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ary 2021). The processed and tidied version of the data
is hosted at SEANOE (SEA scieNtific Open data Edition)
under the CC-BY license (https://doi.org/10.17882/75345;
Massicotte et al., 2020). The raw UVPS5 large-particulate
data and images are all available from the EcoPart and
Ecotaxa website (https://ecotaxa.obs-vifr.fr/, last access:
25 February 2021, Picheral et al., 2017). Note that Ta-
ble 1 also indicates whether the measured variables are
directly available in the data files or by contacting the
responsible principal investigators. For specific questions,
please contact the principal investigator associated with
the data (see Table 1). If more data become available,
they will be added to the SEANOE repository. The code
used to produce the figures and the analysis presented
in this paper is available under the GNU GPLv3 li-
cense (https://doi.org/10.5281/zenodo.4518943, Massicotte,
2021).

6 Conclusions

The comprehensive data set assembled during the MALINA
oceanographic cruise has given unique insights into the
stocks and the processes controlling carbon fluxes in the
Mackenzie River and the Beaufort Sea. In this paper, only
a handful of variables have been presented. The reader can
find the complete list of measured variables in Table 1, all
of which are also fully available in the data repository. The
uniqueness and comprehensiveness of this data set offer more
opportunities to reuse it for other applications.

Author contributions. MB and SB designed the MALINA
project, including the scientific objectives and the sampling strat-
egy. PM prepared the initial draft of the manuscript. SB was re-
sponsible for spectrophotometric measurement of particle absorp-
tion and fluorometric chlorophyll a determination onboard and with
above-water radiometry (e.g., continuous incident irradiance mea-
surements). JE was the logistic coordinator for the cruise and was
responsible for IOP measurements from the CTD rosette and con-
tributed to SPM, POC and particulate absorption measurements
and processing. PF performed the GC-MS experiments on organic
molecular compositions. AM and BL were in charge of determin-
ing carbonate system parameters (pH and total alkalinity) as well
as the stable oxygen isotopic composition of the water and stable
carbon isotopic composition of the dissolved inorganic carbon. BL
participated in the cruise, collected the samples and compiled and
processed most of the data. Carbonate system parameters were used
to determine the saturation of waters concerning aragonite as well
as calculate the surface water pCO,. These parameters and others
were used by the proponents to identify and estimate the contribu-
tion of parental waters to the structure of the water column in the
study area. CM, LP and YG operated the rosette during the MA-
LINA cruise. CM was in charge of all the physical instruments dur-
ing the cruise. She also operated the UVPS5 sensor. YG was in charge
of the physical data processing during and after the cruise. CM and
LP processed the LADCP data during the cruise. MP developed
and operated the UVPS sensor and processed the data. GG con-
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tributed to the UVP development. CJ processed samples during the
MALINA cruise, designed the experiments on photoheterotrophic
bacteria and wrote the related manuscripts. DB designed and per-
formed the experiments on photoheterotrophic bacteria and wrote
the related manuscripts. DV and DM participated in the MALINA
cruise and sampled for flow cytometry, DNA and cultures. DM per-
formed flow cytometry measurements and cell sorting. DV also co-
ordinated the work on phytoplankton culture and molecular anal-
yses. SB performed molecular analyses of flow-cytometry-sorted
photosynthetic pico- and nano-eukaryotes as well as phytoplank-
ton cultures. PG isolated and characterized phytoplankton cultures.
W1, EOR and FJ participated in the MALINA cruise, collected sam-
ples for bacterial production and respiration and prokaryotic diver-
sity, and performed nutrient limitation experiments. RB participated
in the MALINA cruise and collected the samples for DOC, TDN,
THAA and TDLP9. CF analyzed the samples for DOC, TDN and
TDLP6. YS analyzed the samples for THAA. RA contributed ad-
vice for the leads and the measurements of CDOM fluorescence. PG
was in charge of the processing and quality control of the CTD data.
CL contributed material, protocols and advice for DNA sampling
for planktonic material. HJH contributed to the data interpretation
regarding bacterial diversity and activity. HX and GS participated in
the MALINA cruise, designed and conducted the onboard CO pho-
toproduction experiment, and collected samples for the CO; photo-
production experiment. TP oversaw the measurement of meteoro-
logical elements from an instrumented tower on the ship’s foredeck
and the measurement of incoming solar shortwave, longwave, PAR
and UV radiation from sensors mounted on top of the ship’s wheel-
house. FB and YH participated in the MALINA cruise, performed
the P vs. E curve and the FIRe fluorometer measurements (phyto-
plankton photosynthesis efficiency), and sampled for the photosyn-
thetic protein analysis. FB also helped gather and merge the initial
form of the MALINA database with the help of CAB, who coded
for SQL formatting, and MHF, who coordinated the effort. DD par-
ticipated in the MALINA field campaign; measured from the barge
the water temperature, salinity and inherent optical properties as a
function of depth; and processed the data. He was also in charge of
measuring the suspended particulate matter and particulate organic
carbon concentrations in collected water samples. RR and GZ par-
