Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material

Anne Lorain a,∗, Nicolas Savoye b, Laurent Chauvaud a, Yves-Marie Paulet a, Norbert Naulet c

a LEMAR, UMR 6539 CNRS, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29 280 Plouzané, France
b Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
c Laboratoire d’Analyse Isotopique et Electrochimique de Métabolomes, Université de Nantes, UMR 6006 CNRS, 46220, 2 rue de la Houssinière, 44322 Nantes cedex 03, France

Received 14 February 2003; received in revised form 11 June 2003; accepted 27 June 2003

Abstract

The aim of this study was to determine a simple routine procedure to preserve, decarbonate and analyse low-carbonated filters of suspended particulate organic matter (POM) for particulate organic carbon and nitrogen content, 13C and 15N. Our goal was to analyse these four parameters from a single and entire filter of POM without altering the organic material. First, freezing (−20°C) versus oven-drying (60°C) were compared as the initial preservation step. Afterwards, non-acidified samples were compared to acid-treated samples using 0.12N HCl (diluted HCl rinsing at the end of the filtration) or 12N HCl (filters exposed to HCl fumes for 4 h in a desiccator). Regarding the preservation methods, our results indicate that freezing increases the uncertainty of 15N measurements and, in combination with concentrated HCl treatment, leads to a loss of particulate nitrogen and an alteration of the 15N signature. Consequently, we recommend drying to preserve filter samples. Regarding acid treatments, we found that (i) diluted HCl would not be sufficient to fully remove the carbonate from our samples, (ii) in contrast, a 4 h exposure of the filters to the HCl fumes was enough to remove all the inorganic carbon, and (iii) the concentrated HCl treatment did not alter the nitrogen measurements (only when drying without freezing is used to preserve the filters). Consequently, we propose that low-carbonated POM filters are preserved by drying and carbonates are removed by exposing the filters to HCl fumes (4 h) for the analysis of particulate organic C and N content and isotope ratios.

Keywords: Particulate organic matter (POM); Preservation; Decarbonation; C and N content; Stable isotopes

© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decades the techniques employed to determine organic carbon content, nitrogen content and stable isotope ratios (13C, 15N) have been improved and are now widely used to determine the origin (marine versus terrestrial) and fate of organic matter in the water column and modern sediments.
as well as in ancient sediments for paleo-reconstruction [4–6]. In addition, carbon and nitrogen stable isotope values of organisms are used to determine food webs structure in numerous environments [7–9]. Most of these studies require seasonal sampling but, as the field-collected samples are not analysed immediately, storage under controlled conditions is necessary to prevent organic matter alteration. In addition, to avoid bias within the isotopic signal of particulate organic carbon (POC), carbonates must be removed. Indeed, particulate inorganic carbon (PIC, carbonate minerals, mainly calcite, aragonite and dolomite) and particulate organic carbon exhibit distinct isotopic signatures [10]. It is important that the procedure used to remove carbonate from total particulate material should not alter the organic matter.

Various storage and decarbonation treatments have been reported in the literature. The storage of suspended particulate matter (SPM) generally involves either drying [11] or freezing [12] the samples or applying both of these methods [13]. In the 70s and early 80s, the separation of inorganic and organic carbon, as well as the removal of carbonates from SPM or sediment involved either acidification with diluted H₃PO₄ [14,15] or HCl [16] or a loss on ignition [17–19]. Recently, acidification with diluted or concentrated HCl has been the standard method for elemental and isotopic analysis [20–22]; however, in some cases, authors do not remove carbonates before analysis [23,24]. Storage and acidification may alter the organic matter and, consequently, the values of elemental and isotopic data. Some reports on elemental carbon measurements highlighted that acidification with diluted HCl was unsatisfactory as it could result in the loss of acid-soluble organic carbon during carbonate dissolution (between 5 and 45% of the organic carbon can be lost) [15,25]. In contrast, Hedges and Stern claimed that the vapor acidification method with concentrated HCl avoids loss of acid-soluble organic matter [26]. It is questionable how aggressive methods such as these affect the results when stable isotopes are not analysed. Similar inconsistencies also exist in the preparation and storage of marine organism samples for C and N analyses [27]. In particular, Bunn et al. have shown that weak-acid attack (HCl 10%) in soft tissues could lead to a 3‰ decrease in the mean δ¹⁵N ratios, suggesting that those isotopic changes are due to loss of molecules during acid washing [28]. A common solution to avoid any deterioration of N results by acid exposure is to cut the filter into two portions: one is used for C analyses after decarbonation, and the other one for N analyses without decarbonation. This method is based on the assumption that the SPM is homogenously distributed on the filter, which for coastal water samples is unlikely. Cutting the filter also lengthens the protocol, and could introduce contamination.

