

Hydraulics Laboratory: Sediment Mechanics Research Group

Department of Civil Engineering Kasteelpark Arenberg 40, B-3001 Heverlee, Belgium erik.toorman@kuleuven.be - www.kuleuven.be/hydr

Marine turbulence in nearshore and surfzone areas How sediment transport affects turbulence

Erik A. Toorman & Mohamed Ouda

Observation:

Flume experiments of sand transport (Cellino, EPFL, 1998) - figure 1 - show significant deviations from what (standard) numerical models predict.

No model can really predict these experiments.

These data have been confronted with typical large-scale engineering software for sediment transport and two-phase flow theory, revealing major short-comings.

Figure 1. Cellino (1998) data for run Q40S003

Major flaws

- Energy required for sediment transport cannot go to turbulence production
- Standard constants of k- ε turbulence model exaggerate buoyancy damping effect
- Most models assume only hydraulic rough conditions
- Physics-based modelling of particle-turbulence interaction is very difficult (+ hampered by instrument limitations)

Consequences

- → standard near-bottom boundary conditions overpredict turbulence generation by bottom shear
- \rightarrow standard k- ε turbulence model predicts excessive drag reduction
- problematic for intertidal areas
- processes not exactly accounted for& no experimental validation possible

Research strategy:

• High-resolution 2-layer low-Reynolds turbulence model (bottom-layer resolved for bed load transport) applied to small scale 1DV steady (uniform open-channel flow) and 2DV time-dependent test cases (oscillating flow and wave flume) — implementation in OpenFOAM — figure 2 - and (in-house developed) FENST-2D.

Applications (projects):

- Fluid mud in front of the Belgian coast (BELSPO BRAIN.be project INDI 67)
- Belgian coast beach erosion
 (VLAIO SBR project CREST: Climate Resilient Coast)
- Rosetta (Egypt) beach erosion (KU Leuven IRO PhD scholarship)

Figure 2: Sand transport over rippled bed simulated with mixtSedFOAM

- Application of an in-house developed physics-based, generalized friction law, covering all hydraulic conditions (laminar ⇔ hydraulic smooth ⇔ hydraulic rough) → figure 3.
- Upscaling for large scale 3D and 2DH morphodynamic models – implementation in TELEMAC (www.openTELEMAC.org).

Figure 3: Map of instantaneous Chézy friction coefficient values computed online during simulation with TELEMAC-2D of sediment transport along the Belgian coast and the Scheldt estuary (Bi & Toorman, Ocean Dynamics 65, 2015).

This work is a contribution to:

