FLIAT

3D flood impact visualisation tool

Samuel Van Ackere, Philippe De Maeyer

CASE STUDY: OSTEND, BELGIUM

Besides calculating the impact of floods, FLIAT comes with a webGIS visualisation application. The 3D environment is build by using Cesium 3D Openlayers.

Kursaal Oostende 74 (21%) 24 minuten Overstromingshoogte overstroming 1000 jarige 2.5m Stijgsnelheid overstroming 1000 jarige storm 15dm/uur Stroomsnelheid overstroming 1000 jarige 23150EUR/jaa Risico op slachtoffers

LOW ELEVATIONAREAS AREAT RISK

Increasing frequency and severity of storm surge events world wide

PUBLIC AWARENESS LAGSBEHIND

Although scientists widely stress the compelling need to mitigate and adapt to climate change, public awareness lags behind.

ADAPTATION TO CLIMATECHANGE

since floods causes:

- -damage to energy and transportation infrastructure;
- -disruption to the delivery of services; -a devistating tool on publichealth.

Vital infrastructures are going to be affected

WHY A WEBGIS?

- -it quickly conveys strong messages
- -condenses complex information
- -engages people in issues of environmental change
- -motivates personal actions.

WHY IN 3D AND NOT 2D?

- -It makes it more likely to imagine the consequences of the flood
- -It is more vivid and therefore more understandable
- -It helps the user to better imagine how serious the flood could be
- -It shows the consequences better for the environment

3D TILE SERVER

3D Tiles are an open specification with an open-source implementation in Cesium.

Dec 8 2017 04:00:00 UTC

Dec 8 2017 08:00:00 UTC

Q # # ?

CASE STUDY: NEW YORK, USA

For more information go to www.fliat.be

