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Summary 

Hydrographical, chemical and biological factors are known to affect 

seasonal and geographical variation in phytoplankton communities. This study 

analyses the phytoplankton species composition during late winter-early spring 

in two areas of the North Sea: the Belgian coastal zone and along a North-South 

transect covering the Dogger Bank, central and northern North Sea. 

Spatial patterns in phytoplankton communities were analysed by Two-Way 

Indicator SPecies ANalysis (TWINSPAN), and their relationships with 

environmental factors by Canonical Correspondence Analysis (CCA). 

A subsequant step analysed in how far distinct phytoplankton communities 

revealed on the basis of numerical species abundance, also resulted in 

differences in biomass (in terms of volume and carbon) and size structure of the 

phytoplankton community. 

These features being important to the trophic transfer of phytoplankton to 

the zooplankton, the observed situtations were analysed in relation to the 

potential predation pressure exerted by the associated mesozooplankton 

communities using the model of Sheldon (1977). 

An overview of the present knowledge on the spatial phytoplankton 

distribution in the North Sea is given in chapter 1. While, chapter 2 explains 

the multivariate statistics used. 

Chapter 3 and 4 report a spatial heterogeneity in phytoplankton community 

structure in late winter as observed in February 1994, 1995 and 1997 around 

some sandbanks along Belgian coastal zone. Based on species abundance, the 

offshore and nearshore areas are distinguished from each other. At a further 



level, each sandbank is practically separated as a distinct area. This 

heterogeneity was explained by the variations in measured environmental 

factors. These can be explained by the fact that two water masses of different 

origin cover our study area: the Southern intrusion of Atlantic water from the 

English channel on the one hand and the coastal water on the other hand This 

heterogeneity was also observed, to some extend, in zooplankton community 

(Chapter 3). The best explanation of the variance in phytoplankton community 

was obtained when nutrient concentrations were included in the CCA analysis 

(Chapter 4). Differences in phytoplankton species composition also resulted in 

biomass and size structure between nearshore and offshore banks (Chapter 4). 

Chapter 5 reports a spatial heterogeneity in phytoplankton community 

structure, within a South-North transect in the North Sea. In early spring 

phytoplankton communities were discriminated between: (1) the shallow water 

of Dogger bank (DB) area and (2) deeper water of central/northern in which 

parallel subgroups could be distinguished. This pattern was related to the 

existing gradients in environmental factors. Phytoplankton biomass (in terms of 

volume or carbon concentration) showed a significant increase from central-

northern North Sea towards the Dogger area: large diatom species were 

dominant (in term of volume or carbon concentration) in the Dogger Bank area. 

We noted the presence of non-diatoms mainly in the Dogger Bank area. This 

was explained by the fact that these microflagellates have an advantage to grow 

in a nutrient-limited environment. The variation in size-distribution of 

phytoplankton along the transect fits the expectation of dominance of large 

diatoms in shallow water of the Dogger Bank areas and small phytoplankton 



species in the deeper stations of the central-northern North Sea. Moreover, each 

of the two zones (Dogger Bank and central-northern) was characterised by a 

rather equal phytoplankton volume and size structure. Besides the size 

differential control concept reported for both phytoplankton fractions (< 5µm 

and > 5 gm) by Riegman et al., (1998), our results have shown that within, the > 

5 gm size range, different contributions of cells < 10 gm may also provide a 

different trophic situation for the micro/meso-zooplankton. 

The last purpose of this study was to evaluate if the observed spatial 

heterogeneity (Chapter 3, 4 & 5) in plankton also represented different 

situations regarding the potential energy transferred from phytoplankton to 

zooplankton. In chapter 6, we compared the neashore and offshore banks in the 

Belgian coastal zone on the one hand, and the shallower zone of the Dogger 

Bank and the deeper central-northern North Sea on the other hand. Normalised 

biomass spectra (dividing plankton volume concentration by width interval of 

each size class, Sprules and Munawar, 1986) followed a linear regression in all 

coastal banks examined in the Belgian coastal zone. The Stroombank, nearest to 

the coast, exhibited a significant different slope of the linear regression than the 

other banks. In general, the normalised spectra of the neashore banks showed a 

better fit to a polynomial than to a linear regression, indicating a different 

trophic situation in the plankton. 

In the North Sea transect, no significant differences in slopes between the 

normalised spectra observed at each set of stations were formed over the entire 

study area, indicating a more homogenous standing stock relationship between 



the phytoplankton and total mesozooplankton or the dominant zooplankton 

species, Calanus finmarchicus. 

In general terms, the phytoplankton stock can support the carbon 

requirements of the dominant zooplankton during the early onset of growing 

season along the Belgian coastal zone in one hand, and both the dominant 

copepod C. finmarchicus and the total zooplankton in the North Sea transect 

during the early spring phytoplankton bloom, in other hand. This was reflected 

in the prediction of the Sheldon model that on a carbon or volume basis, the 

maximum potential consumption impact on the phytoplankton prey items does 

not exceed the prey's productivity. In the most nearshore banks of the Belgian 

coastal zone and in the Dogger Bank area, a quite important flux of energy is not 

channeled to holo-zooplankton and then to the higher trophic levels and will 

benefit the benthos, either as food for meroplanktonic larval stages or after 

sedimentation to the benthic system. 



Samenvatting 

Het is geweten dat hydrografische, chemische en biologische factoren de 

seizoensgebonden en geografische variatie in fytoplankton-gemeenschappen 

beInvloeden. Deze studie analyseert de soortensamenstelling van het 

fytoplankton tijdens de late winter en vroege lente in twee zones van de 

Noordzee: de Belgische kustzone en langsheen een Zuid-Noord transect vanaf 

de Doggerbank langsheen de centrale en noordelijke Noordzee. 

Ruimtelijke patronen in fytoplankton-gemeenschappen werden geanalyseerd 

door middel van 'Two Way INdicator SPecies ANalysis' (TWINSPAN), en hun 

relatie met de omgevingsfactoren met behulp van 'Canonical Correspondence 

Analysis' (CCA). 

In een volgende stap werd geanalyseerd in welke mate verschillende 

fytoplankton-gemeenschappen die naar voor kwamen op basis van numerieke 

abondantie, ook resulteerden in verschillen in biomassa (in volume en in 

koolstof) en grootte-verdeling van de fytoplankton- gemeenschap. 

Aangezien deze aspecten belangrijk zijn in de trofische transfer van 

fytoplankton naar zooplankton, werden de geobserveerde situaties geanalyseerd 

in relatie tot de potentiele predatie druk die er door het geassocieerde 

mesozooplankton kan worden op uitgeoefend. Dit werd gedaan met behulp van 

het model van Sheldon (1977). 



Hoofdstuk 1 geeft een overzicht van de litteratuur betreffende de 

ruimtelijke verspreiding van (fyto)plankton in de Noordzzee, terwijl hoofdstuk 2 

de gebruikte statistische technieken (TWINSPAN en CCA) nader toelicht. 