For the C and N elemental and stable isotope analyses, a few recent studies have dealt with the consequences of storage and decarbonation treatments on marine sediments [29], particulate material [30] and organisms [28,31]. However, none of these studies have focused on suspended particulate organic matter (POM). At present, the method for decarbonation and preservation of particulate organic matter filters is still under debate and there is no definitive publication available for this procedure on coastal water samples. This study compares the most common preservation and decarbonation treatments and investigates how they affect the C and N elemental and isotopic composition of suspended particulate matter samples. For preservation, freezing (−20 °C) and oven-drying (60 °C) were compared, while for decarbonation, “no acid treatment” was compared with exposure to diluted liquid HCl and concentrated HCl vapour. Our aim is to determine a simple routine method that (1) removes carbonates, (2) preserves organic material and (3) allows the analysis of the four parameters (i.e. C and N organic content, δ¹³C and δ¹⁵N) from one entire filter with minimal time and cost consumption.

2. Experimental

2.1. Material

All laboratory equipment was pre-washed with HCl 10%, rinsed with de-ionised water (DIW) and dried. In addition, the glassware (filter holders, filtration funnels, vials and filters) was pre-combusted (450 °C, 4 h). Both treatments eliminated any trace of inorganic and organic carbon.

2.2. Sample origin

Seawater was collected in the Bay of Brest (France), a coastal macrotidal ecosystem. In spite of the narrow
strait that connects the Bay with the Atlantic Ocean, it represents a real marine ecosystem [32,33] with strong tidal exchanges with the ocean and little influence from the two rivers (the Aulne and the Elorn). The waters from the watershed are poorly carbonated, the surrounding rocks being mainly composed of illite, chlorite, kaolinite and micas [34], i.e. silicated minerals. Therefore, the influence of carbonates on particulate material, via river input, is minor.

2.3. Sampling protocol

On the 5th of June 2001, 30 l of seawater were collected for C and N analysis using a 5 l Niskin bottle. The seawater was pre-filtered (200 μm) to avoid heterogeneity in particle size, poured into two 15 l black carboys, and then placed in a cold dark room (6°C) before use. Before sampling these carboys were gently shaken in order to homogenise the seawater. Each 500 ml sample was filtered through a pre-combusted glass fibre filter (Whatman GF/F, 25 mm diameter). Prior to filtration, filters were rinsed with 10% HCl followed by DIW to eliminate any trace of inorganic carbon. The SPM filters were again rinsed with DIW immediately after filtering the samples, to eliminate Cl− ions harmful to the performance of the elemental analyser [29], and placed in glass vials.

After filtration, different treatments were tested on a total of 60 SPM filters. Thirty SPM filters were stored dried (D) and another 30 stored frozen (F). In each set (D and F), 10 samples were treated with concentrated HCl vapours (Whatman GF/F, 25 mm diameter). Prior to filtration, filters were rinsed with 10% HCl followed by DIW to eliminate any trace of inorganic carbon. The SPM filters were again rinsed with DIW immediately after filtering the samples, to eliminate Cl− ions harmful to the performance of the elemental analyser [29], and placed in glass vials.

For the drying treatment, after filtration the filters were dried (12 h at 60°C), enclosed within clean glass vials and stored in the dark for 1 week.

2.5. Acid treatments

Concentrated HCl treatment: after storage and just before analysis, the vials containing the dry SPM filters were exposed to concentrated HCl vapour in a glass dessicator 4 h at room temperature. To drive off residual HCl and water, the filters were then placed inside a fume hood (3 h) and then in an oven (overnight, 60°C).

