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Abstract. Regional emulation tools based on statistical re-
lationships, such as pattern scaling, provide a computation-
ally inexpensive way of projecting ocean dynamic sea-level
change for a broad range of climate change scenarios. Such
approaches usually require a careful selection of one or more
predictor variables of climate change so that the statistical
model is properly optimized. Even when appropriate predic-
tors have been selected, spatiotemporal oscillations driven by
internal climate variability can be a large source of statis-
tical model error. Using pattern recognition techniques that
exploit spatial covariance information can effectively reduce
internal variability in simulations of ocean dynamic sea level,
significantly reducing random errors in regional emulation
tools. Here, we test two pattern recognition methods based
on empirical orthogonal functions (EOFs), namely signal-to-
noise maximizing EOF pattern filtering and low-frequency
component analysis, for their ability to reduce errors in pat-
tern scaling of ocean dynamic sea-level change. We use the
Max Planck Institute Grand Ensemble (MPI-GE) as a test
bed for both methods, as it is a type of initial-condition large
ensemble designed for an optimal characterization of the
externally forced response. We show that the two methods
tested here more efficiently reduce errors than conventional
approaches such as a simple ensemble average. For instance,

filtering only two realizations by characterizing their com-
mon response to external forcing reduces the random error by
almost 60 %, a reduction that is only achieved by averaging at
least 12 realizations. We further investigate the applicability
of both methods to single-realization modeling experiments,
including four CMIP5 simulations for comparison with pre-
vious regional emulation analyses. Pattern filtering leads to
a varying degree of error reduction depending on the model
and scenario, ranging from more than 20 % to about 70 % re-
duction in global-mean root mean squared error compared
with unfiltered simulations. Our results highlight the rele-
vance of pattern recognition methods as a tool to reduce er-
rors in regional emulation tools of ocean dynamic sea-level
change, especially when one or only a few realizations are
available. Removing internal variability prior to tuning re-
gional emulation tools can optimize the performance of the
statistical model, leading to substantial differences in emu-
lated dynamic sea level compared to unfiltered simulations.
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1 Introduction

Sea levels are closely linked to the state of the climate.
Understanding how increased radiative forcing in the atmo-
sphere will affect sea-level rise is of utmost importance given
the devastating impacts to coastal systems. Global-mean sea
level has been increasing over the 20th century (Fox-Kemper
et al., 2021), and its rate has been accelerating over the past
decades both globally (e.g., Dangendorf et al., 2019; Fox-
Kemper et al., 2021; Frederikse et al., 2020; Nerem et al.,
2006) and regionally (e.g., Steffelbauer et al., 2022). This
acceleration is expected to continue over the next century for
all greenhouse gas (GHG) emissions scenarios (Fox-Kemper
et al., 2021) with the potential to further increase widespread
impacts in coastal areas (Cooley et al., 2022). Increased sea
levels will change coastal flood risk through expanding ar-
eas under permanent inundation, increasing frequencies of
extreme coastal flooding events (Vitousek et al., 2017; Wahl
et al., 2017), and modifying tides (Haigh et al., 2020) and
thus potentially increasing the frequency of tidal-induced
flooding (Moftakhari et al., 2015). These processes will not
only impact coastal infrastructure and assets (Hinkel et al.,
2014) but also alter coastal ecosystems and the services they
provide, from ecosystem value to natural flood risk protec-
tion (Cooley et al., 2022). Understanding how global and re-
gional sea levels evolve under different scenarios will help
to better adapt to changing risks and mitigate their potential
impacts in coastal zones (Haasnoot et al., 2019, 2021).

Global-mean sea-level change is driven by a combina-
tion of processes. The melting of the Greenland and Antarc-
tica ice sheets as well as glaciers and ice caps, changes in
land-water storage, and thermal expansion of the ocean are
the processes driving global-mean sea-level rise (e.g., Gre-
gory et al., 2019; Fox-Kemper, 2021). Analogously to global
warming, sea-level rise is a global concern, but it is not spa-
tially uniform (e.g., Slangen et al., 2017). There are sev-
eral processes that determine regional sea-level change. First,
the redistribution of mass on the Earth’s surface, as a re-
sult of melting land ice and changes in land-water storage,
causes a regionally variable sea-level change due to grav-
itational, rotational, and deformational effects (Farrell and
Clark, 1976; Mitrovica et al., 2001). Second, vertical land
motion also causes relative sea-level changes. The viscoelas-
tic relaxation of the Earth induced by deglaciation follow-
ing the Last Glacial Maximum, defined as glacial isostatic
adjustment (GIA; e.g., Peltier, 1999, 2001), and more local
processes driving subsidence (e.g., Nicholls et al., 2021) are
the main processes driving changes in land elevation. Third,
ocean circulation, as well as heat and freshwater fluxes over
the ocean, also known as ocean dynamics (Gregory et al.,
2019), changes local densities and moves water mass around
the ocean. Fourth, changes in sea-level pressure over the
oceans, also known as inverted barometer (IB) effects, may
lead to regionally varying rates of sea-level change (Stam-
mer and Hüttemann, 2008). These regional drivers of sea-

level change act on a wide range of spatial and temporal
scales, which makes their local assessment essential for im-
pact studies, planning, and adaptation needs. For instance,
while ocean dynamics have a typical temporal scale rang-
ing from days to decades, vertical land movements present
a much wider range (Durand et al., 2022), as the latter are
governed by processes affecting land elevation on timescales
significantly different from earthquakes (on the order of sec-
onds) to GIA (on the order of millennia).

This study focuses on ocean dynamic sea-level (DSL)
change, which is governed by changes in ocean circula-
tion and density. DSL features large spatiotemporal varia-
tions across the oceans, which makes it a crucial compo-
nent to predict regional sea-level changes accurately, yet also
one that provides significant uncertainty (Couldrey et al.,
2021). Spatial and temporal variability in DSL is driven
by internal climate variability (ICV), which is defined as
naturally occurring climatic variations controlled by inter-
actions between different components of the Earth system
(Hasselmann, 1976; Schwarzwald and Lenssen, 2022), and
by a forced response associated with increased radiative
forcing in the climate system. DSL is typically projected
with global climate models (or related models, hereinafter
GCMs), which are state-of-the-art comprehensive climate
models that solve a range of environmental variables control-
ling the Earth’s system, including its climate. GCMs require
vast computational resources, and therefore climate model-
ing experiments have been designed for a limited range of
GHG concentration scenarios (O’Neill et al., 2017; Riahi
et al., 2017; van Vuuren et al., 2011) within the climate model
intercomparison (CMIP) framework (Eyring et al., 2016) so
that model differences are somewhat comparable.