Hoofdstuk 3 en Hoofdstuk 4 rapporteren een ruimtelijke heterogeniteit in de 

fytoplankton-gemeenschap die in de late winter (Februari 1994,1995 en 1997) 

werd geobserveerd rondom een aantal zandbanken in de Belgische kustzone. Op 

basis van soortenabundantie worden de kustzone en de meer zeewaarts gelegen 

zone van elkaar gescheiden. Op een lager niveau worden de meeste zandbanken 

van elkaar gescheiden. Deze heterogeniteit werd uigelegd door de variatie in 

omgevingsfactoren die werden gemeten in het studiegebied. Deze kunnen 

worden verklaard door het feit dat twee watermassa's van verschillende 

oorsprong voorkomen in het gebied : het Atlantisch water dat vanuit het zuiden 

(het Kannaal) binnnendringt enerzijds, en het kustwater anderzijds. Deze 

heterogeniteit werd, in enige mate, ook waargenomen in de zooplankton-

gemeenschap (hoofdstuk 3). 

De variabiliteit in fytoplankton samenstelling werd het best verklaard 

wanneer nutrient-concentraties werden geIncorporeerd in de CCA analyse. 

Verschillen in fytoplankton soortensamenstelling resulteerden eveneens in 

verschillen in biomassa en grootte-verdeling tussen de kustzone en de 

zeewaartse zone (hoofdstuk 4). 

Hoofdstuk 5 beschrijft een ruimtelijke heterogeniteit in de fytoplankton-

gemeenschap, langsheen een zuid-noord traject in de Noordzee.Tijdens de 

vroege lente onderscheidden we verscheidene fytoplankton-gemeenschappen: 

(1) de ondiepe waters van de Dogger bank (DB) en (2) het diepere water van de 



centrale 	en de noordelijke Noordzee, waarbinnen sub-gemeenschappen 

bestonden. 

Dit patroon was gerelateerd aan gradienten in omgevingsfactoren. De 

fytoplankton biomassa (in volume- en koolstof-concentratie) nam significant toe 

van de centrale-noordelijke Noordzee naar de Doggerbank: bij de Doggerbank 

waren grote diatomeeen dominant (in volume- en koolstof-concentratie). Niet-

diatomeeen kwamen hoofdzakelijk bij de Doggerbank voor. Dit wordt verklaard 

doordat nutrient gelimiteerde omstandigheden voordelig zijn voor de groei van 

microflagellaten. De variatie in groottte- verdeling van het fytoplankton 

langsheen het transect is in overeenstemming met de verwachting van grote 

diatomeeen in de ondiepe waters van de Dogger bank en kleine fytoplankton 

soorten in de diepere stations aan de centrale en noordelijke Noordzee. 

Bovendien werd elk van de twee zones (Doggerbank en centraal noord) 

gekarakteriseerd door een vrij gelijkaardig fytoplankton-volume en grootte-

structuur. Naast het 'size differential control' concept voor dit transect 

gerapporteerd door Riegman et al. (1998) voor de fracties < en > 5 mm, toonden 

onze resultaten aan dat verschillende bijdragen van cellen <10 mm eveneens 

verschillende trofische situaties voor het micro/mesozooplankton kunnen 

vertegenwoordigen. 

Ee laatste objectief van deze studie was to evalueren of de geobserveerde 

ruimtelijke heterogeniteit in het plankton (hoofdstukken 3,4 en 5) ook 

verschillende situaties vertegenwoordigt voor de potentiele energie transfer van 

het fytoplankton naar het zooplankton. In hoofdstuk 6 vergeleken we de 



kustzone met de zeewaarts gelegen zone voor de Belgische kustzone enerzijds, 

en de ondiepe zone van de Doggerbank met de diepere centrale- en noordelijke 

Noordzee anderzijds. Genormaliseerde spectra (waarin de volume concentratie 

van de plankton biomassa gedeeld wordt door de interval grootte van de 

verschillende grootte-klassen), Sprules en Munamar, 1986), vertoonden een 

lineaire regressie voor alle zandbanken bestudeerd in de Belgische kustzone. De 

Stroombank, die het dichtst bij de kust gelegen is, vertoonde een significant 

verschillende helling van de lineaire regressielijn dan de andere banken. In het 

algemeen vertoonden de zandbanken nabij de kust een betere fit met een 

polynomiale dan met een lineaire regressie, wat op een verschillende trofische 

situatie in het plankton tussen beide zones duidt. 

In het Noordzee transect werden geen significante verschillen tussen de 

genormaliseerde spectra geobserveerd over de verschillende sets van stations 

verspreid over het gehele studiegebied, wat op een meer homogene trofische 

situatie wijst tussen de standing stocks van het fytoplankton en het 

mesozooplankton, of de dominante zooplankton soort, Calanus finmarchicus. 

In het algemeen kan, bij de aanvang van het groeiseizoen, de fytoplankton-

stock voldoen aan de koolstof behoeften van het dominante zooplankton in de 

Belgische kustzone. Hetzelfde geldt voor de relatie fytoplankton - totaal 

zooplankton alsook de dominante copepode 

C. finmarchicus in het Noordzee transect gedurende de vroege lente. Dit 

bleek uit de resultaten van het Sheldon model, die aangeven dat, op koolstof 

basis, de maximale potentiele predatiedruk van het zooplankton nooit de 

fytoplankton productie overschreidt. Bij de meest kustwaarts gelegen banken in 



de Belgische kustzone en in de Doggerbankzone, wordt een belangrijk deel van 

de energie niet doorheen het mesozooplankton naar de hogere trofische niveau's 

gesluisd, maar komt ten goede van het benthos, ofwel onder de vorm van 

voedsel voor meroplanktonische larven, ofwel na bezinking op de bodem. 
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Chapter 1 	 General introduction 

1. General notes on phytoplankton, its diversity, size 
distribution and trophic interractions 

1.1. Phytoplankton 

Algae are photosynthetic organisms that occur in most aquatic habitats, 

ranging from marine to freshwater ecosystems. They vary from small, single-

celled forms to complex multicellular forms (Kennish, 1990). They exhibit a 

wide range of reproductive strategies, from simple, asexual cell division to 

complex forms of sexual reproduction (Kennish, 1990). The sunlighted waters 

of the surface of the sea area containing microscopic, single-celled organisms 

which use energy from the sun and nutrients extracted from the water to make 

their own carbohydrates via a set of chemical reactions termed photosynthesis 

(equation 1) (Kennish, 1990). Collectively, they are referred to as 

phytoplankton (from the Greek words phytos = plant and planktos = 

wanderer). 

nCO2 + 2nH2O 
	light 	►  n(CH2O) + nO2 + nH 2O (equation 1) 

The phytoplankton is comprised of a vast, diverse assemblage of 

organisms, which are united by their tiny size and drifting life mode. The 

names of the divisions and claEses of algae often contain a reference to the 

colour of the organisms included in them: Cyanophyta, blue-green algae; 

Rhodophyta, red algae; Chrysophyceae, golden algae; Phaeophyceae, brown 

algae; Chlorophyta, green algae (in Van Den Hoek et al., 1997). Mainly the 

kinds and combinations of photosynthetic pigments present in the cell 

determine recent algal classification. A summary of these pigments and their 



Classes  
Bac illariophyceae 
(Diatoms) 

 

Chl  
a & c 

carotene 

 

Xanthophylls  
Fuco-, neofuco-, diadino-, 
and diato-Xantin 

 

    

Dinophyceae 	a & c 
	

Peridinin, neoperidinin, diadino-, 
(Dinoflagellates) 
	

fuco-, and diato-Xanthin. 

Haptophyceae 	a & c 
(Prymnesiophyceae) 

Chrysophyceae 	a & c 

Xanthophyceae 	a & c 

Cryptophyceae 	a & c 

Fuco-, neofuco-, diadino-, diato-, 
19'-butanoyloxyfuco-, and 
19'-hexanoyloxyfuco-Xanthin 

Fuco-, neofuco-, diadino-, 
19'-hexanoyloxyfuco- and 
19'-nutanoyloxyfuco-Xanthin 
Fuco-, diadino-, diato-, and 
Viola-Xanthin 
Allo-, monodo-, croco-Xanthin, 
and Phycobillins 
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occurrence in different groups of algae is listed in Table 1.1. A detailed list is 

reported in Table 1.2, page 13 in Van Den Hoek et al., (1997). 

The term diversity is used for the degree to which the total number N of 

individual organisms in a given ecosystem, area, community or trophic level 

is divided evenly over different species (Baretta-Bekker et al., 1998). 

Diversity can be expressed quantitatively by several diversity indexes (e.g. 

Margalef, Shannon-Weaver indexes). A community is defined as an 

assemblage of populations living in a given area with mutual interactions 

(Baretta-Bekker et al., 1998). Such communties are classified according to 

dominant species, indicator species, physical habitat, or type of community 

metabolism (e.g., based on rate and efficiency of production) (Baretta-Bekker 

et al., 1998). 

Table 1.1. Algal pigments of major algal divisions and classes of marine 
phytoplankton (Parsons et al., 1977; Raymont, 1980; Williams and Claustre, 
1991; Peeken, 1997; and Van Den Hoek et al., 1997)  

Pigments 
Accessory pigments 

(carotenoids) 

Chlorophyceae 	a & b 	13 
	

Lutein, zea-, flavo-, viola-, nea-, 
and Siphono-Xanthin 

Prasinophyceae 	a&b a, &g 
	Lutein, zea-, and Viola-Xanthin 

-3- 
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Compared to that of attached plants, species diversity of phytoplankton 

communities is labile and less predictable (Kennish, 1990). In general, 

planktonic component maintain high numbers of species, but from time to 

time, seasonally or episodically, the species diversity is greatly reduced (e.g. 

Leewis, 1985), with blooming of one or a few species (e.g. the bloom of 

Phaeocystis sp. in spring in the Belgian coastal zone). The classification of a 

phytoplankton species as neritic or oceanic provides only a general indication 

of its distribution with respect to distance from shore or to water depth. 

Smayda (1958) has recommended a more useful terminology, which relates 

habitat selection to life cycle. Meroplanktic refers to all those forms that either 

produce a resting spore or possess a sedentary stage or dormant pelagic phase 

and hence are pelagic only during part of their life cycle. Holoplanktic on the 

other hand refers to those species which do not produce resting spores and 

that are pelagic throughout their life cycle. 

1.2. Cell size and sizes distributions 

Based on cell size, phytoplankton communities can be divided into three 

major groups: picoplankton (0.2-2gm), nanoplankton (2-20 gm) and 

microplankton or net plankton (20-200 gm) (Malone, 1971; Siebruth et al., 

1978; Fogg, 1991; Bouteiller et al., 1992). The variation of the biomass and 

taxonomic composition of these three groups, is related to the type of the 

environment and production regime. 

The term size distribution is used to describe the distribution of the 

biomass of a phytoplankton population (usually expressed in terms of volume 
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per unit of water volume, e.g. ppm= gm 3x106  m1-1 ) as a function of cell size. 

This latter is usually expressed as Spheric Equivalent Diameter (S.E.D, gm). 

The volume distribution of a phytoplankton community is evidently 

determined by the abundance and size of each constituting species. Both the 

total volume and the location of the size range of the bulk of this volume are 

relevant features in relation to the trophical role of the phytoplankton 

community (cf, Chapter 6). 

In general, large phytoplankton species dominate in areas of high and 

variable nutrient levels, and smaller phytoplankton species dominate in areas 

with lower and stable nutrient levels (Varela 1987; Morris 1980; Kiorboe et 

al., 1990). Therefore, in open ocean conditions, smaller phytoplankton is 

usually prevalent, while in neritic waters, larger species make up a greater 

fraction of the phytoplankton population (Malone et al. 1973). 

1.3. Trophic interractions 

To understand trophic interractions and how the food web picture of the 

pelagic ecosystems is organised is important in relation to ecosystem 

management and assessing fish stocks of the ocean (Steele, 1965; Ryther, 

1969; Parsons and Lebrasseur, 1970). As primary producer, phytoplankton 

forms a substantial basis for the marine and freshwater food webs. The 

efficiency of the energy flows from producers to zooplankton and to higher 

trophic levels depends mainly on the contrainst of the physical environment 

(Landry, 1977) (Figure. 1.1). This effect can be summurised as follows: in a 

high nutrient, and high turbulence environment a growth of large 
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phytoplankton cells is favoured (Landry, 1977; and Kiorboe, 1993) (Figure. 

1.1b). While, small cells (e.g. microflagellates species, small herbivorous and 

microzooplankton) are dominating in a low nutrient and low turbulence 

environment) (Landry, 1977) (Figure 1.1a). Moreover, the suitability and the 

transfer efficiency of the primary production to zooplankton and then to 

higher trophic levels differs in both environments (explanation in Figure. 1.1). 

Stable 

Lovt nutrients 

Turbulent 
High nutrients 

Figure 1.1. Trophic organisation in pelagic ecosystems, showing dominant 
pathways along which matter and energy are channeled in the ecosystem. 
Qualitatives differences in these pathways are illustrated by the widths of 
arrows. (a) Type of trophic structure organised in long pathways, where the 
energy tranfer is channeled is several intermediate levels before to be utilised by 
fich stocks. (b) Type of shorter structure, favoring greater transfer efficiency to 
larger herbivores and then to fish and invertebrates predators, (Landry, 1977). 
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2. The North Sea ecosystem 

2.1 Topography and Hydrography 

The North Sea, situated between 51 °N and 61° and 4°W and 9°E, 

covers an area of about 525 000 km 2  and has a water volume of some 43000 

km3  (Zijlstra, 1988). Connexions with other sea areas throug which major 

water inflows into the North Sea occur, are illustrated in Figure 1.2. They can 

be summarised as followed: in the north, between Scotland and Norway, with 

the northern Atlantic; in the east with the Skagerrak; and finally in the south 

with the English channel (Figure. 1.2) (Zijlstra, 1988). The northern part - 

north of Dogger Bank- of the North Sea has an average depth of some 100 to 

150m, and is relativelly little affected by fresh-water inflows (Zijlstra, 1988). 

South and southeast of the Dogger Bank, the average depth is around 30m 

(Zijlstra, 1988). This part -the Southern Bight of North Sea- receives inflow 

from some large continental rivers, as Rhine, Meuse, Scheldt, Weser, Elbe 

and Tames (Zijlstra, 1988). 

2. 2 Waters masses 

The hydrography of the North Sea shows a complex structure, where the 

Atlantic water intrusion, the dominant strong westerly winds, and strong tidal 

currents (specifically in the Southern Bight) play a major role (De Wilde et 

al., 1992). Indeed, water masses distribution can be divided into (a) The 

inflow of Atlantic water of high salinity from the north, and from the south 

through the Strait of Dover, and (b) the inflow from the Baltic, which is of 
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lower salinity (Lee, 1970 cited in Zijlstra, 1988). Moreover, 4 water masses 

can be 

Figure 1.2. Map of the North Sea with depth contour lines of 50, 100, and 200m. 
(In De Wilde et al., 1992). Arrows indicate the three major inflows into North 
Sea. 

distinguished in the North Sea. This division is based on the origin and the 

properties of the resident water: north Atlantic water (salinity > 35 %o), 

coastal water (salinity < 34 /00), Baltic water (salinity < 34 °/00) and mixed 

central North Sea water (salinity 34-35 43/00) (Otto et al., 1990; Fransz et al., 

1991; and De Wilde et al., 1992) (Figure 1.3). 

2. 3 Nutrients 

Main nutrient concentrations (nitrate, phosphate and silicate) vary with 

season, depth and position (Zijlstra, 1988). Biological activity -the uptake by 
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algae and remineralisation by bacteria- affect nutrient concentration variations 

significantly (Zijlstra, 1988). The general trend for all three nutrients is 

similar: higher concentrations in the northern part of the North Sea, in the 

North Atlantic inflow and along the coasts, in particular in the southern and 

the southeastern North Sea (Brockmann et al., 1990). The central part of the 

North Sea shows low nutrients concentrations (Brockmann et al., 1990). 

2. 4 Ecological subregions 

Based on the depth countour lines of 50, 100 and 200-m, the North Sea 

can be subdivided into three regions (Southern, Central and Northern) 

(Figure. 4.1) (De Wilde et al., 1992). This subdivsion is also observed in the 

general distribution patterns of: phytoplankton (Reid et al., 1990); 

zooplankton distribution and production (Fransz et al., 1991); benthos levels 

("etages") and faunal clusters (Glemarec, 1973; Basford et al., 1989; Kiinitzer 

et al., 1992); and fish distribution (Daan et al., 1990) (in De Wilde et al., 

1992). Different ecological subareas can be superimposed on these major 

ecological regions. This was done based on a more detailed analysis of 

plankton and benthos components (e.g. Gieskes and Kraay, 1975; Duursma et 

al., 1988; Vincx, 1990; Fransz et al., 1991; and Duineveld et al., 1992; De 

Wilde et al., 1992). 
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Figure 1.3. Hydrographical regions of the North Sea atfer Lee (1980). (In Otto et 
al., 1990) 

2. 5 Biota 

The biota of the North Sea are generally grouped as microorganisms, 

phyto- and zooplankton, benthos, and fish (Table 1.2). Other groups such as 

macroalgae, sea grass, birds and mammals are also found but their 

contribution to the functioning of the North Sea system as a whole, is small 

(De Wilde et al, 1992). 
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Table 1.2. Species richness of the differents components 
composed the Biota of the North Sea (in De Wilde et al., 
1992). 

Number of species 

Microorganisms & Protists species unknown 

Phytoplankton 500 

Micro-and mesozooplankton 200 

Macrozooplankton 100 

Meiobenthos 1000 

Macrobenthos —1000 

Fish 200 

Bird 30 

Mammals 10 

Section 2.5.1 will specifically foccuss and discuss some aspects of the 

work on phytoplankton and zooplankton carried out in the North Sea. 

2. 5 . 1 Phytoplankton 

Information on phytoplankton in the North Sea has been obtained by 

two fundamentally different methods. The first one, by the Continuous 

Plankton Recorder Surveys (C.P.R.S) (using a mesh size of 27011m), 

providing the structure of net-phytoplankton (microplankton) in all seasons 

and in the whole area of the North Sea (e.g. Glover, 1967; Glover et al., 1974, 

Colebroock, 1984 and 1986; Reid et al., 1990; and Williams et al., 1993). 

While the second method focused on the functional properties of the plankton 

populations (Zijlstra, 1988). This was done by studying phytoplankton 

dynamics in relation to the environment (e.g. nutrients, light, hydrographical 

factors, zooplankton grazing, etc...) (Zijlstra, 1988). Examples of such studies 

are: in the Southern Bight of the North Sea (e.g. Mommaerts, 1973a, b; 
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Figure 1.4. Subdivision of the North Sea into three ecological subareas: 
southern, central and northern North Sea. Partitioning is based on the 50, 100, 
and 300m depth contours and fish communities according to Daan et al., (1990). 
(In De Wilde et al., 1992). 

Gieskes and Kraay, 1975, 1977; Joiris et al., 1982; Lancelot, 1983; Lancelot 

and Mathot, 1985 and 1987; Lancelot et al., 1987); in the German Bight (e.g. 

Hagmeier, 1978); in the central North Sea (e.g. Cushing et al., 1963) and in 

northern North Sea (e.g. Steele, 1956, 1957; Radach, 1982; Gamble 1978; and 

Daro 1980). 

Several studies, carried out in the entire North Sea, report results on the 

seasonal variations in plankton biomass and production. Also, long-term 

changes within the phytoplankton (e.g. Reid et al., 1990), within the 

zooplankton (e.g. Fransz et al., 1991) and in the interrelation between 
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phytoplankton and zooplankton (e.g. Colebrook, 1984; Williams et al., 1993) 

are discussed. 

2. 5. 2 Zooplankton 

As for phytoplankton, North Sea zooplankton data are basically 

provided from 2 approaches. The first one was based on C.R.P.S, covering all 

North Sea areas, provided us long-term studies on species composition, 

distribution and seasonal variations (Zijlstra, 1988). The second source consist 

of special studies, on a small scale, with the aim to study the ecosystem 

dynamics (references, see section 2.5.1). 

Both long and short term studies of several aspects of the zooplankton 

ecology can be summarised as followed: on zooplankton community structure 

and relationship to the environments (temperature, salinity and vertical water 

stability) (e.g. Colebroock 1964), on seasonal cycles (e.g. Colebroock and 

Robinson, 1965; Colebroock, 1979; Fransz, 1976 etc...), and vertical 

distribution and grazing activity (e.g. Daro, 1988). An important contribution 

was published by Fransz et al., (1991) with a review of the ecology of 

zooplankton in the North Sea. Indeed, this review concerns long-term studies 

on seasonal and temporal variations, trophic interractions, population 

dynamics and production of zooplankton. They reported also that the 

zooplankton distribution is related, as was mentioned above, to the 

hydrography, the origin of watermasses and the seasonal variation with 

respect to species, area, and communities structure in terms of herbivores, 

omnivores and carnivores (Fransz et al., 1991). Trophic interactions were also 

discussed and compared between north and south of the North Sea (Fransz et 
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al., 1991). Finally, they deal with population dynamics and production (e.g. 

reproduction and life strategy, growth and development, mortality, and 

secondary production) of the most important zooplankton species. 