ticipated in the MALINA field program and collected data on sea-
water optical properties and particle characteristics. Together with
DS, they conducted processing and curation of these data, formal
analysis, and publication of results. All three authors have reviewed
and edited the current paper for accuracy. DA participated in MA-
LINA Leg 1. He carried out radiometry measurements, including
from the underwater radiance cameras, and then processing, analy-
sis and publication of the results. He has contributed to editing the
current paper. PA contributed material, protocols and advice of ben-
thic sampling and participated in the interpretation of benthic biodi-
versity and biodiversity—ecosystem functioning through his Arctic-
Net funding. HL participated in the MALINA cruise; was in charge
of sediment sampling with the box corer; designed and performed
benthic incubation experiments onboard; analyzed sediment sam-
ples for pigments and macrofauna; processed, analyzed, interpreted
and published results obtained from benthic incubations (benthic
nutrient fluxes and respiration, macrofauna, TOC, pigments); and
contributed to writing this paper. EL participated in the MALINA
cruise and was involved in the radiance camera measurements and
data processing as well as the POLVSM instrument. CS gathered
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data and metadata for the MALINA cruise through INSU-CNRS
(Institut National des Sciences de I’Univers — Centre National de
la Recherche Scientifique) funding. MC and AT participated in the
MALINA cruise; they operated the POLVSM instrument to measure
the particulate scattering phase function of the water sample. BG
and JaM participated in the MALINA cruise, performed sampling
of suspended particles with foredeck in situ pumps and assisted CM
in the deployment of the drifting sediment trap line. Both performed
sample treatment and analysis of 234Th, and JICM participated in the
interpretation of the data and coordination of these operations prior
to the cruise. IT performed data analysis and interpretation of lipid
biomarkers and their carbon isotopic ratios in suspended particu-
late matter and sediment and sampled respectively with the fore-
deck in situ pumps and box corer. VM participated in the MALINA
cruise, mainly on the barge to collect inherent optical properties,
deploying the optical package to obtain vertical profiles. NG, PR
and PC participated in the MALINA cruise by being in charge of
experimental incubations for the determination of primary produc-
tion and nitrogen assimilation rates as well as the preservation of
samples for inorganic and organic nutrients in the euphotic zone.
NG and PR performed the laboratory nutrient analysis and isotopic
measurements of preserved samples, respectively. PR has compiled
and processed the data and has contributed to editing the current pa-
per. JET and JoM were responsible for the collection of inorganic
nutrient samples in the entire water column and their analysis im-
mediately on board (fresh). JFR carried out lipid analyses (lipid ex-
traction, derivatization and GC-MS analyses) on SPM samples col-
lected during the MALINA cruise, interpreted the results obtained
and participated in the writing of the present paper. BC participated
in the MALINA cruise, being in charge of sampling and analysis
for DOC, CDOM, monosaccharides, diacids, and atmospheric un-
derwater PAR and UV radiation. AM and AB participated in the
MALINA cruise, measured CDOM absorption spectra, processed
and analyzed the data, and published the results. RS defined the
sampling strategy of DOC, CDOM, monosaccharides, diacids, and
atmospheric underwater PAR and UV radiation; interpreted the re-
sults obtained; and wrote the related manuscripts. CP performed
monosaccharide analysis and wrote the related manuscript. MV per-
formed diacid analysis and wrote the related manuscript. SH in-
terpreted the mass flux data and wrote the related paper. MG con-
tributed material, equipment, protocols and advice for the determi-
nation of chlorophyll a and phaeopigments in the water column
(fluorometric method) and participated in the interpretation of the
phytoplankton biomass and community composition data. ND per-
formed sediment trap sample preparation. AR and GM designed
the MSc. project to study the evolution of sea surface conditions in
the Beaufort Sea. SS performed the analysis and interpretation of
sedimentary 210ppxs and 137Cs profiles. SBH co-developed the C-
OPS instrumentation, designed the experiments, co-developed the
software to acquire the data by launching a small vessel from the
much larger icebreaker and co-developed the software to process
the data. HC and JR were in charge of HPLC measurements and
participated in the interpretation of data. AM collected the samples
for the HPLC analysis during the MALINA cruise. WLM advised
on in situ optical sampling and photochemical experiments. JFG
performed the data analysis on prokaryotic diversity (see the text
above; together with the team WJ, EOR and FJ). FV was in charge
of lipid extractions. JKV participated in the interpretation of lipid
data. GC contributed materials and protocols to benthic incubations.
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She performed the analyses of diagenetic species and participated in
the interpretation of redox conditions and benthic oxygen demand.
She contributed to writing the related manuscripts. KK, KO and ET
contributed to the analysis of the aerosol filter samples for organic
species. JG analyzed all the nutrient samples and managed the data.
JC performed the analysis of organic aerosols by GC-MS.
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