To reduce the computational demand, complementary ap-
proaches based on parameterizing process-based models are
commonly used. This method, also known as emulation,
aims to mimic the output of complex models at a reduced
computational cost and has been widely used in recent litera-
ture to model different aspects of the climate system (e.g.,
Thomas and Lin, 2018; Edwards et al., 2021; Schwarber
et al., 2019). Regional emulation follows the same princi-
ple and aims to estimate a spatiotemporally varying variable
by mimicking GCM behavior. One of the most commonly
used emulation approaches for projecting changes in a re-
gional variable is pattern scaling (Mitchell, 2003; Perrette
et al., 2013; Santer et al., 1990), which consists of relating a
local grid-point variable (predictand) to one or a few global-
mean change variables (predictors) via regression. Based on
that statistical relationship, a change in a regional variable
can be emulated by projecting the global-mean variables via
simpler climate models (Goodwin et al., 2018; Meinshausen
et al., 2011; Millar et al., 2017; Smith et al., 2018)

Here, we build on the approach proposed by Bilbao et al.
(2015), who applied a linear pattern scaling approach to as-
sess the ensemble-mean DSL computed from five CMIP5
models and their simulations of several variables describ-
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ing global changes, including global surface air tempera-
ture (GSAT), global-mean thermosteric sea-level rise (GMT-
SLR), and ocean-volume mean temperature. While GSAT
turned out to be the best predictor of 21st century DSL
change in a high emissions scenario (Representative Con-
centration Pathway 8.5: RCP8.5), ocean-volume mean tem-
perature and GMTSLR outperformed the rest of variables
considered in lower emissions scenarios (RCP2.6 and 4.5).
As the surface ocean layer responds quicker to air temper-
ature changes than the deeper ocean layer, they speculated
that surface warming had a more important role relative to
deep warming in a high emissions scenario. Based on the
findings of Bilbao et al. (2015), Yuan and Kopp (2021) used
the same set of CMIP5 models to develop a bivariate pat-
tern scaling approach, accounting for the surface and deep
ocean layers separately. Their goal was to capture the differ-
ent delayed response of those two layers by using GSAT and
global-mean deep-ocean temperature changes as predictors.
By employing a bivariate pattern scaling approach, Yuan and
Kopp (2021) reported a reduction of the predicted DSL er-
ror for the period 2271–2290 of 36 %, 24 %, and 34 % for
RCP2.6, 4.5, and 8.5, respectively, compared to a univariate
approach based on only GSAT.

The aforementioned studies highlight the importance of
selecting appropriate predictors to attain an optimized re-
gional emulator of DSL and how accounting for differ-
ent processes driving DSL change (in different layers of
the ocean) can help further improve emulator performance.
While designing a regional emulator based on performance
metrics may provide insights into the global processes driv-
ing DSL changes, this process can be obscured by other
drivers of emulator error. In particular, random errors con-
tained in the regression forming the pattern scaling approach
are assumed to be mostly caused by ICV (Bilbao et al., 2015)
and may be a source of large uncertainty. Thus, if random er-
rors are not minimized prior to emulator training with GCM
simulations, their presence could impair a proper selection of
global predictors such that it would be uncertain whether an
increase in model performance is due to an appropriate se-
lection of predictors or an artifact of ICV causing a biased
selection. In previous studies, this effect has been minimized
by computing 30-year means, assuming this cancels out ICV.
This step, however, entails a substantial loss of data and does
not guarantee ICV is optimally subtracted, and residual ICV,
for instance caused by long-memory processes (e.g., Becker
et al., 2014; Dangendorf et al., 2014), can remain.

We therefore propose taking a different approach to sepa-
rate ICV from the response driven by external radiative forc-
ing in the Earth by employing state-of-the-art modeling ex-
periments specifically designed to do so. These are known
as single-model initial-condition large ensembles (SMILEs)
and consist of a set of simulations with the same forcing but
with the variability evolving in a different phase (Deser et al.,
2020). These realizations can be combined through different
methods (e.g., Frankcombe et al., 2015) so that ICV cancels

out. However, conventional approaches such as computing
the ensemble mean or linear trends are not the most effi-
cient tools to do so and tend to lead to the loss of much of
the information gained from running large ensembles (Wills
et al., 2020). Other methods based on pattern recognition
via empirical orthogonal functions (EOFs) exploit spatial co-
variance information to remove ICV more efficiently (Wills
et al., 2020) and have been demonstrated to provide more su-
perior agreement between observations and simulations than
an ensemble average (Marcos and Amores, 2014). These
types of efficient methods for removing ICV hold potential
to benefit emulation experiments of DSL for which the num-
ber of simulations is limited.

The aim of this study is to characterize the importance
of ICV as a driver of random errors in statistically based
(pattern-scaled) projections of DSL change. To achieve
this aim, we will compare different pattern recognition
techniques, including signal-to-noise maximizing (S/N M)
EOF pattern filtering (Wills et al., 2020) and low-frequency
component analysis (LFCA; Wills et al., 2018, 2020). We
will use these techniques to truncate ICV in DSL simulations
from the Max Planck Institute Grand Ensemble (MPI-GE)
SMILE (Maher et al., 2019) and explore their applicability
to single-realization modeling experiments, including a set
of CMIP5 simulations used in previous pattern scaling stud-
ies. In this paper, we particularly aim to attain the following
objectives.

1. Use a large ensemble (MPI-GE) to determine the forced
pattern and examine to what extent pattern recognition
techniques isolate the forced response in DSL change
more efficiently than conventional methods (Sect. 4.1).

2. Determine the error reduction in pattern scaling of DSL
provided by pattern recognition methods relative to
more conventional methods (Sect. 4.2).

3. Test whether filtering improves pattern scaling in single-
realization modeling experiments of DSL (Sect. 4.3).

2 Climate model data and pre-processing

Separating ICV from the forced response is key for detec-
tion and attribution studies in climate change (Labe and
Barnes, 2021) and to understand its effects on the climate
system (Deser et al., 2020; Mankin et al., 2020). However,
the combination of distinct GCMs to analyze ICV should
be performed with caution, as this may conflate ICV with
model biases (Maher et al., 2021b). In recent literature, this
has motivated the development and use of SMILEs, which
branch each realization at a different model stage in the
pre-industrial control simulation (Danabasoglu et al., 2020;
Deser et al., 2020; Fasullo et al., 2020; Kay et al., 2015; Ma-
her et al., 2019, 2021a; Mankin et al., 2020). This results in
simulations with the same forced response but with variabil-
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ity evolving in a different phase, enabling a separation of the
variability from the forced response.

There are two main procedures for creating SMILEs:
(1) inducing small round-off level differences in their
atmospheric initial conditions (micro-initialization) and
(2) branching simulations at different times in the control
simulation (macro-initialization). Both micro- and macro-
initialization are useful to characterize unpredictable ICV
within a model. Macro-initialization, however, provides
larger differences in the initial states in both the atmosphere
and ocean. Macro-initialized ensembles are therefore better
suited than “micro” ensembles to sample uncertainty in an
initialized framework (Hawkins et al., 2016; Stainforth et al.,
2007), facilitating an assessment of ICV in different aspects
of the climate system.

