

Presenting

PIANC

The World Association for Waterborne
Transport Infrastructure

Presentation by Stefaan Ides & Thibaut Van Zwijnsvoorde

at the occasion of PIANC Belgium

MarCom

PIANC = The World Association for Waterborne Transport Infrastructure

MarCom = Maritime Navigation Commission

19 active countries

Belgian representatives: Koen Van Doorslaer and Filip Mortelmans

Safe

Mooring

of

large ships

at

quay walls

Safe

Mooring

of

large ships

at

quay walls

Safe

Mooring

of

large ships

at

quay walls

https://splash247.com/suez-canal-blocked-by-stranded-evergreen-boxship/

Safe

Mooring

of

large ships

at

quay walls

https://www.aurecongroup.com/projects/resources/thai-oil-jetty-expansion 2021/05/31 online

Safe

Mooring

of

large ships

at

quay walls

Criteria for Acceptable Movement of Ships at Berths

Part of 'safety'

Related to (un)loading operations

PIANC WG115

Criteria for Acceptable Movement of Ships at Berths

Part of 'safety'

Related to (un)loading operations

https://www.rivieramm.com/news-content-hub/news-content-hub/new-guidelines-on-marine-loading-arms-57427

Passing vessel effects

Passing vessel effects (II)

Moored vessel: 24 000 TEU

LOA: 400m

B: 61m

D: 14,5m

Passing vessel: 13 000 TEU

LOA: 366m

B: 48m

D: 13,4m

S: 12,6kn

Passing vessel effects (III)

PIANC WG115

Passing vessel effects – possible solutions

Mooring in storm conditions

https://www.futureland.nl/bezoek

https://www.shippingandfreightresource.com/port-congestion-causes-and-impact-on-global-trade/

Mooring in storm conditions (II)

Photo: courtesy Antwerp Port Authority

Photo: courtesy Rotterdam Port Authority

Mooring in storm conditions – possible solutions

Overloading bollards

Photo: courtesy Rotterdam Port Authority

Graph based on data from Antwerp Port Authority

& Hamburg Port Authority

2021/05/31 online

Overloading bollards – possible solutions

SWL = f(# lines, MBL lines, brake load winch)

Why?

Design of a new terminal

Safety of terminal operations

New design ship

What?

DMA = time-domain simulation of moored ship behaviour

Vlugmoor = UGent in-house DMA package

$$F = m \cdot \ddot{x} + b \cdot \dot{x} + c \cdot x$$

$$F = m \cdot \ddot{x} + b \cdot \dot{x} + c \cdot x$$

wind waves passing ship

From JIP Windlass newsletter

Project example: Renovation Europaterminal

Project example: Renovation Europaterminal

THANK YOU