


2 



3 

Introduction to Colloid Science 
Applications to sediment characterization 

Claire Chassagne 

PUBLISHER



4 

Published by: 
TU Delft OPEN 
Delft University of Technology, Delft, The Netherlands 

Cover design: Claire Chassagne 
Images without an attribution are made by the author

https://books.open.tudelft.nl

This work is published under a Creative Commons License: CC-BY 4.0 
by Claire Chassagne. 
This work is the open access version of the work with the same title 
published in 2019 by Delft Academic Press (DAP). 

ISBN: 97890-6562-4376 
DOI: https://doi.org/10.34641/mg.16

https://books.open.tudelft.nl
https://books.open.tudelft.nl
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34641/mg.16


5 



6 

Contents 
Contents ................................................................................................................ 6 

Foreword ............................................................................................................ 11 

Chapter 1 Introduction, general definitions......................................................... 13 
Introduction ......................................................................................................... 14 
Solutions, colloids and suspensions ..................................................................... 16 
The difference between clay, silt and sand particle sizes .................................... 20 
The definition of mud, silt and clay ...................................................................... 22 
Clay minerals........................................................................................................ 25 

Chapter 2 Settling, diffusion and  stabilisation .................................................... 37 
Stokes’ settling velocity ........................................................................................ 38 
Brownian motion ................................................................................................. 42 
Fick’s laws ............................................................................................................ 47 
Stable and unstable colloidal suspensions ........................................................... 52 
Osmotic pressure ................................................................................................. 58 

Chapter 3 DLVO forces ........................................................................................ 61 
Van der Waals forces ........................................................................................... 63 
Coulombic forces .................................................................................................. 67 
DLVO theory ......................................................................................................... 71 
Link between surface potential and surface charge ............................................ 78 
Measurement of the zeta potential ..................................................................... 80 
Ionic conductivity and diffusion coefficient.......................................................... 86 

Chapter 4 Other colloids: polymers, surfactants,  microorganisms … .................. 89 
Polymers & polyelectrolytes................................................................................. 90 
Polymers and clays .............................................................................................. 94 
Depletion effect ................................................................................................... 96 



7 

Stabilization ......................................................................................................... 97 
Surfactants (amphiphilic molecules) .................................................................... 98 
Surface tension .................................................................................................. 101 
Plankton ............................................................................................................. 104 
The marine cycle ................................................................................................ 109 

Chapter 5 Floc formation and break-up ............................................................. 113 
Cluster aggregation ........................................................................................... 114 
Stable clay suspensions ...................................................................................... 115 
Unstable clay suspensions: influence of salt ...................................................... 117 
Swelling behaviour of clays ................................................................................ 120 
Unstable clay suspensions: flocculation by polyelectrolytes .............................. 122 
Shear rate influence on floc size ........................................................................ 122 
Density of flocs and fractal dimensions ............................................................. 128 

Chapter 6  Modelling and measuring  the flocculation rate ............................... 135 
Model of Smoluchowski: aggregation by Brownian motion .............................. 136 
Orthokinetic aggregation: aggregation by shear .............................................. 142 
Measuring the flocculation rate ........................................................................ 144 
Settling velocity, optimal flocculation and zeta potential ................................. 152 

Chapter 7 Rheological behaviour of colloidal suspensions ................................ 157 
Viscosity and yield stress.................................................................................... 158 
Viscoelastic fluids ............................................................................................... 163 
Rheology of suspensions .................................................................................... 168 
Phase transition ................................................................................................. 175 
Shear thinning and shear thickening ................................................................. 182 
Gels and hydrogels ............................................................................................. 186 
A fifty cent rheometer for yield stress measurement ........................................ 191 
Maximum yield and zeta potential .................................................................... 194 

Chapter 8 Settling of  (concentrated) suspensions............................................. 199 



8 

Concentrated suspensions and fluid mud .......................................................... 200 
Modelling concentrated suspensions ................................................................. 201 
Settling of concentrated suspensions ................................................................ 202 
Chemical potential, osmotic pressure and thermodynamics ............................. 212 
Settling profiles .................................................................................................. 219 

Chapter 9 Permeability of slurries ..................................................................... 233 
Link between settling and consolidation ........................................................... 238 
A Darcy equation for settling particles .............................................................. 241 
The Gibson equation .......................................................................................... 245 
Finding the permeability using colloid science ................................................... 256 
Onsager relations ............................................................................................... 260 

Chapter 10 Modelling  the consolidation  of slurries ......................................... 267 
Consolidation of slurries : the fractal approach ................................................. 268 
Settling and consolidation of natural mud ........................................................ 289 
Link with Chapter 8 : how to couple settling and consolidation? ...................... 292 
Beyond self-weight consolidation ...................................................................... 299 

Conclusion from colloid science to large-scale applications ............................... 311 

References for colloid science books ................................................................. 315 



“Who do not  
honour the small things 

is not worth the big ones” 

[Dutch saying] 





Foreword 

This book is meant as an introduction to the field of colloid science, i.e. the study of 
the behaviour of micrometric particles in a fluid (or a gas). The book was written with 
a special emphasis on sediment particles. Sediment particles are complex colloidal 
particles due to their composition, shape and interaction with their environment. 
Characterization of the colloidal fraction of sediment is done by recording, among 
others, the particles’ size, shape and electric surface charge and evaluating their 
interactions. These properties are important for civil engineering applications, even 
though the size range of these particles and their interactions is microscopic. Large-
scale sediment transport models for example require as input the settling velocity of 
individual particles. In concentrated areas, this velocity becomes a function of the 
particles’ concentration and particle-particle interactions lead to the creation of 
larger particles, called flocs. These flocs can settle and, when reaching the bed, 
consolidate in time. All these aspects, and related models, are treated in the present 
book.  

The book was written for students having no special beforehand knowledge in 
colloid science, and a limited knowledge in physics and chemistry, the two main 
disciplines relevant to this branch of science. The mathematics are also kept 
minimal. They are given when the derivations present no particular problem. The 
more lengthy derivations, often very elegant (but sometimes rather tedious) can be 
found in the references given as footnotes in the different chapters. 

Key words are highlighted in the text, which will enable the reader to find further 
information by searching for them in a web browser. 

I take the opportunity to thank the colleagues that reviewed this book, and helped 
with their comments to improve it. To the present reader, I would like to say: do not 
hesitate to report any mistake or unclarity to me. 

Claire Chassagne 
Delft, spring 2019 
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Introduction 

Mud and clayey systems have from origin been studied in the field of soil science1, 
i.e. the branch of science concerned with the formation, classification and fertility
properties of soils. In soil science, the classification of soils is of prime importance,
as the properties of a soil are used by farmers to decide which types of crops,
livestock and soil management are best for their piece of land. The information
obtained by a soil survey can also be used by an architect or a builder to determine
whether a given soil is suitable for a specific type of construction.

In agriculture, soils are primary viewed for their 
chemical properties, i.e. their ability to bring 
nutrients to plants. At the beginning of the 19th 
century chemical studies were extensively 
conducted which confirmed for instance the 
role of phosphate, nitrogen and potassium in 
plant growth, and commercial fertilizers were 
developed.  The composition of a soil is also 
determinant for the type of plants that are 
growing on it. The first report that clearly 
related the soil properties to the different 
climates, vegetation and parent rocks from 
which the soils were formed was written by 
Dokuchaiev in 18832. Many of the chemical 
changes occurring in a soil are related to the 

action of bacteria. At the end of 19th century it was for instance discovered that the 
bacteria which live in nodules on the roots of legume plants absorb nitrogen from 
the air and convert it to a form which plants can utilize. The differences in soil 
characteristics are connected not only to the (bio)chemistry but also to the 
mineralogical and physical properties of soils. These properties are important for 
construction, but also to the farmer as the porosity of a soil governs gas exchange 
with the atmosphere, water penetration and root growth. The porosity of a soil is 
strongly connected to the particle size distribution of the grains forming the soil and 
the soil’s state of consolidation. The mineralogical composition of a clay, which can 
be determined from X-ray crystallography and electron microscopy tests, will tell if 
a clay soil is prone to weathering, swelling and retain or exchange cations3. This last 
property is pH-dependent. This shows that both chemical and physical properties 

1 We will focus on natural soils. Another important research concerns  the use of clays in 
ceramics, cosmetics and drugs which will not be discussed here. 
2 Dokuchaiev, V.V. (1883) Russian chernozem, Monograph, Sankt-Peterburg. See also 
Greenland, Dennis James, and Michael Hilary Bermingham Hayes. The chemistry of soil 
constituents. Wiley and sons (1997). 
3 a cation is a positively charged ion; an anion is a negatively charged ion.  

1350 BC, Egypt : thanks to the fertile 
soil of the river Nile, Egypt became a 
powerful and long-lasting civilisation 
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are of importance to understand the diffusion and retentions of ions within the soil 
fabric. Similarly, the consolidation, permeability, strength and aging of soils are 
related to chemo-physical processes: by oxidation (chemical process) the 
permeability of a soil (physical property) can for instance been altered. 

In the context of sediment dynamics, i.e. the study of sediment transport, deposition 
and erosion, the first studies have been initiated starting from the work done on 
sand. We emphasize that we are here dealing with water-saturated bodies and not 
Aeolian transport. The studies we refer to are therefore relevant for fresh and salt 
water systems such as rivers, lakes, seas and estuaries.  Aquatic sand transport, 
deposition and erosion has been monitored and modelled successfully in the past 
decades. The models have been tried on clays and clayey systems, but it was soon 
recognized that these systems were much more complex and the models and 
theories should be adapted4.  

In this first chapter (Chapter 1), clayey soils and suspensions are introduced from 
their classical definitions, derived primarily from soil science, in terms of particle size, 
clay mineralogy and physical properties (fluid, solid). We will start by defining 
colloidal sized particles. Colloids (= colloidal suspensions) will be the main topic of 
interest in the following chapters. 

There are several differences between clay and sand particles. One of them is their 
size, which affects their diffusion behaviour in the water body, as detailed  in Chapter 
2. A major difference between sand and (colloidal) clay particles is that clay particles
have the ability to aggregate. the reason behind this property is discussed in Chapter
3. The clay particles can aggregate between themselves, adsorb (poly)ions, stick to
or interact with other particles (some of them are reviewed in Chapter 4). In Chapter
5, the different types of aggregation (also called flocculation) and the different types
of aggregates (flocs) produced are reviewed. The rate of flocculation is modelled in
Chapter 6.

From the concepts introduced in Chapters 2 – 6, it will become clear that the main 
reason sand models are not adapted to clayey systems is that because of their size, 
clay particles are extremely dependent on surface forces (interaction with other 
particles in suspension), whereas the dynamics of sand particles are mainly 
controlled by a volume force (gravity force). Sand particles can be assumed to have 
a constant Stokes’ settling velocity5, which can be calculated from their density and 
volume whereas clayey particles have a time-dependent density and volume. 
Sediment transport models have as input the concentration of particles of a certain 
size and their Stokes’ settling velocity, it is therefore clear that some adjustment is 

4 Leussen, W. van, Estuarine macroflocs and their role in fine-grained sediment transport, PhD 
thesis, RIKZ (1994) 
5 Stokes’ settling velocity is defined in Chapter 2 
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required to the models as aggregation implies that particles change both their size 
and their settling velocity. 

The density and composition of the clay suspensions influence their rheology 
(Chapter 7) and the settling of their constitutive particles (Chapter 8). Once settled, 
mud suspensions will form a soil with a time-dependent permeability (Chapter 9). 
Given a specific relation between permeability and density, the early stage of 
consolidation can be studied (Chapter 10). This so-called early stage of 
consolidation, when mud is freshly deposited at the bottom of a water body, is 
important to study in connection to sediment dynamics: the strength of a freshly 
consolidated mud layer is a key parameter for sediment transport models as it will 
determine the amount of mud eroded from the bottom at a given water velocity. 
The link between Chapters 8 and 10 is discussed. In the last part of Chapter 10, we 
will briefly review the later stage of consolidation, when forces at the contact points 
between particles become predominant. This stage is extensively studied in soil 
science and the reader is referred to books in that field of science for further reading. 

Solutions, colloids and suspensions 

For the remainder of the book, we will be concerned with what is technically defined 
as a two-phase system: water and particles. Already we have to be more precise: 
water itself does contain particles. First of all water molecules of course, but also 
dissolved ions, which (see Chapter 3), can play a key role in the aggregation of clay 
particles. Even fresh water contains ions, for example HCO3

− and  Ca2+ ions  which 
are the predominant ions found in river waters, and originate from the weathering 
of limestone or feldspar (carbonate rocks). These type of rocks are typically found in 
Europe, North America and Asia. The weathering of silicate rocks will produce 
different types of ions. In chemistry, one does therefore speak of a solution (water + 
ions) and not of water (as is done in civil engineering).  In a large branch of colloid 
science, solutions are seen as a continuum. This means that the solution is a fluid 
with given properties and that no distinction is made for the individual ionic particles 
or water molecules in the water. This fluid has bulk properties such as density and 
ionic concentration. In this book, water will be seen as a continuum. 

The particles we refer to are predominantly clay particles, but, as we will see in 
Chapters 4 and 5 mud is composed of numerous other particles. These particles can 
either be seen as individual particles which interact with each other and the gravity 
field or as a continuum with a given (time-dependent) density. This continuum 
approach will in particular be used in Chapters 9 and 10 but it will become clear that 
all models presented in this book depend in a way or another on the properties of 
the microscopic constitutive particles. 
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Mainly depending on the size of the particles in suspension, three different types of 
fluids can be distinguished: solutions, colloids and suspensions. They are 
represented underneath: 

A solution is a homogeneous mixture that appears clear, such as salt water in a glass. In a 
colloid, such as milk, the particles are much larger but remain dispersed and do not settle. A 
suspension, such as mud, is a heterogeneous mixture of suspended particles that can either 
remain in suspension (for the colloidal fraction) or can settle (for the coarser fraction). 

A solution is a homogeneous mixture resulting from the dissolution of a solute (ex: 
salt) in a solvent (ex: water). In the case of salt in water, one speaks of electrolyte 
solutions (or electrolytes), as dissolved salts are charged and electrically conducting. 
It can happen that a solution is saturated in one of its solutes, in which case it cannot 
dissociate this solute anymore. This happens for example when too much salt is 
added in a glass of water: some salt crystals will remain at the bottom of the glass. 
Note that due to gravity, when the height of the water column is important, like in 
the sea, some stratification can be observed in the solution, and its density may vary 
as function of height.   

A colloid (or colloidal suspension) is composed of particles or droplets (in which case 
one speaks of an emulsion – milk is for instance an emulsion) that are much larger 
than ions or molecules, but that are small enough not to settle out. These colloidal 
particles are dispersed in a solvent. We will only consider water or an electrolyte 
solution as solvent in the remaining of the book, as these are the most common 
solvents for sediment particles. If the colloidal particles or droplets are dispersed in 
a gas one refers to an aerosol (smoke and mist are aerosols). 
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To be classified as colloidal, a material must have one or more of its dimensions 
(length, width, or thickness) in the approximate range of 1-1000 nm. The particles in 
a colloid are large enough to scatter light, a phenomenon called the Tyndall effect. 
This can make colloidal suspensions appear cloudy or opaque. The Tyndall effect is 
an easy way of determining whether a fluid contains a significant amount of colloidal 
particles. When light is shined through a true solution, the light passes cleanly 
through the solution (ex: an electrolyte solution), however when light is passed 
through a colloidal solution, the substance in the dispersed phases scatters the light 
in all directions, making it readily seen (ex: milk).  

John Tyndall (1820 – 1893) was a prominent 19th-
century physicist. His initial scientific fame arose in 
the 1850s from his study of diamagnetism. Later he 
made discoveries in the realms of infrared radiation 
and the physical properties of air. Tyndall also 
published more than a dozen science books which 
brought state-of-the-art 19th century experimental 
physics to a wide audience. From 1853 to 1887 he 
was professor of physics at the Royal Institution of 
Great Britain in London. 

extract from the book The Glaciers of the Alps, by John Tyndall6 

Expedition of 1857: the Lake of Geneva. Blueness of the water 

“On Thursday, the 9th of July, 1857, I found myself upon the Lake of Geneva, 
proceeding towards Vevey. I had long wished to see the waters of this renowned 
inland sea, the colour of which is perhaps more interesting to the man of science 
than to the poets who have sung about it. Long ago its depth of blue excited 
attention, but no systematic examination of the subject has, so far as I know, been 
attempted. It may be that the lake simply exhibits the colour of pure water. Ice is 
blue, and it is reasonable to suppose that the liquid obtained from the fusion of ice 
is of the same colour; but still the question presses—"Is the blue of the Lake of 
Geneva to be entirely accounted for in this way?" The attempts which have been 
made to explain it otherwise show that at least a doubt exists as to the sufficiency 
of the above explanation. 

It is only in its deeper portions that the colour of the lake is properly seen. Where 
the bottom comes into view the pure effect of the water is disturbed; but where the 
water is deep the colour is deep: between Rolle and Nyon for example, the blue is 
superb. Where the blue was deepest, however, it gave me the impression of 
turbidity rather than of deep transparency. At the upper portion of the lake the 

6 http://www.gutenberg.org/files/34192/34192-h/34192-h.htm#Page_33 
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water through which the steamer passed was of a blue green. Wishing to see the 
place where the Rhone enters the lake, I walked on the morning of the 10th from 
Villeneuve to Novelle, and thence through the woods to the river side. Proceeding 
along an embankment, raised to defend the adjacent land from the incursions of the 
river, an hour brought me to the place where it empties itself into the lake. The 
contrast between the two waters was very great: the river was almost white with 
the finely divided matter which it held in suspension; while the lake at some distance 
was of a deep ultramarine. 

The lake in fact forms a reservoir where the particles held in suspension by the river 
have time to subside, and its waters to become pure. The subsidence of course takes 
place most copiously at the head of the lake; and here the deposit continues to form 
new land, adding year by year to the thousands of acres which it has already left 
behind it, and invading more and more the space occupied by the water. 
Innumerable plates of mica spangled the fine sand which the river brought down, 
and these, mixing with the water, and flashing like minute mirrors as the sun's rays 
fell upon them, gave the otherwise muddy stream a silvery appearance.” 

The Tyndall effect can be linked to theories developed by Rayleigh and Mie, in the 
frame of optics: when the particle is smaller than the wavelength, Rayleigh theory is 
used, which predicts that for this type of particles, short-wavelength light is 
scattered more than longer wavelengths. The blue colour (short wavelength) is 
therefore more scattered than the red (long wavelength): this is why the sky appears 
blue to us, as the gas molecules of the atmosphere are much more effective in 
scattering the blue wavelength. Some suspensions, containing nanoparticles, 
similarly have a  blueish tinge. Clouds, on the other hand, are formed by water 
droplets that are much larger than gas molecules and scatter in the same way all the 
parts of the light spectrum: this is why clouds appear white (like milk does).  

A solution is clearly scattering much less light than a colloidal suspension, and this is 
why the way a fluid is scattering light can be used to determine if this fluid contains 
a substantial amount of  colloidal-sized particles. 

Note that the fact that a true solution might be coloured is not due to the scattering 
of light, but on the contrary to the adsorption of light by the atoms and molecules 
that compose this solution. What we see is not the colour absorbed, but its 
complementary colour, originating from the removal of the absorbed wavelengths. 
For example, beta-carotene, an organic pigment abundant in plants and fruits, has a 
maximum absorption at 454 nm (blue light) and consequently what we see appears 
orange (the complementary colour for that type of blue). (Beta-carotene takes its 
name from the carrot (daucus carota) from which it can be extracted.) 

A suspension (not necessarily colloidal) is a fluid composed of a solvent and particles 
in suspension.  At low or at no shear rate, these fluids are usually containing colloidal 
particles to be classified as “suspensions”. If the particles constituting the suspension 
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would be all much larger than a few microns the time the particles would remain in 
suspension would be very limited at low shear: sand particles for example, settle out 
very rapidly and large gas bubbles usually move rapidly towards the water/air 
interface. In natural systems, however, it is possible to keep fine particles in 
suspension by turbulent mixing. This mixing insures that sand can be transported 
over some considerable distance during storms for example.  

Typical orders of magnitude for ions, colloidal and sand particles: 

Ions colloidal particles sand 
typical particle size 10-10 m 10-6 m 10-4 m
number of particles 
in a spoon (15 mL) 1025 1013 107 

equivalent in 
number to 

number of sand 
particles in the 

Sahara 

10000 times the 
population of Earth 

number of 
inhabitants of Paris 

The unit to measure the number of ions  in a litre is mol/L. A mole (symbol: mol) 
corresponds to 6.02x1023 particles, which is the number of 12C particles contained in 
12 g. One speaks of Avogadro’s number (symbol: NA) to express the fact that there 
are 6.02x1023 particles in one mole (NA  = 6.02x1023 mol-1). A solution of 1 mol/L 
therefore contains 6.02x1023 particles per litre. The molar mass of a product enables 
to determine how many grams of product is contained in one mol. The molar mass 
of NaCl salt (kitchen salt) is 58 g/mol. There are therefore 6.02x1023 salt particles in 
58 g of NaCl, which will give, when dissociated in water, 6.02x1023 Na+ particles and 
6.02x1023 Cl- particles. Comparatively, 58 g of clay particles which have a density of 
2.6 kg/L (2600 kg/m3) and a size of 1 micron will give approximatively 1013 clay 
particles, i.e. 1010 times less particles, or, in other words, if 58 g of clay is mixed with 
58 g of salt in one litre of water, for each clay particle, there will be 1010 ionic 
particles. The typical concentration of salt ions in natural systems ranges from less 
than mM (millimol/L or 10-3 mol/L) for fresh water system to hundreds of mM for 
sea water. Clay concentrations are usual of the order of a few mg/L at sea to 
hundreds of mg/L and beyond in estuaries. 

The difference between clay, silt and sand particle sizes 

Sand is a naturally occurring granular material composed of finely divided rock and 
mineral particles. It is defined by size, being finer than gravel and coarser than silt. 
Here we differentiate sand, silt and clay based on size. Depending on the context, 
silt can refer to a type of mud or particles with a specific grain size. A similar 
confusing double definition exists for clays, see the table below. Particles that have 
a “clay” size may not necessarily be clay minerals (organic matter for instance can 
have a clay size but is not composed of clay minerals). 
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Sand feels gritty when rubbed between the fingers. Silt, by comparison, feels like 
flour. Even though the exact definitions, in terms of size, of sand, silt and clay are 
depending on countries, one assume in general that they can be defined as follows: 

Traditionally, sieves could not be made for particle sizes smaller than 63 µm. This is 
why the lower limit of 63 µm was adopted for sand. The size of silt particles is 
measured traditionally by hydrometer test. Nowadays, Static Light Scattering (laser 
diffraction) devices enable to measure the whole range of particle sizes (from 1 nm 
to 1 mm) with a single device, see Chapter 2. 

The most common constituent of sand, in inland continental settings and non-
tropical coastal settings, is silica (silicon dioxide, or SiO2), usually in the form of 
quartz, which, because of its chemical inertness and considerable hardness, is the 
most common mineral resistant to weathering. In contact with water or electrolyte, 
the presence of hydroxyl (silanol) groups have however been observed on the 
surface of silicas and silicates, leading to the creation of a surface charge. 

An easy way to find out roughly the composition of a sediment is to use a jar test: 
Fill the jar halfway with sediment. Add water to fill up the jar, close the lid, shake, 
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and set on the table. The sand will settle out quickly, in a matter of hours (like “Sand” 
in the example underneath). The middle jar (“Loam”) represents the mixture of clay 
and silt, which takes up to 24 hours to settle out. The third “Clay” jar represents how 
long it takes clay content to settle out, in this example up to three days. 

Loam is soil composed mostly of sand (particle size > 63 µm), silt (particle size > 2 
µm), and a smaller amount of clay (particle size < 2 µm). Loam soils generally contain 
more nutrients, moisture, and humus than sandy soils, have better drainage and 
infiltration of water and air than silty soils, and are easier to till than clay soils. Loam, 
(combined or not with straw), has been used in construction since ancient times. 

The definition of mud, silt and clay 

Mud is composed, in part, of clay mineral and water. For the other parts, most types 
of mud are include ions and organic material. Particles of different sizes, such as clay, 
silt and sand particles can also be  incorporated in mud.  The most common 
definitions of mud, silt and clay in English, French and Dutch are given in the table 
below7.  

Clay particles are colloidal particles when defined by their size (< 2µm). The lower 
size range of silt particles can also be seen as colloidal, but in most cases silt particles 
(when composed of mineral clay) are non-cohesive, which implies that their 
dynamics in the water column are dominated by the gravity force and 
hydrodynamics similarly to sand particles. 

Clay particles can be found in all water bodies (sea, lake, river), but their relative 
ratio compared to silt and sand varies of course from site to site.  A coastal wetland 
where clays and silts can be found are mudflats. Mudflats are formed when mud is 
deposited by tides (tidal flat) or rivers. Mudflats (French: vasière; Dutch: wad) can 
be seen as exposed layers of (wet) mud. A tidal flat is submerged approximately 
twice daily enabling estuarine silts, clays and organic matter to be deposited. On the 
Baltic Sea coast of Germany in places, mudflats are exposed not by tidal action, but 
by wind-action driving water away from the shallows into the sea. These wind-
affected mudflats are called windwatts in German. Mudflat hiking (Dutch: 
Wadlopen; German: Wattwandern; Danish: Vadehavsvandring) is a recreation 
enjoyed by Dutch, Germans and Danes in the Netherlands, northwest Germany and 
in Denmark. Mudflat hikers are people who, with the aid of a tide table, use a period 
of low water to walk and wade on the watershed of the mudflats. The study of the 

7 See in particular for the French definitions: “ La vase” by J. Bourcart and C. Francis-Boeuf 
(1942) 
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morphology of mudflats is an on-going topic of research (see middle figure below 
where students fix instruments to a rig). 

English French Dutch 
mud 
liquid or semi-liquid 
mixture of principally water 
and clay minerals 

boue 
from old Celtic word “baw” 
(cf gall. baw, “dirt” ): 
creamy substance that is 
found, after rainfalls, on 
roads . 

modder 
Mud and modder are 
etymologically related to 
Middle Low German and 
Dutch mudde and modde 
denoting something wet or 
dirty 

vase 
from old Saxon word 
“wase”: wet mud that is to 
be found under water (in 
lakes, rivers or seas) or 
deposited on mudflats 

slib 
probably derived from old 
Dutch slik/slijk: deposited 
wet mud (on mudflats)  

silt 
a - mud carried by running 
water and deposited as a 
sediment, especially in a 
channel or harbour. 

b - particles with a size > 2 
µm and < 63 µm 

limon 
a - from latin “limo - limus” 
(“mud”): mud that 
accumulates due to water 
flows on river sides. 

b - particles with a size > 2 
µm and < 63 µm 

silt 
a - from Middle Dutch silte, 
sulte “salt marsh brine”. 
Contrary to slib, silt is found 
in open air and can 
therefore oxidize.  

b - particles with a size > 2 
µm and < 63 µm 

clay8 
a - mud that can be 
moulded when wet, used 
in bricks, pottery, and 
ceramics 

b - particles  
with a size  < 2 µm 

c - clay (minerals) are 
hydrous aluminium 
phyllosilicates  

argile 
a - from latin “argila”: mud 
having plastic properties, 
used in bricks, pottery, and 
ceramics 

b - particles  
with a size < 2µm 

c – argiles (minéraux 
argileux) are hydrous 
aluminium phyllosilicates 

klei 
a - potklei: clay used in 
pottery 

b – klei is composed in 
majority of lutum (from 
latin “lut(um)”: clay) i.e. 
clay particles  
with a size < 2µm 

c – klei(mineralen) are 
hydrous aluminium 
phyllosilicates 

8 Geologists and soil scientists call “clays” particles less than 2 μm. The Dutch klei (clay) is 
composed in majority of  lutum particles, which are by definition particles smaller than 2 μm. 
Sedimentologists often use the limit 4–5 μm, and colloid chemists use 1 μm. 
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Tidal flat 

Wadden Sea in the Netherlands9 

9 http://www.werelderfgoed.nl/werelderfgoed/waddenzee 
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Clay minerals 

Clay minerals are common weathering products and low-temperature hydrothermal 
alteration products. Clay minerals are very common in soils, in fine-grained 
sedimentary rocks such as shale, mudstone, and siltstone and in fine-grained 
metamorphic slate and phyllite. Depending on the soil's content in which it is found, 
clay can appear in various colours from white to dull grey or brown to deep orange-
red. 

Clay minerals are hydrous aluminium phyllosilicates. Phyllosilicates are minerals 
formed by parallel sheets of silicate tetrahedra, sometimes with variable amounts 
of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near 
some planetary surfaces.  Depending on the academic source, there are three or four 
main groups of clays: kaolinite, montmorillonite-smectite, illite, and chlorite. 
Chlorites are not always considered a clay, sometimes being classified as a separate 
group within the phyllosilicates. There are approximately 30 different types of 
"pure" clays in these categories, but most "natural" clay deposits are mixtures of 
these different types, along with other weathered minerals. 
Single mineral clay particles are in the clay (colloidal) size range. The identification 
of the type and structure of clay minerals  requires special analytical techniques as 
x-ray and electron diffraction methods (XRD, XRF and SEM in short).

Clay mineralogy 

The crystalline structure of clay minerals is built up from different types of sheets or 
layers. The fundamental building blocks of these sheets are the tetrahedron and the 
octahedron units. The tetrahedron is composed of either a central silicon or 
aluminium surrounded by four oxygen ions in a tetrahedral coordination. The 
octahedron is composed usually of a central polyvalent cation surrounded by six 
oxygen (O) or hydroxyl (OH) ions in an octahedral coordination. Whether a cation 
forms tetrahedral or octahedral coordination with oxygen depends on the relative 
size of the cations and anions involved.  
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Tetrahedral layer: All the tetrahedrons in a tetrahedral layer are in the same plane 
and therefore their tips point in the same direction.  The unit cell formula of the Si 
tetrahedron is (Si4O10)4-. Electrical neutrality is obtained by replacement of four 
oxygens by hydroxyls (-OH) or by union with a sheet of different composition that is 
positively charged. 

Octahedral layer: This sheet structure is composed of magnesium or aluminium in 
octahedral coordination with oxygens or hydroxyls. If the cation is trivalent, then 
normally only two-thirds of the possible cationic spaces are filled and the structure 
is termed dioctahedral. In the case of aluminium the composition is Al(OH)3. This 
composition and structure form the mineral gibbsite. If the octaedrally coordinated 
cation is divalent then normally all possible cation sites are occupied and the 
structure is trioctahedral. In the case of magnesium the composition is Mg(OH)2, 
which forms the mineral brucite. 

Combining the tetrahedral and octahedral layers, the following minerals are formed: 

Each platelet has a very large length to width ratio. For commodity, the symbols used 
above for the clay minerals have a much smaller ratio.  

The chemical structure of minerals is usually far from ideal, as the actual composition 
of minerals is frequently altered by isomorphous substitution, i.e. the substitution 
of ions within the structure. Weathering allows Si4+, Al3+ and Mg2+ to be substituted 
with cations with comparable ionic radii in their respective tetrahedral and 
octahedral sheets.  

In each of these minerals, the layers combine differently. For kaolinite, we get: 
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A kaolinite particle usually consist of a pile (stack) of platelets (tetrahedral + 
octahedral layers forming one platelet). We have here only represented a pile of 
two, but the number of platelets forming a single particle can vary significantly: 

Scanning Electron Microscopy (SEM) picture of kaolinite platelets 
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The different classes of Phyllosilicates 

 Serpentine group 

 Antigorite – Mg3Si2O5(OH)4

 Chrysotile – Mg3Si2O5(OH)4

 Lizardite – Mg3Si2O5(OH)4 

    Clay mineral group 

 Halloysite – Al2Si2O5(OH)4

 Kaolinite – Al2Si2O5(OH)4

 Illite – (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 
 Montmorillonite –  (Na,Ca)0.33(Al,Mg)2Si4O10(OH)2·nH2O 
 Vermiculite –  (MgFe,Al)3(Al,Si)4O10(OH)2·4H2O 
 Talc –  Mg3Si4O10(OH)2

 Sepiolite – Mg4Si6O15(OH)2·6H2O 
 Palygorskite (or attapulgite) –  (Mg,Al)2Si4O10(OH)·4(H2O) 
 Pyrophyllite – Al2Si4O10(OH)2 

 Mica group 

 Biotite – K(Mg,Fe)3(AlSi3)O10(OH)2

 Muscovite – KAl2(AlSi3)O10(OH)2

 Phlogopite – KMg3(AlSi3)O10(OH)2

 Lepidolite – K(Li,Al)2–3(AlSi3)O10(OH)2

 Margarite – CaAl2(Al2Si2)O10(OH)2

 Glauconite –  (K,Na)(Al,Mg,Fe)2(Si,Al)4O10(OH)2 

 Chlorite group 

 Chlorite –  (Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6 

The surface charge of clay minerals 

As we will see in the forthcoming Chapters 3 and 5, the surface charge of mineral 
clays play a very important role in understanding their aggregation behaviour. The 
surface of a clay mineral particle is defined as the parts of the clay exposed to the 
bulk water (in contrast to the interlayer water, see figure above).  

The surface charge of clays is very dependent on pH. In particular the hydroxyls (OH) 
are exposed on the surfaces and edges of the particles and they dissociate in water 
under the influence of pH: 

Margarite 

Lizardite 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆2𝑆𝑆 ⇋ 𝑆𝑆𝑆𝑆𝑆𝑆− + 𝑆𝑆3𝑆𝑆+ 

The higher the pH, the greater is the tendency to dissociate the hydroxyl 𝑆𝑆𝑆𝑆 into 
𝑆𝑆3𝑆𝑆+ (often noted  𝑆𝑆+ for simplification) and 𝑆𝑆𝑆𝑆𝑆𝑆−. 

For kaolinite, the following pH dependence is observed: 

At low pH, the edges of a platelet are positively charged, whereas the faces are not 
(or very weakly negatively) charged. At medium pH, the edges are uncharged, and 
the faces are not (or weakly negatively) charged. At high pH, both edges and faces 
are negatively charged. 

The way clay particles are interacting with each other will be studied in Chapter 5. 

The different states of clay 

If the water content of a sample made predominantly of water, clay and/or silt is 
varied, different states can be observed, for example: 

In soil science, criterions have been established to quantify these states. These are 
traditionally based on the measurements of the Atterberg limits of the sample. Four 
states are defined: solid, semi-solid, plastic and liquid. The boundary between each 
state is defined on a change of the soil’s behaviour. From the extended studies done 
over the years, it is now possible to distinguish between different types of silts and 
clays, based solely on the Atterberg limits of the sample. This is in particular possible 
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for “standard” soils, i.e. as commonly found in nature. Nonetheless, caution is 
required when the soil composition is complex (including a lot of organic material 
for example), as these non-mineral components, even in low amounts, can greatly 
influence the properties of the soil. 

Atterberg and the Atterberg limits 

Albert Mauritz Atterberg (1846–1916) was a Swedish 
chemist and agricultural scientist who created the 
Atterberg limits. He received his Ph.D. in chemistry from 
Uppsala University in 1872. At the age of 54, while 
continuing his work on chemistry, he began to focus his 
efforts on the classification and plasticity of soils. 
Atterberg was apparently the first to suggest the limit 
<0.002 mm as a classification for clay particles. 
Atterberg found plasticity to be a particular 
characteristic of clay and as a result of his investigations 
arrived at the consistency limits which bear his name 
today. He also conducted studies aiming to identify the specific minerals that give a 
clayey soil its plastic nature. 
The importance of Atterberg’s work has never been fully realized in his own field of 
agricultural science. Its introduction to the field of geotechnical engineering was due 
to Karl Terzaghi, who came to realise its importance at a relatively early stage of his 
research. Terzaghi’s assistant, Arthur Casagrande, standardized the tests in his 
paper in 1932 and the procedures have been followed worldwide ever since. 

The Atterberg limits are defined as follows: 

The liquid state and liquid limit 

In the liquid state, the clay sample cannot withstand any type of loading, it is said to 
have no strength. When poured, It will flow like 
a fluid. The viscosity of the fluid can however 
change with clay concentration, this will be 
detailed in Chapter 7. The Liquid Limit (LL) is 
defined as the moisture content which soil 
begins to behave as a liquid material and begins 
to flow. 

The liquid limit (LL) is obtained by putting a 
paste-like sample into  a brass cup (Casagrande 
cup). A groove is cut in the paste using a 
standard tool. The cup is then bumped a 
standard number of times using a crank-

operated mechanism.  The LL is the moisture content at which the shear strength of 
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the sample is so small that the soil “ flows” to close the groove. The LL can also been 
obtained using a cone penetrometer, where a pointy cone is made to free-fall on a 
sample from a certain height. If the cone penetrate a given distance (20 mm) inside 
the sample the LL is reached.  

The plastic state and plastic limit 

In the plastic state, as in the example of the potter’s clay, the sample is in a state 
where it is possible to  make shapes out of it. If the sample is left to dry out for a 
short time (so that it is not actually completely dry) it will lose its plasticity. If we 
then try to shape it, many cracks will appear, indicating that the clay sample is in its 
semi-solid state. 

The Plastic Limit (PL) is defined as the moisture content at which the soil begins to 
behave as a plastic material. 

The plastic limit (PL) is obtained by rolling 
down a dough-like sample into threads of 3 
mm in diameter on a glass plate. Being able to 
roll such a thread is an indication that the PL is 
reached. If the water content is too high, the 
thread will be too soft and impossible to roll, if 
it is too low, some crumbling will take place, 
indicating that the semi-solid state is reached.  

The shrinkage limit and the solid state 

The Shrinkage Limit (SL) is defined as the moisture content at which no further 
volume change occurs with further reduction in moisture content. 

The shrinkage limit (SL) is obtained when a semi-solid sample does not shrink 
anymore by losing moisture content.   

In the solid state, the sample cannot be shaped, and becomes brittle. 

Moisture content  

In the representation of the Atterberg limits hereunder, 𝑤𝑤 represents the moisture 
content (also called water content) usually defined as: 

𝑤𝑤 (%) = 100 ×
𝑚𝑚water

𝑚𝑚dry sample
= 100 ×

𝑚𝑚wet sample − 𝑚𝑚dry sample

𝑚𝑚dry sample

where 𝑚𝑚water represents the mass of water in the sample, 𝑚𝑚wet sample the mass of 
the wet sample and 𝑚𝑚dry sample the mass of the sample after drying it at a 
temperature not exceeding 115°C. 
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Atterberg limits: depending on water content, several states of a sample made of 
predominantly water, clay and/or silt can be observed. The transition between one state and 

another is given as a specific water content (in %). SL: Shrinkage Limit, PL: Plastic Limit and 
LL: Liquid Limit. The soil volume increases with moisture content once passed the solid state. 

As a classification of fine-grained soils, the plasticity index (PI) is introduced: 

𝑃𝑃𝑃𝑃 = 𝐿𝐿𝐿𝐿 − 𝑃𝑃𝐿𝐿 

The water content of a soil can be related to the soil’s stress-strain response10: 

By increasing the water content (w) of a soil, the amount of stress to exert on it to 
get a given strain is reduced. 

The stress-strain is obtained by measuring the amount of deformation (strain) at 
distinct intervals of tensile or compressive loading (stress). More about stress and 

10 See for instance An introduction to Geotechnical Engineering, by Holtz & Kovacs, Prentice-
Hall inc. 
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strain is to be found in Chapters 7 and 10, where the rheology and consolidation of 
clays is discussed. 

Mud found in water systems is mainly liquid, but sampled at the bottom of a water 
body its consistency can be plastic. Semi-solid and solid mud is found on land, as it 
requires the dissipation of a certain amount of water, which can be obtained by 
evaporation. To study and characterize the physical properties of liquid and plastic 
mud rheological tests are usually performed, see Chapter 7. These tests are to be 
preferred to Atterberg limits tests as they can give quantitative estimations for the 
stress/strain (or shear rate) responses. For more consolidated materials, other tests 
such as the oedometer tests are performed (see Chapter 10). Attenberg limit tests 
have therefore only an engineering value and are usually used in the preliminary 
stages of designing any structure to ensure that the soil will have the correct amount 
of shear strength. We nonetheless like to present them for their historical value.  

Cassagrande’s plasticity chart 

Cassagrande (1932) studied the relationship of the plasticity index to the liquid limit 
of a variety of natural soils and proposed a plasticity chart, given here:  

Casagrande’s plasticity chart, showing several representative soil types  



Introduction to Colloid Science 

34 

Two lines are defined in the chart: 

The A-line which separates the inorganic clays (above the A-line) from the inorganic 
silts (below the A-line). 

The U-line which is approximately the upper limit of the relationship of the plasticity 
index to the liquid limit for any currently known soil. Above the U-line the soils are 
therefore assumed to be cohesionless.  

 “Activity” of clays 

It has been demonstrated that the plasticity index to the clay fraction content (< 
2µm) is in good approximation constant11: 

This led to the definition of “colloidal activity”: 

activity =  
plasticity index

clay fraction

In simple words, the clay (colloidal) content of a soil is directly proportional to its 
cohesiveness. We will see in Chapter 5 that montmorillonite clay has special 
properties that explains the fact it is more “active” than other clays. The presence or 
not of salt within the sample also greatly influences the values of the plasticity 
index12. This can be understood from colloidal interactions, which strongly depend 
on salinity, as will be seen in Chapter 3. 

11 Skempton, A. W. "The colloidal activity of clays." Selected papers on soil mechanics (1953): 
106-118.
12 Bjerrum, Laurits. "Geotechnical properties of Norwegian marine clays." Geotechnique 4.2
(1954): 49-69.
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Illustrations 

the tomb –chapel of Nebamun : Nebamun hunting in the marshes, adapted from a wall 
painting currently to be seen at the British Museum; ca. 1350 BC (public domain) 
https://commons.wikimedia.org/wiki/File:TombofNebamun-2.jpg 

John Tyndall (public domain) 
https://en.wikipedia.org/wiki/John_Tyndall 

Mudflat (creative commons license) 
https://en.wikipedia.org/wiki/Mudflat 

lizardite photograph (creative commons license) 
https://upload.wikimedia.org/wikipedia/commons/7/71/Lizardite%2C_Chrysotile-
288581.jpg 

margarite photograph (creative commons license) 
https://en.wikipedia.org/wiki/Margarite 

Albert Atterberg (public domain) 
http://geotecnia-sor.blogspot.nl/2010/11/consistencia-del-suelo-limites-de_17.html 

Casagrande cup (creative commons license) 
http://labmodules.soilweb.ca/soil-compaction-atterberg-limits/ 
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stabilisation 

  



Introduction to Colloid Science 

 38 

Fine (colloidal) particles can remain in suspension for an extremely long (sometimes 
infinite) time. In this chapter, we are going to explain why and when these colloidal 
particles remain in suspension and how they diffuse and settle. We will primarily 
address dilute suspensions i.e. suspensions containing a limited amount of colloidal 
particles. The settling behaviour of concentred suspensions will be discussed in 
Chapter 8. 

Stokes’ settling velocity 

In Chapter 1, we have already stated that in colloid science the typical length scale 
for a particle is 1 µm. By this, we mean of the order of 1 µm which means a particle 
somewhere in the range between 0.01 µm and 10 µm. 

Let us now consider a particle of any size  > 1 nm in water. Three forces are exerted 
on this particle: the force of gravity, the force of Archimedes and the force of friction. 
We furthermore assume that  

1) the water far from the particle is at rest  
2) we have reached the regime where the particle’s velocity is constant (the initial 
acceleration is not considered)  
3) the velocity is small enough for the fluid to be in the laminar regime.  

The fact that a flow is laminar or not can be evaluated by the estimation of the 
Reynolds number13 Re which represents the ratio of inertial forces (which create 
turbulence) to viscous forces (which create friction): 

𝑅𝑅𝑅𝑅 =
𝑣𝑣𝑣𝑣𝐿𝐿
𝜂𝜂

 

where 𝑣𝑣 is the fluid’s velocity, 𝐿𝐿 is a characteristic length (in our case the size of 
studied particle, as the particle is setting the fluid in motion) and the kinematic 
viscosity is given by  𝜂𝜂/𝑣𝑣 where 𝜂𝜂 is the viscosity and 𝑣𝑣 the density of the fluid. The 
laminar regime is defined by a low Reynolds number (𝑅𝑅𝑅𝑅 < 10 for a sphere), 
implying that the friction force is dominating, in accordance with our initial 
assumption. The balance of forces gives: 

𝑚𝑚𝒈𝒈 = 6𝜋𝜋𝜂𝜂𝜋𝜋𝒗𝒗 

where 𝑚𝑚 is the mass of the particle, compensated for Archimedes, 𝑔𝑔 the gravitation 
constant, 𝜂𝜂 the viscosity of the water, 𝜋𝜋 the radius of the particle and 𝑣𝑣 its velocity. 
The fact that the force of friction might be expressed as 6𝜋𝜋𝜂𝜂𝜋𝜋𝒗𝒗 for a spherical 
particle in a laminar flow in due to the work of Georges Stokes (1819-1903). We have 

                                                                 
13 The number has been invented by Stokes but is named after Osborne Reynolds (1842-1912) 
who popularised its use. 
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expressed the vectors in bold letters, implying that the vector 𝒗𝒗 is directed along 𝒈𝒈. 
The mass of the particle, compensated for Archimedes can be expressed as: 

𝑚𝑚 =
4
3
𝜋𝜋𝜋𝜋3�𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤� 

where 𝑣𝑣𝑝𝑝 is the density of the particle and 𝑣𝑣𝑤𝑤 the density of the water. From the 
balance of forces we get: 

𝒗𝒗 =
2
9
𝜋𝜋2
𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤

𝜂𝜂
𝒈𝒈 

From this expression which is Stokes’ settling velocity, we can verify that: 

(a) the velocity scales as the size squared: a particle twice as big will settle 4 times as 
fast. 
(b) if the density of the water and the particle are the same the velocity is zero, the 
particle remains in suspension. If 𝑣𝑣𝑝𝑝 < 𝑣𝑣𝑤𝑤 the particle will float (this happens for 
certain types of algae for instance) 

Several instruments make use of Stokes’ settling velocity to assess the size of (sub-) 
colloidal particles, like the sedigraph, the hydrometer and the sediment balance. 
These techniques are explained below.  

 

Hydrometer and sedigraph methods are based on recording the density evolution in 
a settling column as function of time. 
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Determining particle sizes experimentally 

The hydrometer test 

For particles that pass the smallest sieve (63 μm in general), their particle size can 
be assessed by the use of a hydrometer. The hydrometer consists of a  
cylindrical stem with a precise scale on it and a bulb weighted with lead to 
make it float upright. The suspension to test is poured into a column, and 
the hydrometer is gently lowered into the liquid until it floats freely. The 
hydrometer indicates the ratio of the density of the tested  fluid to the 
density of water (this ratio is called the specific gravity).  After calibration 
of the hydrometer, the height 𝑆𝑆𝑒𝑒  (see figure above) can be related to the 
density of the suspension. The height  𝑆𝑆𝑒𝑒  is increasing in time as the fluid 
becomes less and less dense. From Stokes’ law it is possible to estimate the 
size of particles that, for a given 𝑡𝑡, will be above 𝑆𝑆𝑒𝑒  . These are the particles 
with a radius smaller than:  

𝜋𝜋 = �
9𝜂𝜂𝑆𝑆𝑒𝑒

2�𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤�𝑔𝑔𝑡𝑡
 

The density evaluated from the hydrometer at time 𝑡𝑡 is given by: 𝑣𝑣(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)𝑣𝑣𝑝𝑝 +
�1 − 𝜙𝜙(𝑡𝑡)�𝑣𝑣𝑤𝑤 where 𝜙𝜙(𝑡𝑡) = ∑𝑁𝑁𝑖𝑖(𝑡𝑡)𝑉𝑉𝑖𝑖/𝑉𝑉 is the total volume fraction of suspended 
particles;  𝑁𝑁𝑖𝑖(𝑡𝑡) is the number of particles with volume 𝑉𝑉𝑖𝑖  in suspension at time t and 
𝑉𝑉 is the total volume of fluid in the column. Assuming that all particles have the same 
density (𝑣𝑣𝑝𝑝 = 𝑚𝑚𝑖𝑖/𝑉𝑉𝑖𝑖  where 𝑚𝑚𝑖𝑖  is the mass of particle i) we see that 𝑣𝑣𝑝𝑝𝜙𝜙(𝑡𝑡) 
represents the total mass in suspension at time 𝑡𝑡 per unit volume.  The percentage 
in mass of particles remaining in suspension (so with a radius smaller than 𝜋𝜋) can 
therefore be estimated from:  

% smaller than 𝜋𝜋 = 100
𝑣𝑣𝑝𝑝(𝑣𝑣(𝑡𝑡) − 𝑣𝑣𝑤𝑤)
𝑣𝑣0�𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤�

 

where 𝑣𝑣0 = 𝑚𝑚/𝑉𝑉  ; 𝑚𝑚 is the mass of dry soil in the column. 

The sedigraph 

The sedigraph uses a paralleled X-ray beam to detect changes in suspended 
sediment concentration: the X-ray attenuation is proportional to mass 
concentration, following the so-called Beer-Lambert law. The beam can be 
positioned at different vertical positions in the analysis cell, and records the changes 
at different times. In essence, the principle is very similar to the hydrometer (see 
above) except that the concentration is recorded through X-ray attenuation instead 
of the estimation of the specific gravity. 
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The sediment balance 

The sediment balance records the mass 𝑀𝑀 of particles falling on a balance as a 
function of time: a long rod with a disk attached to it is plunged in a 
settling column containing a suspension. The rod is attached to a 
laboratory scale. The assumptions made when performing a 
sediment balance measurement are that 1) the suspension is 
homogeneous at t = 0 (start). The suspension has been mixed just 
prior the measurements and 2) the particles settle according to 
Stokes’ law. This implies that particles with a diameter 𝑑𝑑 = 2𝜋𝜋  will 
all have arrived on the balance at the time:  𝑡𝑡 = 18ℎ𝜂𝜂/[(𝑣𝑣 −
𝑣𝑣𝑊𝑊)𝑔𝑔𝑑𝑑2] where ℎ is the height of the liquid in the column. From t = 
0 (start) until t these particles have been falling continuously on the 
balance, in a linear way, since the suspension is considered to be 
properly mixed. It is therefore possible to estimate the percentage of 
particles that at a time t have a settling time smaller than (or equal 

to) t, i.e. are larger than or equal to d. The relation is given by: 

% particles larger than d = 100 ×
𝑀𝑀 − 𝑡𝑡 ∙ 𝑑𝑑𝑀𝑀/𝑑𝑑𝑡𝑡

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒
 

where 𝑀𝑀 is the mass on the balance at time t, 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒  is the final mass on the balance 
(after one day, typically) and 𝑑𝑑𝑀𝑀/𝑑𝑑𝑡𝑡  represents the slope of the curve M(t) at time 
t. The formula is called the Oden formula, as it has originally been derived by Oden 
in 191614. Note that 𝑡𝑡 ∙ 𝑑𝑑𝑀𝑀/𝑑𝑑𝑡𝑡  represents the amount of particles at time t with a 
settling velocity smaller than or equal to h/t whereas 𝑀𝑀 represents the amount of 
particles with a settling velocity smaller than or equal to h/t between t = 0 and t. If 
there would be only particle of one size, then 𝑀𝑀 − 𝑡𝑡 ∙ 𝑑𝑑𝑀𝑀/𝑑𝑑𝑡𝑡 = 0 until all the 
particles have fallen on the balance. When this happens, 𝑑𝑑𝑀𝑀/𝑑𝑑𝑡𝑡 = 0  and we find 
that :  

% particles larger than d = 100 

For each of the techniques (hydrometer, sedigraph and sediment balance), it is 
crucial to know the proper density 𝑣𝑣 of the particles. In the case of aggregated clay 
particles, the density can vary significantly from the mineral clay density, in which 
case the measurements are not reliable. In most protocols it is therefore important 
to deflocculate the particles prior measurements. This is done by chemical agents or 
ultrasonication. 

A colloidal mineral clay particle, exposed to gravity, will always settle according to 
the expression for Stokes’ settling since clay minerals have a density of the order of 

                                                                 
14 Odén, Sven. "Eine neue methode zur bestimmung der körnerverteilung in 
Suspensionen." Colloid & Polymer Science18.2 (1916): 33-48. 
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2.6 kg/L (the density of water is of the order of 1 kg/L). As colloidal clay particles can 
also remain in suspension without settling, it implies that we missed important 
forces while setting-up the force balance. One is related to so-called Brownian 
motion. Another is related to the repulsion that can exist between colloidal particles. 
These forces and their principles are described in the next sections. 

  

Sediment balance principle. Left: The coloured curves represent the mass on the balance as 
function of time for suspensions made of: (red): 35 g of particles with a diameter of 95 

microns, (magenta): 25 g of particles with a diameter of 55 microns, (green): 50 g of particles 
with a diameter of 42 microns and (blue) a suspension made by the mixture of the three 
types of particles. After using Oden’s formula on the left blue curve, one obtains the blue 

curve on the right figure, which gives the amount of particles larger than a certain size in %. 

Brownian motion 

This transport phenomenon is named after the botanist 
Robert Brown (1773-1858). In 1827, while looking 
through a microscope at particles trapped in the water 
of the interior of pollen grains, he noted that the 
particles moved through the water but he was not able 
to determine the mechanisms that caused this motion. 
It is Albert Einstein in a paper in 1905 that explained in 
precise detail how the motion that Brown had observed 
was a result of the particles being moved by individual 
water molecules. Atoms and molecules had long been 
theorized as the constituents of matter and therefore Einstein’s explanation of 
Brownian motion served as convincing evidence that atoms and molecules exist. It 
was verified experimentally by Jean Perrin in 1908. Perrin was awarded the Nobel 
Prize in Physics in 1926 "for his work on the discontinuous structure of matter" 
(Einstein had received the award five years earlier "for his services to theoretical 
physics" with specific citations of different researches).  

The fact that atoms or molecules (like water molecules) are moving randomly is 
associated to temperature: temperature is an indirect measure of the microscopic 
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movement of these particles. A whole branch of science (i.e. thermodynamics) is 
based on the phenomena associated to temperature and temperature fluctuations. 
From thermodynamic principles, one has defined a proper unit to measure 
temperature: the Kelvin, which is linked to Celsius degrees by: 

𝐾𝐾 = ℃ + 273.15 

The temperature corresponding to zero Kelvin is called the “absolute zero” , a 
temperature never to be reached as it would correspond to a state where molecules 
would have a zero velocity,  which is in contradiction with Heisenberg’s uncertainty 
principle in quantum mechanics15. In 1908, the Dutch scientist Kamerlingh Onnes16  
and his research group in Leiden were the first ones to be able to measure a 
temperature of 0.9 K, which made Leiden “the coldest place on Earth”. This led to a 
Nobel prize in Physics in 1913 for K. Onnes. 

 

Brownian movement: due to the thermal agitation of the water molecules, colloidal particles 
experience a random motion (the trajectory of such a particle is given on the right panel) 

The direction of the total force (red arrow in the figure above) on the particles due 
to the bombardment by water molecules is random, and therefore constantly 
changing, which makes it impossible to derive such a force. At different times the 
particle is hit more on one side than another, leading to the stochastic (random) 
nature of the motion of the particle. This type of motion is called Brownian motion 
or random walk. The trajectory of a particle experiencing a random walk is given in 
the figure on the right. 

Statistically, if one would add all the velocities of all the particles in the water at a 
given time, the resulting velocity would be zero: there is no global movement 
(contrary to particles in a flow, where clearly when adding all the velocities, the total 
velocity will be in the direction of the flow). If one would follow a given particle 

                                                                 
15 The uncertainty principle states that it is impossible to know exactly at the same time both 
the momentum and the position of quantum (i.e. very very small) particles. If the velocity (and 
momentum) of particles would be zero, then it is obvious that their position should exactly be 
known. 
16 https://www.lorentz.leidenuniv.nl/history/cold/cold.html 
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submitted to Brownian motion as function of time, one would observe that this 
particle gets further and further away from its starting point, but that no direction is 
privileged. It is a talented mathematician, Louis Bachelier17,  who, in a thesis 
presented in 1900, demonstrated that what characterized the movement of such a 
particle was not the arithmetic mean of its displacement 〈𝑋𝑋〉 but  in fact its root 
mean square 〈𝑋𝑋2〉: 

〈𝑋𝑋2(𝑡𝑡)〉 =
1
𝑡𝑡
� 𝑥𝑥2(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

where 𝑥𝑥 is the position of particle and 𝑡𝑡 the time. From this relation it can be shown 
that the root mean square displacement is proportional to time: 

〈𝑋𝑋2(𝑡𝑡)〉 = 2𝑑𝑑𝑑𝑑𝑡𝑡 

where 𝑑𝑑 is the dimension of the movement18 (linear d=1, planar d=2 or spatial d=3), 
𝑑𝑑 is the diffusion coefficient and 𝑡𝑡 the time. Note that if the particle would undergo 
a regular translation of the type 𝑥𝑥(𝑡𝑡) = 𝑣𝑣0𝑡𝑡 where 𝑣𝑣0 is a constant, one finds: 

〈𝑋𝑋(𝑡𝑡)〉 =
1
𝑡𝑡
� 𝑣𝑣0𝜏𝜏𝑑𝑑𝜏𝜏
𝑡𝑡

0
=
𝑣𝑣0𝑡𝑡
2

 

and in that case, it would be the arithmetic mean of the displacement 〈𝑋𝑋(𝑡𝑡)〉 which 
would be proportional to time (at a given time 𝑡𝑡, the distance between the particle 
and its origin at 𝑡𝑡 = 0 is proportional to time). For a particle under a 3D Brownian 
motion, one has 𝑑𝑑 = 3, hence: 

�〈𝑋𝑋2(𝑡𝑡)〉 = Δ𝑟𝑟 = √6𝑑𝑑𝑡𝑡 

where Δ𝑟𝑟 = �〈𝑋𝑋2(𝑡𝑡)〉 symbolises the averaged position relative to the original 
position (at 𝑡𝑡 = 0) of the particle (see illustration underneath). In this case, the 
(averaged) distance between the particle and its origin at 𝑡𝑡 = 0 is proportional to 
the square root of time. 

 One unknown in the previous equation remains the diffusion coefficient 𝑑𝑑. It is 
Albert Einstein in 1905 and independently Marjan Smoluchowski in 1906, who 
derived an expression for this diffusion coefficient, based on kinetic theory. In fact 
the so-called Einstein-Smoluchowski relation is an early example of the fluctuation-
dissipation relation, which is a powerful theorem in statistical physics: 

                                                                 
17 https://en.wikipedia.org/wiki/Louis_Bachelier 
18 In Chapter 10 the dimension 𝑑𝑑 will be represented by D. In the present chapter it could be 
confused with the diffusion coefficient D, so we adapted the notation. 
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𝑑𝑑 = 𝜇𝜇𝑘𝑘𝐵𝐵𝑇𝑇 

where 𝑘𝑘𝐵𝐵  is Boltzmann’s constant (𝑘𝑘𝐵𝐵 = 1.38 × 10−23 𝐽𝐽/𝐾𝐾) and 𝑇𝑇 the temperature 
in Kelvin.  

 

Illustration of a 2D Brownian displacement of a spherical particle. At 𝑡𝑡 = 0 the particle is at 
origin, and 𝛥𝛥𝑟𝑟 = 0. For a given time 𝑡𝑡 > 0 one can infer that the particle will be, on average, 
at a distance 𝛥𝛥𝑟𝑟 = √4𝑑𝑑𝑡𝑡 from its origin. The direction of the particle relative to its origin is 

unknown. 

The product 𝑘𝑘𝐵𝐵𝑇𝑇 is called the thermal energy. The mobility 𝜇𝜇 of the particle is 
defined as the ratio between the particle’s terminal velocity 𝑣𝑣 to the applied force 
𝐹𝐹: 

𝜇𝜇 =
𝑣𝑣
𝐹𝐹

 

Thanks to Newton’s equation of motion (that we used earlier to establish Stokes’ 
settling velocity), and using Stokes’ s friction force, we have: 

𝑭𝑭 = 6𝜋𝜋𝜂𝜂𝜋𝜋𝒗𝒗 

We have already said that Stokes’ frictional force (also called drag force) exerted on 
a spherical particle is only valid at very small Reynolds numbers (at small Reynolds 
numbers, the fluid flow round the particle is laminar, i.e. non turbulent. This happens 
for small flow velocities). The force 𝑭𝑭 is due to the bombardment of water molecules 
on the particles. Without having to know this force (which is of the order of 𝑘𝑘𝐵𝐵𝑇𝑇/𝜋𝜋), 
we easily get 𝜇𝜇 = 1/(6𝜋𝜋𝜂𝜂𝜋𝜋) and we obtain the Stokes-Einstein relation: 

𝑑𝑑 =
𝑘𝑘𝐵𝐵𝑇𝑇

6𝜋𝜋𝜂𝜂𝜋𝜋
 

This is the theoretical expression for the diffusion coefficient of a sphere subjected 
to Brownian motion. It is from this relation that one has experimentally determined 
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the radius of ions and small colloidal particles. The radius thus obtained is called 
hydrodynamic radius (or Stokes radius) as it is known that moving particles always 
carry some molecules of water with them. The hydrodynamic radius of particles can 
be assessed by Dynamic Light Scattering19. 

Static and Dynamic Light Scattering 

Static and Dynamic Light Scattering (SLS and DLS) are two different techniques that 
both enable to assess the size of particles. Dynamic Light Scattering can be used for 
particles in the range [ 1nm – 1 μm] whereas Static Light Scattering can be used for 
the range of particle size, besides gravel: [1 nm – 1 mm]. DLS works on the following 
principle: when light hits particles, it scatters in all direction provided that the 
particles are smaller than the wavelength (about 600 nm for a red laser). The total 
scattering intensity of the light that is collected in a photodetector fluctuates over 
time, owing to the Brownian motion of the particles that produce interferences. This 
fluctuation can be linked to a characteristic time which is a function of the diffusion 
coefficient D. From D, using the Stokes-Einstein relation, the size of the particles can 
be obtained. 

 
Principle of Dynamic Light Scattering (DLS). The scattered light is measured at an 

certain angle relative to the incident laser beam direction  

Like DLS, Static light scattering (SLS) also measures the scattered light. But, instead 
of measuring the time-dependent fluctuations in the scattering intensity, SLS makes 
use of the time-averaged intensity of scattered light. For particle size measurements, 
SLS makes use of multiple photodetectors, positioned at various angles relative to 
the incident beam: depending on the size of the particles, the scattering intensity 
will be different in the different detectors (Rayleigh scattering occurs for extremely 

                                                                 
19 for particles larger than a few nm. For ions (of size about 0.1 nm), the hydrodynamic radius 
is determined using conductivity measurements and can nowadays easily to be found in 
Handbooks. See also the end of Chapter 3. 
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small particles, whereas Mie scattering occurs for particles larger than the 
wavelength) : 

 

In the Rayleigh regime, the intensity of the scattered light is proportional to 

𝑃𝑃 ~ 
1 + cos2(𝜃𝜃)

𝜆𝜆4
 

where 𝜃𝜃 is the angle between the incident beam and the observer and 𝜆𝜆 is the 
wavelength of the incident beam. It can be verified that 

𝑃𝑃(𝜃𝜃 = 0)

𝑃𝑃 �𝜃𝜃 = 𝜋𝜋
2�

= 2 

which is illustrated on the figure above: the scattering at right angles is half the 
forward intensity. The dependence of the intensity of the fourth power of the wave 
length leads to the fact that short wave lengths are more scattered than long wave 
lengths. As already discussed in Chapter 1, this is the reason why the blue colour 
(short wavelength) is more scattered than the red (long wavelength) for small 
particles. 

Fick’s laws 

Fick’s first law 

The diffusion coefficient 𝑑𝑑 expressed above is very important as it is used in 
fundamental relations, such as, for example Fick’s law of diffusion (Fick’s first law): 

𝑱𝑱 = −𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝒆𝒆𝒙𝒙 

where  𝑱𝑱 is the diffusion flux, 𝜕𝜕 is the concentration of particles (ex: colloidal clay 
particles) and 𝒆𝒆𝒙𝒙 the unit vector in the x direction. The units of 𝑱𝑱 are in number of 
particles per square meters per second. The law has here been written for a 1d 
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diffusion, it is easy to generalize to more dimensions (using the general relation 𝑱𝑱 =
−𝑑𝑑𝛁𝛁𝜕𝜕).  

Fick’s law expresses the fact that given a gradient of concentration, the colloidal 
particles will move towards the region of low particle concentration (hence the 
minus sign). For example, if a suspension of colloidal particles (or an electrolyte 
solution) is pipetted into a jar of water the particles will diffuse into the whole jar, 
and after some time no gradient in concentration will be observed anymore: the 
particle concentration in the jar will be everywhere the same: 

 

Colloidal particles obeying Fick’s law and diffusing to regions of low particle concentration. 
When the particle concentration is everywhere the same, the particles will still move due to 

Brownian motion, but the particle concentration will not change anymore and remain 
uniform in the jar. (the action of gravity is neglected in this example) 

Fick’s second law 

Conversation of matter dictates that for a given volume, during a small time 𝑑𝑑𝑡𝑡, the 
difference between the fluxes of particles entering and going out of this volume 
must be equal to the variation of concentration of the same particles. In 
mathematical notations this implies that: 

[𝐽𝐽(𝑥𝑥) − 𝐽𝐽(𝑥𝑥 + 𝑑𝑑𝑥𝑥)] =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
𝑑𝑑𝑥𝑥 

and therefore: 

−
𝜕𝜕𝐽𝐽
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

 

Using Fick’s first law, one gets Fick’s second law: 

𝑑𝑑
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
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Fick’s laws – and similar type of relations - are found in many branches of science, 
where  diffusion plays a role (these equations can also be used to describe the 
transport of heat or momentum). 

Fick’s second law enables to give a good example of the connection between 
Brownian motion and diffusion processes. We consider the case where the diffusion 
of particles can be schematically visualized as follows: 

 

The initial conditions of the experiment are that all the particles are located at 𝑥𝑥 =
0 in an infinitely thin layer Δ𝑙𝑙. We have: 𝜕𝜕(0,0) = 𝜕𝜕0Δ𝑙𝑙. To account for the fact that 
the layer is infinitely small, one expresses usually that: 𝜕𝜕(𝑥𝑥, 0) = 𝜕𝜕0Δ𝑙𝑙𝑙𝑙(𝑥𝑥) where 
𝑙𝑙(𝑥𝑥) is called the Dirac distribution which is a function such 𝑙𝑙(𝑥𝑥 = 0) = 1 and  
𝑙𝑙(𝑥𝑥 ≠ 0) = 0. Using this Dirac function insures that one has: 

� 𝜕𝜕(𝑥𝑥, 𝑡𝑡)
∞

0
𝑑𝑑𝑥𝑥 = 𝜕𝜕0Δ𝑙𝑙 

for any time t (conservation of mass principle). One can verify that the solution of 
Fick’s second law, in the simple case considered here (i.e. the diffusion is only along 
𝑥𝑥) is: 

𝜕𝜕(𝑥𝑥, 𝑡𝑡) =
𝜕𝜕0Δ𝑙𝑙
√𝜋𝜋𝑑𝑑𝑡𝑡

exp �
−𝑥𝑥2

4𝑑𝑑𝑡𝑡
� 

The characteristic timescale associated to the diffusion is: 

𝜏𝜏 =
𝑥𝑥2

4𝑑𝑑
 

Note that the characteristic time 𝜏𝜏 can be linked to the measure of how far the 
substance has spread in a given time 𝑡𝑡 = 𝜏𝜏: 

〈𝑋𝑋2(𝑡𝑡)〉 = 2𝑑𝑑𝑑𝑑𝑡𝑡 
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where 𝑑𝑑 = 1 as we have here a linear movement (dimension 1). This is the 
expression we have seen to be related to Brownian motion.  

The functions plotted underneath were obtained numerically from the expression of 
𝜕𝜕(𝑥𝑥, 𝑡𝑡) given above, and each function was normalized by dividing it by 𝜕𝜕(𝑥𝑥 = 0, 𝑡𝑡): 

 

At large times (𝑡𝑡 ≫ 𝜏𝜏), one will obtain: 𝜕𝜕/𝜕𝜕(𝑥𝑥 = 0, 𝑡𝑡) = 1 as there will be no 
gradient in concentration anymore. 

Important: It should be emphasized that the diffusion that has been discussed here 
is not the one defined in hydrodynamics: in that case, the  diffusion term, still 
expressed as 𝑑𝑑 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
  as in Fick’s first law, refers to a diffusion coefficient 𝑑𝑑 that is 

orders of magnitude larger than the diffusion coefficient discussed above. In colloid 
science, the diffusion coefficient is associated to the thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇 whereas in 
hydrodynamics the diffusion is related to the water flow (usually in the context of  
turbulent mixing). The typical diffusion coefficient in colloidal science is of the order 
of  10-9 m2/s whereas it is 10-1 m2/s in hydrodynamics: in short, it is more efficient to 
stir a cup of coffee than to wait for the sugar molecules to diffuse according to 
Brownian motion! 

This does not imply that Brownian motion should be neglected when dealing with 
turbulent mixing: it plays an important role for predicting the flocculation of colloids. 

 

 

 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

n(
x,

t)/
n(

x=
0,

t)

 

 
Dt = 0.05
Dt = 0.1
Dt = 0.25
Dt = 1



Chapter 2  Settling, diffusion and stabilisation 

 51 

Application of Fick’s law : cleaning colloidal suspensions 

In order to study colloidal suspensions, it is often required to “clean” them, i.e. 
remove as much dissolved salt or small dissolved molecules as possible from the 
suspension. Doing so, it is then possible to perform accurate measurements as 
function of a chosen added salt for example and avoid that the background 
electrolyte concentration contaminates the measurements. 

A well-established technique to clean suspensions is to perform a dialysis. The 
suspension is put in a flexible tube (Visking tube), made of a membrane that only 
allow the passage of small molecules. The principle of the membrane is based on 
diffusion: the tube containing the suspension is placed in a jar containing ultra-pure 
water (of extremely low conductivity). By diffusion the small molecules and ions will 
then tend to pass the membrane of the tube and invade the ultra-pure water. As the 
colloidal particles are too big, they cannot pass the membrane and remain in the 
tube. After an equilibrium state is reached, the tube is removed and the 
contaminated water is replaced by new ultra-pure water. This procedure is repeated 
several times, until the conductivity of the water at equilibrium is close to the one 
of pure water. 

 

Dialysis of a colloidal suspension 

The cleaning can also be accelerated by using electrodialysis, where the application 
of an electric field speeds up the migration of ions: 
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The ions move by electrophoresis to the oppositely charged electrodes, a 
phenomenon that will be discussed in Chapter 3. 

Stable and unstable colloidal suspensions 

An important condition to keep a colloidal particle suspended is that it cannot “glue” 
to another particle (and another, and 
another…) to form a larger entity that might 
eventually settle under its own weight. One 
says of such isotropic suspensions in which 
particles do not glue or settle that they are 
“stable”. In the next chapter, we are going 
to review in detail the mechanisms leading 
to unstable suspensions. For the moment, 
we simply note that stable suspensions are composed of: 

 particles with a surface charge of same sign, since these particles are 
repelling each other (whereas particles with opposite charges are attracting 
each other) 
 

 particles in special mixtures (defined in the Chapter 4), or particles coated 
with a special type of molecules can also create stable suspensions, 
irrespective of the surface charge of the particles. (The mechanisms leading 
to stability are then not linked to surface charge).  

In order to be stable, the particles should also be able to overcome gravity. This can 
be done when the particles are colloidal by Brownian motion, or, in special cases by 
electrostatic forces (discussed below). We will distinguish four different types of 
suspensions:  
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Stable suspensions: case (A) and case (B) 

A stable isotropic dilute suspension of particles can be 
achieved when the particles are undergoing Brownian 
motion. Gravity then usually plays a negligible role (this is 
the case for a small jar or settling column – for some meters 
high suspended sediment, on the other hand, a gradient in 
concentration can appear). The particles should also repel 
each other, otherwise they would glue at some point , form 
a larger entity and settle. Ions in water, even though ions are 
usually smaller than the typical colloid size20, satisfy all these 
conditions. Small colloidal particles, with a significant 
surface charge, also satisfy these conditions. A typical example is the colloidal gold 
suspension (see picture on the right) prepared by Faraday (1791-1867) that have 
remained stable over more than a century. 

The difference  between case (A) and case (B) lays in the fact that because of the 
high concentration the particles are “ trapped” in their positions in case (B) and do 
not “ walk around” easily (thanks to Brownian motion) as in case (A). An important 
consequence of this trapping is that the relative distance between the particles is 
rather constant, similar to what one has in crystals. This is why this type of 
suspension is called a liquid crystal. A lot of work in the 1960-70s has been done on 
colloidal crystals, as they were used as models for atomic systems that cannot easily 
been investigated. The research continues on this type of systems, especially on non-
spherical colloids that can arrange themselves in very different ways, depending on 
parameters such as temperature,  pressure, and concentration:  

                                                                 
20 Some ions can be of colloidal size: an example are ions called polyoxometalate (abbreviated 
POM), composed of metal and oxide; the size of these ions can reach 10 nm – the lower end 
of what is called a colloidal particle.  
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Liquid crystals made a great break-through in the 1970s as they became 
commercially available and were used in digital calculators as Liquid-Crystal Displays 
(LCDs). The principle of a LCD is similar to the one used in research to investigate the 
birefringence of complex suspensions. In birefringence studies, an electric field is 
applied to a monodisperse suspension, such that all particles will align with the 
electric field thanks to electric dipole-dipole interactions.  When the electric field is 
switched off, the particles will relax because of their Brownian motion. From 
evaluating the time needed for the suspension to relax completely (i.e. become fully 
isotropic again), information about the particle’s size can be deduced. The 
observation is done by analysing the amount of light going through a photodetector 
as function of time. The time for the particles to relax is extremely fast and the 
transition cannot be observed by the eye, which implies that for LCDs what one sees 
is a pixel switching directly from black to white (and vice-versa): 

 

Liquid crystal principle: a cholesteric nematic liquid crystal is placed between two 
transparent electrodes (in pink). Cholesteric liquid crystals have the property that they 

organize themselves in layers and that each layer has a director axis, represented here by the 
direction of a blue rod. The distance between electrodes is tuned in such a way that the light 

exiting the cell can pass through the filter and illuminate a pixel. When an electric field is 
applied, the ordering of the crystal changes and no light can pass through the filter. 
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Liquid crystals made of clay minerals are an on-going topic of research21. The 
complexity of the clay mineral structures (see Chapter 1), explains why for years 
researchers have privileged simpler colloidal particles than clays. However, the 
understanding of the transition of one clay liquid crystal phase to another will enable 
a better predictability of the rheology of these liquids, and their consolidation 
behaviour. The applications in Civil Engineering are enormous: drilling fluids can be 
seen as examples of clay liquid crystals (they are a mixture of bentonite clays and 
polymers22), and so can cohesive sediments (a mixture of clay, silt and organic 
matter), found in many delta regions, rivers, river shores and lakes.  

Unstable suspensions: case (C) and Case (D) 

When the colloidal particles are noticeably sensitive to gravity in the jar or settling 
column, they will settle. We still only consider the case that the particles are not 
gluing to each other, meaning that they just settle because of their own weight.  

Mud pool after a rainfall: the colloidal 
particles are in suspension and will slowly 
settle down in time. 

Now an interesting question arises: 

Let’s take silica particles as an 
example. We consider two types of 
particles: small (colloidal) silica 
particles and large (sand) silica 
particles. The only difference 

between the particles is their size, which means they have the same surface charge 
(in C/m2) and the same density. We suppose that the particles are highly charged. 
The question is: is it possible to define a size of particles such that the particles are 
so repellent that they remain in suspension like in case (B)?  Intuitively, we know 
that this is not possible for sand particles: sand particles will always settle. 

The answer lays in the comparison of the forces exerted on the particles. The 
dominant forces are gravity and the electric repulsion. We have already seen that 
the gravity force scales with a3 (the radius of the particle to the power 3). The electric 
force is linked to the surface charge of the particles. This force is thus proportional 
to a2. The ratio of these forces is therefore proportional to the radius of the particles 
a. Of course, there are more factors in this ratio besides the size but the general idea 
is that for a large particle (large a) volume forces will always be large than surface 

                                                                 
21 van der Beek, David, and Henk NW Lekkerkerker. "Liquid crystal phases of charged colloidal 
platelets." Langmuir 20.20 (2004): 8582-8586. 
22 Polymers will be defined in the next chapters. They are a special type of colloidal particles. 
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forces.  A criterion23 for determining if a particle can or cannot settle is therefore its 
size: the typical particle size for which the two forces balance is around 1 µm, i.e. the 
size of colloidal particles. 

In Case (C), we have displayed the case where, even though the particles settle under 
their own weight, there is a small region above the bed where particles are not 
touching the bed, because of the strong repulsion between the particles and the 
gradient in concentration that tends to push them vertically up. This phenomenon 
has been studied in 2003 in an article called “Defying gravity with entropy and 
electrostatics: sedimentation of charged colloids”24. A particular case of this general 
theory is when only gravity and the gradient in concentration plays the dominant 
role (the repulsion between particles just prevent them from gluing). Supposing that 
the particles do not hinder each other, they all settle according to Stokes’ settling 
velocity: 

𝑣𝑣 =
2
9
𝜋𝜋2
𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤

𝜂𝜂
𝑔𝑔 

The corresponding flux of particle is given by 𝐽𝐽𝑔𝑔 = 𝐶𝐶𝑣𝑣 where 𝐶𝐶 is the concentration 
of particles (in mol/L or number/m3 depending on one’s choice). By settling, a 
concentration gradient will establish, and this will lead to a flux, according to Fick’s 
first law (we take z as the coordinate along the vertical axis such that 𝒈𝒈 = −𝑔𝑔𝒆𝒆𝑧𝑧): 

𝐽𝐽𝜕𝜕 = −
𝑘𝑘𝐵𝐵𝑇𝑇

6𝜋𝜋𝜂𝜂𝜋𝜋
𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

 

At equilibrium (steady state), the two fluxes must be equal: 𝐽𝐽𝜕𝜕 = 𝐽𝐽𝑔𝑔 from which we 
obtain: 

𝑑𝑑𝜕𝜕
𝜕𝜕

= −
4
3
𝜋𝜋𝜋𝜋3 �

𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑔𝑔𝑑𝑑𝑑𝑑 

Note that this equation is mathematically similar to the one obtained for a Rouse 
profile, where the balance is between the downwards settling (due to gravity, like 
here) and the upward turbulent diffusion, instead of the thermal diffusion. We have 
already stressed above that the two diffusion coefficients are extremely different in 
magnitude, implying that a Rouse profile can easily be observed in-situ in the case 
of clays, and the one derived here generally not.  

The equation can be solved using 𝜕𝜕(𝑑𝑑 = 0) = 𝜕𝜕0 and leads to: 

                                                                 
23 It is of course not the only criterion, surface charge and the ability to undergo Brownian 
motion are others. 
24 van Roij, R. (2003). Journal of Physics: Condensed Matter, 15(48), S3569. 
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𝜕𝜕(𝑑𝑑) = 𝜕𝜕0exp �−
4
3
𝜋𝜋𝜋𝜋3 �

𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑔𝑔𝑑𝑑� 

A case where this equation leads to an easily observable profile is the case of gas. 
Assuming an ideal gas, the relation between particle concentration and pressure is: 

𝑃𝑃 = 𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

where 𝑃𝑃 is the pressure and 𝜕𝜕 the number of gas particles per unit of volume. 
Furthermore, defining the volume of one gas molecule as 𝑉𝑉𝑝𝑝 = 4

3
𝜋𝜋𝜋𝜋3 and realizing 

that there is no Archimedes force in this case, one gets: 

𝑃𝑃(𝑑𝑑) = 𝑃𝑃0𝑅𝑅𝑥𝑥𝑒𝑒 �−
𝑉𝑉𝑝𝑝𝑣𝑣𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

𝑔𝑔𝑑𝑑� 

The mass of one gas particle 𝑚𝑚𝑝𝑝 = 𝑉𝑉𝑝𝑝𝑣𝑣𝑝𝑝 can be substituted by using the molar mass 
𝑀𝑀 of the gas, and one obtains: 

𝑃𝑃(𝑑𝑑) = 𝑃𝑃0𝑅𝑅𝑥𝑥𝑒𝑒 �−
𝑀𝑀𝑔𝑔
𝑅𝑅𝑇𝑇

𝑑𝑑� 

where 𝑅𝑅 = 𝑁𝑁𝐴𝐴𝑘𝑘𝐵𝐵 = 8.314 J ∙ K−1 ∙ mol−1 is called the gas constant. This expression 
for the pressure with altitude is called the barometric formula. It is valid in the limit 
of ideal gases, for temperatures that do not vary with height. For air ( 𝑀𝑀 =
0.02896 kg/mol) at T = 288 K (15 ℃), one gets that 𝑃𝑃(𝑑𝑑) ≈ 0 for 𝑑𝑑 = 8.4 km – 
clearly an observable length. 

Another case where this equation leads to an observable length is for particles with 
a density close to the one of water for which (𝑣𝑣𝑝𝑝 −
𝑣𝑣𝑤𝑤) becomes very small. This case is illustrated on the 
right-hand-side where latex colloids are dispersed in 
ultra-pure water. The latex particles were deposited 
gently with a pipette on the bottom of the tube, see 
picture (t = 0) and left unstirred. The picture (t = 40h) 
was taken 40 hours after the sample was prepared.  A 
fuzzy region of a few cm high can be observed above 
the bed. 

In Case (D), the particles are all settled on the bed. The 
structure of the bed, and in particular its porosity, will 
be extremely dependent on the way the particles have 
settled down: did they settle rapidly and just stick to the bed? Did they have time to 
rearrange their position relative to the particles already settled? Did the particles 
aggregate (flocculate) before they reached the bed? The evolution of a bed formed 
by settled particles will be discussed in Chapters 9 and 10. 
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Osmotic pressure 

When a suspension is brought into contact with a semi-permeable membrane, 
another effect takes place to ensure that the suspension reaches a stable state. This 
effect is linked to a transport of water (not of colloidal particles) through the 
membrane, and is driven by what is called osmotic pressure. 

We have derived above the barometric pressure for gases where we used the ideal 
gas equation of state: 

𝑃𝑃 = 𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

where 𝜕𝜕 is the number of gas atoms per unit of volume. An analogue of this relation, 
in the context of colloids, is the osmotic pressure of the suspension, defined for a 
dilute suspension as: 

Π = 𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

where 𝜕𝜕 is the number of colloidal particles per unit of volume. This equation is 
demonstrated in Chapter 8. Thus, a dilute suspension of colloidal particles behave 
thermodynamically like a collection of “giant atoms”: they have the same equation 
of state and show the same sedimentation equilibrium as a classical ideal atomic gas 
(even though not on the same length scale as discussed above).  

The osmotic pressure  can be seen as  the pressure that must be applied to a 
suspension in contact with a bath of pure solvent across a semi-permeable 
membrane (which the particles cannot cross) in order to stop the flow of solvent 
from the bath to the suspension. It can therefore easily be measured: 

 

At the initial state, a suspension is set in contact with a semipermeable membrane that only 
allows the flow of water. In time, water will flow to the compartment with the suspension. At 
equilibrium, the osmotic pressure can be determined from the  height difference between the 

water and the suspension or by applying a counter-pressure so as to have the same fluid 
levels. 
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The relation between height and osmotic pressure is given by: 

Π = 𝑣𝑣𝑔𝑔ℎ 

where 𝑣𝑣 is the density of the solvent (water) and  the measured height difference at 
equilibrium. 

The concept of osmotic pressure plays an important role in the stability of 
suspensions. This will be discussed further in the Chapters 3 and 4.  

Applications 

Biology 

An important domain of application for osmotic pressure is biology and medicine. As 
cells in biological bodies can be seen as fluids encapsulated in semi-permeable 
membranes, the properties of the solutions in which they are found determine their 
structure: when the composition of the cell’s fluid and the suspending solution are 
such that water flows out of the cell, the cell will shrink, and it will swell when water 
will flow into the cell. Three situations are defined: 

Hypertonicity: there is a greater concentration of solutes outside the cell than inside: 
water will get out the cell. Some organisms have evolved intricate methods of 
circumventing hypertonicity. For example, saltwater is hypertonic to the fish that 
live in it. They need a large surface area in their gills in contact with seawater for gas 
exchange, thus they lose water osmotically to the sea from gill cells. They respond 
to the loss by drinking large amounts of saltwater, and actively excreting the excess 
salt. This process is called osmoregulation. 

Isotonicity: there is the same concentration of solutes outside and inside the cell. In 
this case the cell neither swells 
nor shrinks. Water molecules 
diffuse through the plasma 
membrane in both directions, 
and as the rate of water diffusion 
is the same in each direction that 
cell will neither gain nor lose 
water. Isotonic sport drinks 
contain similar concentrations of 
salt and sugar as in the human 
body. These drinks are marketed 
as soft drinks (they contain 
approximately 15 grams of sugar 
per 250 ml). They are supposed 
to help athletes replace “water, 
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electrolytes, and energy” after training or competition but their efficacy is still not 
proven.  

Hypotonicity: there is a greater concentration of solutes inside the cell than outside: 
water will get in the cell. In the case of plants, the cell walls are rigid enough to 
contain the internal osmotic pressure and limit the cell expansion (for animal cells, 
like blood cells, the cells will eventually burst). It is hypotonicity that enables 
herbaceous plants to stand upright. 

Water purification 

Osmotic pressure is the basis of filtering ("reverse osmosis"), a process commonly 
used in water purification. The “reverse osmosis” compares to the case where a 
counter pressure is applied to equilibrate the liquid heights in the tube, as depicted 
above. The water to be purified is placed in a chamber and put under an amount of 
pressure greater than the osmotic pressure exerted by the water and the solutes 
dissolved in it. Part of the chamber opens to a differentially permeable membrane 
that lets water molecules through, but not the solute particles. The osmotic pressure 
of ocean water is about 27 atm (1 atm =  105 Pa). Reverse osmosis desalinates fresh 
water from ocean salt water. 

 

Illustrations 

Robert Brown (public domain) 
https://en.wikipedia.org/wiki/Robert_Brown_(botanist,_born_1773) 

Faraday gold 
https://www.rigb.org/ 

Tonicity (creative commons license) 
https://en.wikipedia.org/wiki/Tonicity 
https://commons.wikimedia.org/wiki/File:Turgor_pressure_on_plant_cells_diagram.svg 
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Given certain conditions, colloidal particles can “glue25” (aggregate) to each other, 
hereby  creating a bigger entity (an aggregate or floc) that may be able to settle 
down. Its settling velocity is then different from the settling velocity of the individual 
particles that created it. This, in turn, has important consequences in terms of 
sediment transport as Stokes’ settling velocity is for example one of the parameters 
used in large numerical codes that predicts large scale sediment transport. 

 

(a): stable suspension with non-aggregated (primary) particles; (b): unstable suspension with 
large flocs consisting of  aggregated (flocculated) particles. In (a) the solvent properties are 

different than in (b), but the primary particles are the same in (a) as in (b). The flocs in (b) are 
made by aggregation of primary particles. The primary particles in (a) have a smaller settling 

velocity than the flocs in (b)26 

In the present chapter, the conditions leading to the (non) aggregation of particles 
are reviewed. These conditions originates from electrical interactions between 
particles. Some of these interactions occur between molecules and atoms 
constituting each particle. The sum of all the interactions between these atoms and 
molecules leads to forces between particles. This is detailed below in the section 
“Van der Waals forces”. The van der Waals forces are usually attractive27. Other 
forces (“Coulombic forces”) originate from the interaction between the surface 
charges of the particles. When the particles have surface charges of same sign, the 
forces are repulsive. It is the relative strength between the Coulombic and the van 
der Waals forces that determines the stability of a suspension: if van der Waals 
dominates, the particles will aggregate and the suspension is said unstable as its 
composition changes over time. If the repulsive Coulombic forces dominate, the 
particles will stay away from each other and the suspension is said to be stable as its 
composition will not change over time. This is provided of course that gravity does 

                                                                 
25 The word “colloid” comes from the greek word glue. 
26 From Shih et al., Aggregation of Colloidal Particles with a Finite Interparticle Attraction 
Energy; Journal of Statistical Physics, VoL 62, Nos. 5/6, 1991 
27 The van der Waals force between two identical bodies in a medium is always attractive, 
while that different bodies in a medium can be attractive or repulsive. 
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not play a significant role, in which case the particles will settle and the suspension 
is again said unstable as its composition is changing over time. 

Van der Waals forces 

Microscopic observations of colloidal particles have led 
scientists in the 19th century to discover that colloidal 
particles have the tendency to form persistent 
aggregates through collisions induced by Brownian 
motion. This led them to conclude that there should be 
attractive forces between the particles. It is the Dutch 
theoretical scientist and thermodynamist Johannes 
Diderik van der Waals (1837-1923)  who was the first to 
quantify these forces that nowadays carry his name.  

Van der Waals is famous for another discovery:  the van der Waals equation of state 
that describes the behaviour of gases and their condensation to the liquid phase. 
This equation was published in his PhD thesis entitled Over de continuiteit van den 
gas- en vloeistoftoestand (On the continuity of the gaseous and liquid state). The 
original PhD thesis can still be found in the library of the University of Leiden where 
he studied. He got the Nobel prize in Physics in 1910. 

The van der Waals forces originate from weak electrical interactions between atoms 
and molecules. These forces have 3 origins, and are all related to electric dipole 
moments.  

Electric dipole moments are created by the fact that two (or more) charges of 
opposite sign are in the close vicinity of each other. Water molecules, for instance, 
have dipole moments as they have a slight positive charge on H-sides and a slight 
negative charge on the O-side (even though the molecule H2O is not charged): 

 

The water molecule, H2O, is uncharged but possesses a dipolar moment 𝑃𝑃 due to the 
asymmetry of the shared electrons’ distribution in the covalent OH bonds. This results in the 
oxygen atom having a slight negative charge −2𝑙𝑙𝑅𝑅 (where 𝑅𝑅 is the electron charge) whereas 

each hydrogen atom has a slight positive charge +𝑙𝑙𝑅𝑅. 
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The dipole moment 𝑃𝑃 of two charges ( +𝑞𝑞 and –𝑞𝑞) separated by a distance 𝑑𝑑 is given 
by 

𝑷𝑷 = 𝑞𝑞𝒅𝒅 

The bold notation indicates vectors, and 𝒅𝒅 is oriented from −𝑞𝑞 to +𝑞𝑞. In the case of 
water, illustrated above, we first find the location of the barycentre of the positive 
charges which leads to 𝑞𝑞 = 2𝑙𝑙𝑅𝑅 (illustrated above). The dipole moment 𝑃𝑃 can then 
be evaluated. For water one finds it is equal to 1.85 D (1 D = 3.335 64 × 10−30 C m). 

Dipole-dipole interactions can be either attractive or repulsive: 

 

It is due to this polar nature of water that water molecules make hydrogen bonds, 
which are defined in Chapter 4.  

The three forces that form the van der Waals forces are due to: 

1 – the positive (or negative) interaction between permanent dipoles of the 
atoms/molecules.  These forces are also called Keesom forces, in honour of the 
Dutch physicist who derived them mathematically. 

 

Schematic representation of dipole-dipole interactions in a solid and a liquid 

2 – the positive attraction between a permanent dipole and an induced dipole. An 
induced dipole is created when there is a temporary (extremely brief) deformation 
of the electronic atmosphere around an atom: as the nucleus of an atom is positively 
charged and the electrons are negatively charged, a temporary dipole is created. 
This deformation is induced by the proximity of  another dipole or an ion. These 
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forces are called Debye forces, in honour of the Dutch physicist Peter Debye, who 
made significant contributions to colloid science, and hence his name is also 
associated with an equation and a length scale that will be introduced later. 

3 – the positive attraction between two induced dipoles. These forces are also called 
London forces, in honour of the German physicist who derived them 
mathematically. 

The van der Waals forces were primarily derived for modelling the interaction 
between two molecules. However, it was soon discovered that it was possible to 
extend them to larger objects. This was done in particular by the Dutch scientist 
Hugo Christiaan Hamaker (1905-1993), who gave his name to the Hamaker 
constant used to describe the van der Waals forces between macroscopic objects 
(macroscopic in the sense that they are larger than molecules). We will only give the 
examples of the van der Waals forces exerted in the cases of the two following 
geometries: 

 

For the two semi-infinite plates separated by a distance h, the van der Waals 
potential per area of interface is given by: 

Φ
𝜋𝜋𝑟𝑟𝑅𝑅𝜋𝜋

=
−𝐴𝐴

12𝜋𝜋ℎ2
 

where 𝐴𝐴 is the Hamaker constant. For equal spheres of radius a at center-to-center 
separation r it is given by: 

Φ =
−𝐴𝐴
6
�

2𝜋𝜋2

𝑟𝑟2 − 4𝜋𝜋2
+

2𝜋𝜋2

𝑟𝑟2
+ 𝑙𝑙𝜕𝜕 �

𝑟𝑟2 − 4𝜋𝜋2

𝑟𝑟2
�� 

The van der Waals force F𝑣𝑣𝑒𝑒𝑤𝑤 can be estimated using the relation: 

F𝑣𝑣𝑒𝑒𝑤𝑤(𝑟𝑟) = −
𝑑𝑑Φ
𝑑𝑑𝑟𝑟

 

The van der Waals interaction potentials can be calculated from the adding-up all 
the inter-atomic dipole contributions and the Hamaker constants are then obtained 



Introduction to Colloid Science 

 66 

by identification. These Hamaker constants are then compared with the ones found 
experimentally, by performing flocculation experiments (see Chapter 5). When the 
system is too complex, the Hamaker constant can only be determined 
experimentally. The Hamaker constants are often noted  𝐴𝐴123 symbolizing the fact 
that it is the Hamaker constant for media 1 and 3 interacting across medium 2. For 
instance 𝐴𝐴121 could represent a clay particle (medium 1) interacting with another 
clay particle (also medium 1) across water (medium 2). For typical clays, across water 
one finds28: 

kaolinite 𝐴𝐴121 = 3.1 ∙ 10−20 J 
illite 𝐴𝐴121 = 2.5 ∙ 10−20 J 
montmorrillonite 𝐴𝐴121 = 2.2 ∙ 10−20 J 

 
To give an idea, Hamaker constants are about 10-19 J for interactions across vacuum. 
Typical values are in between 10-19-10-21 J. These values can decrease slightly with 
increasing salt concentration. 

Peter Joseph William Debije (1884 - 1966) studied in the 
Aachen University of Technology under the supervision of 
the theoretical physicist Arnold Sommerfeld, who later 
claimed that his most important discovery was Peter 
Debye. Debije’ s name is usually written Debye as the 
digraph of the letter i and j  (ij is considered a letter in 
itself) is only known to the Dutch language.  

Debye made major contributions to the field of physics 
and physical chemistry (including colloid science). He 
applied the concept of dipole moment to the charge 
distribution in asymmetric molecules in 1912 and developed equations relating 
dipole moments to temperature and dielectric constant. The units of dipole 
moments are termed Debye (D) in his honour (1 D = 3.335 64 × 10−30 C m).  His name 
is also associated with the Debye frequency, the frequency above which an electric 
double layer does not polarize anymore and the Debye length that we are going to 
define in the next section. In 1923, together with his assistant Erich Hückel, he 
developed an improvement of Svante Arrhenius' theory of electrical conductivity in 
electrolyte solutions. This work resulted in the Debye-Hückel equation. In 1936 he 
got the Nobel prize in chemistry “for his contributions to our knowledge of molecular 
structure through his investigations on dipole moments and on the diffraction of X-
rays and electrons in gases”.  

                                                                 
28 Novich, B. E., & Ring, T. A. (1984). Colloid stability of clays using photon correlation 
spectroscopy. Clays Clay Miner., 32(5), 400. [Note that photon correlation spectroscopy = DLS, 
see previous chapter] 
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Coulombic forces 

The first given reason for the stability of suspensions is associated to surface charge 
of the particles. These charges lead to Coulombic forces that are repulsive when two 
particles have charges of same sign (and are attractive otherwise).  

In order to calculate these Coulomb forces, one needs first to know the electric 
potential around one particle, without any interaction with another.  

Electric potential distribution around a charged sphere in an electrolyte solution 

When a spherical particle 
of radius a, say negatively 
charged, is in an 
electrolyte solution, there 
will be a so-called electric 
double layer around the 
particle. This layer is 
composed of the (fixed) 
surface charges (the first 
layer) and its surrounding 
cloud of ions (the second 
layer). This cloud is mainly 
composed of counter-ions, 
i.e. ions with charge + (but 
not only: there are also co-

ions, i.e. ions with charges -). The distribution of ions around the particle is given by 
the Boltzmann distribution: 

n𝑖𝑖(𝑟𝑟) = n𝑖𝑖(∞)exp �
−𝑞𝑞𝑖𝑖𝜓𝜓(𝑟𝑟)
𝑘𝑘𝐵𝐵𝑇𝑇

� 

where n𝑖𝑖(𝑟𝑟) is the concentration of ions i(= +,−) in number / m3 as function of the 
distance from the centre of the sphere. The other parameters are: 𝑞𝑞𝑖𝑖  the electric 
charge of ion i and 𝜓𝜓(𝑟𝑟) is the electric potential around the sphere. The electric 
potential 𝜓𝜓(𝜋𝜋) is the potential at the surface of the particle. Note the presence of 
the thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇 in the expression: it is linked to the Brownian motion of the 
ions in the cloud.  

The expression for 𝜓𝜓(𝑟𝑟) is found using the Poisson equation, derived from 
electrostatics, given here in spherical coordinates: 

Δ𝜓𝜓 =
1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2

𝑑𝑑𝜓𝜓(𝑟𝑟)
𝑑𝑑𝑟𝑟

� =
−1
𝜀𝜀0𝜀𝜀𝑟𝑟

(𝑞𝑞+n+ + 𝑞𝑞−n−) 
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By combining the Poisson and Boltzmann equations one obtains the non-linear 
Poisson-Boltzmann equation for 𝜓𝜓(𝑟𝑟). Using some mathematics, it is then possible 
to derive the electric potential around one particle. Many expressions for this 
potential are available, depending on the approximations made for the 
mathematical derivations. The exact solution of the Poisson-Boltzmann can also be 
obtained numerically29. 

At low surface potentials: At low surface potential 𝜓𝜓(𝜋𝜋) it is possible to find a simple 
analytical solution by using the fact that 𝑅𝑅𝑥𝑥𝑒𝑒(𝑥𝑥) = 1 + 𝑥𝑥 when 𝑥𝑥 is small. One then 
obtains: 

1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟

�𝑟𝑟2
𝑑𝑑𝜓𝜓(𝑟𝑟)
𝑑𝑑𝑟𝑟

� = 𝜅𝜅2𝜓𝜓(𝑟𝑟) 

which can be solved into, using the convention 𝜓𝜓(∞) = 0: 

𝜓𝜓(𝑟𝑟) = 𝜓𝜓(𝜋𝜋)
𝜋𝜋
𝑟𝑟

exp�−𝜅𝜅(𝑟𝑟 − 𝜋𝜋)� 

where the parameter 𝜅𝜅−1 is called the Debye length (or double layer thickness) and 
can be evaluated from: 

𝜅𝜅2 =
∑ n𝑖𝑖(∞)𝑞𝑞𝑖𝑖2

𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇
 

where 𝜀𝜀0𝜀𝜀𝑟𝑟 is the permittivity of the medium (𝜀𝜀0 = 8.85 × 10−12 F/m is the 
permittivity of vacuum and 𝜀𝜀𝑟𝑟 = 80 the relative permittivity of water). The electric 
potential around a charged particle decays therefore to zero over a typical length 
equal to the Debye length. Beyond the double layer the ionic concentration is equal 
to the bulk concentration n𝑖𝑖(∞). The double layer thickness does not depend on the 
size of the particle, it is only depending on the salt concentration. Therefore, for a 
given salt concentration,  𝜅𝜅−1 is the same for a 1 nm or a 1 mm particle. 

At high ionic strength: When the ionic strength is large (a few tenth of mM to give 
an order of idea), one usually satisfy the condition 𝜅𝜅𝜋𝜋 ≫ 1, independently of the size 
of 𝜋𝜋. For a sphere with a thin double layer, i.e. for which 𝜅𝜅𝜋𝜋 ≫ 1, one can show that 
the electric potential around that sphere, for any surface potential 𝜓𝜓(𝜋𝜋),  is given 
by: 

                                                                 
29 Chassagne, C., and D. Bedeaux. "The dielectric response of a colloidal spheroid." Journal of 
colloid and interface science 326.1 (2008): 240-253. See also Chassagne, C. "Dielectric 
response of a charged prolate spheroid in an electrolyte solution." International Journal of 
Thermophysics 34.7 (2013): 1239-1254. 
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𝜓𝜓(𝑟𝑟) =
4𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞

tanh�
𝑞𝑞𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� exp�−𝜅𝜅(𝑟𝑟 − 𝜋𝜋)� 

where the ion charge is usually given as 𝑞𝑞 = 𝑑𝑑𝑅𝑅 where 𝑑𝑑 is the valence of the ion, 
and 𝑅𝑅 the elementary particle charge (𝑅𝑅 = 1.6 × 10−19 C).  
We will here only consider a symmetric electrolytes for which 𝑑𝑑 = 𝑑𝑑+ = −𝑑𝑑−. For 
monovalent salts (ex: for NaCl, KCl) one has 𝑑𝑑 = 1. For small 𝑥𝑥 one has tanh(𝑥𝑥) = 𝑥𝑥 
which implies that for small 𝜓𝜓(𝜋𝜋) the above expression reduces to: 

𝜓𝜓(𝑟𝑟) = 𝜓𝜓(𝜋𝜋)exp�−𝜅𝜅(𝑟𝑟 − 𝜋𝜋)� 

We have previously found that for a spherical particle with small 𝜓𝜓(𝜋𝜋) (and any 𝜅𝜅𝜋𝜋) 
the potential takes the form: 

𝜓𝜓(𝑟𝑟) = 𝜓𝜓(𝜋𝜋)
𝜋𝜋
𝑟𝑟

exp�−𝜅𝜅(𝑟𝑟 − 𝜋𝜋)� 

For small 𝜅𝜅𝜋𝜋 one has: 

𝜋𝜋
𝑟𝑟

=
𝜅𝜅𝜋𝜋

𝜅𝜅𝜋𝜋 + 𝜅𝜅(𝑟𝑟 − 𝜋𝜋) ≈
𝜅𝜅𝜋𝜋

𝜅𝜅𝜋𝜋 + 1
≈ 1 

since the characteristic distance over which the electric potential is non-zero is 
(𝑟𝑟 − 𝜋𝜋) ≈ 𝜅𝜅−1. This implies that we recover the previous expression, valid for small 
𝜓𝜓(𝜋𝜋) and large 𝜅𝜅𝜋𝜋  i.e. 

𝜓𝜓(𝑟𝑟) = 𝜓𝜓(𝜋𝜋)exp�−𝜅𝜅(𝑟𝑟 − 𝜋𝜋)� 

This expression is in fact also valid for two planar surfaces (for any 𝜓𝜓(𝜋𝜋) this time 
and large 𝜅𝜅𝜋𝜋). For thin double layers (𝜅𝜅𝜋𝜋 ≫ 1) the curvature of the interfaces does 
not influence the profile of 𝜓𝜓(𝑟𝑟): 

 

For thin double layers (the thickness of which is 
given by the double arrow), the electric 
potential as function of the distance from the 
(here grey) surface is the same for planar or 
curved surfaces 
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Particles approaching one another 

Beyond the double layer, the ionic concentration is the same as if there would be no 
colloidal particles in the solution. This implies that the ion cloud screens the 
particle’s charge: from a distance, the colloidal particle surrounded by its double 
layer appears uncharged (reflected by the fact that the electric potential is then zero 
(𝜓𝜓(∞) = 0). Two colloidal particles can therefore approach each other without 
“feeling” each other. They start to interact only when their double layers start to 
overlap, i.e. when their  𝜓𝜓(𝑟𝑟) overlap. 

If the two particles would be in vacuum and therefore have no double layers, they 
would then simply undergo an electrostatic repulsion. It is now important to realize 
that in the present situation, the overlap of the double layers results in an increased 
ion concentration between the two particles. This implies that the local osmotic 
pressure is higher between the two particles, and it is this pressure that pushes the 
particles apart until their double layers are not overlapping anymore.  

 

 

Slipping plane and Stern layer 

When a particle is moving, it is possible to define a slip(ping) plane (also called 
surface of shear). This is the surface behind which everything moves with the same 
velocity as the particle. The electric potential at this plane is defined as the zeta 
potential 𝜁𝜁 . In ideal situations 𝜁𝜁 = 𝜓𝜓(𝜋𝜋) but quite often some water and ions are 
tightly bound to the particle and the slipping plane is of the order of 0.1 nm away 
from the particle’s surface: a small distance, but due to exponential behaviour of the 
electric potential one then finds that 𝜁𝜁 ≠ 𝜓𝜓(𝜋𝜋). The region between the slip plane 
and the particle is called the Stern layer region.  
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Schematic representation of the arrangement of ions close to a charged surface. Note that in 
some Stern layer models two regions are distinguished: the inner one where ions are strongly 

attached to the surface, with loss of part of their hydration shell and one where they are 
tightly bound but still possess their entire hydration shell. Between the charged surface and 

the shear plane the ions are not free to move. Beyond the shear plane it is assumed that 
Poisson-Boltzmann is valid. 

Coulombic repulsion between spheres 

The expression for the Coulomb repulsion potential between a couple of spheres 
with thin double layers, i.e. particles for which 𝜅𝜅𝜋𝜋 ≫ 1 is given by: 

Φ = 32π𝜀𝜀0𝜀𝜀𝑟𝑟 �
𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞
�
2

𝜋𝜋 tanh2 �
𝑞𝑞𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)� 

The Coulomb repulsion force F𝑟𝑟𝑒𝑒𝑝𝑝 can be estimated using the relation: 

F𝑟𝑟𝑒𝑒𝑝𝑝(𝑟𝑟) = −
𝑑𝑑Φ
𝑑𝑑𝑟𝑟

 

DLVO theory 

This theory is named after the scientists Derjaguin, Landau, Verwey and Overbeek. 
Both Derjaguin and Landau, and independently Verwey and Overbeek proposed to 
explain the stability of colloidal suspensions by adding the van der Waals potential 
and the Coulomb repulsion potential, so as to give the interaction potential: 

Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = Φ𝑣𝑣𝑒𝑒𝑤𝑤 + Φ𝑟𝑟𝑒𝑒𝑝𝑝 



Introduction to Colloid Science 

 72 

One formulation for the DLVO potential between two spheres of equal size a, for 
any 𝜓𝜓(𝜋𝜋) and κa ≫ 1 is obtained from the expressions given above: 

Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
−𝐴𝐴
6
�

2𝜋𝜋2

𝑟𝑟2 − 4𝜋𝜋2
+

2𝜋𝜋2

𝑟𝑟2
+ 𝑙𝑙𝜕𝜕 �

𝑟𝑟2 − 4𝜋𝜋2

𝑟𝑟2
��

+ 32π𝜀𝜀0𝜀𝜀𝑟𝑟 �
𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞
�
2

𝜋𝜋 tanh2 �
𝑞𝑞𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)� 

By evaluating Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 for a given suspension, it is possible to say if the suspension is 
stable (i.e. the particles will not aggregate) or unstable (i.e. they will aggregate): 
when the potential energy is below (approximately)  10 𝑘𝑘𝐵𝐵𝑇𝑇 then aggregation is 
possible, and the suspension is unstable.  

Typical examples for Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 are given in the following examples: 

 

Interaction energy between two spheres of radius 250 nm, using A = 5.10-21 J and 𝜓𝜓(𝜋𝜋) =
12.5 mV. The spheres are immersed in an electrolyte solution made of KCl at a salt 

concentration of 5 mM. 

Note that the distance at which the particles start to interact is very small: it is less 
than 1/50 of the radius of the particles. The Debye length in this case is less than 
1/200 of the radius.  
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Interaction energy between two 
kaolinite particles of radius 370 
nm, using A = 3.10-20 J, and 
𝜓𝜓(𝜋𝜋) = 40 mV. The spheres are 
immersed in an KCl electrolyte 
solution. The concentrations are 
indicated in the figure. 

 

 

The values used for this example correspond to the ones given by Novich, B. E., & 
Ring30. These authors have indeed found the fastest aggregation for 200 mM of 
added KCl.  

Between 50 and 100 mM of added KCl (where Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is of the order of some  10 𝑘𝑘𝐵𝐵𝑇𝑇) 
aggregation is still possible, but will take a longer time, as the particles have to 
overcome the energy barrier (the peak in the picture). This was also found 
experimentally by the authors. 

By looking closely at the interaction potential curves, one can distinguish the 
following features: 

At long-range separation, the particles experience a weak attraction, due to the 
long-range action of the van der Waals force: the van der Waals force acts on a 
longer range than the repulsion 
force, which becomes faster 
zero. This is best seen when 
plotting |Φ𝑣𝑣𝑒𝑒𝑤𝑤|/�Φ𝑟𝑟𝑒𝑒𝑝𝑝�, see 
figure. It is clear that both for 
long-range (h/a > 0.06) and 
small-range (h/a < 0.001) the 
van der Waals potential is 
larger in magnitude than the 
repulsion potential (|Φ𝑣𝑣𝑒𝑒𝑤𝑤| >
�Φ𝑟𝑟𝑒𝑒𝑝𝑝�) . At mid-distance, the 
repulsion potential dominates 
(|Φ𝑣𝑣𝑒𝑒𝑤𝑤| < �Φ𝑟𝑟𝑒𝑒𝑝𝑝�). 

                                                                 
30 See earlier footnote 
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At mid-range separation, a minimum is appearing in the curve, more or less visible, 
depending on the value of |Φ𝑣𝑣𝑒𝑒𝑤𝑤|/�Φ𝑟𝑟𝑒𝑒𝑝𝑝�: if |Φ𝑣𝑣𝑒𝑒𝑤𝑤|/�Φ𝑟𝑟𝑒𝑒𝑝𝑝� ≪ 1 then the repulsion 
is so strong that the minimum is barely visible. In that case, the particles will simply 
be “pushed back” by the energy barrier. If, on the other hand, |Φ𝑣𝑣𝑒𝑒𝑤𝑤|/�Φ𝑟𝑟𝑒𝑒𝑝𝑝� ≤ 1 , 
then the minimum is visible (see the curves for 50 mM and 100 mM on the picture 
of the previous page). If the minimum is sufficiently deep, the particles will be 
trapped inside. For the 50 mM case, the minimum is located at about 3.7 nm (so 
1/100 of the particle’s radius). The two particles will therefore, after having 
approached each other, stay located 3.7 nm apart. On the scale at which 
measurements are performed, this means that the detecting device will “see” the 
two particles as aggregated. This type of aggregation is reversible. By lowering the 
salt concentration (by diluting the sample with water for example), the energy 
barrier will increase again (|Φ𝑣𝑣𝑒𝑒𝑤𝑤|/�Φ𝑟𝑟𝑒𝑒𝑝𝑝� ≪ 1), the two particles will repel each 
other and no longer form an aggregate. By shearing or sonicating the sample, the 
particles will also be able to escape the minimum, but when the sample is then left 
to stay unstirred, the particles will slowly come back into the minimum, and 
aggregation will start again.  

This minimum is called secondary minimum by opposition to the primary minimum 
that always exists at very small separations and that we are now going to discuss. 

At small-range separation, a very deep minimum (the primary minimum) is always 
present, indicating the attractive action of the van der Waals forces at very low 
separations. When two particles are trapped in this minimum, they are nearly 
irreversibly aggregated, as the energy to get them out of the minimum has to be 
extremely large. The separation between the particles is then close to 0 (the particles 
are touching). The DLVO model does not account for what exactly occurs when 
particles are touching. Depending on the surface properties of the touching 
particles, the depth of the primary minimum and the height of the energy barrier, it 
is sometimes possible to de-aggregate (= disperse) the particles by sonication or 
using a deflocculating agent (also called a dispersing or destabilizing agent). This 
agent is a chemical product. For instance, in soil science, sodium 
hexametaphosphate31 (NaPO3)6 is used in combination with sodium carbonate32 
Na2CO3 to disperse soil particles.  

Even if the energy barrier is high (of some order of 10 𝑘𝑘𝐵𝐵𝑇𝑇 – but not too high i.e. not 
of the order of 100 𝑘𝑘𝐵𝐵𝑇𝑇), it is still possible for the particles to “ jump” the barrier 
thanks to thermal fluctuation and get into the primary minimum. Particles in the 
secondary minimum are therefore called “ kinetically” stable, implying that over 

                                                                 
31 It is also used as an active ingredient in toothpastes as an anti-staining and tartar prevention 
ingredient. 
32 also known as washing soda 
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time (days, weeks, years) (some) particles inside the suspension could get over the 
energy barrier and aggregate.  

The scientists behind the DLVO theory 

 

Boris Vladimirovich Derjaguin (or Deryagin; Russian: Бори́с Влади́мирович 
Деря́гин) (1902– 1994) was a Soviet chemist. He helped laying the foundation of the 
modern science of colloids and surfaces. He is at the origin of the Derjaguin 
approximation widely used in order to approximate the interaction between curved 
surfaces from the knowledge of interacting planar ones. 

Lev Davidovitch Landau (Russian: Ландау, Лев Давидович) (1908 – 1968) was a 
Soviet physicist who made fundamental contributions to many areas of theoretical 
physics. He received the 1962 Nobel Prize in Physics. Together with Derjaguin, they 
published what would become known as the DLVO theory in an article entitled  
“Theory of the stability of strongly charged lyophobic sols and of the adhesion of 
strongly charged particles in solutions of electrolytes.” by Derjaguin, B. V., & Landau, 
L. (1941). Acta physicochim. URSS, 14(6), 633-662.  

Evert Johannes Willem Verwey (Verweij) (1905 – 1981) was a Dutch chemist, who 
also did research in physical chemistry. He obtained his PhD in 1934 under the 
guidance of Hugo Rudolph Kruyt (who is one of the pioneer in colloid science). In 
1934 he moved to the Philips Laboratories (NatLab) in Eindhoven. He continued 
work on colloids, which was also the topic of his dissertation, and on oxides. The 
Verwey transition in magnetite is named after him. 

Jan Theodoor Gerard Overbeek (1911 - 2007) was a Dutch professor of physical 
chemistry at the university of Utrecht. Like Verwey, he obtained his PhD under the 
guidance of Kruyt, and his PhD (obtained in 1941) was entitled Theorie der 
Electrophorese, het Relaxatie-effect. (Theory of electrophoresis, the relaxation 
effect). He then went to work for Philips, where Evert Verwey was his direct boss. 
The van der Waals forces had already been studied at Philips in 1936-37 by Hamaker 
and De Boer. On the basis of thermodynamic concepts, they were able to calculate 
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the free energies that would enable to derive the interaction potential. Their work, 
which led independently to the DLVO theory, was published in some key articles in 
1946, and soon they wrote a book: “Theory of the stability of Lyophobic colloids” by 
Verwey and Overbeek, with the collaboration of K. van Nes (Elsevier, 1948).  

It is clear that the DLVO theory has much to thank to the Philips Natuurkundig 
Laboratorium (Philips Physics Laboratory) or NatLab in short which was the Philips 
research department located in Eindhoven. Famous physicists like Hendrik Casimir 
and Balthasar van der Pol from Utrecht University also worked for the NatLab on 
experimental physics. 

The Schulze-Hardy rule 

The Schulze-Hardy rule is a classical well-known empirical relation that states that 
the critical coagulation33 concentration (c.c.c.) of a suspension varies with the 
valence z of the counter-ions as: 

c. c. c.∼
1
𝑑𝑑𝑒𝑒

 

where n is an exponent which is generally observed to be between 2 and 6. The 
relation was found originally by Schulze in 188234. In article of 1925, Weiser35 states: 

“From an investigation of the coagulation by electrolytes of negative arsenious 
sulfide and antimony trisulfide sols, Schulze concluded that the coagulating power of 
electrolytes is greater the higher the valence of the ion having a charge opposite to 
that on the colloidal particles. This conclusion has been supported by the later work 
of Prost, Linder and Picton, Hardy, Freundlich, and others and has come to be known 
as Schulze’s Law.” 

One of the remarkable features of the DLVO theory is that it is in agreement with 
the Schulze-Hardy rule. The c.c.c. corresponds to the situation at which the 
maximum in the DLVO potential energy curve just touches the horizontal axis (which 
is the case in the example shown above for kaolinite particles at 100 mM of salt). 
The point on the curve where this happens is mathematically defined by: 

Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑑𝑑Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑𝑟𝑟
= 0 

                                                                 
33 when the aggregation of particles is due to ions, as discussed until here in the present 
chapter, it is called coagulation. 
34 H. Schulze, J. Prakt. Chem., 1882, 25, 431; 1883, 27, 320; 1885, 32, 390. 
35 Weiser, H. B. (1925). Adsorption and Schulze's Law. The Journal of Physical Chemistry, 29(8), 
955-965. 
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The expression we have used so far for the DLVO potential is rather complicated to 
differentiate. To illustrate the fact that the Schulze-Hardy rule can be found from the 
DLVO theory, we will use another expression for Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 which is valid for spheres 
with low 𝜓𝜓(𝜋𝜋) and at large separations: 

  

Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
−𝐴𝐴𝜋𝜋

12(𝑟𝑟 − 2𝜋𝜋) + 2π𝜀𝜀0𝜀𝜀𝑟𝑟�𝜓𝜓(𝜋𝜋)�2𝜋𝜋 exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)� 

One then finds from 𝑒𝑒Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑒𝑒𝑟𝑟

= 0 that: 

2π𝜀𝜀0𝜀𝜀𝑟𝑟�𝜓𝜓(𝜋𝜋)�2𝜅𝜅𝜋𝜋 exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)� =
𝐴𝐴𝜋𝜋

12(𝑟𝑟 − 2𝜋𝜋)2 

By substituting this expression in the expression for Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0 one finds that 

−𝐴𝐴𝜋𝜋
12(𝑟𝑟 − 2𝜋𝜋) +

𝐴𝐴𝜋𝜋
12𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)2 = 0 

which is satisfied when 𝑟𝑟 = 2𝜋𝜋 + 𝜅𝜅−1. Using this value in the first equation of the 
page and setting Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0 one gets that: 

𝜅𝜅2 = �
24π𝜀𝜀0𝜀𝜀𝑟𝑟�𝜓𝜓(𝜋𝜋)�2

𝐴𝐴
�
2

 exp(−2) 

where the inverse of the Debye length squared for a symmetric salt of valence z is 
given by: 

𝜅𝜅2 =
2n∞(𝑅𝑅𝑑𝑑)2

𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇
 

and where n∞ = n+(∞) = n−(∞). The number of ions per volume36 and the 
concentration of salt C are related by: 

n∞(number/m3) = 𝑁𝑁𝐴𝐴(mol−1) × 𝐶𝐶(mM) 

One obtains: 

𝐶𝐶(mM) =
𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇

2𝑁𝑁𝐴𝐴(𝑅𝑅𝑑𝑑)2 �
24π𝜀𝜀0𝜀𝜀𝑟𝑟�𝜓𝜓(𝜋𝜋)�2

𝐴𝐴
�
2

 exp(−2) 

                                                                 
36 In physics the unit of volume is the cubic meter (m3) whereas it is litre (L) in chemistry. In 
the formula for 𝜅𝜅2 , n∞ should be in number/m3. 
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This relation clearly indicates that the salt concentration required to obtain the c.c.c. 
is proportional to 1/𝑑𝑑2. From another expressions of the DLVO theory, based on 
other approximations37, it is possible to show that the salt concentration required to 
obtain the c.c.c. is then proportional to 1/𝑑𝑑6 or 1/𝑑𝑑𝑒𝑒 with n values between 2 and 
6. 

Note that Schulze-Hardy rule in the simple case we have illustrated above originates 
from the fact that 𝜅𝜅2~𝑑𝑑2. This can be linked to an intuitive understanding:  

For ions with a higher valence, the Debye length will be smaller for the same salt 
concentrations. As the Debye length indicate the distance over which the electric 
repulsive potential is going to zero, one can say that multivalent ions screen better 
the particle’s surface charge than monovalent ions (for the same amount of salt): 

 

Interaction energy between two kaolinite particles of radius 370 nm, using A = 3.10-20 J, and 
𝜓𝜓(𝜋𝜋) = 40 mV. The spheres are immersed in an electrolyte solution made of 10 mM 

monovalent salt (z = 1 → 𝜅𝜅−1 = 3 𝜕𝜕𝑚𝑚) and 10 mM trivalent salt (z = 3 → 𝜅𝜅−1 = 1 𝜕𝜕𝑚𝑚). 

Link between surface potential and surface charge 

We have until now expressed the fact that the particle is charged by using its electric 
surface potential 𝜓𝜓(𝜋𝜋) in the equation. Usually, however, it is the surface charge of 
a particle that is known (the surface charge can be determined by potentiometric 
titration). The relation between 𝜓𝜓(𝜋𝜋) and the particle surface charge 𝜎𝜎𝑆𝑆(𝐶𝐶/𝑚𝑚2) 
cannot be derived analytically, but numerical solutions are available. Empirical 

                                                                 
37 E. J. W. Verwey and J. Th. G. Overbeek, The Theory of the Stability of Lyophobic Colloids 
(Elsevier, Amsterdam, 1948) and I. M. Metcalfe and T. W. Healy, Charge-regulation Modelling 
of the Schulze-Hardy Rule and related Coagulation Effects, Faraday Discuss. Chem. SOC., 
1990,90, 335-344 
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relations, based on the numerical results, can also be found. A very useful one38,  
valid for all 𝜁𝜁 = 𝜓𝜓(𝜋𝜋) (implying the shear plane is at the surface of the particle) and 
𝜅𝜅𝜋𝜋 ≥ 0.5 is: 

𝜎𝜎𝑆𝑆 =
𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇
𝑅𝑅𝑑𝑑

𝜅𝜅 �2 sinh �
𝑅𝑅𝑑𝑑𝜁𝜁

2𝑘𝑘𝐵𝐵𝑇𝑇
� +

4
𝜅𝜅𝜋𝜋

tanh �
𝑅𝑅𝑑𝑑𝜁𝜁

4𝑘𝑘𝐵𝐵𝑇𝑇
�� 

At low surface potential, one finds, using sinh(𝑥𝑥) = 𝑥𝑥 and tanh(𝑥𝑥) = 𝑥𝑥 for low 𝑥𝑥 : 

𝜎𝜎𝑆𝑆 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝜅𝜅𝜁𝜁 �1 +
1
𝜅𝜅𝜋𝜋
� 

and we find a linear relationship between surface charge and surface electric 
potential. (This linear relation obviously breaks down for higher potentials). The 
linear equation can be related to the definition of a capacitance39 C (as found in 
electrostatics), namely: 

𝐶𝐶 =
𝑄𝑄
𝑈𝑈

=
𝜎𝜎𝑆𝑆𝑆𝑆
𝑈𝑈

 

where 𝑄𝑄 (in Coulomb, symbol C) is the charge on one condensator plate of surface 
S (it is – 𝑄𝑄 on the other plate), U is the electric potential difference between the two 
condensator plates. In the present case, one can identify 𝐶𝐶/𝑆𝑆 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝜅𝜅[1 + 1/(𝜅𝜅𝜋𝜋)] 
and 𝑈𝑈 = 𝜁𝜁 − 0 = 𝜁𝜁 (the difference between the surface electric potential and the 
electric potential in the bulk (i.e. far from the particle). 

As we have already discussed, often, there is a Stern layer in between the surface of 
the particle and the slip plane. This layer has an extremely small thickness d. 
Therefore, it is usually assumed that the relation between the surface electric 
potential 𝜓𝜓(𝜋𝜋) and the zeta potential 𝜁𝜁 (i.e. the potential at the slip plane) is given 
by a similar linear relationship: 

𝐶𝐶𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒 =
𝜎𝜎𝑆𝑆𝑆𝑆

𝜓𝜓(𝜋𝜋) − 𝜁𝜁
=
𝜀𝜀0𝜀𝜀𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒

𝑑𝑑
 

Where the permittivity 𝜀𝜀𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒 of the Stern layer is not necessarily the same as water: 
it could be lower, because the water molecule dipoles in that region are strongly 

                                                                 
38 Loeb, A. L., Overbeek, J. T. G., Wiersema, P. H., & King, C. V. (1961). The electrical double 
layer around a spherical colloid particle. Journal of The Electrochemical Society, 108(12), 
269C-269C. 
39 The capacitance, symbolised by C has as unit F (Farad, named after Michael Faraday). Not 
to be confused with C (Coulomb), the unit of charge, nor with C (in mol/L)  the ionic 
concentration. 



Introduction to Colloid Science 

 80 

oriented and bound to the surface. Usually, 𝐶𝐶𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒 is used as an adjustable parameter 
in the models. 

Measurement of the zeta potential 

We will see in Chapter 6 how the zeta potential can be related to the optimal 
flocculation rate. Measuring the zeta potential of a particle (as function of solvent 
property, like the pH, salinity or added polyelectrolyte concentration) therefore 
enables to predict the range (of pH, salinity, etc..) where flocculation is most likely 
to occur: this happens when the zeta potential is close to zero.  A very well 
established method to assess the zeta potential of colloidal particles in suspension 
is the use of the electrophoresis technique. Electrophoresis occurs when a colloidal 
suspension is under influence of an electric field and each charged particle is moving 
to the electrode which has a charge of opposite sign. Usually the electric field is a 
fast alternating (AC) field, to prevent the electrodes from corroding. The particles 
then follow the reversal of electrode charges by oscillating at the same frequency as 
the electric field (for the low frequencies that are typically used in the 
measurements). The velocity of the colloidal particles in the electric field is recorded. 
This can be done with laser Doppler velocimetry where the phase shift in the 
scattered laser light can be related to the particle’s velocity, or simply by video 
microscopy. In video microscopy, a movie of the moving particles is analysed to get 
their velocity. Laser Doppler velocimetry is suited for particles in the 1 nm - 1μm 
range, whereas video microscopy can be used for larger particles, in the range 0.5μm 
– 10 μm. 

 

From the measure of the particle’s velocity, the zeta potential can be deduced. Charged 
colloidal particles will move to the oppositely charged electrodes, whereas uncharged 
particles have no electrophoretic velocity and hence their zeta potential is zero. During 

electrophoresis, the electric double layer around a particle is deformed, and an electric dipole 
is created. 

A simple relation between particle velocity and zeta potential has been derived by 
Smoluchowski. This relation is: 
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𝑣𝑣 =
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂

𝐸𝐸 

where 𝑣𝑣 is the velocity of a colloidal particle, 𝜂𝜂 is the viscosity of the solvent (water) 
and 𝐸𝐸 the applied electric field. Usually the electrophoretic mobility 𝜇𝜇𝐸𝐸  of the 
particle is given instead of its velocity. The electrophoretic mobility 𝜇𝜇𝐸𝐸  is defined by: 

𝜇𝜇𝐸𝐸 =
𝑣𝑣
𝐸𝐸

 

The Smoluchowski formula is valid when 𝜅𝜅𝜋𝜋 is very large – in fact so large that it 
corresponds to salt concentrations so high that they are usually not measured in 
practise. However, it is often used in articles to convert the electrophoretic mobility 
(which has units of m2 V-1 s-1) into zeta potential units (V), which are more appealing: 
an electrophoretic mobility of 1.7 × 10−8 m2 V-1 s-1 corresponds to a zeta potential 
of 25 mV for example. One can therefore defined a measured “Smoluchowski” zeta 
potential by: 

𝜁𝜁𝜇𝜇𝐸𝐸 =
𝜂𝜂
𝜀𝜀0𝜀𝜀𝑟𝑟

𝜇𝜇𝐸𝐸 

and plot 𝜁𝜁𝜇𝜇𝐸𝐸  instead of 𝜇𝜇𝐸𝐸 .  

There exists nowadays advanced numerical and analytical models that enable to 
convert the electrophoretic mobility into zeta potentials, for any 𝜅𝜅𝜋𝜋. A lot of work 
on this topic has been performed by Hiroyuki Ohshima professor at the University of 
Tokyo, who derived convenient, easy to implement, analytical formulas40.  

First, let us look at the simple case where we assume that the Smoluchowski relation 
would be correct. We will assume the following surface potential/surface charge 
relation: 

𝜓𝜓(𝜋𝜋) = 𝜁𝜁 = 2
𝑘𝑘𝐵𝐵𝑇𝑇
𝑅𝑅

arcsinh �
𝑅𝑅𝜎𝜎𝑆𝑆

2𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇𝜅𝜅
� 

This potential is in fact the zeta potential / surface charge relation for a flat surface 
(one can see, by comparing it with the relation given above for spherical particles, 
that many elements are similar). This relation is valid for spheres provided that 𝜅𝜅𝜋𝜋 is 
large. 

                                                                 
40 See the books: Ohshima, H. (2006). Theory of colloid and interfacial electric phenomena 
(Vol. 12). Academic Press, and: Ohshima, H. (2011). Biophysical chemistry of biointerfaces. 
John Wiley & Sons. 
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In the figure below, we have plotted  𝜁𝜁 as a function of ionic strength (salinity) for a 
constant surface charge given by  𝜎𝜎𝑆𝑆 = 3.9 × 10−2 C/m2.  

 

Variation of the surface potential assuming constant charge density as a function of ionic 
strength. We took 𝑑𝑑𝑘𝑘 = 2 × 10−9 𝑚𝑚2/𝑠𝑠 which is representative for the diffusion coefficients 

of K+ ions. The particle’s radius was taken to be 300 nm. 

One can clearly see that the surface potential (equal to the zeta potential as the 
shear plane is at the particle’s surface ) is varying as a function of salinity, whereas 
the surface charge is not. This is due to the fact that, by adding ions, the double layer 
gets compressed and that the potential close to the particle’s surface is changing 
accordingly. The relation between the particle surface charge and the electric 
potential is given by Gauss’s law: 

𝜎𝜎𝑆𝑆 = −𝜀𝜀0𝜀𝜀𝑟𝑟 �
𝑑𝑑𝜓𝜓
𝑑𝑑𝑟𝑟
�
𝑟𝑟=𝑎𝑎

 

This is a fundamental relation, from which all the surface charge / potential relations 
given above are derived. This equation tells us in particular that if 𝜎𝜎𝑆𝑆 is constant, 
𝑑𝑑𝜓𝜓/𝑑𝑑𝑟𝑟 should be constant. For the sake of argument, we can make the assumption 
that: 

�
𝑑𝑑𝜓𝜓
𝑑𝑑𝑟𝑟
�
𝑟𝑟=𝑎𝑎

~ 
𝜓𝜓(𝜋𝜋 + 𝜅𝜅−1) − 𝜓𝜓(𝜋𝜋)

(𝜋𝜋 + 𝜅𝜅−1) − 𝜋𝜋
~
−𝜓𝜓(𝜋𝜋)
𝜅𝜅−1

 

 as 𝜓𝜓(𝜋𝜋 + 𝜅𝜅−1) ~ 0 . Therefore 𝜓𝜓(𝜋𝜋) should vary if 𝜅𝜅−1 is changing. 

If the Smoluchowski relation would be correct, this implies that we should have 
𝜁𝜁𝜇𝜇𝐸𝐸 = 𝜁𝜁 and the measured electrophoretic mobility would be equal to:  
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𝜇𝜇𝐸𝐸 =
𝜀𝜀0𝜀𝜀𝑟𝑟
𝜂𝜂

𝜁𝜁 = 2
𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇
𝑅𝑅𝜂𝜂

arcsinh �
𝑅𝑅𝜎𝜎

2𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇𝜅𝜅
� 

The “expected to be measured” 𝜁𝜁𝜇𝜇𝐸𝐸  should look like the dashed red curve given 
above. Note that for moderate to low salinities the expected zeta potential gets 
unrealistic values (in general |𝜁𝜁| < 150 mV). 

A formula, derived by Ohshima, valid for 𝜅𝜅𝜋𝜋 > 10 and monovalent electrolytes (z = 
1), relates the particle’s surface charge (assuming that the shear plane is at the 
particle’s surface and no Stern layer exists) to the electrophoretic mobility or 𝜁𝜁𝜇𝜇𝐸𝐸. 
We give it here (see the book given in footnote to find the full derivations), as it will 
enable us to understand an important feature of the mobility ( 𝜇𝜇𝐸𝐸  or 𝜁𝜁𝜇𝜇𝐸𝐸) versus 
salinity curve. 

The formula found by Ohshima is given by: 

𝜁𝜁𝜇𝜇𝐸𝐸 = 𝜁𝜁 −
2𝐹𝐹

1 + 𝐹𝐹
𝑘𝑘𝐵𝐵𝑇𝑇
𝑅𝑅

ln �
1
2
�1 + exp �

𝑅𝑅𝜁𝜁
2𝑘𝑘𝐵𝐵𝑇𝑇

��� 

with 

𝐹𝐹 =
2
𝜅𝜅𝜋𝜋

�1 +
2𝜀𝜀0𝜀𝜀𝑟𝑟
𝜂𝜂𝑑𝑑𝑘𝑘

�
𝑘𝑘𝐵𝐵𝑇𝑇
𝑅𝑅
�
2

� �exp �
𝑅𝑅𝜁𝜁

2𝑘𝑘𝐵𝐵𝑇𝑇
� − 1� 

where 𝑑𝑑𝑘𝑘  is the ionic diffusion coefficient of the counterion. 

In the following figure, we have 
plotted the measured 𝜁𝜁𝜇𝜇𝐸𝐸  
according to the formula of 
Ohshima, the formula of 
Smoluchowski and the full 
numerical solution, using the 
same values as given above.  

𝜁𝜁𝜇𝜇𝐸𝐸 according to the formula of 
Ohshima, Smoluchowski and the full 
numerical solution as function of 
ionic strength C (mM) and 𝜅𝜅𝜋𝜋. 
Particles have a radius of 300 nm and 
a constant charge41. 

One can now see that the 
behaviour of the curve is complex. This is due to the fact that the double layer, when 
                                                                 
41 Chassagne, C., & Ibanez, M. (2012). Electrophoretic mobility of latex nanospheres in 
electrolytes: Experimental challenges. Pure and Applied Chemistry, 85(1), 41-51. 
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the electric field is applied, is deforming. This deformation is then changing the local 
electric field “felt” by the colloidal particle and hence the colloidal particle adapts its 
velocity. At high ionic strengths, the double layer is so compressed that it hardly 
deforms and the conditions used by Smoluchowski to derive his equation applies. 
This happens for salinities larger than 100 mM (larger than the salinity of sea water) 
which are seldom encountered in experiments. 

The full numerical solution behaviour has been confirmed by experiments42: 

Electrophoretic mobility of 156 nm 
latex particles in NaCl solution: the 
counterions of the particles are 
nearly the only ions in solution. At 
very low ionic strength, the data 
follows the theoretical prediction 
and the mobility increases 
dramatically. 

These experiments were done in 
very “clean” water. 

In the following figure, NUM 
represents the full numerical solution and OHSHIMA is the curve according to the 
formula given above. No 
adjustable parameters 
have been used. The 
experiments were done 
using spherical, 
homogeneously charged, 
latex spheres. The 
symbols correspond to 
measurements. The 
values of the variables are 
the ones given in the 
previous theoretical 
figures. It would now 
appear that the formula of 
Ohshima works better 
than the full numerical 
solution at low ionic strength: this is an artefact. In the experiments performed here, 
below 0.1 mM of added salt, the ionic strength remained constant, due to the 

                                                                 
42 M. R. Gittings, D. A. Saville , Electrophoretic Mobility and Dielectric Response 
Measurements on Electrokinetically Ideal Polystyrene Latex Particles, Langmuir, 1995, 11 (3), 
798-800 
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presence of background ions. At very low concentrations of added salt, the added 
salt concentration is then not representative of the true electrolyte concentration. 
These background ions were released when the particles were added to the demi-
water43. To remove these background ions, dialysis (see Chapter 2) can be 
performed. This was not done in the present experiments but was performed in the 
experiments performed by Gittings et al. given above. In most experiments on clays, 
dialysis is not often done, as it could trigger some unwanted effects, such as the 
delamination of the primary clay particles (see Chapter 5). This implies, in the 
present case, that the measured 𝜁𝜁𝜇𝜇𝐸𝐸  remains constant below 0.1 mM of added salt. 
The difference between white and black symbols are related to the experimental 
protocol. From this study, it was concluded that the high > low protocol was the most 
adapted, since it corresponds best to the expected theoretical values.  

From the measured 𝜁𝜁𝜇𝜇𝐸𝐸  it is also possible to have an idea of the surface charge of 
the particles. One relation between surface charge and electric potential some pages 
above for 𝜅𝜅𝜋𝜋 ≥ 0.5. One can show that in most cases encountered in practice, this 
formula simplifies into: 

𝜎𝜎𝑆𝑆 =
2𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇

𝑅𝑅𝑑𝑑
𝜅𝜅sinh �

𝑅𝑅𝑑𝑑𝜁𝜁
2𝑘𝑘𝐵𝐵𝑇𝑇

� 

which is the transposed of the relation given at the beginning of this section, where 
it was given as zeta potential / surface charge relation for a flat surface. If we plot: 

𝜎𝜎𝜇𝜇𝐸𝐸 =
2𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇

𝑅𝑅𝑑𝑑
𝜅𝜅sinh �

𝑅𝑅𝑑𝑑𝜁𝜁𝜇𝜇𝐸𝐸
2𝑘𝑘𝐵𝐵𝑇𝑇

� 

We get: 

 

where the black dotted line represents the surface charge of the particle. For small 
C, 𝜎𝜎𝜇𝜇𝐸𝐸  goes to zero (not shown) as 𝜅𝜅 becomes very small, but for C > 10 mM one has 
                                                                 
43 Demi-water is water with an extremely low conductivity.  
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in good approximation 𝜎𝜎𝜇𝜇𝐸𝐸  ~ 𝜎𝜎𝑆𝑆. This is due to the fact that in that range of 
concentrations one has 𝜁𝜁𝜇𝜇𝐸𝐸~ 𝜁𝜁 as discussed above. 

Ionic conductivity and diffusion coefficient 

When an electric field is applied to a solution, ions are moving like colloidal particles 
do via electrophoresis. The electrophoretic mobility of ions cannot be measured by 
the techniques described above, as they are too small to be seen, even by laser 
Doppler velocimetry (ions’ sizes are below 1 nm). An alternative way to assess the 
electrophoretic mobility of ions is to measure conductivity. As ions are charged, 
their displacement can be related to an electric current which in turn can be related 
to the applied electric field E by: 

𝐽𝐽 = 𝐾𝐾𝑒𝑒𝐸𝐸 

where 𝐾𝐾𝑒𝑒 is the conductivity (in S/m) of the solution. The symbol S  (1 S = 1 Ω-1 ) 
stands for “Siemens” (in honour of Werner von Siemens, founder of the electrical 
and telecommunications company Siemens). Note that in the previous relation the 
electric current 𝐽𝐽 is expressed in A/m2. The electric intensity 𝑃𝑃 is in A (Ampère44) in 
the standard relation 𝑈𝑈 = 𝑅𝑅𝑃𝑃, where 𝑈𝑈 is the applied voltage difference and 𝑅𝑅 the 
resistance.  

In Chapter 2, we have seen that mobility of a particle of radius a (independently of 
the applied force) is given by 𝜇𝜇 = 1/(6𝜋𝜋𝜂𝜂𝜋𝜋) if Stokes’ s friction force applies. This 
expression gives the right order of magnitude for the electrophoretic mobility of a 
colloidal particle, however it is imperfect, as the application of an electric field 
induces corrections to the friction force on the colloidal particle. For ions, Stokes’ s 
friction force is a good approximation. For example, for a typical ion radius of 0.1 
nm, one finds that the ionic diffusion coefficient (see Chapter 2) defined by 𝑑𝑑𝑘𝑘 =
𝑘𝑘𝐵𝐵𝑇𝑇/(6𝜋𝜋𝜂𝜂𝜋𝜋) gives 2.1 × 10−9 𝑚𝑚2/𝑠𝑠 which is very close to the diffusion coefficient 
of K+ and Cl- for example, which have radii of the order of 0.1 nm.  

The conductivity  of a solution is linked to the ionic diffusion coefficients of its ionic 
constituents by: 

𝐾𝐾𝑒𝑒 = �
𝑅𝑅2𝑑𝑑𝑘𝑘2n∞
𝑘𝑘𝐵𝐵𝑇𝑇𝑘𝑘

𝑑𝑑𝑘𝑘  

where we recall that: n∞(number/m3) = 𝑁𝑁𝐴𝐴(mol−1) × 𝐶𝐶(mM). The ionic diffusion 
coefficients can be found in handbooks, and are usually given as limiting ionic 
conductivities Λ𝑘𝑘∞(S m2 mol-1): 

                                                                 
44 In honour of André-Marie Ampère (1775-1836) a French physicist and mathematician who 
was one of the founders of classical electromagnetism. 
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Λ𝑘𝑘∞ = |𝑑𝑑𝑘𝑘|𝑑𝑑𝑘𝑘𝑁𝑁𝐴𝐴
𝑅𝑅2

𝑘𝑘𝐵𝐵𝑇𝑇
 

A convenient relation between the Debye length and the conductivity is given by: 

𝐾𝐾𝑒𝑒 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝜅𝜅2
𝑑𝑑+𝑑𝑑+ − 𝑑𝑑−𝑑𝑑−
𝑑𝑑+ − 𝑑𝑑−

 

Most electrophoretic measuring devices also measure the conductivity of the 
suspension. Knowing the type of salt present in the suspension, 𝜅𝜅2 can then be 
estimated. Note that electrophoretic measurement are always done for small 
concentrations of colloidal particles (to avoid particle-particle interactions), and that 
the contribution of colloidal particles to conductivity is negligible compared to the 
one of ions:  in Chapter 1, we have seen that on average for 1 colloidal particle there 
is 1010 ions in solution.  

 

Illustrations 

van der Waals 
https://en.wikipedia.org/wiki/Johannes_Diderik_van_der_Waals 

Derjaguin 
https://link.springer.com/article/10.1023%2FA%3A1020686631909 

Landau 
https://en.wikipedia.org/wiki/Lev_Landau 

Verwey 
https://chg.kncv.nl/geschiedenis/biografieen/v/verweij,-e.j.w. 

Overbeek 
http://www.ecis-web.eu/overbeek.htm 
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So far, we have only discussed electrostatic stabilization, induced by charges (the 
charges on the particle’s surface) and destabilization triggered by the ions in 
solution. There are however other mechanisms leading to (de)stabilization. These 
are related to the presence of special molecules in the colloidal suspension. These 
molecules are called polymers and surfactants. These molecules have also a 
colloidal size and combine with clay particles to create new colloidal particles (flocs, 
micelles…). Flocculation (the formation of flocs) will be the topic of Chapters 5 and 
6. In the present chapter, we will review the properties of polymers and surfactants. 
These molecules can have an industrial origin, but can also originate from plants and 
animals. Polymers and other type of organic matter are produced or altered by 
microorganisms which are living in the mud. Some of these microorganisms, 
presented here,  have also a colloidal size and can be part of flocs.  

Polymers & polyelectrolytes 

Polymers come in various size, shape and charges. They can be found in nature or 
made in the laboratory. On some of the next pages, we give an overview of some 
polymers. Polymers that are electrically charged are called polyelectrolytes. 
Polymers are colloidal particles, as one of their characteristic size (usually their 
apparent radius or their width) lays within the colloidal range. 

 

Illustration of a polyelectrolyte in water. The polyelectrolyte is seen as a long flexible chain 
made of repeating units i.e. the monomers (circles) connected by springs. The counterions (in 

this case cations) are in vicinity of the negatively charged units 

Polyelectrolytes have been studied extensively over the years45 as their behaviour 
can be quite complex. As the charged colloidal particles studied in Chapter 3, they 
are subjected to electrostatic interactions, but the fact that they are flexible chains 
adds a conformation behaviour. Depending on the affinity of the polyelectrolyte 
with the solvent and the ionic concentration, the polyelectrolyte conformation can 
be different. 

                                                                 
45 Dobrynin, Andrey V., and Michael Rubinstein. "Theory of polyelectrolytes in solutions and 
at surfaces." Progress in Polymer Science 30.11 (2005): 1049-1118 and references within 
(especially the books) 
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Very simple illustrations of polymers in solutions are given here: 

 

 
 

 

  

random coil 
 
the uncharged 
polymer configuration 
is close to a self-
avoiding (=two 
monomers cannot 
occupy the same 
position at the same 
time) random walk 
(see Chapter 2) 

expanded conformation 
 
the charges on the polymer 
are repelling each other 
through Coulomb forces 
leading to an extension of 
the chain in the water 
(at low salinity). The 
extension of the polymer 
depends on its degree of 
dissociation . 

coiled conformation 
 
in the presence of salt, 
the charges on the 
polymer will be 
screened (see Chapter 
3), and it is 
energetically 
favourable for the 
polymer to coil. 

 

The conformation of polymers in suspension can be studied theoretically by 
numerical simulations. As in the picture above, one then represents usually the 
monomers by spheres that interact through Coulomb and Lennard-Jones potentials 
(see Chapter 3 for Coulomb and Chapter 7 for Lennard-Jones potentials). The 
numerical models are compared to different types of experimental data (light 
scattering, fluorescence or Raman spectroscopy, Nuclear Magnetic Resonance 
(NMR), etc...). 

The behaviour of polymers and polyelectrolytes is also extensively studied from 
thermodynamic concepts, similar to the ones introduced at the end of Chapter 8. 

Branched and crosslinked polymers 

We have represented polyelectrolytes as long chains, but there exist also branched 
and crosslinked polyelectrolytes/polymers.  

 

left: branched polymer; right: crosslinked polymer 
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As can be seen underneath, natural polymers are often branched or crosslinked.  

Some examples of polymers, polyelectrolytes and (de)flocculating agents 

By definition a polymer is a macromolecule, which consists of many repeated 
subunits (for example n repeated ethylene units –(CH2)n–). Natural polymeric 
material include fibres like cellulose (found in wood, and used in paper making), 
proteins, gums, DNA, etc… Synthetic polymeric material include plastics (latex – 
natural latex also exists), paints and glue.  

Polyacrylamide (-CH2CHCONH2-) : It forms a soft gel when hydrated, and is used in 
applications such as gel electrophoresis. One of the largest 
uses for polyacrylamide is to flocculate solids in a liquid. 

Polyacrylamide can be supplied in copolymer46 forms of 
acrylamide combined with other chemical species to form an 
acrylic acid or a polyelectrolyte. Common uses of 

polyacrylamide and its derivatives are in Enhanced Oil Recovery, in water treatment 
(for flocculation), and processes like paper making and screen printing. 
 
Xanthan gum (-C35H49O29 -) : This natural polymer is a polysaccharide secreted by the 

bacterium Xanthomonas campestris. It is composed of 
repeat units of glucose, mannose (sugars). In foods, 
xanthan gum is most often found in salad dressings and 
sauces. In the oil industry, xanthan gum is used in large 

quantities, usually to thicken drilling mud. In cosmetics, 
xanthan gum is used to prepare water gels, usually in 

conjunction with bentonite clays. It is also used in oil-in-water 
emulsions47 to help stabilize the oil droplets against coalescence. 

Natural polymers secreted by microorganisms are in general called Extracellular 
Polymeric Substances (EPS) – generally 
referred to as slime. They are composed of 
polysaccharides, and include other macro-
molecules such as DNA, lipids and humic 
substances. In nature, they are important 
for the formation of biofilms. Biofilms (see 
picture) are communities of symbiotic 
micro-organisms (bacteria, fungus, algae, 
protozoa) which can stick to each other and 
are embedded within a self-produced matrix of EPS. Biofilms are an important food 
resource for invertebrates, and can be found at flood on mudflats. They can also help 
to stabilize a soil against erosion. 

                                                                 
46 A copolymer is a polymer having more than one type of monomer. 
47 See “surfactant” , below. 
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Humic acids : They are a major organic constituent of soil, and produced by the 
biodegradation of dead organic 
material. Each humic acid is a complex 
mixture of different acids containing 
carboxyl and phenolate groups. They can 
form complexes with ions commonly 
found in the environment creating 
humic colloids. Fulvic acids for instance 
(a special type of humic acid) are 
colloidal polyelectrolytes. Humic acids 
are able to interact with each other and 

create higher order complexes. They can also form complexes with metal ions, and 
hereby regulate their bioavailability. Modern investigations have found that humic 
acid is released from straw when mixed with mud and increases clay's plasticity. The 
bricks made with mixtures of straw and mud are stronger (they are less likely to 
break or lose their shape) than mud bricks48. The adsorption behaviors of humic 
acids and fulvic acids onto clay minerals in an on-going topic of research. 
 
Biodegradation of polymers 

The polymers used in industry are often synthetic and made from polyolefins. These 
are for example polyethylene and  polystyrene. These polymers are produced from 
fossil fuels, and are considered to be undegradable. In recent years there has been 
a gain in interest in biodegradable polymers49. These polymers are defined as those 
that undergo microbially induced chain scission leading to their mineralization. The 
biodegradation is strongly dependent on environmental conditions, like pH, 
humidity, oxygenation and the presence of some metals. Biodegradable polymers 
are made from corn, wood cellulose or are synthetized by bacteria from small 
molecules like butyric acid or valeric acid that give polyhydroxybutyrate and 
polyhydroxyvalerate.  

The degradation of polymers in soil is an on-going topic of research, and is strongly 
linked to the biochemical and physical processes occurring within the soil. The 
degradation of a polymer within a clayey fabric has for instance consequences for 
the consolidation, permeability and strength of this soil. 

 

                                                                 
48 Lucas, A.; Harris, J.R. (1998). Ancient Egyptian Materials and Industries. New York: Dover 
Publications. p. 49. ISBN 0-486-40446-3 
49 Ray, Suprakas Sinha, and Mosto Bousmina. "Biodegradable polymers and their layered 
silicate nanocomposites: in greening the 21st century materials world." Progress in materials 
science 50.8 (2005): 962-1079. 
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Polymers and clays 

Polymers can interact in different ways with clay colloidal particles. A polymer can 
adsorb on the surface of a colloidal particle as a result of a Coulombic (charge-
charge) interaction, dipole-dipole interaction, hydrogen bonding, van der Waals 
forces (see Chapter 3), or any combination of these mechanisms. 

A hydrogen bond is the electrostatic attraction between polar groups that occurs 
when a hydrogen (H) atom bound to a highly electronegative atom such as nitrogen 
(N), oxygen (O) or fluorine (F) experiences attraction to some other nearby highly 
electronegative atom (see Chapter 3). These hydrogen-bond attractions can occur 
between molecules (intermolecular) or within different parts of a single molecule 
(intramolecular). Depending on geometry and environmental conditions, the 
hydrogen bond typically has between 5 and 30 kJ/mole in thermodynamic terms. 
This makes it stronger than a van der Waals interaction, but weaker than charge-
charge (covalent) bonds. This type of bond can occur in inorganic molecules such as 
water and in organic molecules like DNA and proteins. 

 

Water molecules have both hydrogen bonds and covalent bonds 

As the polymer is a very long snake-like molecule, the way it sticks to a particle 
depends not only of its affinity with the particle’s surface, but also its affinity with 
the solvent. The usual result is that the polymer sticks to certain points of the surface 
(as trains), separated from one another by loops and for much of its length it is able 
to trail out into the solvent (as tails). 

 

Aggregation by the addition of polyelectrolytes is a method widely used in industry 
in the treatment of mineral ores and in the purification of water.  
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Tailings ponds in Alberta (Canada): these are by-products of the oil sand industry. After 
extracting the bitumen, the remaining fine particles (tailings) are flocculated by polymers, 

deposited in large ponds and left to settle.  

When two particles, coated with polymers, are getting close to each other, this can 
lead to two different aggregation mechanisms50: 

Bridging aggregation51: the loops and tails of one polymer of one particle will be 
able to attach to the other particle. This process is facilitated when the amount of 
polymers adsorbed on the particles is not too high. Usually, one finds that the 
optimum polymer concentration to achieve flocculation corresponds to half surface 
coverage for the polymer. Polymeric bridges are changing as function of shear (see 
Chapter 5). Bridging aggregation can even occur with polyelectrolytes having surface 
charges of same sign as the ones of the particles. In that case, aggregation is enabled 
by the presence of oppositely charged ions in the water, that will act as “binders” 
between particle and flocculant. 

 

Left and middle: bridging flocculation. The 
anionic polyelectrolyte on the left needs a 
cation (in red) to bridge to the clay; right: 
patching flocculation 

 

Patching aggregation: patching aggregation occurs usually when polyelectrolytes 
have a charge that is opposite in sign to the one of the particle. These polyelectrolyte 
then strongly bind to the particles, and their tails do not extend much into the 

                                                                 
50 Bergaya, Faïza, and Gerhard Lagaly. Handbook of clay science. Vol. 5. Newnes, 2013. 
51 When particles are aggregated through polymers, one usually speaks of flocculation (as 
oppose to coagulation, i.e. salt-induced aggregation). 
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solvent. Aggregation is then made possible between one polymer patch of one 
particle and the bare surface area of another particle. 

Interlayer interaction 

Until now we have represented clay particles are spheres, but as we have seen in 
Chapter 1, clay particles are not spherical. Many types of clay particles have the form 
of stacks of platelets, and the interaction between clay and polyelectrolyte can also 
influence the stacking of platelets: 

 

Clay interlayer with a cationic polyelectrolyte 

Cationic polymers can strongly interact with clay minerals and penetrate between 
the layers if they are small enough (in particular montmorillonite due to its swelling 
properties, see Chapter 5).  

Another mechanism is induced by the strong interaction between a polyelectrolyte 
coated face of a clay particle with the bare face of another: one silicate layer of one 
or each clay particle can then be peeled-of so that one (or two) new bare faces are 
exposed and able to adsorb polymers: 

 

Interaction between polyelectrolyte and clay platelets. Two silicate layers are peeled-of so 
that one polymer can adsorb on one of the bare surfaces. Subsequently another stack of 

platelets can adsorb on the polyelectrolyte, and again a silicate layer is peeled-of. This leads 
to the intercalation of polyelectrolytes between the platelets of the clay. 

Depletion effect 

When small (or coiled) polymers are added to a suspension and do not stick to the 
suspended particles they can lead to their destabilization through a depletion effect. 
This effect occurs when two colloidal particles are close to each other, and that there 
is a region (indicated by the black arrow below) where the polymers cannot 
penetrate because they are too big to get inside the volume. The resulting gradient 
in polymer concentration gives rise to a lower osmotic pressure in that region, 
leading to aggregation.  
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Even though they were not aware of its cause, early makers of inks and paints used 
to add natural gums or other polymers 
to their pigments to promote the 
binding between the pigments via 
depletion effects52.  

Art work made of clay mineral suspensions, 
probably using saliva as a binder. Saliva is 
composed of 99.5% water (electrolyte) 
with several natural colloidal and 
polymeric agents. (Grotte de Lascaux, 
17.000 BC) 

 

Stabilization 

In some cases, the presence of polymers in the suspension can enhance its 
stabilization. This occurs in particular when: 

1 – the particles are fully coated by polyelectrolytes of opposite charge. The particles 
then get an effective charge of same sign as the polyelectrolyte they are coated with 
and start repelling each other, much like standard particles of same charge do: 

 

Charge repulsion between fully polyelectrolyte-coated particles 

2 – the particles are coated with (uncharged) polymers. In that case, aggregation will 
be prevented by steric repulsion. Steric effects originate from the osmotic pressure 
in the region where the polymers overlap, due to the crowding of the polymer 
                                                                 
52 Lambourne, R., & Strivens, T. A. (Eds.). (1999). Paint and surface coatings: theory and 
practice. Elsevier. 
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chains, much like what we have seen for overlapping double layers (in that last case, 
it was due to the crowding of ions): 

 

Like for DLVO theory, theories have been developed to account for steric effects, 
from which stability criteria are derived53.  

 

Surfactants (amphiphilic molecules)  

Colloids that has not yet been reviewed and are of interest are surfactants (their 
name come from surface active agents, see surface tension below) .  

 

The surfactant called sodium stearate (sodium octadecanoate, CH3(CH2)16CO2Na) is found in 
most soap. Soaps represent about 50% of commercial surfactants. In water, sodium stearate 

dissociates to form an ionic (carboxylate) group and a counterion (Na+) 

Surfactants can be seen as a special class of polymers. Their main property is that 
they possess both a hydrophilic part (their “head” ) and a hydrophobic part (their 
“tail”, which is an hydrocarbon chain). 

                                                                 
53 Stuart, MA Cohen, et al. "Adsorption of ions, polyelectrolytes and proteins." Advances in 
colloid and interface science 34 (1991): 477-535. 
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Surfactant classification according to the composition of their head 

Surfactants can also be found in natural systems, usually in the group of lipids, 
molecules that include fats, waxes, glycerides, vitamins… Lipids can be either 
hydrophobic or amphiphilic (amphiphile is another word for surfactant). An 
abundant amphiphilic lipid is the phospholipid (note that this surfactant has two tails 
(in yellow) – there are surfactants which have more): 

 

Thanks to their dual hydrophilic/hydrophobic properties, surfactants are able to 
form particular structures called micelles: 

 

From left to right: adsorption of surfactant on an oil droplet  
and formation of a micelle (right figure) 
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We consider here a drop of oil adsorbed on a surface. Surfactant molecules are 
added into the water. Energetically, it is favourable for the molecules to go to the 
oil/water interface and position themselves such that their hydrophilic (from the 
greek “water-loving”) head sits in the water, and their hydrophobic (from the greek 
“water-hating”) tail in the oil. It is the need for the surfactants to sit at the interface 
that leads to the rapid removal of the oil droplet from the surface, so that more 
surfactant can adsorb on it. The entity such formed (the droplet coated with a layer 
of surfactant molecules) is called a micelle. This micelle will remain in suspension 
and not stick to the surface, as the hydrophilic heads prefer to remain in water and 
have no affinity for the surface. This is how soap is used to clean oily dishes or 
clothes. Note that shearing (using a brush or rubbing clothes) helps to detach the 
micelles from the surface.  

Micelles do not have to be spherical. Their shape is dependent on the shape of the 
surfactant, its charge and its environment (pH, salinity, temperature…). For example, 
another extensively used surfactant in cleaning and hygiene products is Sodium 
Dodecyl Sulfate (SDS), which undergoes a transition from spherical micelle to rod-
shape micelles upon increase of ionic strength: 

 

Structural (sphere-to-rod) transition in charged micelles (charges not shown) induced by high 
ionic strength. The structural transition takes place in charged micelles at concentrations 

well above the Critical Micelle Concentration (CMC, defined below). Note that the packing of 
the surfactant molecules is different in the spherical ‘end caps’ (darker shade) and the 

cylindrical central part (lighter shade). The spacing is reduced in the cylindrical part of the 
rod-shaped micelle due to attenuation of charge interactions at high ionic strength54. 

Surfactants in nature 

In nature, phospholipids are extremely important amphiphilic molecules that form, 
in particular, the cell membrane. They can be part of the natural organic matter that 
is found in sediments. These molecules can arrange themselves in micelles, 
liposomes or bilayer sheets.    

                                                                 
54 from: A. Chaudhuri et al. / Chemistry and Physics of Lipids 165 (2012) 497– 504 
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A vesicle is a large structure consisting of liquid 
enclosed by a lipid bilayer. A liposome is a 
spherical vesicle. It can be created by the 
disruption of biological membranes (which form 
bilayer sheets) by sonification. To maximize the 
contact of its hydrophilic head and water, a 
vesicle is then formed. Liposomes can be as big as 
1000 nm (with a standard size between 20 and 
1000 nm). Only some small molecules can pass 
the bilayers of liposomes, and larger ones can be 
trapped inside. Liposomes are for example used 
to carry drugs which they subsequently deliver by 
fusing with the cell membranes. 

 

Surface tension 

Let us consider an interface between a liquid (water) and a gas (air).The cohesive 
forces between the water molecules are at the origin of the existing surface tension: 
in the bulk, each molecule is surrounded by 
water molecules but the molecules at the 
water/air interface do not have the same 
molecules on all sides. The molecules in the 
layer in contact with air experience other 
interactions than the molecules in the bulk, 
which results in a higher surface energy 
(J/m2). This energy can also be expressed in a 
surface tension (N/m) by realising that 1 J = 1 
N.m.  A system will always try to minimize its surface energy, resulting in the fact 
that it will try to minimize its interface with the other phase (here one phase is water, 
the other air). This is why one finds many spherical, often colloidal, drops of liquid in 
gas (or gas in liquids, like the bubbles depicted here) in nature: a sphere is the 
volume that offers the smallest interface. This also explains why when two drops get 
into contact, they tend to form a larger drop (this process is called coalescence): 
again this is the smallest interface for a given volume: 
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Measuring surface tension 

 

Principle of the Wilhelmy plate: the force needed to pull the plate out of the liquid is 
recorded; the perimeter of the plate is known : the surface tension can be estimated. 

It is possible to measure a surface tension. One of the method is to use a Wilhelmy 
plate, which is a thin plate of a few square centimetres in area. The plate should be 
made in a material that is – obviously – able to be wetted by the liquid. The plate is 
pulled from the liquid, and the force is then measured (usually of the order of mN). 
The perimeter of the plate L is known: 𝐿𝐿 = 2𝑑𝑑 + 2𝑏𝑏 where 𝑑𝑑 is the length of the 
plate and 𝑏𝑏 its width. The surface tension 𝛾𝛾 is given by:  

𝛾𝛾 =
𝐹𝐹

𝐿𝐿cos(𝜃𝜃) 

In general the contact angle 𝜃𝜃 is unknown55, but assumed to be close to zero, as 
there should be complete wetting. One then simply gets  𝛾𝛾 = 𝐹𝐹/𝐿𝐿 : the surface 
tension can be seen as the force, perpendicular to the interface, needed to deform 
this interface per unit of length.  

Lowering the surface tension  

When a surfactant is added in water in a clean 
jar (which therefore contains nothing else 
than water), the surfactant molecules tend to 
go to the water/air interface, where their 
hydrophobic tail can stick out of the water. 
This lowers the surface tension of the water, 
hence their name of surfactants. On the 
picture, an example of the evolution of the 
surface tension as function of concentration 
surfactant is given. Below a critical 

                                                                 
55 Nowadays, if needed, cameras can record the angle with good accuracy. 
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concentration called Critical Micelle Concentration (CMC), the surfactant populate 
the interface. At the CMC, the interface is full, and micelles start to form: the surface 
tension does not vary much anymore, even though still some surfactant molecules 
will be able to pop in-between those who are already at the interface.  

Both polymers and surfactants are important parameters to account for when clay 
aggregation is studied, but they can be used in other engineering applications as 
well.  In petroleum engineering for example the oil production is increased when 
water containing surfactant is flushed in reservoir pores. By lowering the  interfacial 
tension the oil mobility is increased thus allowing a better displacement of the oil by 
injected water. The addition of polymers on the other hand increases the viscosity 
of water injected into the oil reservoir enabling it to exert more pressure on the oil.  

Biosurfactants 

Besides phospholipids, there exist many more natural surfactants (“biosurfactants”) 
produced by microorganisms from various substrates like sugars, oils and wastes56. 
These surfactants are synthesized as metabolic by-products , and their composition 
depends on pH, nutrient composition, substrate and temperature. These 
biosurfactants are usually either anionic or neutral. Only a few are cationic such as 
those containing amine groups. Most biosurfactant-producing organisms are 
aerobic, but a few anaerobic producers exist. 

Biosurfactants are used for bioremediation of contaminated soils. For instance 
rhamnolipid surfactants were found to efficiently remove hydrocarbons from a 
sandy loam soil, and this was applied to the beaches in Alaska after the Exxon Valdez 
tanker spill. Standard surfactants, like sodium dodecyl sulfate (SDS), were found to 
be less effective than biosurfactants in removing hydrocarbons. Biosurfactants were 
also shown to better able than SDS to enhance the solubilisation of polycyclic 
aromatic carbons (PAH’s). PAH’s are uncharged, non-polar molecules found in coal 
and tar deposits. They are also produced by thermal decomposition of organic 
matter. The dominant source of PAH’s in the environment comes from human 
activity by the combustion of biofuels and fossil fuels. Emissions from vehicles such 
as cars and trucks are a source of PAHs in particulate air pollution. Industrial activity 
such as aluminum, iron, and steel manufacturing, coal gasification and production of 
coke, tar distillation, shale oil extraction, road paving and asphalt manufacturing, 
rubber tire production can produce and distribute PAHs. Soil and river sediment near 
industrial sites can be highly contaminated with PAHs. PAHs have a strong affinity 
for organic carbon, and thus highly organic sediments in rivers, lakes, and the ocean 
can be a substantial sink for PAHs. 

                                                                 
56 Mulligan, C. N., R. N. Yong, and B. F. Gibbs. "Surfactant-enhanced remediation of 
contaminated soil: a review." Engineering geology 60.1-4 (2001): 371-380. 
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 Plankton 

Any water in a sea or lake that is neither close to the bottom nor near the shore can 
be said to be in the pelagic zone. The pelagic zone can be thought of in terms of an 
imaginary cylinder or water column that goes from the surface of the sea almost to 
the bottom. The pelagic zone can be contrasted with the benthic and demersal 
zones at the bottom of the sea. The benthic zone is the ecological region at the very 
bottom of the sea. It includes the sediment surface and some subsurface layers. 
Marine organisms living in this zone, such as clams and crabs, are called benthos. 
The demersal zone is just above the benthic zone. It can be significantly affected by 
the seabed and the life that lives there. 

In the marine environment, polymers, polyelectrolytes, surfactants and humic acids 
are originating from microorganisms and plants. We here review some of the 
microorganisms present in the water body, which go under the generic name of 
“plankton”. Some of these microorganisms have a colloidal size and can therefore 
experience colloidal interactions: algae for instance are known to aggregate 
between themselves. 

Plankton (singular plankter) are a diverse group of organisms that live in the water 
column of large bodies of water and that cannot swim against a current. They 
provide a crucial source of food to many 
large aquatic organisms, such as fish and 
whales. 

These organisms include drifting or 
floating bacteria, fungi, archaea, algae, 
protozoa and animals that inhabit, for 
example, the pelagic zone of oceans, 
seas, or bodies of fresh water. Though 
many planktonic species are microscopic 
(colloidal) in size, plankton includes 
organisms covering a wide range of sizes, including large organisms such as jellyfish.  

Biologists have a peculiar way to define the size of plankton, as can be seen in the 
table underneath: 

name size example 
picoplankton  < 2µm cyanobacteria 
nanoplankton 2µm - 20µm diatoms  
microplankton 20µm - 200µm dinoflagellates, diatoms 
mesoplankton 200µm – 20mm small molluscs 
macroplankton 20mm – 20 cm jellyfish, snails, krill 
megaplankton > 20 cm jellyfish 
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Picoplankton and nanoplankton can be considered as colloidal particles, but it is 
important to remember that not only colloidal plankton but also larger planktons 
are able to secrete or decompose into smaller organic parts.  

Phytoplankton 

Phytoplankton are photosynthesizing microscopic organisms that inhabit the upper 
sunlit layer of almost all oceans and bodies of fresh water. They use solar energy to 
synthesize complex organic molecules from simpler inorganic compounds such as 
carbon dioxide (CO2) and water (H2O). A simple photosynthetic reaction is: 

CO2 + H2O + light → CH2O + O2 

By this type of reaction carbon-based polymers (CH2O)n are formed, typically 
molecules such as glucose or other sugars. These relatively simple molecules may be 
then used to further synthesise more complicated molecules, including proteins, 
complex carbohydrates, lipids, and nucleic acids (DNA, RNA). This happens when 
carbon-based molecules are eaten by living organisms (by small microorganisms, like 
bacteria, which in turn are eaten by larger organisms, or directly by larger organism, 
like fishes) that cannot themselves synthetize carbon57. 

The most important groups of phytoplankton include the diatoms, cyanobacteria 
and dinoflagellates. 

Diatoms 

Diatoms are algae with distinctive, transparent cell walls made of silicon dioxide 
hydrated with a small amount of water (Si02 + H20). Diatoms are abundant in nearly 
every habitat where water is found – oceans, lakes, streams, mosses, soils, even the 
bark of trees. These algae form part of the base of aquatic food webs in marine and 
freshwater habitats. Assemblages of diatom species are often specific to particular 
habitats and can be used to characterize those habitats. Nearly all diatoms are 
microscopic - cells range in size from about 2 microns to about 500 microns. 

Planktonic diatoms in freshwater and marine environments typically exhibit a "boom 
and bust" (or "bloom and bust") lifestyle. When conditions in the upper mixed layer 
(nutrients and light) are favourable (as at the spring), their competitive edge and 
rapid growth rate enables them to dominate phytoplankton communities ("boom" 
or "bloom"). They can then also produce large quantities of polymeric slime (the 
freshwater diatom Didymosphenia geminate, for example, produces large quantities 
of a brown jelly-like material called "brown snot" or "rock snot").  

                                                                 
57 this type of organisms include humans, who rely on eating fruit, vegetables and meat to get 
their necessary carbon-based molecules. 
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Several species of fresh-water diatoms  

When conditions turn unfavourable, usually upon depletion of nutrients, diatom 
cells typically increase in sinking rate and exit the upper mixed layer ("bust"). This 
sinking can for example be induced by a loss of buoyancy control or the synthesis of 
mucilage (= polymeric slime) that sticks diatoms cells together. Cells reaching deeper 
water or the shallow seafloor can then rest until conditions become more favourable 
again. In the open ocean, many sinking cells are lost to the deep, but refuge 
populations can persist near the thermocline58. 

In the open ocean, the diatom (spring) bloom is typically ended by a shortage of 
silicon. Unlike other minerals, the requirement for silicon is unique to diatoms and 
it is not regenerated in the plankton ecosystem as efficiently as, for instance, 
nitrogen or phosphorus nutrients. Because of this bloom-and-bust cycle, diatoms are 
believed to play a disproportionately important role in the export of carbon from 
oceanic surface waters. Significantly, they also play a key role in the regulation of the 
biogeochemical cycle of silicon in the modern ocean. 

 

                                                                 
58 The thermocline divides the warmer upper layer from the cooler (and calm) deep water 
below. 



Chapter 4 Other colloids: polymers, surfactants, microorganisms … 

 107 

Cyanobacteria 

Cyanobacteria are a group of photosynthetic, nitrogen fixing bacteria that live in a 
wide variety of habitats such as moist soils and in water. They may be free-living or 
form symbiotic relationships with plants or with lichen-forming fungi. They range 
from unicellular to filamentous and include colonial species. Colonies may form 
filaments, sheets, or even hollow balls. 

 

a typical cyanobacteria cell 

Aquatic cyanobacteria are known for their extensive and highly visible blooms that 
can form in both freshwater and marine environments. The blooms can have the 
appearance of blue-green paint or scum. These blooms can be toxic, and frequently 
lead to the closure of recreational waters when spotted. Marine bacteriophages 
(which are viruses) are significant parasites of unicellular marine cyanobacteria. 

Dinoflagellates 

The dinoflagellates are marine plankton but can be found in freshwater habitats as 
well. Their populations are distributed depending on temperature, salinity or depth. 
Many dinoflagellates are known to be photosynthetic, but a large fraction combine 
photosynthesis with ingestion of prey. Dinoflagellates are unicellular and possess 
two dissimilar flagella arising from the ventral cell side. The flagellar movement 
produces forward propulsion and also a turning force. 

A bloom of dinoflagellates can result in a visible coloration of the water colloquially 
known as red tide, which can cause shellfish poisoning if humans consume 
contaminated shellfish. 
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Left: photographs of dinoflagellates; Right: algal bloom 

Zooplankton 

Zooplankton are organisms drifting in water (oceans, seas or fresh water) that are 
usually microscopic, but some (such as jellyfish) are larger and visible with the naked 
eye. Many zooplankton have locomotion, used to avoid predators or to increase prey 
encounter rate. Zooplankton feed on bacterioplankton (the bacterial component of 
the plankton), phytoplankton, other zooplankton or dead organic material (detritus). 
Zooplankton are therefore primarily found in surface waters where food is 
abundant.  

Some zooplankton have a symbiotic relationship with 
algae. Paramecium bursaria for instance has such a 
relation with the green algae called Zoochorella. The 
algae lives inside the cytoplasm of Paramecium and 
provides it with food while Paramecium provides the 
algae with movement and protection. Paramecium is 
larger than a colloidal particle, being 80-150 µm long. 
Other zooplankton can be much smaller.  
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The marine cycle 

When considering colloids in natural environment, it is important to realize the 
realm of important (variable) parameters that has to be considered in order to 
correctly model their behaviour. For instance, predicting suspended sediment 
behaviour requires not only to be able to know physical parameters such as shear 
stresses, turbulent mixing conditions, erosion parameters, or chemical parameters 
(salinity, pH, presence of polymeric substances), but also to understand – at some 
extend -  the role of biology and bio-chemistry: When and why does EPS become 
available? How does organic decomposition change the properties of the flocs? Is 
plankton able to bind to sediment particles? Can minerals, like silica, have a 
biological origin? 

 

The oceanic carbon cycle (or marine carbon cycle) is composed of processes that exchange 
carbon between various pools within the ocean and between the atmosphere. There are four 
distinct carbon pools (POC, DIC, PIC and DOC). Phytoplankton are responsible for most of the 

transfer of carbon dioxide from the atmosphere to the ocean. Carbon dioxide is consumed 
during photosynthesis, and the carbon is incorporated in the phytoplankton. Most of the 

carbon is returned to near-surface waters when phytoplankton are eaten or decompose, but 
some falls into the ocean depths.  

A part of the sediment (silica) found in the marine environment (as part or not of 
marine snow) comes from the decomposition of microorganisms: 
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Cycling of silica in the marine environment: Silicon commonly occurs in nature as silicon 
dioxide (SiO2), also called silica. It cycles through the marine environment, entering primarily 
through riverine runoff. Silica is removed from the ocean by organisms such as diatoms and 
radiolarians (a type of zooplankton) that use an amorphous form of silica in their cell walls. 
After they die, their skeletons settle through the water column and the silica redissolves. A 

small number reach the ocean floor, where they either remain, forming a silaceous ooze, or 
dissolve and are returned to the water column. Opal is a hydrated amorphous form of silica 

(SiO2nH2O) 

Many suspended particles in the marine environment are aggregates of particles of 
different origin. Marine snow is a type of aggregate made up of a variety of organic 
matter, including dead and living phytoplankton, bacteria, fecal matter, sand, and 
other inorganic dust. 

A majority of marine snow composition is actually made up of aggregates of smaller 
particles held together by a sugary mucus, transparent extracellular polysaccharides 
(TEP). These are natural polymers exuded as waste products mostly by 
phytoplankton and bacteria, but also by zooplankton. These aggregates grow over 
time and may reach several centimetres in diameter, traveling for weeks before 
reaching the ocean floor. Phytoplankton, microorganisms and bacteria live attached 
to aggregate surfaces and are involved in rapid nutrient recycling.  

The composition of the flocs is also depending on the seasonal variations, linked to 
the natural lifecycles of the microorganisms involved. In general, most detritus 
linked to mineral particles are found in estuaries or higher up in the river stream. In 
winter, they form the most abundant type of aggregates in the whole system (from 
the sea to up in the river). 
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marine snow (bottom row), faecal pellets (centre row) and “others” (top row). The “others” 
category includes all recognizable planktonic organisms (alive and carcasses) and optically 

dense debris that does not classify as marine snow or faecal pellets. For each image, the size 
(μm) and depth sampled (m) are given59. 

Illustrations 

Biofilm (public domain) 
https://en.wikipedia.org/wiki/Biofilm#/media/File:Staphylococcus_aureus_biofilm_01.jpg 

Lascaux (public domain) 
https://fr.wikipedia.org/wiki/Grotte_de_Lascaux#/media/Fichier:Lascaux2.jpg 

Phospholipides (public domain) 
https://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg 

Micelles (public domain) 
https://en.wikipedia.org/wiki/Micelle 

Plankton (public domain) 
https://en.wikipedia.org/wiki/Plankton 

Diatoms (public domain) 
https://en.wikipedia.org/wiki/Diatom 
https://en.wikipedia.org/wiki/Diatom#/media/File:Diatomeas_w.jpg  

Cyanobacteria (creative commons) 
https://en.wikipedia.org/wiki/Cyanobacteria 

                                                                 
59 Bochdansky, Alexander B., Melissa A. Clouse, and Gerhard J. Herndl. "Dragon kings of the 
deep sea: marine particles deviate markedly from the common number-size spectrum." 
Scientific reports 6 (2016): 22633. 

https://en.wikipedia.org/wiki/Biofilm#/media/File:Staphylococcus_aureus_biofilm_01.jpg
https://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg
https://en.wikipedia.org/wiki/Diatom
https://en.wikipedia.org/wiki/Diatom#/media/File:Diatomeas_w.jpg
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Dinoflagellates (creative commons) 
https://en.wikipedia.org/wiki/Dinoflagellate 

Paramecium_bursaria (creative commons) 
https://en.wikipedia.org/wiki/Paramecium_bursaria  

 

 

https://en.wikipedia.org/wiki/Dinoflagellate
https://en.wikipedia.org/wiki/Paramecium_bursaria
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Floc formation and break-up 
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Given certain conditions (see for instance DLVO theory, Chapter 3), colloidal 
particles can “glue” (aggregate) to each other, hereby  creating a bigger entity called 
“floc” that is able to settle down. The settling velocity and size of flocs is recorded 
in-situ or in the lab, from which their density is evaluated using Stokes’ settling 
velocity (defined in Chapter 2). In the present chapter we are going to see that the 
density of flocs is a complex function of their size, related to their structures and 
composition. We discuss why these structures are found. We also discuss the effect 
of shear on flocs as well as  delamination and swelling, which are processes that 
break the structures of mineral clay aggregates. 

Cluster aggregation 

Before forming large clusters, particles first have to form small aggregates (mainly 
doublets at early stages), then they grow larger and larger: 

 

Two important aggregation mechanisms are linked to the sticking probability of two 
particles:  

DLCA (Diffusion Limited Cluster Aggregation): the particles stick at first contact (ex: 
can they immediately get in the “primary minimum” defined by the DLVO theory60, 
as there is a very low energy barrier) 

RLCA (Reaction Limited Cluster Aggregation): the particles need to position 
themselves in a comfortable way to stay attached (ex: there is a substantial energy 
barrier to be overcome first) 

The results of these two types of aggregation lead to different floc structure: 

                                                                 
60 See Chapter 3 
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From the figures it is evident that the density of these two types of flocs is different: 
RLCA flocs are denser (i.e. they contain less water) than DLCA flocs. We will see later 
that this can be quantified in terms of a (pseudo) fractal dimension. 

In the previous pictures, spherical particles are shown, as this geometry is the easiest 
to investigate from a theoretical point of view. In nature, most of colloidal particles 
are not spherical. Clay minerals in particular are highly anisotropic: they can have 
the shape of platelets (used in the examples underneath), but some are also 
cylindrical-shaped: 

Depending on the clay mineral type, clay particles will disperse in different way in 
water – and also flocculate in a different way.  

Stable clay suspensions 

Here we show two examples, one of a non-swelling and one of a swelling clay, 
kaolinite and montmorillonite respectively, as they are the most encountered in 
engineering, and natural environments. Kaolinite is used in ceramics (it is the main 
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component of porcelain), in toothpaste, in paint, as adsorbents in water and 
wastewater treatment. Montmorillonite is a component of drilling mud,  used in the 
oil-drilling industry, as it makes the mud slurry viscous. Its swelling property makes 
montmorillonite-containing bentonite useful as a seal for water wells and as a 
protective liner for landfills. Montmorillonite has also been used in cosmetics and 
sodium montmorillonite is used as the base of some cat litter products, due to its 
adsorbing and clumping properties. 

 

 

 
Montmorillonite clays (part of the so-called swelling clays) can usually disperse 
easily in water as their layers are only weakly bound together. They then form a 
suspension of very small platelets (usually 1 nm thick and 100 nm long). In the 
illustration, it is said that the layers are held together by van der Waals forces, but 
this point is controversial. It is more generally assumed that electrostatic 
attraction is the dominant force. 

 
 

 
 
 

 
Kaolinite clays (part of the so-called non-swelling clays) on the other hand also 
disperse in water, but as their layers are tightly bound together by hydrogen 
bonds, they disperse in the form of stacks of platelets. These stacks are usually 
not so anisotropic in shape, and can be quite large compared to montmorillonite 
clays: something between 1 and 10 micrometers in diameter. 

 

Until now, we illustrated the flocs by represented clay particles bound together. This 
type of flocs can be produced in an electrolyte solution. Another type of flocculation 
is possible which involves the presence of polyelectrolytes or polymer and 
microorganisms, see Chapter 4. In an electrolyte, different effects can occur, called 
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delamination and swelling, which lead to the breakage of the aggregates. Aggregates 
can also break and re-conform due to shear as discussed below. 

Unstable clay suspensions: influence of salt 

The flocculation by salt (coagulation) of kaolinite and montmorillonite has been 
studied for decades, given their importance in practical applications. Flocculation of 
mixtures of clays have also been studied61. As we have seen in Chapter 3, the 
amount of ions present in the water is of extreme importance: at moderate ionic 
strength62, the particles can undergo a “secondary minimum” aggregation, whereas 
at high ionic strength the particles can be strongly aggregated, thanks to van der 
Waals forces. 

In the case of montmorillonite clays, there is a complication in predicting the role of 
ions. As montmorillonite particles can swell, when ions are added to the suspension, 
some will penetrate the montmorillonite interlayers. An important question is then: 
how does these ions alter the structure of the montmorillonite particle? Will the 
particle remain a (swollen) stack of platelets, will the stack be delaminated? 

 

Delamination of a stack of montmorillonite 

The answer is: usually the stack will delaminate for small amount of added ions, and 
this is why most montmorillonite particles are usually found as single platelets in 
water. The delamination process is related to the fact that by adding a small amount 
of ions, these ions (and related water) will penetrate the interlayer space. The 
platelets forming the stack will therefore be “pushed” away from the secondary 
minimum where they were residing, and undergo Coulombic repulsion. Note that 
this does not happen for non-swelling types of clays (like kaolinite): there, the 
platelets are more strongly bound thanks to hydrogen bonds. By adding substantially 
more ions in the system, a second important effect will take place: the screening of 

                                                                 
61 For extensive details, we refer to Bergaya, Faïza, and Gerhard Lagaly. Handbook of clay 
science. Vol. 5. Newnes, 2013. 
62 ionic strength is the term used in physical chemistry. In civil engineering one usually speaks 
of salinity or salt concentration. 
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the surface charge of each platelet. This will lead to a new aggregation (in the 
secondary or primary minimum, depending on ionic strength): 

 

Band-type aggregation: small amount of calcium added to a suspension of delaminated 
montmorillonite leads to face-face aggregation. Usually the aggregates are then found in 

band-type. 

An important parameter that should not be forgotten while studying this type of 
flocculation is pH (i.e. the concentration of H+ or OH- ions present in the water). 
Contrary to most ions, H+ and OH- ions can interact chemically with the clay’s surface 
and hereby change its surface charge. An example has been given in Chapter 1 in the 
case of kaolinite. When the electric charge of the faces of the clay particles is of 
different sign than their edges a strong Coulombic attraction between the positive 
edge of one particle and the negative face of another will occur. The pH, for most 
clays, where a change in surface charge sign occurs, is between 4 and 6. Depending 
on ionic strength and pH, different aggregate structures can therefore be obtained.  

Some examples of clay aggregates 
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These TEM images have been obtained on samples for which the pH and salinity has 
not been specified. Several structures can usually be identified, depending on pH 
and ionic strength63: 

 

Delaminated particles with 
moderate/large addition of salt,  
at pH > 8: each particle is purely 
negatively charged. This charge is 
screened sufficiently to induced 
flocculation.  A preferred order 
(face/face) is required, to maximize the 
van der Waals forces between particles. 
 

 

 
 

Delaminated particles with 
low/moderate addition of salt,  
at pH < 4: the positive edge with one 
particle will bind to the negative face to 
another. If the salt concentration would 
be high, face/face aggregation would also 
be possible, and the structure would be a 
mixture between this one and the one 
shown above (and hence be more 
compact). 
 

 

Non-delaminated particles with 
low/moderate addition of salt,  
at pH < 4: the positive edge with one 
particle will bind to the negative face to 
another. If the salt concentration would 
be high, face/face aggregation would also 
be possible, leading to a more compact 
structure. 
 

 

 

 

 

                                                                 
63 O’Brien, Neal R. "Fabric of kaolinite and illite floccules." Clays and Clay Minerals 19.6 (1971): 
353-359. 
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Swelling behaviour of clays 

Swelling clays (like montmorillonite) do not always delaminate. One important 
reason is related to the concentration of particles (or in other word: how much water 
is added to the clay).  If the water content is high, the montmorillonite becomes a 
thixotropic64 gel, and at even higher water content it becomes a suspension (also 
called a sol), where the particles can delaminate. Here we are concerned with a 
water content such that the clay is a very thick paste, obtained from putting the dry 
clay in water. Na-montmorillonite (i.e. montmorillonite where the interlayer cations 

are Na+), when placed in water, can take up 
10 g of water per g of clay, and its volume can 
increase by about 20 times. In Chapter 2, we 
have already addressed the concept of 
osmotic pressure. This plays an important 
role is the swelling of clays.  

In montmorillonite and vermiculite the 
aluminosilicate sheets are separated by 
water layers whose thickness varies with the 
concentration and type of electrolyte. In the 
crystalline state, these extremely thin, 
negatively charged sheets are held together 
by electrostatic forces between alternate 
layers of bridging cations (like Na+, K+, Ca2+). 
When the clay is placed in water or a dilute 
electrolyte suspension, some of the 
adsorbed counterions tend to take up water 
and may dissociate from the clay surface, 

creating a diffuse double layer. It is the repulsive interaction between these double 
layers that is at the origin of the swelling behaviour. On the schematic 
representation on the left, innercrystalline swelling of Na-montmorillonite is 
displayed. The layer distances and the maximum number of water molecules per 
sodium ion are given. The first water to enter the interlayer positions is the result of 
hydration of the ions, after which the water forms distinct layers which increase in 
number to four. The water molecules, of at least the first layers, are probably 
arranged in a hexagonal network whose order is determined by hydrogen bonding 
to the surface oxygens of the clay65. 

                                                                 
64 See Chapter 7 
65 Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday society, 18, 
120-134; Madsen, Fritz T., and Max Müller-Vonmoos. "The swelling behaviour of clays." 
Applied Clay Science 4.2 (1989): 143-156. 
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The swelling discussed so far is commonly referred to as crystalline swelling. In this 
range, the adsorbed water increases to about 0.5 g water per g of clay while the 
interlayer spacing increases from 0.96 nm, for dry material, to about 2 nm 
corresponding to 4 layers of water. This water content is the one that is adsorbed at 
99% relative humidity and at this stage the montmorillonite has shown little physical 
swelling. 

When this Na-montmorillonite is placed in contact with water, and increased about 
20 times its original volume, one speaks of regular (osmotic) swelling of the clay (see 
last picture of the sketch above). Unlike innercrystalline swelling, which acts over 
small distances (up to 2 nm), osmotic swelling  is based on the repulsion between 
overlapping electric double layers, and can act over much larger distances. (In Na-
montmorillonite it can result in the complete separation of the layers, leading to 
delamination, if the water content allows it). The expansion is associated with the 
formation of these diffuse double layers, as more water penetrates the interlayer 
space: the electrostatic attractive force that existed between the cations and the 
negative surfaces of the interlayers is now changed into a (osmotic) repulsive one.  

 

Before osmotic swelling, cations and their hydration shells (white balls) are electrostatically 
bound to the clay platelets. After water is added to the clay, double layers start to form with 
both anions and cations (white and black balls), leading rapidly to an electrostatic repulsion 
between the clay platelets, since the ion concentration C1 between the layers is much higher 

than the ion concentration C2 in the bulk water. An equilibration of the concentration can 
only be reached through the penetration of water into the space between clay layers 

(osmotic swelling). If the water content allows, this will eventually lead to delamination. 

The repulsive force between the overlapping double layers of the clay particles also 
exists inside some geological formations. This force is in equilibrium with the 
overburden pressure coming from the mass above the double layers. If the load on 
them is removed and if water is available, a new equilibrium is sought: the water 
intrudes between the clay layers and pushes them apart. The swelling continues 
until the new balance between this inner force and outside, resisting forces is 
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reached. This phenomenon results in landslides and is further discussed in Chapter 
7. 

Norrish (1954) demonstrated that, when small crystals of montmorillonite were 
arranged in a parallel orientation and allowed to equilibrate with a dilute electrolyte 
suspension (10 mM < C < 250 mM), then the separation between the sheets (𝑑𝑑) was 
given by: 

𝑑𝑑 (𝜕𝜕𝑚𝑚) = 2.1 +
1.14

�𝐶𝐶(𝑀𝑀)
 

[for 10 mM the separation is 13.5 nm and it is 4.38 nm for 250 mM]. It is logical that 
the separation decreases with increasing ionic strength, as the double layers are 
then more compressed and the concentration in the interlayer space, C1, is then not 
too different from the concentration in the bulk, C2. 

Unstable clay suspensions: flocculation by polyelectrolytes 

In the previous chapter, we have defined polyelectrolytes. Polyelectrolytes 
(flocculants) can attach themselves to clay particles and form large, elastic flocs. The 
structure of sediment-polyelectrolyte flocs is very complex and is still an on-going 
topic of research. In applied research, the open questions are related to the 
efficiency of polyelectrolytes as binders of colloidal particles, and to the strength of 
the obtained flocs. In particular, the floc size and density evolution as function of 
shear rate are important parameters to investigate. This is discussed in the next 
section. 

Shear rate influence on floc size 

The way the clay particles flocculate is also strongly dependent on the shear rate: at 
low shears, flocculation is usually promoted, whereas at high shear, flocs can be 
broken (or prevented to grow further). In Chapter 6, we are going to show how to 
model the growth and break-up of flocs with shear, and we will concentrate on the 
case where only aggregation is occurring. Here we simply give and discuss some 
measurements results, and we will pinpoint the limitations of the current models 
and measurement techniques. 

The influence of shear rate on flocculation can best be studied using static light 
scattering (see Chapter 2). The set-up is schematized here: 
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The set-up consists of a 1L jar connected to two tubes through which the suspension is 
pumped in and out the static light scattering device. To keep the suspension suspended it is 

gently stirred by a rotating impeller. The particle size distribution (PSD) is measured. 

From the commercial instrument software, the raw data is converted into equivalent 
volumes, using the assumption that the particles are spherical. For each size (there 
are usually 100 given sizes, ranging logarithmically between 0.1 and 1000 µm in most 
commercial devices), a volume is evaluated that is equal to the volumes of all 
particles of that size added up. Each Particle Size Distribution (PSD in short) curves is 
normalized such that the integral over each curve gives 100%. This means that the 
volume corresponding to one size is a percentage volume. In other words, PSD 
measurements give the relative ratio between volumes, and changing the 
concentration of particles (adding more of the same) will not change the PSD. The 
PSD will however change if flocculation or break-up occur in the suspension as 
function of time, as each measured PSD will then not have the same volume ratios.  

Underneath we give an example obtained from measuring the change in PSD over 
time of a suspension of clay in presence of a cationic polyelectrolyte.  

 

At t = 30 s, 0.7 g/L of clay is mixed with cationic flocculant. The ratio flocculant to clay is 0.5 
mg/g. The full PSD is recorded every 30 s by static light scattering. The change in PSD over 
time is given in the left figure. The D10, D50 and D90 of the distributions are given in the 

right figure. 

In the example given above we start at t = 0 with a clay suspension, which average 
mean size D50 is 6 µm. This mean size D50 is defined as the size for which 50% of 
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the particles are smaller (here in volume) than this D50 size. Similarly one defines 
the sizes D10 and D90 as the sizes for which respectively 10% and 90% of particles 
are smaller than these sizes.  

At t = 30 s, cationic flocculant is added to the clay suspension. The PSD is evolving in 
time: as can be seen on the left figure, a new peak in size is appearing, corresponding 
to the creation of aggregates, and this peak is shifting to higher sizes over time. This 
is reflected in the changes in D50 over time (right figure). After 2000 s, an equilibrium 
size seems to have been reached. However, one can observed that after 2000 s there 
is a slight decrease in D50 over time. At the same time there is a larger decrease in 
D90 and increase in D10. This implies that the largest particles are eroding over time, 
creating small particles. This erosion of particles over time is usually not accounted 
for in traditional flocculation models (see Chapter 6). 

It is important to note that there are large differences between flocs measured in-
situ and the ones created in the jar. First of all, the shear rates generated in the jar 
and especially in the tubes leading to the measurement device are much higher 
generally than the ones encountered in-situ. As the tubes are about a few mm in 
diameter, this limits the growth of flocs and will also be a cause for erosion.  

Clay in presence of salt 

In the example given below66, a large amount of NaCl salt has been added to a 
suspension of polystyrene latex particles (10 µm in diameter and with a density of 
1055 g/L) and a suspension of silica particles (10 µm in diameter and with a density 
of 2000 g/L)   to ensure that each suspension is unstable and the particles are 
aggregating. For each suspension and each shear, the mean equilibrium size of the 
suspension, D50, is plotted. This mean size is obtained after the PSD does not evolve 
any more in time.  

The shear rate is varied by changing the rotational speed of the impeller. For this 
experiment it was verified that the flocs were not significantly broken/eroded in the 
tubes. The pumping speed was chosen as low as possible to prevent flocs settling in 
the tubes. The Kolmogorov microscale (defined in Chapter 6), reflecting the size at 
which the turbulence generated in the jar could disrupt a floc, is also plotted in the 
figure. 

                                                                 
66 Mietta, F., C. Chassagne, and J. C. Winterwerp. "Shear-induced flocculation of a suspension 
of kaolinite as function of pH and salt concentration." Journal of colloid and interface science 
336.1 (2009): 134-141. 
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Mean floc size as function of shear rate, for two types of particles. Note that in in-situ typical 
shear rates are less than 10 s-1. Larger shear rates are however encountered in industry. 

We see that this size is an important parameter, as the polystyrene particles follow 
this microscale, indicating that they cannot grow much larger than this size. Below 
the Kolmogorov microscale, the floc is simply transported (advected) with the flow 
whereas above the Kolmogorov microscale shear forces are tearing the floc apart. 
Shear forces are discussed in Chapter 7. 

The silica particles behave differently. At low shear rate the silica particles seem to 
grow smaller than at moderate shear rates. This is however only an artefact. At low 
shears, large (heavy) silica particles are settling in the measuring jar, and are 
therefore not recorded by the static light scattering device used to measure their 
size: only the smallest particles remain in suspension. Polystyrene particles, having 
a density close to the one of water, are always fully suspended independently of 
their size. 

 

Each suspension is gently stirred in the jar, and the sample is pumped through the static light 
scattering device, where the D50 is recorded; at low shear the largest flocs made of silica 

particles are setting in the jar and are therefore not recorded. 
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Clay in presence of polyelectrolyte 

Contrary to flocs created by salt, flocs created by polyelectrolytes can follow or not 
the Kolmogorov microscale. In the example underneath, the suspensions were made 
in demi-water (water containing a very low amount of ions). It was verified (not 
shown) that flocs created by anionic flocculant are always much smaller than flocs 
created by cationic flocculant, for all flocculant to clay ratios.  

 

Equilibrium D50 for a suspension of clay mixed with (a) 10 mg/g Zetag 7587 (cationic 
flocculant) to clay ratio and (b) 0.5 mg/g Zetag 4110 (anionic flocculant) to clay ratio. The 

arrows indicate that each suspension was created at low shear, the shear was then increased 
and lowered again. 

This is due to the fact that anionic flocculant needs cations to bridge with the clay 
(see Chapter 4) and there are not sufficient cations in the water to have an optimal 
flocculation. Flocs produced by anionic flocculant follow the Kolmogorov microscale 
quite well, for all shears, and the flocs that have been broken at high shear regrow 
to the size they had before the high shearing for all shear rates.  
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The interaction between the polymer and the clay is dependent on the bridging 
cation. Under the action of shear, when the Kolmogorov length is reached by the 
floc, the cation will not be able to bridge them anymore, and clay and polyelectrolyte 
will move independently. At sufficient low shear, the floc will be reformed.  

Flocs produced by cationic flocculant, on the other hand are created thanks to 
attractive Coulombic interactions between the negatively charged clay and the 
positively charged polymer. Due to their low density, the large flocs (the cationic 
flocs grow nearly as large as 1 mm) remain in suspension even at low shears. When 
the shear is increasing the D50 is decreasing, but the D50 remain well above the 
Kolmogorov microscale. When the shear is lowered again, it is observed that the D50 
barely increases in size. The kinetics of floc formation (at 150 s-1) when the 
suspension is made at this low shear is very different from the small change in size 
when the shear is decreased from 300 s-1 to 150 s-1 after that the floc has been 
disrupted at higher shear: 

 

Change of D50 size over time at a shear rate of 150 s-1. (D50 inc): formation of large flocs 
when clay and polyelectrolyte are mixed. The time to reach an equilibrium D50 is about 150-
200 s. (D50 dec): flocs formed when the shear is decreased from the previous shear step at 
300 s-1.  Only a small change in size is observed, and the change in D50 occurs is less than 

100 s. 

One see that flocs created at low shear will never regrow fully to their original large 
size after having experienced a higher shear. There can be two reasons for this: (a) 
the flocs broken at high shear are weakly positively charged and will experience a 
mutual repulsion and (b) due to the high shear the loops and tails (see Chapter 4) of 
the polyelectrolyte will be able to collapse and attach to any remaining exposed clay 
particle in their floc matrix. This will reduce the floc size and increase its density. 
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Only at low shear will there be a small re-flocculation, which might be due to a steric 
entanglement of flocs whose ends are able to decoil at low shears. 

Density of flocs and fractal dimensions 

Since flocs are usually non-spherical, permeable to water and can be composed of 
particles of different refractive indexes, this poses a problem for the in-situ recording 
of their size by light scattering (see Chapter 2), as the conversion of the raw data 
depend on a model which assumes that particles are spherical and have a given 
refractive index. Thanks to the development of camera’s in the past years, it is 
nowadays possible to estimate the size of flocs and their settling velocity by video 
recording. From Stokes, it has then been found that the density of a floc is a 
decreasing function of its size, and this has led scientists to conveniently model them 
as if they were fractal objects. As flocs, especially the ones created in-situ have a 
very heterogeneous composition they are not “real” fractals as their structure is not 
self-similar. 

Fractals and self-similarity 

At the beginning of the chapter, we have evoked the term of fractal. This term stems 
from its inventor, B.B. Mandelbrot who introduced it in the late 1970s. In 1967 he 
wrote a famous article entitled “How Long Is the Coast of Britain?”67 where he noted 
that  the length of the coast depends on the scale at which it is measured. In fact, it 
was empirically found that the measured length of a coast could be estimated by: 

𝐿𝐿(𝜆𝜆) = 𝑀𝑀𝜆𝜆1−𝐷𝐷 

where 𝜆𝜆 is the measurement scale, L(𝜆𝜆) the length of the coast, M a positive constant 
and D another constant, greater than or equal to 1. If D = 1, the length is independent 
of the measurement scale (𝐿𝐿 = 𝑀𝑀). It has been found that D is ranging from 1.02 for 
the coastline of South Africa to 1.25 for the West coast of Britain. Mandelbrot in the 
paper introduces the concept of statistical self-similarity and fractional dimension 
that will enable him to develop his concept of fractals in later publications. 

Self-Similarity  

Here we give an example showing how to construct a real self-similar fractal object. 
The one given here is called Koch snowflake: 

                                                                 
67 Mandelbrot, B. B. (1967). How long is the coast of Britain. Science, 156(3775), 636-638. 
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If one zoom-in on such a flake, one will realize that the structure is self-similar: at 
various scales, the shape of the interface will be the same, and indeed the perimeter 
of the fractal object will depend on the measurement scale used (the first triangle 
has obviously a smaller perimeter than the floc on the right).  

L-system and the growth of floc-like structures 

So-called L-systems were introduced and developed in 1968 by Aristid Lindenmayer, 
a Hungarian theoretical biologist and botanist at the University of Utrecht. A simple 
example of L-system is as follows, and was introduced to understand the growth of 
algae: 

variables: A, B 
rules: (A →AB), (B→A) 

Starting with variable A and applying the rules, one obtains: 

    n = 0 : A 

    n = 1 : AB [as A →AB] 

    n = 2 : ABA  [as A →AB and B→A] 

    n = 3 : ABAAB [as A →AB , B→A  and A →AB ] 

    n = 4 : ABAABABA 

    n = 5 : ABAABABAABAAB 

    n = 6 : ABAABABAABAABABAABABA 

    n = 7 : ABAABABAABAABABAABABAABAABABAABAAB 

By using a computer it is nowadays easy to generate beautiful 2 or 3D images of 
plants grown using similar type of L-systems: 
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2D plant-like structures 

Note from the examples that depending on the “grammar” used, the general 
symmetry can be broken. This also happens in natural systems. 

Fractal dimension 

Let us consider a floc consisting of N particles of radius a:  

 

floc of radius RN consisting of N particles (red balls) of radius a. 

The number of particles inside the floc is given by: 

𝑁𝑁 = �
𝑅𝑅𝑁𝑁
𝜋𝜋
�
𝐷𝐷

 

where D is called the fractal dimension. If the floc would be non-fractal (imagine 
that all the red balls have fused to make a giant red floc), one can estimate that the 
volume of the giant floc is N times the volume of a red ball, i.e.: 

4
3
𝜋𝜋𝑅𝑅𝑁𝑁3 = 𝑁𝑁

4
3
𝜋𝜋𝜋𝜋3 

from which follows that  
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𝑁𝑁 = �
𝑅𝑅𝑁𝑁
𝜋𝜋
�
3

 

implying D = 3. For natural flocs, one finds experimentally that 2 < D < 3, which is 
equivalent to say that not all space within a floc is occupied by clay particles.  

When the fractal dimension of DLCA and RLCA flocs is analysed, it is found that the 
DLCA flocs have a fractal dimension that is lower than the RLCA flocs, in accordance 
with the fact that DLCA flocs have a loose structure compared to RLCA flocs. The 
fractal dimension is also depending on the environment of the flocs, in particular the 
shear stresses, that affects non only the aggregation but also the re-conformation of 
the floc: 

 

Re-conformation of a floc due to shear: the (pseudo) fractal dimension increases; on the 
right: flocs observed in the North Sea, close to the Port of Rotterdam, at different stages of 

coiling. The scale of each floc is approximately 125 µm. 

 

Fractal dimension of flocs 

A powerful technique to determine the fractal dimension of flocs is the use of video 
microscopy68. As stated above, flocs are not fractal objects as they are not self-
similar but nonetheless a (pseudo) fractal dimension can be derived knowing their 
size and settling velocity. 

The flocs are pipetted into a settling column and their settling is recorded. From the 
analysis of the video, both particle size 𝑅𝑅𝑁𝑁 and velocity 𝑣𝑣𝑁𝑁 can be determined. Here 
the settling velocity is plotted as function of the diameter 2𝑅𝑅𝑁𝑁. Each blue cross 
represents a measurement. The flocs were obtained by mixing river clay and cationic 
polyelectrolyte. 

                                                                 
68 Manning, A.J. and Dyer, K.R. (2002). The use of optics for the in-situ determination of 
flocculated mud characteristics. J. Optics A: Pure and Applied Optics, Institute of Physics 
Publishing, 4, S71-S81 
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Note that for a given size, for example 100 microns, the velocity 𝑣𝑣𝑁𝑁 can vary by a 
factor 100, implying that the flocs have very different densities. Using Stokes’ s law 
(see Chapter 2) the floc density 𝑣𝑣𝑁𝑁 can then easily be determined by 

𝑣𝑣𝑁𝑁(𝑅𝑅𝑁𝑁) = 𝑣𝑣𝑤𝑤 + 9𝜂𝜂𝑣𝑣𝑁𝑁/�2𝑅𝑅𝑁𝑁2𝑔𝑔� 

The mean density of flocs can be estimated by averaging the density for each size. 
Below the mean effective density (𝑣𝑣𝑁𝑁 − 𝑣𝑣𝑤𝑤)  is plotted as function of the floc 
diameters in red. The fractal dimension can then be calculated realising that 

𝑣𝑣𝑁𝑁 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑝𝑝

=
𝜙𝜙𝑠𝑠�𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤�

𝑣𝑣𝑝𝑝
 

where 𝜙𝜙𝑠𝑠 is the volume fraction of clay inside a floc, 𝑣𝑣𝑝𝑝/𝑤𝑤 the density of the 
clay/water and that 

𝜙𝜙𝑠𝑠 =
𝑁𝑁 ∙ 𝜋𝜋3

𝑅𝑅𝑁𝑁3
= �

𝑅𝑅𝑁𝑁
𝜋𝜋
�
𝐷𝐷−3

 

Combining these equations leads to: 

𝑣𝑣𝑁𝑁 − 𝑣𝑣𝑤𝑤 = �𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤� �
𝑅𝑅𝑁𝑁
𝜋𝜋
�
𝐷𝐷−3

 

and by fitting the data (dashed line) a fractal dimension of D = 2.39 was obtained.  
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Illustrations 

TEM of minerals 
Image reproduced from the ‘Images of Clay Archive’ of the Mineralogical Society of Great 
Britain & Ireland and The Clay Minerals Society (https://www.minersoc.org/images-of-
clay.html) 
 
Fractal (creative commons) 
https://en.wikipedia.org/wiki/Koch_snowflake 

Fractal tree 
Generated using MuPad (Matlab) 

 

 

 

 

 





 

 

 

 

Chapter 6 

Modelling and measuring  
the flocculation rate 
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From the examples given in the previous chapters, it is clear that modelling (and 
predicting) the floc structure is challenging, owing to the different modes of 
aggregation and the role of the shape of the particles. It is however easier to say 
something about the rate of flocculation as this depends mainly on the interactions 
between particles. This is what we are going to show in the present chapter. 

 

The simplest model for predicting 
the flocculation rate has been 
developed by the Polish scientist 
Marian von Smoluchowski (1875 - 
1917). Smoluchowski moved to 
Kraków (Poland) in 1913, to take 
over the chair in Experimental 
Physics Department, and died there 
in 1917, a victim of a dysentery 
epidemic, aged 45. His scientific 
output is however large: in 1904 he 
was the first who noted the 
existence of density fluctuations in 
the gas phase and in 1908 he 

became the first physicist to ascribe the phenomenon of critical opalescence to large 
density fluctuations. His investigations also concerned the blue colour of the sky as 
a consequence of light dispersion on fluctuations in the atmosphere. In 1906, 
independently of Albert Einstein, he described Brownian motion. Smoluchowski 
presented an equation which became an important basis of the theory of stochastic 
processes. In 1916, he proposed the equation of diffusion in an external potential 
field. This equation bears his name. In 1916 he also published the article in which he 
describes the rate of flocculation of colloidal particles69. 

Model of Smoluchowski: aggregation by Brownian motion 

We consider the evolution of the number of particles of one class, say a class 
numbered k as function of time. A class is the ensemble of all the particles 𝑁𝑁𝑘𝑘  which 
have as characteristic to be formed of k primary particles (particles that cannot 
break, i.e. the smallest in the system). For instance: 

 

                                                                 
69 Marian Smoluchowski, « Drei Vorträge über Diffusion, Brownsche Molekularbewegung und 
Koagulation von Kolloidteilchen », Physik. Zeit., vol. 17, 1916, p. 557–571, 585–599 
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We assume that all primary particles are the same. Particles arrive in class k because:  

 they are formed by aggregation of particles of smaller size. We call this gain 
by aggregation (GA) 

 they are formed by the destruction of larger particles. We call this gain by 
break-up (GB) 

Particles leave class k because: 

 they are lost by aggregation of a particle in class k with another particle (of 
any class). We call this loss by aggregation (LA)  

 they are lost by break-up of a particle in class k. We call this loss by break-
up (LB) 
 

Examples of GA, GB, LA and LB 

The general formulation of the rate of change of the number of particle in class k is 
given by: 

𝑑𝑑𝑁𝑁𝑘𝑘
𝑑𝑑𝑡𝑡

= 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐺𝐺 − 𝐿𝐿𝐴𝐴 − 𝐿𝐿𝐺𝐺 

To simplify the model, we assume that there is no break-up in our system (all 
particles grow in time). The formulation then reduces to: 

𝑑𝑑𝑁𝑁𝑘𝑘
𝑑𝑑𝑡𝑡

= 𝐺𝐺𝐴𝐴 − 𝐿𝐿𝐴𝐴 

where: 

𝐺𝐺𝐴𝐴 =
1
2
�𝛼𝛼𝑖𝑖,𝑘𝑘−𝑖𝑖

𝑘𝑘−1

𝑖𝑖=1

𝛽𝛽𝑖𝑖,𝑘𝑘−𝑖𝑖𝑁𝑁𝑖𝑖𝑁𝑁𝑘𝑘−𝑖𝑖  
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This term represents the rate of formation of a class k particle by aggregation of any 
particles from lower classes (class 1 until class (k-1)), such that 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑘𝑘−𝑖𝑖 ⇌ 𝑁𝑁𝑘𝑘. The 
½ accounts for the fact that the aggregates are counted twice: 𝑁𝑁𝑘𝑘−𝑖𝑖 + 𝑁𝑁𝑖𝑖 ⇌ 𝑁𝑁𝑘𝑘 is 
the same as 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑘𝑘−𝑖𝑖 ⇌ 𝑁𝑁𝑘𝑘. the coefficient 𝛼𝛼𝑖𝑖,𝑗𝑗  is called the collision efficiency 
(between particle of class i and particle of class j), and 𝛽𝛽𝑖𝑖,𝑗𝑗 is the collision frequency. 
We also have: 

𝐿𝐿𝐴𝐴 = 𝑁𝑁𝑘𝑘 �𝛼𝛼𝑘𝑘,𝑖𝑖

𝑒𝑒−𝑘𝑘

𝑖𝑖=1

𝛽𝛽𝑘𝑘,𝑖𝑖𝑁𝑁𝑖𝑖  

This term represents the rate at which a class k particle disappears from class k by 
aggregation with any other particle. The summation is limited to (𝜕𝜕 − 𝑘𝑘) where n is 
the total number of classes considered (usually taken to be extremely large). This 
means that we cannot make particles larger that class n particles. This is mainly done 
for numerical procedures reasons. In doing the numerical simulations, one always 
insures that class n is never populated. This is equivalent to say that the summation 
can be extended to infinity. Usually one defines: 

𝐾𝐾𝑘𝑘,𝑖𝑖 =  𝛼𝛼𝑘𝑘,𝑖𝑖𝛽𝛽𝑘𝑘,𝑖𝑖  

In the simplest models, as the one derived by Smoluchowski, on usually assumes 
that 𝛼𝛼𝑘𝑘,𝑖𝑖 = 1 implying that the particles always stick when they touch. In more 
realistic models, 𝛼𝛼𝑘𝑘,𝑖𝑖  is a value between 0 and 1. The collision frequency is linked to 
the way two particles approach each other. Smoluchowski considered the case 
where particles were moving because of Brownian motion, which we will discuss 
now. We have already introduced Fick’s first law in a previous chapter. From this 
law, we may evaluate the flux of particles 𝜕𝜕𝑘𝑘 (the number of particles of class k per 
unit of volume 𝑉𝑉, for example the volume of the settling column in which the 
experiment is performed) that enters a sphere of radius r centred in a given particle 
of radius 𝜋𝜋𝑖𝑖  . It is given by: 

𝐽𝐽𝑘𝑘,𝑖𝑖 = 4𝜋𝜋𝑟𝑟2𝑑𝑑
𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝑟𝑟

 

The units of 𝐽𝐽𝑘𝑘,𝑖𝑖  are in number of particles (of class) k entering the sphere per second. 
Assuming that 𝐽𝐽𝑘𝑘,𝑖𝑖  is constant (steady-state condition), it is easy to integrate this 
equation, and one obtains: 

𝜕𝜕𝑘𝑘 = 𝜕𝜕𝑘𝑘,∞ −
𝐽𝐽𝑘𝑘,𝑖𝑖

4𝜋𝜋𝑑𝑑𝑟𝑟
 

where 𝜕𝜕𝑘𝑘,∞ = 𝑁𝑁𝑘𝑘/𝑉𝑉 is the (bulk) particle concentration far from the sphere. We now 
assume that when a particle k reaches 𝑟𝑟 = 𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖  it “disappears” from class k: it is 
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glued to the particle i which centre is located at 𝑟𝑟 = 0. Thus 𝜕𝜕𝑘𝑘(𝑟𝑟 = 𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖) = 0 
from which follows that: 

𝐽𝐽𝑘𝑘,𝑖𝑖 = 4𝜋𝜋𝑑𝑑(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)𝜕𝜕𝑘𝑘,∞ 

This flux is now the rate (number/second) at which particles k meet particle i. The 
particle i which centre is located at 𝑟𝑟 = 0 is not immobile: it also diffuses according 
to Brownian motion. This implies that the diffusion coefficient 𝑑𝑑 is not the diffusion 
coefficient of a particle, but should be the mutual diffusion coefficient 𝑑𝑑𝑘𝑘,𝑖𝑖  that 
accounts for the fact that both particle k and particle i are experiencing Brownian 
motion: 

𝑑𝑑 = 𝑑𝑑𝑘𝑘,𝑖𝑖 = 𝑑𝑑𝑘𝑘 + 𝑑𝑑𝑖𝑖 =
𝑘𝑘𝐵𝐵𝑇𝑇
6𝜋𝜋𝜂𝜂

𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖
𝜋𝜋𝑘𝑘𝜋𝜋𝑖𝑖

 

The number of particles of class k that are leaving the class due to aggregation is 
then given by the rate at which particles k meet particle i multiplied by the amount 
of particles i and summed over all types of particles i : 

𝑑𝑑𝑁𝑁𝑘𝑘
𝑑𝑑𝑡𝑡

= �𝑁𝑁𝑖𝑖𝐽𝐽𝑘𝑘,𝑖𝑖

𝑒𝑒−𝑘𝑘

𝑖𝑖=1

=
𝑁𝑁𝑘𝑘
𝑉𝑉
�

2𝑘𝑘𝐵𝐵𝑇𝑇
3𝜂𝜂

(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)2

𝜋𝜋𝑘𝑘𝜋𝜋𝑖𝑖
𝑁𝑁𝑖𝑖

𝑒𝑒−𝑘𝑘

𝑖𝑖=1

 

 By dividing this equation on both sides by 𝑉𝑉 one can express it as a relation between 
concentrations: 

𝑑𝑑𝜕𝜕𝑘𝑘
𝑑𝑑𝑡𝑡

= 𝜕𝜕𝑘𝑘 �
2𝑘𝑘𝐵𝐵𝑇𝑇

3𝜂𝜂
(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)2

𝜋𝜋𝑘𝑘𝜋𝜋𝑖𝑖
𝜕𝜕𝑖𝑖

𝑒𝑒−𝑘𝑘

𝑖𝑖=1

 

and define a corresponding rate constant 𝑘𝑘𝑘𝑘,𝑖𝑖  (m3/s) such that: 

𝐾𝐾𝑘𝑘,𝑖𝑖

𝑉𝑉
= 𝑘𝑘𝑘𝑘,𝑖𝑖 =

2𝑘𝑘𝐵𝐵𝑇𝑇
3𝜂𝜂

(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)2

𝜋𝜋𝑘𝑘𝜋𝜋𝑖𝑖
 

We then find that: 

𝑘𝑘1,1 =
2𝑘𝑘𝐵𝐵𝑇𝑇

3𝜂𝜂
(2𝜋𝜋1)2

𝜋𝜋12
=

8𝑘𝑘𝐵𝐵𝑇𝑇
3𝜂𝜂

 

Note that this rate constant is also equal to the rate 𝑘𝑘𝑘𝑘,𝑘𝑘  for all colliding particles of 
equal sizes. (For particles of different sizes, one can easily verify that the collision 
rate will always be smaller than for equal particles).  

The rate of change of the number of particle in class 1 at the early stage of 
aggregation is given by: 
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𝑑𝑑𝜕𝜕1
𝑑𝑑𝑡𝑡

= −𝑘𝑘1,1𝜕𝜕12 

Primary particles cannot be formed, therefore their gain by aggregation (GA) is zero. 
At the early stage of aggregation, only doublets are formed from the aggregation of 
primary particles, so we do not have to consider the aggregation of class 1 particles 
with other particles than themselves. 

One can solve the equation using the fact that 𝜕𝜕1(𝑡𝑡 = 0) = 𝜕𝜕1,0 and one obtains: 

𝜕𝜕1(𝑡𝑡) =
𝜕𝜕1,0

1 + 𝑘𝑘1,1𝜕𝜕1,0𝑡𝑡
 

If we now consider the aggregation process at any given time, one should find the 
full equations: 

𝑑𝑑𝜕𝜕1
𝑑𝑑𝑡𝑡

= −𝑘𝑘1,1𝜕𝜕12 − 𝑘𝑘1,2𝜕𝜕1𝜕𝜕2 − 𝑘𝑘1,3𝜕𝜕1𝜕𝜕3 ∙∙∙ 

𝑑𝑑𝜕𝜕2
𝑑𝑑𝑡𝑡

=
1
2
𝑘𝑘1,1𝜕𝜕12 − 𝑘𝑘2,1𝜕𝜕2𝜕𝜕1 − 𝑘𝑘2,2𝜕𝜕2𝜕𝜕2 ∙∙∙ 

𝑑𝑑𝜕𝜕3
𝑑𝑑𝑡𝑡

=
1
2
𝑘𝑘1,2𝜕𝜕1𝜕𝜕2 +

1
2
𝑘𝑘2,1𝜕𝜕2𝜕𝜕1 − 𝑘𝑘3,1𝜕𝜕3𝜕𝜕1 ∙∙∙ 

By assuming that all the rates 𝑘𝑘𝑖𝑖,𝑗𝑗 are the same (which is reasonable if the particles 
are not too different in size) and using 𝑘𝑘𝑎𝑎 = 𝑘𝑘𝑖𝑖,𝑗𝑗 for all i and j, one obtains: 

𝑑𝑑(𝜕𝜕1 + 𝜕𝜕2 + 𝜕𝜕3 ∙∙∙)
𝑑𝑑𝑡𝑡

= −
𝑘𝑘𝑎𝑎
2

(𝜕𝜕1 + 𝜕𝜕2 + 𝜕𝜕3 ∙∙∙)2 

the factor ½ can be understood easily when one considers again the early stage of 
aggregation, when only doublets are formed. Then we have: 

𝑑𝑑(𝜕𝜕1 + 𝜕𝜕2)
𝑑𝑑𝑡𝑡

= −
𝑘𝑘𝑎𝑎
2

(𝜕𝜕1 + 𝜕𝜕2)2 

because: 

𝑑𝑑𝜕𝜕1
𝑑𝑑𝑡𝑡

= −𝑘𝑘1,1𝜕𝜕12 

𝑑𝑑𝜕𝜕2
𝑑𝑑𝑡𝑡

=
1
2
𝑘𝑘1,1𝜕𝜕12 

From this, we realize that the aggregation (loss) of two primary particles leads to the 
creation of one doublet.   
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We define the total amount of particles in the system by: 

𝜕𝜕𝑇𝑇 = 𝜕𝜕1 + 𝜕𝜕2 + 𝜕𝜕3 ∙∙∙ 

and the characteristic time: 

𝜏𝜏 =
2

𝑘𝑘𝑎𝑎𝜕𝜕1,0
 

The solutions to the full equations can be shown to be: 

𝜕𝜕1(𝑡𝑡) =
𝜕𝜕1,0

(1 + 𝑡𝑡/𝜏𝜏)2 

𝜕𝜕2(𝑡𝑡) =
𝜕𝜕1,0𝑡𝑡/𝜏𝜏

(1 + 𝑡𝑡/𝜏𝜏)3 

𝜕𝜕𝑘𝑘(𝑡𝑡) =
𝜕𝜕1,0(𝑡𝑡/𝜏𝜏)𝑘𝑘−1

(1 + 𝑡𝑡/𝜏𝜏)𝑘𝑘+1 

𝜕𝜕𝑇𝑇(𝑡𝑡) =
𝜕𝜕1,0

1 + 𝑡𝑡/𝜏𝜏
 

Note that for 𝑡𝑡 ≪ 𝜏𝜏 one finds as expected: 

𝜕𝜕1(𝑡𝑡) =
𝜕𝜕1,0

1 + 𝑘𝑘𝑎𝑎𝜕𝜕1,0𝑡𝑡
 

𝜕𝜕𝑘𝑘>1(𝑡𝑡) = 0 

The solutions are plotted here: 

 

From the figure it can be seen that the concentration of primary particles (n1) is 
decreasing as function of time, as these particles are aggregating. The other classes 
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start from a concentration equal to zero (we have assume that at t = 0 there are only 
primary particles), then their concentration increases (n2 is formed by aggregation 
of n1), and eventually decrease (n2 aggregates with n1 to form n3 and aggregates with 
n2 to form n4 etc…). 

The Brownian motion aggregation we have been reviewing is called perikinetic 
aggregation in textbooks. This type of aggregation does not lead to the rapid 
formation of very large aggregates, especially in dilute suspension. We can for 
instance estimate  

𝑘𝑘𝑎𝑎 =
8𝑘𝑘𝐵𝐵𝑇𝑇

3𝜂𝜂
~1.23 × 10−17𝑚𝑚3/𝑠𝑠 

Using an initial concentration of 𝜕𝜕1,0 = 58 𝑔𝑔/𝐿𝐿 =  1016 particles/𝑚𝑚3 (particles of 1 
μm) 

𝜏𝜏 =
2

𝑘𝑘𝑎𝑎𝜕𝜕1,0
~

2
1.23 × 10−171016

= 16 𝑠𝑠 

Concentrations in natural environments (estuaries, rivers) are more of the order of 
mg/L leading to 𝜏𝜏~1.6 × 104 𝑠𝑠 (approximatively 5 hours). Aggregation is natural 
environments, or in flocculation tanks, as the ones used in sanitary engineering are 
usually triggered by fluid motion. This type of aggregation is called orthokinetic 
aggregation. 

Orthokinetic aggregation: aggregation by shear 

As for the case of Brownian motion, we evaluate the flux of particles k that collide 
with a particle i, but because of the water shear rate 𝐺𝐺(𝑠𝑠−1)70, the particle k arrives  
laterally: 

 

                                                                 
70 In Chapter 7 the shear rate will be defined by the symbol �̇�𝛾. Both symbols are used in 
literature. 
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The flux of particles k arriving on i is given by: 

𝐽𝐽𝑘𝑘,𝑖𝑖 = 4𝜕𝜕𝑘𝑘 � (𝐺𝐺𝑑𝑑)𝑥𝑥𝑑𝑑𝑑𝑑
𝑎𝑎𝑘𝑘+𝑎𝑎𝑖𝑖

0
 

where 𝐺𝐺𝑑𝑑 is the fluid velocity (m/s) at position 𝑑𝑑 (the velocity is along the x axis, as 
the blue arrow indicates in the illustration and depends on z only). There is contact 
between the two spheres when  𝑟𝑟 = 𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖  and therefore 𝑥𝑥 = �(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)2 − 𝑑𝑑2. 
The 4 comes from the fact that one wants to know the number of particles whose 
center pass through the capture cross-section 𝜋𝜋(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)2 accounting for the fact 
that the particles can come from any direction and thus the surface are of contact is 
represented by a sphere of area 4𝜋𝜋(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)2. The units of 𝐽𝐽𝑘𝑘,𝑖𝑖  are in number of 
particles (of class) k entering the sphere per second. It is easy to find that: 

𝐽𝐽𝑘𝑘,𝑖𝑖 =
4
3
𝐺𝐺𝜕𝜕𝑘𝑘(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)3 

Similarly to what we have done before, we can construct: 

𝑑𝑑𝜕𝜕𝑘𝑘
𝑑𝑑𝑡𝑡

= �𝜕𝜕𝑖𝑖𝐽𝐽𝑘𝑘,𝑖𝑖

𝑒𝑒−𝑘𝑘

𝑖𝑖=1

 

From which we can evaluate the rate constant 𝑘𝑘𝑘𝑘,𝑖𝑖  (m3/s) : 

𝑘𝑘𝑘𝑘,𝑖𝑖 =
4
3
𝐺𝐺(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)3 

Comparing this rate of aggregation with the one obtained from Brownian motion, 
one observe that the rate we have found now depends significantly on the size of 
the particles (in fact it scales as the volume of the particles): a large particle will 
aggregate a lot of other particles. In the case of Brownian motion, a large particle 
would not capture so many other particles, because its (Brownian) motion would be 
very limited: large particles have a low Brownian diffusion coefficient. 

In turbulent conditions, a mean shear stress can be obtained from: 

𝐺𝐺 = �
𝜖𝜖
𝜈𝜈

 

where 𝜖𝜖 is the power input per unit of mass of fluid and 𝜈𝜈 the kinematic viscosity 
(the ratio between the viscosity and the density of the fluid). The Kolmogorov 
microscale, which separates the inertial range (where the energy is transferred with 
very little dissipation) from the viscous subrange (where the energy is dissipated as 
heat) is given by: 
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𝐿𝐿 = �
𝜈𝜈
𝐺𝐺

 

For typical values of shear rates (50-100 s-1) in aqueous dispersions, L is of the order 
of 100-150 μm, meaning that flocs will be prevented to grow larger than these 
values, as shown in Chapter 5.  If large flocs come in a region of high shear, break-
up (GB and LB) should not be neglected. The general formulation of the rate of 
change of the number of particle is then generally calculated numerically for all the 
classes. These models are found under the name  “Population Balance Equation” in 
literature. 

Measuring the flocculation rate 

The rate at which particles aggregate can be estimated by light scattering 
measurements (see Chapter 2), by evaluating the (mean) particle size as a function 
of time. In Chapter 5, we have introduced the concept of DLCA and RLCA. These can 
be linked to the mean aggregation diameter, which can be derived from the size of 
floc in the corresponding class. One finds the following behaviours71: 

 

By adapting the Population Balance Equation, so as, in particular,  to include the 
(pseudo) fractal size of the aggregates, it is possible to reasonably well fit measured 
data. The RLCA mode of aggregation is in particular verified for salt-induced 
aggregation (see Runkana et al. given in footnote). At high ionic strength however, 
it would seem that the process goes through a transition between RLCA (short times) 
and DLCA (longer times). This change in flocculation regime may be due to aggregate 
restructuring during aggregation.  

 Stability ratio 

Despite the fact that shear-induced aggregation is probably the dominant 
mechanism for aggregation in engineering, Brownian-induced aggregation is quite 

                                                                 
71 Runkana, V., Somasundaran, P., & Kapur, P. C. (2005). Reaction-limited aggregation in 
presence of short-range structural forces. AIChE journal, 51(4), 1233-1245. 
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important to determine the stability of a suspension. When discussing the DLVO 
theory in an earlier chapter, we already made the link between zeta potential and 
stability. We are now going to explain how this link can be understood. 

The force on a particle due to the energy barrier is given by F𝑟𝑟𝑒𝑒𝑝𝑝 = −𝑑𝑑Φ/𝑑𝑑𝑟𝑟  and 
the particle’s velocity can be estimated from the relation derived in Chapter 2: 

𝑣𝑣𝑘𝑘 = 𝐹𝐹
𝑑𝑑𝑘𝑘
𝑘𝑘𝐵𝐵𝑇𝑇

 

The flux of particles produced by the force field can be estimated to be: 

𝐽𝐽𝑘𝑘,𝑖𝑖
𝑟𝑟𝑒𝑒𝑝𝑝 = 4𝜋𝜋𝑟𝑟2𝜕𝜕𝑘𝑘(2𝑣𝑣𝑘𝑘) 

The 2 comes from the fact that each particle experience the energy barrier (similarly 
to what we did when we introduced the mutual diffusion coefficient). We have here, 
for simplicity, assumed that all the particles have the same size. This implies that 
𝑑𝑑 = 2𝑑𝑑𝑘𝑘. The total number of particles that hits the central particle i per second is 
given by: 

𝐽𝐽𝑘𝑘,𝑖𝑖 = 8𝜋𝜋𝑟𝑟2𝑑𝑑𝑘𝑘 �
𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝑟𝑟

+
𝜕𝜕𝑘𝑘
𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑Φ
𝑑𝑑𝑟𝑟
� 

Assuming a steady-state, one has 𝐽𝐽𝑘𝑘,𝑖𝑖  constant, and therefore: 

𝐽𝐽𝑘𝑘,𝑖𝑖

8𝜋𝜋𝑟𝑟2𝑑𝑑𝑘𝑘
=
𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝑟𝑟

+
𝜕𝜕𝑘𝑘
𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑Φ
𝑑𝑑𝑟𝑟

= 𝑐𝑐𝑐𝑐𝜕𝜕𝑠𝑠𝑡𝑡𝜋𝜋𝜕𝜕𝑡𝑡 

In our case both 𝜕𝜕𝑘𝑘 and Φ depend on 𝑟𝑟 only (we can therefore replace the 𝜕𝜕 by 𝑑𝑑 in 
the expression above). Using the relation: 

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝜕𝜕𝑘𝑘exp �

Φ
𝑘𝑘𝐵𝐵𝑇𝑇

�� =
𝑑𝑑𝜕𝜕𝑘𝑘
𝑑𝑑𝑟𝑟

exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� +
𝜕𝜕𝑘𝑘
𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑Φ
𝑑𝑑𝑟𝑟

exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� 

one gets: 

𝐽𝐽𝑘𝑘,𝑖𝑖

8𝜋𝜋𝑟𝑟2𝑑𝑑𝑘𝑘
exp �

Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� =
𝑑𝑑
𝑑𝑑𝑟𝑟

�𝜕𝜕𝑘𝑘exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

�� 

which can be integrated from 𝑟𝑟 to ∞ (where Φ = 0 and 𝜕𝜕𝑘𝑘 = 𝜕𝜕𝑘𝑘,∞ = 𝑁𝑁𝑘𝑘/𝑉𝑉 is the 
(bulk) particle concentration far from the sphere ) 

We thus get: 

𝜕𝜕𝑘𝑘,∞ − 𝜕𝜕𝑘𝑘exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� =
𝐽𝐽𝑘𝑘,𝑖𝑖

8𝜋𝜋𝑑𝑑𝑘𝑘
�

1
𝑟𝑟2

exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� 𝑑𝑑𝑟𝑟
∞

𝑟𝑟
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which can be rewritten as: 

𝜕𝜕𝑘𝑘 = 𝜕𝜕𝑘𝑘,∞exp �
−Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� −
𝐽𝐽𝑘𝑘,𝑖𝑖

8𝜋𝜋𝑑𝑑𝑘𝑘
exp �

−Φ
𝑘𝑘𝐵𝐵𝑇𝑇

��
1
𝑟𝑟2

exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� 𝑑𝑑𝑟𝑟
∞

𝑟𝑟
 

When 𝑟𝑟 = 2𝜋𝜋 we have aggregation and therefore 𝜕𝜕𝑘𝑘 = 0 leading to: 

𝐽𝐽𝑘𝑘,𝑖𝑖 =
8𝜋𝜋𝑑𝑑𝑘𝑘𝜕𝜕𝑘𝑘,∞

∫ 1
𝑟𝑟2 exp � Φ

𝑘𝑘𝐵𝐵𝑇𝑇
� 𝑑𝑑𝑟𝑟∞

2𝑎𝑎

 

In the limiting case when there is no potential between the particles (Φ = 0), except 
for an infinitely strong van der Waals attraction when they make contact, we get the 
so-called fast aggregation rate: 

𝐽𝐽𝑓𝑓𝑎𝑎𝑠𝑠𝑡𝑡 = 𝐽𝐽𝑘𝑘,𝑖𝑖(Φ = 0) = 𝐽𝐽𝑘𝑘,𝑖𝑖 = 16𝜋𝜋𝜋𝜋𝑑𝑑𝑘𝑘𝜕𝜕𝑘𝑘,∞ 

which is indeed the one we found for Brownian motion (= 4𝜋𝜋𝑑𝑑(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)𝜕𝜕𝑘𝑘,∞). 

The stability ratio is defined by: 

𝑊𝑊 =
𝐽𝐽𝑓𝑓𝑎𝑎𝑠𝑠𝑡𝑡
𝐽𝐽𝑘𝑘,𝑖𝑖

= 2𝜋𝜋�
1
𝑟𝑟2

exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� 𝑑𝑑𝑟𝑟
∞

2𝑎𝑎
= 2�

1
𝑠𝑠2

exp �
Φ
𝑘𝑘𝐵𝐵𝑇𝑇

� 𝑑𝑑𝑠𝑠
∞

2
 

where 𝑠𝑠 = 𝑟𝑟/𝜋𝜋. This integral can be evaluated numerically, and Verwey and 
Overbeek showed in 1948 that 𝑊𝑊 was determined almost entirely by the value of Φ 
at its maximum (Φ𝑚𝑚𝑎𝑎𝜕𝜕). A simple approximation, due to Reerink and Overbeek72 in 
1954, for unequal spheres, is: 

𝑊𝑊 ~ 
1

𝜅𝜅(𝜋𝜋𝑘𝑘 + 𝜋𝜋𝑖𝑖)
exp �

Φ𝑚𝑚𝑎𝑎𝜕𝜕

𝑘𝑘𝐵𝐵𝑇𝑇
� 

For 1 μm particles, in 100 mM of a 1-1 electrolyte, 𝜅𝜅𝜋𝜋~500. For a barrier of 10𝑘𝑘𝐵𝐵𝑇𝑇 
one would get 𝑊𝑊~45, whereas for 20𝑘𝑘𝐵𝐵𝑇𝑇 one would get 𝑊𝑊~106 i.e. only one in 
every million collisions would occur between particles having sufficient energy to 
overcome the barrier. 

A small change in electrolyte concentration or in particle’s surface potential can have 
dramatic effects on the aggregation rate. In Chapter 3, when we derived the Schulze-
Hardy rule, we have given an different form for Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. We will now use the following 
one: 

                                                                 
72 Reerink, H., & Overbeek, J. T. G. (1954). The rate of coagulation as a measure of the stability 
of silver iodide sols. Discussions of the Faraday Society, 18, 74-84. 
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Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
−𝐴𝐴𝜋𝜋

12(𝑟𝑟 − 2𝜋𝜋) + 32π𝜀𝜀0𝜀𝜀𝑟𝑟 �
𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞
�
2

𝜋𝜋 tanh2 �
𝑞𝑞𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)� 

which is valid for any 𝜓𝜓(𝜋𝜋) and κa ≫ 1  (as one can see, we have here simplified the 
expression for the van der Waals force by taking the one derived for plates, i.e. which 
is valid for spheres as well when κa ≫ 1 ). The position of the energy barrier when 
Φ𝑚𝑚𝑎𝑎𝜕𝜕 = 0 is represented by : 

Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑑𝑑Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑𝑟𝑟
= 0 

From evaluating 𝜅𝜅Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑑𝑑Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/𝑑𝑑𝑟𝑟 = 0 one obtains: 

−𝐴𝐴𝜅𝜅𝜋𝜋
12(𝑟𝑟 − 2𝜋𝜋) +

𝐴𝐴𝜋𝜋
12(𝑟𝑟 − 2𝜋𝜋)2 = 0 

and therefore: 

𝜅𝜅(𝑟𝑟 − 2𝜋𝜋) = 1 

Using this expression in Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0, and the definition of  𝜅𝜅 for a z-z electrolyte (𝑞𝑞 =
𝑑𝑑𝑅𝑅): 

𝜅𝜅2 =
2(𝑅𝑅𝑑𝑑)2𝑁𝑁𝐴𝐴
𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇

𝐶𝐶(mM) 

it follows that the critical concentration at which fast aggregation will occur is: 

𝐶𝐶fast(mM) =
𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇

2(𝑅𝑅𝑑𝑑)2𝑁𝑁𝐴𝐴
�
384π𝜀𝜀0𝜀𝜀𝑟𝑟

𝐴𝐴
�
2

�
𝑘𝑘𝐵𝐵𝑇𝑇
𝑅𝑅𝑑𝑑

�
4

 tanh4 �
𝑅𝑅𝑑𝑑𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� exp(−2) 

It is convenient to introduce here the Bjerrum length (after Danish chemist Niels 
Bjerrum) which is the separation at which the electrostatic interaction between two 
elementary charges is comparable in magnitude to the thermal energy scale, 𝑘𝑘𝐵𝐵𝑇𝑇. 
The Bjerrum length reads: 

𝑙𝑙𝐵𝐵 =
𝑅𝑅2

4𝜋𝜋𝜀𝜀0𝜀𝜀𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇
 

For water at room temperature (𝑇𝑇 = 300 𝐾𝐾), 𝜀𝜀𝑟𝑟 ~ 80 and 𝑙𝑙𝐵𝐵  ~ 0.7 𝜕𝜕𝑚𝑚. 

We obtain: 

𝐶𝐶fast(mM) =
962exp(−2)

8𝜋𝜋𝑁𝑁𝐴𝐴
�
𝑘𝑘𝐵𝐵𝑇𝑇
𝐴𝐴
�
2 1
𝑙𝑙𝐵𝐵
3𝑑𝑑6

 tanh4 �
𝑅𝑅𝑑𝑑𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� 
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This expression scales with 1/𝑑𝑑6 for large surface potentials but when when 
𝑅𝑅𝑑𝑑𝜓𝜓(𝜋𝜋) ≪ 4𝑘𝑘𝐵𝐵𝑇𝑇 it scales with 1/𝑑𝑑2 as we have found while deriving the expression 
for the Schulze-Hardy rule in Chapter 3. 

We can also evaluate Φ𝑚𝑚𝑎𝑎𝜕𝜕  : Φ𝑚𝑚𝑎𝑎𝜕𝜕  occurs when 𝑑𝑑Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/𝑑𝑑𝑟𝑟 = 0 i.e. when 

𝐴𝐴𝜋𝜋
12𝜅𝜅(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋)2 = 32π𝜀𝜀0𝜀𝜀𝑟𝑟 �

𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞
�
2

 𝜋𝜋 tanh2 �
𝑞𝑞𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� exp�−𝜅𝜅(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋)� 

For which we get: 

Φ𝑚𝑚𝑎𝑎𝜕𝜕 =
𝐴𝐴𝜋𝜋

12(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋) �
1

𝜅𝜅(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋) − 1� 

Around the fast aggregation concentration, it is expected that 𝜅𝜅(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋) should 
be close to one (see derivation just above). One may therefore write, using the fact 
that ln(𝑥𝑥) ~ 1 + 𝑥𝑥 for small 𝑥𝑥 : 

Φ𝑚𝑚𝑎𝑎𝜕𝜕  ~ 
−𝐴𝐴𝜋𝜋

12(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋) ln[𝜅𝜅(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋)] 

This implies that: 

ln(𝑊𝑊) ~ 
Φ𝑚𝑚𝑎𝑎𝜕𝜕

𝑘𝑘𝐵𝐵𝑇𝑇
~ 

−𝐴𝐴𝜋𝜋
12𝑘𝑘𝐵𝐵𝑇𝑇(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋) �ln

(𝜅𝜅) + ln[(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋)]� 

In view of the relation 𝜅𝜅 ~ 𝐶𝐶1/2 one then gets: 

ln(𝑊𝑊) ~
−𝐴𝐴𝜋𝜋

24𝑘𝑘𝐵𝐵𝑇𝑇(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋) ln(𝐶𝐶) + 𝑐𝑐𝑐𝑐𝜕𝜕𝑠𝑠𝑡𝑡𝜋𝜋𝜕𝜕𝑡𝑡 

Using (see above on this page): 

𝐴𝐴𝜋𝜋
𝜅𝜅(𝑟𝑟𝑚𝑚𝑎𝑎𝜕𝜕 − 2𝜋𝜋)2  ~ 

 𝜋𝜋
𝑑𝑑2

 tanh2 �
𝑑𝑑𝑅𝑅𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� 

One also gets: 

ln(𝑊𝑊) ~
−𝜋𝜋
𝑑𝑑2

 tanh2 �
𝑑𝑑𝑅𝑅𝜓𝜓(𝜋𝜋)
4𝑘𝑘𝐵𝐵𝑇𝑇

� ln(𝐶𝐶) + 𝑐𝑐𝑐𝑐𝜕𝜕𝑠𝑠𝑡𝑡𝜋𝜋𝜕𝜕𝑡𝑡 

From this expression it is clear that when 𝜓𝜓(𝜋𝜋) ~ 0 (and thus the zeta potential 𝜁𝜁 
close to zero), one has ln(𝑊𝑊) ~ 0 and thus 𝑊𝑊 ~ 1 (fast aggregation). This is why, as 
a rule of thumb, one says that flocculation is predicted to happen at small zeta 
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potentials: typically fast flocculation occurs when 𝑅𝑅𝜁𝜁/𝑘𝑘𝑇𝑇 is of the order of 1 i.e. at 
room temperature, when  𝜁𝜁 is of the order of 25 mV. 

Niels Janniksen Bjerrum (1879 – 1958) had a sister Dr. 
Kirstine Meyer who was a prominent physicist73. His early 
interest was natural history, but this soon changed to 
chemistry. He carried out research stimulated by S. M. 
Jörgensen, one of the pioneers on coordination complexes, 
obtaining a Master’s degree in 1902 and a Doctor’s degree 
in 1908. He visited and worked with several of the great 
physical chemists of the time: in 1905 Luther in Leipzig, in 
I907 Werner in Zürich, in 1910 Perrin in Paris and in 1911 
Nernst in Berlin. In 1912 he became docent at the 
University of Copenhagen. In 1914 he succeeded O.T. Christensen as Professor of 
chemistry at the Royal Agricultural College, Copenhagen where he remained until he 
retired in 1949. In the period 1906-1908 Bjerrum was determining the structure of 
various chromium complexes and measuring hydrogen ion concentrations before 
the expression pH had yet been invented by Sörensen. He also did fundamental work 
on the factors determining the acidity of soil. 

 

The Bjerrum plot is named after him. A Bjerrum plot is a graph of the concentrations 
(or ratio of concentrations) of the different species of a polyprotic acid (= which are 
able to donate more than one proton per acid molecule) in a solution, as functions 
of the solution's pH, when the solution is at equilibrium. Most often, the carbonate 
system is plotted, where the polyprotic acid is carbonic acid (a diprotic acid), and the 
different species are carbonic acid, carbon dioxide, bicarbonate, and carbonate. In 

                                                                 
73 She received her PhD in physics from the University of Copenhagen in 1909, becoming the 
first Danish woman to earn a doctorate in natural sciences. Her dissertation, 
Temperaturbegrebets Udvikling gennem Tiderne (The Development of the Temperature 
Concept through Time), was an in-depth treatment of the history of the concept of 
temperature. In 1902, Meyer founded Fysisk Tidsskrift, the Danish journal of physics. She was 
its editor until 1913. 
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acidic conditions, the dominant form is CO2; in basic (alkalinic) conditions, the 
dominant form is CO32−; and in between, the dominant form is HCO3−. At every pH, 
the concentration of carbonic acid (H2CO3) is assumed to be negligible compared to 
the concentration of CO2, and so is often omitted from Bjerrum plots. These plots 
are typically used in ocean chemistry to track the response of an ocean to changes 
in both pH and of inputs in carbonate and CO2. 

Experimental verification 

The stability ratio is not only depending on the 
zeta potential 𝜁𝜁, it is also highly dependent on 
the ionic strength, as we have seen in Chapter 
3 that 𝜁𝜁 is highly depending on it. Fast 
flocculation will occur when 𝜁𝜁 is in good 
approximation zero. This fact is verified 
experimentally in most cases. 

There are however still open questions 
related to the prediction of the stability ratio. 
Even though the DLVO theory can correctly 
predict the fast flocculation regime (based on 
zeta potential measurements in particular), it 
fails to describe correctly the slope between 
ln(𝑊𝑊) and ln(𝐶𝐶): from the DLVO theory, the 

slope should be much less steep than it is in reality for most systems. Sometimes, 
also, the fast flocculation regime is not exactly predicted from DLVO: 

 

Left: Forces between pairs of latex amidine spheres (size 1μm) versus the surface. Right: 
measured stability ratios (symbols) with calculated ones based on the force measurements 

(solid lines). The results for DLVO theory are shown for comparison (dashed line) 
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From the force/separation graphs74,  the Hamaker constant could be estimated 
using the data at high salt concentration (where  van der Waals force dominates). 
An additional attractive non-DLVO force could be estimated from the other curves. 
The result of DLVO theory only is shown for comparison (dashed lines).  The non-
DLVO behaviour was attributed to surface charge heterogeneities. 

Measuring forces between particles 

In order to estimate the forces between colloidal particles (as in the previous figure, 
on the left), one makes use of an Atomic Force Microscope (AFM) which is a very-
high-resolution type of scanning probe microscopy with a resolution for the 
distances on the order of fractions of a nanometer (more than 1000 times better 
than a regular optical microscope) and for the forces of the order of 10-8 N. The AFM 
was invented by IBM Scientists in 1982. The precursor to the AFM, the scanning 
tunneling microscope (STM), was developed by Gerd Binnig and Heinrich Rohrer in 
the early 1980s at IBM Research in Zurich, a development that earned them the 
Nobel Prize for Physics in 1986. The first commercially available atomic-force 

microscope was introduced in 1989. Another 
technique to measure interparticle forces is the 
Surface Force Apparatus (SFA), developed in the 
early 1970s at Cambridge75. The SFA is more 
ideally suited than AFM to measuring surface-
surface interactions, and can measure much 
longer-range forces more accurately. The SFA 
technique is however quite demanding and 
hence, only a handful of labs worldwide have 
these instruments. 

Both AFM and SFA techniques work on the 
principle of approaching two surfaces and 

measuring their interaction. Here we present the AFM only. To measure the force 
between two colloidal particles, a colloidal particle is glued to the tip of the 
cantilever and brought closer to a colloidal particle that is glued to the XYZ scanner. 
Depending on the interaction between the particles, the tip is attracted to or 
repelled from the other particle, and this deviation is measured through the 
deviation of the laser beam. This deviation can be linked to the force between the 
particles.  

                                                                 
74 Figures taken from Montes Ruiz-Cabello, F. Javier, et al. "Interaction forces and aggregation 
rates of colloidal latex particles in the presence of monovalent counterions." The Journal of 
Physical Chemistry B 119.25 (2015): 8184-8193. 
75 See the book by Israelachvili, Jacob N. (1992). Intermolecular and surface forces. Boston: 
Academic Press 
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Another AFM use is the scanning mode, where the tip is dragged along the surface 
and the change in elevation is recorded. 3D pictures can then be obtained from the 
scanned surface76:   

 

Typical AFM images of a) bentonite, b) montmorillonite, c) kaolin, d) halloysite, e) silica and 
f) graphene oxide 

 

Settling velocity, optimal flocculation and zeta potential 

Instead of measuring particle sizes via light scattering  the optimal flocculation rate 
can also be determined by measuring settling velocities: at optimal settling rate, the 
zeta potential is minimum77.  

In this last example we will illustrate this fact and we will briefly show the 
experimental problems to overcome when one wants to study the flocculation of a 
natural clay with a commercial cationic polyelectrolyte78: 

                                                                 
76 Kryuchkova, Marina, et al. "Evaluation of toxicity of nanoclays and graphene oxide in vivo: 
a Paramecium caudatum study." Environmental Science: Nano 3.2 (2016): 442-452. 
77 Yu, X., & Somasundaran, P. (1996). Role of polymer conformation in interparticle-bridging 
dominated flocculation. Journal of Colloid and Interface Science, 177(2), 283-287. 
78 unpublished results 
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End of settling for a suspension made of 8.7 g/L clay in presence of various amount 
of cationic flocculant Zetag 7587; flocculant to clay ratios are indicated above each 

column. 

From recording the suspension/water interface over time, the initial settling velocity 
(estimated from the first 30 s of settling) can be estimated: 

 

The settling velocities given here were measured in 250 mL columns, and each 
column was mixed by rotating the column upside down 10 times. Several 
parameters, like the volume and diameter of the column and the way to mix the 
suspension is found to influence the settling velocity values. There are several 
reasons for this: (1) the aggregation and break-up of clay and polyelectrolyte 
particles is highly dependent on the shear rate and the residence time in the column, 
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(2) the return flow of liquid in the column is influencing the settling of the flocs and 
(3) the flocs at higher concentrations of flocculant become positively charged and 
display an interaction with the wall. The walls of the settling columns are made of 
glass, which is slightly negatively charged and therefore flocs remain electrostatically 
attached to them. 

From the protocol used to estimate the settling velocities it was found that the 
fastest settling velocity is obtained for 6 mg/g flocculant to clay ratio. Additional 
studies on the same system proved that the way of mixing the suspension did not 
change the ratio for which the fastest settling velocity is observed. The quantitative 
value of this velocity is however protocol-dependent, as some protocols lead to 
larger flocs (and larger settling velocities) than others. 

The same system was studied by static light scattering (see Chapters 2 and 5) and 
electrophoresis (see Chapter 3). For these techniques, lower clay concentrations are 
required, but it was shown that the results nicely compare to the ones obtained for 
the settling tests. 

 

Left figure: mean particle (D50) measured by static light scattering as function of 
polyelectrolyte to clay ratio, for two times, indicated in the legend. The clay concentration is 
0.7 g/L. Right figure: zeta potential estimated from the Smoluchowski formula and derived 

from electrophoretic mobility results. The zeta potential is given as function of 
polyelectrolyte to clay ratio for different clay concentrations, indicated in the legend. 

As can be seen in the left figure, the largest flocs are obtained for a flocculant to clay 
ratio of about 5-25 mg/g when the flocs are measured 120 s after mixing. One can 
see that it corresponds to the ratio for which the zeta potential is zero (right figure). 
Zeta potential measurements are performed extremely rapidly after mixing, to 
prevent flocculation in the cell.  

After 600 s, the largest sizes are found at ratios about 10-50 mg/g, and for higher 
ratio’s the D50 does not decrease as fast as for flocs obtained at 120 s, as flocs keep 
growing slowly in time, since they are continuously stirred in the jar. For these high 
flocculant to clay ratio’s the zeta potential of flocs is highly positive, implying the 
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aggregation mechanism between flocs is due to steric interaction and/or hydrogen 
bonding, but not to electrostatic attraction. 

 

Interpretation of the electrophoretic mobility data: at low flocculant to clay ratio, the clay 
particle is not fully covered by polyelectrolyte and its charge (and zeta potential) is negative. 

At a specific flocculant to clay ratio the zeta potential of the system clay + polyectrolyte is 
close to zero and rapid flocculation is expected. For higher flocculant to clay ratio, the system 

becomes positively charged 

 

Illustrations 

Smoluchowski (public domain) 
https://en.wikipedia.org/wiki/Marian_Smoluchowski 

Niels Janniksen Bjerrum (public domain) 
https://pubs.rsc.org/en/content/articlelanding/1959/tf/tf959550x001/unauth#!div
Abstract 
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Rheological behaviour 
of colloidal suspensions 
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Rheology is the study of the flow of a liquid in response to an applied force. The word 
rheology has been introduced in 1928 by Eugene Bingham, professor at the 
university Lehigh in the United States, after a suggestion of a colleague refereeing to 
a famous quotation of Heraclitus: Panta rhei “everything flows” [the word rhei 
means in Greek “to stream”]. In this Chapter we are going to see how the flow of a 
colloidal suspension is different from that of a simple fluid (water for example).  

Viscosity and yield stress 

Viscosity 

Intuitively, we know what viscosity is: it is a measure of “how well” a liquid flows. 
Honey is a highly viscous liquid, and water is flowing rather well and is therefore a 
low viscous fluid. 

 

Different clay suspensions exhibiting different flow behaviours; (a) low viscous liquid (clay 
particles have settled and a clear water layer can be seen); (d) fluid mud; (e) high viscosity 

mud. The other photographs display mud is various stages of consolidation. 

In order to quantify the way liquids flow one has first to define the conditions for the 
flow: is it a laminar flow or a turbulent flow? 

Laminar flow occurs in layers without mixing. Viscosity causes drag between layers 
as well as with the fixed surface. Laminar flows occur at low water velocities, or low 
Reynolds numbers. An obstruction and high water velocities generate turbulence 
which mixes the fluid.  

In rheological measurements in the laboratory mainly laminar flows are studied, as 
in laminar flows the shear rate (defined underneath) can properly be quantified. This 
is more difficult in turbulent flows, even though turbulent flows are the most 
encountered in the natural environment. The Kolmogorov microscale (see Chapter 
6) becomes an important parameter in turbulent mixing. 
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Let us consider a simple flow in the laminar regime, generated under controlled 
conditions in the lab. An upper plate is moved parallel with a velocity v with respect 
to another plate which is fixed (its velocity is zero in the frame of the laboratory). 
The distance between the two plates is L. The force applied to slide the upper plate 
is F and the cross-sectional area of the plate is A. The fluid will flow everywhere 
parallel to the plates, since there is no turbulence and the velocity is assumed to vary 
linearly across the gap. In most cases, the liquid layers near each plates have the 
same velocity as that plate (“no-slip” condition). 

 

schematic representation of a laminar shear flow between a sliding and a fixed plate 
separated by a distance L; slices of liquid in blue and variation of the velocity in red 

The fact that the fluid velocity varies linearly across the gap will now be discussed. 
One first estimates the force on one of the water slices. We call (2) the slice of water 
in contact with the upper plate: 

 

The force on the slice (2) per unit area is given by 
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𝜎𝜎 =
𝐹𝐹
𝐴𝐴

 

where 𝜎𝜎 (Pa) is called the shear stress acting on the surface (also often denoted 𝜏𝜏). 
Due to stress materials deform. The deformation can be measured by the angle α in 
the top figure. The shear strain 𝛾𝛾 due to this stress is defined as the displacement 
𝑑𝑑𝑥𝑥 of the top surface with respect to the bottom plate relative to the thickness of 
layer (2) which is 𝑑𝑑𝑑𝑑 : 

𝛾𝛾 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= tan(𝛼𝛼) 

In the case we would consider a purely elastic material (like a rubber eraser for 
example) the deformation is reversible, and the material assumes its original shape 
once the force is removed. As the material we consider is a fluid, we cannot apply a 
static force, as in the case of a rubber eraser: because of its composition, the rubber 
will oppose a resistance to the deformation, and a balance of forces will establish 
between the imposed stress and the rubber resistance to the stress. A pure fluid 
with no elastic behaviour (like water) has an irreversible deformation, so one has to 
continuously shear the fluid to be able to measure its response.  For fluids, one 
therefore defines the shear rate �̇�𝛾 (s-1) : 

�̇�𝛾 =
𝑑𝑑tan(𝛼𝛼)
𝑑𝑑𝑡𝑡

=
1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑣𝑣𝜕𝜕
𝑑𝑑𝑑𝑑

 

For a constant shear rate, if the properties of the fluid do not change with height y, 
one finds by integration that the velocity indeed varies linearly across the gap as: 

𝑣𝑣𝜕𝜕 = �̇�𝛾𝑑𝑑 

where 𝑑𝑑 = 0 is defined at the bottom plate. The velocity 𝑣𝑣𝜕𝜕 = �̇�𝛾𝐿𝐿 is the velocity of 
the upper plate. The relation between the applied shear stress and the induced shear 
rate (or the induced shear stress and measured shear rate – both are possible with 
the modern rheometers) is given by: 

𝜎𝜎 = 𝜂𝜂�̇�𝛾 = 𝜂𝜂
𝑑𝑑𝑣𝑣𝜕𝜕
𝑑𝑑𝑑𝑑

 

where 𝜂𝜂 is the shear (dynamic) viscosity (Pa ∙ s) of the fluid. One can therefore 
estimate that the force per unit area exerted by slice (2) on slice (1) and in general 
slice (k+1) on slice (k) is given by:  

𝜎𝜎𝑘𝑘+1→𝑘𝑘 = 𝜂𝜂
𝑑𝑑𝑣𝑣𝜕𝜕
𝑑𝑑𝑑𝑑
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This relation is true for so-called Newtonian fluids, the simplest fluids, which display 
a linear relation between shear stress and shear rate. Most concentrated 
suspensions, however, are non-Newtonian fluids. Here are the most common non-
Newtonian behaviours: 

 

Modelling the shear stress as function of shear rate 

For fluids with a zero yield stress (𝜎𝜎(�̇�𝛾 = 0)), which are the shear-thinning, shear-
thickening and Newtonian fluids, the relation between shear stress and shear rate 
can be expressed as: 

𝜎𝜎 = 𝑘𝑘�̇�𝛾𝑒𝑒 

where n = 1 for a Newtonian fluid (and then 𝑘𝑘 has the dimension of a viscosity: 𝑘𝑘 =
𝜂𝜂), n < 1 for shear-thinning and n > 1 for shear-thickening. Note that the dimension 
of 𝑘𝑘 depends on n. 

For Bingham fluids, one uses: 

𝜎𝜎 = 𝜎𝜎0 + 𝜂𝜂�̇�𝛾 

where 𝜎𝜎0 is the yield stress (also often noted 𝜏𝜏𝑐𝑐  and defined underneath) . The non-
Newtonian plastic fluids can be modelled with the so-called Herschel-Bulkley model: 

𝜎𝜎 = 𝜎𝜎0 + 𝑘𝑘�̇�𝛾𝑒𝑒 

Many more models exist, as obviously the rheological behaviours of suspensions can 
be complicated. A model used for the flow of blood is the Casson equation, given by: 
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𝜎𝜎𝑒𝑒 = 𝜎𝜎0𝑒𝑒 + 𝑘𝑘�̇�𝛾𝑒𝑒 

with 𝜕𝜕 = 0.5. 

Yield stress 

The yield stress (Pa) can be, in a simplistic way, defined as the stress at which a 
material begins to flow. In the figure above, it is given by the point 𝜎𝜎(�̇�𝛾 = 0). For 
Newtonian fluids, as soon as a shear rate is imposed, the material starts to respond, 
therefore the yield stress is zero for a Newtonian fluid. Other types of liquids (see 
ideal Bingham fluid) needs a certain amount of stress in order to start to flow. One 
can define their yield stress by incrementally increasing the shear stress until their 
shear rate is changing to a non-zero value. One can also, in the case of a Bingham 
fluid, extrapolate the 𝜎𝜎(�̇�𝛾) line to find 𝜎𝜎(�̇�𝛾 = 0). 

 A question that arises is how to properly define the yield stress, as obviously it will 
depend on several factors: 

1 – the shear history: has the sample been stirred before? One can imagine for 
example a mud that was undisturbed for a long time. Its yield stress will be higher 
than a mud that has just been stirred.  

2 – the rate at which the shear stress is applied: if the shear stress increments are 
done slowly, the liquid would have time to adapt and its yield stress would be 
different than when the increments are done fast.  

When yield stress experiments are performed, both these points should therefore 
be addressed. The change in fluid properties, like shear thinning and shear 
thickening, will be discussed later, as function of the colloidal interactions occurring 
in the suspensions. 

In the case of suspensions which exhibit a yield stress for moderate volume fractions, 
one can use this yield stress 𝜎𝜎0 to estimate the “amount” of colloidal forces within 
the suspension: 

𝜎𝜎0 ~ 𝑁𝑁 × 𝐹𝐹𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒  

where 𝑁𝑁 is the number of bonds  per unit area between the particles and 𝐹𝐹𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒  the 
mean force of a bond. We make the hypothesis that the network breakage requires 
the rupture of almost every bond. The amount of hydrodynamic effects can be 
estimated through the stress of the equivalent suspension of non-interacting 
particles: 

𝜎𝜎(𝜙𝜙𝑆𝑆) = 𝜂𝜂(𝜙𝜙𝑆𝑆)�̇�𝛾 
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where 𝜙𝜙𝑆𝑆 is the volume fraction of particles, 𝜂𝜂(𝜙𝜙𝑆𝑆) is the viscosity of a force-free 
particle suspension and �̇�𝛾 is the shear rate. Examples of 𝜂𝜂(𝜙𝜙𝑆𝑆) are given in the next 
sections. The ratio of the hydrodynamic to colloidal stresses is given by: 

Γ =
𝜂𝜂�̇�𝛾
𝜎𝜎0

 

Formally Γ−1 is called a Bingham number. In general 𝜎𝜎0 rapidly increases with 𝜙𝜙𝑆𝑆: 
for concentrated clay-water mixtures 𝜎𝜎0 is found to follow an exponential law : 

 

Yield stress of mud suspensions as a function of the volume fraction of particles79 

For fine mud suspensions the range of  Γ for the transition from a colloidal regime 
to a hydrodynamic one is found to be [0.3 - 50]. 

We will see in the last section how 𝜎𝜎0 can be linked to DLVO forces, which were 
introduced in Chapter 3. 

Viscoelastic fluids 

Viscoelastic fluids combine the properties of elastic solids and those of viscous fluids. 
This is in particular true for densely flocculated suspensions. Ideal plastic material 
always return to their non-deformed state when the stresses are released. These 
materials are said to have a perfect “memory” of their non-deformed reference 
configuration. On the other hand, liquids have no memory at all, and when the stress 
is released, they remain in their last position. Energetically, the work done in an 
elastic deformation is stored in the material as potential energy and can be totally 
recovered when the material returns to its non-deformed state. 

                                                                 
79 Coussot, P. (1995). Structural similarity and transition from Newtonian to non-Newtonian 
behavior for clay-water suspensions. Physical review letters, 74(20), 3971. 
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In order to study the viscoelastic properties of fluids, oscillatory shear flows are used. 
If, instead of having a constant speed, the upper plate executes a sinusoidal motion, 
this will induce a sinusoidal deformation or strain in the sample. Let the oscillatory 
motion of the upper plate be: 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥0cos(𝜔𝜔𝑡𝑡) 

where 𝑥𝑥0 is the peak displacement and 𝜔𝜔 the frequency of the oscillation. The 
deformation (strain) of the sample can then be expressed as: 

𝛾𝛾(𝑡𝑡) = 𝛾𝛾0cos(𝜔𝜔𝑡𝑡) 

with 𝛾𝛾0 = 𝑥𝑥0/𝐿𝐿 where 𝐿𝐿 is the distance between the two plates. In the case of an 
ideal elastic sample, the shear stress should follow the shear strain deformation in 
agreement with Hooke’s law:  

𝜎𝜎(𝑡𝑡) = 𝐺𝐺𝛾𝛾(𝑡𝑡) 

where the shear modulus G (Pa) is defined as the ratio between shear stress to shear 
strain. Stress 𝜎𝜎 and strain 𝛾𝛾 are then in phase. The stress for a viscous liquid, on the 
other hand, depends, as we have seen, on the shear rate �̇�𝛾. We then have: 

�̇�𝛾(𝑡𝑡) = −𝜔𝜔𝛾𝛾0sin(𝜔𝜔𝑡𝑡) = 𝜔𝜔𝛾𝛾0cos(𝜔𝜔𝑡𝑡 + 𝜋𝜋/2) 

If we assume that the liquid is Newtonian we have 𝜎𝜎 = 𝜂𝜂�̇�𝛾 and therefore stress 𝜎𝜎 
and strain 𝛾𝛾 are 𝜋𝜋/2 out of phase. Viscoelastic fluids have a phase shift between 
stress 𝜎𝜎 and strain 𝛾𝛾 that is between 0 and 𝜋𝜋/2. A generalized Hooke’s law can be 
defined for these kind of fluids: 

𝜎𝜎(𝑡𝑡) = 𝛾𝛾0[𝐺𝐺′cos(𝜔𝜔𝑡𝑡) − 𝐺𝐺′′sin(𝜔𝜔𝑡𝑡)] 

The in-phase (real part) 𝐺𝐺′ describes the elastic component of the stress. It is called 
the storage modulus. The out-of-phase (imaginary part) 𝐺𝐺′′ represents the viscous 
part. It is called the loss modulus. Clearly, for pure elastic samples, 𝐺𝐺′′ = 0 and 𝐺𝐺′ =
𝐺𝐺 and the stress 𝜎𝜎 is given by 𝜎𝜎 = 𝐺𝐺𝛾𝛾. For pure Newtonian viscous samples 𝐺𝐺′ = 0 
and 𝜎𝜎 = −𝛾𝛾0𝐺𝐺′′sin(𝜔𝜔𝑡𝑡)=−𝜂𝜂𝜔𝜔𝛾𝛾0sin(𝜔𝜔𝑡𝑡), from which we deduce that 𝐺𝐺′′ = 𝜂𝜂𝜔𝜔. The 
phase angle between stress and strain determines how much mechanical energy will 
be dissipated in heat and is referred to as loss angle 𝑙𝑙: 

tan 𝑙𝑙 = 𝐺𝐺′′/𝐺𝐺′ 
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Maxwell model 

A viscoelastic fluid having a Newtonian loss modulus and a Hooke storage modulus 
can be represented by a pure viscous damper (symbol 𝜂𝜂) and a purely elastic spring  
(symbol 𝐺𝐺) connected in series80. This model is called after Maxwell, who proposed 
it in 1867: 

 

The total stress and total strain can be defined as: 

𝜎𝜎 = 𝜎𝜎𝜂𝜂 = 𝜎𝜎𝐺𝐺  

𝛾𝛾 = 𝛾𝛾𝜂𝜂 + 𝛾𝛾𝐺𝐺  

[note the analogy with electronic (equivalent) circuits where 𝜎𝜎 would represent a 
current and 𝛾𝛾 a voltage]. One obtains: 

�̇�𝛾 =
𝜎𝜎
𝜂𝜂

+
1
𝐺𝐺
𝑑𝑑𝜎𝜎
𝑑𝑑𝑡𝑡

=
𝜎𝜎
𝜂𝜂

+
1
𝐺𝐺
�̇�𝜎 

where we used 𝜎𝜎𝜂𝜂 = 𝜂𝜂�̇�𝛾𝜂𝜂 as for Newton fluids for the pure viscous damper, and 𝜎𝜎𝐺𝐺 =
𝐺𝐺𝛾𝛾𝐺𝐺  for a purely elastic spring. From that equation a characteristic relaxation time 
can be estimated: 𝜏𝜏 = 𝜂𝜂/𝐺𝐺. If we adopt the complex representation such that 𝛾𝛾∗ =
𝛾𝛾 + 𝑆𝑆 Im(𝛾𝛾∗) = 𝛾𝛾0exp (−𝑆𝑆𝜔𝜔𝑡𝑡) and 𝜎𝜎∗ = 𝜎𝜎 + 𝑆𝑆 Im(𝜎𝜎∗) = 𝜎𝜎0exp (−𝑆𝑆𝜔𝜔𝑡𝑡), one can 
rewrite the previous equation as: 

�̇�𝛾∗ =
𝜎𝜎∗

𝜂𝜂
+

1
𝐺𝐺
�̇�𝜎∗ 

Taking the real part of both sides of this equation will give back the original equation. 
By substitution we find: 

�̇�𝛾∗ = −𝑆𝑆𝜔𝜔𝛾𝛾∗ = �
1
𝜂𝜂
−
𝑆𝑆𝜔𝜔
𝐺𝐺
�𝜎𝜎∗ =

1 − 𝑆𝑆𝜔𝜔𝜏𝜏
𝜂𝜂

𝜎𝜎∗ 

From which we deduce that: 

                                                                 
80 There exist also a model where the damper and the spring are in parallel. That model is 
called the Kelvin–Voigt model. This model is used to describe a simple viscoelastic solid.  
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𝜎𝜎∗ =
−𝑆𝑆𝜔𝜔𝜂𝜂

1 − 𝑆𝑆𝜔𝜔𝜏𝜏
𝛾𝛾∗ 

A complex shear modulus  𝐺𝐺∗ can be defined such that: 

𝜎𝜎∗ = 𝐺𝐺∗𝛾𝛾∗ 

with 

𝐺𝐺∗ = 𝐺𝐺′ − 𝑆𝑆𝐺𝐺′′ 

We find from the previous relations: 

𝐺𝐺′ − 𝑆𝑆𝐺𝐺′′ =
𝜔𝜔2𝜂𝜂𝜏𝜏

1 + 𝜔𝜔2𝜏𝜏2
− 𝑆𝑆

𝜔𝜔𝜂𝜂
1 + 𝜔𝜔2𝜏𝜏2

 

Often, a complex viscosity 𝜂𝜂∗ is also defined such that: 

𝜂𝜂∗ = 𝜂𝜂′ + 𝑆𝑆𝜂𝜂′′ =
𝐺𝐺′′

𝜔𝜔
+ 𝑆𝑆

𝐺𝐺′

𝜔𝜔
 

which leads to:  

𝜂𝜂′ =
𝜂𝜂

1 + 𝜔𝜔2𝜏𝜏2
 

𝜂𝜂′′ =
𝜂𝜂𝜔𝜔𝜏𝜏

1 + 𝜔𝜔2𝜏𝜏2
 

From which we can deduce that 

𝐺𝐺′′ = 𝜂𝜂′𝜔𝜔 

For a pure viscous liquid 𝜏𝜏 = 𝜂𝜂/𝐺𝐺 → 0 and 𝐺𝐺′′ = 𝜂𝜂𝜔𝜔 as discussed above. We have 
now found for the complex stress/strain relation that 

𝜎𝜎∗ = �
𝜔𝜔2𝜂𝜂𝜏𝜏

1 + 𝜔𝜔2𝜏𝜏2
− 𝑆𝑆

𝜔𝜔𝜂𝜂
1 + 𝜔𝜔2𝜏𝜏2

� 𝛾𝛾∗ 

Taking the real part gives: 

𝜎𝜎(𝑡𝑡) =
𝜔𝜔2𝜂𝜂𝜏𝜏

1 + 𝜔𝜔2𝜏𝜏2
𝛾𝛾0 cos(𝜔𝜔𝑡𝑡) −

𝜔𝜔𝜂𝜂
1 + 𝜔𝜔2𝜏𝜏2

𝛾𝛾0sin (𝜔𝜔𝑡𝑡) 

From 𝜎𝜎(𝑡𝑡) = 𝛾𝛾0[𝐺𝐺′cos(𝜔𝜔𝑡𝑡) − 𝐺𝐺′′sin(𝜔𝜔𝑡𝑡)] we deduce that: 

𝐺𝐺′ = 𝐺𝐺
𝜔𝜔2𝜏𝜏2

1 + 𝜔𝜔2𝜏𝜏2
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𝐺𝐺′′ = 𝐺𝐺
𝜔𝜔𝜏𝜏

1 + 𝜔𝜔2𝜏𝜏2
 

These functions are plotted here: 

 

Left: Linear plot of the dimensionless storage modulus 𝐺𝐺′/𝐺𝐺 (blue line), loss modulus 𝐺𝐺′′/𝐺𝐺 
(blue dashed line) and apparent viscosity 𝜂𝜂′/𝜂𝜂. Right: the same, but in log-log scale. 

From the graphs it is clear that 𝜏𝜏 = 𝜂𝜂/𝐺𝐺 represents the time where one goes from a 
viscous-dominated fluid (𝜂𝜂′ ~ 𝜂𝜂) to an elastic-dominated fluid (𝐺𝐺′ ~ 𝐺𝐺). The loss 
modulus is highest at that transition. 

Couette rheometer 

A rheometer is a laboratory device used to measure how a liquid, suspension or 
slurry flows in response to applied forces. One of the most used rheometer is the 
concentric cylinder rheometer (also called Couette rheometer, after its inventor, the 
physicist Maurice Couette (1858-1943)). Other types of geometry (plate-plate, which 
was discussed at the beginning of the chapter or cone-plate,…) do also exist. In a 
Couette rheometer a torque M (thus the shear stress) is imposed and the rotation 
speed (thus the shear rate) is recorded. This type of rheometer is said to be stress-
controlled. Strain-controlled rheometers also exist. 

We assume that the outer cylinder remains fixed and that the inner cylinder rotates 
with an angular velocity 𝜔𝜔 = 𝑑𝑑𝜃𝜃/𝑑𝑑𝑡𝑡. The shear stress 𝜎𝜎(𝑟𝑟) represents the friction 
between two layers located on either side of the distance 𝑟𝑟. The torque M on the 
inner cylinder is equal to the force due to friction at the distance 𝑟𝑟 multiplied by 𝑟𝑟 
as: 

𝑴𝑴 = 𝑟𝑟𝒆𝒆𝒓𝒓 × 𝐹𝐹𝒆𝒆𝜽𝜽 

𝑀𝑀 = 𝑟𝑟𝐹𝐹 sin(𝒆𝒆𝒓𝒓, 𝒆𝒆𝜽𝜽) 

𝑀𝑀 = 𝑟𝑟𝐹𝐹(𝑟𝑟) 
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The stress at the distance 𝑟𝑟 is therefore linked to the torque by: 

𝜎𝜎(𝑟𝑟) =
𝐹𝐹(𝑟𝑟)
2𝜋𝜋𝑟𝑟ℎ

=
𝑀𝑀

2𝜋𝜋𝑟𝑟2ℎ
 

If we assume that 𝑅𝑅𝑏𝑏𝑜𝑜𝑡𝑡/𝑅𝑅𝑖𝑖𝑒𝑒 is close to one (which is the case in standard 
rheometers), then both 𝜎𝜎 and �̇�𝛾 are independent of the position in the gap between 
the two cylinders. It is then easy to show that the shear rate is proportional to the 
angular velocity. 

�̇�𝛾 =
𝑑𝑑𝑣𝑣𝜃𝜃
𝑑𝑑𝑟𝑟

=
𝑣𝑣𝜃𝜃

(𝑅𝑅𝑏𝑏𝑜𝑜𝑡𝑡 − 𝑅𝑅𝑖𝑖𝑒𝑒) =
𝑅𝑅𝑖𝑖𝑒𝑒𝜔𝜔

(𝑅𝑅𝑏𝑏𝑜𝑜𝑡𝑡 − 𝑅𝑅𝑖𝑖𝑒𝑒) 

 

Left: illustration of a rheometer; usually the ratio 𝑅𝑅𝑏𝑏𝑜𝑜𝑡𝑡/𝑅𝑅𝑖𝑖𝑒𝑒 is very close to 1; Right: 
concentric inner and outer cylinders with cylindrical coordinates 

Rheology of suspensions 

Until now, we have reviewed general principles about rheology. We did not yet 
discuss the microscopic structure of these fluids, and considered the fluids as a 
continuum, having bulk properties. Fluids displaying “real” continuum properties are 
for instance water or oil, i.e. fluids composed of the same type of molecules. In the 
remainder of the chapter we will discuss the rheological properties of suspensions 
as function of the properties of the solvent and colloidal particles that form these 
fluids. To start, we give an example81 of the flow behaviour of a diluted clay 
suspension in a 1-1 electrolyte: 

                                                                 
81 See Handbook of Clay Science Edited by F. Bergaya, B.K.G. Theng and G. Lagaly 
Developments in Clay Science, Vol. 1, Chapter 5 
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A: isolated particles; B: minimum of rheological properties (viscosity, yield stress) due to 
electroviscous effect; C,D: aggregation in the form of networks; E,F: fragmentation of the 

networks at high salt concentrations. 

The effect of salt concentration can be understood as follows: both yield stress and 
viscosity are low at no added salt, as the clay platelets are just suspended in water, 
so the rheological properties measured should be close to (a bit larger than) the one 
of water (as we consider a dilute suspension). A minimum is observed at low salt 
concentration (in B) as a consequence of the secondary electroviscous effect: the 
double layers around the particles are sufficiently compressed so as to ensure that 
the particles do not “feel” each other over significant distances, so they can flow 
better. When the amount of added salt becomes significant, aggregation occurs and 
large aggregates are formed which hinder the flow, leading to an increase in viscosity 
and yield stress. At even higher salt concentration, several scenarios are possible: 
(D): the aggregates are very strong, and remain as they are, and the rheological 
properties do not change upon addition of salt, (E,F): some delamination occurs, and 
the size of the aggregates is reduced, leading to a reduction in rheological properties. 

Dilute and semi-dilute suspensions 

In his doctoral thesis Albert Einstein derived a relation between the viscosity of the 
suspension and the volume fraction of the non-interacting spherical colloidal 
particles inside the suspension. He found (after a colleague, Hopf, corrected a 
mistake82), that: 

                                                                 
82 Einstein had found η = η0(1 + ϕ) which would be the correct expression if the suspension 
would be made of droplets or gas bubbles for which there is no friction at the particle’s surface 
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𝜂𝜂 = 𝜂𝜂0(1 + 2.5𝜙𝜙𝑠𝑠) 

where 𝜂𝜂0 is the viscosity of the fluid when there is no particles and 𝜙𝜙𝑠𝑠 the volume 
fraction of particles. Even though the relation looks simple, it is quite difficult to 
derive. The result is obtained by calculating the energy dissipation in a sphere of 
radius R around the reference sphere and let R go to infinity. A rigorous 
mathematical derivation has been provided by Batchelor and Green, who even 
extended Einstein’s formula for interacting particles. An alternative (simpler) 
derivation is outlined in the book of Theo van de Ven (Colloidal Hydrodynamics, cited 
in the reference list), based on the work of Happel and Brenner. The extended 
Einstein formula can be written: 

𝜂𝜂 = 𝜂𝜂0�1 + 2.5𝜙𝜙𝑠𝑠 + 𝑐𝑐2𝜙𝜙𝑠𝑠
2� 

where 𝑐𝑐2 is a numerical value. The term 𝜙𝜙𝑠𝑠
2 behind reflects the fact that 𝑐𝑐2 should 

account for particle-particle interactions.  Depending on the assumptions made, 𝑐𝑐2 
can therefore take different values.  

Batchelor and the development of colloidal hydrodynamics 

Batchelor and Green in an important article83 have found the second order 
correction to Einstein’s relation: 

𝜂𝜂 = 𝜂𝜂0�1 + 2.5𝜙𝜙𝑠𝑠 + 7.6𝜙𝜙𝑠𝑠
2� 

implying that 𝑐𝑐2 = 7.6. This was in the case where they considered an extensional 
flow. For a shear flow of a semi-dilute suspensions of hard spheres with no Brownian 
motion (i.e. large particles), assuming a random particle distribution they found 𝑐𝑐2 =
5.2.  

 

The calculation of the 𝜙𝜙𝑠𝑠
2 term requires evaluating diverging integrals which can be 

evaluated by using special mathematical techniques. Batchelor extended Einstein’s 
original argument to show that Brownian motion in a suspension with two or more 
particles can be represented as a statistical thermodynamic force.  

                                                                 
(free slip). The other contribution to the viscosity comes from the distortion of the flow lines, 
which exist in any case, due to the presence of the particles. 
83 Batchelor, G. K., & Green, J. T. (1972). The determination of the bulk stress in a suspension 
of spherical particles to order c2. Journal of Fluid Mechanics, 56(03), 401-427. 
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 George Keith Batchelor FRS (1920 – 2000) was an 
Australian applied mathematician and fluid dynamicist. 
He was for many years the Professor of Applied 
Mathematics in the University of Cambridge, and was 
founding head of the Department of Applied 
Mathematics and Theoretical Physics (DAMTP). In 1956 
he founded the influential Journal of Fluid Mechanics 
which he edited for some forty years. Prior to Cambridge 
he studied in Melbourne High School. 

As an applied mathematician (and for some years at 
Cambridge a co-worker of Sir Geoffrey Taylor in the field of turbulent flow), he was 
a keen advocate of the need for physical understanding and sound experimental 
basis. His  An Introduction to Fluid Dynamics (CUP, 1967) is still considered a classic 
of the subject. 

Batchelor also contributed greatly to make Kolmogorov ‘s theory of turbulence 
understandable, by publishing 3 articles where he explains this theory in detail. In 
the 1950/60s even students in the Soviet Union used  Batchelor’s articles as an 
introduction to the subject. He worked in Cambridge with G.I. Taylor, a British 
physicist and mathematician and major figure in fluid dynamics and wave theory, 
whose interest moved from turbulence to other fields, so the work of Batchelor in 
turbulence was to a large extend independent. Realizing that he needed 
experiments to improve his theoretical work, Batchelor wrote to an Australian 
colleague and close friend A.A. Towsend “ You will come to Cambridge, study 
turbulence and work with G.I. Taylor”. The answer came immediately: “ I agree, but 
I have two questions: what is turbulence and who is G.I. Taylor?”. Townsend came 
and soon revealed himself as one of the most remarkable experimentalists working 
in turbulence. 

Among the students of Batchelor, some of them made substantial contributions to 
colloidal science, Edward Hinch and Richard Wyngham O’Brien in particular for their 
work on electro-rheology. O’ Brien was at the origin of the numerical code that 
enables to calculate the frequency-dependent electrophoretic mobility and 
electrokinetic response of charged colloids (for all 𝜅𝜅𝜋𝜋 and 𝜁𝜁 potentials). He also 
developed the theory of electroacoustics for colloids, and is at the origin of the 
Electrokinetic Sonic Amplitude (ESA) measurement device, which enables to probe 
the response of concentrated slurries. 

When Brownian motion is taken into account84, then an extra term accounting for 
the stresses generated in the dispersion by the random movements of the particles 
                                                                 
84 Mendoza, C. I., & Santamaria-Holek, I. (2009). The rheology of hard sphere suspensions at 
arbitrary volume fractions: An improved differential viscosity model. The Journal of chemical 
physics, 130(4), 044904. 
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should be added. Numerical calculations have then showed that 𝑐𝑐2 = 6.17. 
Depending on the assumptions made about the hydrodynamic flow and the particle-
particle interactions, one finds that in general that 5.00 ≤ 𝑐𝑐2 ≤ 6.17. 

The extended Einstein formula is valid primarily at low volume fractions and low 
shear frequencies (low ω). As many industrial applications concern non-diluted 
suspensions at any shear rate, many semi-empirical formulae have been proposed 
to fit experiments in the largest possible range of volume fractions.  

Krieger – Dougherty model (for a large range of volume fraction) 

This model was developed as an extension of Einstein’s model for higher volume 
fractions. It is derived as follows. The addition of particles to a Newtonian medium 
will increases the viscosity: 

𝜂𝜂(𝜙𝜙𝑠𝑠 + 𝑑𝑑𝜙𝜙𝑠𝑠) = 𝜂𝜂(𝜙𝜙𝑠𝑠) + 𝑑𝑑𝜂𝜂 

By analogy with Einstein’s formula, one would expect to have: 

𝑑𝑑𝜂𝜂 = 2.5𝜂𝜂(𝜙𝜙𝑠𝑠)𝑑𝑑𝜙𝜙𝑠𝑠 

However, by adding particles, the space available is not the entire volume, but the 
volume reduced by a factor proportional to the current volume fraction. We define 
𝜙𝜙𝑐𝑐 as the filling fraction at maximum packing, and therefore obtain that: 

𝑑𝑑𝜂𝜂 = 𝜂𝜂(𝜙𝜙𝑠𝑠)
2.5𝑑𝑑𝜙𝜙𝑠𝑠

1 − 𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐
 

One can verify that for low volume fraction one has indeed  𝑑𝑑𝜂𝜂 ~ 2.5𝜂𝜂(𝜙𝜙𝑠𝑠)𝑑𝑑𝜙𝜙𝑠𝑠 
whereas for 𝜙𝜙𝑠𝑠 → 𝜙𝜙𝑐𝑐 one gets 𝑑𝑑𝜂𝜂 → ∞ which is expected, as at maximum packing 
the fluid cannot flow anymore. 

We now have obtained: 

𝜂𝜂(𝜙𝜙𝑠𝑠 + 𝑑𝑑𝜙𝜙𝑠𝑠) − 𝜂𝜂(𝜙𝜙𝑠𝑠)
𝜂𝜂(𝜙𝜙𝑠𝑠) =

𝑑𝑑𝜂𝜂
𝜂𝜂

= 𝑑𝑑�ln(𝜂𝜂)� =
2.5𝑑𝑑𝜙𝜙𝑠𝑠

1 − 𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐
= −2.5𝜙𝜙𝑐𝑐𝑑𝑑�ln(1 − 𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐)� 

which can be integrated: 

� 𝑑𝑑�ln(𝜂𝜂)�
ln�𝜂𝜂(𝜙𝜙𝑠𝑠)�

ln(𝜂𝜂0)
= −2.5𝜙𝜙𝑐𝑐 � 𝑑𝑑�ln(1 − 𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐)�

ln(1−𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐)

ln(1)=0
 

This gives: 

ln�
𝜂𝜂(𝜙𝜙𝑠𝑠)
𝜂𝜂0

� = −2.5𝜙𝜙𝑐𝑐ln �
1 − 𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐

1
� 
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from which we obtain the Krieger-Dougherty relation: 

𝜂𝜂(𝜙𝜙𝑠𝑠) = 𝜂𝜂0 �1 −
𝜙𝜙𝑠𝑠
𝜙𝜙𝑐𝑐
�
−2.5𝜙𝜙𝑐𝑐

 

This relation agrees reasonably well with the experimental data. Moreover, it 
reduces to the Einstein’s equation for low 𝜙𝜙𝑠𝑠 as one can verify easily using the 
relation (1 + 𝑥𝑥)𝑒𝑒 = 1 + 𝜕𝜕𝑥𝑥 which holds for small 𝑥𝑥. 

Other models for a large range of volume fraction 

Several authors have extended the Einstein relation by using an effective filling 
fraction: 

𝜙𝜙eff =
𝜙𝜙𝑠𝑠

1 − 𝑐𝑐𝜙𝜙𝑠𝑠
 

where the constant c takes into account the fact that the complete free volume 
cannot be filled by the spheres. They obtain: 

𝜂𝜂 = 𝜂𝜂0(1 + 2.5𝜙𝜙eff) 

using the same arguments as the ones presented in the derivation of the Krieger-
Dougherty relation, it is possible to find: 

𝜂𝜂(𝜙𝜙𝑠𝑠) = 𝜂𝜂0(1 − 𝜙𝜙eff)−2.5 

This formula reduces to Einstein formula for low 𝜙𝜙𝑠𝑠 where 𝜙𝜙eff ~ 𝜙𝜙𝑠𝑠 and for the 
critical packing 𝜙𝜙𝑐𝑐 one has 𝜙𝜙eff = 1. This last equation enables to find a relation for 
the constant c: 

𝑐𝑐 =
1 − 𝜙𝜙𝑐𝑐
𝜙𝜙𝑐𝑐

 

Here we give a plot of the theoretical behaviour of the functions we have described: 
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Dimensionless viscosity 𝜂𝜂/𝜂𝜂0 as 
function of volume fraction following 
the models:  

𝜂𝜂 = 𝜂𝜂0�1 + 2.5𝜙𝜙𝑠𝑠 + 𝑐𝑐2𝜙𝜙𝑠𝑠
2� where 

𝑐𝑐2 = 0 (Einstein), 𝑐𝑐2 = 6.17, Krieger-
Dougherty relation (K-D),  
 𝜂𝜂 = 𝜂𝜂0(1 + 2.5𝜙𝜙eff) (called 𝜙𝜙eff (1)) 
and 𝜂𝜂(𝜙𝜙) = 𝜂𝜂0(1 − 𝜙𝜙eff)−2.5(called 
𝜙𝜙eff (2)). We have taken 𝜙𝜙𝑐𝑐 = 0.74.  

 

 In practice, it appears that relations as K-D and 𝜙𝜙eff (2) are close to the 
experimental data. Here we give an example with measurements on silica colloidal 
particles of about 75 nm in radius dispersed in cyclohexane (an oil that enables to 
nearly suppress all electrostatic and van der Waals interactions and ensures that the 
suspension remains stable). The data is taken from an old article85 and was plotted 
with a linear-linear scale, which made it difficult to accurately estimate the points at 
low volume fraction. This is the reason of the scatter of the data points at low volume 
fraction.  

 

Dimensionless viscosity 𝜂𝜂/𝜂𝜂0 as function of volume fraction; symbols indicate measurements 
and lines are plotted according to the model: 𝜂𝜂�𝜙𝜙𝑠𝑠� = 𝜂𝜂0(1 −𝜙𝜙eff)−2.5. 

An important factor to account for, which makes a universal theoretical (non-
empirical) model for the whole volume fraction range quite impossible to realize is 

                                                                 
85 de Kruif, C. D., Van Iersel, E. M. F., Vrij, A., & Russel, W. B. (1985). Hard sphere colloidal 
dispersions: Viscosity as a function of shear rate and volume fraction. The Journal of chemical 
physics, 83(9), 4717-4725. 
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that phase transitions can occur in the suspension (without any aggregation). This 
has already been briefly discussed in Chapter 2, in the context of particle settling. In 
Chapter 2 we have given the example of anisotropic particles, but phase transitions 
also occur for spherical (isotropic) particles. This is discussed next. 

Phase transition 

The phase transition for (spherical) colloidal particles can be schematized as follows: 

 

Hard-sphere phase diagram constructed from light diffraction measurements 

 

Confocal micrographs of different phases in a colloidal suspension with 5% 
polydispersity. Scale bar is 10 μm. From left to right: liquid, glass and crystal phase. 

At low volume fraction the particles can diffuse freely and there is no long-range 
ordering in particle position implying that the dispersion is in a fluid state. Increasing 
concentration above 𝜙𝜙𝑠𝑠 = 0.5 liquid and crystalline phases coexist in equilibrium 
and the fraction of crystalline phase increases until the sample is fully crystalline at 
𝜙𝜙𝑠𝑠 = 0.55.  With increasing volume fraction, the particle mobility is dramatically 
reduced until the glassy state is reached. In a glassy state, the dispersion does not 
flow anymore. One can make the analogy with a (liquid) glass window that solidifies 
when the temperature is decreased86, except that decreasing temperature is now 

                                                                 
86 The fact that glass panels do flow after hundreds of years (see the bottom of stained glass 
panels in old churches) cannot be explained from the simple statement that this is due to 
gravity. If only gravity would play a role, glass panels would have significantly changed their 
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equivalent with increasing volume fraction. Note that the existence of the glassy 
state requires some polydispersity (at least some %) otherwise the system will 
directly crystallise87. 

 

Some close packings happening in crystals and colloidal crystals 

The upper limit for close packing (hexagonal close packing or face-centered cubic, 
i.e. fcc) is given by 𝜙𝜙𝑐𝑐 = 𝜋𝜋/(3√2) = 0.74. Other close packings are the body-
centered cubic packing where 𝜙𝜙𝑐𝑐 = 𝜋𝜋√3/8 = 0.68, simple cubic packing where 
𝜙𝜙𝑐𝑐 = 0.52. 