Since we are assessing ocean processes, a macro-
initialized ensemble is most suitable for the purpose of this
study. From the available macro-initialized SMILEs (Deser
et al., 2020; Maher et al., 2021a), we decided to use the Max-
Planck Institute Grand Ensemble (MPI-GE; Maher et al.,
2019) because it contains the largest number of ensemble
members available (100) in a SMILE for different RCP sce-
narios (RCP2.6, 4.5, and 8.5) up to 2100. MPI-GE simu-
lations assume a stationary and volcano-free 1850 climate
and are macro-initialized on 1 January in different years of
the control simulation (Table 1 in Maher et al., 2019). The
branching separation between realizations varies along the
pre-industrial control, ranging from 6 to 24 years and with a
median of 16 years. MPI-GE has a relatively lower resolution
than other GCMs, representing the atmosphere at an approxi-
mate horizontal resolution of 200 km (1.875◦) with 47 layers
(up to 0.01 hPa ∼ 80 km in height). The horizontal resolu-
tion of the ocean (including biogeochemistry) varies from 12
to 150 km at 40 layers, whereas the land biosphere has the
same horizontal resolution as the atmosphere. Despite its rel-
atively low resolution, Suarez-Gutierrez et al. (2021) show
that MPI-GE samples observed ocean variability well in all
regions except for the Southern Ocean.

Additionally, we use four CMIP5 models that were used in
previous studies of DSL pattern scaling (Bilbao et al., 2015;
Yuan and Kopp, 2021), including GISS-E2-R, HadGEM2-
ES, IPSL-CM5A-LR, and MPI-ESM-LR. These four GCMs
were selected in the aforementioned studies because they
were used to calibrate the parameters of the simple climate
model used by Geoffroy et al. (2013a, b), which facilitated
the design of their emulation tool. Also, these models provide
multi-century data (up to 2300) in three emissions scenarios,
granting an assessment of the suitability of pattern scaling
for long-term projections. We use them here for comparison
purposes.

The focus of this study is on DSL change, which is defined
at each location and time as the change in local sea-surface
height relative to the geoid, with the IB correction applied
(Gregory et al., 2019). DSL varies locally due to ocean cir-
culation and horizontal gradients, and its global mean is zero

at every time step (Eq. 15 in Gregory et al. 2019); i.e., GMT-
SLR is excluded. In CMIP models, DSL is diagnosed as zos
(Griffies et al., 2016) and often expressed as differences in re-
lation to a control state. DSL simulations from GCMs, how-
ever, do not include the effect of sea-level pressure on sea
level (IB effect), and such an effect is not the subject of study
in our analysis; hence, it is not considered here.

Since we are interested in assessing the forced response in
DSL for historical and future GHG emissions we will use zos
from a range of GCMs for historical and future radiative forc-
ing scenarios, including RCP2.6, 4.5, and 8.5 (Meinshausen
et al., 2011). Once the forced DSL has been characterized,
we will proceed to pattern-scale each model and scenario us-
ing a variable from their respective GCM simulation repre-
senting a global change in the state of the climate system.
Among other potential global predictors, we chose GMTSLR
(diagnosed as zostoga in CMIP models), defined as the part
of global-mean sea-level rise due to thermal expansion. We
deemed GMTSLR as a suitable predictor candidate because
it is closely related to DSL and has been successfully used in
previous pattern scaling analysis of DSL (e.g., Bilbao et al.,
2015; Thomas and Lin, 2018). We refrain from testing other
global variables as predictors to ease comparing models and
scenarios, as well as determining to what extent pattern fil-
tering reduces statistical error via reducing ICV.

In this study, we are particularly interested in removing in-
terannual variability, and thus we compute annual-mean zos-
toga and zos time series from the raw monthly mean GCM
data. In addition, since GCMs are run for a few centuries and
the deep ocean usually takes millennia to reach an equilib-
rium, both zos and zostoga are subject to model drift (Sen
Gupta et al., 2013). Model drift in the historical and scenario
simulations can be corrected for by subtracting the smoothed
long-term change of the pre-industrial control run. To avoid
contaminating the drift correction with ICV, ideally the full
length of the control run is used to determine the drift (Sen
Gupta et al., 2013). Therefore, to dedrift the historical and
scenario simulations of zostoga and zos (the latter grid cell
by grid cell) we first fit a quadratic polynomial to the full
pre-industrial control simulations of these variables. Then,
we evaluate and subtract the polynomial fit over the time pe-
riod in which the pre-industrial control run and the historical
and scenario runs overlap, as identified by the branch times
of the different simulation realizations and their length, from
the historical and scenario runs. Similar to what was found
by Hermans et al. (2020) and Hobbs et al. (2016), fitting
a linear or quadratic polynomial to the pre-industrial con-
trol simulations yields little difference for the drift correc-
tion of the zostoga simulations of GISS-E2-R, HadGEM2-
ES, IPSL-CM5A-LR, and MPI-ESM-LR. However, in the
pre-industrial simulation of MPI-GE, the increase in zostoga
behaves nonlinearly and levels off toward the branching time
of ensemble member 40, so we only dedrift ensemble mem-
bers 1 to 39. For zos, some differences are found between
linear and quadratic drift correction depending on the model,
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variant, and location. We assume linear dedrifting is suitable
for our purpose, since we verified that the dedrifting does
not substantially affect the pattern scaling performance and
it is tedious to assess the best fit on a grid-point basis. After
dedrifting, the area-weighted mean of zos is removed at each
time step, and the resulting fields are bilinearly regridded to
a common 1 ◦ by 1 ◦ grid.

3 Methods

3.1 Pattern filtering techniques

Both S/N M EOF pattern filtering and LFCA aim to identify
spatial patterns in the data than explain most of the forced
climate change signal by decomposing the data into EOFs.
Effectively, this allows distinguishing the forced signal from
noise caused by ICV. The difference between S/N M EOF
and LFCA lies in their definition of what type of variance
(or patterns of variance) in the data belongs to the signal and
the noise. Here, only the basics of both methods will be ex-
plained. Interested readers can find an extensive methodolog-
ical explanation about S/N M EOF pattern filtering applied to
an ensemble and LFCA in Wills et al. (2020) and Wills et al.
(2018), respectively.