In a preliminary study, three sets of three filters (replicates sampled in the Bay of Brest in February 1999) were exposed to HCl vapour for 4, 8 and 12 h. C contents were 92.3±5.7, 89.3±4.0 and 95.0±3.5 μg and δ13C values were 24.3±0.1, 23.9±0.1 and 24.5±0.1‰ for an exposure of 4, 8 and 12 h, respectively. Regardless of the decarbonation time, no significant differences were found between the three sets for both C content and δ13C values. We therefore considered that a 4 h exposure was sufficient to eliminate traces of carbonate from this low-carbonated material.

Diluted HCl treatment: immediately after seawater filtration (before storage), 20 ml HCl 0.12N were poured onto the SPM filter and left to stand for 1 min without vacuum. The vacuum was started again to discard the HCl solution and the filters immediately rinsed with DIW before being transferred to vials for storage.

2.6. Elemental and isotopic analysis

After storage and acid treatment (no HCl, HCl 0.12 or 12N) the filters were folded, placed into tin cups

<table>
<thead>
<tr>
<th>Name</th>
<th>Acid treatment</th>
<th>Preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl, 12N</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HCl, 0.12N</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>None</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D-12</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D-0.12</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D-0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F-12</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F-0.12</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F-0</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1

The six different treatments applied to the POM filter samples with their identification code.
(9 mm height, 5 mm diameter) and kept in vials until analysis. SPM filters were analysed for C and N contents and isotope ratios using a Carlo Erba NA 2100 elemental analyser configured for C and N analysis and coupled to a Finnigan Delta S isotope ratio mass spectrometer.

Isotope ratios are reported in the classic \(\delta \) notation:

\[\delta^{13}C_{\text{sample}} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]

\[\delta^{15}N_{\text{sample}} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]

where \(R = ^{13}C/^{12}C, ^{15}N/^{14}N \). Pee Dee Belemnite and atmospheric nitrogen were used as standards for \(\delta^{13}C \) and \(\delta^{15}N \), respectively. Values are reported in parts per thousands (‰). EA-IRMS precision (standard deviation from 10 replicate measurements, using glutamic acid as the working standard) is of ±2‰ for C and N elemental analysis and of ±0.1‰ for \(\delta^{13}C \) and \(\delta^{15}N \) analysis.

2.7. Data analysis

The effects of the different treatments on the four parameters (i.e. particulate carbon (PC) and nitrogen content (PN), \(\delta^{13}C \) and \(\delta^{15}N \)) were investigated by performing a one-way analysis of variance on all the data (ANOVA, Statgraphics Plus, 99% confidence level). The equality of variances (S.D.) and normality had been previously tested with Bartlett’s test and Kolmogorov’s test, respectively, as prerequisites for any analysis of variance.

3. Results

Table 2 lists the measured values, means and standard deviations for particulate carbon and nitrogen content, \(\delta^{13}C \) and \(\delta^{15}N \). The data followed a normal distribution with 90% or higher confidence level (Kolmogorov’s test). The equality of variances (S.D.) and normality had been previously tested with Bartlett’s test and Kolmogorov’s test, respectively, as prerequisites for any analysis of variance.

3.1. Particulate carbon

The mean blank value for PC was 12.6 ± 5.0 μg for all of the treatments, corresponding to less than 7% of the mean gross PC value (184 μg). Net PC values were obtained by subtracting the blank mean value from the related gross PC for each treatment. The mean net PC value for all the filters was 172 (±10.6) μg.

With the exception of F-0 samples, which differed from all the others (\(P < 0.01 \)), no significant statistical difference was found between all the net PC mean values (Fig. 1A and Table 2). So, for the same decarbonation treatment, there was no difference between freezing and drying (D-0.12 and F-0.12; D-12 and F-12); except for the non-acidified filters where frozen samples had significantly higher values (D-0 differed significantly from F-0, \(P < 0.01 \)). When all the D values are pooled and compared to pooled F values, there were no statistical differences between F and D data, indicating that the preservation method had no effect on particulate carbon values. No significant difference was observed between concentrated and diluted HCl treatments, whatever the preservation method used.

The comparison of non-acidified and acidified filters led to different results depending on the preservation technique. Decarbonation resulted in a significantly reduced carbon content when the samples had been acidified and frozen (\(P < 0.01 \)). On the other hand, no significant difference was noticed for drying preservation.

3.2. Particulate nitrogen

The mean PN value for all filters was 33.1 (±1.9) μg. The nitrogen content appeared homogeneous among the experiments except when freezing and concentrated acid treatment were combined (Fig. 1B). Indeed, the F-12 mean value (30.5 ± 1.0 μg) significantly decreased compared to the other treatments (\(P < 0.01 \); Table 2 and Fig. 1B).

3.3. \(\delta^{13}C \)

Significant differences appeared among all the acid treatments (Table 2 and Fig. 1C; \(P < 0.01 \)). Acidified filters (D-0.12, D-12, F-0.12, F-12) were, indeed,
Table 2
Carbon and nitrogen contents, ^{13}C and ^{15}N values from the preservation

<table>
<thead>
<tr>
<th>Elemental parameters</th>
<th>PC (µg)</th>
<th>PN (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (µg)</td>
<td>F (µg)</td>
</tr>
<tr>
<td></td>
<td>0 ± 12</td>
<td>12</td>
</tr>
<tr>
<td>170</td>
<td>154</td>
<td>161</td>
</tr>
<tr>
<td>159</td>
<td>162</td>
<td>172</td>
</tr>
<tr>
<td>180</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>169</td>
<td>169</td>
<td>176</td>
</tr>
<tr>
<td>182</td>
<td>172</td>
<td>165</td>
</tr>
<tr>
<td>177</td>
<td>166</td>
<td>165</td>
</tr>
<tr>
<td>172</td>
<td>180</td>
<td>175</td>
</tr>
<tr>
<td>169</td>
<td>170</td>
<td>184</td>
</tr>
<tr>
<td>173</td>
<td>157</td>
<td>178</td>
</tr>
<tr>
<td>164</td>
<td>162</td>
<td>190</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isotopic parameters</th>
<th>^{13}C (‰)</th>
<th>^{15}N (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (‰)</td>
<td>F (‰)</td>
</tr>
<tr>
<td></td>
<td>0 ± 12</td>
<td>12</td>
</tr>
<tr>
<td>−20.1</td>
<td>−21.1</td>
<td>−21.3</td>
</tr>
<tr>
<td>−20.5</td>
<td>−21.1</td>
<td>n.d.</td>
</tr>
<tr>
<td>−20.4</td>
<td>−21.3</td>
<td>−21.4</td>
</tr>
<tr>
<td>−20.3</td>
<td>−21.2</td>
<td>−21.5</td>
</tr>
<tr>
<td>−20.4</td>
<td>−21.3</td>
<td>−21.5</td>
</tr>
<tr>
<td>−20.4</td>
<td>−21.1</td>
<td>−21.4</td>
</tr>
<tr>
<td>−20.3</td>
<td>−21.3</td>
<td>−21.4</td>
</tr>
<tr>
<td>−21.1</td>
<td>−21.2</td>
<td>−21.8</td>
</tr>
<tr>
<td>−20.2</td>
<td>−21.1</td>
<td>−21.7</td>
</tr>
<tr>
<td>−20.1</td>
<td>−21.1</td>
<td>−21.6</td>
</tr>
<tr>
<td>Mean</td>
<td>−20.4</td>
<td>−21.2</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.29</td>
<td>0.22</td>
</tr>
</tbody>
</table>

D: dried; F: frozen and HCl treatments investigated; n.d.: means not determined.

Significantly depleted in ^{13}C (−21.3 versus −20.4‰, $P < 0.01$) when compared to the non-acidified ones (D-0, F-0). Concentrated HCl vapour treatments led to stable isotope values significantly lower than those with diluted HCl treatments ($P < 0.01$).

On the other hand, there was no significant difference between the preservation treatment regardless of the decarbonation method: D-0 did not differ from F-0, nor D-0.12 from F-0.12, nor D-12 from F-12.