2. 6 Trophic levels and interractions 

The present view of the food web structure of the North Sea differs 

from the earlier simple picture given by Steele (1974) (Zijlstra, 1988; and De 

Wilde et al., 1992). This latter presented an almost linear food chain where all 

primary production is controlled and channelled by herbivorous zooplankton 

to fishes (De Wilde et al., 1992). Herbivorous predators produced fecal pellets 

providing a food supplly to the benthic system (De Wilde et al., 1992). This 

linear transfer of energy did not satisfy the food requirements of the fish 

(Zijlstra, 1988). This is due to the considerations taken by Steele in his 

approach, the low estimation of primary production (90 g C ni2  yr') and the 

assumption that all primary production is consumed only by the herbivorous 

zooplankton (Zijltsra, 1988). Later, Jones (1984) elaborated a more realistic 

picture, where other important processus were added (Figure 1.5). Thus, this 

picture considered a higher primary production of 130 g C m-2  yr- I  , a transfer 

efficiency of 15-20% between different components and finally a 

consumption 25% of primary production production by the benthos (Zijlstra, 

1988). In this energy budget the food requirements of the fish stocks in the 

North Sea were satisfied (Figure 1.5a) (Jones, 1984). 
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(a) 
	

(b) 

Figure 1.5. Estimations of the Energy-flow in g C M-2  ye', based on a transfer 
efficiency of 20% to fish through 'other primary canivores' and 15% transfer 
efficiency through herbivorous zooplankton. (a) North Sea, early 1960's; (b) 
North Sea, late 1960's. (Adapted from Jones, 1984). 

However, Jones (1984) showed that this budget is sensitive to changes 

occurring in the higher trophic level of the fish stock (such as the reduction of 

herring and mackerel stocks- after 1960). The response to this decreases was 

observed in the energy flow at the higher end of the food web "invertebrate 

carnivores" and others fish (Figure 1.5b) (Zijlstra, 1988). Such effect can be 

also observed in the food web structure in the shallower southern North Sea 

where benthic component has a more ecological role than just to be described 

(Zijsltra, 1988). Indeed, the carbon demand of benthic community decreased 

gradually from southern coastal area to deeper part on the northen North Sea 

(De Wilde et al., 1992.). Moreover, a high biomass of benthic species, and a 

higher transfer efficiency to the benthos can limit the flow of energy of the 

primary production to zooplankton in the shallow southern North Sea (Zijlstra 
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1988; and De Wilde et al., 1992). Within the Belgian coastal zone the 

meiofauna distribution differred from the neashore shallow waters with mean 

depth of 10m to the offshore waters with mean depth of 16m (Heip et al., 

1990). Moreover, Joiris (1983) attributed the observed heterogeneity of 

Seabirds in the North to the ecological structure of the water masses. Atlantic 

water is characterised by a complete food web: phytoplankton-zooplankton-

fish-Birds. This is found in the north of the North Sea where an intrusion of 

Atlantic water is penetrating with the Gulf Stream (Daro, 1980). While, in the 

Southern North Sea water, an important part of the primary prodcution (40%) 

is taken by the benthic component (Joiris et al., 1982). 

3. Objectives 

The natural or intrinsic variability of phytoplankton and zooplankton in 

relation to their environment is an important aspect of marine ecology. The 

knowledge of this variability is essential to understand the functioning and the 

possible human impact on plankton dynamics and behaviour. Moreover, the 

study of the spatial structure of the biological components plays an important 

role in ecological models (Legendre and Trousselier, 1993). 

Specific statistical analysis are available from a dataset of species 

abundances- which subarea's in a given study area can be considered as 

bearing separate communities- (cf. Chapter 2). 

Ecosystem functioning on the other hand is usually studied on a 

biomass stock and flux basis. In these studies, biota are usually considered in 

more 'functional' term such as the groups given in Table 1.2 (phytoplankton, 
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microzoplankton, etc...). this difference in approach raises the question in 

how far a distinction of area's or communities made on the basis of species 

composition corresponds to differences in functioning of 'pelagic' system in 

these areas. 

This thesis will focus on the Phytoplankton community distributions of 

some coastal and open sea areas of the North Sea. In both cases the study was 

performed before or at the begening of the spring bloom. Therefore, the 

evaluation made considering mainly the 'starting position' within the 

phytoplankton in the different areas. These will be related, to some degree, to 

the zooplankton component and the prevailing environmental conditions. 

Although each chapter has its own specific objectives, we state the general 

objectives of this work as follows: 

To describe the spatial and community structure of the plankton, in terms of 

number of species, volume and carbon content. To check whether differences 

(based on phytoplankton species composition) found within the spatial 

community structure of the plankton also, have a potential effect on the food 

web structure. 

This thesis is organized into 7.chapters, this being the first one. 

Chapters 2 deals in general with materials and methods, but the 

detailed methodology used is reported in each Chapter. 
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In chapter 3 we report the first observations on the winter distribution 

of phytoplankton and zooplankton communities around some sandbanks 

along the Belgian coastal zone during February 1994. 

In Chapter 4 the observations on the distribution of phytoplankton 

around some Belgian sandbanks during February 1995 and 1997 are also 

investigated. The occuring spatial distribution of phytoplankton biomass (in 

terms of volume and carbon) and size fractions during the three sampling 

years, February 1994, 1995 and 1997 is also investigated. 

Chapter 5 presents results on phytoplankton studies carried out along a 

North-South transect, during the early spring bloom, in the Open Sea of the 

North Sea. This chapter focusses on the spatial distribution and structure of 

phytoplankton communities, with emphasis on the biomass, and size 

structure. 

Chapter 6 looks into the use of the size spectra approach to study the 

potential trophic relationships between phytoplankton and mesozooplankton 

within nearshore and offshore stations in the two study areas. It verifies if 

subareas distinguished as separate communities based on phytoplankton 

species composition also represent different situations to the potential trophic 

transfer of phyto- to mesozooplankton. 

Chapter 7 summarises the main findings and results of the whole study. 
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1. Study area, sampling and laboratory analysis 

In each of the chapters of this thesis, phytoplankton, and sometimes 

zooplankton were sampled in a number of stations spread over a geographic 

area and its abundance determined. Environmental factors such as 

temperature, salinity, turbidity and nutrient concentrations were determined 

at the same time. 

Detailed descriptions of methods for the sampling and sample analysis 

will be given in each chapter. 

It is however, necessary to give briefly the definitions and outline the 

interest of using multivariate analysis in marine biology as well as many 

applied ecological topics (e.g. ecological dynamics, ecological impacts, 

ecological management, ecotoxicology, etc...). The details on the 

application of these techniques to the specific datasets are given in chapters 

3, 4 and 5. 

2. Cluster analysis: TWINSPAN 

Cluster analysis is a multivariate procedure commonly used for detecting 

natural "groupings" in ecological data (Gauch et al., 1981; Gauch, 1982; Pielou, 

1984). 