S/N M EOF pattern filtering diagnoses the variance that
is forced by either assessing a simulation of forced climate
change relative to a pre-industrial control simulations (Del-
Sole et al., 2011; Marcos and Amores, 2014) or by using an
ensemble mean of realizations with the same forcing (Wills
et al., 2020). The former is advantageous in single-realization
GCM experiments, as it only requires one forced realization
and one pre-industrial control run. However, this could ne-
glect the forced response when external forcing only affects
the phase of an ICV mode (Wills et al., 2020). The latter al-
lows effectively reducing ICV while avoiding phase neglec-
tion issues but requires the availability of two or more en-
semble members. Since one of our objectives is to determine
how efficient pattern filtering methods are compared to an
ensemble mean of realizations to reduce ICV in DSL, here
we focus on the latter approach.

Essentially, S/N M EOF pattern filtering exploits a SMILE
to find patterns wherein different ensemble members agree
on the temporal evolution (forced response), whereas pat-
terns in which members disagree are considered ICV. S/N M
EOF pattern filtering finds spatial patterns (right-hand side of
Fig. 3, for example) associated with the time series tk of each
pattern k (left-hand side of Fig. 3, for example) that maxi-
mize the ratio of (ensemble mean) signal to total variance sk:

sk =
〈tk〉

T
〈tk〉

tTk tk
, (1)

where angle brackets represent an ensemble average. The
leading S/N patterns (i.e., anomaly patterns with high signal

Figure 1. Main steps involved in isolating the forced response, in-
cluding variability decomposition (EOF analysis), finding leading
anomaly patterns, and combining leading patterns above a signifi-
cant statistical level.

fraction sk) can be combined to isolate the forced response
from the ICV (Fig. 1).

To apply S/N M EOF pattern filtering, we must deter-
mine two parameters: (1) the number of EOFs retained (N )
and (2) the number of S/N patterns used to compose the
forced response (M). Following the approach by Wills et al.
(2020), we choose N to retain between 75 % and 95 % of
the total variance. We use a block bootstrapping approach
to determine M , which consists of taking block samples
with replacement from the ensemble members to construct
a randomized ensemble wherein the forced response tim-
ing of their realizations should not agree with one another.
Here, we choose 30-year blocks to distinguish forced pat-
terns from ICV so that most of the ICV in DSL is excluded.
S/N EOF pattern filtering is then applied to randomized en-
sembles and the sk value of the pattern with the highest
S/N ratio is taken as a threshold. This allows us to obtain a
distribution of sk values (one for each randomized ensemble
produced) from which a desired confidence level can be es-
timated. S/N M EOF patterns with a higher sk value than the
threshold can be considered part of the forced response with
the chosen confidence level (Fig. 1). As there is no sufficient
statistical evidence to include patterns with a lower sk value
in the forced response, those are considered noise (ICV).

In contrast to S/N M EOF, LFCA identifies the signal that
makes it through a low-pass filter. The advantage of LFCA
is that it can analyze the forced response in a single ensem-
ble member without relying on the pre-industrial control run
(Schneider and Held, 2001; Wills et al., 2018). LFCA is sim-
ilar to S/N M EOF pattern filtering, but, instead of using
an ensemble mean, it detects anomaly patterns associated
with time series tk (Eq. 2) that maximize the ratio of low-
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frequency signal to total variance. The failure to detect some
forced variations such as those driven by volcanic activity
in surface air temperature and some changes in the seasonal
cycle is the main disadvantage of this method being docu-
mented in the literature (Wills et al., 2020).

rk =
t̃k
T t̃k

tTk tk
(2)

Variations that make it through a low-pass filter (denoted
by a tilde) constitute the low-frequency signal (forced re-
sponse). Here, we apply a linear Lanczos filter (Duchon,
1979) with a 30-year low-pass filter, so only variability at
larger timescales is included. Following the same process
as in S/N M EOF, a forced response can be constructed by
linearly combining leading anomaly patterns, as illustrated
in Fig. 1.

3.2 Pattern scaling

Pattern scaling is usually based on grid-point regression
against a global variable, and it assumes that a regional
change in DSL can be explained by global changes in the
predictor(s) of choice. Previous studies have shown that such
relationships can be a reasonable approximation for different
variables of the climate system. For instance, local surface air
temperature change (Collins et al., 2013; Hawkins and Sut-
ton, 2012) and local precipitation (Osborn et al., 2016) have
successfully been linked to GSAT change. Regional emula-
tion based on pattern scaling assumes that patterns of local
response to external forcing remain constant (Tebaldi and Ar-
blaster, 2014), an assumption that can lead to errors (Wells
et al., 2022). However, its simplicity and transferability to
many regional variables have made it a popular approach for
exploring regional changes in climate change studies (Bilbao
et al., 2015; Fox-Kemper, 2021; Herger et al., 2015; Mitchell,
2003; Osborn et al., 2016; Perrette et al., 2013; Tebaldi and
Arblaster, 2014; Thomas and Lin, 2018; Wells et al., 2022;
Wu et al., 2021; Yuan and Kopp, 2021).

Once we have identified the forced DSL within an en-
semble of realizations or a single simulation (as outlined in
Sect. 3.1), we will use this forced response as a predictand
in our statistical model for projecting regional DSL. There
are different forms of pattern scaling, mostly differing in the
number of predictors included in the analysis (e.g., univari-
ate, Bilbao et al., 2015; bivariate, Yuan and Kopp, 2021).
Here, for simplicity and to ease comparison between raw
(dedrifted) DSL and its pattern-filtered equivalent, we only
test pattern scaling based on GMTSLR (or zostoga) as a pre-
dictor. The univariate case of pattern scaling for relating DSL
with GMTSLR can be described by the following linear re-
gression relationship:

ζ(t,x,y)= α(x,y)η(t)+ b(x,y)+ ε(t,x,y), (3)

where ζ and η denote DSL and GMTSLR, respectively.
Longitude and latitude are represented by x and y, whereas

t denotes time. α is a spatial pattern that captures the scal-
ing relationship between DSL and GMTSLR, and b is an in-
tercept term, both being only a function of location. ε is a
residual term regarded as random noise and often assumed
to be driven by internally generated variability (Bilbao et al.,
2015).

4 Results and discussion

4.1 Forced response in MPI-GE and efficiency of
pattern filtering

In this section, we focus on determining the forced response
in DSL within a SMILE (MPI-GE) using S/N M EOF pat-
tern filtering and show the efficiency of the latter to remove
ICV compared to the more conventional approach of ensem-
ble averaging. To construct the forced response based on
S/N patterns, we follow the block bootstrapping approach de-
scribed in Sect. 3.1. We define blocks in terms of 30 years,
so most ICV in DSL is excluded. The 30-year block samples
are taken from the 100 historical realizations of the MPI-GE
to construct 20 randomized ensembles. A value of 20 is cho-
sen because increasing it further does not lead to substantial
changes in the estimation of the 95th percentile of Sk. The
estimated ratio Sk (Eq. 1) for a 95 % confidence level is 0.08,
leading to a total of eight patterns that can be considered part
of the forced response at such a confidence level (Fig. 1).

Even though patterns constructed based on EOFs are cre-
ated from mathematical constraints, known physical pro-
cesses can be identified in some patterns. For instance, the
S/N M EOF pattern with the highest Sk value, pattern 1
(Fig. 3), explains 62 % of the forced response variance
(Fig. 2) and is similar to the main forced pattern of DSL
change field driven by increased radiative forcing due to
increased GHG emissions. There is a zonal dipole in the
Southern Ocean, with decreased and increased sea level rel-
ative to the mean below and above 50◦ S, respectively (e.g.,
Frankcombe et al., 2013). Another dipole structure is found
in the North Atlantic with a decreased DSL in the north com-
pared to an increased DSL in the southern section, a feature
which appears to disagree with some models (e.g., Bouttes
et al., 2014). Nonetheless, the North Atlantic Ocean is an
area of large model spread in both CMIP5 and CMIP6 mod-
els (Lyu et al., 2020), which suggests that the representation
of such a zonal dipole may be model-dependent. Other rele-
vant features include a large DSL rise in the Beaufort Sea and
an increased DSL in the northwestern Pacific Ocean. Most of
these features agree with those documented among CMIP6
and earlier models (Church et al., 2013; Ferrero et al., 2021;
Landerer et al., 2007; Lowe and Gregory, 2006; Lyu et al.,
2020; Slangen et al., 2014). Patterns are similar between RCP
scenarios, mainly differing in their intensity.

The three following resulting patterns (patterns 2–4,
Figs. S1–S3) represent between 4 % and 1 % (Fig. 2) of the
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Figure 2. Signal fraction of the leading S/N M EOF patterns along
with their respective explained forced response variance (%). The
significance level (95 %) computed using 30-year block bootstrap-
ping is represented as a dashed line. Patterns are sorted based on the
magnitude of their signal fraction, as illustrated in Fig. 1.

forced response variance and, although with a much lower
importance than pattern 1, when combined together repre-
sent nonlinear processes that start to have an effect in DSL
after 2050. Patterns 5, 6, 7, and 8 (Figs. S4–S7) explain be-
tween 1 % and 0.7 % of the forced response variance (Fig. 2)
and show a rather stable temporal evolution except for per-
turbations that coincide with historical volcanic eruptions
from Krakatoa, Agung, El Chinchón, and Pinatubo. Volcano-
induced perturbations were also observed in the analysis by
Wills et al. (2020), as aerosol changes in the atmosphere can
affect global and regional temperatures, subsequently affect-
ing DSL. Patterns 9 and beyond explain a variance of less
than 0.6 % and since their Sk value is not statistically signifi-
cant at the 95 % level they could be caused by chance.

We first compare the efficiency of pattern filtering tech-
niques to that of conventional methods, in particular an en-
semble mean, to isolate the forced response in DSL. We fol-
low the approach used by Wills et al. (2020) based on the
number of ensemble members needed to constrain a certain
level of variance of the forced response using the coefficient
of determination r2, which indicates the proportion of vari-
ance shared between two datasets. As we need two datasets
for such a comparison, the 100-member MPI-GE ensemble
is divided into two sub-ensembles: one is used for testing
(estimate ensemble) and the other is left for reference (ref-
erence ensemble). This leaves us with two 50-member sub-
ensembles; all 50 members in the reference sub-ensemble
are used to estimate the forced response by using either en-
semble averaging or S/N M EOF pattern filtering, and this
reference sub-ensemble is considered to be ground truth.
The other (estimate) 50-member ensemble is also used to
estimate the forced response, but instead of using all sub-
ensemble members we estimate the forced response in an
iterative process by increasing the number of members in-

cluded in the analysis from 2 to 50. As an illustration of
the procedure, we start with only two members, which are
used to characterize the forced response in the estimate sub-
ensemble, and compare the result with the forced response
from the 50-member reference sub-ensemble. This compari-
son is performed via the coefficient of determination between
two estimated forced responses on a grid-point basis, identi-
fying where the 80 % level is exceeded. Grid points where
the threshold is not reached are used for subsequent analysis
where an additional member (three in total) is included in the
estimate sub-ensemble, repeating the same process until the
latter reaches 50 members. This procedure enables an eval-
uation of the number of ensemble members needed in the
estimate sub-ensemble to characterize the forced response
based on explained variance (i.e., r2) in the reference sub-
ensemble. To consider sampling uncertainty, this process is
repeated 10 times for random choices of realizations, taking
the median value of all iterations.

When simple averaging is used, we find that 50 members
are not sufficient to constrain at least 80 % of the forced re-
sponse variance of the reference ensemble over most of the
ocean surface (Fig. 4a). In contrast, S/N M EOF pattern fil-
tering characterizes the forced response more efficiently than
simply averaging, as it requires a much smaller number of
realizations to remove ICV (Fig. 4b). While the grid-point
median value of the number of ensemble members required
is 50 or more when using simple averaging, the median es-
timate for the filtering method is reduced to 8. Large areas
of the ocean benefit from filtering, noting significant reduc-
tions in the Indian Ocean, South Atlantic, and northeastern
Atlantic Ocean, as well as large areas in the Pacific Ocean
(Fig. 4b). Other areas, however, remain over the 50-member
threshold to explain forced response variance after filtering.
Those areas are mostly found where strong western boundary
currents exist (Imawaki et al., 2013), as well as in areas influ-
enced by the Antarctic Circumpolar Current (Rintoul et al.,
2001). In those locations, variability is higher, and a larger
number of realizations is needed to characterize it. Yet, there
clearly is an advantage in using S/N M EOF over simple aver-
aging methods, as fewer realizations are required to explain a
significant part of the forced response in DSL, which means
that the forced response can also be determined in models
with smaller ensembles.

4.2 Improved pattern scaling using SMILEs

In this section, we demonstrate how S/N M EOF pattern fil-
tering can increase the capabilities of statistical approaches
for explaining DSL based in GMTSLR by reducing ICV
within SMILEs. For comparison, we first show pattern scal-
ing performance when using single realizations and how con-
ventional methods (ensemble mean) reduce root mean square
error (RMSE) when using a couple of realizations instead.
Second, we examine S/N M EOF as a method for reducing
RMSE more efficiently. We compare regional RSME from
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Figure 3. Time evolution of DSL standard deviation (a, c, and e) and associated S/N M EOF pattern number 1 for RCP2.6, 4.5, and 8.5 (b,
d, and f, respectively). Light colored lines in (a), (c), and (d) represent standard deviation anomalies from ensemble members, whereas dark
colored lines depict the ensemble-mean evolution of the pattern. In the historical+RCP scenarios DSL is calculated relative to the mean of
1993–2012.

Figure 4. The number of ensemble members (realizations) needed
to form an MPI-GE sub-ensemble that shares at least 80 % of the
variance of the forced response with a reference 50-member MPI-
GE sub-ensemble using an ensemble average (a) and using S/N M
EOF pattern filtering (b) for RCP2.6. The reference dataset is an
average (a) or S/M EOF-filtered sub-ensemble (b) of 50 members
which does not share realizations with the sub-ensemble used for
estimation. Values represent the median of 10 random choices of re-
alizations sampling for both estimate and reference sub-ensembles.
Note that bright yellow indicates that more than 50 ensemble mem-
bers are required.

both ensemble mean and pattern filtering on only two realiza-
tions to allow an assessment of the areas that benefit the most
from filtering when a few simulations are available. Lastly,
we contrast how both ensemble mean and S/N M EOF pat-
tern filtering reduce global-mean RMSE as the number of
realizations included in the analysis is increased.

As pattern scaling is performed on a grid-point basis, re-
gression performances can be location-dependent (Fig. 5a).
Despite such regional variations, we found no substantial dif-
ferences between GHG scenarios for the regional or global-
mean RMSE estimates when pattern-scaling DSL simula-
tions extending up to 2100. Thus, results shown and dis-
cussed here are pertinent to the historical+RCP2.6 sce-
nario for illustrative purposes, unless otherwise stated. When
applying pattern scaling to a single realization of DSL
from MPI-GE, the area-weighted, ensemble average RMSE
is 3.78 cm, a value which is similar to previous estimates
from studies performed on some of the CMIP5 models (Bil-
bao et al., 2015; Yuan and Kopp, 2021). However, pattern
scaling performance shows a large spatial variability, rang-
ing from 1.13 to 14.95 cm regionally (Fig. 5a). High RMSE
values (i.e., lower regression performance) can be found
in places subject to nonlinear mesoscale processes driven
by strong currents, coinciding with the places where the
S/N M EOF technique requires many realizations to explain
at least 80 % of the forced response variance (Fig. 4b). These
are the Antarctic Circumpolar Current (Southern Ocean) or
western boundary currents, including the Gulf Stream (west-
ern North Atlantic), Agulhas Current (South Africa), and
Kuroshio Current (western North Pacific), as well as at the
Brazil–Malvinas Confluence (western South Atlantic). Low
RMSE values are found in the more stable eastern boundary
currents, such as the Humboldt (Peru) Current, and in equa-
torial locations where DSL is relatively less influenced by
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Figure 5. Regional pattern scaling performance based on regression
RMSE when one realization (a) and a two-member ensemble aver-
age (b) are used in the univariate regression. Sampling uncertainty
is accounted for in (a) by averaging RMSE from pattern scaling per-
formed individually for the 100 realizations, whereas in (b) random
pairs (without replacement) are taken for the two-member ensem-
ble average. The difference in regression performance between (a)
and (b) is shown in (c) in terms of percentage. Results are shown
for RCP2.6 as an example.

large modes of climate variability (e.g., equatorial Atlantic
and Indian Ocean).

Despite its inefficiency, using an ensemble average can-
cels out some of the ICV that varies in a different phase
between realizations. When using a two-member ensemble
mean, RMSE reduction is observed both globally and region-
ally: the area-weighted average RMSE estimate is reduced
from 3.78 to 2.77 cm (27 % reduction) when two ensembles
are used, with regional values ranging from 0.87 to 11.00 cm
(Fig. 5b). This translates to increased statistical model ca-
pabilities within the entire model domain. While grid-point
RMSE reduction ranges from 10 % to 30 %, the majority of
the ocean benefits from a decrease of more than 25 % due to
the removal of some of the ICV (Fig. 5c). Locations experi-
encing less improvement in regression performance include
those that already performed relatively well prior to averag-
ing and those with a high ICV.

To compare how S/N M EOF pattern filtering improves
pattern scaling as opposed to averaging, we take two ensem-
ble members from the MPI-GE historical+RCP2.6 experi-
ment and proceed to remove their ICV by pattern filtering.
The two-member pattern-filtered DSL (Fig. 6a) shows an
improved RMSE with similar regional structures compared
to its averaged counterpart (Fig. 5b), featuring higher val-
ues in western boundary currents and the Southern Ocean.

Nonetheless, the overall improvement is apparent in all areas:
the global estimated RMSE from the regression decreases al-
most 60 % from an average value of 2.77 to 1.12 cm (Fig. 6c
and d). Regionally, RMSE ranges from 0.39 to 6.05 cm when
filtering is applied to two ensemble members (Fig. 6a and c).
The differences between averaged and filtered approaches
are substantial and location-dependent, with filtering yield-
ing a decrease in RMSE ranging from 12 % to about 80 %
(Fig. 6b). The tropical Indian and eastern Pacific Ocean are
among the locations benefiting the most from the largest per-
formance improvement, which highlights the skill of pattern
filtering to remove variability associated with large climate
modes (e.g., the El Niño–Southern Oscillation, or ENSO, has
a large influence on sea level in the eastern Pacific Ocean).
Similar to previous findings when using averaging (Fig. 4c),
pattern filtering offers a reduced improvement in areas where
regression already performed relatively well or where the
presence of mesoscale processes is significant. Regardless of
improvement magnitude, pattern filtering provides an over-
all increase in regression performance that is observable in
the entire ocean domain. While averaging also offers an en-
hancement of pattern scaling skill, filtered two-member pairs
produce a distribution of RMSE that is significantly superior
(Fig. 6c).

We further investigate how pattern filtering enhances re-
gression compared to averaging by increasing the number
of members included in the analysis (Fig. 6d). Increasing
the number of realizations grants ensemble averaging a con-
siderable decrease in RSME. Yet, performance improvement
asymptotically reaches a plateau around 20 members after
which further reductions in RMSE are modest. Regression
based on pattern-filtered DSL also shows an improvement
as the number of realizations increases. Such improvement
is very limited compared to that shown by averaging, al-
though filtering always provides a superior performance re-
gardless of the number of members incorporated in the anal-
ysis. Importantly, area-weighted RMSE values differ signifi-
cantly between the considered approaches when only a small
number of realizations are available and become more sim-
ilar for a larger number. This highlights the role of pattern
filtering techniques when only a few ensemble members are
available. Based on the analysis performed on the DSL sim-
ulations from the MPI-GE, filtering two members provides a
regression performance that would only be achieved by aver-
aging at least 12 members.