We here briefly recall how these values are found with taking the 
simple cubic as an example. In a simple cubic the particles are 
arranged as in the figure. For one element of fluid (the black cube 
– that we assume to have a length R), one can see that there is 
1/8th of a colloidal particle (of radius a) in each corner that is 
inside the cube. In total there is therefore 8 × (1/8) = one 

particle’s volume inside the cube. In close packing, the particles are touching, 
implying that 𝑅𝑅 = 2𝜋𝜋. The volume fraction can therefore be calculated by: 

𝜙𝜙𝑐𝑐 =
4𝜋𝜋𝜋𝜋3/3
𝑅𝑅3

=
4𝜋𝜋𝜋𝜋3/3
(2𝜋𝜋)3 =

𝜋𝜋
6

= 0.52 

                                                                 
bottom thickness only after a period larger than the age of the universe. 
(http://engineering.mit.edu/ask/how-does-glass-change-over-time) 
87 Hunter, G. L., & Weeks, E. R. (2012). The physics of the colloidal glass transition. Reports on 
progress in physics, 75(6), 066501 and https://arxiv.org/pdf/1106.3581.pdf 
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The other close packings are found in the same way. Close packings are usually used 
to describe the geometry of crystals, made of atoms. As said in Chapter 2, this is why 
colloidal suspensions are often used as model for crystals and are termed colloidal 
crystals. 

The transition from one packing order to another one can be observed 
experimentally. The measurements presented here (right figure) are done by 
torsional resonance spectroscopy, a method that enables to get the shear modulus 
at very low frequencies using acoustic waves88. 

 

Conductivity (left) and shear modulus (right) as function of volume fraction, for spheres of a = 
60 nm radius that are highly charged and dispersed in de-ionized (i.e. very pure) water. The 

x-axis represents the number of spheres per μm3 

Given the size of the particles the number of particles can easily be converted in 
volume fraction. To give an idea, 1 particle/μm3 corresponds to 𝜙𝜙𝑠𝑠 = 10−3. The fact 
that these particles crystallise at such low volume fractions is linked to their charge. 

Note that the conductivity measurements do not enable to give information about 
the packing transition. However, the slope of the line can be used to determine the 
charge of the spheres, according to the relation: 

𝐾𝐾 = 𝜕𝜕(𝑍𝑍𝑅𝑅)2�𝜇𝜇𝑝𝑝 + 𝜇𝜇𝐻𝐻+� + 𝐾𝐾𝐵𝐵  

where 𝑅𝑅 is the elementary charge, 𝜇𝜇𝑝𝑝 is the independently measured particle 
mobility (from electrophoresis for example), 𝜇𝜇𝐻𝐻+  the electrophoretic mobility of H+ 
that can be found in handbooks from the limiting conductivity (see Chapter 3) and 
Z is the valence of the particle. 𝐾𝐾𝐵𝐵  represents the background conductivity from the 
self-dissociation of water and residual impurities. As the spheres are dispersed in 

                                                                 
88 Wette, P., Schöpe, H. J., & Palberg, T. (2003). Experimental determination of effective 
charges in aqueous suspensions of colloidal spheres. Colloids and Surfaces A: Physicochemical 
and Engineering Aspects, 222(1), 311-321. 
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ultra-pure water, effectively only their counterions (H+) are present in the water, and 
the total amount of counterion charges should be equal to the total amount of 
charges on the colloidal particles, because of electroneutrality. In the present case, 
one finds that 𝑍𝑍 = 685, which corresponds to a surface charge of  𝑍𝑍𝑅𝑅/(4𝜋𝜋𝜋𝜋2) = 0.24 
C/m2. 

The pair correlation function  

In the next section we will be using a function called pair correlation function 𝑔𝑔(𝑟𝑟) 
which is the radial distribution that describe positional correlations among particles 
in the equilibrium fluid. One of the experimental way to assess the pair correlation 
function 𝑔𝑔(𝑟𝑟) is to use (confocal) microscopic imaging. The positions of the particles 
are then determined (usually with an accuracy of 0.05 μm) from the image analysis. 
For small particles, neutron or x-ray scattering is used. The probability of finding 
particles separated by r is then obtained, which is directly linked to 𝑔𝑔(𝑟𝑟). The 
function 𝑔𝑔(𝑟𝑟) describe how density varies as a function of distance from a reference 
particle. It is a normalized function, implying that 𝑔𝑔(𝑟𝑟) = 1 when the density is equal 
to the bulk density. Let us consider a reference particle (black) and its neighbours (in 
colour): 

 

At position r/(2a) = 1 (the first peak), the probability to find neighbours is very high. 
These are the nearest neighbours that are touching the reference particle (r = 2a). 
Some minuscule distance away from these nearest neighbours there is statistically 
no particles (if there would be, they would overlap with the nearest neighbours, 
which is physically not possible), therefore one observes a dip between r/(2a) = 1 
and r/(2a) = 2. At r/(2a) = 2 there is a next crowd of neighbours, and this continues 
until we are so far from the particles that the correlation becomes very weak and 
𝑔𝑔(𝑟𝑟) = 1. In an ideal gas, there is no relevant correlation between neighbouring 
particles, which implies that 𝑔𝑔(𝑟𝑟) = 1 all the time.  

A typical example of 𝑔𝑔(𝑟𝑟) is given here:  
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g(r) for 100 nm particles with a surface potential of 25 mV and dispersed in a KCl solution 
(concentrations are indicated in the legend). Volume fraction is 0.1. 

One can note that increasing salt concentration decreases the separation between 
nearest neighbours and the amplitude of the peaks: in the limit of 50 mM added salt, 
the suspension behaves like a fluid (even nearly like a gas), and for 2 mM the 
structure of g(r) is close to the one of a crystal, where the position of nearest 
neighbours are extremely well defined. 

It is also possible to perform computer simulation models to estimate g(r). One then 
has to use an interaction potential between particles and determine the particles’ 
positions.  One of the most classical function to describe the interaction between 
particles is the Lennard –Jones potential: 

Φ𝐷𝐷𝐿𝐿(𝑟𝑟) = 4Φ0 ��
𝜋𝜋
𝑟𝑟
�
12
− �

𝜋𝜋
𝑟𝑟
�
6
� 

which is used extensively to study molecules. Note the differences between this 
expression and the DLVO expression introduced in Chapter 3. The main reason for 
the differences lays in the fact that colloidal particles are much bigger than 
molecules, and many more effects are therefore incorporated in the DLVO theory.  
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Colloidal charge determination from high-frequency shear measurements 

For concentrated suspensions of (charged) spheres, it is possible to derive 
relationships between the high-frequency elastic modulus 𝐺𝐺∞′  and the interaction 
potential89. The derivation of this relationship is beyond the scope of the present 
book, but its dimensionless form is given by: 

𝐺𝐺∞′
𝜋𝜋3

𝑘𝑘𝐵𝐵𝑇𝑇
=

3𝜙𝜙𝑠𝑠
4𝜋𝜋

+
3𝜙𝜙𝑠𝑠2

40𝜋𝜋
� 𝑔𝑔(𝑟𝑟)

𝑑𝑑
𝑑𝑑𝑟𝑟

�𝑟𝑟4
𝑑𝑑Φ(𝑟𝑟)/(𝑘𝑘𝐵𝐵𝑇𝑇)

𝑑𝑑𝑟𝑟
�

∞

0
𝑑𝑑𝑟𝑟 

where 𝑔𝑔(𝑟𝑟) is pair correlation function. From the presence of the electric interaction 
potential Φ(𝑟𝑟) the formula can be linked to the surface charge of the particles and 
the effects of double layer changes upon changes in salt concentration.  

Typical frequency-dependent measurements are given here for latex nanospheres 
with a = 38 nm, dispersed in 30 mM of KCl: 

 

Left: normalized dynamic viscosity 𝜂𝜂′(𝜔𝜔)/𝜂𝜂0 = 𝐺𝐺′′(𝜔𝜔)/(𝜔𝜔𝜂𝜂0) and right: dynamic 
storage modulus 𝐺𝐺′(𝜔𝜔), both as function of volume fraction 

For the theoretical analysis to be valid, it is required that the frequency of the 
oscillation is high enough so that 𝜔𝜔/(2𝜋𝜋) ≫ (𝑑𝑑𝑆𝑆/𝑑𝑑2) where 𝑑𝑑𝑆𝑆 is the short-time 
self-diffusion coefficient of a colloidal particle in the concentrated suspension and 𝑑𝑑 
is the mean interparticle separation. If we assume, to get an order of magnitude, 
that 𝑑𝑑𝑆𝑆  ~ 𝑑𝑑0 =  𝑘𝑘𝐵𝐵𝑇𝑇/(6𝜋𝜋𝜂𝜂𝜋𝜋)  (the theoretical diffusion coefficient of a colloidal 
particle in a dilute suspension) and 𝑑𝑑 ~ 𝜋𝜋 we get 𝜔𝜔/(2𝜋𝜋) ≫ 3 kHz. Indeed, as can be 
seen in the figures, above that frequency both the storage modulus and the dynamic 
viscosity are fairly independent of 𝜔𝜔. 

                                                                 
89 Bergenholtz, J., Willenbacher, N., Wagner, N. J., Morrison, B., Van den Ende, D., & Mellema, 
J. (1998). Colloidal charge determination in concentrated liquid dispersions using torsional 
resonance oscillation. Journal of colloid and interface science, 202(2), 430-440. 
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By performing a systematic study of 𝐺𝐺′ at high frequency, as function of volume 
fraction and salt concentration, it is then possible to assess the surface charge of the 
particle: 𝑔𝑔(𝑟𝑟) can be measured, or approximated, as can Φ(𝑟𝑟) (see Chapter 3 about 
the theoretical evaluation of Φ(𝑟𝑟) and Chapter 6 for the AFM technique that enables 
to measure it). In the theoretical expression of Φ(𝑟𝑟) the surface charge (or zeta 
potential) is the only unknown quantity. The theoretical expression for Φ(𝑟𝑟) is 
inserted in the 𝐺𝐺∞′  formula and the experimental data is fitted, giving access to the 
surface charge. 

In the limiting case that the suspension is in a crystalline phase, it can be shown that 
the formula can be approximated by90: 

𝐺𝐺∞′
𝜋𝜋3

𝑘𝑘𝐵𝐵𝑇𝑇
~
𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕𝑁𝑁𝑒𝑒𝑒𝑒

10𝜋𝜋
�
𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕
𝜙𝜙𝑠𝑠

�
1/3 𝜋𝜋2

𝑘𝑘𝐵𝐵𝑇𝑇
�
𝑑𝑑2Φ(𝑟𝑟)
𝑑𝑑𝑟𝑟2

�
𝑟𝑟=2𝑎𝑎eff

 

In the above, 𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕 = 0.74 if one assumes a face-centered cubic where each particle 
has 𝑁𝑁𝑒𝑒𝑒𝑒 = 12 nearest neighbours. Moreover 

𝜋𝜋eff = 𝜋𝜋 �
𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕
𝜙𝜙𝑠𝑠

�
1/3

 

is a measure for the minimal separation of the particles (which is not 2𝜋𝜋 but 2𝜋𝜋eff). 
In the limit of a fluid, one has the approximation: 

𝐺𝐺∞′
𝜋𝜋3

𝑘𝑘𝐵𝐵𝑇𝑇
~

3𝜙𝜙𝑠𝑠
4𝜋𝜋

−
3𝜙𝜙𝑠𝑠2

40𝜋𝜋
𝑔𝑔ℎ𝑠𝑠 �2 �

𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕
𝜙𝜙𝑠𝑠

�
1/3

�
4

1
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝑑𝑑Φ(𝑟𝑟)
𝑑𝑑𝑟𝑟

�
𝑟𝑟=2𝑎𝑎eff

 

where for 0 < 𝜙𝜙𝑠𝑠 < 0.5: 

𝑔𝑔ℎ𝑠𝑠 =
1 + 𝜙𝜙𝑆𝑆 + 𝜙𝜙𝑠𝑠2 − 𝜙𝜙𝑠𝑠3

(1 − 𝜙𝜙𝑠𝑠)3  

(this formula is the Carnahan-Starling expression) and for 0.5 < 𝜙𝜙 < 0.64: 

𝑔𝑔ℎ𝑠𝑠 =
1

4𝜙𝜙𝑆𝑆
1.21 + 𝜙𝜙𝑆𝑆
0.64 − 𝜙𝜙𝑆𝑆

 

Using this last expression for 𝐺𝐺∞′  together with the DLVO expression developed in 
Chapter 3, one can show that it is possible to fit the measured data, and obtain the 
surface charge of particles: 

                                                                 
90 Buscall, R., Goodwin, J. W., Hawkins, M. W., & Ottewill, R. H. (1982). Viscoelastic properties 
of concentrated latices. Part 2.—Theoretical Analysis.  J. Chem. Soc., Faraday Trans. 1, 
1982,78, 2889-2899 
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Left: Dimensionless high-frequency shear modulus as function of volume fraction for 
PBMA/AA dispersions. Right: surface charge density for two types of particles, evaluated 

following the method exposed above91.  

The PBMA/AA particles are latex spheres of size a = 43.5 nm, and the PBMA particles 
have a size of 38 nm. From their estimated surface charge, one can estimate that the 
PBMA/AA particles have a surface potential of -78 mV and the PBMA of -56 mV. 

Shear thinning and shear thickening 

A figure above showed the evolution of the rheological properties of a suspension in 
terms of flocs of particles that form or break as function of salt. We will here discuss 
a similar type of figure where the rheological property is given as function of shear 
rate92. 

                                                                 
91 Bergenholtz, J., Willenbacher, N., Wagner, N. J., Morrison, B., Van den Ende, D., & Mellema, 
J. (1998). Colloidal charge determination in concentrated liquid dispersions using torsional 
resonance oscillation. Journal of colloid and interface science, 202(2), 430-440. 
 
92 See the book: Mewis, J., & Wagner, N. J. (2012). Colloidal suspension rheology. Cambridge 
University Press. 
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Sketch of the effect of shear rate on the viscosity of a stable (non-aggregating) concentrated 
colloidal suspension 

At low particle concentrations, the suspension viscosity is nearly independent of 
shear. For higher particle concentrations, increasing the shear rate (and shear stress) 
leads to a marked shear thinning behaviour. This is of great importance in many 
industrial applications, as colloidal particles can be used made to flow, pour or 
spread with less effort at these higher shear rates. At even higher shear rates, the 
viscosity increases significantly. This shear thickening behaviour is often undesirable 
as it may damage processing equipment. 

Shear thinning : the application of a shear flow distorts the equilibrium structure 
and leads to fewer particle interactions. The particles therefore re-arrange in the 
flow and the adopt an organization that permits flow with fewer particle encounters 
(the particles flow roughly in lanes, like cars on a highway). An example of shear 
thinning is given on the next page : instead of starting from a suspension, one has a 
gel made of clay and silt loosely aggregated in a fabric. By applying a pressure 
gradient (the famous Rissa landslide93 was triggered by a small excavation and 
stockpiling along a lake-shore), the fabric is locally broken and the particles 
rearrange in a (concentrated) suspension-like structure. The phenomenon 
propagates rapidly as at the front of the broken fabric inter-particle interactions are 
immediately changed. 

Thixotropy : thixotropy is defined as the continuous decrease of viscosity with time 
when flow is applied to a sample that has been previously at rest, and the subsequent 
recovery of viscosity when the flow is discontinued. Thixotropy is therefore a time-
                                                                 
93 L’Heureux, J. S., et al. (2012). The 1978 quick clay landslide at Rissa, mid Norway: 
subaqueous morphology and tsunami simulations. In Submarine mass movements and their 
consequences (pp. 507-516). Springer Netherlands. For a movie of the landslide, see: 
https://www.youtube.com/watch?v=3q-qfNlEP4A 
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dependent shear thinning property. Many gels and colloids are thixotropic materials, 
bentonite (montmorillonite) is a good example : when montmorillonite is dispersed 
in water, the platelets bind together electrostatically to form a house-of-cards 
structure and the liquid becomes viscous. When the structure develops further, the 
montmorillonite-dispersed liquid becomes a gel. However, shearing the gel returns 
it to a dispersed liquid. Landslides are generally thixotropic. 

 

Breakdown of a 3D thixotropic structure94 

Shear thickening : when the shear forces become sufficient, particle motions 
become hydrodynamically highly correlated. This induces the grouping of particles 
in clusters called hydroclusters. Hydroclusters are not necessarily aggregates : the 
coloured particles in the example are just in close contact, and if the shear rate 
would be set to zero the hydroclusters would disappear. The colour was used just to 
indicate the positions of the hydroclusters. The system would then return to its initial 
state thanks to Brownian motion and repulsion forces between particles. Of course, 
if the suspension would be unstable, particles could aggregate and the hydroclusters 
would then become “real” aggregates. When the shear would be reduced, these 
aggregates would remain and therefore there is no reversibility in a change of shear 
rate for this situation. Increasing flocculation due to shear rate in fact can lead to 
rheopecty. 

                                                                 
94 Barnes, H. A. (1997). Thixotropy—a review. Journal of Non-Newtonian fluid mechanics, 
70(1), 1-33. 
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Rheopecty : rheopecty is defined as the 
continuous increase of viscosity with 
time when flow is applied to a sample 
that has been previously at rest, and 
the subsequent recovery of viscosity 
when the flow is discontinued. 
Rheopecty is therefore a time-
dependent shear thickening property. 
Rheopectic fluids thicken or solidify 
when shaken. Examples of rheopectic 
fluids include gypsum pastes and 
printer inks. The synovial fluid in the 
joints that link our bones becomes 
thick the moment shear is applied in 
order to protect the joint and 
subsequently thins back to normal 
viscosity to resume its lubricating function. 

Marine clay, quick clay and landslides 

Marine clay is clay that was deposited in a salty environment. The clay particles can 
self-assemble into different configurations (see Chapter 5) and the formed fabric can 
have very different properties. Construction in marine clays therefore presents a 
geotechnical engineering challenge. For example, swelling of marine clay can 
destroy building foundations in only a few years. Quick clay is a clay, which originally 
was a marine clay,  with 'quick' properties. It is a fine-grained sediment where the 
grain structure may collapse even if the sediment is initially quite firm. Quick clay 
can be firm as long as it is undisturbed, but flows like liquid if it becomes overloaded 

or stirred, causing the loose grain structure to 
collapse. Quick clay landslides can developed rapidly 
when the firm clay liquefies.  

The clay and silt particles that constitute the quick 
clay were left behind during the retreat of the glaciers 
and deposited in a nearby sea. The particles are 
loosely packed and form a card house structure. 
When the sea retreats, the salt is washed out by fresh 
water (from rainfalls). The fabric’s structure then 
becomes unstable, as the double layers have 

extended significantly, and repulsive forces started to act between the particles. Any 
mechanical stress can initiate liquefaction. The failure then rapidly propagates, 
leading to landslides. When a landslide encounters a river or a fjord, a tsunami can 
also be created as the quick clay flow pushes water.  Marine clay is most widespread 
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in Norway, in the  Trøndelag region and eastern Norway in particular. Quick clay are 
also found in parts of Canada and Sweden.  

 

Quick clay landslide95 at Lyngseidet (Norway) in 2010 (220.000 m3). The landslide was likely 
triggered by loading of fill along the shoreline. (See the white car in the upper part for scale) 

Gels and hydrogels 

We have  so far implicitly spoken about the formation of a gel when the shear rate 
is zero in the case of thixotropic and rheopectic fluids. There is an important 
difference between a concentrated suspension and a gel. In general, gels are 
apparently solid, jelly-like materials: 

 

                                                                 
95 https://www.ngu.no/en/topic/quick-clay-and-quick-clay-landslides; Photo: Andrea 
Taurisano, NVE (with permission) 
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A gel is usually defined in colloid science as a substantially dilute polymer 
suspension, where the polymers are cross-linked. Cross-linking refers  to the joining 
of polymer chains with covalent bonds. Cross-linking can occur during polymer 
synthesis or later with the addition of atoms or molecules which will share electrons 
with a part of the polymer chain.  

 

A hydrogel is a fabric made of polymeric chains that contains an enormous amount 
of water. There are two kinds of hydrogels: 

1 – chemical hydrogels: these are formed by cross-linked polymers : the polymers/ 
polyelectrolytes are chemically bound to each other and form a fabric. Because of 
the presence of hydrophilic groups (-OH, -CONH, -CONH2, -SO3H) on the polymers 
water is “bound” to this fabric (more than 90% in weight, since there is a huge 
surface area available – the pores of the fabric can be as small as nanometers). The 
links between the polymers are permanent, and therefore, when agitated or stirred 
the hydrogel will break in pieces, and no water will be freed. 

2 – physical hydrogels : the polymers are bound by reversible (non-permanent) links. 
These links can be due to hydrogen bonds, van der Waals forces, entanglements 
(when the polymer concentration is high the polymers are bound to touch each 
other and form a fabric). In this case, changing the properties, the gelation is 
reversible : one can think of adding water (in case of entanglement), changing the 
salinity (increase electrostatic repulsion between polymers and hence counteract 
the van der Waals attraction), changing pH, temperature… By agitating the gel, one 
generally observe a solid/liquid phase transition. This is the case for montmorillonite 
for example (see landslide example). Many of this type of hydrogels display 
thixotropy : they become fluid when agitated, but re-solidify when resting.  

Hydrogels are studied a lot in biology (pharmacy) and food science, but their study 
is still limited in civil engineering : a flocculated clay for example can be seen as a 
complex hydrogel.  Water is then trapped inside the floc structure like in a 
conventional hydrogel, but the flocs are forming a peculiar fabric of interacting 
macroscopic particles. The consolidation of this fabric is discussed in Chapter 9 and 
10, but is still an on-going topic of research. 
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Sand/mud mixtures : fall velocity in shear flow 

We now consider a colloidal mud gel in which sand particles are imbedded. (In a mud 
suspension the sand would simply settle to the bottom of the settling column.) If no 
shear is applied, the gel does not change over time and the sand particles stay 
imbedded. If shear is applied, one will observe that the sand particles start to 
settle96. This property causes critical problems: if settling occurs, the material loses 
its homogeneity, which can strongly affect its mechanical properties. 

In slow flows, it is considered that the settling properties of suspended particles are 
not significantly affected by the material flow, and the sedimentation velocity is 
usually computed from the balance of gravity and drag forces. In order to avoid or 
slow down sedimentation, the only practical solution consists in inducing a sufficient 
agitation to the system which will induce some lift or dispersion forces to the 
particles. This principle is typically used in fluidization processes, in which a vertical 
flow of the interstitial fluid induces a drag force counterbalancing gravity force. For 
horizontal flows in conduits one may also rely on turbulence effects. 

 

 

For many materials, the situation is different: the denser particles do not settle at 
rest because they are embedded in a yield stress fluid which is able to maintain the 
particles in their position. This situation is typically encountered with mortars or 
fresh concrete which are made of particles (sand or gravel) of density around 2.5 
mixed with a cement-water paste of density around 1.5 (the density is here 
expressed as 𝑣𝑣/𝑣𝑣𝑤𝑤). This is the same for toothpastes which contain silica particles of 
density 2.5 suspended in a paste of density close to 1. In that case the gravity force 
(weight of the particle) is counterbalanced by the elastic force from the fabric, as 
long as the yield stress obeys97 : 

                                                                 
96 Talmon, A. M., & Huisman, M. (2005). Fall velocity of particles in shear flow of drilling fluids. 
Tunnelling and underground space technology, 20(2), 193-201. 
97 Ovarlez, G., Bertrand, F., Coussot, P., & Chateau, X. (2012). Shear-induced sedimentation in 
yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 177, 19-28. 
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𝜎𝜎0 ≥
4
3𝜋𝜋�𝑣𝑣 − 𝑣𝑣𝑝𝑝�𝑔𝑔𝜋𝜋3

𝜋𝜋𝜋𝜋2
 ~ �𝑣𝑣 − 𝑣𝑣𝑝𝑝�𝑔𝑔𝜋𝜋 

When the fluid is at rest, the weight of the sand particle in the mud fabric (gel) is 
compensated by the reaction of the gel underneath. When shear is applied, the 
reaction (static force) of the gel is changed in a friction (dynamic force) which is not 
enough to compensate for the weight anymore. The evaluation of the settling 
velocity of the sand particle in the sheared mud is a complex task, due to the fact 
that the variables become tensors.  

Until now, we have simplified the definitions of the variables. The shear stress, for 
example (see beginning of the chapter) should properly be defined as: 

𝜎𝜎𝜕𝜕𝑥𝑥 =
𝐹𝐹𝜕𝜕𝑥𝑥
𝑆𝑆

= 𝜂𝜂
𝑑𝑑𝑣𝑣𝜕𝜕
𝑑𝑑𝑑𝑑

 

where the subscript 𝑥𝑥𝑑𝑑 of the tensor 𝜎𝜎𝜕𝜕𝑥𝑥 indicates that we are looking at the stress 
created by the the 𝑥𝑥 − component of the force 𝐹𝐹𝑖𝑖𝑥𝑥 (𝑆𝑆 = 𝑥𝑥, 𝑑𝑑, 𝑑𝑑) on the slice 𝑑𝑑. This 
force is linked to the change in shear rate 𝑣𝑣𝜕𝜕  over a thickness 𝑑𝑑𝑑𝑑. Similarly, one can 
define 𝜎𝜎𝜕𝜕𝜕𝜕, 𝜎𝜎𝜕𝜕𝑧𝑧, 𝜎𝜎𝑥𝑥𝑧𝑧, etc… 

Due the tensorial nature of the variables, the flow around the sand particle is 
complex. We therefore refer to Ovarlez et al. (see footnote) for a detailed derivation 
and explanations. In their experiments, two flows are present: the shear flow and 
the settling flow. The settling flow is considered to be a secondary flow as compared 
to the shear flow. This means that the shear flow is the major flow in the system. 
This has consequences on the estimation of the settling velocity, as the Stokes 
settling velocity has to be adapted. We assume a Herschel-Bulkley model for the 
stress: 

𝜎𝜎 = 𝜎𝜎0 + 𝜂𝜂𝐻𝐻𝐵𝐵�̇�𝛾𝑒𝑒 

where 𝜎𝜎 is the macroscopic shear in the cell (and not the shear around the sand 
particle). The authors show that the settling of a sand particle is given by the 
following modified Stokes velocity, when 𝜎𝜎0 ≪ 𝜂𝜂𝐻𝐻𝐵𝐵�̇�𝛾𝑒𝑒 

𝒗𝒗 = 𝛼𝛼
2
9
𝜋𝜋2
𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤
𝜂𝜂𝐻𝐻𝐵𝐵�̇�𝛾𝑒𝑒

𝒈𝒈 

where 𝛼𝛼 is an adjustable parameter that accounts for the complexity of the flow 
around the sand particle. 

Experiments, reported by Ovarlez et al. are given below. They are done on a 
suspension of glass beads in an emulsion (to control the viscosity). Experiments are 
performed in a Couette cell. There is a strong discrepancy between what is expected 
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from the analysis and the experimental measurements. While the experimental 
profiles show a rather narrow front with no broadening in time, the sedimentation 
front of the theoretical profiles gets broader and broader in time. This suggests that 
collective effects are at play, which tend to stabilize the front at a given speed. This 
point is discussed in Chapter 8 where it is shown that sedimentation velocities are 
correlated in the horizontal plane over very long distances, of order of 20𝜋𝜋𝜙𝜙𝑆𝑆

−1/3. 
For the particles in the study this lengthscale is of the order of 1 cm, i.e. of the order 
of the gap size (which is 1.9 cm). This may thus explain the observations. 

 

Vertical volume fraction profiles observed in the gap of a Couette geometry in a 5% 
suspension of 275 μm glass beads in a concentrated emulsion of yield stress 𝜎𝜎0 = 8.5 Pa after 

a 24 h rest (blue circles), after 15 min (orange circles), 30 min (grey circles) and 45 min 
(yellow circles) of shear �̇�𝛾 = 4 𝑠𝑠−1. The dotted lines are the theoretical profiles expected 

from the modified Stokes equation, taking into account the heterogeneity of the apparent 
viscosity in the sheared material, under the assumption that the sedimentation velocity of 

the suspension at a given radial position is set by the local viscosity 𝜂𝜂(𝑟𝑟) = 𝜎𝜎(𝑟𝑟)/�̇�𝛾(𝑟𝑟) of the 
sheared yield stress fluid only, independently of the sedimentation velocity in its 

surroundings. 
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A fifty cent rheometer for yield stress measurement98 

Even though samples can be brought to the lab and analysed there, it is often 
convenient for an engineer to perform rapid and inexpensive tests in the field. The 
slump test schematized underneath is used extensively by civil engineers to estimate 
the ‘‘workability’’ of fresh concrete, but was shown to be useful for estimating the 
yield stress of mud slurries as well. “Workability” means that the slurry should have 
the proper yield stress and viscosity. For example, if fresh concrete is too stiff, the 
mixture will not flow into tight corners of moulding and if the concrete is too runny 
(it contains too much water), the concrete will flow better but the strength of the 
final hardened concrete will be reduced. Similarly, the flow properties of tailings in 
a waste disposal scheme need to be tailored for slope deposition: if the suspension 
is too thin, the  material will result in little if any slope, while if it is too thick a tailing 
will result in the material being deposited around the discharge point and not 
flowing over the disposal area. 

 

Schematic diagram of the slump test : a bottomless column is filled with the material to be 
tested. Lifting the column allows the material to collapse under its own weight. The height of 

the final deformed (or “slumped”) material is measured. The difference between the initial 
and final heights is called the slump height. 

The estimation of the yield stress is made as follows: 

At t = 0 and at a given height z (where z = 0 is at the bottom of the column), the 
pressure is given by: 

𝑃𝑃(𝑑𝑑) = 𝑣𝑣𝑔𝑔(𝑆𝑆 − 𝑑𝑑) + 𝑃𝑃0 

                                                                 
98 Pashias, N., Boger, D. V., Summers, J., & Glenister, D. J. (1996). A fifty cent rheometer for 
yield stress measurement. Journal of Rheology (1978-present), 40(6), 1179-1189. 
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where 𝑆𝑆 = ℎ + ℎ0 and the atmospheric pressure is given by 𝑃𝑃0. For simplicity we 
assume that 𝑃𝑃0 ≪ 𝑣𝑣𝑔𝑔𝑆𝑆 and therefore 𝑃𝑃(𝑑𝑑) = 𝑣𝑣𝑔𝑔(𝑆𝑆 − 𝑑𝑑). 

At t > 0 and at a certain height ℎ0 (see figure underneath) the material will 
experience a stress that is higher than the yield stress and the part of the material 
below that height will start to flow. The interface layer between the yielded and 
unyielded material is assumed to be a flat surface that moves down as the material 
beneath it flows. During the deformation stage it is assumed that all horizontal 
sections remain horizontal, and slumping is only due to radial flow. At the end of the 
slumping, the unyielded region represented by ℎ0 will have a stress distribution that 
is identical to that of the undeformed material (before slumping), while the stress in 
the remaining material is equal to the yield stress. 

At t = 0, the sample is divided in slices with same thickness dz. Assuming 
incompressibility, conservation of volume ensures that at the end of the slumping 
the new thickness of each slice is given by 

𝑑𝑑𝑑𝑑1 =
𝑟𝑟2

𝑟𝑟12
𝑑𝑑𝑑𝑑 

 

Schematic representation of the initial (left) and final (right) sediment distribution. 
The sample is divided in N different layer with same thickness dz at t = 0. At the end 

of the slumping, using conservation of volume, each layer thickness becomes dz1  

The amount of material above any given plane z will be the same before and after 
the slump (the flow only occurs in the cross-sectional area). This implies that the 
force due to gravity 𝑚𝑚(𝑑𝑑)𝑔𝑔 where 𝑚𝑚(𝑑𝑑) is the mass of the material above 𝑑𝑑 and 𝑔𝑔 is 
the gravity constant will be the same and lead to the following balance of forces at 
equilibrium: 

𝜎𝜎𝑟𝑟2 = 𝜎𝜎0𝑟𝑟12 

where 𝜎𝜎0  is the yield stress. The shear stress that acts on a body when a pressure is 
applied to its normal direction is proportional to this pressure: 
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𝜎𝜎(𝑑𝑑) = 𝛼𝛼𝑃𝑃(𝑑𝑑) = 𝛼𝛼 [𝑣𝑣𝑔𝑔(𝑆𝑆 − 𝑑𝑑)] 

From the equations above we get: 

𝑑𝑑𝑑𝑑1 =
𝜎𝜎0
𝜎𝜎
𝑑𝑑𝑑𝑑 =

𝜎𝜎0
𝛼𝛼𝑣𝑣𝑔𝑔(𝑆𝑆 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 

By integration: 

� 𝑑𝑑𝑑𝑑1
ℎ1

0
= �

𝜎𝜎0
𝛼𝛼𝑣𝑣𝑔𝑔(𝑆𝑆 − 𝑑𝑑) 𝑑𝑑𝑑𝑑

ℎ

0
 

ℎ1 =
𝜎𝜎0
𝛼𝛼𝑣𝑣𝑔𝑔

[−ln(ℎ0) + ln(𝑆𝑆)] 

The height ℎ0 can be linked to the yield stress by: 

𝜎𝜎(ℎ) = 𝜎𝜎0 = 𝛼𝛼𝑣𝑣𝑔𝑔ℎ0 

As  

𝑠𝑠 = 𝑆𝑆 − ℎ0 − ℎ1 

We obtain: 

𝑠𝑠 = 𝑆𝑆 −
𝜎𝜎0
𝛼𝛼𝑣𝑣𝑔𝑔

�1 + ln(𝑆𝑆) − ln �
𝜎𝜎0
𝛼𝛼𝑣𝑣𝑔𝑔

�� 

𝑠𝑠 = 𝑆𝑆 −
𝜎𝜎0
𝛼𝛼𝑣𝑣𝑔𝑔

�1 + ln �
𝛼𝛼𝑣𝑣𝑔𝑔𝑆𝑆
𝜎𝜎0

�� 

This expression is similar to the one found by Pashias and Boger cited above and the 
same as eq.(7.12a) in the book of Coussot99. Coussot uses a value of 𝛼𝛼 = 1/√3 which 
he derives in the book based on the Von Mises criterion, whereas Pashias and Boger 
uses 𝛼𝛼 = 1/2 which they say to hold for an ideal elastic solid. In fact, the rough 
assumption that is behind the result of 𝛼𝛼 = 1/2 is that a flow starts or stop in a layer 
when the maximum shear stress in the material reaches the yield stress value. One 
can rewrite the previous equation as: 

𝑠𝑠∗ = 1 −
𝜎𝜎0∗

𝛼𝛼
�1 − ln �

𝜎𝜎0∗

𝛼𝛼
�� 

where we define the dimensionless coefficients: 

                                                                 
99 Coussot, P. (2005). Rheometry of pastes, suspensions, and granular materials: applications 
in industry and environment. John Wiley & Sons. 
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𝑠𝑠∗ =
𝑠𝑠
𝑆𝑆

          ;             𝜎𝜎0∗ =
𝜎𝜎0
𝑣𝑣𝑔𝑔𝑆𝑆

 

We here give an example, in which “theory” is the plot for which 𝛼𝛼 = 1/2 and 
“theory2” for 𝛼𝛼 = 1/√3 (clearly a better fit) : 

 

Dimensionless slump height as function of dimensionless yield stress for various slurries. The 
yield strength was obtained from vane tests. The different “red mud” (bauxite residue which 
was strongly flocculated with polyacrylamide) data corresponds to different structural states 

of the mud (the mud was allowed to be stirred for more or less long periods, causing 
structural decay, or process water was added which also lowered the yield stress). 

Experiments with titania and zirconia were done at the isoelectric point to maximize the yield 
stress (see next section). 

Despite the fact that the “50 cent rheometer” test (also referred to as slump test) 
seems to provide some good qualitative (and quantitative) estimations of the yield 
stress for the given example, one should not forget that we did not address here the 
experimental problems of slurry/wall effects, inhomogeneous spreading etc… that 
can affect the results. The slump test is nonetheless an easy and fast test that can 
be used in the field. Coussot showed that for large slumps (where there is hardly an 
undeformed region) a spread test can be done to estimate the yield stress. 

Maximum yield and zeta potential 

In the legend of the previous figure, we have stated that at the isoelectric point the 
yield stress is maximum. The isoelectric point is defined as the pH value for which 
the zeta potential is minimum. At that point, van der Waals forces dominate, and 
the particles aggregate. For two of the previous samples, it was found that: 
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Yield stress versus pH : at the isoelectric point (pH = 7.2 and 7.6) the yield stress is maximum. 
At that point, the zeta potential is close to zero and the suspension is strongly flocculated.  

A systematic study – theoretical and experimental - of the relation between yield 
stress and zeta potential has be performed by other authors100.  

The model introduced by Scales and co-workers (see footnote) evaluates the shear 
stress as a summation of all pair interactions calculated from the DLVO forces 
between the particles: 

𝜎𝜎0 = 𝐾𝐾𝑠𝑠𝑡𝑡𝑟𝑟𝑜𝑜𝑐𝑐(𝜙𝜙𝑠𝑠)F𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟) 

where 𝐾𝐾𝑠𝑠𝑡𝑡𝑟𝑟𝑜𝑜𝑐𝑐  is a network structural term dependent upon the particle size, the 
solids volume fraction 𝜙𝜙𝑠𝑠 and the mean coordination number. The term F𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
represents the DLVO force between two particles and 𝑟𝑟 the distance between the 
centres of these particles. We note that: 

F𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟) = −
𝑑𝑑Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑𝑟𝑟
 

where Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the DLVO interaction potential, see Chapter 3. The expression for 
the DLVO used by Scales et al. is valid for identical spherical particles of radius 𝜋𝜋 
where 𝑟𝑟 ≫ 2𝜋𝜋 and given by: 

                                                                 
100 Scales, P. J., Johnson, S. B., Healy, T. W., & Kapur, P. C. (1998). Shear yield stress of partially 
flocculated colloidal suspensions. AIChE Journal, 44(3), 538-544. and Zhou, Z., Scales, P. J., & 
Boger, D. V. (2001). Chemical and physical control of the rheology of concentrated metal oxide 
suspensions. Chemical Engineering Science, 56(9), 2901-2920. 
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F𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟) =
𝐴𝐴𝜋𝜋

12(𝑟𝑟 − 2𝜋𝜋)2 − 2π𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁2𝜅𝜅𝜋𝜋 
exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)�

1 + exp�−𝜅𝜅(𝑟𝑟 − 2𝜋𝜋)�
 

where it was assumed that 𝜓𝜓(𝜋𝜋) = 𝜁𝜁 (the surface electric potential is the zeta 
potential, i.e. there is no Stern layer). 

The expression for  𝜎𝜎0 implies that 𝜎𝜎0 will be maximum when F𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟) is maximum. 
This will happen when the electrostatic repulsion is minimum, that is, when 𝜁𝜁 is 
minimum (close to zero): 

 

Yield stress (measured by the vane technique) and zeta potential (measured by 
electroacoustics) as function of pH and volume fraction for alumina particles suspended in 10 

mM background electrolyte: note the relation between maximum yield stress and the 
isoelectric point (zero zeta potential). 

For the same alumina suspension, one can plot the yield stress as function of the 
zeta potential squared (see underneath). The yield stress is maximum at the 
isoelectric point (where the zeta potential 𝜁𝜁 is zero) and decreases in a parabolic 
manner as 𝜁𝜁 increases. This is consistent with an increase in the electrical double 
layer repulsion, as the surface charge of the particles increases. 

In addition to its dependence upon 𝜁𝜁 and 𝜙𝜙𝑆𝑆, a number of workers have 
demonstrated that the rheology of concentrated mineral suspensions is strongly 
dependent upon the mean particle size. For a given 𝜙𝜙𝑆𝑆 and microstructural 
arrangement, geometrical considerations dictate that the number of particles 
resisting an applied stress along a given shear plane is inversely related to the square 
of the particle size101. Note that the DLVO forces are proportional to the particle size. 
To complicate matters, the particle size can also impact upon microstructural factors 

                                                                 
101 Johnson, S. B., Franks, G. V., Scales, P. J., Boger, D. V., & Healy, T. W. (2000). Surface 
chemistry–rheology relationships in concentrated mineral suspensions. International Journal 
of Mineral Processing, 58(1), 267-304. 
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such as the mean particle coordination number102 in a non-trivial manner. As a 
result, the theoretical particle size dependence of the yield stress properties of 
concentrated suspensions is not obvious although experimentally, systems 
consisting of small particles produce higher yield stresses than those containing 
larger colloids. 

 

The shear yield stress of concentrated alumina as function of the zeta potential squared. 

 

Illustrations 

Batchelor (fair use) 
http://www.damtp.cam.ac.uk/about/gkb/ 

Synovial joint (creative commons) 
https://en.wikipedia.org/wiki/Synovial_joint 

Gel (public domain) 
https://fr.wikipedia.org/wiki/Dentifrice 

 

 

 

                                                                 
102 the mean number of particles touching a given one. See Jouannot-Chesney, P., Jernot, J. 
P., & Lantuéjoul, C. (2011). Practical determination of the coordination number in granular 
media. Image Analysis & Stereology, 25(1), 55-61. 
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In the previous chapters, we have discussed the properties of dilute suspensions in 
the context of settling (Chapter 2) and colloid interactions (Chapter 3). In Chapter 7, 
we investigated  the rheological properties of concentrated suspensions. In this 
chapter, and in the next ones we are going to review the settling and consolidation 
properties of concentrated suspensions. Concentrated suspensions are very 
complex systems, owing to their complicated particle-particle interactions, and their 
influence on the hydrodynamics. Nevertheless concentrated suspensions are 
encountered in natural environments, and it is therefore important to have some of 
the keys to understand where lays the complexity of this type of systems and how 
to model them. 

Concentrated suspensions and fluid mud 

By definition, in a suspension, particles should be suspended (i.e. not resting on 
others). When all the particles are touching each other in some way, a large structure 
is formed which gets the name of fabric or gel. In colloid science, a gel is usually 
defined as a dilute cross-linked polymeric system, which exhibits no flow when in 
steady-state (see also Chapter 7). The name gel originates the word gelatine, which 
is an irreversible hydrolysed polymer (collagen). In civil engineering, when studying 
mud, the word gel is used to design a mud with a substantial yield stress. 

       

Examples of concentrated mud. Left: concentration between 30 and 500 g/L. Right: 
concentration between 1 and 30 g/L 

Fluid mud is a high concentration aqueous suspension of fine-grained sediment in 
which settling is substantially hindered by the proximity of sediment grains and flocs, 
but which has not formed an interconnected matrix of bonds strong enough to 
eliminate the potential for mobility103. Other terms used to denote fluid mud include 
fluff (UK), vloeibare sliblaag (NL), and crème de vase (FR). Fluid mud typically 
exhibits concentrations of tens to hundreds of grams per liter and bulk densities 
between 1,080 and 1,200 kg m−3. 

                                                                 
103 McAnally, W.H. et al. 2007. Management of fluid mud in estuaries, bays and lakes. Part I: 
Present state of understanding on character and behaviour. Journal of Hydraulic Engineering, 
Vol. 133, No. 1, 9-22 
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Fluid mud exists only because of its transient behaviour: if fluid mud is left at rest, it 
will eventually consolidate and form a gel (fabric). If, on the other hand, fluid mud 
can be picked-up by currents or waves, the local mud concentration will decrease as 
mud particles are dispersed and the fluid mud will become an usual mud suspension.  

Modelling concentrated suspensions 

A lot of work has been performed to understand the settling of particles in non-
dilute conditions. Theoretical models for systems where more than two particles 
interact are usually very complicated, and this is why their study remains an open 
field of research.  

Microscopic mechanics can be upscaled to give macroscopic (bulk) properties thanks 
to statistical physics. The difficulties are not just linked to solving the hydrodynamic 
equations with better, faster computers. The collective interactions between the 
particles can give rise to quite unexpected qualitative behaviour, actually often much 
simpler than the microscopic motions seem to suggest104. A litre of gas for instance 
could be studied by tracking the behaviour of its constituting molecules (about 
𝑁𝑁~ 0.3 × 1023 particles for one litre for usual pressure) – a huge task – however the 
macroscopic behaviour of a simple ideal gas is very well described by the simple 
relation: 𝑃𝑃𝑉𝑉 = 𝑁𝑁𝑘𝑘𝑇𝑇 where 𝑃𝑃 is the pressure, 𝑉𝑉 the volume, 𝑘𝑘 the Boltzmann 
constant, 𝑇𝑇 the temperature . 

Statistical physics makes use of probability distribution functions. In Chapter 7, the 
pair correlation function 𝑔𝑔(𝑟𝑟) was introduced. The pair correlation function is used 
to establish the probability distribution function. For example, the probability 
density function Ψ(𝑟𝑟) for finding a particle at 𝑟𝑟 given that there is a particle at 𝑟𝑟 = 0 
is written: 

Ψ(𝑟𝑟) =
𝑁𝑁
𝑉𝑉
𝑔𝑔(𝑟𝑟) 

where 𝑁𝑁/𝑉𝑉 is the average number density of particles within the sample. As particles 
do not interpenetrate, the probability to find a particle between 0 and 2a (where a 
is the radius of one particle) is zero. This volume, that cannot be occupied by other 
particles, is called the excluded volume. Moreover: 

� Ψ(𝑟𝑟)𝑑𝑑𝑉𝑉
𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷(𝑟𝑟>2𝑎𝑎)
= 𝑁𝑁 − 1 

as the number of particles in the total volume considered 𝑉𝑉𝑡𝑡𝑏𝑏𝑡𝑡 is equal to 𝑁𝑁 − 1 (the 
one at 𝑟𝑟 = 0  is not counted). Because of the excluded volume, the reference particle 

                                                                 
104 Guazzelli, E., & Morris, J. F. (2011). A physical introduction to suspension dynamics (Vol. 
45). Cambridge University Press. 
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influences the particle positioning near itself: this leads to interesting and physically 
significant microstructures in concentrated suspensions.  

Settling of concentrated suspensions 

Dilute suspensions 

In Chapter 2, we have discussed the settling of individual particles according to 
Stokes’ law. We recall that this settling velocity can be expressed as: 

𝒗𝒗𝟎𝟎 =
2
9
𝜋𝜋2
𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤

𝜂𝜂
𝒈𝒈 

We here added the subscript 0 to indicate that we refer to an individual particle 
settling according to Stokes. In very dilute suspensions the particles can be assumed 
to settle according to Stokes. 

Doublet and triplet of spheres 

Using reversibility and symmetry principles one can show that two identical spheres 
close to each other fall at the same velocity and therefore do not change their 
orientation and separation. The pair has a sideways motion as there is a horizontal 
component of the fall motion (except when the angle between the centres of the 
spheres and the vertical, 𝜃𝜃, is 0 or 𝜋𝜋/2) and they fall faster than when they are alone. 
The flow of the two spheres can be obtained by the method of reflections. One can 
show that: 

𝒗𝒗𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝒗𝒗𝟎𝟎

= 1 +
3𝜋𝜋
2𝑟𝑟

   for    𝜃𝜃 = 0 

and: 

𝒗𝒗𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝒗𝒗𝟎𝟎

= 1 +
3𝜋𝜋
4𝑟𝑟

   for    𝜃𝜃 =
𝜋𝜋
2

 

From these equations we see that two spheres falling next to each other (in an 
horizontal plane) will fall slower than two spheres falling one above the other. In the 
limit of touching spheres, it is easy to verify that the particles will settle with a 
velocity  1.75 𝑣𝑣0 for 𝜃𝜃 = 0 and 1.375 𝑣𝑣0 for 𝜃𝜃 = 𝜋𝜋/2. 
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Schematic representation of the settling of two spheres separated by a distance r. Note that 
for an any angle  𝜃𝜃 between 0 and 𝜋𝜋/2 there is an horizontal component to the velocity 

(which is represented by the red arrows) 

When a third sphere is introduced (the three-body problem) the behaviour is 
different as the particles do not usually maintain a constant separation, and the 
configuration is unstable. In a sedimenting triplet equally spaced on a vertical or an 
horizontal line one can then show that the middle particle will settle the fastest. 

Concentrated suspensions 

For the sedimentation of a suspension of many spheres, things become more 
complicated. One might try to compute the mean sedimentation velocity of particles 
by summing the effects between pairs of particles. The velocity of a particle can then 
be written: 

𝒗𝒗 = 𝒗𝒗𝟎𝟎 + ∆𝒗𝒗 

where ∆𝒗𝒗 is the incremental velocity due to a second particle located at distance r. 
For accounting for more particles, one could average over all possible separations 
which occur with a probability Ψ(𝑟𝑟)(the probability of finding a sphere with its 
center at r given there is a particle at r = 0, see above). This would give:  

𝒗𝒗 = 𝒗𝒗𝟎𝟎 + � ∆𝒗𝒗 ∙ Ψ(𝑟𝑟)𝑑𝑑𝑉𝑉
𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷(𝑟𝑟>2𝑎𝑎)
 

From a dimension analysis, one can infer that the flow field ∆𝒗𝒗 decreases at first 
order as 1/r (see the doublet examples above), that Ψ(𝑟𝑟) scales at first order as a 
constant independent of r since for a reasonably dilute suspension 𝑔𝑔(𝑟𝑟) = 1 and 
that: 

Ψ(𝑟𝑟) ≈
𝑁𝑁
𝑉𝑉

 

The element of volume 𝑑𝑑𝑉𝑉 scales as 𝑟𝑟3. This implies that  
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� ∆𝒗𝒗Ψ(𝑟𝑟)𝑑𝑑𝑉𝑉
𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷(𝑟𝑟>2𝑎𝑎)
 ~ 𝐿𝐿2 

where L is a characteristic length of the settling column. This dependence would 
imply a very strong divergence (imagine that the considered column would 
represent the sea…), and is due to the fact we omitted the long-range hydrodynamic 
interactions in our analysis. This divergence is not found experimentally, as, on the 
contrary, the velocity of particles in a concentrated suspension is even lower than 
the one of single particles. This is what is called hindered settling: the velocity of the 
particles is decreasing, relative to the Stokes velocity, with increasing particle 
concentration, as particles start to be in each other’s way. The mean settling velocity 
of a particle in a concentrated suspension is defined as: 

𝒗𝒗 = 𝑓𝑓(𝜙𝜙𝑆𝑆)𝒗𝒗𝟎𝟎 

where 𝑓𝑓(𝜙𝜙𝑆𝑆) is the hindered settling factor which is function of the volume fraction 
𝜙𝜙𝑆𝑆. For a dilute suspension, one has 𝑓𝑓(𝜙𝜙𝑆𝑆) = 1. A very widely used empirical 
correlation function is the one attributed to Richardson and Zaki in 1954105: 

𝑓𝑓(𝜙𝜙𝑆𝑆) = (1 − 𝜙𝜙𝑆𝑆)𝑒𝑒 

where n is a coefficient generally found to be close to 5 for the settling of 
monodisperse colloidal spheres (see figure below). The experimental data are from 
Nicolai et al.106 

 

Hindered settling function: Richardson-Zaki (red line) with n = 5, and experimental data 
(symbols) for colloidal spheres 

                                                                 
105 Richardson and Zaki, Sedimentation and fluidization: Part I. Trans. Inst. Chem. Engrs., 32, 
35-53 (1954) 
106 Nicolai, H., et al. "Particle velocity fluctuations and hydrodynamic self-diffusion of 
sedimenting non-Brownian spheres." Physics of Fluids 7.1 (1995): 12-23. 
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Experimental observations for the hindered settling velocity in the dilute regime 
(𝜙𝜙𝑆𝑆 ≪ 1) have established that then 𝑓𝑓(𝜙𝜙𝑆𝑆) ≈ 1 − 5𝜙𝜙𝑆𝑆, in accordance with 
(1 − 𝜙𝜙𝑆𝑆)𝑒𝑒 ≈ 1 − 𝜕𝜕𝜙𝜙𝑆𝑆. 

One cause for hindered settling is linked to the presence of the bottom of the settling 
column which imposes a back-flow due to volume conservation. The condition to 
express this constant volume flow is similar to the one that will be discussed in 
Chapter 9 : 

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 

The velocity of the solid phase (particles) in the rest frame of the laboratory is given 
by 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 and the velocity of the water in the rest frame of the laboratory is given by 
𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏. Newton’s equation, with the gravity acting as only external field gives: 

−6𝜋𝜋𝜂𝜂𝜋𝜋(𝒗𝒗𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 − 𝒗𝒗𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏) +
4
3
𝜋𝜋𝜋𝜋3𝑣𝑣𝑠𝑠 �1 −

𝑣𝑣
𝑣𝑣𝑠𝑠
�𝒈𝒈 = 0 

The first term represents the Stokes drag force and the second the force of gravity, 
compensated for Archimedes. The fluid density 𝑣𝑣 is given by: 

𝑣𝑣 = (1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠 

Using the fact that: 

1 −
𝑣𝑣
𝑣𝑣𝑠𝑠

= (1 − 𝜙𝜙𝑆𝑆)
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑠𝑠

 

and taking into account the back-flow, one can rearrange the last equations to 
obtain107: 

𝒗𝒗𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 =
2
9
𝜋𝜋2

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)
𝜂𝜂

(1 − 𝜙𝜙𝑆𝑆)2𝒈𝒈 

𝒗𝒗𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝒗𝒗𝟎𝟎(1 − 𝜙𝜙𝑆𝑆)2 

Therefore, if one would neglect particle-particle interactions and hydrodynamic 
effects, we would find n = 2 in the Richardson and Zaki formulation. One of the 
(1 − 𝜙𝜙𝑆𝑆) results from the return flow, and the other arises because a typical sphere 

                                                                 
107 Oliver, D. R. "The sedimentation of suspensions of closely-sized spherical particles." 
Chemical Engineering Science 15.3 (1961): 230-242. See also: Gourdin-Bertin, S., and C. 
Chassagne. "Onsager’s reciprocal relations for electroacoustic and sedimentation: Application 
to (concentrated) colloidal suspensions." The Journal of chemical physics 142.19 (2015): 
194706. Note the mistake in eq.(29) of that last article as can be found by inserting eq.(26) in 
eq.(28).  
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was considered to be settling in a fluid with density equal to that of the suspension, 
and not that of the water alone.  

Other corrections can be done. One could in particular account for the change in 
viscosity. We have seen in Chapter 7 that a possible expression for the viscosity is: 

𝜂𝜂(𝜙𝜙𝑆𝑆) = 𝜂𝜂0 �1 −
𝜙𝜙𝑆𝑆

1 − 𝑐𝑐𝜙𝜙𝑆𝑆
�
−2.5

 

where 𝜂𝜂0 is the viscosity of water. If we assume that 1 − 𝑐𝑐𝜙𝜙𝑆𝑆 ≈ 1 (which is valid for 
not too concentrated suspensions), we get: 

𝜂𝜂(𝜙𝜙𝑆𝑆) ≈ 𝜂𝜂0(1 − 𝜙𝜙𝑆𝑆)−2.5 

 Therefore if we define the settling of an individual particle 𝒗𝒗𝟎𝟎 by: 

𝒗𝒗𝟎𝟎 =
2
9
𝜋𝜋2

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)
𝜂𝜂0

𝐠𝐠 

we now find: 

𝒗𝒗𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝒗𝒗𝟎𝟎(1 − 𝜙𝜙𝑆𝑆)4.5 

The exponent is now 4.5, quite close to the experimentally found one for spheres. 
This approach is however questionable, as it is not obvious that the viscosity 
experienced by a particle can correctly be approximated by the mean viscosity of the 
suspension.  

Non-spherical particles 

Needless is to say that for particles that are not monodisperse spheres, as assumed 
until here, the settling rate dependence on volume fraction is much more complex. 
In numerical simulations, it has been shown that suspensions that are homogeneous 
at t = 0, with random positions and orientations exhibit a peculiar settling behaviour. 
A the sedimentation proceeds, a broad suspension front forms at the interface and 
the clear fluid appears at the top. Careful observation of the bulk shows that the 
suspension does not remain homogeneous: particles tend to group  into clusters. 

 



Chapter 8 Settling of (concentrated) suspensions 

 207 

Particles are also observed to rotate and to orient preferentially in the vertical 
direction, with a strong correlation between centre-of-mass positions and 
orientations; while the orientation remains random inside the dense clusters, the 
alignment in the vertical direction is much clearer in their periphery, where a strong 
vertical shear exists. For large 𝜙𝜙𝑆𝑆 the settling found experimentally could be 
described with a Richardson-Zaki law with n = 9. 

Fluctuations in settling108 

Large velocity fluctuations have been measured by tracking marked spheres in an 
otherwise transparent sedimenting suspension. The measurements were not 
collected immediately after the initial mixing of the suspension: the suspension was 
allowed to settle for some time and reach a steady behaviour before tracking 
started. The fluctuations did not appear to be affected by the size of the container 
in the large containers used. 

 

Tracking of two marked spheres in the 
midst of a 30% volume fraction 
sedimenting suspension of unmarked 
spheres made optically transparent by 
matching the index of refraction of the 
suspending fluid to that of the glass 
spheres. The particle trajectories are 
tortuous and exhibit large as well as small 
loops as the spheres sometimes moved 
upward against gravity. 

 

 

For many years, theoretical estimates and numerical simulations predicted the 
steady-state fluctuations of the velocities of spheres to increase with the size of the 
container, whereas experiments found no such variation. In fact, the correlation 
length of the velocity fluctuations was found experimentally to be 20 interparticle 
separations, 20𝜋𝜋𝜙𝜙𝑆𝑆

−1/3. This value of the correlation length was observed for 
volume fractions from 10-4 to 0.4. When the minimum dimension of the container L 
was less than 20𝜋𝜋𝜙𝜙𝑆𝑆

−1/3 it was found that the velocity fluctuations Δ𝑣𝑣 would scale 
as: 

                                                                 
108 Guazzelli, Élisabeth, and John Hinch. "Fluctuations and instability in sedimentation." 
Annual review of fluid mechanics 43 (2011): 97-116. 
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Δ𝑣𝑣 ~ 𝑣𝑣0�𝜙𝜙𝑆𝑆
𝐿𝐿
𝜋𝜋

 

While the steady-state velocity fluctuations are independent of the size of the 
container if 𝐿𝐿 > 20𝜋𝜋𝜙𝜙𝑆𝑆

−1/3, the early fluctuations do depend on the container. The 
initial magnitude of the velocities again scales as  𝑣𝑣0�𝜙𝜙𝑆𝑆𝐿𝐿/𝜋𝜋. Some experimental 
results are given below. These are obtained for suspensions of glass spheres of 
radius 150 microns, volume fraction 0.1% and density 4 g/cm3. They were suspended 
in silicon oil to insure that the Reynolds number remain extremely small. The time t 
= 0  corresponds to the time just after mixing the column. 

 

Relaxation of the large-scale fluctuations. The velocity field is from particle-image 
velocimetry sampling the whole-cell height and width within a laser sheet located in the 

middle plane, and the concentration profile  𝜙𝜙𝑠𝑠/𝜙𝜙0 is from light-attenuation measurements 
through the suspension. The timescale is the Stokes time tS = a/v0, i.e. the time for an isolated 

sphere to settle a distance equivalent to its radius. 

The fluctuations magnitudes are strongly anisotropic with vertical velocities around 
four times the horizontal velocities. The initial strong large-scale fluctuations decay 
in time to weaker small-scale fluctuations. These small-scale fluctuations remain in 
a steady state until the sedimentation front arrives. This reduction of the initially 
large fluctuations to a smaller steady value independent of the size of the container, 
seen initially at low volume fractions 𝜙𝜙𝑆𝑆, has been also observed at larger 𝜙𝜙𝑆𝑆.  

This behaviour can be partially understood by modelling the system by heavy blobs 
of particles falling to the bottom and light blobs rising to the top. 
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Falling blobs 

Let us consider a blob of size 𝑑𝑑. This blob would contain on average 𝜕𝜕𝑑𝑑3 particles 
(where 𝜕𝜕 is the number density of particles), but there would be statistical 
fluctuations of √𝜕𝜕𝑑𝑑3 in the number if the particles were positioned randomly and 
independently. This fluctuation in the number gives a 𝑚𝑚√𝜕𝜕𝑑𝑑3 fluctuation in the mass 
of the blob, where 𝑚𝑚 is the mass of a particle compensated for Archimedes. 
Balancing the fluctuation in weight with a Stokes drag on the blob yields a fluctuation 
in velocity of: 

Δ𝑣𝑣 ~
𝑚𝑚𝑔𝑔√𝜕𝜕𝑑𝑑3

6𝜋𝜋𝜂𝜂𝑑𝑑
=  𝑣𝑣0�𝜙𝜙𝑆𝑆

𝑑𝑑
𝜋𝜋

 

As larger blobs give larger fluctuations in velocity, one would expect to see those 
corresponding to the largest spherical blob that can be fitted into the container. This 
largest size corresponds to the largest of the height, width, and depth of the column, 
which we have noted L above. We therefore find, in accordance with observations, 
that the velocity fluctuations Δ𝑣𝑣 scale as: 

Δ𝑣𝑣 ~ 𝑣𝑣0�𝜙𝜙𝑆𝑆
𝐿𝐿
𝜋𝜋

 

Falling clouds 

We have just introduced the concept of a “blob” of particles. One other example of 
blob that is quite relevant for different studies is when the blob of particles is found 
in water. This is the case for example when a concentrated suspension is pipetted 
into a jar containing water. It is common to define as a cloud a blob containing a very 
large number of particles surrounded by clear water.  

In Chapter 2 we have illustrated what happens when regions of high particle 
concentration come into contact with regions of low particle concentration: the 
particles will diffuse to regions of low particle concentration. Implicitly, we have 
there assumed that the hydrodynamics could be neglected: the pipette is just put 
into contact with the water and the particles will start to diffuse thanks to Brownian 
motion (helped by gravity). This is also how the pipetting for particle size is 
performed in settling studies (see Chapter 5). 

If a blob (or cloud) of particles would be deposited as such (for instance pushed with 
a syringe) in clear water, a different behaviour would be observed. 
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 A cloud of particles sedimenting in a viscous fluid 
evolves into a torus that becomes unstable and breaks 
up into secondary droplets, which deform into tori 
themselves in a repeating cascade. This instability 
occurs even in the complete absence of inertia and 
without the need to perturb the initial shape. The 
particles circulate in closed toroidal streamlines as 
predicted by a continuum approach in which the cloud is 
modelled as an effective medium of higher density. 
Fluctuations arising from the multibody character of the 
hydrodynamic interactions cause particles to depart 
from these streamlines and to be carried into a 
downstream tail. Because the lost particles are those 
located in the circulation rim, this depletes the central 
region and leads to torus formation. The mechanism 
responsible for the further expansion of the torus 
remains unclear, but the breakup can be described as a 
change in the flow topology that occurs when the torus 
reaches a critical aspect ratio. Simulations using a point-
particle approach containing the minimal physics of the 
long-range interactions capture this dynamics. Faster 
breakup is observed for clouds of fibers due to the self-
motion of the anisotropic particles. 

A cloud of particles can primarily be seen as a heavy fluid drop which has a different 
density and specific viscosity than the lighter water surrounding it. The problem was 
originally solved by Hadamard and Rybczyński in 1911109. The boundary conditions 
at the particle’s surface are that the fluid velocities are continuous (contrary to the 
no-slip condition when one considers a hard sphere), and that there is no surface 
tension between the drop and the surrounding fluid. One finds that the terminal 
velocity of the spherical cloud is then given by the balance of the Hadamard-
Rybczyński drag force and the weight (compensated for Archimedes): 

𝑈𝑈𝑆𝑆 =
𝑁𝑁 4

3𝜋𝜋𝜋𝜋
3(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔

2𝜋𝜋𝜂𝜂 2 + 3𝜆𝜆
𝜆𝜆 + 1 𝑅𝑅

= 𝑁𝑁
6𝜋𝜋

2 2 + 3𝜆𝜆
𝜆𝜆 + 1 𝑅𝑅

𝑣𝑣0 

where 𝑁𝑁 is the number of particles in the cloud of radius 𝑅𝑅 and 𝜆𝜆 is the ratio between 
the cloud viscosity and the viscosity of water. The factor 2(2 + 3𝜆𝜆)/(𝜆𝜆 + 1) ranges 
from 5 for a cloud with a low volume fraction (where 𝜆𝜆 ≈ 1) to 6 for a concentrated 
cloud (where 𝜆𝜆 ≫ 1). 

                                                                 
109 Hadamard, J. S. (1911). "Mouvement permanent lent d'une sphere liquide et visqueuse 
dans un liquide visqueux". CR Acad. Sci. (in French). 152: 1735–1738 and Rybczynski, W. 
(1911). "Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium". 
Bull. Acad. Sci. Cracovie, A. (in German): 40–46. 
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The most remarkable feature observed during the cloud fall is the collective motion 
followed by the particles. While settling, the particles circulate in a toroidal vortex 
inside the cloud, similarly to the heavy fluid inside a drop sedimentating in a lighter 
fluid. As a result the cloud remains a cohesive entity for long times, maintaining a 
sharp boundary between its particle-filled interior and the clear fluid outside. It is 
the chaotic fluctuations arising from the many-body character of the hydrodynamic 
interactions that cause the particles to cross the boundary of the closed toroidal 
circulation which, unlike the drop, is not a material surface. Some of the particles 
may thus be carried by the outside flow into a vertical tail at the rear of the cloud 
(see figure (a) above). 

Sketch of the settling of a spherical cloud of particles 
showing the toroidal circulation of the particles inside the 
cloud and the particle leakage (in red) at the rear of the 
cloud (in a frame relative to the moving particle) 

Clouds made of a small number of particles are 
found to keep their shape until they disintegrate 
owing to the constant loss of particles. Clouds having 
a large number of particles (N > 500) become 
unstable (see figures (b,c,d) above). 

The evolution of a cloud of particles is a good 
example of how the long-range nature of many-body hydrodynamic interactions and 
the coupling between hydrodynamics and the microscopic arrangement of particles 
lead to a collective effect. While the suspension can be modelled as an effective 
medium with excess mass, the discrete nature of the suspension is a fundamental 
ingredient in understanding phenomena as leakage at the rear and destabilization 
of the cloud. 

Wall effects 

We have already discussed above the influence of 
the size of the column on the settling. Even though 
the relative sedimentation velocity is independent 
of the shape of the column (at steady-state) there 
exists a global convection of the suspension called 
intrinsic convection that was discovered by Prof. 
Peter Mazur of Leiden University and coworkers in 
1985110. This convection effect exists even for dilute 
suspensions. The principle is sketched on the figure 
opposite: close to the column walls there is a small 

                                                                 
110 Beenakker, C. W. J., and P. Mazur. "Is sedimentation container-shape dependent?." Physics 
of Fluids (1958-1988) 28.11 (1985): 3203-3206. 
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depleted region (symbolized by the dashed lines) of size the radius of a particle. 
Between the wall and each dashed line the centre of particles cannot penetrate 
more than a distance corresponding to their radius. Conservation of volume and no-
slip condition at the wall (= the velocity of the fluid is zero at the walls) ensure that 
the hydrodynamic profile is given by the blue line on the figure111. This profile 
corresponds to a Poiseuille flow with a slip velocity 𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖𝑝𝑝 = 9𝜙𝜙𝑆𝑆𝑣𝑣0/4 at a particle 
radius distance from the walls, and a maximum downwards velocity in the centre of 
the column equal to −𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖𝑝𝑝/2. This flow induces two vortices in the column with an 
ascending velocity near the wall and a descending in the middle (red lines in the 
figure). As this global convection is superimposed on the settling motion of the 
particles relative to the suspension (black arrow), the particles should settle faster 
in the centre of the cell than near the side walls. Experiments have shown the 
existence of this intrinsic convection, however the effect was observed to be much 
smaller than predicted. For a concentrated suspension, an ordering of particles near 
the wall was observed, as particles piled up against the side walls. Existing models 
do not take into account this effect. 

Chemical potential, osmotic pressure and thermodynamics 

Until now we have focussed on microscopic and mesoscopic descriptions of the 
settling of (concentrated) suspensions. Even though progress has been made in 
understanding the related observed features, it is clear that the complexity of 
problem prevent the use of microscopic and mesoscopic theories for large-scale 
engineering problems, such as predicting the settling velocity of a concentrated 
suspension. We have however already shown that even though the systems might 
be complex at a microscopic scale, it is possible to derive some simple relationships 
for their mesoscopic and macroscopic behaviour. Examples are the empirical 
Richardson-Zaki relationship and the ideal gas theory (𝑃𝑃𝑉𝑉 = 𝑁𝑁𝑘𝑘𝑇𝑇). The 
mesoscopic/macroscopic description of a system can (in colloid science) be linked to 
statistical physics : the numerical simulations of the falling fibers given above or of 
interacting molecules in a gas are examples of it. There, the microscopic interactions 
between particles are simulated (one example of such interactions is given in 
Chapter 7, where we introduced the Lennard-Jones potential) and the macroscopic 
behaviour of the suspension can be inferred from the results. Another approach to 
macroscopic descriptions of a complex system is through thermodynamics. 

In the previous chapters of this book, we have defined various concepts relevant for 
colloid science without explicitly referring to thermodynamics. In Chapters 2 and 3, 
we have discussed the osmotic pressure and the Boltzmann distribution. These 
concepts are both linked to statistical physics and thermodynamics. Statistical 
mechanics provides a framework for relating the microscopic properties of 

                                                                 
111 Bruneau, D., et al. "Intrinsic convection in a settling suspension." Physics of Fluids (1994-
present) 8.8 (1996): 2236-2238. 
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individual atoms and molecules to the macroscopic or bulk properties. It enables to 
explain thermodynamics as a natural result of statistics, classical mechanics, and 
quantum mechanics at the microscopic level. Both statistical physics and 
thermodynamics originate from the work of Gibbs (see underneath).  It is not the 
purpose of the present book to go too much into thermodynamic concepts, but it is 
useful to get some very basic understanding of it. Indeed, it is for example through 
thermodynamics that the osmotic pressure and the Boltzmann distribution can best 
be understood. Theoretical work in thermodynamics and statistical physics is still 
ongoing in order to understand the macroscopic behaviour of complex systems such 
as concentrated suspensions, slurries and transport in porous media . 

Chemical potential 

An important thermodynamic parameter is the chemical potential of component i 
(that can be an ion species, a colloid or the solvent), noted 𝜇𝜇𝑖𝑖. The chemical potential 
is a form of potential energy that can be absorbed or released during a chemical 
reaction, and that can change during a phase transition. The chemical potential is 
defined as the partial derivative of the free energy with respect to the amount of 
the considered species (all other species’ concentrations in the mixture remaining 
constant). At chemical equilibrium or in phase equilibrium the total sum of chemical 
potentials is zero, as the free energy is at a minimum. Particles tend to go from a 
higher chemical potential to a lower one : a simple example is the diffusion of 
particles from high to low concentrations that we have introduced when we 
discussed Fick’s law in Chapter 2. The microscopic explanation for this is based on 
kinetic theory and the random motion of particles. However, it is simpler to describe 
the process in terms of chemical potentials: for a given temperature, a particle has 
a higher chemical potential in a higher-concentration area, and a lower chemical 
potential in a low concentration area. Movement of particles from higher chemical 
potential to lower chemical potential is accompanied by a release of free energy.  

The total chemical potential can be split into an internal and an external chemical 
potential, where the external chemical potential originates from external gradients 
such as electric field and gravity. 

For example let us consider an electrolyte solution in the presence of a charged wall 
or colloid. The electrochemical potential 𝜇𝜇𝑖𝑖  of ion species i is a function of the electric 
potential 𝜓𝜓(r) originating from the presence of the charged wall or colloid. It is given 
by: 

𝜇𝜇𝑖𝑖(𝑟𝑟) = 𝑞𝑞𝑖𝑖𝜓𝜓(𝑟𝑟) + 𝑘𝑘𝐵𝐵𝑇𝑇ln �
𝜕𝜕𝑖𝑖(𝑟𝑟)
𝜕𝜕0

� + 𝜇𝜇𝑖𝑖0 

where 𝜇𝜇𝑖𝑖0 is a reference value which only depends on temperature 𝑇𝑇, 𝑘𝑘𝐵𝐵  is the 
Boltzmann constant and 𝜕𝜕0 a reference density. The other variables are defined in 
Chapter 3. 
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Josiah Willard Gibbs,  
colloid science and thermodynamics 

Josiah Willard Gibbs (1839 – 1903) was an American 
scientist who made important theoretical contributions 
to physics, chemistry, and mathematics. His work on 
the applications of thermodynamics was instrumental 
in transforming physical chemistry into a rigorous 
deductive science. Together with James Clerk Maxwell 
and Ludwig Boltzmann, he created statistical 
mechanics (a term that he coined), explaining the laws 
of thermodynamics as consequences of the statistical 
properties of ensembles of the possible states of a physical system composed of 
many particles. Gibbs also worked on the application of Maxwell's equations to 
problems in physical optics. As a mathematician, he invented modern vector calculus 
(independently of the British scientist Oliver Heaviside, who carried out similar work 
during the same period). 

In 1863, Gibbs received the first Doctorate of Philosophy (Ph.D.) from Yale in 
engineering granted in the US, for a thesis entitled "On the Form of the Teeth of 
Wheels in Spur Gearing", in which he used geometrical techniques to investigate the 
optimum design for gears. 