TWINSPAN is somewhat complex divisive clustering method originally 

devised by Hill for vegetation analysis but quite suitable for animal communities 

as well. The TWINSPAN program has been widely used by ecologists. 
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TWINSPAN (Two-Way Indicator SPecies ANalysis) is a development of a 

method already published under the name "indicator species analysis" (Hill et 

al., 1975). Its procedure and advantages are described by Hill, (1979) as: 

"TWINSPAN is a program for classifying species and samples, producing an 

ordered two-way table of their occurrence. An interesting feature of TWINSPAN 

is that it forms what are termed pseudospecies. These are separate variables for 

the different levels of abundance of a species. Samples are ordinated using 

reciprocal averaging. A dichotomy is then made using the reciprocal averaging 

centroid line to divide the samples into two groups (negative and positive). This 

dichotomy is then refined using an iterative procedure. The clusters of samples 

obtained are then ordered so that similar clusters are near each other. This 

procedure continues in a hierarchical fashion to subdivide the groups until the 

minimum group size initially selected by the user is obtained. Species are then 

classified using the sample (quadrate) classification". The final result is 

presented as a dendogram of stations. 

3. Community, and species-environment relationships: CAN0( () 

A common problem in community ecology is to answer the question: how 

does a multitude of species responds to external factors such as environmental 

variables? To solve this problem, regression and ordination have been integrated 

into techniques of multivariate direct gradient analysis, called canonical 

ordination (Jongman et al., 1987; Ter Braak and Prentice, 1988). The Fortran 

program CANOCO (canonical community ordination, version 3.10) includes 
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canonical correspondence analysis (CCA), which escapes assumptions of 

linearity between species abundances and gradients (cf. Principal Components 

Analysis) and is able to detect unimodal relationships between species and 

"environmental" variables (Ter Braak 1986, 1987a, b and 1988). 

The CCA option of CANOCO is used, for example to examine the 

relationship between the abundance of the x species entities trawled in the Sea, 

and relate the abundance/dominance of given species to the x selected 

geographical areas (localities). Presentation of an ordination diagram, with 

inclusion of species, sampling localities and environmental factors (t°, sal , 

etc...), allows one to search for relationships: species, which are arrayed close 

together, have similar species attributes. Species in close proximity to particular 

stations/localities will be more "dominant" (i.e. over-represented) than those 

further removed. The major points to be considered when interpreting the CCA 

plot in CANOCO are, as Ter Braak, (1986, 1988) mentions: 

(1) Environmental factors with long " arrows" are better correlated with 

the axes than those with shorter "arrows", and accordingly more strongly 

related to the species pattern in the plot; 

(2) "Arrows" point in the direction of maximal change of given 

environmental factors in the plot, and the length of the arrows is proportional 

with the degree of change (i.e. larger change reflected by long "arrows"; 

(3) Species can be projected relative to the "arrows", such that the 

ordering of species along the axis of the "arrow" is approximately the ranked, 

weighted median value of the species relative to the environmental factor; 

(4) The absolute length of the "arrow" is immaterial; it is the relationship 
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between its length and direction that is important; 

(5) The proximity of species plotted relative to localities denotes the 

degree of influence/dominance of the species at the localities. 
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Abstract 

Distribution of phytoplankton and zooplankton around 3 sandbanks 

(Gootebank, Westhinder and Buitenratel sandbank) of the Belgian Coast was 

investigated in February 1994. 

The abundance of phytoplankton taxa was significantly different between 

the sandbanks. Community analysis using TWINSPAN resulted in a clear 

separation of clusters corresponding to the different sandbanks. The zooplankton 

community analysis, on the contrary, showed a rather undistinctive division of 

the sandbank stations. This was due to the omnipresence of three dominant 

copepod species (Temora longicornis, Pseudocalanus elongatus and 

Centropages hamatus). When these species were excluded from the analysis, a 

clearer distinction between the different sandbanks was found. 

The observed differences in phyto- and zooplankton species distribution 

could be explained by the position of the sandbanks. Westhinder is positioned 

further from the coast than Buitenratel, while Gootebank has an intermediate 

position. Buitenratel and Gootebank harbour typical coastal plankton 

communities, while the plankton community over Westhinder is clearly 

influenced by the Atlantic current penetrating the Southern North Sea from the 

English channel. More phyto-benthic species were found at Buitenratel than at 

Gootebank, probably because of its limited depth. Thus the Belgian coastal zone, 

which is considered as one box in most spatial descriptions of the North Sea 

plankton, in fact harbours heterogeneous plankton communities at the end of 

winter. 
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1. Introduction 

In their respective reviews on phytoplankton and zooplankton studies in the 

North Sea, Reid et al. (1990) and Fransz et al. (1991) describe the distribution of 

plankton organisms as strongly linked to the hydrography of the North Sea, 

which is described in detail by Otto et al. (1990). Fransz et al. (1991) summarize 

the water bodies to be distinguished in relation to zooplankton distribution as 

follows: 

"A large tongue of saline water from the Atlantic Ocean extends from the 

North into the North Sea between the Orkney islands and the Norwegian Trench, 

and in South-East direction towards the Dogger bank. The narrow tongue in the 

Southern Bight, which has the same salinity, is of considerably smaller extent 

corresponding to the smaller opening of the English Channel into the North Sea. 

In both areas the salinity reaches more than 35 psu. This water is called 

'Atlantic water'. In coastal areas influenced by fresh water runoff salinities less 

than 34 psu are found. On the West and South-East coast this water is called 

'coastal water'. The water masses in the central part of the North Sea, with 

salinities between 34 and 35 psu are called 'North Sea Water, and originate 

from the mixing of Atlantic and coastal waters (Bohnecke, 1922)". 

The Belgian coastal zone, situated between 51° and 52° N in the Southern 

Bight of the North Sea (Figure 1), is defined, based on general circulation 

patterns, as the region limited by streamline 20 10 4  m3  s-1  of the residual 

current entering from the Channel (Nihoul and Ronday, 1975; Joins et al., 1982). 

Within this zone, which extends to about 40 km offshore and is influenced by 

terrestrial input from the Schelde estuary, salinity is usually less than 33 psu. 
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Mean depth in the coastal zone is 15 m and turbulence of the water column is so 

high that even during summer temperature stratification does not take place 

(Kuipers et al., 1991). Consequently the zone is generally considered as a 

homogeneous coastal area, to be distinguished from the adjacent open 'North Sea 

Water' area (Lancelot et al., 1980; Joins et al., 1982). On a broader geographical 

scale, it falls within box 4 of the 'Flushing Times Group division of North Sea' 

(ICES, 1983). 

Several sandbanks are situated in the Belgian coastal zone. They are either 

the result of sand accumulation or erosion and are situated approximately 10 km 

offshore and lie in the North-Eastern direction parallel to the residual transport 

(De Moor, 1985). 

The observation of considerably higher abundances of piscivorous seabirds 

on the South-Western part of the Belgian coast, than on the North-Eastern part 

(Offringa et al., 1995) investigated, since 1994, a series of multidisciplinary 

ecological surveys to study the underlying trophic structure of the area, and 

possible differences herein between the various sandbanks. 