4.3 Improved pattern scaling using single realizations

Most models in CMIP prior to CMIP6 (and some in CMIP6)
provided only one realization of historical and scenario sim-
ulations. Therefore, we now test whether pattern filtering
could improve regional emulation of single-realization mod-
els. To do so, we apply LFCA, which uses an approach simi-
lar to S/N M EOF (as explained in Sect. 3.1). In this section,
we first examine how LFCA improves the regression RMSE
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Figure 6. Regional pattern scaling performance based on regression RMSE when two ensemble members are used to estimate the forced
response via S/N M EOF pattern filtering (a). Panel (b) shows the difference in regression performance between the two-member average
pattern scaling (Fig. 5b) and the S/N M EOF-filtered equivalent (a). Panel (c) shows violin plots of RMSE distributions from the one-member,
two-member average, and two-member S/N M EOF-filtered approaches. Panel (d) shows the area-weighted average RMSE obtained in the
regression as a function of the number of ensemble members included when using an ensemble mean (yellow) and filtering (blue). The
difference in performances in terms of percentage is shown in green. The analysis is for the RCP2.6 scenario (we observed no discernible
differences between scenarios).

by truncating ICV in a single simulation from the MPI-GE.
We then apply LFCA to a range of CMIP5 models that were
used in previous patterns scaling analyses of DSL, focus-
ing on the differences between models and RCP scenarios
in longer simulations.

LFCA filtering uses the same linear algebra machinery as
S/N M EOF, providing a similar regional performance in pat-
tern scaling (compare Fig. 6a and 7a). In some areas, slightly
higher RMSE values are observed in LFCA-based regres-
sion, for instance in the Southern Ocean. This is expected
because only one simulation is used compared to two sim-
ulations in S/N M EOF filtering, which enables the latter to
identify a larger proportion of ICV. LFCA provides a sub-
stantial reduction in RMSE compared to using a single simu-
lation in pattern scaling (Fig. 7b and c). Regionally, it shows a
similar qualitative pattern of improvement as the other meth-
ods shown here (Fig. 7b vs Figs. 5c and 6b; averaging and
S/N M EOF filtering, respectively). Quantitatively, however,
LFCA provides a larger global-mean RMSE reduction on a
single realization than S/N M EOF performed on two. LFCA
provides a reduction of the area-weighted average RMSE
of 68 % for all radiative forcing scenarios (Fig. 7c), while
S/N M EOF yields 67 % when using two realizations relative
to unfiltered one-member pattern scaling. While both esti-
mates are quite similar, it is worth noting that S/N M EOF
requires two ensemble members to provide such reduction,

while LFCA leads to a similar performance using just one
simulation. Similar to S/N M EOF pattern filtering, no sub-
stantial differences are found in pattern scaling RMSE be-
tween RCP scenarios up to 2100 (Fig. 7c). This implies that
ICV is analogous for different RCP scenarios, which, since a
reduction in RMSE is due to the removal of ICV, leads to a
similar improvement in performance for all RCPs both glob-
ally (Fig. 7c) and regionally (not shown).

Since the aim of this study is to explore differences in emu-
lated DSL when ICV is reduced, we also assess potential dif-
ferences between unfiltered and filtered simulations (Fig. 8)
when predicting DSL at 2100 using GMTSLR as a predictor.
Emulated DSL differences caused by filtering may differ de-
pending on the realization used, as each realization features
an ICV evolving in a different phase. Thus, we focus on the
maximum emulated DSL differences that filtering causes out
of all 100 MPI-GE simulations. Exploring the maximal po-
tential difference in statistically projected DSL is an added
benefit of using SMILEs, as such an analysis can only be
done with a large set of realizations with out-of-phase vari-
ability.

The difference in emulated DSL varies geographically
(Fig. 8), with a spatial variability resembling the RMSE
when ICV is reduced (e.g., Figs. 6a and 7a). Areas char-
acterized by high temporal variability, which pattern fil-
tering does not completely remove, experience greater dif-
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Figure 7. Regional pattern scaling performance based on regres-
sion RMSE when one (RCP2.6) ensemble member is filtered via
LFCA (a). Filtering is performed individually for each ensemble
member to compute 100 scaling patterns whose results are aver-
aged to diminish sampling issues. Differences in regression perfor-
mance between Fig. 5a (unfiltered one-member pattern scaling) and
panel (a) are shown in (b) in terms of percentage. The area-weighted
average RMSE is shown in (c) for RCP2.6, 4.5, and 8.5 and depend-
ing on whether the ensemble member is (blue) or is not (yellow)
filtered. Green indicates RMSE reduction between approaches in
terms of percentage, whereas values on top of the bars are the abso-
lute differences in centimeters.

ference in DSL projections (Fig. 8). Unlike RMSE (e.g.,
Fig. 7a), the difference between emulated DSL differs be-
tween RCP scenarios, increasing in magnitude with radiative
forcing (Fig. 8). RMSE measures the error throughout the en-
tire regression without accounting for the predictor, so only
the effect of reduced ICV is captured. On the other hand, an
increasing difference in predicted DSL with stronger RCP is
expected since the magnitude of the predictor (GMTSLR)
is larger for higher emissions scenarios. However, we ob-
serve the opposite behavior when assessing the difference
in emulated DSL in relative terms, i.e., when the difference
is divided by the emulated unfiltered DSL or by GMTSLR
in 2100 (not shown). Despite contrast between RCPs either
in total difference (slightly increasing with forcing) or rela-
tive terms (decreasing with increasing forcing), RMSE being
similar between RCPs highlights the fact that pattern filtering
may be relevant for all scenarios.

The effect of pattern filtering on differences in slope α, a
key parameter in pattern scaling, again shows spatial variabil-
ity similar to RMSE (Fig. 7 vs Fig. S8). Changes in slopes are

Figure 8. Maximum difference between DSL change in 2100 ob-
tained by pattern scaling with coefficients fitted to unfiltered and
LFCA-filtered realizations, considering all 100 MPI-GE members,
for RCP2.6, RCP4.5, and RCP8.5 (a, b, and c, respectively).

substantial in places with high variability, sometimes even
showing a sign change (e.g., Fig. S13). Contrary to the total
difference in emulated DSL and similar to the relative one,
slope differences tend to decrease with higher emissions sce-
narios (Fig. S8). Since lower radiative forcing means lower
signal-to-noise ratio, noise (ICV) can drive large differences
in slopes between filtered and unfiltered results, and vice
versa. Apart from reducing RMSE and leading to narrower
confidence intervals (e.g., Figs. S10–S14), pattern filtering
finds slopes that are significantly different from that obtained
by applying a moving mean (e.g., Figs. S12 and S14), as the
latter does not remove ICV as efficiently and requires ne-
glecting data points for its computation (Figs. S10b–S14b). It
is worth highlighting that these differences in emulated DSL
and slopes showcase an example for a GCM and may not
hold as ground truth for other GCMs, scenarios, or predic-
tors used.