Gibbs traveled to Europe with his sisters where they spent the winter of 1866–67 in 
Paris. Gibbs attended lectures at the Sorbonne and the Collège de France, given by 
such distinguished mathematical scientists as Joseph Liouville and Michel Chasles. 
Moving to Berlin, Gibbs attended the lectures taught by mathematicians Karl 
Weierstrass and Leopold Kronecker, as well as by chemist Heinrich Gustav Magnus. 
In Heidelberg, Gibbs was exposed to the work of physicists Gustav Kirchhoff and 
Hermann von Helmholtz, and chemist Robert Bunsen. At the time, German 
academics were the leading authorities in the natural sciences, especially chemistry 
and thermodynamics. 

After a three-year sojourn in Europe, Gibbs spent the rest of his career at Yale, where 
he was professor of mathematical physics from 1871 until his death. Working in 
relative isolation, he became the earliest theoretical scientist in the United States to 
earn an international reputation and was praised by Albert Einstein as "the greatest 
mind in American history".  

Commentators and biographers have remarked on the contrast between Gibbs's 
quiet, solitary life in turn of the century New England and the great international 
impact of his ideas. Though his work was almost entirely theoretical, the practical 
value of Gibbs's contributions became evident with the development of industrial 
chemistry during the first half of the 20th century. According to Robert A. Millikan, 
in pure science Gibbs "did for statistical mechanics and for thermodynamics what 
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Laplace did for celestial mechanics and Maxwell did for electrodynamics, namely, 
made his field a well-nigh finished theoretical structure." 

When Dutch physicist J. D. van der Waals received the 1910 Nobel Prize "for his 
work on the equation of state for gases and liquids" he acknowledged the great 
influence of Gibbs's work on that subject. 

When no external electric field is applied there are no ionic fluxes, the system is in 
equilibrium and the electrochemical potential is constant in the whole system. This 
implies that: 

𝜇𝜇𝑖𝑖(𝑟𝑟) = 𝜇𝜇𝑖𝑖(𝑟𝑟 → ∞) 

𝑞𝑞𝑖𝑖𝜓𝜓(𝑟𝑟) + 𝑘𝑘𝐵𝐵𝑇𝑇ln �
𝜕𝜕𝑖𝑖(𝑟𝑟)
𝜕𝜕0

� + 𝜇𝜇𝑖𝑖0 = 𝑘𝑘𝐵𝐵𝑇𝑇ln �
𝜕𝜕𝑖𝑖(∞)
𝜕𝜕0

� + 𝜇𝜇𝑖𝑖0 

This leads to: 

𝜕𝜕𝑖𝑖(𝑟𝑟) = n𝑖𝑖(∞)exp �
−𝑞𝑞𝑖𝑖𝜓𝜓(𝑟𝑟)
𝑘𝑘𝐵𝐵𝑇𝑇

� 

which is the Boltzmann distribution given in Chapter 3. 

Osmotic pressure 

The derivation of the osmotic pressure from the chemical 
potential is due to the Dutch chemist Jacobus Henricus van’t 
Hoff (1852 – 1911). Van’t Hoff got the first Nobel prize in 
Chemistry in 1901.  

His derivation is as follows: 

Let us consider a suspension that is brought into contact with 
a semi-permeable membrane, as sketched in Chapter 2. The 
system is at equilibrium when the chemical potential of the 

solvent is equal on both sides of the membrane (there is then also no flux). The 
chemical potentials of the solvent for each side of the membrane are then equal: 

𝜇𝜇𝑤𝑤0 (𝑃𝑃) = 𝜇𝜇𝑤𝑤(𝑥𝑥𝑤𝑤 ,𝑃𝑃 + Π) 

where 𝜇𝜇𝑤𝑤0  is the chemical potential of the pure solvent, 𝑃𝑃 is the pressure at one side 
of the membrane and 𝑃𝑃 + Π is the pressure at the other side.  

The variable 𝑥𝑥𝑤𝑤 stands for the mole fraction of the solvent: 
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𝑥𝑥𝑤𝑤 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡𝑏𝑏𝑡𝑡

 

where 𝜕𝜕𝑤𝑤 is the number of moles of solvent and 𝜕𝜕𝑡𝑡𝑏𝑏𝑡𝑡 the total number of moles of 
the system. If 𝑥𝑥𝑠𝑠 is the mole fraction of the solute, we have: 

𝑥𝑥𝑤𝑤 + 𝑥𝑥𝑠𝑠 = 1 

For an ideal mixture, the chemical potential can be written: 

𝜇𝜇𝑤𝑤(𝑥𝑥𝑤𝑤 ,𝑃𝑃 + Π) = 𝜇𝜇𝑤𝑤0 (𝑃𝑃 + Π) + 𝑅𝑅𝑇𝑇ln(𝑥𝑥𝑤𝑤) 

where 𝑅𝑅 = 𝑘𝑘𝐵𝐵𝑁𝑁𝐴𝐴 is the gas constant, with 𝑁𝑁𝐴𝐴 being Avogadro’s number. Moreover, 
the addition to the pressure can be seen as an energy of expansion: 

𝜇𝜇𝑤𝑤0 (𝑃𝑃 + Π) = 𝜇𝜇𝑤𝑤0 (𝑃𝑃) + � 𝑉𝑉(𝑃𝑃)𝑑𝑑𝑃𝑃
𝑃𝑃+Π

𝑃𝑃
 

where 𝑉𝑉 is the molar volume (m3/mol). Combining the above equations, we get: 

−𝑅𝑅𝑇𝑇ln(𝑥𝑥𝑤𝑤) = � 𝑉𝑉(𝑃𝑃)𝑑𝑑𝑃𝑃
𝑃𝑃+Π

𝑃𝑃
 

If the liquid is incompressible the molar volume is constant, and the integral is then 
equal to ΠV. Thus, we get: 

Π =
−𝑅𝑅𝑇𝑇
𝑉𝑉

ln(𝑥𝑥𝑤𝑤) =
−𝑅𝑅𝑇𝑇
𝑉𝑉

ln(1 − 𝑥𝑥𝑠𝑠) ≈
𝑅𝑅𝑇𝑇
𝑉𝑉
𝑥𝑥𝑠𝑠 = 𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

We have here used the fact that 𝑥𝑥𝑠𝑠 ≪ 1.  

Kinetics of sedimentation in colloidal suspensions 

We have seen in the previous sections the importance of the existence of a backflow 
and convection in the settling column, which is due to the hydrodynamic influence 
of the walls of the container. In the laboratory coordinate frame, the volume flux of 
colloidal material through a cross sectional surface area perpendicular to the 
sedimentation velocity is always compensated by fluid flowing in opposite direction. 
This is expressed as 

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 

Clearly, backflow tends to decrease sedimentation velocities, especially at larger 
volume fractions. Although the fluid backflow may be considered constant at a local 
scale, allowing statistical mechanical analysis for a uniform backflow, it certainly 
varies significantly from point to point over distances comparable to the size of the 
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container as we have discussed earlier. The backflow may be considered 
homogeneous over distances small compared to the size of the sample container 
and at the same time large compared to the average distance between Brownian 
particles. This assumption (called the “chemical approximation” by some 
authors112) allows the chemical potential and the drag on a particle to be seen as 
pre-averaged functions of the local mean volume fraction of particles in a region of 
size 𝐿𝐿 around the particle, where 

particle radius ≪ 𝐿𝐿 ≪ length over which 𝜕𝜕(𝑑𝑑) varies 

In volume elements of size 𝐿𝐿, the chemical potential and the drag are thus equal to 
the values they would have in a macroscopically uniform suspension of equivalent 
concentration 𝜕𝜕0 = 𝜕𝜕(𝑑𝑑). This approximation is only valid if the rate of diffusion of 
the particle is greater than its rate of sedimentation. This is represented by the 
Péclet number Pe which is a measure of the ratio of the gravitational force on a 
particle to its Brownian motion: 

𝑃𝑃𝑅𝑅 =
4𝜋𝜋(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜋𝜋3

3𝑘𝑘𝐵𝐵𝑇𝑇
𝐿𝐿 

The chemical approximation is thus valid for slowly sedimenting dispersions.  

Settled particles 

Before we turn to the settling phase, let us first come back to the case where the 
particles have settled. In Chapter 2, we have found that for non-interacting particles 
a density profile could be established: 

𝜕𝜕(𝑑𝑑) = 𝜕𝜕0exp �−
4
3
𝜋𝜋𝜋𝜋3 �

𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑔𝑔𝑑𝑑� 

This relation can be written in the more general form: 

𝜕𝜕(𝑑𝑑) = 𝜕𝜕0exp �
𝑭𝑭𝑒𝑒𝜕𝜕𝑡𝑡 ∙ 𝒓𝒓
𝑘𝑘𝐵𝐵𝑇𝑇

� = 𝜕𝜕0exp �
−𝐹𝐹𝑒𝑒𝜕𝜕𝑡𝑡𝑑𝑑
𝑘𝑘𝐵𝐵𝑇𝑇

� 

where 𝑭𝑭𝑒𝑒𝜕𝜕𝑡𝑡 is the sum of the external forces applied to a colloidal (Brownian) 
particle. In Chapter 2, we have also already said that in the context of colloids, the 
pressure associated to the barometric profile is the osmotic pressure: 

Π = 𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

                                                                 
112 Buscall, Richard. "The sedimentation of concentrated colloidal suspensions." Colloids and 
surfaces 43.1 (1990): 33-53. 
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Note from the two last equations we find that: 

𝐹𝐹𝑒𝑒𝜕𝜕𝑡𝑡 = −
𝑑𝑑Π
𝑑𝑑𝑑𝑑

1
𝜕𝜕

= −
𝜕𝜕ln (𝜕𝜕)
𝜕𝜕𝑑𝑑

𝑑𝑑Π
𝑑𝑑𝜕𝜕

 

which demonstrates that the external force is associated to the osmotic pressure 
gradient.  

Osmotic pressure and external force 

The link between the external force and osmotic pressure can be done using a 
thermodynamic approach. Again, we here only briefly sketch the derivation, and 
refer to the footnote – and complementary books / courses about thermodynamics 
-  for more details113. 

In equilibrium the chemical potential is a constant, independent of position. The 
driving force for diffusion is equal to gradients in the chemical potential: 

𝑭𝑭𝑤𝑤 = −𝛁𝛁𝜇𝜇𝑤𝑤 

𝑭𝑭𝑠𝑠 = −𝛁𝛁𝜇𝜇𝑠𝑠 

where the minus sign is introduced to indicate that the diffusion current is directed 
towards regions of lower chemical potential, so as to minimize the free energy. The 
two chemical potentials are not independent quantities: they are related by the 
Gibbs-Duhem relation (at constant mechanical pressure and temperature): 

𝜕𝜕(𝑑𝑑)𝛁𝛁𝜇𝜇𝑠𝑠 + 𝜕𝜕𝑤𝑤(𝑑𝑑)𝛁𝛁𝜇𝜇𝑤𝑤 = 0 

where 𝜕𝜕𝑤𝑤 is the local number density of solvent molecules. As 𝜙𝜙𝑠𝑠 + 𝜙𝜙𝑤𝑤 = 1 we get: 

𝑉𝑉𝑤𝑤𝜕𝜕𝑤𝑤 + 𝑉𝑉𝑠𝑠𝜕𝜕 = 1 

where 𝑉𝑉𝑤𝑤 and 𝑉𝑉𝑠𝑠 are the volume of a solvent molecule and a colloidal particle.  

We note that any force per unit of volume, acting on the solvent and the particles 
alike do not produce a relative velocity. The force per unit volume on the fluid is 
equal to 𝑭𝑭𝑤𝑤/𝑉𝑉𝑤𝑤. The force per unit volume of particle that generate a relative motion 
is therefore given by: 

𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆
𝑉𝑉𝑠𝑠

=
𝑭𝑭𝑠𝑠
𝑉𝑉𝑠𝑠
−
𝑭𝑭𝑤𝑤
𝑉𝑉𝑤𝑤

 

                                                                 
113 See especially Dhont, J. KG. (1996). An introduction to dynamics of colloids. Vol. 2. Elsevier., 
Chapter 7 
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Using the equations given above: 

𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆
𝑉𝑉𝑠𝑠

=
𝜕𝜕𝑤𝑤𝛁𝛁𝜇𝜇𝑤𝑤

1 − 𝑉𝑉𝑤𝑤𝜕𝜕𝑤𝑤
−
−𝛁𝛁𝜇𝜇𝑤𝑤
𝑉𝑉𝑤𝑤

=
1

𝑉𝑉𝑠𝑠𝜕𝜕𝑉𝑉𝑤𝑤
𝛁𝛁𝜇𝜇𝑤𝑤 

which gives: 

𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆 =
1
𝜕𝜕𝑉𝑉𝑤𝑤

𝛁𝛁𝜇𝜇𝑤𝑤 

Since the local osmotic pressure is by definition (see the definition above) equal to: 

Π = −
𝜇𝜇𝑤𝑤 − 𝜇𝜇𝑤𝑤0

𝑉𝑉𝑤𝑤
 

where 𝜇𝜇𝑤𝑤0  is the chemical potential of pure solvent, we find indeed that: 

𝑭𝑭𝑒𝑒𝜕𝜕𝑡𝑡 = −
1
𝜕𝜕
𝛁𝛁Π 

𝐹𝐹𝑒𝑒𝜕𝜕𝑡𝑡 = −
1
𝜕𝜕
𝑑𝑑Π
𝑑𝑑𝑑𝑑

 

The force is therefore directly linked to the osmotic pressure. This force symbolizes 
the fact that there is an interaction between the colloidal particles, associated to the 
pair-correlation function 𝑔𝑔. The local osmotic pressure can be written (the derivation 
is beyond the scope of this book): 

Π(𝒓𝒓) = 𝜕𝜕(𝒓𝒓)𝑘𝑘𝐵𝐵𝑇𝑇 −
2𝜋𝜋
3
𝜕𝜕2(𝒓𝒓)� 𝑅𝑅3

𝑑𝑑𝑑𝑑(𝑅𝑅)
𝑑𝑑𝑅𝑅

𝑔𝑔(𝑅𝑅)𝑑𝑑𝑅𝑅
∞

0
 

where 𝑑𝑑 is the pair potential of interaction between two particles. The first term on 
the right-hand side is related to Brownian motion, the second to the interaction 
between particles. When 𝑑𝑑 = 0 (no interaction between particles), one finds: 

Π = 𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

which corresponds to the barometric height distribution as given in Chapter 2. 

Settling profiles 

Let us now discuss the settling phase. The chemical approximation explained above 
implies that the thermodynamic and drag forces on a particle are only dependent on 
the local average concentration 𝜙𝜙𝑆𝑆. This, in particular, is at the origin of the 
continuity equation: 
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𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

+
𝜕𝜕�𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏𝜙𝜙𝑆𝑆�

𝜕𝜕𝑑𝑑
= 0 

that will be used in Chapter 9. Note that the continuity equation for one particle 
reads: 

𝜕𝜕Ψ𝑚𝑚
𝜕𝜕𝑡𝑡

+ �
𝜕𝜕�𝑢𝑢𝑒𝑒/𝑙𝑙𝑎𝑎𝑏𝑏Ψ𝑒𝑒�

𝜕𝜕𝑥𝑥𝑒𝑒

𝑁𝑁

𝑒𝑒=1

= 0 

where Ψ𝑚𝑚  is the probability of finding a particle at a point 𝑥𝑥𝑚𝑚  (and is linked to a pair-
correlation function), 𝑢𝑢𝑒𝑒/𝑙𝑙𝑎𝑎𝑏𝑏 is the velocity of the nth particle.  

The forces acting upon a settling particle in a concentrated suspension are: the 
gravitational force (compensated for Archimedes) and a force due to the interaction 
with other particles. This last one is expressed through the osmotic pressure. The 
viscous drag force exerted on the colloidal sphere is balanced by the sum of these 
forces: 

6𝜋𝜋𝜂𝜂𝜋𝜋
𝜒𝜒(𝜙𝜙𝑆𝑆)

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤) = −(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝 −
𝑉𝑉𝑝𝑝
𝜙𝜙𝑆𝑆

𝜕𝜕Π
𝜕𝜕𝑑𝑑

 

The ratio 𝑉𝑉𝑝𝑝/𝜙𝜙𝑆𝑆 = 1/𝜕𝜕 represents the mean volume element per particle (𝜕𝜕 is the 
mean number of particles per unit of volume). The factor 𝜒𝜒(𝜙𝜙𝑆𝑆) accounts for the 
hydrodynamic interaction effects on the particle mobility114 and 𝑉𝑉𝑝𝑝 = 4𝜋𝜋𝜋𝜋3/3 is the 
volume of one particle. We have: 

𝜒𝜒(𝜙𝜙𝑆𝑆) = 1   for  𝜙𝜙𝑆𝑆 → 0  

𝜒𝜒(𝜙𝜙𝑆𝑆) = 0   for  𝜙𝜙𝑆𝑆 → 1  

The last equation implies that for 𝜙𝜙𝑆𝑆 → 1 one has 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑤𝑤(= 0). Using 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 =
−(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 = (1 − 𝜙𝜙𝑆𝑆)(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤), the expression can be rewritten: 

6𝜋𝜋𝜂𝜂𝜋𝜋
𝑓𝑓(𝜙𝜙𝑆𝑆)

𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = −(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝 −
𝑉𝑉𝑝𝑝
𝜙𝜙𝑆𝑆

𝜕𝜕Π
𝜕𝜕𝑑𝑑

 

where 

𝑓𝑓(𝜙𝜙𝑆𝑆) =  (1 − 𝜙𝜙𝑆𝑆)𝜒𝜒(𝜙𝜙𝑆𝑆) 

One relation for 𝑓𝑓(𝜙𝜙𝑆𝑆) is for example the Richardson-Zaki expression given above. 

                                                                 
114 This implies that 𝜂𝜂 is the viscosity of the medium. 
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The equation we have just proposed is not obtained from following a single particle 
in time. This would be too complex to do, as it would require to know, at each time, 
the interactions of all the surroundings particles with the particle we track, and 
moreover we would need the particle’s initial position and velocity which is 
impossible to determine. In fact, even though the equation has been written as if it 
is for one particle, it is obtained from the pre-averaged functions of the local mean 
volume fraction of particles in a region of size L around the particle (see discussion 
about the chemical approximation above). 

Note 

At equilibrium,𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 and we find: 

𝜕𝜕Π
𝜕𝜕𝑑𝑑

= (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

from which it can be inferred that it is the gradient in osmotic pressure (i.e. the 
interactions between particles) that keeps the colloidal particles suspended. For 
large particles (non-colloidal), the osmotic pressure term is negligible in comparison 
with the gravity force : this was discussed in Chapter 2 in terms of volume and 
surface forces, see discussion for Case (C) and Case (D). We find in that case: 

6𝜋𝜋𝜂𝜂𝜋𝜋
𝑓𝑓(𝜙𝜙𝑆𝑆)

𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = −(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝 

This implies that the only way to get equilibrium (𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0) is to have 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑤𝑤.  

The particle flux along the vertical direction is given by: 

𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = −𝜙𝜙𝑆𝑆(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 = −𝜙𝜙𝑆𝑆𝐽𝐽𝑤𝑤/𝑠𝑠 

𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = −𝜙𝜙𝑆𝑆
𝑓𝑓(𝜙𝜙𝑆𝑆)
6𝜋𝜋𝜂𝜂𝜋𝜋

�(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝 +
𝑉𝑉𝑝𝑝
𝜙𝜙𝑆𝑆

𝜕𝜕Π
𝜕𝜕𝑑𝑑
� 

The osmotic pressure can be written: 

Π =
𝑘𝑘𝐵𝐵𝑇𝑇
𝑉𝑉𝑝𝑝

𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆) = 𝑍𝑍(𝜙𝜙𝑆𝑆)𝜕𝜕𝑘𝑘𝐵𝐵𝑇𝑇 

where Z(ϕS) is the compressibility factor that accounts for interparticle interactions. 
A widely used expression for a homogeneous hard-sphere suspension is given by the 
Carnahan-Starling equation of state115: 

                                                                 
115 Dhont, J. KG. (1996). An introduction to dynamics of colloids. Vol. 2. Elsevier., Chapter 7 
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𝑍𝑍(𝜙𝜙𝑆𝑆) =
1 + 𝜙𝜙𝑆𝑆 + 𝜙𝜙𝑠𝑠2 − 𝜙𝜙𝑠𝑠3

(1 − 𝜙𝜙𝑆𝑆)3  

Incidentally, one can note that in Chapter 7 we introduced the Carnahan-Starling 
expression without referring explicitly to the osmotic pressure. We define the 
diffusion coefficient and velocity: 

𝑑𝑑0 =
𝑘𝑘𝐵𝐵𝑇𝑇

6𝜋𝜋𝜂𝜂𝜋𝜋
      ;     𝑣𝑣0 =

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝
6𝜋𝜋𝜂𝜂𝜋𝜋

 

 [𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝑣𝑣0 at infinite dilution], and we get: 

𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = −𝜙𝜙𝑆𝑆𝑣𝑣0𝑓𝑓(𝜙𝜙𝑆𝑆) − 𝑓𝑓(𝜙𝜙𝑆𝑆)𝑑𝑑0
𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]

𝜕𝜕𝑑𝑑
 

A characteristic length can be obtained from 𝑑𝑑0 and 𝑣𝑣0, namely: 

𝑙𝑙𝑔𝑔 = 𝑑𝑑0/𝑣𝑣0 =
𝑘𝑘𝐵𝐵𝑇𝑇

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝
 

which may be seen as the length a particle has to settle before the sedimentation 
drift becomes equal to the root mean square displacement due to Brownian motion. 

The continuity equation imposes: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏

𝜕𝜕𝑑𝑑
= 0 

leading to the general equation that has to be solved in order to find the full 
hindered settling profile 𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡): 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

− 𝑣𝑣0
𝜕𝜕
𝜕𝜕𝑑𝑑

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)] = 𝑑𝑑0
𝜕𝜕
𝜕𝜕𝑑𝑑
�𝑓𝑓(𝜙𝜙𝑆𝑆)

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝑑𝑑

� 

In general, the full solution of this equation can only be obtained numerically116. The 
equation has a Burger-like structure. Burgers’ equation is from the family of 
conservation equations that can develop discontinuities and used to characterize  
shock waves. The ”shock” in our context is the propagation of the suspension/bed 
interface through the fluid.  

                                                                 
 
116 Auzerais, F. M., Jackson, R., & Russel, W. B. (1988). The resolution of shocks and the effects 
of compressible sediments in transient settling. J. Fluid Mech, 195(1), 437-462. 
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Johannes Martinus Burgers (1895-1981) was a Dutch 
physicist, who studied in Leiden under Paul Ehrenfest. 
Three months before his PhD graduation he already got 
a position as professor at the  Technische Hogeschool 
Delft (nowadays the Technical University Delft), where 
he worked in the laboratory for aero- and 
hydrodynamics. In particular, he designed the ventilation 
system for the Maastunnel in Rotterdam. In 1955 he 
emigrated to the United States for the facilities he was 
offered there. The Dutch Burgerscentrum117 is named 
after him. 

We will here only discuss some particular cases of the equation for which general 
behaviours can be defined. A (numerical) full solution is discussed at the end of the 
chapter.  

Dilute regime 

In the dilute limit 𝜙𝜙𝑆𝑆 ≪ 1 and 𝑓𝑓(𝜙𝜙𝑆𝑆) = 𝑍𝑍(𝜙𝜙𝑆𝑆) = 1. At equilibrium, 𝜕𝜕𝜙𝜙𝑆𝑆/𝜕𝜕𝑡𝑡 = 0 and 
the equation reduces to: 

−𝑣𝑣0
𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

= 𝑑𝑑0
𝜕𝜕2𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑2

 

This equation can be solved and yields: 

𝜙𝜙𝑆𝑆(𝑑𝑑) = 𝜙𝜙0 𝑅𝑅𝑥𝑥𝑒𝑒�−𝑑𝑑/𝑙𝑙𝑔𝑔� 

where the integration constant 𝜙𝜙0 is obtained by knowing the initial conditions. In 
Chapter 2, we have found the same result when we analysed the settling of non-
interacting particles, but expressed it as  

𝜕𝜕(𝑑𝑑) = 𝜕𝜕0𝑅𝑅𝑥𝑥𝑒𝑒 �−
4
3
𝜋𝜋𝜋𝜋3 �

𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑤𝑤
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑔𝑔𝑑𝑑� 

One can verify that 𝑙𝑙𝑔𝑔 = 𝑑𝑑0/𝑣𝑣0 ≪ 1 for clay particles larger than 100 nm. In that 
case 𝜙𝜙𝑆𝑆(𝑑𝑑 ≠ 0) = 0 and all the particles have settled at the layer 𝑑𝑑 = 0. 

Initial settling rate for an initial homogeneously mixed suspension  

The initial settling rate of the water/suspension interface is now discussed for the 
special case of a suspension consisting of spherical colloidal (Brownian) particles that 

                                                                 
117 http://www.jmburgerscentrum.nl/ 
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experience hindered settling. Let us assume that the suspension is well mixed at t = 
0: 

𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡 = 0) = 𝜙𝜙0 

This implies that there are no gradients in concentration, and consequently: 

�
𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

�
𝑧𝑧,𝑡𝑡=0

= 0 

As the osmotic pressure depends on 𝜙𝜙𝑆𝑆 and: 

𝜕𝜕Π
𝜕𝜕𝑑𝑑

=
𝑑𝑑Π
𝑑𝑑𝜙𝜙𝑆𝑆

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

 

we find that: 

�
𝜕𝜕Π
𝜕𝜕𝑑𝑑
�
𝑧𝑧,𝑡𝑡=0

= 0 

We recall that: 

𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠 = −𝜙𝜙𝑆𝑆
𝑓𝑓(𝜙𝜙𝑆𝑆)
6𝜋𝜋𝜂𝜂𝜋𝜋

�(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝 +
𝑉𝑉𝑝𝑝
𝜙𝜙𝑆𝑆

𝜕𝜕Π
𝜕𝜕𝑑𝑑
� 

From which we deduce that: 

(𝒗𝒗𝒔𝒔)𝑧𝑧,𝑡𝑡=0 =
𝑓𝑓(𝜙𝜙0)
6𝜋𝜋𝜂𝜂𝜋𝜋

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑉𝑉𝑝𝑝𝒈𝒈 

This is the familiar Stokes’ s law for sedimentation rate of an isolated sphere in a 
medium of viscosity 𝜂𝜂 modified through 𝑓𝑓(𝜙𝜙0) to account for the increase in fluid 
drag due to the hydrodynamic interactions. Note that as soon as 𝑡𝑡 > 0 we will have 
𝜕𝜕Π 𝜕𝜕𝑑𝑑⁄ ≠ 0 at the bottom of the settling column (as particles cannot penetrate the 
bottom). In time, the condition 𝜕𝜕Π 𝜕𝜕𝑑𝑑⁄ ≠ 0 will propagate to the top of the column. 

Boycott effect 

We have (and will) assume that the suspensions we consider are settling vertically. 
In 1920 Boycott discovered that the sedimentation of blood components under 
gravity force occurred faster in inclined tubes than in vertical tubes. An analytical 
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model was later developped, called the PNK theory, after Ponder (1925), Nakamura 
and Kuroda (1937) who independently proposed it118. 

 

Figure opposite: (A) region of particle-free fluid above the 
suspension, (B) interface between the particle-free fluid and 
the suspension, (C) suspension, (D) thin particle-free fluid 
layer ·beneath the downward-facing surface, (E) 
concentrated sediment. 

When the sediment particles fall onto the side wall of 
the column, they form a thin sediment layer that slides 
rapidly towards the bottom of the column, hereby 
increasing the settling speed. Because of conservation 
of volume, clear fluid will appear at the opposite wall 
and propagate to the top of the column. The PNK 
model states that: 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡

= −𝑣𝑣𝑠𝑠 �1 +
𝑆𝑆
𝑏𝑏

sin(𝜃𝜃)� 

 

When a settling tube is inclined rather than vertical, the 
velocity at which colloidal particles sedimentate is 
enhanced by several orders of magnitude: this 
phenomenon is called the Boycott effect, named after 
Arthur Edwin Boycott (1877-1938), an eminent 
pathologist and naturalist. In childhood, Boycott 
displayed a taste for natural history and was particularly 
interested in snails. When he was 15 years of age, he 
made a list of those of Herefordshire which was published 
in Science Gossip in 1892. His interest in the topic never 
faded and the last scientific papers he published were 
two memoirs on the habitats of the land and freshwater mollusca in Britain. In 1912 
he was appointed professor at the University of Manchester. His colleagues 
expected the professor to display a practical interest in the application of pathology 
to the everyday problems of clinical work. Boycott would not accept this view. He 
mainained that a professor must devote all his energies to the advancement of 
science, and that the application of laboratory methods to clinical medicine was not 

                                                                 
118 Davis, R. H., & Acrivos, A. (1985). Sedimentation of noncolloidal particles at low Reynolds 
numbers. Annual Review of Fluid Mechanics, 17(1), 91-118 and Xu, Z. J., & Michaelides, E. E. 
(2005). A numerical simulation of the Boycott effect. Chem. Eng. Comm., 192(4), 532-549. 
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part of his duty. His uncompromised attitude was resented by his medical colleagues 
and rendered his tenure of the chair less happy than it should have been. As he grew 
older, Boycott arrived at the conclusion that it would be better for the progress of 
science if its workers spent less time piling up fresh facts and more in the 
contemplation of the implication of those already discovered. 

When gravity forces are larger than thermodynamic forces 

For hindered settling, assuming smooth initial conditions119 i.e. 𝜙𝜙𝑆𝑆(𝑑𝑑, 0) = 𝜙𝜙0 and 
𝜙𝜙𝑆𝑆(ℎ, 𝑡𝑡) = 0 (where the characteristic length ℎ represents the height of the column) 
and negligible thermodynamic forces, one can assume that the front’s speed is 
constant. When the thermodynamic force is negligible compared to the gravitational 
force, one has 𝑃𝑃𝑅𝑅 = 𝑣𝑣0ℎ/𝑑𝑑0 = ℎ/𝑙𝑙𝑔𝑔 ≫ 1. Noting that the hindered settling relation 
can be written: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕(𝑡𝑡𝑣𝑣0/ℎ) −

𝜕𝜕
𝜕𝜕(𝑑𝑑/ℎ)

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)] =
𝑑𝑑0
𝑣𝑣0ℎ

𝜕𝜕
𝜕𝜕(𝑑𝑑/ℎ) �𝑓𝑓(𝜙𝜙𝑆𝑆)

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕(𝑑𝑑/ℎ) � 

we introduce the dimensionless variables : 

𝑑𝑑∗ = 𝑑𝑑/ℎ     ;      𝑡𝑡∗ = 𝑡𝑡 ∙ 𝑣𝑣0/ℎ     

and therefore the equation becomes: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡∗

−
𝜕𝜕
𝜕𝜕𝑑𝑑∗

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)] =
1
𝑃𝑃𝑅𝑅

𝜕𝜕
𝜕𝜕𝑑𝑑∗

�𝑓𝑓(𝜙𝜙𝑆𝑆)
𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]

𝜕𝜕𝑑𝑑∗
� 

For large Pe the hindered settling equation reduces to: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

− 𝑣𝑣0
𝜕𝜕
𝜕𝜕𝑑𝑑

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)] = 0 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

− 𝑣𝑣0
𝑑𝑑
𝑑𝑑𝜙𝜙𝑆𝑆

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

= 0 

This equation can be solved with the method of characteristics (see Chapter 10 for 
details about this method)  and leads to: 

𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡) = 𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡) 

                                                                 
119 Buzzaccaro, S., Tripodi, A., Rusconi, R., Vigolo, D., & Piazza, R. (2008). Kinetics of 
sedimentation in colloidal suspensions. Journal of Physics: Condensed Matter, 20(49), 
494219. See also Russel W B, Saville D A and Schowalter W R 1992 Colloidal Dispersions 
(Cambridge: Cambridge University Press), chapter 12.  
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with 

𝑣𝑣 = 𝑣𝑣0
𝑑𝑑
𝑑𝑑𝜙𝜙𝑆𝑆

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)] 

Consequently, in the hindered settling region, 𝜙𝜙𝑆𝑆 is constant along the curves with 
slopes 𝑑𝑑𝑑𝑑/𝑑𝑑𝑡𝑡 = 𝑣𝑣. 

Substituting 𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡) = 𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡) in the full hindered settling equation and 
integrating from z to infinity yields: 

�
𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑑𝑑

∞

𝑧𝑧
− 𝑣𝑣0 �

𝜕𝜕
𝜕𝜕𝑑𝑑

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)]𝑑𝑑𝑑𝑑
∞

𝑧𝑧
= 𝑑𝑑0 �

𝜕𝜕
𝜕𝜕𝑑𝑑
�𝑓𝑓(𝜙𝜙𝑆𝑆)

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝑑𝑑

� 𝑑𝑑𝑑𝑑
∞

𝑧𝑧
 

�
𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑑𝑑

∞

𝑧𝑧
− 𝑣𝑣0𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆) = 𝑑𝑑0𝑓𝑓(𝜙𝜙𝑆𝑆)

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝑑𝑑

 

We find that: 

�
𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑑𝑑

∞

𝑧𝑧
= �

𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡)
𝜕𝜕(𝑑𝑑 + 𝑣𝑣𝑡𝑡)

𝜕𝜕(𝑑𝑑 + 𝑣𝑣𝑡𝑡)
𝜕𝜕𝑡𝑡

𝑑𝑑(𝑑𝑑 + 𝑣𝑣𝑡𝑡)
∞

(𝑧𝑧+𝑣𝑣𝑡𝑡)
= 𝑣𝑣𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡) 

Therefore: 

[𝑣𝑣 − 𝑣𝑣0𝑓𝑓(𝜙𝜙𝑆𝑆)]𝜙𝜙𝑆𝑆 = 𝑑𝑑0𝑓𝑓(𝜙𝜙𝑆𝑆)
𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]

𝜕𝜕𝑑𝑑
 

At the water/suspension interface, 𝜙𝜙𝑆𝑆 = 𝜙𝜙0 and the right-hand side of the equation 
is equal to zero. This implies that we then have: 

𝑣𝑣 = 𝑣𝑣0𝑓𝑓(𝜙𝜙0) 

This steady-state, time-independent velocity is a direct consequence of the 
dependence of the settling velocity on particle concentration. As 𝑣𝑣 is a 
monotonically decreasing  function of 𝜙𝜙𝑆𝑆 the particles “left behind” by diffusion will 
sediment faster (with a velocity 𝑣𝑣0) and catch up with the front region of the settling 
profile which settles with a velocity 𝑣𝑣 < 𝑣𝑣0. This front therefore self-sharpens. 
Eventually, this leads to a time-invariant shape, dictated by the balance between 
settling and diffusion and settling at the uniform speed 𝑣𝑣. In practice, depending on 
the size of the column, the time-invariant state might or not be reached as the gelling 
point might or not be reached before the steady-state is established. The initial 
concentration is also a variable: for a very dilute system for instance, the stationary 
profile is uniform in the whole column since then all particles settle with the same 
velocity 𝑣𝑣0. 
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A similar reasoning enables to find the settling velocity of the suspension/bed 
interface: this time the integral should be done from 0 to z. We then also assume 
that the settled colloidal particles that form the bed ensure that the bed has a 
constant volume fraction 𝜙𝜙𝑚𝑚. We get: 

�
𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑑𝑑

𝑧𝑧

0
− 𝑣𝑣0[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆) − 𝜙𝜙𝑚𝑚𝑓𝑓(𝜙𝜙𝑚𝑚)] = 𝑑𝑑0𝑓𝑓(𝜙𝜙𝑆𝑆)

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝑑𝑑

 

with  

�
𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑑𝑑

𝑧𝑧

0
= �

𝜕𝜕𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡)
𝜕𝜕(𝑑𝑑 + 𝑣𝑣𝑡𝑡)

𝜕𝜕(𝑑𝑑 + 𝑣𝑣𝑡𝑡)
𝜕𝜕𝑡𝑡

𝑑𝑑(𝑑𝑑 + 𝑣𝑣𝑡𝑡)
(𝑧𝑧+𝑣𝑣𝑡𝑡)

𝑣𝑣𝑡𝑡
= 𝑣𝑣[𝜙𝜙𝑆𝑆(𝑑𝑑 + 𝑣𝑣𝑡𝑡) − 𝜙𝜙𝑚𝑚] 

Noting that 𝑓𝑓(𝜙𝜙𝑚𝑚) = 0 as the colloidal particles in the bed do not settle (they are 
hard spheres in contact) and that 𝜙𝜙𝑆𝑆 = 𝜙𝜙0 at the suspension/bed interface as in the 
hindered settling phase all the particles move with the same average speed, and 
therefore the volume fraction is equal to the initial volume fraction, we get the 
velocity of the suspension/bed interface: 

𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒 = 𝑣𝑣0
𝜙𝜙0𝑓𝑓(𝜙𝜙0)
𝜙𝜙0 − 𝜙𝜙𝑚𝑚

 

We here expressed the absolute values of the velocities. As we have taken z = 0 at 
the bottom of the column, 𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒  is oriented along the z-axis unit vector, whereas 𝑣𝑣 is 
antiparallel to it. 

Finding the hindered settling function 𝒇𝒇(𝝓𝝓𝑺𝑺) from the equilibrium profile  

The equation we found for the water/suspension interface velocity 

[𝑣𝑣 − 𝑣𝑣0𝑓𝑓(𝜙𝜙𝑆𝑆)]𝜙𝜙𝑆𝑆 = 𝑑𝑑0𝑓𝑓(𝜙𝜙𝑆𝑆)
𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]

𝜕𝜕𝑑𝑑
 

can be rearranged into: 

𝑓𝑓(𝜙𝜙𝑆𝑆)
𝑓𝑓(𝜙𝜙0) = �1 + 𝑙𝑙𝑔𝑔

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝑑𝑑

1
𝜙𝜙𝑆𝑆
�
−1

 

where we used the fact that 𝑣𝑣 = 𝑣𝑣0𝑓𝑓(𝜙𝜙0)  for the interface. Particularly interesting 
from an experimental point of view is that this equation enables to extract extensive 
dynamic information, i.e. the settling behaviour function 𝑓𝑓(𝜙𝜙𝑆𝑆) from a single static 
measurement of the equilibrium settling profile for a concentrated suspension. The 
alternative would be to measure the sedimentation velocity as function of 𝜙𝜙𝑆𝑆 which 
are measurements that require careful temperature control to avoid fluctuations in 
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the solvent viscosity. The right-hand-side of the equation contains variables that are 
directly measureable from the settling profile and the equilibrium measurements as 
we are going to discuss now. 

First, we show the measurement results on the settling of a suspension (0.23 volume 
fraction) of spherical monodisperse (non-aggregated) colloidal particles of size 77 
nm made of MFA (a copolymer). Their density is high, which enables a better 
accuracy in particle volume fraction determination by density measurements. 
Electrostatic interactions were minimized by the addition of salt. Strong electrostatic 
interactions would minimize the settling, as discussed in Chapter 2, case (B).  

 

Left: stationary settling profile close to the water/suspension interface for a suspension of 
colloidal hard spheres with 𝜙𝜙0 = 0.23. The measurement is done after the time-invariant 
shape is reached. (Note that the bulk volume fraction is still 0.23 close to the interface). 

Right: semilog plot of the low volume fraction region. The profile is barometric close to 𝜙𝜙𝑆𝑆 =
0. The slope (full line) of the data points give 𝑙𝑙𝑔𝑔

𝑒𝑒𝑥𝑥𝑒𝑒 (defined underneath) which is sensibly 
larger than 𝑙𝑙𝑔𝑔 (dashed line) 
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Equilibrium sedimentation profile for the same suspension of colloidal hard spheres. The 
barometric profile just at the sediment/water interface (between 5 and 6 mm) is similar to 

the previous figure. 

Dynamic gravitational length 

In the region around the water/suspension interface, see the stationary settling 
profile, one has 𝜙𝜙𝑆𝑆 ≪ 𝜙𝜙0 and 𝑍𝑍(𝜙𝜙𝑆𝑆) = 𝑓𝑓(𝜙𝜙𝑆𝑆) = 1. The hindered settling relation 
becomes: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

=
𝑣𝑣0
𝑑𝑑0

[𝑓𝑓(𝜙𝜙0) − 1]𝜙𝜙𝑆𝑆 =
−𝜙𝜙𝑆𝑆
𝑙𝑙𝑔𝑔
𝑒𝑒𝑥𝑥𝑒𝑒  

where we have defined a dynamic gravitational length: 

𝑙𝑙𝑔𝑔
𝑒𝑒𝑥𝑥𝑒𝑒 =

𝑙𝑙𝑔𝑔
1 − 𝑓𝑓(𝜙𝜙0) 

Therefore the top part of the settling profile still has an exponential (barometric) 
shape but with a length 𝑙𝑙𝑔𝑔

𝑒𝑒𝑥𝑥𝑒𝑒 > 𝑙𝑙𝑔𝑔 since 𝑓𝑓(𝜙𝜙0) < 1. The smaller 𝜙𝜙0 the closer 𝑓𝑓(𝜙𝜙0) 
comes to 1. In the limit of very dilute suspensions, 𝑙𝑙𝑔𝑔

𝑒𝑒𝑥𝑥𝑒𝑒 therefore goes to infinity, 
implying that all particles settle according to Stokes, as expected. 

The osmotic pressure can be obtained from the equilibrium sedimentation profile. 
We have shown earlier that at equilibrium: 

𝜕𝜕Π
𝜕𝜕𝑑𝑑

= (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

Integrating this equation gives: 

Π(z) = (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔� 𝜙𝜙𝑆𝑆(𝑑𝑑)𝑑𝑑𝑑𝑑
∞

𝑧𝑧
 

From this integration, the compressibility factor 𝑍𝑍�𝜙𝜙𝑆𝑆(𝑑𝑑)� can be evaluated using: 

Π(𝑑𝑑) = 𝜕𝜕(𝑑𝑑)𝑘𝑘𝐵𝐵𝑇𝑇 ∙ 𝑍𝑍�𝜙𝜙𝑆𝑆(𝑑𝑑)� 

We recall that 𝜕𝜕(𝑑𝑑) = 𝜙𝜙𝑆𝑆(𝑑𝑑)/𝑉𝑉𝑝𝑝. As we have seen, 𝑓𝑓(𝜙𝜙𝑆𝑆) is a function of 𝑓𝑓(𝜙𝜙0), 𝑙𝑙𝑔𝑔, 
𝜙𝜙𝑆𝑆(𝑑𝑑)  and 𝑍𝑍(𝜙𝜙𝑆𝑆). For each 𝜙𝜙𝑆𝑆(𝑑𝑑) one can estimate these required variables and 
therefore obtain 𝑓𝑓(𝜙𝜙𝑆𝑆) for 𝜙𝜙𝑆𝑆 ≤ 𝜙𝜙0. 
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Left: hydrodynamic factor obtained from the stationary settling profile given above. Right: 
the osmotic pressure is obtained by integrating the equilibrium sedimentation profile.  

Numerical solution for sedimentation of an initially uniform suspension 

We here give a simple example of the numerical solution of  

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

− 𝑣𝑣0
𝜕𝜕
𝜕𝜕𝑑𝑑

[𝜙𝜙𝑆𝑆𝑓𝑓(𝜙𝜙𝑆𝑆)] = 𝑑𝑑0
𝜕𝜕
𝜕𝜕𝑑𝑑
�𝑓𝑓(𝜙𝜙𝑆𝑆)

𝜕𝜕[𝜙𝜙𝑆𝑆𝑍𝑍(𝜙𝜙𝑆𝑆)]
𝜕𝜕𝑑𝑑

� 

where we use the Carnahan-Starling equation of state: 

𝑍𝑍(𝜙𝜙𝑆𝑆) =
1 + 𝜙𝜙𝑆𝑆 + 𝜙𝜙𝑠𝑠2 − 𝜙𝜙𝑠𝑠3

(1 − 𝜙𝜙𝑆𝑆)3  

and the Richardson and Zaki relation: 

𝑓𝑓(𝜙𝜙𝑆𝑆) = (1 − 𝜙𝜙𝑆𝑆)6 

with the boundary conditions 𝜙𝜙𝑠𝑠 = 𝜙𝜙0 at t = 0. Note that the exponent is now taken 
to be 6 for a change (earlier it was shown that 5 was a good value for the data 
presented). The exponent depends on the type of particles in suspension. There is 
no flux at the bottom and top of the column of height h. The following dimensionless 
variables are used: 

𝜏𝜏 = 𝑡𝑡
𝑑𝑑0
ℎ2

 

𝑍𝑍 = 𝑑𝑑/ℎ 

From numerical integration one obtains: 
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The volume fraction versus the distance from the bottom of the column (Z = 0) 

As can be seen from that figure, after a short time a clear fluid layer develops at the 
top of the container, while particles accumulate at the bottom. An interface at the 
top of the container is then seen to move downwards with a constant velocity until 
it meets the sediment that is formed at the bottom. From then on the sediment 
compacts relatively slowly until the sedimentation-diffusion equilibrium is reached.  

Illustrations 

Josiah Willard Gibbs  
https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs 

Jacobus H. van 't Hoff 
https://www.nobelprize.org/prizes/chemistry/1901/hoff/biographical/ 
https://en.wikipedia.org/wiki/Jacobus_Henricus_van_%27t_Hoff 

Burgers 
http://www.burgers.umd.edu/burgers.html 

Arthur Boycott 
https://www.npg.org.uk/collections/search/portrait/mw97885/Arthur-Edwin-Boycott 

 

 



 

 

 

 

Chapter 9 

Permeability of slurries   
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One important parameter in soil science is permeability, which quantifies the ability 
of a soil to have water (or any fluid) permeate (diffuse through) it. This property is 
not only important for agriculture but also for construction: the bottom of ponds for 
example should be impermeable to water and so are dikes which should be built 
with a soil that will ensure a good water retention. Soils are also generally made up 
of different sediment layers and soil quality varies greatly from one layer to another. 
An important variable for permeability is grain size: the coarser the grain, the more 
permeable a sediment layer is. This led to the following classification: 

 

Some estimations120 of the permeability K (m/s) and related properties 

The measurement of permeability in soils is studied in geoengineering, and then 
concerns soils where particles have formed a fabric, also called a skeleton, implying 
that the particles are touching each other in a kind of network. We will here discuss 
a part of consolidation that lays at the frontier between hydraulic and geo- 
engineering: the very early part of consolidation, which happens when a bed is 
formed by the settling of (flocculated) particles. We will show that from the time 
evolution of the interfaces (blue for the suspension/bed interface and red for the 
water/suspension interface in the figure below) important information can be 
obtained about the structure of the fabric and the permeability in particular. 

 

                                                                 
120 Sobolewski, M. (2005). Various methods of the measurement of the permeability 
coefficient in soils-possibilities and application. Electronic Journal of Polish Agricultural 
Universities. Series Civil Engineering, 8(2). 
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For illustration, we will, in this chapter, study the behaviour of a mud suspension in 
an undrained settling column. Undrained means that there is conservation of the 
total mass (water + sediment), as the fluid cannot escape the column. This condition 
can be relaxed for describing real systems by adapting the boundary conditions. 

To describe this initial stage of consolidation of soils, we will distinguish three 
different regimes: 

t < t1 : the settling regime. The particles are non-touching, and due to gravity, move 
to the bottom of the settling column. Both a suspension phase and a bed are 
observed. 

t1 < t < t2 : the primary consolidation regime. The suspension phase has disappeared. 
The particles are in very close vicinity of each other and as they adjust their position 
with respect to each other, a significant amount of water is expelled from the fabric. 

t > t2:  the secondary compression regime. The particles are trapped in their 
positions, and significant internal stresses develop at the points where the particles 
are touching. Over time, some links between particles can fail or change, leading to 
a new reordering of particles and a slow reduction in bed height. 

The terms primary consolidation and secondary compression come from soil 
mechanics, where traditionally large loads are applied to soils, and their 
compression index is studied by measuring the deformation resulting from applying 
a load. Here the “load” applied to our settling mud is gravity. The dynamics of the 
system are solely governed by gravity and the (complex) interactions between the 
moving water and the particles. A full discussion about the settling regime is given 
in Chapter 8. 

At the bed, the stresses developed between particles are extremely weak compared 
to those found in soil mechanics. The “load” felt by a particle in the bed is due to the 
weight of other particles and the water above it. To give an order of magnitude, a 1 
m high mud suspension with a density of 1200 kg m−3 generates a pressure of 
approximately 2 kPa which is 4 or 5 orders of magnitude lower than the pressures 
applied in a standard oedometer test (this test is briefly discussed at the end of 
Chapter 10). Over time, the load felt by the particles in the bed increases as the 
density of the bed increases, but it is evident that the pressures will never come in 
range with those applied in soil mechanic tests. 

Within the forming bed, the distribution of stresses will be depth-dependent, the 
particles closer to the bottom of the column experiencing higher stresses than 
particles higher up in the column. One can also argue that as soon as particles are 
touching and forming a fabric the problem becomes a 3 dimensional one as the 
stresses will be distributed in all directions. This in particular raises the question of 
dependence of the final bed height on the column diameter.  
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Observation of a settling suspension 

The careful observation of a settling suspension shows that many factors should be 
accounted for in order to get a complete description of the system. A highly cited 
article121 of Coe and Clevenger of 1916 gives an idea of the complexity of the 
consolidation process. We here give the description given by the authors in their 
article, in which they observe the settling of a pulp suspension. 

 

Settling experiment of Coe and Clevenger, done with a settling pulp 

“The first particles which reach the bottom of the cylinder are the coarser granular 
sand which may be present in the pulp. Immediately following this and somewhat 
contemporaneously with the settling of the sand, the slime flocs nearest the bottom 
settle, filling the interstitial spaces between the sand particles, and build up, one 
upon another, in a zone of increasing depth. This we term zone D, which may be 
defined as that portion of pulp wherein the flocs, considered as integral bodies, have 
settled to a point where they rest directly one upon another. After pulp enters zone 
D, further separation of liquid must come through liquid pressed out of the flocs and 
out of the interstitial spaces between the flocs. Immediately above zone D is a 
transition zone C. The pulp in zone C decreases in percentage of solids from the 
bottom, where the flocs enter zone D, to the top, where the consistency of the 
flocculated pulp is the same as the original pulp. In speaking of flocculated pulp, it is 
intended to eliminate from consideration the coarser portion of the contained sand 
which falls directly through the overlying zones into zone D. Above zone C is zone B, 
of constant consistency of flocculated pulp and of the same consistency as the 
flocculated pulp in the feed pulp. Zone A, overlying zone B, is clear water or solution. 
In the case of a very rapidly settling time, particularly with material which has been 
roasted, zone A in the earlier stages may be turbid, due to the finely divided matter 
remaining in suspension. Later, this very fine material settles and the liquid becomes 

                                                                 
121 Coe, H. S. "Methods for determining the capacities of slime settling tanks." Transactions 
American Institute of Mining Engineerring 55 (1916). 



Chapter 9 Permeability of slurries 

 237 

clear, although there are cases, especially when the liquid contains very little 
electrolyte, where it remains turbid for a long time. […] 

 

Schematic representation of a column filled with a suspension with high concentration (high 
volume fraction). 

We designate as free settling pulp all of the pulp in zones B and C, wherein the sand 
and flocs are falling freely through the liquid without pressing on the layers of flocs 
beneath, although it is evident, from the peculiar interlocking structure of flocculated 
pulp, that there are points of contact between the flocs even in these zones. We 
designate as Critical Settling Point the top of zone D just as zone C disappears. At 
this point the flocs at the surface just rest upon each other, but compression has not 
yet commenced in the surface layer. It is therefore obvious that any elimination of 
liquid from zone D cannot be accomplished by free settling but must be effected by 
compression of flocs. The water liberated by compression finds its way out of zone D 
through tubes or channels which form drainage systems upward through the zone. 
The trunk channel for any system has its outlet at the top of zone D. Since zone B is 
made of flocculated pulp of constant consistency, the flocs in this zone will settle at 
a constant rate so long as the zone exists. If zone C remains shallow and of constant 
depth, the liquid being expelled from zone D may be ejected through zone C with 
little admixture with this zone. This upward current of liquid which has diffused 
through zone B during the first stages of settling may also be ejected through zone 
B when B becomes very shallow, and thereby considerably increase the apparent 
settling rate of the pulp at this stage. This does not indicate that during this period 
more pulp passes into zone D. It is merely a surface phenomenon, indicating that 
zone C is very shallow. A curve plotted from the results of a settling test such as is 
illustrated in the figure will show a constant settling rate throughout the stages 
represented in E, F and G, an increased rate when the stage shown in H is reached, 
followed by a rapid retardation in the settling rate after zone B disappears, until zone 
C has also disappeared. Following this is a very slow rate of settling which gradually 
becomes slower as the water is compressed from zone D. The final stage of settling 
is reached when no further liquid is expelled from zone D by compression.” 
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We are now going to set-up the set of equations required to find the evolution of 
the water/suspension and the suspension/bed interfaces as function of time. We 
will consider the case where there is no sand inside the mud suspension and 
therefore zone D contains only flocs that are so compressed that water can barely 
escape from the fabric. We make no distinction between zone C and D. 

Link between settling and consolidation 

First, we have to understand the role of pressure and stresses in the observed 
behaviour. We will start by deriving a Darcy-like equation for settling particles. In the 
previous chapter, we have already found a set of equations to be solved for the 
settling of colloidal particles. In this chapter, we will make the link between the 
formulation found in Chapter 8 and the formulation for settling and consolidation 
we are going to derive. 

First, we will recall the traditional Darcy equation for porous media, and then we 
will show how this equation can be adapted for settling particles. 

The Darcy equation 

 

Water, under a pressure gradient ∇P, is forced into a porous medium (for instance a 
sandstone, which is used often as a reference stone in petroleum industry). The flux of water 

𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 (m/s) coming out of the stone is measured. 

The Darcy equation links the flux of water that passes through a porous stone to the 
pressure gradient ∇P that is applied to push the water. It is given by: 

𝑱𝑱𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 =
−𝑘𝑘
𝜂𝜂
𝛁𝛁P 

where k (m2) is the permeability and 𝜂𝜂 the viscosity. We have given here the general 
Darcy equation in terms of vectors (bold notation). The scalar 𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏  expresses the 
fact that the flux of the water (subscript w) is defined in the frame of reference of 
the laboratory (lab).  

The gradient in pressure is a vector that is opposite to the vector of the water flow, 
as the flow of water goes from regions of high pressure to regions of low pressure. 
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To ensure that we have k > 0 we have a minus sign in front of k. In the following we 
will consider only unidirectional flows. For that reason, we will drop the vector 
notation for convenience. 

The flux 𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏  represents a macroscopic flux and is defined as the volume of water 
exiting the porous media per unit of surface. Its units are therefore (m3/s)/m2= m/s. 
It can be linked to the microscopic flux of water 𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 that flows inside the stone 
pores by realising that:  

𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 =
𝑑𝑑𝑉𝑉𝑤𝑤
𝑑𝑑𝑉𝑉

𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝜙𝜙𝑤𝑤𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 = (1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏  

where 𝑑𝑑𝑉𝑉𝑤𝑤  is the small element of volume of water at a position z (we use z as we 
are going to discuss the case where the flow is vertical in the next section). The total 
small element of volume at position z is given by:  𝑑𝑑𝑉𝑉 = 𝑑𝑑𝑉𝑉𝑤𝑤 + 𝑑𝑑𝑉𝑉𝑠𝑠  where 𝑑𝑑𝑉𝑉𝑠𝑠  is the 
small element of volume of soil (or solids) at z.  

Definitions : volume fraction, porosity and void ratio 

In this chapter we have chosen to use 
the volume fraction of soil as the 
relevant variable of the system. The 
reason is that this is the common 
variable in colloid science. In other 
fields of research, and engineering in 
particular, different variables are 
preferred which we give here. All the 
equations given in this chapter can 

therefore be re-written as function of any of these variables. 

We define 𝑉𝑉𝑠𝑠 as the total volume of the soil particles, 𝑉𝑉𝑝𝑝 as the total volume of the 
pores (the voids filled with water) and 𝑉𝑉 as the total volume of the matrix (soil + 
pores): 𝑉𝑉 = 𝑉𝑉𝑠𝑠 + 𝑉𝑉𝑝𝑝  

The volume fraction 𝜙𝜙𝑆𝑆 of the soil is defined by: 

𝜙𝜙𝑆𝑆 =
𝑉𝑉𝑠𝑠
𝑉𝑉

 

The porosity 𝜙𝜙 (also called void fraction) is defined by: 

𝜙𝜙 =
𝑉𝑉𝑝𝑝
𝑉𝑉

 

The void ratio 𝑅𝑅 is defined by: 
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𝑅𝑅 =
𝑉𝑉𝑝𝑝
𝑉𝑉𝑠𝑠

 

The relation between these variables is given by: 

𝜙𝜙𝑆𝑆 + 𝜙𝜙 = 1   ;    𝜙𝜙 = 𝑅𝑅/(1 + 𝑅𝑅)   ;   𝜙𝜙𝑆𝑆 = 1/(1 + 𝑅𝑅)   ;   𝑅𝑅 = 𝜙𝜙/(1 − 𝜙𝜙) 

Theoretically the porosity and volume fractions can vary between 0 and 1. The void 
ratio, on the other hand, can vary between zero (for 𝜙𝜙 = 0) and infinity (for 𝜙𝜙 = 1). 

The volume fraction is usually determined from the mass fraction (amount of dry 
mass of soil present in the water). The dry mass of soil of a sample can be estimated 
from drying the sample in an oven at 105°C for several hours. The density of a clay 
gives the relation between mass and volume.  

The size of the voids in a soil can be estimated by mercury intrusion and nitrogen 
desorption techniques.  

Mercury is a non-wetting fluid and when it is injected at a measured pressure into a 
material the pore size can be estimated based on the relation (Washburn’s 
equation) between pressure and pore size: the pressure difference is inversely 
proportional to pore size.  

Nitrogen is a non-corrosive gas that can be used to determine the specific surface 
area of the pores, where the BET (Brunauer – Emmett – Teller) theory is used to 
quantify the adsorption of the gas molecules on the solid surfaces. The BET theory 
is an extension for polylayers of the monolayer Langmuir theory for the adsorption 
of molecules. 

In a similar way, we can define the volume fraction of water by: 

𝜙𝜙𝑤𝑤 =
𝑉𝑉𝑤𝑤
𝑉𝑉

 

We recall that in the relation above we have defined: 

𝜙𝜙𝑤𝑤 =
𝑑𝑑𝑉𝑉𝑤𝑤
𝑑𝑑𝑉𝑉

 

There is no contradiction in these definitions. The first one is a general one: the 
volume fraction of water in a given system is the ratio between the volume of water 
present and the total volume. The second definition is more specific: the volume 
ratio at a given position z is the ratio between the small volume of water at z and the 
small total volume at z. To emphasize that the second relation is at a given z, we 
could write: 
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𝜙𝜙𝑤𝑤(𝑑𝑑) =
𝑑𝑑𝑉𝑉𝑤𝑤
𝑑𝑑𝑉𝑉

 

The flux of water can also be expressed in the rest frame of the particles. If the 
particles are not moving, they are at rest in the laboratory frame their velocity is zero 
and therefore: 

𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 

From which we deduce: 

𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝑣𝑣𝑤𝑤/𝑠𝑠 + 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝑣𝑣𝑤𝑤/𝑠𝑠  

where 𝑣𝑣𝑤𝑤/𝑠𝑠 is the velocity of water inside the pores in the frame of reference of the 
soil (s). The relation between the macroscopic water flux coming out of the porous 
media (measured in the reference frame of the laboratory) can now be expressed as 
function of the water flux in the reference frame of the particles as: 

𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 = (1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 =
−𝑘𝑘
𝜂𝜂
∇P 

where 𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏  is the macroscopic velocity of the fluid (m/s), 𝑘𝑘 the permeability (m2).  

A Darcy equation for settling particles 

We want to write a similar relation, but now in the case that the particles are moving 
(settling) in a column. We do this by setting-up a thought experiment. This is 
illustrated by the picture opposite. The left figure depicts, in the frame of the 
laboratory, what is happening during settling: both water and particles are moving 

with velocities that we define as 𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 
and 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  respectively. On the right figure 
(our thought experiment), we have applied 
a (fictive) macroscopic counter flow 
−𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  generated by a (not yet defined) 
pressure gradient ∇P∗.  In that case, the 
new velocities of water and particles 
𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏
∗  and 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏

∗  become: 

𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏
∗ = 𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 − 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝑣𝑣𝑤𝑤/𝑠𝑠 

𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏
∗ = 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 − 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 
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We are now satisfying Darcy conditions, as only water is moving and particles are 
immobile. We can therefore write: 

𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏
∗ = −𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 =

−𝑘𝑘
𝜂𝜂
∇P∗ 

In a next step, we would like to express 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  (which is both the microscopic velocity 
of the settling particles and the minus the macroscopic flow 𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏

∗  applied in the 
mind experiment) as function of 𝑣𝑣𝑤𝑤/𝑠𝑠, i.e. the microscopic velocity of the water in 
the frame of the particles. We make the hypothesis that there is not net volume flux 
in the settling column (this implies that no water or soil is entering or leaving the 
column during the experiment122). This condition imposes that the volume flux of 
water should be minus the volume  flux of soil at any height z: 

𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 = −𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  

Using the same lines of derivation as above, we have: 

𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 

which leads to: 

 (1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 

This equation can further be developed into: 

(1 − 𝜙𝜙𝑆𝑆)(𝑣𝑣𝑤𝑤/𝑠𝑠 + 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏) + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 0 

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 = −𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  

The relation between the macroscopic water flux inside the column in the mind 
experiment and the macroscopic one in the real experiment is given by: 

 𝐽𝐽𝑤𝑤/𝑠𝑠 = (1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 = 𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏
∗  

Note the difference between the fluxes: one is in the frame of reference of the 
laboratory, the other in the frame of reference of the soil. Using the Darcy equation 
obtained for 𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏

∗  we now obtain a modified Darcy equation for settling particles 
in an undrained column: 

                                                                 
122 Usually one speaks of an undrained system: in most experimental cases (also in-situ) the 
question is whereas water is leaving or not the system, either by seepage at the bottom of 
the column, or by evaporation at the top. The soil concentration is not varying in typical 
experiments. 
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𝐽𝐽𝑤𝑤/𝑠𝑠 =
−𝑘𝑘
𝜂𝜂
∇P∗ 

The question remains so as to properly define ∇P∗. We have said that it is the 
pressure gradient necessary to generate the (fictive) counter flow −𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  in the case 
of our mind experiment. Conversely, it can be seen as minus the pressure gradient 
created by the settling of the particles in the real experiment. Note that ∇P∗ is a 
macroscopic pressure difference, generating the macroscopic fluid velocity 𝐽𝐽𝑤𝑤/𝑠𝑠. 
Other relations could be set-up to express the microscopic fluid flow 𝑣𝑣𝑤𝑤/𝑠𝑠  and 
microscopic pressure gradients could then be defined, acting within the pores of the 
fabric. These relations are beyond our present scope. We are now going to discuss 
more into details the form of ∇P∗. 

Pressure gradient 

In Darcy experiments, a pressure difference is applied across the sample and the 
water flux is measured. The pressure gradient can then be defined as: 

∇P =
∆P
𝐿𝐿

 

where ∆P is the pressure difference between one end and the other of the sample, 
in the direction of the water flow, and 𝐿𝐿 is the length of that section of sample. In 
the case of settling particles in an undrained column, no external pressure is applied. 
There is the hydrostatic pressure, due to gravity: 

Pℎ𝑥𝑥𝑒𝑒(𝑑𝑑) = 𝑣𝑣𝑤𝑤𝑔𝑔(ℎ − 𝑑𝑑) + 𝑃𝑃0 

where 𝑣𝑣𝑤𝑤  is the density of water, 𝑔𝑔 is the gravitational acceleration, ℎ is the height 
of the liquid in the column, 𝑑𝑑 = 0 is the position at the bottom of the column and 𝑃𝑃0 
is the atmospheric pressure. This hydrostatic pressure does not contribute to 𝐽𝐽𝑤𝑤/𝑠𝑠. 
It is easy to convince oneself of this fact: let’s assume that the column is filled by a 
porous media such as a rock or a pile of glass beads. The fabric is not moving, and 
neither is the water, even though a hydrostatic pressure is present. 

There is however another pressure borne by the water and caused by the settling of 
the particles. We define P𝑤𝑤 as the total pressure borne by the water. In order to 
express P𝑤𝑤 we will use the concept of stress. We recall that: 

Pressure is a force applied perpendicular to a surface per unit area. 

Stress is a force per unit of surface, not necessarily perpendicular to that surface. 
Stress can arise from the internal forces that neighbouring particles exert on each 
other: stress might therefore exist in the absence of external forces. 
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Strain is the measure of the deformation of a material related to a stress. It has no 
dimension. For instance it can be the difference between the length of a bar before 
and after applying a stress, divided by the length of the bar (before or after applying 
the stress). Stress can exist in a system without noticeable strain. 

In the case of a column of soil, fully saturated with water, the stress in the vertical 
direction is defined by: 

σ𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑤𝑤 + σ𝑠𝑠𝑘𝑘   

where σ𝑠𝑠𝑘𝑘  is the stress associated to the skeleton.  In order to get a better 
understanding of σ𝑧𝑧𝑧𝑧 let us  first consider the case where the particles are not 
settling (a rock saturated with water for instance) with everywhere the same volume 
fraction 𝜙𝜙𝑆𝑆 . We then have hydrostatic conditions (the water is not moving) and 
hence: 

P𝑤𝑤(𝑑𝑑) = Pℎ𝑥𝑥𝑒𝑒(𝑑𝑑) 

We then also have: 

σ𝑧𝑧𝑧𝑧(𝑑𝑑) = 𝑣𝑣𝑔𝑔(ℎ − 𝑑𝑑) + 𝑃𝑃0 

with 

𝑣𝑣 = (1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠 

where 𝑣𝑣 is the density of the sample (water + soil) and 𝑣𝑣𝑠𝑠 is the density of the soil 
itself. Recombining the equations, we find: 

σ𝑠𝑠𝑘𝑘(𝑑𝑑) = (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔(ℎ − 𝑑𝑑)𝜙𝜙𝑆𝑆 

If the soil and the water have the same density (𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑤𝑤), we get σ𝑠𝑠𝑘𝑘 = 0 and the 
total vertical stress is the same as the one given by a column full of water: 

σ𝑧𝑧𝑧𝑧(𝑑𝑑) = 𝑣𝑣𝑤𝑤𝑔𝑔(ℎ − 𝑑𝑑) + 𝑃𝑃0 

which is expected. In the other limit, when the column is only filled with soil (no 
water), we have 𝜙𝜙𝑆𝑆 = 1 and: 

σ𝑧𝑧𝑧𝑧(𝑑𝑑) = 𝑣𝑣𝑠𝑠𝑔𝑔(ℎ − 𝑑𝑑) + 𝑃𝑃0 

In that case σ𝑧𝑧𝑧𝑧 = σ𝑠𝑠𝑘𝑘  as one can consider that 𝑃𝑃𝑤𝑤 = 0 since there is no water. In 
the case of settling particles in a column (the water is moving), we now have 
 P𝑤𝑤(𝑑𝑑) ≠ Pℎ𝑥𝑥𝑒𝑒(𝑑𝑑) and the pressure P∗ we are looking for in order to define the 
pressure gradient can be defined as: 
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P∗(𝑑𝑑) = P𝑒𝑒(z) = P𝑤𝑤(𝑑𝑑) − Pℎ𝑥𝑥𝑒𝑒(𝑑𝑑) 

This pressure is called the excess pore pressure and is usually noted P𝑒𝑒. In 
hydrostatic conditions, we have already discussed that P𝑤𝑤 = Pℎ𝑥𝑥𝑒𝑒  and therefore 
P𝑒𝑒 = 0. 

It is important to realize that the excess pore pressure is solely generated by the 
settling velocity of the particles. Due to their slow motion, stresses caused by vertical 
accelerations are not considered. The excess pore pressure is the pressure leading 
to the water flow 𝑣𝑣𝑤𝑤/𝑠𝑠. 

We have: 

∇P𝑒𝑒 = ∇P𝑤𝑤 − ∇Pℎ𝑥𝑥𝑒𝑒  

Using the definition σ𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑤𝑤 + σ𝑠𝑠𝑘𝑘  we get: 

∇P𝑒𝑒 = ∇(σ𝑧𝑧𝑧𝑧 − σ𝑠𝑠𝑘𝑘) − ∇Pℎ𝑥𝑥𝑒𝑒  

In order to estimate σ𝑧𝑧𝑧𝑧 we make the hypothesis that the consolidation is slow and 
that we have nearly hydrostatic conditions (fluid accelerations are neglected): 

𝑑𝑑σ𝑧𝑧𝑧𝑧(𝑑𝑑) = −��1 − 𝜙𝜙𝑆𝑆(𝑑𝑑)�𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆(𝑑𝑑)𝑣𝑣𝑠𝑠�𝑔𝑔𝑑𝑑𝑑𝑑 

We find: 

𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

= 𝑣𝑣𝑤𝑤𝑔𝑔 +
𝜕𝜕σ𝑧𝑧𝑧𝑧
𝜕𝜕𝑑𝑑

−
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

 

Leading to: 

−
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

=
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

The Gibson equation 

The Gibson equation gives the changes of volume fraction 𝜙𝜙𝑆𝑆 as function of time and 
space. The solution of this equation is used to fit the consolidation data and obtain 
relevant parameters for the system, one of which being the permeability. We will 
now set-up this equation by combining the Darcy equation for settling particles and 
the continuity equation. 

The continuity equation imposes that mass is conserved. This can be written like: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

+
𝜕𝜕�𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏𝜙𝜙𝑆𝑆�

𝜕𝜕𝑑𝑑
= 0 



Introduction to Colloid Science 

 246 

General derivation of the continuity equation 

In order to derive the continuity equation, one has to put in equation the following 
observation: conservation of mass (a very fundamental principle, that only breaks 
down when one studies nuclear reactions) requires that no mass can be lost or 
gained from a small volume element. Let us first define mass as: 

𝑚𝑚 = 𝑣𝑣𝑉𝑉 

where 𝑣𝑣 is the density of the medium and 𝑉𝑉 symbolizes the (small) volume 
considered which has a (small) mass 𝑚𝑚. We now consider a small volume element 𝑉𝑉 
(symbolized by the red cylinder underneath), through which a fluid is moving in the 
𝑥𝑥 -direction and we define the change of mass inside this volume as function of time 
as: 

𝑑𝑑𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑒𝑒 −𝑚𝑚𝑏𝑏𝑜𝑜𝑡𝑡 

Both the entering (“in”) and exiting (“out”) mass are defined as 𝑚𝑚𝑘𝑘 = 𝑣𝑣 ∙ 𝑉𝑉𝑘𝑘  where 
the volumes 𝑉𝑉𝑘𝑘  are defined in grey in the figure and 𝑘𝑘 stands for “in” or “out”. 

 

The velocity of the fluid is given by 𝑣𝑣. We get:  

𝑑𝑑𝑚𝑚 = 𝑣𝑣(𝑥𝑥) ∙ 𝑣𝑣(𝑥𝑥) ∙ 𝑑𝑑𝑆𝑆 ∙ 𝑑𝑑𝑡𝑡 − 𝑣𝑣(𝑥𝑥 + 𝑑𝑑𝑥𝑥) ∙ 𝑣𝑣(𝑥𝑥 + 𝑑𝑑𝑥𝑥) ∙ 𝑑𝑑𝑆𝑆 ∙ 𝑑𝑑𝑡𝑡 

𝑑𝑑𝑚𝑚 = −
𝑑𝑑[𝑣𝑣(𝑥𝑥) ∙ 𝑣𝑣(𝑥𝑥)]

𝑑𝑑𝑥𝑥
∙ 𝑑𝑑𝑆𝑆 ∙ 𝑑𝑑𝑥𝑥 ∙ 𝑑𝑑𝑡𝑡 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡

= −
𝑑𝑑[𝑣𝑣(𝑥𝑥) ∙ 𝑣𝑣(𝑥𝑥)]

𝑑𝑑𝑥𝑥
∙ 𝑑𝑑𝑉𝑉 

The same reasoning can be made if the fluid would move in the other directions 
(𝑑𝑑, 𝑑𝑑) as well. If we add all the mass differences from all directions, we get: 

𝑑𝑑(𝑚𝑚𝜕𝜕 + 𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑧𝑧)
𝑑𝑑𝑡𝑡

= −�
𝑑𝑑(𝑣𝑣 ∙ 𝑣𝑣𝜕𝜕)

𝑑𝑑𝑥𝑥
+
𝑑𝑑�𝑣𝑣 ∙ 𝑣𝑣𝑥𝑥�

𝑑𝑑𝑑𝑑
+
𝑑𝑑(𝑣𝑣 ∙ 𝑣𝑣𝑧𝑧)

𝑑𝑑𝑑𝑑
� ∙ 𝑑𝑑𝑉𝑉 

In the illustration we have taken 𝑑𝑑𝑆𝑆 to be circular. This is not a requirement. The 
only assumption that is needed is that the velocity vector should always be taken 
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perpendicular to the surface (if it is not, only the component perpendicular to the 
surface should be used). Mathematically, this means that one can write the previous 
equation in the general form: 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡

= −𝛁𝛁 ∙ (𝑣𝑣 ∙ 𝒗𝒗) ∙ 𝑑𝑑𝑉𝑉 

where 𝑑𝑑𝑚𝑚 is the total mass change inside the volume element considered (which 
can be of any shape). This equation can be expressed in any coordinate system. In 
Cartesian coordinates, one will find the equation we derived above. 

As we are looking at a very general case, we may assume that inside the volume 
element considered there exist sources and sinks, where matter (and mass) can be 
appearing or disappearing: for instance roots that can take up water, or a leaking 
pipe.  This leads to a change in mass that can be quantified by fluxes: 

𝑑𝑑𝑚𝑚𝑠𝑠𝑏𝑏𝑜𝑜𝑟𝑟𝑐𝑐𝑒𝑒 𝑏𝑏𝑟𝑟 𝑠𝑠𝑖𝑖𝑒𝑒𝑘𝑘 = 𝑣𝑣 ∙ (𝑞𝑞𝑠𝑠𝑏𝑏𝑜𝑜𝑟𝑟𝑐𝑐𝑒𝑒 − 𝑞𝑞𝑠𝑠𝑖𝑖𝑒𝑒𝑘𝑘) ∙ 𝑑𝑑𝑉𝑉 ∙ 𝑑𝑑𝑡𝑡 

where 𝑞𝑞 represent the flux in (s-1). We therefore get: 

𝑑𝑑𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡

𝑑𝑑𝑡𝑡
= −𝛁𝛁 ∙ (𝑣𝑣 ∙ 𝒗𝒗) ∙ 𝑑𝑑𝑉𝑉 + 𝑣𝑣 ∙ (𝑞𝑞𝑠𝑠𝑏𝑏𝑜𝑜𝑟𝑟𝑐𝑐𝑒𝑒 − 𝑞𝑞𝑠𝑠𝑖𝑖𝑒𝑒𝑘𝑘) ∙ 𝑑𝑑𝑉𝑉 

Realizing that 𝑑𝑑𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡 = 𝑣𝑣𝑑𝑑𝑉𝑉 and 

𝑑𝑑𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡 = �
𝜕𝜕𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡

𝜕𝜕𝑡𝑡
�
at V fixed

𝑑𝑑𝑡𝑡 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

∙ 𝑑𝑑𝑉𝑉 ∙ 𝑑𝑑𝑡𝑡 

we get: 

 
∂ρ
∂t

+ 𝛁𝛁 ∙ (ρ ∙ 𝐯𝐯) = ρ ∙ (qsource − qsink) 

This is the general form of the continuity equation. In the specific case that the 
particle are incompressible (ρ𝑠𝑠 is constant), and that there are no sink and source 
terms, and that the movement is along the z-axis, we may use ρ = ρ𝑠𝑠ϕ𝑠𝑠 and we find 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

+
𝜕𝜕�𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏𝜙𝜙𝑆𝑆�

𝜕𝜕𝑑𝑑
= 0 

 

One can show that the continuity equation can also be expressed as: 

−
𝜕𝜕𝑅𝑅
𝜕𝜕𝑡𝑡

+ (1 + 𝑅𝑅)2
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏

1 + 𝑅𝑅
� = 0 



Introduction to Colloid Science 

 248 

This is the form most used in geoengineering. In hydraulic engineering, where the 
free settling phase of the particles is also considered, it is preferable to work with 
volume fraction. The reasons are expressed by Eric Toorman in 1996123: 

“In this text the solids volume fraction 𝜙𝜙𝑆𝑆 is used as the dependent variable to 
describe the solids content. There are several reasons for this. The solids 
concentration is preferred to the void ratio because in the sedimentation phase e 
becomes infinite when the concentration decreases to zero. Furthermore, if one has 
to consider the behaviour of a polydisperse sediment, the particle concentration must 
be taken as the dependent variable, since the mass balance must be solved now for 
each fraction separately. The volumetric solids concentration is also the best variable 
to relate other suspension properties (e.g. rheological properties) with.” 

We recall the modified Darcy equation obtained above: 

−𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 =
−𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

 

Combining these equations, one obtains: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

= −
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

𝜙𝜙𝑆𝑆� 

which can further be developed into: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑠𝑠2 +
𝑘𝑘
𝜂𝜂
𝜙𝜙𝑆𝑆

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

This equation is called the Gibson equation. Usually a new permeability is defined 
as: 

𝐾𝐾 (m s⁄ ) = 𝑘𝑘(m2)
𝑔𝑔𝑣𝑣𝑤𝑤
𝜂𝜂

 

where 𝐾𝐾 (m s⁄ ) is usually called hydraulic conductivity and 𝑘𝑘(m2) permeability. At 
the beginning of the chapter we have seen that 𝐾𝐾 (m s⁄ ) is also called coefficient of 
permeability by some authors. 

The Gibson equation124 can be written: 

                                                                 
123 Toorman, E.A. (1996) “Sedimentation and self-weight consolidation: general unifying 
theory”, Géotechnique 46, No 1, 103-113. 
124 Gibson, R. E., G. L. England, and M. J. L. Hussey. "The Theory of one-dimensional 
consolidation of saturated clays: 1. finite non-Linear consildation of thin homogeneous 
layers." Geotechnique 17.3 (1967): 261-273. 
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𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�𝐾𝐾

𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

𝜙𝜙𝑠𝑠2 +
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜙𝜙𝑆𝑆
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

 
Consolidation when gas is present in the soil 

We now consider the consolidation of a soil in which gas bubbles are trapped125. We 
will only study the case where t > t1 (the interface water/suspension has 
disappeared). If the gas bubbles are fixed to the soil skeleton one simply gets: 

𝐽𝐽𝑤𝑤/𝑠𝑠 = 𝑆𝑆𝑟𝑟(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 

where 𝑆𝑆𝑟𝑟  is the degree of saturation : 𝑆𝑆𝑟𝑟 = 1 is for the case there is no gas inside the 
soil.  

We will now consider the general case, where gas bubbles are distributed within the 
soil in an undetermined way. One defines the porosity as: 

𝜙𝜙 = 𝜙𝜙𝑔𝑔 + 𝜙𝜙𝑤𝑤 

where: 

𝜙𝜙𝑔𝑔 = (1 − 𝑆𝑆𝑟𝑟)𝜙𝜙     ;     𝜙𝜙𝑤𝑤 = 𝑆𝑆𝑟𝑟𝜙𝜙 = 𝑆𝑆𝑟𝑟(1 − 𝜙𝜙𝑆𝑆) 

The total vertical stress can be estimated, for t > t1, by: 

σ𝑧𝑧𝑧𝑧(𝑑𝑑) = � 𝑣𝑣(𝑑𝑑)𝑔𝑔𝑑𝑑𝑑𝑑
ℎ𝑏𝑏

𝑧𝑧
+ � 𝑣𝑣(𝑑𝑑)𝑔𝑔𝑑𝑑𝑑𝑑

𝐷𝐷

ℎ𝑏𝑏
+ 𝑃𝑃0 

Between 𝑑𝑑 and ℎ𝑏𝑏 we have : 

𝑣𝑣(𝑑𝑑) = 𝜙𝜙𝑤𝑤𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠 + 𝜙𝜙𝑔𝑔𝑣𝑣𝑔𝑔 

If we assume that we can neglect the weight of the gas (𝑣𝑣𝑔𝑔 ≪ 𝑣𝑣𝑠𝑠,𝑣𝑣𝑤𝑤), we get: 

𝑣𝑣(𝑑𝑑) = 𝜙𝜙𝑤𝑤𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠 

Therefore: 

σ𝑧𝑧𝑧𝑧(𝑑𝑑) = � [𝜙𝜙𝑤𝑤𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠]𝑔𝑔𝑑𝑑𝑑𝑑
ℎ𝑏𝑏(𝑧𝑧)

𝑧𝑧
+ 𝑣𝑣𝑤𝑤𝑔𝑔(𝐿𝐿 − ℎ𝑏𝑏) + 𝑃𝑃0 

                                                                 
125 For more details, see “ Consolidation behaviour of gassy mud: theory and experimental 
validation”, B. Wichman, PhD thesis (1999), TU Delft 
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For numerical reasons, one likes to avoid having ℎ𝑏𝑏 , which is depending on z, as an 
upper bound of an integral. To get a fixed upper bound, the following change in 
variable is introduced: 

𝑑𝑑𝑑𝑑𝑠𝑠 = 𝜙𝜙𝑠𝑠𝑑𝑑𝑑𝑑 

The variable 𝑑𝑑𝑠𝑠 is called the material coordinate (for the soil).  

Material coordinates 

 

A small volume 𝑑𝑑𝑉𝑉 = 𝑆𝑆 𝑑𝑑𝑑𝑑 where 𝑆𝑆 is the cross section area of the column. The volume can 
be expressed as : 𝑑𝑑𝑉𝑉 = 𝑑𝑑𝑉𝑉𝑤𝑤 + 𝑑𝑑𝑉𝑉𝑠𝑠 where 𝑑𝑑𝑉𝑉𝑤𝑤  represents the volume of water and 𝑑𝑑𝑉𝑉𝑠𝑠 the 

volume of soil Left figure: soil particles in suspension in 𝑑𝑑𝑉𝑉. Right figure: the height 𝑑𝑑𝑑𝑑𝑤𝑤  and 
𝑑𝑑𝑑𝑑𝑠𝑠  are defined by:  𝑑𝑑𝑉𝑉𝑤𝑤 = 𝑆𝑆 𝑑𝑑𝑑𝑑𝑤𝑤  and  𝑑𝑑𝑉𝑉𝑠𝑠 = 𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠 . 

Let us consider a slice 𝑑𝑑𝑑𝑑 of the column of cross area 𝑆𝑆. This slice is composed of 
water and soil, therefore we can define two (fictive) heights such that 𝑆𝑆𝑑𝑑𝑑𝑑𝑤𝑤 
corresponds to the volume of water inside the slice and 𝑆𝑆𝑑𝑑𝑑𝑑𝑠𝑠  to the volume of soil. 
We have: 

𝑆𝑆𝑑𝑑𝑑𝑑 = 𝑆𝑆𝑑𝑑𝑑𝑑𝑤𝑤 + 𝑆𝑆𝑑𝑑𝑑𝑑𝑠𝑠 

Dividing both sides of this equation by 𝑆𝑆𝑑𝑑𝑑𝑑 we get: 

1 =
𝑆𝑆𝑑𝑑𝑑𝑑𝑤𝑤
𝑆𝑆𝑑𝑑𝑑𝑑

+
𝑆𝑆𝑑𝑑𝑑𝑑𝑠𝑠
𝑆𝑆𝑑𝑑𝑑𝑑

 

realising that: 

𝑆𝑆𝑑𝑑𝑑𝑑𝑠𝑠
𝑆𝑆𝑑𝑑𝑑𝑑

=
𝑉𝑉𝑠𝑠
𝑉𝑉

= 𝜙𝜙𝑠𝑠  and  
𝑑𝑑𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑

= 𝜙𝜙𝑤𝑤 

we get: 

𝜙𝜙𝑠𝑠 + 𝜙𝜙𝑤𝑤 = 1 

The material coordinate is defined, is given by: 

𝑑𝑑𝑠𝑠(𝑑𝑑) = � 𝜙𝜙𝑆𝑆𝑑𝑑𝑑𝑑
𝑧𝑧

0
= � 𝑑𝑑𝑑𝑑𝑠𝑠

𝑧𝑧𝑠𝑠

0
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It is the height of solid there would be theoretically found in the column if all the 
solids between 0 and z would be squeezed at the bottom. Note that: 

𝑑𝑑𝑠𝑠(ℎ ) = 𝐿𝐿𝐺𝐺  

where ℎ is the height of the suspended particles + bed. (we assume to be in the 
special case where ℎ = ℎ𝑏𝑏). Following a similar reasoning one can define the 
material coordinate for water: 

𝑑𝑑𝑤𝑤(𝑑𝑑) = � 𝜙𝜙𝑤𝑤𝑑𝑑𝑑𝑑
𝑧𝑧

0
= � 𝑑𝑑𝑑𝑑𝑤𝑤

𝑧𝑧𝑤𝑤

0
 

The material coordinate 𝑑𝑑𝑠𝑠 is linked to the Gibson height (also called material 
height) that we will now define.  

If all the particles of the left could be 
squeezed at the bottom of the column, a 
height 𝐿𝐿𝐺𝐺  would be obtained. Because of 
conservation of mass, this is a constant 
whereas ℎ𝑏𝑏 varies in time as the particles 
settle. 

The Gibson height 𝐿𝐿𝐺𝐺  is a (constant) length 
obtained from the conservation of mass 
within the undrained column. It can be seen 
as the average volume fraction of soil per 
unit of area. 

The Gibson height can easily be obtained using the fact that at t = 0: 

𝐿𝐿𝐺𝐺 = � 𝜙𝜙0𝑑𝑑𝑑𝑑
ℎ

0
= 𝐿𝐿𝜙𝜙0 

where 𝐿𝐿 is the height of the fluid in the column. 

We get: 

σ𝑧𝑧𝑧𝑧(𝑑𝑑𝑠𝑠) = � �
𝜙𝜙𝑤𝑤𝑣𝑣𝑤𝑤 + 𝜙𝜙𝑆𝑆𝑣𝑣𝑠𝑠

𝜙𝜙𝑠𝑠
� 𝑔𝑔𝑑𝑑𝑑𝑑𝑠𝑠

𝐷𝐷𝐺𝐺

𝑧𝑧𝑠𝑠
+ 𝑣𝑣𝑤𝑤𝑔𝑔(𝐿𝐿 − ℎ𝑏𝑏) + 𝑃𝑃0 

As we have 𝑑𝑑𝑠𝑠(ℎ𝑏𝑏) = 𝐿𝐿𝐺𝐺  (the Gibson height) which is a constant (it represents the 
soil height that would be obtained in the column if no voids were present) the upper 
bound now does not anymore depend on z.  
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The material coordinates can conveniently be used to find again some of the results 
we have derived earlier, when setting-up the Darcy equation for settling particles. 
For a water/soil/gas system, one gets: 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑤𝑤 + 𝑑𝑑𝑑𝑑𝑠𝑠 + 𝑑𝑑𝑑𝑑𝑔𝑔 

Using the fact that the volume is conserved  (implying that each volume element is 
conserved as function of time i.e. 𝑑𝑑𝑑𝑑/𝑑𝑑𝑡𝑡 = 0) we obtain 

�
`𝑑𝑑𝑑𝑑𝑤𝑤
𝑑𝑑𝑡𝑡

�
𝑧𝑧

+ �
𝑑𝑑𝑑𝑑𝑔𝑔
𝑑𝑑𝑡𝑡

�
𝑧𝑧

= −�
𝑑𝑑𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡
�
𝑧𝑧
 

which should be read as: at a given position z in the column, the flux of water and 
gas  is minus the flux of soil. In the notations adopted above, in the case there is no 
gas, we find as previously: 

𝐽𝐽𝑤𝑤/𝑙𝑙𝑎𝑎𝑏𝑏 = −𝐽𝐽𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  

The change in time of 𝑑𝑑𝑤𝑤 at a constant 𝑑𝑑𝑠𝑠 is the velocity of water for a fixed soil 
skeleton. This is what we can define as 𝐽𝐽𝑤𝑤/𝑠𝑠(𝑑𝑑): 

 𝐽𝐽𝑤𝑤/𝑠𝑠(𝑑𝑑) = �
𝜕𝜕𝑑𝑑𝑤𝑤
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

 

Note that this equation is valid independent of the fact that gas is present or not in 
the soil. Using  

𝑑𝑑𝑑𝑑𝑤𝑤 = 𝑑𝑑(𝜙𝜙𝑤𝑤𝑑𝑑) = 𝑑𝑑 �
𝜙𝜙𝑤𝑤
𝜙𝜙𝑠𝑠

𝑑𝑑𝑠𝑠� = 𝑑𝑑(𝑅𝑅𝑤𝑤𝑑𝑑𝑠𝑠) 

we get: 

𝐽𝐽𝑤𝑤/𝑠𝑠(𝑑𝑑) = 𝑑𝑑𝑠𝑠 �
𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

 

Leading to: 

�
𝜕𝜕𝐽𝐽𝑤𝑤/𝑠𝑠

𝜕𝜕𝑑𝑑𝑠𝑠
�
𝑡𝑡

= �
𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

 

Using the Darcy equation for settling particles we get: 

�
𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

=
𝜕𝜕
𝜕𝜕𝑑𝑑𝑠𝑠

�
𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

� =
𝜕𝜕
𝜕𝜕𝑑𝑑𝑠𝑠

�𝜙𝜙𝑆𝑆
𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑𝑠𝑠

� 
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We recall that the derivative of the excess pore pressure is given by: 

𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

= 𝑣𝑣𝑤𝑤𝑔𝑔 +
𝜕𝜕σ𝑧𝑧𝑧𝑧
𝜕𝜕𝑑𝑑

−
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

 

From which we get: 

𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

= ��𝜙𝜙𝑆𝑆(𝑑𝑑) + 𝜙𝜙𝑔𝑔(𝑑𝑑)� 𝑣𝑣𝑤𝑤 − 𝜙𝜙𝑆𝑆(𝑑𝑑)𝑣𝑣𝑠𝑠� 𝑔𝑔 −
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

 

𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

= −𝜙𝜙𝑆𝑆(𝑑𝑑) �𝑣𝑣𝑠𝑠 − �1 + 𝑅𝑅𝑔𝑔(𝑑𝑑)� 𝑣𝑣𝑤𝑤� 𝑔𝑔 −
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

 

𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑𝑠𝑠

= −�𝑣𝑣𝑠𝑠 − �1 + 𝑅𝑅𝑔𝑔�𝑣𝑣𝑤𝑤�𝑔𝑔 −
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑𝑠𝑠

 

This leads to: 

�
𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

= −
𝜕𝜕
𝜕𝜕𝑑𝑑𝑠𝑠

�𝜙𝜙𝑠𝑠
𝑘𝑘
𝜂𝜂
�
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑𝑠𝑠

+ �𝑣𝑣𝑠𝑠 − �1 + 𝑅𝑅𝑔𝑔�𝑣𝑣𝑤𝑤�𝑔𝑔𝜙𝜙𝑆𝑆�� 

This is the general formulation of the Gibson equation, in the case that gas bubbles 
are distributed within the soil matrix. We also deduce that: 

𝐽𝐽𝑤𝑤/𝑠𝑠 = −𝜙𝜙𝑠𝑠
𝑘𝑘
𝜂𝜂
�
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑𝑠𝑠

+ �𝑣𝑣𝑠𝑠 − �1 + 𝑅𝑅𝑔𝑔�𝑣𝑣𝑤𝑤�𝑔𝑔𝜙𝜙𝑆𝑆� 

If 𝑅𝑅𝑔𝑔 = 0 (there is no gas in the soil), then: 

�
𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

= −
𝜕𝜕
𝜕𝜕𝑑𝑑𝑠𝑠

�𝜙𝜙𝑠𝑠
𝑘𝑘
𝜂𝜂
�
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑𝑠𝑠

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆�� 

�
𝜕𝜕𝜙𝜙𝑠𝑠
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

= 𝜙𝜙𝑠𝑠2
𝜕𝜕
𝜕𝜕𝑑𝑑𝑠𝑠

�𝜙𝜙𝑠𝑠
𝑘𝑘
𝜂𝜂
�
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑𝑠𝑠

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆�� 

Using once more 𝑑𝑑𝑑𝑑𝑠𝑠 = 𝜙𝜙𝑠𝑠𝑑𝑑𝑑𝑑 and realizing that : 

�
𝜕𝜕𝜙𝜙𝑠𝑠
𝜕𝜕𝑡𝑡

�
𝑧𝑧𝑠𝑠

=
𝑑𝑑𝜙𝜙𝑠𝑠
𝑑𝑑𝑡𝑡

 

we get: 

𝑑𝑑𝜙𝜙𝑠𝑠
𝑑𝑑𝑡𝑡

= 𝜙𝜙𝑠𝑠
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂
�
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆�� 

which is the original Gibson equation (when no gas is present). 
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We found earlier for the Gibson equation: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂
�𝜙𝜙𝑆𝑆

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑠𝑠2�� 

Where does the difference come from? To find the answer, we have to look back to 
one of the equation we have used to set-up the Gibson equation when we 
introduced it the first time: the continuity equation. We have expressed this 
equation as: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

+
𝜕𝜕�𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏𝜙𝜙𝑆𝑆�

𝜕𝜕𝑑𝑑
= 0 

This equation is the Eulerian form of the continuity equation. This implies that we 
follow the changes in 𝜙𝜙𝑆𝑆 at a given position 𝑑𝑑 as function of time. Doing so, we say 
that the changes in 𝜙𝜙𝑆𝑆 in time at a position 𝑑𝑑 are caused by the inflow and outflow 
of matter at position 𝑑𝑑. The rate of inflow/outflow is in our case the velocity 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏. 
The Lagrangian form of  the same equation gives the changes in 𝜙𝜙𝑆𝑆 for a given 
volume element within the laboratory frame of reference that we follow in space 
and time. The link between the Eulerian and Lagrangian descriptions is given by: 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

+ 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏
𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

 

where 𝑑𝑑𝜙𝜙𝑆𝑆/𝑑𝑑𝑡𝑡 gives the Lagrangian derivative and 𝜕𝜕𝜙𝜙𝑆𝑆/𝜕𝜕𝑡𝑡 is the Eulerian one. This 
equation tells us that the changes in 𝜙𝜙𝑆𝑆 of the volume element we follow and 
currently is located at (𝑑𝑑, 𝑡𝑡) is given by the change of 𝜙𝜙𝑆𝑆 (term 𝜕𝜕𝜙𝜙𝑆𝑆/𝜕𝜕𝑡𝑡) at position 𝑑𝑑 
plus the change associated to the fact that the volume element we  follow is leaving 
position 𝑑𝑑  at the instant 𝑡𝑡 (term 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏(𝜕𝜕𝜙𝜙𝑆𝑆 𝜕𝜕𝑑𝑑⁄ )). In Lagrangian form, the continuity 
equation is therefore: 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

− 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏
𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

+
𝜕𝜕�𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏𝜙𝜙𝑆𝑆�

𝜕𝜕𝑑𝑑
= 0 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

+ 𝜙𝜙𝑆𝑆
𝜕𝜕𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏

𝜕𝜕𝑑𝑑
= 0 

We can now combine the Lagrangian form of the continuity equation with the Darcy 
equation 

𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 =
𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

 

and we get: 
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𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

= −𝜙𝜙𝑆𝑆
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

� 

which can further be developed into: 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

= 𝜙𝜙𝑆𝑆
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 +
𝑘𝑘
𝜂𝜂
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

This is the original form of the Gibson equation – and the one we have found above. 

There exists numerical schemes that enable to solve the Gibson equation, in the 
presence or not of gas. In order to solve these equations, hypothesis have to be 
made for the dependence of  𝑘𝑘 and σ𝑠𝑠𝑘𝑘  on z (and for the dependence of 𝑅𝑅𝑔𝑔on z is 
gas is considered).  

In the next chapter (Chapter 10) we are going to present analytical and numerical 
solutions for the Gibson equation, in the absence of gas.  

Lagrange and Euler derivatives 

To illustrate the difference between the Lagrangian and Eulerian derivatives, let us 
consider a variable that occupies the space we study. For instance, in a fluid, we 
could measure the temperature 𝑇𝑇 at any position in time and space.  

 

For simplicity, we will consider a stripe of fluid in direction 𝑥𝑥. We are measuring the 
temperature with a thermometer A that we place at a fixed position 𝑥𝑥 and a 
thermometer B that we are moving along 𝑥𝑥. With thermometer B we get the 
temperature as a function of 𝑥𝑥(𝑡𝑡), i.e. the trajectory of the thermometer. This 
implies that for a given time 𝑡𝑡 we are at a specific location 𝑥𝑥, i.e. 𝑥𝑥 and 𝑡𝑡 are 
correlated. In compact notation, we say that we get 𝑇𝑇(𝑥𝑥(𝑡𝑡)), that is the temperature 
along the trajectory 𝑥𝑥(𝑡𝑡). With thermometer A, we get the temperature at a fixed 
position 𝑥𝑥, where this 𝑥𝑥 is therefore not dependent on time. In that case, in compact 
notation, we say that we get 𝑇𝑇(𝑥𝑥, 𝑡𝑡), that is the temperature for a fixed position 𝑥𝑥 
as a function of time. Of course, when thermometer B is at the same position as 
thermometer A, the temperatures are the same: 
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𝑇𝑇�𝑥𝑥(𝑡𝑡)� = 𝑇𝑇(𝑥𝑥, 𝑡𝑡) 

However, the variations in temperature measured with thermometers A and B can 
be different. From mathematics, we get: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

 

where 𝑑𝑑𝑇𝑇 𝑑𝑑𝑡𝑡⁄  is the change in temperature measured with thermometer B and 
𝜕𝜕𝑇𝑇 𝜕𝜕𝑡𝑡⁄  the change in temperature measured with thermometer A. 𝜕𝜕𝑇𝑇 𝜕𝜕𝑥𝑥⁄  
represents the change in temperature with displacement 𝑑𝑑𝑥𝑥 around time 𝑡𝑡 of the 
measurement and 𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡⁄ = 𝑣𝑣𝐵𝐵  is the velocity of thermometer B. From the relation 
above, we see that if the temperature does not dependent on time (but is not the 
same at every position 𝑥𝑥) we get 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

𝑣𝑣𝐵𝐵  

which means that even though for a given 𝑥𝑥 the temperature does not change 
(𝜕𝜕𝑇𝑇 𝜕𝜕𝑡𝑡⁄ = 0), the thermometer B will indicate a change of temperature in time as it 
is moving. Only if the thermometer B is not moving or if the temperature is the same 
at any  𝑥𝑥 do we get 𝑑𝑑𝑇𝑇 𝑑𝑑𝑡𝑡⁄ = 0. 

Finding the permeability using colloid science 

So far we have discussed the consolidation of soft soils so as to determine the 
permeability from the physical compaction (and in particular the water/mud 
interface as function of time) of sediment beds. Quite some research has been 
performed over the years to devise other methods for finding information about the 
permeability and porosity of consolidated soils, also as function of environmental 
parameters such as salinity, temperature and clay surface properties.  

A simple and extremely popular relation is provided by the empirical equation found 
by Gustavus E.  Archie (1907-1978) in 1942. Archie’s law states that the electric 
conductivity 𝜎𝜎 of a porous media126 saturated by an electrolyte is proportional to its 
porosity such that: 

𝜎𝜎 = 𝜙𝜙𝑚𝑚𝜎𝜎𝑒𝑒 

where 𝜎𝜎𝑒𝑒 is the conductivity of the electrolyte, 𝜙𝜙 = (1 − 𝜙𝜙𝑆𝑆) is the porosity and m 
is an exponent to be fitted which varies usually between 1 and 4.  

                                                                 
126 In this chapter we will use the symbol 𝜎𝜎 for the conductivity to avoid any confusion with 𝑘𝑘 
and 𝐾𝐾 that are used for the hydraulic conductivity. In Chapter 3 we used 𝐾𝐾 for expressing the 
conductivity and 𝜎𝜎 for designing a surface charge. 
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Quite some work has also been devoted to relate the electric conductivity 𝜎𝜎 to the 
hydraulic permeability k. In a first approach, one makes use of the relation: 

𝑘𝑘 ≈ 𝐴𝐴 𝜙𝜙𝑟𝑟2 

where 𝐴𝐴 is an unknown shape factor (that might or not depend on 𝜙𝜙) and 𝑟𝑟 a 
representative length for a pore radius (that might or not depend on 𝜙𝜙). The relation 
originates from the Hagen-Poiseuille relation we have already mentioned above. 
Combining the two equations, one finds the link between conductivity and 
permeability to be: 

𝑘𝑘 ≈ 𝐴𝐴 �
𝜎𝜎
𝜎𝜎𝑒𝑒
�
1/𝑚𝑚

𝑟𝑟2 

More elaborate models have been created, for instance by assuming that the porous 
media is formed by a collection of colloidal particles. The parameter m can then be 
calculated127.  

If a surface is charged, as we have seen in Chapter 3, applying an electric field will 
provide information about this charge. This information can then be correlated to 
the permeability as we will see now for the simple example of a bundle of pores.  

Bundle of charged pores in an electric field 

If one applies and electric field 𝑬𝑬 = 𝐸𝐸 𝒆𝒆𝒚𝒚 in the direction parallel to a charged pore 
filled with an electrolyte, the ions inside the pore will start to move. In the stationary 
state, the ions will have a constant velocity, implying that the total sum of forces on 
each ion must be zero. The electric force is compensated by the drag force exerted 
by the liquid. 

If we now consider the forces exerted on the liquid, one finds that: 

- in the stationary state, each layer of fluid dx moves with a uniform velocity parallel 
to the walls because the total force on such layer is zero. 

-  In virtue of Newton’s third law (action = reaction) the force exerted by the ions on 
the liquid is equal in magnitude to the (electric) force exerted directly on the ions 
and which produce the movement.  

                                                                 
127 P.N. Sen et al. “A self-similar model for sedimentary rocks with application to the dielectric 
constant of fused glass beads”, Geophysics, 46,5,781-795 (1981); S. Kostek et al. “Fluid 
permeability in porous media: Comparison of electrical estimates with hydrodynamical 
calculation”, Physical Review B, 45, 1 (1992); Kirichek, A., C. Chassagne, and R. Ghose. 
"Dielectric spectroscopy of granular material in an electrolyte solution of any ionic strength." 
Colloids and Surfaces A: Physicochemical and Engineering Aspects 533 (2017): 356-370. 
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- A frictional force is exerted on a layer by the neighbouring layers which move with 
different velocities. 

 

Schematic representation of a section of a capillary. The capillary walls are negatively 
charged. Double layers are represented by black dashed lines. Inside the double layers, one 

finds a majority of couterions (+), even though co-ions (-) are also present (but not 
represented for simplification). In the bulk of the capillary, far away of the double layers, the 

ionic concentration is independent of the surface charge of the pores.  

This enables to write: 

𝐸𝐸𝑣𝑣𝑑𝑑𝑥𝑥 = 𝜂𝜂 �
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
�
𝜕𝜕+𝑒𝑒𝜕𝜕

− 𝜂𝜂 �
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
�
𝜕𝜕

= 𝜂𝜂 �
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

�𝑑𝑑𝑥𝑥 

where 𝑣𝑣 is the ionic concentration. 

Using Poisson’s equation introduced in Chapter 3, here in Cartesian coordinates, 
one finds: 

−𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸 �
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

� =  𝜂𝜂 �
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

� 

This equation can be integrated a first time: 

−𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸 � �
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

� 𝑑𝑑𝑥𝑥
𝜕𝜕

𝑟𝑟/2
=  𝜂𝜂� �

𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

�𝑑𝑑𝑥𝑥
𝜕𝜕

𝑟𝑟/2
 

and  𝑟𝑟/2 is the middle of the capillary. Using the fact that, by symmetry,  both the 
derivatives of  𝜓𝜓 and 𝑢𝑢 are zero at 𝑟𝑟/2 we get: 

−𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸 �
𝑑𝑑𝜓𝜓
𝑑𝑑𝑥𝑥
� =  𝜂𝜂 �

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
� 

By integrating a second time: 

−𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸� �
𝑑𝑑𝜓𝜓
𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥

𝜕𝜕

𝜕𝜕𝑠𝑠
=  𝜂𝜂� �

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥

𝜕𝜕

𝜕𝜕𝑠𝑠
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Using the boundary conditions: 

𝜓𝜓(𝑥𝑥𝑠𝑠) = 𝜁𝜁     ;      𝑢𝑢(𝑥𝑥𝑠𝑠) = 0 

where 𝑥𝑥𝑠𝑠 is the position of the slip plane (which is very close to the capillary wall) 
and 𝜁𝜁 the zeta potential of the capillary tube, we get: 

−𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸 𝜁𝜁 =  𝜂𝜂𝑢𝑢(𝑥𝑥) 

Rearranging this equation, we can write: 

𝑢𝑢(𝑥𝑥) =
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂

𝐸𝐸   for   𝑥𝑥 > 𝑥𝑥𝑠𝑠 

This formula is similar to the one we have found for the Smoluchowski 
electrophoretic mobility of a charged sphere in an electric field. Similarly to what we 
have seen for spheres, a double layer exists close to the pore walls. In our example, 
we have assumed that the double layers do not overlap, which is most certainly true 
for not too small pores and reasonable ionic strength. In case of overlapping double 
layers, numerical solutions exist. 

One should also realize that the derivation presented here is implicitly done for very 
thin double layers 𝜅𝜅−1 compared to 𝑟𝑟 as we have used Cartesian coordinates. For 
arbitrary 𝜅𝜅𝑟𝑟 one should work in cylindrical coordinates, assuming of course that the 
pores are cylindrical, which is generally a valid assumption. 

The flux of water exiting the capillary can be estimated by: 

𝐽𝐽 = 𝑆𝑆𝑢𝑢 = 𝑆𝑆
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂

𝐸𝐸 

where S is the cross section of the capillary. For a bundle of capillaries (all parallel to 
each other), one simply gets: 

𝐽𝐽𝑤𝑤/𝑠𝑠 = 𝜙𝜙𝑆𝑆
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂

𝐸𝐸 

Contrary to the Darcy equation, the relation we found is a function of the applied 
electric field, since no pressure gradient was applied in the experiment. We have 
thus found that it is also possible to create a flow of water by applying an electric 
field. This is due to the fact that the ions are set in movement by the electric field 
and, by friction, set the water in motion. If the capillaries are uncharged (𝜁𝜁 = 0) 
there is no net water flux (𝐽𝐽𝑤𝑤/𝑠𝑠 = 0). This does not mean that the ions are not moving 
or that the water is not moving, but that the water flux created by the negative ions 
compensate the flux created by the positive ions such that no net flux is created. 
When the pores are charged (here negatively), there is a dissymmetry between the 
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fluxes: there are more positive ions that are mobile, compared to negative ones (of 
which some are fixed on the pores’ walls) and hence a net flux is created. 

 

Onsager relations 

Is it possible to link the water flux we have found to the permeability of the porous 
medium? In order to find out, we will have to discuss more into details about what 
happens when one apply either a pressure gradient or an electric field to the same 
porous media. As before, we will here only consider a bundle of capillaries, fully 
saturated with electrolyte. 

When an electric field 𝐸𝐸 is applied to this porous medium, we have just found that 
we could create a water flux. By applying a pressure gradient ∇𝑃𝑃, we also will create 
a water flux 𝐽𝐽𝑤𝑤/𝑠𝑠 (m/s) and the relation between water flux and pressure gradient is 
then simply the Darcy equation. In general we can therefore write: 

𝐽𝐽𝑤𝑤/𝑠𝑠 = 𝜙𝜙𝑆𝑆
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂

𝐸𝐸 −
𝑘𝑘
𝜂𝜂
∇𝑃𝑃 

This equation could be expanded by considering that a water flux can also be created 
by applying a temperature gradient or a ionic concentration gradient, etc… We will 
limit ourselves to electric and pressure gradients. 

Another flux is created by the application of an electric field: a macroscopic electric 
flux (electric current 𝐽𝐽𝑒𝑒 in A/m2) which is proportional to the electric field following 
Ohm’s law: 

𝐽𝐽𝑒𝑒 = 𝜎𝜎𝐸𝐸 

where 𝜎𝜎 is the electric conductivity (of the porous medium saturated with 
electrolyte). One could then make the following reasoning: by applying a pressure 
gradient, water will be set in motion. As this water contains ions, these will also be 
set into motion. The movement of charges create an electric current, and therefore 
an electric current can be created by applying a pressure gradient. When both 
electric and pressure gradients are considered, one can therefore write: 

𝐽𝐽𝑒𝑒 = 𝜎𝜎𝐸𝐸 − 𝐿𝐿𝑒𝑒∇𝑃𝑃 

where 𝐿𝐿𝑒𝑒 is a nameless parameter. For commodity, we will rewrite the water flux in 
a more general form as: 

𝐽𝐽𝑤𝑤/𝑠𝑠 = 𝐿𝐿𝑤𝑤𝐸𝐸 −
𝑘𝑘
𝜂𝜂
∇𝑃𝑃 
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This formulation is in fact valid for any porous media, as we have not specified the 
values of 𝐿𝐿𝑒𝑒, 𝐿𝐿𝑤𝑤, 𝑘𝑘 or 𝜎𝜎. 

In 1968 Lars Onsager got the Nobel prize in Chemistry for having theoretically found 
that: 

𝐿𝐿𝑒𝑒 = 𝐿𝐿𝑤𝑤 

The formulation of Onsager was of course more general than the one given here, 
which is just one of the many examples of the Onsager reciprocal relations.  

Conductivity of a porous medium consisting of a bundle of charged pores 

Let us assume that a porous medium is submitted to a pressure gradient ∇𝑃𝑃. By the 
movement of ions, an electric field 𝐸𝐸 is then created. An example is given right 
underneath. 

 

Streaming potential coupling coefficient in sandstones as function of NaCl concentration. 
Data from Jaafar et al.128 The pH models are from Glover at al.129 .The red line represents the 

classical dependence, explained in the text. 

At steady state, assuming that no electrochemical reactions occur, and that no 
charges are created or destroyed, a bulk electric current will be created that opposes 

                                                                 
128 Jaafar, M. Z., J. Vinogradov, and M. D. Jackson, 2009, Measurement of streaming potential 
coupling coefficient in sandstones saturated with high salinity NaCl brine: Geophysical 
Research Letters, 36, L21306. 
129 P.W.J. Glover et al. “Streaming-potential coefficient of reservoir rock: A theoretical model”, 
Geophysics, 77, 2 (2012). 
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the electric current along the walls (in the double layers). This leads to the fact that 
the (macroscopic) electric current is zero: 𝐽𝐽𝑒𝑒 = 0. It follows that: 

(𝐸𝐸)𝐿𝐿𝑒𝑒=0 =
𝐿𝐿𝑒𝑒
𝜎𝜎

(∇𝑃𝑃)𝐿𝐿𝑒𝑒=0 

This relation defines the streaming potential: an electric field is created by the 
application of a pressure gradient in the absence of electric current.  

The streaming potential coupling coefficient 𝑆𝑆𝑃𝑃 as given on the y-axis of the figure 
is defined by: 

𝑆𝑆𝑃𝑃 =
−∆𝑉𝑉
∆𝑃𝑃

= −𝜙𝜙𝑆𝑆
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂𝜎𝜎𝑒𝑒

 

where 𝜎𝜎𝑒𝑒 is the conductivity of the electrolyte inside the pores. This expression can 
be found using the relation given above and realising that 𝐸𝐸 = −∇𝑉𝑉 and  

𝐿𝐿𝑒𝑒 = 𝐿𝐿𝑤𝑤 = 𝜙𝜙𝑆𝑆
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂

 

Furthermore ∇𝑉𝑉/∇𝑃𝑃 = ∆𝑉𝑉/∆𝑃𝑃 for a linear system (∇𝑃𝑃 = ∆𝑃𝑃 /L where L is the length 
of the bundle of pores). For a bundle of pores, the electric current at no pressure 
difference is given by: 

𝐽𝐽𝑒𝑒 = 𝜙𝜙𝑆𝑆 𝜎𝜎𝑒𝑒𝐸𝐸 = 𝜎𝜎𝐸𝐸 

One therefore finds: 

𝑆𝑆𝑃𝑃 =
−∆𝑉𝑉
∆𝑃𝑃

= −
𝜀𝜀0𝜀𝜀𝑟𝑟𝜁𝜁
𝜂𝜂𝜎𝜎𝑒𝑒

 

Recalling (see Chapter 3) that 𝜎𝜎𝑒𝑒  ~ 𝐶𝐶 where 𝐶𝐶 is the salt concentration, one finds: 

𝑙𝑙𝑐𝑐𝑔𝑔(−𝑆𝑆𝑃𝑃) = −𝑙𝑙𝑐𝑐𝑔𝑔(𝐶𝐶) + constant 

This implies that for the simple model of a bundle of pores, the logarithm of the 
streaming coupling coefficient should scale as minus the logarithm of the salt 
concentration. In the log-log plot above this corresponds to the red line of slope -1. 
The data presented on the figure has been measured on a sandstone saturated with 
high salinity NaCl. We can therefore conclude that the simple “bundle of pores” 
model is quite successful to explain the obtained results. From the data, we can also 
estimate the zeta potential: we find (in absolute value) 19 mV, which is a realistic 
value for such a system. Note that the models proposed by Glover et al., even though 
more elaborated, are less successful. Many models include so many adjustable 
parameters that they cannot provide an estimate for the zeta potential as they have 



Chapter 9 Permeability of slurries 

 263 

made the zeta potential dependent on parameters that are quite difficult to 
estimate. 

Inserting the general streaming potential relation into the expression for 𝐽𝐽𝑤𝑤/𝑠𝑠  and 
using the fact that 𝐿𝐿𝑒𝑒 = 𝐿𝐿𝑤𝑤 leads to: 

�𝐽𝐽𝑤𝑤/𝑠𝑠�𝐿𝐿𝑒𝑒=0 = �
𝐿𝐿𝑒𝑒2

𝜎𝜎
−
𝑘𝑘
𝜂𝜂
� (∇𝑃𝑃)𝐿𝐿𝑒𝑒=0 

It is usually the case that   

𝐿𝐿𝑒𝑒2

𝜎𝜎
≪
𝑘𝑘
𝜂𝜂

 

which is why, in first approximation, Darcy’s equation is generally used to express a 
flow of water. We note however, that the water flux exiting the porous medium 
could be smaller than the one expected on the basis of Darcy alone. The permeability 
can be correctly estimated by a series of experiments that accounts for both electric 
and hydraulic effects. One can easily show that: 

𝐿𝐿𝑤𝑤 =
𝑘𝑘
𝜂𝜂
�
∇𝑃𝑃
𝐸𝐸
�
𝐿𝐿𝑤𝑤/𝑠𝑠=0

 

𝐿𝐿𝑒𝑒 = 𝜎𝜎 �
𝐸𝐸
∇𝑃𝑃

�
𝐿𝐿𝑒𝑒=0

 

Combining these two equations using 𝐿𝐿𝑒𝑒 = 𝐿𝐿𝑤𝑤 one finds: 

𝑘𝑘 = 𝜂𝜂𝜎𝜎
(𝐸𝐸/∇𝑃𝑃)𝐿𝐿𝑒𝑒=0

(∇𝑃𝑃/𝐸𝐸)𝐿𝐿𝑤𝑤/𝑠𝑠=0
 

This means that two series of experiments (one at zero water flux and one at zero 
electric flux) should be performed, for which the conductivity, electric and hydraulic 
gradients should be measured. One then can find the hydraulic permeability 𝑘𝑘. 
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Lars Onsager and the reciprocal relations 

Lars Onsager (1903 –1976) was a Norwegian-born 
American physical chemist and theoretical physicist. He 
held the Gibbs Professorship of Theoretical Chemistry 
at Yale University. He was awarded the Nobel Prize in 
Chemistry in 1968 for his work on the reciprocal 
relations he derived. After completing secondary 
school in Oslo, he attended the Norwegian Institute of 
Technology (NTH) in Trondheim (nowadays the NTNU – 
Norges Teknisk-Naturvitenskapelige Universitet, i.e. 
Norwegian University of Science and Technology), 
graduating as a chemical engineer in 1925.  

In 1925 he arrived at a correction to the Debye-Hückel theory of electrolytic 
solutions, to specify Brownian movement of ions in solution, and during 1926 
published it. He travelled to Zürich, where Peter Debye was teaching, and told him 
his theory was wrong. He impressed Debye so much that he was invited to become 
Debye's assistant at the Eidgenössische Technische Hochschule (ETH), where he 
remained until 1928. 

In 1928 he went to the United States and held a position at the Johns Hopkins 
University (JHU) in Baltimore and then at the Brown University in Providence. While 

clearly Onsager was extremely good at developing 
theories in physical chemistry, he was a very poor 
teacher. This is why he was dismissed at JHU after one 
semester and in 1933 at Brown. After a trip to Europe he 
was hired by Yale University, where he remained for most 
of the rest of his life, retiring in 1972. The only graduate 
student who could really understand his lectures on 
electrolyte systems, Raymond Fuoss, worked under him 
and eventually joined him on the Yale chemistry faculty. 
The 1932 paper that they wrote together on irreversible 
processes in electrolytes took up eighty-nine pages in the 
Journal of Physical Chemistry and remained the definitive 
treatment of the topic until it was taken up again by the 
two of them in the 1950s. 

a classic book about irreversible thermodynamics130 

The reciprocal relations of Onsager are derived in the frame of irreversible 
thermodynamics. First, relations between fluxes and forces are expressed by 
                                                                 
130 De Groot, Sybren Ruurds, and Peter Mazur. Non-equilibrium thermodynamics. Courier 
Corporation, 2013 
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considering the entropy production. Then the reciprocal relations can be given. 
These relations are a consequence of the time reversibility of microscopic 
dynamics. The idea of microreversibility was introduced when the kinetics of gases 
was studied. In 1872, Ludwig Boltzmann represented kinetics of gases as statistical 
ensemble of elementary collisions. Equations of mechanics are reversible in time, 
hence, the reverse collisions obey the same laws. According to Boltzmann, this 
microreversibility implies the principle of detailed balance for collisions: at the 
equilibrium ensemble each collision is equilibrated by its reverse collision. Another 
macroscopic consequence of microscopic reversibility is the symmetry of kinetic 
coefficients, the so-called reciprocal relations. The reciprocal relations were 
discovered in the 19th century by Thomson and Helmholtz for some phenomena but 
the general theory was proposed by Lars Onsager in 1931. He found also the 
connection between the reciprocal relations and detailed balance. 

 

Illustrations 

Lars Onsager  
https://www.nobelprize.org/prizes/chemistry/1968/onsager/biographical/ 
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In this chapter, we are going to discuss some solutions of the Gibson equation for 
slurries that was set-up in Chapter 9. The Gibson equation reads: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑘𝑘
𝜂𝜂
�𝜙𝜙𝑆𝑆

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑠𝑠2�� 

We are first going to give analytical solutions, and the solutions will be critically 
analysed at the end of the chapter. We will then also make the link between Chapter 
8 (settling) and the consolidation processes discussed in Chapter 9 and in the present 
chapter. 

Consolidation of slurries : the fractal approach 

The permeability 𝑘𝑘 (and 𝐾𝐾) and the skeleton stress σ𝑠𝑠𝑘𝑘  depend both on 𝜙𝜙𝑆𝑆. In order 
to solve the Gibson equation it is therefore primordial to first find a constitutive 
relation for both 𝐾𝐾 and σ𝑠𝑠𝑘𝑘  as function of 𝜙𝜙𝑆𝑆. An innovative approach has been 
introduced by Merckelbach and Kranenburg in 2000131 to model the consolidation 
of a column filled with (flocculated) clay. They make use of the self-similarity 
properties of fractals, and hence assume that the column is filled with fractal flocs. 

In their approach, at the initial time t = 0, the column is filled with fractal flocs that 
are touching one another and all the flocs have the same diameter. A schematic 
representation of a column filled by actual (“real”) fractal flocs is given here for times 
larger than zero: 

 

Schematic representation of the column filled with fractal flocs; the flocs are “real” flocs that 
are physically present in the column, with a defined (measurable) size and fractal dimension 

                                                                 
131 “Consolidation and strength evolution of soft mud layers”, Lucas Merckelbach, PhD thesis 
TU Delft, 2000 
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On purpose, we have represented in the column a suspended phase: in the region 
the flocs are suspended, they are, by definition, not touching and hence will 
experience settling. Their settling velocity is in general different from the velocity of 
the flocs that are in the bed : a settling floc “has no clue” there is a bed underneath 
it, in other words: the settling velocity of a floc is independent of the settling velocity 
of the bed composed of the same flocs. Settling and consolidation should therefore 
in general be treated as two separate processes.  

There is a special case, however, where settling and consolidation can be treated 
with a single model, which is the case we present here.  

If we assume that the sediment concentration in the column is high, and 
homogeneous at t = 0, it is possible to mathematically define a fractal floc size, even 
when the sediment is not flocculated or the flocs (if any) are not fractal. In the case 
the sediment is flocculated, the mathematical floc size will always be larger or equal 
to the actual floc size and the fractal dimension of the mathematical floc size will not 
necessarily be the fractal dimension of the actual floc (if the actual floc is fractal). 
The reason for this is linked to an important requirement of the model: the 
mathematical flocs should be space-filling – also in the settling region. The proper 
illustration for the model is therefore the following: 

 

Schematic representation of the column filled by mathematical fractal flocs; contrary to the 
previous illustration, the flocs are here only mathematical objects. The real particles inside 

the column are not (necessarily) flocs or fractal and their size is usually smaller than the size 
of the mathematical fractal flocs, as the real particles do not have to be space-filling. 

The advantage of this approach is that there is no mathematical discontinuity 
between the settling and the consolidation phases (the same parameters, i.e. the 
same permeability and effective stress are used for both phases). We will see with 
examples at the end of the chapter the limitations of this approach. 
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As we assume that at a position z in the column (also for times larger than zero) the 
whole slice is filled by flocs, we can say that the volume fraction of clay at height z is 
in good approximation equal to the fraction of clay within a floc: 

𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥 =
volume clay in a floc

volume of a floc
 

In Chapter 5 we have introduced fractals. We have said that the number of primary 
particles inside the floc is given by: 

 𝑁𝑁 = �
𝑅𝑅𝑁𝑁
𝜋𝜋
�
𝐷𝐷

 

where D is the fractal dimension,  a is the size of a primary particle and 𝑅𝑅𝑁𝑁 the size 
of the fractal floc.  In the case that the primary particles are not spheres and have a 
radius of gyration Rp, the exact size one has to take for a primary particle is often 
unknown: 

 

Depending on the way clay platelets aggregate, the characteristic size R of a primary 
particle (that can be approximated by the centre-to-centre distance between two 
platelets) can be quite different from the radius of gyration Rp of the platelet. An 
unknown factor λ1 that ranges between a very small number and one can be 
introduced to reflect the fact that the number of primary particles in a floc is 
unknown: 

𝑁𝑁 = �
𝑅𝑅𝑁𝑁
𝜆𝜆1𝑅𝑅𝑝𝑝

�
𝐷𝐷

 

Similarly, the amount of clay contained in the radius of gyration Rp is depending on 
the shape of the clay particle, which leads to the introduction of a parameter 𝜆𝜆2: 
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volume clay in a floc = 𝜆𝜆2
4
3
𝜋𝜋𝑅𝑅𝑝𝑝3 

One therefore obtains: 

𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥 =
𝜆𝜆2𝑁𝑁𝑅𝑅𝑝𝑝3

𝑅𝑅𝑁𝑁3
=
𝜆𝜆2
𝜆𝜆1𝐷𝐷
�
𝑅𝑅𝑝𝑝
𝑅𝑅𝑁𝑁
�
3−𝐷𝐷

 

From this last equation, we find a relation between the volume fraction of clay and 
the size of a floc 𝑅𝑅𝑁𝑁. As on the right-hand side, only 𝑅𝑅𝑁𝑁 is a function of z, we get:  

𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥(𝑑𝑑, 𝑡𝑡) ~ �
𝑅𝑅𝑁𝑁(𝑑𝑑, 𝑡𝑡)
𝑅𝑅𝑝𝑝

�
𝐷𝐷−3

 

This small digression about non-spherical primary particles is only relevant for 
estimating the clay volume fraction of “real” flocs. For the “mathematical” flocs, it is 
simpler to assume the primary particles are spherical. The shape and size of flocs is 
irrelevant for the model. 

A small discussion about the fractal dimension of “mathematical” flocs 

Let us recapitulate briefly the way we connected the volume fraction 𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥  to the 
fractal dimension D (for simplicity we assume that there are no other particles 
present and hence 𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥 = 𝜙𝜙𝑠𝑠): 

The clay volume fraction 𝜙𝜙clay in a floc of a floc made of clay primary particles is equal 
to the number of primary particles times the volume of a primary particle divided by 
the volume of a floc: 

𝜙𝜙clay in a floc ~
𝑁𝑁 ∙ 𝑅𝑅𝑝𝑝3

𝑅𝑅𝑁𝑁3
  

As we have made the assumption that the flocs are space-filling, 𝜙𝜙clay in a floc is also 
the volume fraction of a slice of the column at a given height z: 

𝜙𝜙clay in a floc(𝑑𝑑) = 𝜙𝜙𝑠𝑠(𝑑𝑑) 

As, by definition of a fractal, 

𝑁𝑁 ~ �
𝑅𝑅𝑁𝑁
𝑅𝑅𝑝𝑝
�
𝐷𝐷

 

one gets 
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𝜙𝜙𝑠𝑠 ~ �
𝑅𝑅𝑝𝑝
𝑅𝑅𝑁𝑁
�
3−𝐷𝐷

 

which is the relation we have been using so far.  

There is, however, a little subtlety: we have attributed the value 𝜙𝜙𝑠𝑠(𝑑𝑑) to a slice of 
thickness 𝑑𝑑𝑑𝑑 of the column. This slice 𝑑𝑑𝑑𝑑 should of course be small for mathematical 
reasons, but as we have explicitly taken the fractal floc to be spherical, the slice 
should be larger than the radius 𝑅𝑅𝑁𝑁 for all positions and all times, otherwise 𝜙𝜙𝑠𝑠(𝑑𝑑) 
would vary unrealistically: 

 

Improper thickness 𝑑𝑑𝑑𝑑 of a slice: as 𝑑𝑑𝑑𝑑 < 𝑅𝑅𝑁𝑁 the volume fraction 𝜙𝜙𝑠𝑠(𝑑𝑑) would vary 
from a low, high and again low number for three consecutive 𝑑𝑑𝑑𝑑 

In fact, as one assumes the volume fraction 𝜙𝜙𝑠𝑠(𝑑𝑑) to be constant for a small slice 𝑑𝑑𝑑𝑑, 
one should preferably want to assume that the considered flocs are isotropic in that 
direction, i.e. implying that they should not be spherical but cylindrical, with 
translational symmetry along z for each thickness 𝑑𝑑𝑑𝑑. This would put no restriction 
on how small 𝑑𝑑𝑑𝑑 could be. If we take such cylindrical flocs, with their base being a 
2D fractal, one would get for the clay volume fraction: 

𝜙𝜙clay in a floc ~ 
𝑁𝑁 ∙ 𝑅𝑅𝑝𝑝2 ∙ 𝑑𝑑𝑑𝑑
𝑅𝑅𝑁𝑁2 ∙ 𝑑𝑑𝑑𝑑

 

Along the same derivation lines as above, this would give: 

𝜙𝜙𝑠𝑠 ~ �
𝑅𝑅𝑝𝑝
𝑅𝑅𝑁𝑁
�
2−𝐷𝐷

 

For primary particles that are space-filling, the fractal dimension would therefore be 
2 in this case and not 3. A fractal dimension of 1 corresponds also to the case where 
the primary particles are space-filling, i.e. occupying the whole given line, curve or 
volume considered. In fact all fractal dimensions that are integers (1, 2 or 3) 
correspond to “primary particles that are space-filling”: 

Let us imagine that we have primary particles such that 

𝑁𝑁 ~�
𝑅𝑅𝑁𝑁
𝑅𝑅𝑝𝑝
�
1
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This also implies that  

𝑁𝑁𝐷𝐷 ~�
𝑅𝑅𝑁𝑁
𝑅𝑅𝑝𝑝
�
𝐷𝐷

 

If D = 2 or 3, this means that we have completely filled the area or volume (𝑅𝑅𝑁𝑁)𝐷𝐷 
with primary particles (which are therefore “space-filling”). If the dimension D is not 
an integer, then (𝑅𝑅𝑁𝑁)𝐷𝐷 does not represent a curve, an area or a volume anymore, 
but simply relates the amount of primary particles to the size 𝑅𝑅𝑁𝑁: 

𝑅𝑅𝑁𝑁 = 𝑁𝑁1/𝐷𝐷 ∙ 𝑅𝑅𝑝𝑝 

The important conclusion here is that the fractal dimension is simply a convenient 
tool to model the system: one may chose the mathematical flocs to be spherical or 
cylindrical. In the end, after fitting the data, one should find the same values for the 
fractal dimension with a 1 difference: if one finds, for example D = 2,63 with the 
spherical approach, one will find D = 1,63 with the cylindrical approach. A value of D 
= 2 (cylindrical approach) or D = 3 (spherical approach) implies that the primary 
particles are space-filling. 

In order to be consistent with the work of Merckelbach, we will continue here to use 
the following definition: 

𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥(𝑑𝑑, 𝑡𝑡) ~ �
𝑅𝑅𝑁𝑁(𝑑𝑑, 𝑡𝑡)
𝑅𝑅𝑝𝑝

�
𝐷𝐷−3

 

At time t = 0, we have 𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥 = 𝜙𝜙0 and therefore 

𝜙𝜙0 ~ �
𝑅𝑅𝑁𝑁(𝑑𝑑, 𝑡𝑡 = 0)

𝑅𝑅𝑝𝑝
�
𝐷𝐷−3

 

In the limiting case that D = 3, one gets 

𝜙𝜙0 = 1 

and no fractal approach can be used, as there is no proper way to define the volume 
of a floc. In the case 𝜙𝜙0 = 1, there is no settling and no consolidation, as all the 
primary particles (of radius 𝑅𝑅𝑝𝑝) are touching, and by hypothesis, cannot deform. The 
case 𝜙𝜙0 = 1 is corresponding to a fully gelled state of primary particles. Depending 
on the shape of particles 𝜙𝜙0 will be smaller than 1 in most cases (𝜙𝜙0 = 0.74 for 
compacted spheres in their most compacted form). 
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If the characteristic size 𝑅𝑅𝑝𝑝 of the primary particle can be evaluated (by static light 
scattering for instance), it is then possible to have an estimation of the mathematical 
fractal floc size at t = 0: 

𝑅𝑅𝑁𝑁 ~ 𝑅𝑅𝑝𝑝(𝜙𝜙0)
1

𝐷𝐷−3 

If we assume that the fractal dimension is given by D = 2.63 (which is a reasonable 
value, close to what is generally found in experiments), we get: 

 

This implies that for an initial concentration of 150 g/L (𝜙𝜙0 = 150/2650 = 0.0566), 
having an homogeneous suspension of particles of size 0.1 microns would give an 
effective fractal floc radius of 0.23 mm whereas 10 microns particles would give 2.35 
cm. For lower volume fractions, the floc radius becomes clearly unrealistic. For 50 
g/L for example and 10 microns particles, one would get a radius of 45 cm, much 
larger than the settling column radius! 

From above, we deduce that the fractal approach will only be appropriate for high 
concentrations of clay, as one of the assumption made in the model (see 
underneath) is that the size of a pore scales as the size of a floc. 

Note that if the density of the suspension is known and equal to 𝑣𝑣 and that we 
assume that the flocs are filling all the space, one finds, from the definition 𝑣𝑣 =
𝑣𝑣𝑠𝑠𝜙𝜙0 + 𝑣𝑣𝑤𝑤(1 − 𝜙𝜙0) that: 

𝜙𝜙0 =
 𝑣𝑣 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤

 

which is a convenient way to estimate the initial volume fraction. 

The hypotheses required for the model are summarized here: 



Chapter 10 Modelling the consolidation of slurries 

 275 

(a) the sample should be homogeneous at t = 0. This implies that if the sample is 
polydisperse and contains both silt and clay (for simplicity we assume here there is 
no sand fraction – which anyhow would settle quite quickly at the bottom of the 
column), that at any height in the column the ratio 𝜙𝜙𝑠𝑠𝑖𝑖𝑙𝑙𝑡𝑡/𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥  does not depend on 
z. 

(b) The portion of the column under consideration is filled by mathematical fractal 
flocs (so, no real flocs, see discussion above) that are touching one another. These 
flocs are made of clay particles. If silt particles are present, they act as filling material 
for the flocs: 

 

Schematic representation of flocs at two different heights in the columns. The flocs are made 
of clay particles (yellow) and some silt particles are imbedded inside the flocs (brown) 

(c) at a same height, all flocs settle with the same velocity. As we also consider that 
all flocs have the same fractal dimension and are made of the same primary particles, 
this implies that all the flocs at a given height have the same size.  

The volume fraction of clay is linked to the total solid volume fraction by: 

𝜙𝜙𝑠𝑠(𝑑𝑑) = 𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥(𝑑𝑑) + 𝜙𝜙𝑠𝑠𝑖𝑖𝑙𝑙𝑡𝑡(𝑑𝑑) 

By dividing this relation by 𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥  one gets: 

𝜙𝜙𝑠𝑠(𝑑𝑑)
𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥(𝑑𝑑) = 1 +

𝜙𝜙𝑠𝑠𝑖𝑖𝑙𝑙𝑡𝑡(𝑑𝑑)
𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥(𝑑𝑑) 

As we have made the hypothesis that 𝜙𝜙𝑠𝑠𝑖𝑖𝑙𝑙𝑡𝑡/𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥  does not depend on z, we deduce 
that the ratio 𝜙𝜙𝑠𝑠/𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥   does neither. This implies that at any given height the solid 
volume fraction is only proportional to the clay fraction: 

𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡) = �1 +
𝜙𝜙𝑠𝑠𝑖𝑖𝑙𝑙𝑡𝑡
𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥

�𝜙𝜙𝑐𝑐𝑙𝑙𝑎𝑎𝑥𝑥(𝑑𝑑, 𝑡𝑡) 
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Relation for 𝑲𝑲(𝝓𝝓𝑺𝑺) 

 In order to find the dependence of the 
permeability on z we will use a dimension 
analysis. If one calculates the permeability of 
a system of pores as sketched opposite, one 
can show that the permeability is 
proportional to132: 

𝐾𝐾 ~ (1 − 𝜙𝜙𝑆𝑆)𝑟𝑟2 

 where r is the size of a pore.   

Using this equivalence, we obtain: 

𝐾𝐾(𝑑𝑑, 𝑡𝑡) ~ �𝑅𝑅𝑁𝑁(𝑑𝑑, 𝑡𝑡)�2 

where we have used the assumptions that: 

(a)  𝜙𝜙𝑆𝑆 ≪ 1. This hypothesis is certainly true at the beginning of consolidation, as we 
have seen that, to give an order of magnitude, an initial concentration of 150 g/L 
gives 𝜙𝜙0 = 150/2650 = 0.0566 ≪ 1. the hypothesis should however be checked 
at the end of consolidation, for the deepest layers in the column. 

(b) The size of the largest connecting pores scales as 𝑅𝑅𝑁𝑁: 

 

the blue circle is the middle (connecting pore) has the same size as the flocs (dashed circles) 

This is a consequence of the scale invariance (a property of fractals). The fractal 
approach is therefore a convenient and mathematically elegant way to describe the 
change of volume fraction with position 𝑑𝑑 and time 𝑡𝑡. As both 𝑅𝑅𝑝𝑝 and D are assumed 
be constant, mathematically if 𝜙𝜙𝑠𝑠 is increasing, 𝑅𝑅𝑁𝑁 is decreasing. This does not mean 
that the “real” flocs (if any) in the system are becoming smaller: physically, what is 

                                                                 
132 The equation that gives 𝐾𝐾𝑠𝑠𝑖𝑖𝑒𝑒𝑔𝑔𝑙𝑙𝑒𝑒  ~ 𝑟𝑟2 for one pore is the Poiseuille equation. For a bundle 
of pores as sketched here, one has: 𝐾𝐾 = (1 − 𝜙𝜙𝑆𝑆)𝐾𝐾𝑠𝑠𝑖𝑖𝑒𝑒𝑔𝑔𝑙𝑙𝑒𝑒  from simple geometrical 
consideration. 
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expected to happen is that real flocs becomes squeezed and their shape (and 
density) is changing. If there are no flocs but only suspended particles in the column 
what happens is that the distance between particles is decreasing until they are 
touching one another. 

 

The fractal approach: the “flocs” are assumed to be space-filling, and the clay volume 
fraction is increasing when the size of the flocs is decreasing. Note that the size of the pores 

(voids between primary particles) indeed scales as 𝑅𝑅𝑁𝑁. 

Linking 𝑅𝑅𝑁𝑁 to 𝜙𝜙𝑠𝑠, the permeability is defined by: 

𝐾𝐾(𝑑𝑑, 𝑡𝑡) =  𝐾𝐾𝑘𝑘[𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡)]−𝑒𝑒   with   𝜕𝜕 =
2

3 − 𝑑𝑑
 

 where 𝐾𝐾𝑘𝑘  is a factor not depending on z or t. 

Relation for 𝛔𝛔𝒔𝒔𝒔𝒔(𝝓𝝓𝑺𝑺) 

We now would like to find a similar type of relation for σ𝑠𝑠𝑘𝑘. First we will define the 
isotropic stress in the skeleton as: 

σ𝑠𝑠𝑘𝑘0 = 𝐹𝐹(𝜕𝜕𝑡𝑡𝑏𝑏𝑡𝑡 − 𝜕𝜕𝑖𝑖) 

where 𝐹𝐹 is the force of one bond, 𝜕𝜕𝑡𝑡𝑏𝑏𝑡𝑡 is the total number of bonds per unit area: 

𝜕𝜕𝑡𝑡𝑏𝑏𝑡𝑡 = 𝜕𝜕𝑎𝑎 + 𝜕𝜕𝑖𝑖 

where 𝜕𝜕𝑎𝑎 is the number of bonds per unit area on which a stress is exerted (“active 
bond”) and 𝜕𝜕𝑖𝑖  the number of bonds per unit area on which no stress is exerted 
(“inactive bond”). 
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In the fractal approach we take here, with touching fractal flocs, the total number of 
bonds per unit area is given by: 

𝜕𝜕𝑡𝑡𝑏𝑏𝑡𝑡(𝑑𝑑, 𝑡𝑡) =
𝜕𝜕0

�𝑅𝑅𝑁𝑁(𝑑𝑑, 𝑡𝑡)�2
 

where 𝜕𝜕0 is the number of bonds per floc: this is invariant for any floc size (scale 
invariance is a property of fractals): 

 

the number of bonds (in this case 4) does not change with the size of flocs 

We deduce that: 

σ𝑠𝑠𝑘𝑘0 (𝑑𝑑, 𝑡𝑡) = 𝐹𝐹 �
𝜕𝜕0

(𝑅𝑅𝑁𝑁(𝑑𝑑, 𝑡𝑡))2 − 𝜕𝜕𝑖𝑖� 

Note that 𝐹𝐹, 𝜕𝜕0 and 𝜕𝜕𝑖𝑖  do not depend on z. From the dependence of 𝑅𝑅𝑁𝑁 on 𝜙𝜙𝑠𝑠 we 
get: 

σ𝑠𝑠𝑘𝑘0 (𝑑𝑑, 𝑡𝑡) ≈  𝐴𝐴[𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡)]𝑒𝑒 − 𝐹𝐹𝜕𝜕𝑖𝑖    with   𝜕𝜕 =
2

3 − 𝑑𝑑
 

where A is a factor that does not depend on z. The total effective stress σ𝑠𝑠𝑘𝑘0  is related 
to the vertical effective (skeleton) stress σ𝑠𝑠𝑘𝑘  and the horizontal one σ𝑠𝑠𝑘𝑘ℎ  by: 

σ𝑠𝑠𝑘𝑘0 =
1
3
σ𝑠𝑠𝑘𝑘 +

2
3
σ𝑠𝑠𝑘𝑘ℎ  

This relation can be re-written: 

σ𝑠𝑠𝑘𝑘0 =
1 + 2σ𝑠𝑠𝑘𝑘ℎ /σ𝑠𝑠𝑘𝑘

3
σ𝑠𝑠𝑘𝑘  

Assuming that σ𝑠𝑠𝑘𝑘ℎ /σ𝑠𝑠𝑘𝑘  does not depend on 𝜙𝜙𝑠𝑠 the skeleton stress is defined as: 

σ𝑠𝑠𝑘𝑘(𝑑𝑑, 𝑡𝑡) =  𝐾𝐾𝜎𝜎[𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡)]𝑒𝑒 − 𝐾𝐾𝜎𝜎0 

where 𝐾𝐾𝜎𝜎  and 𝐾𝐾𝜎𝜎0 are factors that do not depend on z or t.  
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We have now found two constitutive equations 𝐾𝐾�𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡)� and σ𝑠𝑠𝑘𝑘�𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡)� which 
enables us to solve (analytically) the Gibson equation. We will do this for three 
different cases. The first and second solutions given underneath correspond to the 
primary consolidation regime defined in Chapter 9. The first solution is given for the 
case there is both a settling and a consolidation phase whereas the second solution 
corresponds to the case the settling phase has disappeared and there is only 
consolidation. The transition between the first and second solution occurs at the 
gelling time t1 that will be defined below. The last solution corresponds to the end 
of consolidation, at equilibrium. For this solution creep effects are neglected. 
Mathematically, this implies that 𝐾𝐾𝜎𝜎  and 𝐾𝐾𝜎𝜎0 are not time-dependent, i.e. that over 
time the fabric (the clay skeleton) does not deform. The secondary compression 
regime, as defined in Chapter 9 cannot be solved analytically and will be discussed 
at the end of the chapter, where numerical solutions will be presented. 

The setting regime (below the gelling time, t < t1) 

At the initial stage of consolidation, we make the hypothesis that the self-weight is 
almost entirely borne by the pore water, thus: 

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

≈ 0 

for all heights. Intuitively, one can already predict that this hypothesis is 
questionable as time increases for the deepest layers close to the bottom of the 
column, which we define by the position z = 0. The validity of the assumption and its 
consequences will be discussed at the end of the chapter. From the previous 
subsection, we have: 

𝐾𝐾(𝑑𝑑, 𝑡𝑡) =  𝐾𝐾𝑘𝑘[𝜙𝜙𝑠𝑠(𝑑𝑑, 𝑡𝑡)]−𝑒𝑒 

The Gibson equation therefore becomes: 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

= 𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(2 − 𝜕𝜕)𝜙𝜙𝑠𝑠1−𝑒𝑒
𝜕𝜕𝜙𝜙𝑠𝑠
𝜕𝜕𝑑𝑑

 

This equation is a nonlinear convection equation, similar to Kynch’s sedimentation 
equation, and can  be solved by the method of characteristics.  

The method of characteristics 

The method can be applied to solve equations of the type: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
𝜋𝜋(𝑥𝑥, 𝑡𝑡,𝑢𝑢) +

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

𝑏𝑏(𝑥𝑥, 𝑡𝑡,𝑢𝑢) = 𝑐𝑐(𝑥𝑥, 𝑡𝑡,𝑢𝑢) 
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This method relies on the property that the function 𝑢𝑢(𝑥𝑥, 𝑡𝑡) can be differentiated 
with respect to a variable 𝑠𝑠 (not yet defined) as: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑠𝑠

=
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

𝜕𝜕𝑡𝑡
𝜕𝜕𝑠𝑠

+
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑠𝑠

 

If we now define the variable s as the curvilinear coordinate along a curve in the (𝑥𝑥, 𝑡𝑡) 
plane by: 

𝜕𝜕𝑡𝑡
𝜕𝜕𝑠𝑠

= 𝜋𝜋(𝑥𝑥, 𝑡𝑡,𝑢𝑢) 

𝜕𝜕𝑥𝑥
𝜕𝜕𝑠𝑠

= 𝑏𝑏(𝑥𝑥, 𝑡𝑡,𝑢𝑢) 

Then we simply have to solve, along with the 2 previous equations: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑠𝑠

= 𝑐𝑐(𝑥𝑥, 𝑡𝑡,𝑢𝑢) 

In other words: we have transformed an equation with partial differentials in a series 
of 3 ordinary differential equations that are easier to solve.  

In our case, we can apply the method of characteristics using the function 𝜙𝜙𝑆𝑆 instead 
of 𝑢𝑢 and the variables 𝑑𝑑, 𝑡𝑡 instead of 𝑥𝑥, 𝑡𝑡. We then find that we have to solve: 

𝜕𝜕𝑡𝑡
𝜕𝜕𝑠𝑠

= 1 

𝜕𝜕𝑑𝑑
𝜕𝜕𝑠𝑠

= −𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(2 − 𝜕𝜕)𝜙𝜙𝑠𝑠1−𝑒𝑒 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑠𝑠

= 0 

The last equation can be solved into: 

𝜙𝜙𝑆𝑆 = constant 

This implies that the lines of constant 𝜙𝜙𝑆𝑆 are representing the curves associated with 
the curvilinear coordinate s. These lines are represented by the black lines on the 
figure underneath.  
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Variation of the interface with time for a suspension that at start is below the gelling 
concentration. 𝜙𝜙𝑆𝑆 represents the volume fraction of the particles, 𝜙𝜙0 is their initial volume 

fraction and 𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙 = 𝜙𝜙0  is the volume fraction at the suspension/bed interface, below which 
𝜙𝜙𝑆𝑆 > 𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙 . Until the gelling time t1 there is a suspension/bed interface. Above t1 only the 

water/bed interface remains. 