Within this framework, this paper reports a first series of observations on the 

distribution of phytoplankton and zooplankton over the Buitenratel, Gootebank 

and Westhinder sandbank. Sampling took place in February 1994, and as such 

the results represent the starting conditions for the spring plankton bloom. 
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2. Materials and methods 

2.1 Study area 

Figure 3.1 shows the position of the Buitenratel, Gootebank and Westhinder 

sandbanks within the study area. Sampling stations on each sandbank are 

indicated in the enlargement. 

Figure 3.1 Map of Belgian continental Flat showing the sampling stations. 
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2.2 Sampling 

Phytoplankton: Sampling was done on board of the RN Belgica at twenty 

stations on each of the three sandbanks on 7 and 8 February 1994. 

Water samples were collected with a Niskin bottle at 3 meter depth. Sub-

samples of 250 ml were preserved with lugol's solution for phytoplankton 

counting. 

Zooplankton: A plankton net with a mesh size of 300 gm was towed at 3 

meter depth, the catch concentrated into a plastic sampling container (± 100 ml), 

and preserved in 4% formalin solution. 

Each sample was given a letter designation followed by a number to 

represent sampling stations of the sandbanks as; G for Gootebank, B for 

Buitenratel and W for Westhinder bank. In the following, the sandbanks will be 

referred to as Gootebank, Buitenratel and Westhinder. 

Environmental factors. Temperature, salinity and turbidity were determined 

with CTD, simultaneous with phytoplankton and zooplankton sampling at each 

sampling station. 

2.3 Laboratory analysis 

Phytoplankton: The preserved 250 ml samples were concentrated to 5 ml by 

decantation. Phytoplankton cells in the concentrated sample were counted with 

an inverted microscope at 10x20 and 10x40 magnification and species 

abundance expressed as cells per litre. 
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Keys and reference books used for identification were Van Heurck (1896); 

Schiller (1937); Cleve-Euler (1951); Butcher (1961); Hendey (1964); Drebes 

(1974); Hartley (1986); Pankow (1990) and Tomas (1993). Identification was 

done down to species or genus level. 

Zooplankton: Preserved samples were concentrated to 20 ml by 

decantation. The concentrated samples were homogenised gently by a magnetic 

stirrer and 3 ml subsample was pipetted into a petri dish for counting. For some 

very abundant species, only one 3 ml subsample was counted. For all other 

organisms, the whole sample was counted. As the volume sampled was unknown 

species abundance was expressed as percentage of total abundance. 

Identification keys used were: Lank (1948), Newell and Newell (1967); 

Rose (1970); Tattersal et al. (1976); Omori and Ikeda (1984), Klein Breteler 

(1992) and Gotto (1993). Identification was performed down to species level 

when possible. Copepod eggs and nauplii and fish eggs were also counted, but 

not identified. 

2.4 Data analysis 

Values measured for environmental factors on the 3 banks were compared 

using ANOVA. Phytoplankton absolute and relative abundances on the different 

banks were compared by Mann Whitney test. 

'Two Way Indicator Species Analysis' (TWINSPAN) (Hill, 1979) was used 

to analyse the spatial distribution and community structure of phytoplankton and 

zooplankton over the study area. Species abundance was in both cases expressed 

as percentage and the default options of the TWINSPAN routine were used 

throughout the analysis. 

Canonical Correspondence Analysis (CCA) using the CANOCO package 

(Ter Braak, 1987b and 1988) was used to determine the relation between 

zooplankton abundance and environmental variables. Phytoplankton data were 
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used as abundance and ln+1 transformed. Downweighing of rare species was 

performed. Zooplankton data were used in percentage and no transformation or 

downweighing was performed. Temperature, salinity and turbidity were used as 

environmental data in case of the phytoplankton analysis. For the zooplankton, 

CCA analysis, the relative abundance of the phytoplankton families was added 

to the file of environmental variables. A Monte Carlo test using 999 unrestricted 

permutations was performed to test the significance of the correlations. 

3. Results 

Environmental variables: Values of temperature, salinity and turbidity 

measured on the three sandbanks are given in Figure 3.2a-c. Westhinder showed 

the highest temperature values (7.66-7.75 °C), followed by Buitenratel (7.36 -

7.48) and Gootebank (7.19-7.30), each mean being significantly different from 

the other two (ANOVA, p< 0.05) (Figure 3.2a). Gootebank and Westhinder had 

similar salinity values (33.62 - 33.98 and 33.85-33.91 respectively), which were 

significantly higher than those of Buitenratel (Figure 3.2b). Turbidity values 

around Gootebank varied from 13 to 26 FTU, with one value being as low as 1 

FTU and considered an erroneous reading. Turbidity reading around Westhinder 

varied between 18 and 20 FTU, with highest values occurring in stations 10-20 

and was constant at 20 FTU at all Buitenratel stations (Figure 3.2c). Mean 

turbidity was higher at Buitenratel than at the two other banks, which did not 

differ significantly in turbidity. 

Phytoplankton: The total of 123 phytoplankton taxa, which were identified, 

is listed in Table 3.1. Most of these species were typical neritic and pelagic 

species. Benthic species were rarely found. The results of a comparison of 
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absolute and relative numerical abundance of phytoplankton divisions between 

the sandbanks is shown in Table 3.2 and Figure 3.3 respectively. 
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Table 3.1 List of phytoplankton species observed and abbreviation used in 
Figures 4.9, 4.10 and 4.11 (Chapter 4)  

Division: Chrysophyta 
Class: Bacillariophyceae 
Order: Centrales 
Odontella 

Paralia 
Aulacoseira 

Skeletonema 
Cyclotella 
Stellarima 
Coscinodiscus 

Psammodiscus 
Eucampia 
Thalassiosira 

Schroederella 
Ditylum 
Leptocylindrus 

Actinoptychus 
Actinocyclus 
Corethron 
Rhizosolenia 

Guinardia 

Proboscia 
Triceratium 

Chaetoceros 

aurita (Lyngb.) Ag. 
granulata (Roper) R. Ross 
mobiliensis (Bail.) Grun. 
rhombus (Ehrenb.) Kiitz. 
regia (Schiltze) Simonsen. 
sinensis (Grey.) Grun. 
sulcata (Ehrenb.) Cleve. 
divans (Ehrenb.) Simonsen. 
granulata (Ehrenb.) Simonsen. 
costatum (Grey.) Grun. 
comta (Ehrenb.) !Utz. 
stellaris (Roper) Hasle & Sims. 
radiatus Ehrenb. 
centralis Ehrenb. 
nitidus (Greg.) Round et Mann 
zoodiacus Ehrenb. 
leptopus (Grun. in Van Heurck) Fryxell et Hasle 
eccentricus (Ehrenb.) Cleve 
fallax Meunier. 
rotula Meunier. 
schroederi (Bergon) Pavillard. 
brightwellii (West.) Grunow. 
danicus Cleve. 
minimus Gran. 
octonarius Ehrenb. 
octanorius Ehrenb. 
criophilum Castr.. 
delicatula Cleve 
setigera Brightw. 
hebetata (Bail.) Gran. 
shrubsolei 
imbricata Brightw. 
striata (stolterfoth) Hasle. 
pungens Cleve-Euler. 
alata (Brightw.) Sundstrom. 
antediluvianum (Ehrenb.) Grun. 
favus Ehrenb. 
danicus Cleve. 
didymus Ehrenb. 
crinitus Schutt. 
pseudosimilis Cleve 
fragilis Meunier 
compressus Lauder. 