We further explore the performance of LFCA by compar-
ing the pattern scaling results when isolating the forced re-
sponse for other GCMs. We identify the forced DSL in four
CMIP5 models: GISS-E2-R, HadGEM2-ES, IPSL-CM5A-
LR, and MPI-ESM-LR (Fig. 9a–d, respectively), which all
provide scenario simulations up to 2300. To ease compari-
son with results from the MPI-GE, however, we first exam-
ine results up to 2100 (Fig. 9a–d, small right-hand-side in-
sets). RMSEs from unfiltered simulations up to 2100 vary
between models, and so does RMSE reduction provided by
LFCA. Nonetheless, error reduction within a model and be-
tween scenarios is very similar, as previously observed for
the MPI-GE. This implies that, for all models considered
here, there are no significant changing behaviors in the re-
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Figure 9. Area-weighted average RMSE for RCP2.6, 4.5, and 8.5, indicating whether the ensemble member is (blue) or is not (yellow)
filtered via LFCA. Green indicates relative RMSE reduction between approaches (%), whereas values on top of the bars are the absolute
differences in centimeters. Different panels represent different CMIP5 models. The main panel includes simulation data up to 2300, whereas
the small inset in the right-hand top corner shows RMSE results up to 2100. Small insets share the same axes as main panels.

lationship between DSL and GMTLSR between RCP sce-
narios up to 2100.

When considering results up to 2300, pattern scaling of un-
filtered DSL against GMTSLR yields similar results as pre-
vious studies (Bilbao et al., 2015), showing a global area-
weighted mean RMSE between 2 and 4 cm. RMSE in both
unfiltered and filtered simulations of DSL increases with ra-
diative forcing for all models considered. As simulations
run up to 2300, a decrease in pattern scaling performance
for higher RCPs may indicate a more important role of the
deeper ocean layer driving nonlinear processes (Bilbao et al.,
2015; Yuan and Kopp, 2021). This tendency is also reflected
in the error reduction after filtering, which decreases as ra-
diative forcing increases both over time and because of the
higher emissions scenario, but the latter is more apparent. Al-
though LFCA filtering improves the performance of pattern
scaling for all four CMIP5 models, considerable differences
in error reductions are observed. For instance, HadGEM2-ES
benefits the most from pattern filtering between all the mod-
els, with a ∼ 70 % decrease in error for RCP2.6. Conversely,
GISS-E2-R undergoes the lowest reduction after pattern fil-
tering, with about a 50 % increase in performance for the
same RCP scenario. Differences in model performance pre-
and post-filtering not only highlight differences in how ICV
is represented in distinct models but may also reflect model
differences in terms of physics representation and modeled
forced response.

5 Conclusions

Regional emulation tools for DSL change are complemen-
tary approaches to GCMs that allow for computationally
cheap statistical projections. Most DSL regional emulators
are based on pattern scaling, a statistical model usually based
on a grid-point regression against a global variable represent-
ing change in the climate system driven by external forcing.
While choosing suitable global predictors is essential for ap-
propriate tuning of the statistical model, random errors can
remain, leading to high uncertainties in statistically based
projections. Some of these random errors are driven by ICV
in DSL and can be characterized using macro-initialized
initial-condition large ensembles (SMILEs), which are de-
signed to facilitate a separation between ICV and external
forcings within a model. Here, we applied pattern recogni-
tion techniques to a SMILE with the aim of efficiently trun-
cating ICV, demonstrating how these approaches could sig-
nificantly reduce random errors in regional emulators of DSL
and provide substantially different emulated results in areas
with high ICV.

Although ICV can also be reduced by using more conven-
tional methods, such as computing an ensemble mean or lin-
ear trends, this requires a relatively large number of realiza-
tions to be effective. This is a significant constraint, particu-
larly for modeling experiments featuring a limited number of
realizations. A more efficient alternative consists of employ-
ing methods that exploit spatial covariance information, such
as S/N M EOF pattern filtering and LFCA. We have demon-
strated that S/N M EOF applied to two realizations attains the
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same level of error reduction as averaging 12 realizations.
The largest improvement relative to unfiltered simulations
was observed when only a few simulations were available,
whereas both S/N-filtered and ensemble average model per-
formance tended to converge for a large number of ensemble
members. By identifying spatiotemporal coherent structures,
the S/N M EOF filtering was particularly skillful at remov-
ing ICV due to large modes of climate variability, such as the
ENSO influence on sea level in the eastern Pacific.

S/N M EOF pattern filtering can identify the common re-
sponse within at least two realizations. This motivated us
to also test LFCA, which can remove variability in single-
realization modeling experiments by applying a low-pass fil-
ter. Apart from being computationally more efficient, LFCA
outperforms S/N M EOF in improving the performance
of DSL pattern scaling when using one or two realiza-
tions. Moreover, LFCA applied to individual SMILE realiza-
tions allows exploring the maximal potential difference be-
tween statistically projected unfiltered and filtered DSL. We
found substantial differences in emulated DSL and regres-
sion slopes in places with high variability, highlighting the
relevance of pattern filtering methods in areas subject to non-
mesoscale processes. Despite LFCA versatility and perfor-
mances results, previous studies have emphasized that S/N M
EOF pattern filtering provides a range of benefits compared
to LFCA, including (1) a better isolation of the forced re-
sponse when the number of ensemble members is large and
(2) the detection of relatively less important forced patterns,
such as those driven by volcanism.

We have also investigated LFCA by applying it to longer
(up to 2300) CMIP5 simulations. We found that pattern scal-
ing performance is independent of the GHG emission sce-
nario up to 2100 and decreases with radiative forcing be-
yond 2100. Since we used a linear model, this implies that
nonlinear processes have different effects on DSL depend-
ing on the GHG scenario, and this is reflected in a decrease
in model performance depending on the emissions. We also
found substantial differences between CMIP5 models due to
variability being represented differently as well as distinct
model physics. Nonetheless, the performance improvement
of pattern scaling when applying LFCA filtering is consider-
able for all models and scenarios, ranging from 20 % to more
than 70 % reduction relative to the unfiltered results.

Here, we have demonstrated that reducing ICV increases
the capabilities of statistical approaches to project DSL.
Pattern recognition techniques are especially advantageous
for such a task, as they do not require numerous realiza-
tions to significantly reduce uncertainties in statistical pro-
jections and no data are lost (as in 30-year means) when
reducing ICV. Previous studies have not considered remov-
ing ICV, which could significantly reduce uncertainties in
statistically projected DSL and lead to substantial differences
in emulated DSL. Although the difference in emulated DSL
and regression slope varies depending on scenario and re-
sults shown here are an example and may differ depending

on GCM, RCPs, and predictor used, we show that pattern
filtering is a useful approach to consider as a means of en-
hancing emulated DSL simulations.

Data availability. Simulations from the MPI-GE can be obtained at
https://esgf-data.dkrz.de/projects/mpi-ge/ (ESGF, 2023), whereas
CMIP5 data can be found at https://esgf-node.llnl.gov/search/
cmip5/ (CMIP5, 2023).
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