3.4. ^{15}N

The overall mean ^{15}N value was +6.6 (±0.4‰). F-0.12 differed significantly from the other treatments with a ^{15}N value of 7.1‰ ($P < 0.01$, Fig. 1D). When freezing preservation was used, there was an increase in the variability among mean ^{15}N values (inter-value variability) together with an increase in standard deviation (intra-value variability, 0.38‰ versus 0.26‰).
When samples were dried, δ¹⁵N mean values were more homogeneous, with only a slightly significant difference among D-12 and D-0.12 values ($P < 0.01$), but neither were significantly different from D-0 values.

4. Discussion

4.1. Characterization of the particulate organic matter

The stable isotope ratios reported here (Table 2) are within the range of those encountered in the literature for coastal suspended particulate organic matter in temperate ecosystems [2,35]. Furthermore, our data fall within the classical POM values measured in the Bay of Brest [36]. The POM was sampled the 5th of June 2001 at the SOMLIT station (Bay of Brest, France) during a phytoplankton bloom (see a time series at the address http://www.univ-brest.fr/IUEM/BIOFLUX/chloro.htm). During this period, the dominant species were diatoms (*Rhizosolenia stolterfothii* (100 000 cells l$^{-1}$) and *Leptocylindrus danicus* (55 000 cells l$^{-1}$), Nézan, personal communication), as is usually encountered during the first spring blooms in the Bay of Brest [33]. The chlorophyll concentration was approximately 3 μg l$^{-1}$, a classical value for spring phytoplankton bloom in this area during the last decade [33]. The C:N and POC-Chl a ratios were 6.0 and 57.2, respectively, values characteristic of phytoplankton-dominated material [37,38]. In addition, due to the sampling method (200 μm pre-filtration; sea above), the contribution of large detritus and zooplankton on the POM was minimized. In summary, there is evidence that the sampled POM was dominated by phytoplankton.

From our results, the carbonate content of the samples (difference between decarbonated and non-decarbonated samples) is less than 5% of the total carbon content (Table 2). Consequently, one should be aware that our study deals only with material containing relatively small quantities of carbonates.

4.2. Drying versus freezing

For carbon results, freezing and oven-drying without decarbonation (F-0 and D-0) did not affect the studied parameters ($δ^{13}$C and PC). However, the combination of freezing with concentrated HCl
the preservation method: freezing to weeks or months

tive of usual storage duration, which may extend to

concentrated or diluted HCl, an acidi

crease of concen-

decarbonation (F-12) led to a signi-

increase in 13C

decarbonation led to a signi-

Non-acidi

frosting samples affects the POM independently of

4.3. Acid treatment

Decarbonation is necessary to remove all inor-

ganic carbon from samples before measuring POC.

Although our investigations showed no clear differ-

dences in particulate carbon between acidified and

non-acidified samples (except in the freezing method,

confirming the very low-carbonate content of our

samples), the 13C results pointed out the need of an

acidification treatment. Indeed, with exposure to

acid, with concentrations or diluted HCl, 13C mean value shifted

from −20.4‰ to −21.3‰.

How can one explain a shift of 0.9‰ in 13C

with such a small amount of removed carbonates? In

temperate coastal ecosystems, the two potential par-

ticulate inorganic carbon sources are drainage basin

rocks and calcified benthic populations. The Bay of

Brest drainage basin rocks are poorly carbonated,

but 80% of the Bay surface is covered with calcifi-
ced benthic populations: mainly maerl (calcareous algae), marine gastropods, pectinids and brittle stars

[39,40]. Therefore, in this ecosystem, PIC is derived

mainly from the benthic population (assuming that

zooplankton was removed from filters by the 200 μm

filtration). Typical values for carbonates (calcite and

aragonite) in the literature range from −5.5‰ to +7‰,

for organisms such as pteropods or molluscs [41,42],

and normally between −0.5‰ and +1.5‰ for most of

them. In Bay of Brest, 13C measurements on pec-
tinid shells (Pecten maximus) have revealed values

within 0 and +1‰ (Chauvaud, Lorrain and Dunbar,

unpublished data).

To check the assumption of a carbonate effect in

this 1‰ 13C difference between non-treated and

acidified PC samples, we calculated an expected

isotopic value for particulate organic carbon (POC).

The following equation can be used to calculate

δ13C_{POC}:

\[\delta^{13}C_{POC} = \frac{[TPC]\delta^{13}C_{TPC} - [PIC]\delta^{13}C_{PIC}}{[POC]} \]

where the mean non decarbonated PC value, i.e.

the mean total particulate carbon (TPC) value, was

177 μg, and the mean decarbonated PC value, i.e.

the mean POC value, was 169 μg. The difference

between TPC and POC corresponds to the particulate

inorganic carbon removed by the acid treatment. Us-
in our values for [TPC], [PIC], [POC] and δ13C_{PIC}
(Table 2), and assuming that the δ13C_{PIC} is +0.5‰
(mean value from literature cited above), the calculat-
ed δ13C_{POC} value is −21.4‰, which agrees with

our results (mean value of all acidi-

fied samples = −21.3 ± 0.2‰). This result indicates that a

very small quantity of inorganic carbon (less than 5% of the total carbon) can lead to a 1‰ increase of the

13C values. Bunn et al. reported a similar shift in

the stable isotope ratio for seagrass nitrogen that was

not accompanied by a detectable shift in elemental

composition [28]. We believe that differences in PC

content between the two carbonate removal proce-
dures are not detected, since the PC analyses do not

achieve the precision required to detect such small
differences.

Because a small amount of carbonate significantly

affects the δ13C value—a 1‰ difference is indeed high

enough to bias the future interpretation in food webs

or organic matter origin studies—acid treatment of the

SPM samples is required for δ13C studies, even in

low-carbonated waters.

For both freezing and drying preservation, acid

fumes led to further depleted δ13C values compared

to diluted acid (P < 0.01). But even if this differ-

ence has a statistical meaning, a 0.3‰ difference is

not truly meaningful in stable isotope studies. In any

case, those results suggest that the weak-acid treat-

ment could not be sufficient to remove all carbonates

from our samples. Furthermore, when not combined

with freezing (see Section 4.2 above), exposure to
acid fumes did not seem to affect N values. Indeed, with the drying preservation method, PN and δ¹⁵N values for both acid treatments were equivalent to the values of non-acidified samples (at a 99% confidence interval, one-way analysis of variance). Since acid fumes treatment is needed for ¹³C analyses and since it does not alter the other parameters (i.e. PN and δ¹⁵N) when drying preservation is used, we recommend removing carbonates from poorly carbonated samples by exposure to strong-acid fumes for 4h.

5. Conclusion

Thorough examination of our results leads us to advise preserving particulate organic matter by oven-drying rather than freezing. This conclusion may be drawn in the absence of data showing the effect of storage time on dried samples, since even short-term freezing has a significant effect on POM analyses.

The carbon stable isotope analyses (i.e. the decrease of 1‰ in δ¹³C values from non-decarbonated to decarbonated samples) indicates that carbonates must be removed in order to avoid bias in the data, even for poorly carbonated samples. Since the diluted HCl treatment did not seem to be strong enough compared to the HCl fume treatment, and as the later did not alter the nitrogen measurements (PN and δ¹⁵N), we recommend the use of strong HCl fumes to remove all carbonates from the samples.

To summarize, the protocol that we propose for the simultaneous determination of POC, PON, δ¹³C and δ¹⁵N from a unique SPM filter sample consists of (1) drying the filter after filtration for storage, and (2) exposing the filter to concentrated HCl fumes for 4h to remove carbonates. This protocol allows routine, accurate and precise analyses of the four parameters from a single filter, minimizing the analytical time and costs.

Since this study focused on material containing low levels of carbonate, further investigations should be carried out to extend this procedure for the analysis of samples containing high levels of carbonates. It may be necessary to expose highly-carbonated filters to acid fumes for longer periods of time to remove all the carbonates. The effect of longer exposure times on organic material would also need to be investigated.

Acknowledgements

We particularly thank Tara Schraga, David Gilikin, Lorraine Berry and anonymous reviewers for English corrections and helpful comments, which greatly improved the original manuscript.

References