Above the suspension/bed line the volume fraction is by definition constant and 
equal to 𝜙𝜙0 so that the lines of constant 𝜙𝜙𝑆𝑆 occupy the whole area below the 
water/suspension interface. 

The variable s can be eliminated by combining the two first equations from which 
𝑑𝑑(𝑡𝑡) is obtained: 

𝑑𝑑(𝑡𝑡) = 𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(𝜕𝜕 − 2)𝜙𝜙𝑠𝑠1−𝑒𝑒𝑡𝑡 + 𝑑𝑑(0) 

Solving this equation for 𝜙𝜙𝑆𝑆 with 𝑑𝑑(0) = 0, one finds for 0 < 𝑑𝑑 ≤ ℎ𝑏𝑏: 

𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡) = �𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(𝜕𝜕 − 2)
𝑡𝑡
𝑑𝑑
�

1
𝑒𝑒−1

 

An interesting case if for 𝑑𝑑 = ℎ𝑏𝑏 for which 𝜙𝜙𝑆𝑆 = 𝜙𝜙0. It enables to find the height of 
the bed with time: 

ℎ𝑏𝑏(𝑡𝑡) = 𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(𝜕𝜕 − 2)𝜙𝜙01−𝑒𝑒𝑡𝑡 

from which we deduce that: 

𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡) = 𝜙𝜙0 �
ℎ𝑏𝑏(𝑡𝑡)
𝑑𝑑

�

1
𝑒𝑒−1
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As drawn at the beginning of the chapter, ℎ𝑏𝑏(𝑡𝑡) is a linearly increasing function of 
time and hence 𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒  is constant as function of time. Using conservation of mass (by 
evaluating the Gibson height 𝐿𝐿𝐺𝐺  defined in Chapter 9) allows to determine ℎ(𝑡𝑡), i.e. 
the water/suspension interface height: 

𝐿𝐿𝐺𝐺 = � 𝜙𝜙𝑆𝑆𝑑𝑑𝑑𝑑
ℎ

0
= � 𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡)𝑑𝑑𝑑𝑑

ℎ𝑏𝑏

0
+ � 𝜙𝜙0𝑑𝑑𝑑𝑑

ℎ

ℎ𝑏𝑏
= 𝜙𝜙0𝑆𝑆 

where  𝑆𝑆 is the height of the suspension in the column at 𝑡𝑡 = 0. After integration 
one finds: 

𝐿𝐿𝐺𝐺 = �𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(𝜕𝜕 − 2)𝑡𝑡�
1

𝑒𝑒−1 1 − 𝜕𝜕
2 − 𝜕𝜕

(ℎ𝑏𝑏)
𝑒𝑒−2
𝑒𝑒−1 + 𝜙𝜙0(ℎ − ℎ𝑏𝑏) 

Combining the expressions for 𝐿𝐿𝐺𝐺  and ℎ𝑏𝑏 one finds: 

𝐿𝐿𝐺𝐺 = �
1

𝜕𝜕 − 2
�𝜙𝜙0ℎ𝑏𝑏 + 𝜙𝜙0ℎ 

ℎ(𝑡𝑡) = 𝑆𝑆 − 𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

𝜙𝜙01−𝑒𝑒𝑡𝑡 

The gelling time 

The time t1 is called the “gelling time” as the settling phase has now disappeared. At 
𝑡𝑡 = 𝑡𝑡1one has ℎ = ℎ𝑏𝑏 (the interface water/suspension has disappeared) and from 
the relation found above we get: 

𝑡𝑡1 =
𝑣𝑣𝑤𝑤

𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝐿𝐿𝐺𝐺𝜙𝜙0𝑒𝑒−2

(𝜕𝜕 − 1)𝐾𝐾𝑘𝑘
 

The height at the gelling time is given by 

ℎ𝑏𝑏(𝑡𝑡1) = ℎ(𝑡𝑡1) = 𝑆𝑆
𝜕𝜕 − 2
𝜕𝜕 − 1

 

Even though this height is independent on 𝐾𝐾𝑘𝑘  and could be used to determine 𝜕𝜕, in 
practice, it is very difficult to estimate. A better way to estimate 𝜕𝜕 is given in the next 
section. 

The primary compression regime (above the gelling time, t > t1) 

When t  > t1 the interface water/suspension has disappeared. The density profile is 
then independent on the initial condition. In that case, we have: 
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𝐿𝐿𝐺𝐺 = � 𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡)𝑑𝑑𝑑𝑑
ℎ

0
 

One then finds: 

𝐿𝐿𝐺𝐺 = �𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(2 − 𝜕𝜕)𝑡𝑡�
1

𝑒𝑒−1 1 − 𝜕𝜕
2 − 𝜕𝜕

(ℎ)
𝑒𝑒−2
𝑒𝑒−1 

This leads to: 

ℎ(𝑡𝑡) = �𝐿𝐿𝐺𝐺
2 − 𝜕𝜕
1 − 𝜕𝜕

�
1−𝑒𝑒
2−𝑒𝑒

�𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(𝜕𝜕 − 2)𝑡𝑡�
1

2−𝑒𝑒
 

We have now found that  

ℎ(𝑡𝑡) ~ 𝑡𝑡
1

2−𝑒𝑒 = 𝑡𝑡
3−𝐷𝐷
4−2𝐷𝐷 

The fractal dimension D can therefore be determined from the water/gel interface 
as function of time. When plotting the data on a double logarithmic scale, one gets 
(3 − 𝑑𝑑)/(4 − 2𝑑𝑑) from the slope of the obtained line. 

The unknown parameter 𝐾𝐾𝑘𝑘  can subsequently be found by fitting the data for any 
time. In practice it is often found that the values for 𝐾𝐾𝑘𝑘   differ when the data is 
plotted for t < t1 or for t > t1  as settling and consolidation are unrelated. From 𝐾𝐾𝑘𝑘  
the permeability 𝐾𝐾(𝑑𝑑) can be estimated. 

Examples 

The analytical solution for t < t2 

A typical interface profile is given underneath where we used the found analytical 
expressions for ℎ(𝑡𝑡) and ℎ𝑏𝑏(𝑡𝑡) and the following representative parameters:  

𝑣𝑣𝑤𝑤 = 103 kg/m3 𝑣𝑣𝑠𝑠 = 2600 kg/m3 H = 1 m g = 9.81 m2/s 
D = 2.63 𝜙𝜙0 = 2.5 % 𝐾𝐾𝑘𝑘 = 1.5 × 10−9 m/s  

 

From the figure, one can see that the analytical solution gives unrealistic values for 
the interface at long times. In fact, at infinite time the size of the interface will be 
zero, as can be easily verified from the expression for ℎ(𝑡𝑡) given above. At long 
times, it is not correct to assume that the effects of the skeleton stress can be 
omitted. This is discussed further in the next example, where we compare the 
analytical solution to the numerical solution, found by solving the full Gibson 
equation. 
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The final size of the bed (when the consolidation has stopped and 𝜙𝜙𝑠𝑠(𝑑𝑑) is 
independent of time) can also be evaluated analytically, as shown in the next 
section. 

 

Water / sediment interface with time. In the settling phase the volume fraction at any height 
is given by the initial volume fraction. Darker region: build-up of the bed-sol interface. Note 

that we used a semilog scale. The two lines join at t = t1 (gel point). In this example t1 = 8.2 s. 

Comparison between the analytical and  numerical solution of the Gibson equation 
for t < t1 

The analytical solutions given in the sections above are here compared with the 
numerical solution of the full Gibson equation. We recall that the analytical solution 
has been derived under the assumption that 𝜕𝜕σ𝑠𝑠𝑘𝑘 𝜕𝜕𝑑𝑑⁄ ≈ 0. 
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Volume fraction as function of height in the column after 290 days. Dashed red: initial 
volume fraction; Dotted black: volume fraction end profile; dashed green: analytical solution; 

blue line: numerical solution. 𝐾𝐾𝑘𝑘 = 1.74 × 10−13 m/s, 𝐾𝐾𝜎𝜎 = 1.26 × 107 Pa, D = 2.7, 𝜙𝜙0 =
0.2; other parameters as in the table given above. 

The volume fraction profile is for the situation we are below the gel(ling) point. This 
is confirmed on the figure by the fact that between 0.4 and 0.8 m the volume fraction 
is still equal to the initial volume fraction. The blue line, which corresponds to the 
numerical solution of Gibson equation, using both the permeability and effective 
stress terms, would reduce to the green dashed line, which corresponds to the 
analytical profile if the effective stress term would be set equal to zero.  

Because of the effective stress term, which mathematically corresponds to a 
diffusion term (the permeability term is comparable to an advection term), the 
interfaces between water / suspension and suspension / bed are not clearly defined 
for the numerical solution. One can therefore already conclude that if one wants to 
use the analytical method detailed above in combination with measurements of 
interfaces against time this will only be possible for systems in which the effective 
stress terms are quite small – these kind of systems are for instance suspensions of 
concentrated hard (unflocculated) particles. Experimentally, as we have seen 
already in Chapter 8 (see section “Finding the hindered settling function from the 
equilibrium profile”) the change in volume fraction between 0 and 𝜙𝜙0 occurs over a 
distance of the order of 1 or 2 mm (in the numerical example we showed above, we 
used a very large 𝐾𝐾𝜎𝜎  to exaggerate the effect). 

The discrepancy between analytical and numerical solution at the bottom of the 
column clearly demonstrate that even below the gelling point (in the primary 
consolidation regime) the assumption 



Introduction to Colloid Science 

 286 

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

≈ 0 

is not valid. In the absence of diffusion, there is no constraint to prevent all the 
particles reaching the bottom of the column as we have implicitly treated the 
particles as having no volume (point-like objects). Mathematically, this is symbolised 
by the fact that the analytical solution (in the absence of effective stress – i.e.  a 
diffusion term), scales as 

𝜙𝜙𝑆𝑆(𝑑𝑑, 𝑡𝑡) ~ �
1
𝑑𝑑
�

1
𝑒𝑒−1

 

At the bottom of the column one gets 𝜙𝜙𝑆𝑆(𝑑𝑑 = 0, 𝑡𝑡) → ∞. This unphysical result 
implies that the  water/suspension interface, which is calculated from mass 
conservation through the evaluation of the Gibson height, will become lower than 
the actual interface at longer times. In the case of the settling of hard particles, 
where only advection (settling) play a role, it is numerically easy to limit the filling of 
the settling column by imposing that each slice of the column should not exceed a 
given volume fraction, i.e. the maximum packing volume fraction of particles.  

In conclusion, the fractal approach method explained in this chapter can be applied 
for t < t2  in the case of concentrated hard particles that are settling without 
significant diffusion. From the procedures explained in the previous sections for 
below and just above the gelling time, 𝐾𝐾𝑘𝑘  and the fractal parameter 𝜕𝜕 dimension can 
be obtained from which the permeability can be deduced.   

As discussed in the introduction,  these fractal parameter 𝜕𝜕 and  𝐾𝐾𝑘𝑘  parameter are 
however not expected to be the same above and below t1  as in the model we have 
made the hypothesis that the flocs are space-filling both in the settling and in the 
consolidation phase. In fact, the space-filling criterion is in most cases expected to 
be valid above t1 and not below.  

In a later section, we will show how this cross-over between settling and 
consolidation is found in experiments, and how we can model it.  

Determination of the effective stress : end of consolidation (t > t2) 

From the results of this subsection, we will get an estimated of the final bed height 
when consolidation is finished. 

In the final stage of consolidation, the structure is bearing and we can estimate that 

𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 ≈ 0 

From the modified Darcy equation (see Chapter 9), we had: 
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𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 =
𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

=
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 +
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

 

Which now gives: 

𝜙𝜙𝑆𝑆 +
1

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

≈ 0 

Using the equation 

σ𝑠𝑠𝑘𝑘 =  𝐾𝐾𝜎𝜎[𝜙𝜙𝑠𝑠(𝑑𝑑)]𝑒𝑒 − 𝐾𝐾𝜎𝜎0 

We substitute 𝜙𝜙𝑠𝑠 and find: 

𝜙𝜙𝑆𝑆 +
𝜕𝜕

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔
𝐾𝐾𝜎𝜎[𝜙𝜙𝑠𝑠]𝑒𝑒−1

𝜕𝜕𝜙𝜙𝑠𝑠
𝜕𝜕𝑑𝑑

= 0 

This yields 

𝜕𝜕[𝜙𝜙𝑠𝑠]𝑒𝑒−1

𝜕𝜕𝑑𝑑
=
−(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔

𝜕𝜕𝐾𝐾𝜎𝜎
(𝜕𝜕 − 1) 

At long times, the bed/water interface has reached a constant value (𝑑𝑑 = ℎ∞) and 
the final volume fraction profile can be estimated to be, using σ𝑠𝑠𝑘𝑘(ℎ∞) = 0: 

𝜙𝜙𝑠𝑠(ℎ∞) = �
𝐾𝐾𝜎𝜎0
𝐾𝐾𝜎𝜎

�
1
𝑒𝑒

 

We will assume that creep effects are neglected, hence 𝐾𝐾𝜎𝜎0 = 0 and 

𝜙𝜙𝑠𝑠(ℎ∞) = 0 

We can now evaluate: 

�
𝜕𝜕[𝜙𝜙𝑠𝑠]𝑒𝑒−1

𝜕𝜕𝑑𝑑
𝑑𝑑𝑑𝑑

ℎ∞

𝑧𝑧
= �

−(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔
𝜕𝜕𝐾𝐾𝜎𝜎

(𝜕𝜕 − 1)𝑑𝑑𝑑𝑑
ℎ∞

𝑧𝑧
 

which gives: 

𝜙𝜙𝑠𝑠(𝑡𝑡 → ∞, 𝑑𝑑) = �
(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔

𝜕𝜕𝐾𝐾𝜎𝜎
(𝜕𝜕 − 1)(ℎ∞ − 𝑑𝑑)�

1
𝑒𝑒−1

 

log[𝜙𝜙𝑠𝑠(𝑡𝑡 → ∞, 𝑑𝑑)] =
1

𝜕𝜕 − 1
�log[(ℎ∞ − 𝑑𝑑)] + log �

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔
𝜕𝜕𝐾𝐾𝜎𝜎

(𝜕𝜕 − 1)�� 
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By plotting the particle volume fraction, obtained from a measured density profile 
in the final stage of consolidation, versus the distance below the interface (ℎ∞ − 𝑑𝑑) 
on a double logarithmic plot the fractal dimension (via 𝜕𝜕) can be derived from the 
slope. Subsequently, the parameter 𝐾𝐾𝜎𝜎  can be obtained from any value of 𝑑𝑑. This 
method can lead to very large estimation errors however. 

The final bed height can be obtained by using once more the Gibson height: 

𝐿𝐿𝐺𝐺 = 𝜙𝜙0𝑆𝑆 = � 𝜙𝜙𝑆𝑆(𝑡𝑡 → ∞, 𝑑𝑑)𝑑𝑑𝑑𝑑
ℎ∞

0
 

which gives: 

ℎ∞ =
𝜕𝜕

(𝜕𝜕 − 1)𝜙𝜙0𝑆𝑆 �
𝐾𝐾𝜎𝜎

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙0𝑆𝑆
�
1
𝑒𝑒

 

The volume fraction at the bottom of the settling column is given by 

𝜙𝜙𝑠𝑠(𝑡𝑡 → ∞, 𝑑𝑑 = 0) =
𝜕𝜕

(𝜕𝜕 − 1)𝜙𝜙0
𝑆𝑆
ℎ∞

 

which also enables to find the fractal dimension in a simple way. The analytical 
expression is found to correctly predict the evolution of density as function of height, 
as shown in the following example: 

 

Final density profile of settled beds. Symbols: density measurements. Only the data for the 
bed of initial concentration 200 g/L (𝜙𝜙0 = 0.077) has been fitted which gave the values 𝐾𝐾𝜎𝜎 =

6.5 × 106 Pa and D = 2.65. All the other lines are plotted using these parameters.  
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The sediment used is from lake Markermeer133. The density measurements were 
done by Ultra-sonic High Concentration Meter (UHCM). We recall that the density is 
related to the volume fraction 𝜙𝜙𝑠𝑠 by: 𝑣𝑣 = 𝑣𝑣𝑠𝑠𝜙𝜙𝑠𝑠 + (1 − 𝜙𝜙𝑠𝑠)𝑣𝑣𝑤𝑤. By fitting one dataset, 
the one corresponding to the initial concentration of 200 g/L, it was possible to 
predict the bed height for all other initial concentrations. 

It remains to be seen if the fractal dimension found by fitting the “end of 
consolidation” data is the same as the one found by fitting the data above t1 . We 
will show that this is the case with the data and protocol we present.  

Settling and consolidation of natural mud 

 In the “end of consolidation” section given above, we have shown the fit of a density 
profile for a mud suspension of concentration 200 g/L, from which it was found that 
𝐾𝐾𝜎𝜎 = 6.5 × 106 Pa and D = 2.65. The parameter 𝐾𝐾𝑘𝑘 = 2.0 ∙ 10−12 m/s is found by 
fitting the time evolution of the interface for the 200 g/L mud sample using the full 
Gibson equation, keeping 𝐾𝐾𝜎𝜎  and 𝑑𝑑 constant and equal to the values found from 
fitting the density profile. We give here the theoretical evolution of density and 
excess pore water pressure for this sample: 

 

 

                                                                 
133 van den Bosch, B.A.P. The effect of initial concentration on the consolidation behaviour of 
mud: A study on lake Markermeer sediment, Master thesis, TU Delft, 2016 
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The full numerical solution is represented in blue. The analytical solution of 
Merkelbach and Kranenburg (MK) is in pink. In contrast to the example given earlier 
in this chapter, the analytical and numerical solutions agree with each other below 
the gelling point (in the period before 70 hours), as the 𝐾𝐾𝜎𝜎  is ten times smaller than 
in the previous example. At the end of consolidation the numerical solution is not to 
be distinguished from the exact analytical solution (dashed black line) and the excess 
pore water pressure is zero as 𝑃𝑃𝑤𝑤 = 𝑃𝑃ℎ𝑥𝑥𝑒𝑒 . The initial pore water pressure (red 
dashed line) is obtained by realizing that 𝜕𝜕𝜎𝜎𝑠𝑠𝑘𝑘 𝜕𝜕𝑑𝑑⁄  ~ 0, which gives: 

𝑃𝑃𝑒𝑒(𝑡𝑡 = 0) = (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑠𝑠(𝑆𝑆 − 𝑑𝑑) 

where 𝑆𝑆 is the height of fluid in the column. The theoretical time evolution of the 
water/suspension and suspension/bed for 40 g/L and 200 g/L is given here: 
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There is a good agreement between the numerical and analytical profiles until 104 s, 
but, as expected, the analytical solution becomes incorrect when diffusion (effective 
stress) plays a significant role. This happens much before the end of consolidation 
for highly concentrated mud suspensions.  

In contrast to these theoretical profiles, when recording the time evolution of the 
interfaces of real suspensions, an observable transition is expected between the 
settling and the consolidation phases, in particular for the most diluted suspension 
(40 g/L). This is indeed what has been found, see figure below. For concentrations 
less than 200 g/L, there is a discontinuity in the profile at the gel point. The 
theoretical predictions, using the same parameters 𝐾𝐾𝑘𝑘, 𝐾𝐾𝜎𝜎  and 𝑑𝑑 are given in full 
lines. For samples of higher concentrations (200 g/L, 300 g/L and 400 g/L) one can 
observe that data and predictions are in very good agreement.  

We checked that the procedure described at the beginning of this chapter, i.e. using 
the analytical approximations just above t1, works on these samples and that the 
numerical solution of the full Gibson equation reduces to the analytical solution in 
its range of validity (above t1 but well below t2). 

 

Time evolution of water/sediment interface for different sediment concentrations. Symbols 
are measurements. Lines are fits (see text). Full lines: 𝐾𝐾𝜎𝜎 = 6.5 ∙ 106 Pa, 𝐾𝐾𝑘𝑘 = 2.0 ∙ 10−12 

m/s and 𝑑𝑑 = 2.65. The sediment is from lake Markermeer. 

For lower concentrations, the flocs are not interconnected at start (reflected in the 
change in slope around 103 s for the 40 g/L sample). The settling phase can then be 
fitted (dashed lines) using  

ℎ = ℎ0 − 𝑡𝑡 ∙ �1 − 𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐�
𝑚𝑚 𝑣𝑣𝑆𝑆𝑡𝑡𝑏𝑏𝑘𝑘𝑒𝑒𝑠𝑠  
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where ℎ(𝑚𝑚) is the position of the water / suspension, ℎ0(𝑚𝑚) the initial height. We 
used 𝑣𝑣𝑆𝑆𝑡𝑡𝑏𝑏𝑘𝑘𝑒𝑒𝑠𝑠 = 1.5 mm/s which is the Stokes settling velocity for 40 µm particles, in 
agreement with the fact that the clay was sieved through a 63 µm sieve prior 
dispersion. From the fit we found ϕgel = 0.075 (195 g/L), which agrees with the fact 
that the 200 g/L sample is in a gel state.  

Using the same ϕgel and 𝑣𝑣𝑆𝑆𝑡𝑡𝑏𝑏𝑘𝑘𝑒𝑒𝑠𝑠, the settling phase of all samples below gelling 
concentrations (40 g/L and 100 g/L) could reasonably be predicted. For the lowest 
clay concentration (40 g/L) there is a good transition between the settling and the 
consolidation model. This is less the case for the 100 g/L sample. In order to improve 
the fit, it was necessary to double the value of 𝐾𝐾𝑘𝑘  (red dashed line). The reason of 
the mismatch could be linked to the limitation of the model in the suspension/gel 
transition range or due to the fact that the 100 g/L sample was not well-mixed at the 
onset of the experiment and that a sediment layer was already present at the 
bottom of the column. To check this last hypothesis, one should then know the 
density profile at start (not known for the present set of experiments). 

Link with Chapter 8 : how to couple settling and consolidation? 

In Chapter 8, we found for settling that the velocity of the suspension/bed interface 
is given by 

𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒 = 𝑣𝑣0
𝜙𝜙0𝑓𝑓(𝜙𝜙0)
𝜙𝜙𝑚𝑚 − 𝜙𝜙0

 

where 𝜙𝜙𝑚𝑚 is the solid volume fraction in the bed. Using the fractal approach we find 
that for the early stage of consolidation  

𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑑𝑑ℎ𝑏𝑏
𝑑𝑑𝑡𝑡

=  𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

(𝜕𝜕 − 2)𝜙𝜙01−𝑒𝑒 

for the settling of  flocs. Depending on the sample and the interest of the researcher, 
one or the other of these formulations are used. Both formulations depend on a-
priori unknown parameters: 𝑓𝑓(𝜙𝜙0) or 𝐾𝐾𝑘𝑘  and 𝜕𝜕, and both are decreasing functions 
of 𝜙𝜙0. These parameters can be found by fitting the function 𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒(𝜙𝜙0). 

In Chapter 8, we found for the settling phase that the velocity of the 
water/suspension interface is given by 

𝑣𝑣𝑠𝑠 = 𝑓𝑓(𝜙𝜙0)𝑣𝑣0 

We here find that (in absolute values): 

𝑣𝑣𝑠𝑠 =
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

=  𝐾𝐾𝑘𝑘
𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤
𝑣𝑣𝑤𝑤

𝜙𝜙01−𝑒𝑒  
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By comparing the expressions for 𝑣𝑣𝑠𝑠 and 𝑣𝑣𝑏𝑏𝑒𝑒𝑒𝑒  found in Chapter 8 and the fractal 
approach used here, we find the following equivalence: 

𝜕𝜕 =
2

3 − 𝑑𝑑
= 2 +

𝜙𝜙0
𝜙𝜙𝑚𝑚 − 𝜙𝜙0

 

In  Chapter 8 we only considered a settling column filled with hard spheres. This 
means that in the bed, these hard spheres are in contact (they do not consolidate) 
and hence the volume fraction 𝜙𝜙𝑚𝑚 is a constant. In the fractal approach, there is, on 
the contrary, a smooth variation in volume fraction 𝜙𝜙𝑠𝑠  in the bed as function of z 
and t. One can estimate the average volume fraction in the bed from: 

𝜙𝜙𝑚𝑚 =
1
ℎ𝑏𝑏
� 𝜙𝜙𝑠𝑠𝑑𝑑𝑑𝑑
ℎ𝑏𝑏

0
 

which yields: 

𝜙𝜙𝑚𝑚 = 𝜙𝜙0
𝜕𝜕 − 1
𝜕𝜕 − 2

 

(note that 𝜙𝜙𝑚𝑚 does not depend on time). Inserting this equation in the relation 
above gives the consistent relation 𝜕𝜕 = 𝜕𝜕. 

In the early stage of consolidation, in the case the volume fractions at the bottom of 
the column remain realistic, one can make the assumption that 

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

≪
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

 

and this leads to 

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 = 𝑘𝑘
𝑔𝑔𝑣𝑣𝑤𝑤
𝜂𝜂

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)
𝑣𝑣𝑤𝑤

𝜙𝜙𝑆𝑆 

We recall that 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  is the velocity of the settling particles measured in the frame of 
the laboratory (see Chapter 9) and that  

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 = −𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  

𝐾𝐾(𝑚𝑚 𝑠𝑠⁄ ) = 𝑘𝑘(𝑚𝑚2)
𝑔𝑔𝑣𝑣𝑤𝑤
𝜂𝜂

 

The settling velocity 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏  is pointing downwards in the z direction, and therefore a 
minus sign appears while doing the substitution. We here gave the absolute value of 
𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏: 
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𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 = 𝐾𝐾
(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)

𝑣𝑣𝑤𝑤
𝜙𝜙𝑆𝑆 

This equation is independent of any formulation for the permeability. In the present 
chapter, so far, we have analysed the settling and consolidation phases with the 
same model. One can however wonder if this is the most suited approach. 
Intuitively, one can see that in the settling phase (where 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 can be measured by 
recording the water/suspension interface) there will be other forces acting on the 
particles than in the consolidation phase, and hence 𝑣𝑣𝑠𝑠/𝑙𝑙𝑎𝑎𝑏𝑏 will be different in the 
settling and in the consolidation regime. The (hindered) settling regime was analysed 
in Chapter 8 whereas the consolidation regime was defined in Chapter 9. We will 
now discuss about how to link these two regimes. 

In Chapter 8 we have discussed the settling of hard spheres that were experiencing 
repulsion (which lead to the introduction of an osmotic pressure term Π). We found 
the following equation to describe the settling behaviour: 

6𝜋𝜋𝜂𝜂𝜋𝜋
𝜒𝜒(𝜙𝜙𝑆𝑆)

(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤) = −(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝑉𝑉𝑝𝑝 −
𝑉𝑉𝑝𝑝
𝜙𝜙𝑆𝑆

𝜕𝜕Π
𝜕𝜕𝑑𝑑

 

This equation can be rewritten: 

𝜕𝜕Π
𝜕𝜕𝑑𝑑

=
𝜙𝜙𝑆𝑆
𝑉𝑉𝑝𝑝

6𝜋𝜋𝜂𝜂𝜋𝜋
𝜒𝜒(𝜙𝜙𝑆𝑆)

𝑣𝑣𝑤𝑤/𝑠𝑠 − (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

We recall the definition of the excess pore water pressure we have defined in 
Chapter 9, and the associated Darcy-like equation: 

−
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

=
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

+ (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 =
−𝑘𝑘
𝜂𝜂
𝜕𝜕𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑

 

Combining these two last equations leads to: 

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

=
𝜂𝜂
𝑘𝑘

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 − (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

Comparing the equation found in Chapter 8 given above and the last equation, it is 
tempting to identify: 

𝑘𝑘(𝜙𝜙𝑆𝑆) =
2
9
𝜋𝜋2 �

1 − 𝜙𝜙𝑆𝑆
𝜙𝜙𝑆𝑆

� 𝜒𝜒(𝜙𝜙𝑆𝑆) =
2
9
𝜋𝜋2
𝑓𝑓(𝜙𝜙𝑆𝑆)
𝜙𝜙𝑆𝑆
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where we used 𝑉𝑉𝑝𝑝 = 4𝜋𝜋𝜋𝜋3/3 and 𝑓𝑓(𝜙𝜙𝑆𝑆) =  (1 − 𝜙𝜙𝑆𝑆)𝜒𝜒(𝜙𝜙𝑆𝑆). We then can set-up a 
general force balance for a water-sediment mixture: 

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

+
𝜕𝜕Π
𝜕𝜕𝑑𝑑

=
𝜂𝜂
𝑘𝑘

(1 − 𝜙𝜙𝑆𝑆)𝑣𝑣𝑤𝑤/𝑠𝑠 − (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑔𝑔𝜙𝜙𝑆𝑆 

In the soil phase, one has Π = 0 and in the suspension σ𝑠𝑠𝑘𝑘 = 0. This last equation 
was proposed by Toorman in 1996134.  

This equation simply tells that the initial stage of consolidation of soils, as defined in 
Chapter 9 (with a settling regime, a primary consolidation regime and a secondary 
compression regime) can be modelled by an advection-diffusion equation, but that 
the advective and diffuse terms are different in each regime. 

Depending on the composition of the suspension (hard or soft particles) and the 
initial volume fraction (under or above the gelling state), different advective and 
diffusive terms will be chosen, and the transition between the settling regime and 
the primary consolidation regime has to be defined carefully. In the extreme case of 
the settling of hard heavy spheres for example, the transition between the settling 
phase and consolidated bed is extremely abrupt, as the velocity of a hard sphere 
goes from a finite value to zero over an extremely small distance when it is hitting 
the bed.  This can be challenging to program numerically. 

Hindered settling of flocculated clay 

The derivations in Chapter 8 are done assuming that the settling particles are hard 
spheres. If Brownian motion would be neglected, this would imply that at infinite 
times the profile would be 𝜙𝜙𝑆𝑆 = 𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕  (the maximum packing volume fraction) until 
the interface where 𝜙𝜙𝑆𝑆 would jump to zero. Setting-up the Richardson-Zaki hindered 
settling function, we have, for simplicity, assumed that 𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕 = 1 which leads to 
𝑓𝑓(𝜙𝜙𝑆𝑆) = 0 for 𝜙𝜙𝑆𝑆 = 1. A more realistic Richarson-Zaki profile135 for hard spheres is 

𝑓𝑓(𝜙𝜙𝑆𝑆) = (1 − 𝜙𝜙𝑆𝑆/𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕)𝑚𝑚 

where 𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕  is close to 0.74 for packed spheres. For flocculated clay or mud 
suspensions, at 𝜙𝜙𝑆𝑆 = 𝜙𝜙𝑚𝑚𝑎𝑎𝜕𝜕  or more precisely at 𝜙𝜙𝑆𝑆 = 𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙  the settling is certainly 
not zero as consolidation occurs: the particles (flocs) are squeezed at the bottom of 
the column, which makes the water/bed interface move down.  In this case, one 
usually speaks of settlement (a term coming from soil science) as all the particles are 

                                                                 
134 Toorman, E.A. (1996) “Sedimentation and self-weight consolidation: general unifying 
theory”, Géotechnique 46, No 1, 103-113. 
135 In Chapter 8, the exponent, following standard notations, was defined as n. To avoid 
confusions with the variable n = 2/(3 − D) defined in the present chapter, we have chosen 
to rename the exponent m. 
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touching and form a fabric moving downwards under the action of gravity instead of 
settling which usually refers to individual particles.  

The first illustration at the beginning of the chapter represents a column filled with 
real flocs that are settling and depositing at the bottom of the column, where they 
are squeezed. In the illustration we have assumed that the flocs are fractal, and to 
represent the squeezing at the bottom, we have drawn flocs of smaller dimension 
as this amounts to increase the local volume fraction (see the fractal approach 
detailed above). Instead of assuming that the flocs are mathematical space-filling 
objects, we will in this subsection assume that the particles are real fractal flocs of 
radius 𝑅𝑅𝑁𝑁 and that the clay concentration (volume fraction) 𝜙𝜙𝑠𝑠 is below the gelling 
concentration, i.e. that the flocs are not touching. (There will therefore be a jump in 
velocity at the suspension/bed interface.) 

In order to evaluate the settling velocity of a fractal floc, we first need to define some 
specific volume fractions: 

Definitions regarding suspensions of fractal flocs 

 

The suspended particles, made of primary particles of radius 𝑅𝑅𝑝𝑝, are fractal flocs of 
radius 𝑅𝑅𝑁𝑁 with a fractal dimension D.  The flocs are not necessarily assumed to be 
space-filling as was assumed in the first part of the chapter. Their fractal dimension 
is therefore in general different from the space-filling case.  

We define: 

𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 =
volume of flocs
volume of clay

×
volume of clay
total volume

 

If we assume that all the clay is contained in the flocs: 

𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 =
volume of a floc

volume of clay in a floc
× 𝜙𝜙𝑠𝑠 

We recall that 
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𝜙𝜙clay in a floc = �
𝑅𝑅𝑝𝑝
𝑅𝑅𝑁𝑁
�
3−𝐷𝐷

 

which leads to 

𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 = �
𝑅𝑅𝑁𝑁
𝑅𝑅𝑝𝑝
�
3−𝐷𝐷

× 𝜙𝜙𝑠𝑠 

If the flocs are space-filling 𝜙𝜙𝑠𝑠 = 𝜙𝜙clay in a floc and one gets 𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 = 1. This implies 
that we can define a gelling concentration (= concentration of clay) for which the 
flocs are space-filling, which is given by  

𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙 = 𝜙𝜙clay in a floc = �
𝑅𝑅𝑝𝑝
𝑅𝑅𝑁𝑁
�
3−𝐷𝐷

 

When the flocs are space-filling, it is clear that the fractal dimension is the same as 
the one discussed in the first part of this chapter. 

We can now evaluate the Stokes settling velocity of a fractal sphere: 

𝑣𝑣𝑆𝑆𝑡𝑡𝑏𝑏𝑘𝑘𝑒𝑒𝑠𝑠(𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐) =
2�𝑣𝑣𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 − 𝑣𝑣𝑤𝑤�𝑅𝑅𝑁𝑁2𝑔𝑔

9𝜂𝜂
 

The density of a fractal floc can be calculated as follows: 

𝑣𝑣𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 =
mass clay and mass water in a floc

volume of a floc
 

𝑣𝑣𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 = 𝑣𝑣𝑠𝑠
volume clay in a floc

volume of a floc
+ 𝑣𝑣𝑤𝑤 �1 −

volume clay in a floc
volume of a floc

� 

Using the definition of 𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙  introduced above, we find that 

𝑣𝑣𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 − 𝑣𝑣𝑤𝑤 = (𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙  

We get 

𝑣𝑣𝑆𝑆𝑡𝑡𝑏𝑏𝑘𝑘𝑒𝑒𝑠𝑠(𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐) =
2(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑅𝑅𝑁𝑁2𝑔𝑔

9𝜂𝜂
𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙  

This relation for the Stokes settling of a floc has been found by Kranenburg136. 

                                                                 
136 Kranenburg, C. (1994). The fractal structure of cohesive sediment aggregates. Estuarine, 
Coastal and Shelf Science, 39(5), 451-460. 
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In order to find a hindered settling velocity of a floc, 𝑣𝑣ℎ𝑖𝑖𝑒𝑒𝑒𝑒 , we can adapt the 
Richardson-Zaki formula: 

𝑣𝑣ℎ𝑖𝑖𝑒𝑒𝑒𝑒 = �1 − 𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐�
𝑚𝑚 𝑣𝑣𝑆𝑆𝑡𝑡𝑏𝑏𝑘𝑘𝑒𝑒𝑠𝑠(𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐) 

where 𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐  is the volume fraction of flocs in the hindered settling zone. In that zone, 
we have everywhere 

𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 = 𝜙𝜙𝑠𝑠/𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙 = 𝜙𝜙𝑠𝑠 �
𝑅𝑅𝑁𝑁
𝑅𝑅𝑝𝑝
�
3−𝐷𝐷

 

One can verify that for D = 3 (the particle is a solid particle) one gets 𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 = 𝜙𝜙𝑠𝑠. The 
adapted Richardson-Zaki expression then reduces to the standard Richardson-Zaki 
expression. In the limit of space-filling flocs, 𝜙𝜙𝑠𝑠 = 𝜙𝜙𝑔𝑔𝑒𝑒𝑙𝑙  and the adapted Richardson-
Zaki formula gives the result 𝑣𝑣ℎ𝑖𝑖𝑒𝑒𝑒𝑒 = 0. There is no settling velocity as the 
Richardson-Zaki formulation does not account for compression. 

At volume fractions such that 𝜙𝜙𝑓𝑓𝑙𝑙𝑏𝑏𝑐𝑐 < 1, one can make the approximation  

𝑣𝑣ℎ𝑖𝑖𝑒𝑒𝑒𝑒  ~ ��
𝑅𝑅𝑁𝑁
𝑅𝑅𝑝𝑝
�
𝐷𝐷−3

− 𝑚𝑚𝜙𝜙0�  
2(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑅𝑅𝑁𝑁2𝑔𝑔

9𝜂𝜂
 

This implies that the function 𝑣𝑣ℎ𝑖𝑖𝑒𝑒𝑒𝑒  as function of 𝜙𝜙0 is a straight line of slope 

𝑚𝑚
2(𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑤𝑤)𝑅𝑅𝑁𝑁2𝑔𝑔

9𝜂𝜂
 

from which 𝑚𝑚 can theoretically be deduced if the average size of flocs are known.  
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Beyond self-weight consolidation 

The Gibson equation, which is the topic of Chapter 9 and the present chapter was 
originally created to study the large strains occurring during the self-weight 
consolidation of slurries.  In Chapter 9, we have already stated that the stresses felt 
by particles during self-weight consolidation are very small compared to the 
pressures applied in an oedometer test.  

The oedometer test is used to investigate the 1D consolidation of fine-grained soils. 
From the oedometer test one gets the relation between vertical effective stress (the 
load applied) and vertical strain (the deformation), from which the void ratio of the 
sample can be determined.  

The sample is placed between two porous disks at the top and bottom. The disks are 
in contact with the same bath of water. This implies that at the end of the test, the 
water pressure will be hydrostatic through the sample. A compressive stress is 
applied from the top, by a vertical load, which is assumed to act uniformly over the 
area of the soil sample: 

 

Initially, all the vertical load is taken by pore water, because, due to the low 
permeability of the soil, the pore water is unable to flow out of the voids quickly. 
Therefore, there is very little compression of the soil sample immediately after 
placing the load. After a few seconds, the pore water begins to flow out. This results 
in a decrease in pore water pressure. At the same time, the effective stress increases. 
As a result, the sample settles. Several increments of vertical stress are applied in an 
oedometer test, usually by doubling the previous increment. For each load, the final 
settlement of the soil sample and the time taken to reach this final settlement are 
recorded. 

When analysing these types of experiments, several hypothesis are made: 

1 – the sample does not undergo self-weight consolidation; the settlement is solely 
due to the applied stress. 

2 – the volume fraction is constant over the height of the sample. 
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3 – The particles are incompressible 

4 – the water is incompressible 

Using hypothesis 1 (and hypothesis 3 and 4 that have been used implicitly until now, 
also in Chapters 9 and 10), the full Gibson equation reduces to 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜙𝜙𝑆𝑆
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

where, to remove the effect of self-weight consolidation we have taken 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑤𝑤 
(which mathematically amounts to the same). This equation can further be 
developed into 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜙𝜙𝑆𝑆
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝜙𝜙𝑆𝑆

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑

� 

The so-called consolidation coefficient is defined by 

𝐶𝐶𝑣𝑣 =
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜙𝜙𝑆𝑆
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝜙𝜙𝑆𝑆

 

(the curl d’s are here equivalent to the straight d’ as σ𝑠𝑠𝑘𝑘  only depends on 𝜙𝜙𝑆𝑆). Using 
the fractal approach given in the present chapter, one finds that 

𝐶𝐶𝑣𝑣 = 𝜕𝜕
𝐾𝐾𝑘𝑘𝐾𝐾𝜎𝜎
𝑔𝑔𝑣𝑣𝑤𝑤

 

which is a constant. The fact it is a constant depends on the peculiar expressions that 
were chosen for 𝐾𝐾(~ 𝜙𝜙𝑆𝑆

−𝑒𝑒)  and σ𝑠𝑠𝑘𝑘(~ 𝜙𝜙𝑆𝑆
𝑒𝑒) . In soil science, it is generally assumed 

that the consolidation coefficient is constant. 

With 𝐶𝐶𝑣𝑣 constant, the equation reduces to 

𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

= 𝐶𝐶𝑣𝑣
𝜕𝜕2𝜙𝜙𝑆𝑆
𝜕𝜕𝑑𝑑2

 

This equation is mathematically equivalent to the one called Fick’s second law in 
Chapter 2 and can be solved analytically. 

The hypothesis used to derive this equation were (1,3,4). We did not assume 
hypothesis 2, which implies that this equation is valid for samples exhibiting a change 
in volume fraction over height. This equation is useless in the case we assume 
hypothesis 2, as it then reduces to 
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𝜕𝜕𝜙𝜙𝑆𝑆
𝜕𝜕𝑡𝑡

= 0 

This equation tells us that there is no local (at a position z) variation of 𝜙𝜙𝑆𝑆 in time, 
which is compatible with hypothesis 2 : there is only a variation in time of the total 
volume fraction of the sample between before and after the loading (but no 
variation within the sample).  

Usually, in an oedometer test, the vertical strain is recorded as function of the 
vertical effective (skeleton) stress. The strain is defined by 

𝑑𝑑𝜀𝜀 =
ℎ − ℎ0
ℎ0

 

where ℎ is the height of the sample after the test and ℎ0 the height before. We used 
the symbol 𝑑𝑑𝜀𝜀 to indicate that the change is height is assumed to be quite small. As 
the sample does not deform laterally, we also have  

𝑑𝑑𝜀𝜀 =
𝑉𝑉 − 𝑉𝑉0
𝑉𝑉0

=
𝑑𝑑𝑉𝑉
𝑉𝑉0

 

where the volumes are related to the heights by 𝑉𝑉 = 𝐴𝐴ℎ and 𝑉𝑉0 = 𝐴𝐴ℎ0 with 𝐴𝐴 being 
the cross-sectional area of the sample. By definition 

𝑉𝑉 = 𝑉𝑉𝑤𝑤 + 𝑉𝑉𝑠𝑠 

where 𝑉𝑉𝑤𝑤 is the volume of water and 𝑉𝑉𝑠𝑠 the volume of solids. 

The volume 𝑉𝑉 is changing because water is flowing out of the sample. Therefore 

𝑑𝑑𝜀𝜀 =
𝑑𝑑𝑉𝑉𝑤𝑤
𝑉𝑉0

 

and the volume 𝑉𝑉𝑠𝑠 of solids is not changing. From the definition of volume fraction, 
we have 

𝑑𝑑𝜙𝜙𝑆𝑆 =
𝑉𝑉𝑠𝑠
𝑉𝑉
−
𝑉𝑉𝑠𝑠
𝑉𝑉0

= −
𝑉𝑉𝑠𝑠
𝑉𝑉
𝑉𝑉 − 𝑉𝑉0
𝑉𝑉0

= −𝜙𝜙𝑆𝑆,end𝑑𝑑𝜀𝜀 

where 𝜙𝜙𝑆𝑆,end is the volume fraction after loading. As the incremental change 𝑑𝑑𝜀𝜀 is 
very small, we have 

ℎ = ℎ0(1 + 𝑑𝑑𝜀𝜀) ~ ℎ0 

and therefore 

𝑉𝑉 ~ 𝑉𝑉0 
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𝜙𝜙𝑆𝑆,end ~ 𝜙𝜙𝑆𝑆,begin ~ 𝜙𝜙𝑆𝑆 

where 𝜙𝜙𝑆𝑆,begin is the volume fraction before loading.  One has to realize that by 
defining the strain, we have implicitly defined it as a macroscopic quantity, a 
property affecting the whole sample. Therefore the volume fraction 𝜙𝜙𝑆𝑆 specified 
here is representing the volume fraction of the sample (not a slice of the sample). 
This implies that we fulfil hypothesis 2 (we assume that 𝜙𝜙𝑆𝑆 is constant over the 
height). We get 

𝑑𝑑𝜙𝜙𝑆𝑆 = −𝜙𝜙𝑆𝑆𝑑𝑑𝜀𝜀 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

= −𝜙𝜙𝑆𝑆
𝑑𝑑𝜀𝜀
𝑑𝑑𝑡𝑡

 

This last equation indicates that there is a (small) change in the total volume fraction 
of the sample between before and after applying the loading. Note that we have 
here used the Lagrangian derivatives, as 𝜙𝜙𝑆𝑆 and 𝜀𝜀 only depend on time only. Using 
the Lagrangian form of Gibson equation, which we simplify using 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑤𝑤 for the 
reason given above, we get 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

= −𝜙𝜙𝑆𝑆
𝑑𝑑𝜀𝜀
𝑑𝑑𝑡𝑡

= 𝜙𝜙𝑆𝑆
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

𝑑𝑑𝜀𝜀
𝑑𝑑𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

This equation links the change in strain to the change in stress. We also get 

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑𝑡𝑡

=
𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝑡𝑡

𝑑𝑑𝜙𝜙𝑆𝑆
𝑑𝑑σ𝑠𝑠𝑘𝑘

= 𝜙𝜙𝑆𝑆
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝑡𝑡

=
𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝜙𝜙𝑆𝑆

𝜙𝜙𝑆𝑆
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

� 

In order to define the consolidation coefficient, it is now necessary to assume that 
the permeability 𝐾𝐾 is constant, so it can get out of the bracket term. This condition 
is fulfilled if we assume that 𝜙𝜙𝑆𝑆 is constant (our hypothesis 2). We then get 

𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝑡𝑡

= 𝐶𝐶𝑣𝑣
𝜕𝜕2σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑2

 

This equation enables to find the change in stress, from which the change in strain 
can be obtained. The curl d’s indicate that the derivative in 𝑑𝑑 should be taken at 𝑡𝑡 
constant. We see that even if 𝜙𝜙𝑆𝑆 is constant over the whole sample there is a change 
in σ𝑠𝑠𝑘𝑘  over height, which originates from the fact that we apply a load at the top. 
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This implies that the stress between particles is higher at the bottom of the sample, 
but that this does not influence their local (= at given 𝑑𝑑) compaction.  

We also have 

𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝑡𝑡

=
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑡𝑡

+
𝑑𝑑z
𝑑𝑑𝑡𝑡
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑

 

where 𝑑𝑑z/dt is the velocity of the settlement. If that settlement is slow, we have in 
good approximation 

𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝑡𝑡

=
𝜕𝜕σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑡𝑡

 

The change in effective stress over time is then the same at any 𝑑𝑑. 

The load applied to the sample in a test is constant. From the definitions of stresses 
(see Chapter 9), we get 

σ𝑧𝑧𝑧𝑧 = σ𝑠𝑠𝑘𝑘 + 𝑃𝑃𝑒𝑒 + 𝑃𝑃ℎ𝑥𝑥𝑒𝑒  

As inertia is neglected, one can say that the total stress σ𝑧𝑧𝑧𝑧 of the sample is equal to 
the stress from the load. As neither σ𝑧𝑧𝑧𝑧 (which is constant as the load is constant) 
nor 𝑃𝑃ℎ𝑥𝑥𝑒𝑒  depend on time, and that 𝑃𝑃ℎ𝑥𝑥𝑒𝑒  is linear in 𝑑𝑑 we get 

𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝑡𝑡

= −
𝑑𝑑𝑃𝑃𝑒𝑒
𝑑𝑑𝑡𝑡

 

𝜕𝜕2σ𝑠𝑠𝑘𝑘
𝜕𝜕𝑑𝑑2

= −
𝜕𝜕2𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑2

 

which gives 

𝑑𝑑𝑃𝑃𝑒𝑒
𝑑𝑑𝑡𝑡

= 𝐶𝐶𝑣𝑣
𝜕𝜕2𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑2

 

This equation is only fulfilled when all hypothesis (1-4) are obeyed. 

Numerical solution 

The differential equation 

𝑑𝑑𝑃𝑃𝑒𝑒
𝑑𝑑𝑡𝑡

= 𝐶𝐶𝑣𝑣
𝜕𝜕2𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑2
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can be solved numerically using the so-called finite differences method137. Originally 
it was solved analytically by Terzaghi138 in 1923. For numerical stability it is always 
better to convert the equation to a dimensionless one:  

𝑑𝑑𝑃𝑃𝑒𝑒∗

𝑑𝑑𝑡𝑡∗
= 𝐶𝐶𝑣𝑣∗

𝜕𝜕2𝑃𝑃𝑒𝑒∗

𝜕𝜕𝑑𝑑∗2
 

with 

𝑡𝑡∗ = 𝑡𝑡/𝜏𝜏 

𝑑𝑑∗ = 𝑑𝑑/𝑆𝑆 

𝐶𝐶𝑣𝑣∗ =
𝐶𝐶𝑣𝑣
𝑆𝑆2/𝜏𝜏

 

𝑃𝑃𝑒𝑒∗ = 𝑃𝑃𝑒𝑒/𝑃𝑃0 

where 𝜏𝜏 and 𝑆𝑆 are characteristic time and height and 𝑃𝑃0 a reference pressure. 
Writing the equation in dimensionless form also enables  to find that the final 
deformation has been reached when  

𝑑𝑑𝑃𝑃𝑒𝑒∗

𝑑𝑑𝑡𝑡∗
 ~ 0 

which occurs when  

𝐶𝐶𝑣𝑣
𝑆𝑆2/𝜏𝜏

 ≪  1 

In other words, the consolidation time 𝜏𝜏 will take 4 times as long if the layer (𝑆𝑆) is 
twice as thick. 

For ease of notation, we drop the *, but in the following we only refer to the 
dimensionless equation. 

The equation is discretized as follows: 

𝑑𝑑𝑃𝑃𝑒𝑒
𝑑𝑑𝑡𝑡

=
𝑃𝑃𝑒𝑒(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − 𝑃𝑃𝑒𝑒(𝑡𝑡)

𝑑𝑑𝑡𝑡
 

                                                                 
137 Verruijt, Arnold. An Introduction to Soil Mechanics. Springer, Theory and Applications of 
Transport in Porous Media, Vol.30 (2018) 
138 Karl von Terzaghi (1883 - 1963) was an Austrian geotechnical engineer known as “the father 
of soil mechanics” 
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𝜕𝜕2𝑃𝑃𝑒𝑒
𝜕𝜕𝑑𝑑2

=
𝑃𝑃𝑒𝑒(𝑑𝑑 + 𝑑𝑑𝑑𝑑, 𝑡𝑡) − 2𝑃𝑃𝑒𝑒(𝑑𝑑, 𝑡𝑡) + 𝑃𝑃𝑒𝑒(𝑑𝑑 − 𝑑𝑑𝑑𝑑, 𝑡𝑡)

(𝑑𝑑𝑑𝑑)2  

This leads to 

𝑃𝑃𝑒𝑒(𝑑𝑑, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) = 𝑃𝑃𝑒𝑒(𝑑𝑑, 𝑡𝑡) + 𝐶𝐶𝑣𝑣
𝑑𝑑𝑡𝑡

(𝑑𝑑𝑑𝑑)2
[𝑃𝑃𝑒𝑒(𝑑𝑑 + 𝑑𝑑𝑑𝑑, 𝑡𝑡) − 2𝑃𝑃𝑒𝑒(𝑑𝑑, 𝑡𝑡) + 𝑃𝑃𝑒𝑒(𝑑𝑑 − 𝑑𝑑𝑑𝑑, 𝑡𝑡)] 

In an oedometer test the sample is usually drained at the top, using a thin sheet of 
filter paper and a porous stone. In the container in which the sample and its 
surrounding ring are placed, the water level is kept constant. This implies that at the 
top of the sample the excess pore pressure is zero, which results in the boundary 
conditions: 

𝑃𝑃𝑒𝑒(𝑑𝑑 = 1, 𝑡𝑡) = 0 

where 𝑑𝑑 = 1 represents the top of the sample. 

The sample is usually undrained at the bottom where an impermeable plate 
prevents the water flow. The boundary condition at the bottom of the sample is 
therefore 

𝜕𝜕𝑃𝑃𝑒𝑒(𝑑𝑑 = 0, 𝑡𝑡)
𝜕𝜕𝑑𝑑

= 0 

where the curl d represents the fact that the derivative is taken at a given time: for 
all times, the boundary condition is respected. 

Numerically, this last boundary condition is usually implemented by defining a 
(fictive) pressure 𝑃𝑃𝑒𝑒(−𝑑𝑑𝑑𝑑, 𝑡𝑡) located at a position 𝑑𝑑𝑑𝑑 below the sample and imposing 
the condition 

𝑃𝑃𝑒𝑒(−𝑑𝑑𝑑𝑑, 𝑡𝑡) = 𝑃𝑃𝑒𝑒(+𝑑𝑑𝑑𝑑, 𝑡𝑡) 

This condition ensures that whatever the value of 𝑃𝑃𝑒𝑒(0, 𝑡𝑡) the boundary condition 
𝜕𝜕𝑃𝑃𝑒𝑒(𝑑𝑑 = 0, 𝑡𝑡)/𝜕𝜕𝑑𝑑 = 0 is satisfied.  Numerically, this means that the value of 𝑃𝑃𝑒𝑒(0, 𝑡𝑡) 
will be determined by 

𝑃𝑃𝑒𝑒(0, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) = 𝑃𝑃𝑒𝑒(0, 𝑡𝑡) + 𝐶𝐶𝑣𝑣
𝑑𝑑𝑡𝑡

(𝑑𝑑𝑑𝑑)2
[𝑃𝑃𝑒𝑒(𝑑𝑑𝑑𝑑, 𝑡𝑡) − 2𝑃𝑃𝑒𝑒(0, 𝑡𝑡) + 𝑃𝑃𝑒𝑒(𝑑𝑑𝑑𝑑, 𝑡𝑡)] 

At 𝑡𝑡 = 0 we also assume that the pressure within the sample is known: 

𝑃𝑃𝑒𝑒(𝑑𝑑 < 1, 𝑡𝑡 = 0) = 1 

In order to get a stable numerical solution it is important to ensure that  
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𝑑𝑑𝑡𝑡 ≪
(𝑑𝑑𝑑𝑑)2

𝐶𝐶𝑣𝑣
 

Using 𝐶𝐶𝑣𝑣 = 0.1 and 𝑑𝑑𝑑𝑑 = 0.1 , this implies that 𝑑𝑑𝑡𝑡 ≪ 0.1. In the Matlab code given 
underneath we used dt = 0.01.  

The dissipation of pore water pressure over time (in dimensionless units) is given by: 

 

From the definition of the consolidation coefficient and the strain, we get 

𝐶𝐶𝑣𝑣 =
−𝐾𝐾
𝑔𝑔𝑣𝑣𝑤𝑤

𝑑𝑑σ𝑠𝑠𝑘𝑘
𝑑𝑑𝜀𝜀

 

The compressibility 𝑚𝑚𝑣𝑣 is defined as 

𝑚𝑚𝑣𝑣 =
𝐾𝐾

𝑔𝑔𝑣𝑣𝑤𝑤𝐶𝐶𝑣𝑣
 

and this gives 

𝑑𝑑𝜀𝜀 = −𝑚𝑚𝑣𝑣𝑑𝑑σ𝑠𝑠𝑘𝑘  

The minus sign indicate the fact that an increase in effective stress is coupled with a 
decrease in strain (the sample is compressed). As we fulfil hypothesis 1- 4, 𝑚𝑚𝑣𝑣 is a 
constant.  

As discussed above, the strain (and the volume fraction) is defined as a property 
applied to the whole sample. We have found that the effective stress (as the excess 
pore water pressure) is changing over the height. The equation we have derived for 
the strain should therefore be written 
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𝑑𝑑𝜀𝜀 =
−𝑚𝑚𝑣𝑣

ℎ
� dσ𝑠𝑠𝑘𝑘𝑑𝑑𝑑𝑑
ℎ

0
 

which indicates that the strain is a function of the average skeleton stress. We get 
from the definition of the strain: 

ℎ(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − ℎ(𝑡𝑡)
ℎ(𝑡𝑡)

=
−𝑚𝑚𝑣𝑣

ℎ(𝑡𝑡)
� σ𝑠𝑠𝑘𝑘𝑑𝑑𝑑𝑑
ℎ(𝑡𝑡)

0
 

𝑑𝑑ℎ = ℎ(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − ℎ(𝑡𝑡) = −𝑚𝑚𝑣𝑣 � σ𝑠𝑠𝑘𝑘(𝑑𝑑, 𝑡𝑡)𝑑𝑑𝑑𝑑
ℎ(𝑡𝑡)

0
 

We define 

𝑚𝑚𝑣𝑣
∗ = 𝑚𝑚𝑣𝑣𝑃𝑃0 

σ𝑠𝑠𝑘𝑘∗ = σ𝑠𝑠𝑘𝑘/𝑃𝑃0 

where 𝑃𝑃0 is, as above, a reference pressure. We get 

𝑑𝑑ℎ = −𝑚𝑚𝑣𝑣
∗ �� �σ𝑧𝑧𝑧𝑧∗ − 𝑃𝑃ℎ𝑥𝑥𝑒𝑒∗�𝑑𝑑𝑑𝑑

ℎ(𝑡𝑡)

0
− � 𝑃𝑃𝑒𝑒∗𝑑𝑑𝑑𝑑

ℎ(𝑡𝑡)

0
� 

The first integral on the right-hand side is a constant as the load and average 
hydrostatic pressure are both constant in time. At the end of consolidation the 
excess pore water pressure is zero, as demonstrated above and therefore we define 

 𝑑𝑑ℎ∞ = −𝑚𝑚𝑣𝑣
∗ � �σ𝑧𝑧𝑧𝑧∗ − 𝑃𝑃ℎ𝑥𝑥𝑒𝑒∗�𝑑𝑑𝑑𝑑

ℎ(𝑡𝑡=∞)

0
 

We get 

𝑑𝑑ℎ − 𝑑𝑑ℎ∞ = −𝑚𝑚𝑣𝑣
∗ � 𝑃𝑃𝑒𝑒∗𝑑𝑑𝑑𝑑

ℎ(𝑡𝑡)

0
 

We also have, with 𝑑𝑑ℎ0 = ℎ(𝑑𝑑𝑡𝑡) − ℎ(0) = ℎ(𝑑𝑑𝑡𝑡) − ℎ0 

𝑑𝑑ℎ0 − 𝑑𝑑ℎ∞ = −𝑚𝑚𝑣𝑣
∗ℎ0 

as by definition 𝑃𝑃𝑒𝑒∗(𝑡𝑡 = 0) = 1, which implies that 

𝑑𝑑ℎ(𝑡𝑡) − 𝑑𝑑ℎ∞
𝑑𝑑ℎ0 − 𝑑𝑑ℎ∞

=  
1
ℎ0
� 𝑃𝑃𝑒𝑒∗𝑑𝑑𝑑𝑑
ℎ(𝑡𝑡)

0
= � 𝑃𝑃𝑒𝑒∗𝑑𝑑𝑑𝑑

ℎ(𝑡𝑡)/ℎ0

0
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The degree of consolidation 𝑈𝑈 is defined as 

𝑈𝑈 =
𝑑𝑑ℎ0 − 𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑ℎ0 − 𝑑𝑑ℎ∞

= 1 −
𝑑𝑑ℎ(𝑡𝑡) − 𝑑𝑑ℎ∞
𝑑𝑑ℎ0 − 𝑑𝑑ℎ∞

 

yielding 

𝑈𝑈 = 1 −� 𝑃𝑃𝑒𝑒∗𝑑𝑑𝑑𝑑
ℎ(𝑡𝑡) ℎ0⁄

0
 

The degree of consolidation U as function of time is given by: 
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The Matlab code is given by: 

clear all 
close all 
  
nh=10; % number of steps in z direction 
zbin(1) = 0.0d0; % bottom of the sample 
dz = 1/(nh-1); % dimensionless increment in z direction 
%zbin(1) = 0 ; zbin(2) = dz ; … ; zbin(nh) = (nh-1)*dz = 1  
  
for m = 2:nh 
    zbin(m) = zbin(m-1)+dz; 
    Pe(m) = 1; % dimensionless excess pore water pressure 
end 
  
Pe(1)=1;  
Pe(nh)=0; 
  
Cv = 0.1; % dimensionless consolidation coefficient 
  
tnum(1) = 0.01; 
Pestart = Pe; % Pestart is Pe(t=0) 
  
for kt = 2:5000 
    dt = 0.01; 
    tnum(kt) = tnum(kt-1)+dt; 
    tnumplot(kt) = tnum(kt); 
    a = Cv*dt/dz.^2; 
    for m = 2:nh-1 
        Penew(m) = Pe(m)+a*(Pe(m+1)-2*Pe(m)+Pe(m-1)); 
        % Penew(m) is Pe(t+dt) 
        % Pe(m) is Pe(t) 
    end 
    Penew(nh) = Pe(nh); % Pe(H) = 0 
    Penew(1) = Pe(1)+a*(Pe(2)-2*Pe(1)+Pe(2)); 
    Pe = Penew; 
     
    height(kt) = trapz(zbin,Pe); 
     
    if kt == 10 % t=0.1 
        Pe1 = Pe;  
    end 
     
    if kt == 100 % t=1 
        Pe2 = Pe; 
    end 
     
    if kt == 500 % t=5 
        Pe3 = Pe; 
    end 
  
    if kt == 1000 % t=10 
        Pe4 = Pe; 
    end 
     
    if kt == 5000 % t= 50 
        Pe5 = Pe; 
    end     
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end 
  
plot(Pestart,zbin,'-ob','LineWidth',2) 
hold on 
plot(Pe1,zbin,'-ok','LineWidth',2) 
hold on 
plot(Pe2,zbin,'-oc','LineWidth',2) 
hold on 
plot(Pe3,zbin,'-og','LineWidth',2) 
hold on 
plot(Pe4,zbin,'-om','LineWidth',2) 
hold on 
plot(Pe5,zbin,'-or','LineWidth',2) 
hold on 
  
legend('t/\tau = 0','t/\tau = 0.1','t/\tau = 1','t/\tau = 5','t/\tau = 
10','t/\tau = 50'); 
ylim([0 1]) 
xlabel('P_e/P_0','FontSize',12); 
ylabel('z/H','FontSize',12); 
set(gca,'LineWidth',2,'FontSize',12); 
set(gcf,'Color',[1 1 1]) 
  
figure 
  
semilogx(tnumplot,1-height,'-or','LineWidth',2) 
hold on 
  
xlabel('t/\tau','FontSize',12); 
ylabel('degree of consolidation','FontSize',12); 
set(gca,'LineWidth',2,'FontSize',12); 
set(gcf,'Color',[1 1 1]) 
 



 

 

 

 

Conclusion 

from colloid science 
to large-scale applications   
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As stated in the introduction, mud and clayey systems are studied in different fields 
of research. We mentioned soil science and sediment dynamics, but these generic 
names are associated to specific expertise such as agronomy, chemistry, geology, 
physical geography, biology, civil engineering… In this book, we focussed primarily 
on colloid science.  

 

Length scales and associated particle sizes and field of science in the context of sediment 
characterization. The term “bulk” refers to the fact that above a given length scale no 

distinction is made between the carrying fluid and the sediment: water and sediment is then 
seen as a continuum, with bulk properties (density, viscosity, …) 

Despite the promise of the subtitle of the book (Applications to sediment 
characterization), which hints to the study of natural muddy suspensions, the reader 
will have noticed that many findings described in the book apply to well-
characterized systems only, i.e. particles with a defined size, shape and surface 
charge. Even though colloid scientists are working on more complex systems, for 
instance mixtures or anisotropically shaped particles (see articles cited and books in 
the reference list), it is clear that fundamental research is at present not able to 
bridge completely the knowledge between well-characterized and natural systems. 
Even if some models, like the flocculation models presented in Chapter 6 can – in 
some cases – be applied quite successfully to the flocculation of natural systems, 
these models suffer from a severe restriction: their validity is limited to a scale that 
is far below the scale usually desired from an engineering point of view. 

The primary reason elaborated flocculation models cannot be applied in large-scale 
transport models is due to the fact that, when coupled to a large-scale hydrodynamic 
model, the resulting sediment transport model would be too CPU intensive to run. 
It would be impossible to make long-term predictions with it. It is therefore 
necessary to use less elaborated models139,140,141, that will be able to reproduce the 

                                                                 
139 Verney, Romaric, et al. "Behaviour of a floc population during a tidal cycle: laboratory 
experiments and numerical modelling." Continental Shelf Research 31.10 (2011): S64-S83. 
140 Lee, Byung Joon, et al. "A two-class population balance equation yielding bimodal 
flocculation of marine or estuarine sediments." Water research 45.5 (2011): 2131-2145. 
141 Manning, Andrew J., et al. "Flocculation settling characteristics of mud: sand 
mixtures." Ocean dynamics 60.2 (2010): 237-253. 



Conclusion 

 313 

in-situ measured data (mean floc size, settling velocities) to a reasonable accuracy, 
with a limited number of adjustable parameters. 

Doing so, one is forced to leave the bottom-up approach usually adopted in 
fundamental (colloid) science and presented in this book in order to use a top-down 
approach. The bottom-up approach consists in starting with simplified models and 
add layers of complexity, whereas the top-down approach consists in taking a 
system as a whole and breaking it down in sub-systems in a reverse engineering 
fashion. Both approaches are not mutually exclusive, and there is often much to gain 
to combine them. A lot of work is currently devoted to bridge the gap between 
colloid science and engineering. 

 

Illustration of the impact of a microscopic process (flocculation) on large-scale (km) sediment 
transport. The area represents the mouth of the Western Scheldt estuary and the colour 

indicates a three-month average suspended sediment concentration (SSC) with and without 
taking flocculation into account. The differences in SSC are particularly obvious close to the 

mouth. The flocculation model is taken from Manning et al.142 

 

 

 

 

                                                                 
142 Manning, A. J., and K. R. Dyer. "Mass settling flux of fine sediments in Northern European 
estuaries: measurements and predictions." Marine Geology 245.1-4 (2007): 107-122. 
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Index 
A  
activity of clays 34 
aggregate 62 
aggregation (band-type) 118 
aggregation (bridging) 95 
aggregation (examples) 119 
aggregation (orthokinetic) 142 
aggregation (patching) 95 
aggregation (perikinetic) 142 
aggregation (with clay) 96 
amphiphilic molecules 98 
Archie's law 256 
atomic force microscopy 151 
Atterberg limits 30, 32 
B  
barometric profile 57, 217, 223 
bilayer sheet 101 
Bingham fluid 161 
Bingham number 163 
Bjerrum length 147 
blob and cloud 209-211 
Boltzmann distribution 67, 215 
Boycott effect 224 
Brownian motion 42 
Burger's equation 222 
C  
Carnahan-Starling relation 181, 211 
Casson equation 162 
chemical potential 213 
chlorite 26 
clay (definition) 20, 22, 23 
clay mineralogy 25 
coalescence 101 
colloid (definition) 17 
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colloidal crystal 176 
compressibility 306 
conductivity (electric) 86, 177 
conductivity (hydraulic) 248 
conductiviy (limiting ionic) 87 
consolidation coefficient 300 
contact angle 102 
continuity equation 245, 254 
Couette rheometer 167 
Coulombic forces 67 
Coulombic repulsion 71 
cyanobacteria 107 
D  
Darcy equation 238, 241 
Debye forces 65 
Debye length 68, 77 
degree of consolidation 308 
delamination 117 
depletion effect 96 
dialysis 51 
diatoms 105 
dielectric permittivity 68 
diffusion 50 
diffusion limited cluster aggregation (DLCA) 114, 144 
dinoflagellate 107 
dissolved inorganic carbon (DIC) 109 
dissolved organic carbon (DOC) 109 
DLVO theory 71, 147 
drag force 45 
dynamic gravitational length 230 
E  
electric dipole 63 
electric double layer 67 
electrophoretic mobility 81, 83 
electroviscous effect 169 
Euler derivative 255 
excess pore pressure 245 
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extensional flow 170 
F  
Fick's first law 47 
Fick's second law 48 
floc 62, 114 
floc size and polyelectrolyte 126 
floc size and salt 124 
floc size and shear rate 122 
fluid mud 200 
fractal (pseudo-) dimension of flocs 131 
fractal and self-similarity 128, 271 
fractal approach theory 268 
fractal dimension 130 
G  
gas in soil 249 
Gauss' law 82 
gelling time 282 
gels and hydrogels 186, 187 
Gibson equation 245, 248, 268 
Gibson height 251 
H  
Hamaker constant 65 
Herschel-Bulkley model 161, 189 
Hooke's law 164 
hydrogen bond 94, 120 
hydrometer 39, 40 
hypertonicity 59 
hypotonicity 60 
I  
illite 26 
illite (Hamaker constant) 66 
isotonocity 59 
K  
kaolinite 26, 27, 29, 116 
kaolinite (Hamaker constant) 66 
kaolinite (interaction energy) 73 
Keesom forces 64 
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Kolmogorov microscale 144 
Kynch equation 279 
L  
Lagrange derivative 255 
laminar regime 159 
Lennard-Jones potential 179 
light scattering (dynamic) 46 
light scattering (static) 46, 123, 154 
lipids 99 
liposome 101 
liquid crystal 53 
liquid state 29, 30 
London forces 65 
loss angle 164 
loss modulus 164 
L-system 129 
M  
marine snow 110 
material coordinate 250 
Maxwell model 165 
method of characteristics 279 
mica 26 
micelles 99, 100 
Mie theory 19, 47 
modulus (elastic) 180 
modulus (shear) 164, 166 
modulus (storage) 164 
moisture content 31 
mole (definition) 20 
montmorillonite 26, 116 
montmorillonite (Hamaker constant) 66 
montmorillonite (interlayer) 122 
mud (definition) 22,23 
mudflat 22 
O  
Oden formula 41 
oedometer test 235, 299 



Conclusion 

 321 

oil sands 95 
Onsager relations 260 
osmotic pressure 58, 70, 120, 215 
P  
pair correlation function 178, 201 
particulate inorganic carbon (PIC) 109 
particulate organic carbon (POC) 109 
pelagic zone 104 
permeability 234, 276 
phase transition 175 
phospholipids 100 
phyllosilicates 28 
plankton 104-106, 108 
plastic limit 31 
plastic state 29, 30 
plasticity chart 33 
plasticity index 32 
Poisson equation 67 
polycyclic aromatic carbons (PAH) 103 
polyelectrolyte 90 
polymer 90-94 
population balance equation (PBE) 144 
porosity 239 
pressure (hydrostatic) 243 
pressure (water) 244 
primary consolidation regime 235, 282 
primary minimum 74 
Q  
quick clay 185 
R  
Rayleigh theory 19, 46, 47 
reaction limited cluster aggregation (RLCA) 114, 144 
Reynolds number 38 
rheopecty 184, 185 
Richardson-Zaki relation 204, 220 
Rouse profile 56 
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S 
sand/mud mixtures 188 
Schulze-Hardy rule 76 
secondary consolidation regime 235 
secondary minimum 74 
sedigraph 39, 40 
sediment balance 41 
settling (fluctuation) 207-208 
settling (hindered) 204, 228, 295 
settling (non-spherical particles) 206 
settling (Stokes) 39, 56, 202, 224 
settling regime 235 
settling velocity 152 
shear flow 170 
shear rate 160 
shear strain 160 
shear stress 160 
shear stress-shear rate 161 
shear thickening 182, 184 
shear thinning 182, 183 
shock wave 222 
shrinkage limit 31 
silicon, silica 110 
silt (definition) 23 
skeleton stress 244, 277 
slipping plane 70 
Smoluchowski formula (electrophoresis) 80 
Smoluchowski model (aggregation) 136-141 
Sodium Dodecyl Sulfate 100 
solid state 29, 30 
solution (definition) 17 
stability ratio 144-148 
stabilization 97 
Stern layer 70, 71, 79, 121 
Stokes-Einstein relation 45 
strain 244 
streaming potential 262 
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stress 243 
stress-strain 32 
surface charge 78 
surface of shear 70 
surface potential 67-69 
surface tension 101, 102 
surfactant 98-101 
suspension (concentrated) 203 
suspension (definition) 19 
swelling (crystalline) 121 
swelling (osmotic) 121 
swelling of clays 120 
T  
thixotropy 183 
tidal flat 22, 24 
turbulent regime 159 
Tyndall effect 18 
V  
Van der Waals forces 63 
viscoelastic fluid 163 
viscosity 158 
viscosity 160 
viscosity (Einstein's formula) 170 
viscosity (extended Einstein formula) 170 
viscosity (Krieger-Dougherty) 172 
viscosity (other models) 173 
void ratio 239 
volume fraction 239 
W  
wall effects 211 
water purification 60 
Wilhelmy plate 102 
Y  
yield stress 162 
yield stress (slump test) 191 
yield stress maximum 194 
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Z 
zeta potential 70, 71 
zeta potential (measurement) 80 
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