unipunctata (Lyngb.) Ag. 
amphiceros Ehrenb. 
belgica Grun. 
surirella (Ehrenb.) G. W. Andrews. 
brockmannii (Hust.) Hasle, Von Stosch & Syvertsen 

(Odo aur) 
(Odo gra) 
(Odo mob) 
(Odo rho) 
(Odo reg) 
(Odo sin) 
(Par sul) 
(Aul dis) 
(Aul gra) 
(Ske cos) 
(Cyc com) 
(Cos ste) 
(Cos rad) 
(Cos cen) 
(Psa nit) 
(Euc zoo) 
(Tha lep) 
(Tha ecc) 
(Tha fal) 
(Tha rot) 
(Sch sch) 
(Dit bri) 
(Lep dan) 
(Lep min) 
(Act chr) 
(Act oct) 
(Cor cri) 
(Rhi del) 
(Rhi set) 
(Rhi heb) 
(Rhi shr) 
(Rhi imb) 
(Gui sto) 
(Rhi pun) 
(Pro ala) 
(Tri alt) 
(Tri fav) 
(Cha dan) 
(Cha did) 
(Cha cri) 
(Cha pse) 
(Cha fra) 
(Cha comp) 

(Str uni) 
(Rha amp) 
(Rha bel) 
(Del sur) 
(Bro bro) 

Order: Pennales 
Striatella 
Rhaphoneis 

Delphineis 
Brockmanniella 

-35- 
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Pleurosigma 	normanii Ralfs in Pritchard. 	 (Ple nor) 
angulatum Hendey. 	 (Ple ang) 
nubecula W. Sm. 	 (Ple nub) 
var. intermedium (W. Sm.) Cleve 	 (Ple int) 
naviculaceum Breb. 	 (Ple nav) 

Ctenophra 	pukhella (Ralfs ex Kiitz.) Williams et Round 	 (Cte pul) 
Synedra 	 ulna Ehrenb. 	 (Syn uln) 

acus Cleve after V. Heurck 	 (Syn acu) 
pelagica Cleve 	 (Syn pel) 

Thalassionema 	nitzschioides Grunow. 	 (Tha nit) 
Asterionellopsis 	glacialis (Castracane) Roundin Round al. 	 (Ast gla) 
Asterionella 	kariana Grun. in Cleve et Grun. 	 (Ast kar) 
Achnanthes 	danica (Flogel) Grun. in Cleve et Grun. 	 (Ach dan) 

parvula Kiitz. 	 (Ach par) 
Diploneis 	bombus (Ehrenb.) Cleve 	 (Dip bom) 

didyma (Ehrenb.) Cleve 	 (Dip did) 
lineata (Donk.) Cleve 	 (Dip lin) 
oculata (Breb.) Cleve 	 (Dip ocu) 

Amphora 	 alata Per. 	 (Amp ala) 
proteus (Greg.) Cleve 	 (Amp pro) 

Amphiprora 	alata Ehrenb. 	 (Ampr ala) 
Navicula 	 distans W . Sm. after Grunow. 	 (Nav dis) 

crytocephala Kiitz.after Cleve. 	 (Nav cry) 
tripunctata (Muller.) Bory. 	 (Nav tri) 

Navicula 	 marina Ralfs in Pritch 	 (Nav mar) 
Pinnularia 	major (Ktitz.) W. Sm. 	 (Pin ma j) 
Haslea 	 ostrearia (Gaillon) Simonsen. 	 (Has ost) 
Meuniera 	membranacea (Cleve) Silva. 	 (Str mem) 
Trachyneis 	aspera (Ehrenb.) Cleve 	 (Tra asp) 
Bacillaria 	paxillifer (Muller.) Hendey 	 (Bac pax) 
Nitzschia 	 longissima (Brill.) Ralfs. 	 (Nit lon) 

dissipata (Kiitz.) Grun. 	 (Nit dis) 
sigma (W. Sm.) 	 (Nit sig) 
tryblionella (Hantzsch.) 	 (Nit try) 
gracilis (Hantzsch.) 	 (Nit gra) 

Pseudonitzschia 	seriata (Cleve) H. et M. Perag. 	 (Nit ser) 
delicatissima (Cleve) Heiden in Heiden et Kolbe. 	(Nit del) 

Psammodictyon 	panduriforme (Greg.) Mann 	 (Pse pan) 

Class: Chrysophyceae 
Distephanus 	speculum (Ehrenb.) Haeckel 	 (Dis spe) 
Telonema 	subtilis Griessmann 1913 	 (Tel sub) 
Metromonas 	simplex (Griessmann ) Larsen & Patterson 1990 	 (Met sim) 
Cafeteria 	minuta (Ruinen) LARSEN & Patterson 1990. 	 (Caf min) 
Pseudobodo 	tremulans Griessmann 1913. 	 (Pse tre) 
Bodo 	 parvulus Griessmann 1913. 	 (Bod pur) 

Class: Haptophyceae 
Phaeocystis 	sp 	 (Pha spe) 
Imantonia 	rotunda Reynolds 1974 	 am rot) 

Class: Rhaphidophyceae 
Oltmannsia 	viridis Schiller 1925 	 (Olt vir) 

Division: Pyrrophyta 
Class: Dinophyceae 
Order: Prorocentrales 
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Prorocentrum 
(Pro mic) 

Exuviella 
Order: Peridiniales 
Peridinium 

Peridinium 
Pyrophacus 
Amphidinium sp 
Diplopsalis 
Dissodinium 
Maniscula 
Gymnodinium 
Ceratium 

micans Ehrenb. 

sp 	Ehrenberg 

brevipes (Pauls.) Lebour 
punctulatum Paulsen 
curvipes Ostenfeld 
sp. Drebes 
horologium Stein 
Conrad & Kufferath, 1954 
minor (Pauls.) Pavillard 
assymmetricum (Mangin) Loeblich III 
bipes (PAULS.) Lebour 
sp. Conrad & Kufferath, 1954 
lineatum (Ehrenb.) Cleve. 

(Exu spe) 

(Per bre) 
(Per pun) 
(Per cur) 
(Per sp) 
(Pyr hor) 
(Amp sp) 
(Dip min) 
(Dis asy) 
(Man bip) 
(Gym spe) 
(Cer lin) 

Division: Crytophyta 
Class: Cryptophyceae 
Hemiselmis 	virescens Droop 1955 
Cryptomonas 	sp.,Tomas 
Chroomonas 	marina (Buttner) Butcher 1967 
Rhodomonas 	sp. Karsten 
Hillea 	 fusiformis (Schiller) Schiller1925 
Hillea 	 marina Butcher 1925 
Leucocryptos 	marina (Braaud) Butcher 1976 
Rhinomonas 	fulva (Butcher) ) Hill & Wetherbee 
Teleaulax 	acuta (Butcher ) Hill 1991 

Division: Euglenophyta 
Class: Euglenophyceae 

(Hem vir) 
(Cry spe) 
(Chr mar) 
(Rho spe) 
(Hil fus) 
(Hil mar) 
(Leu mar) 
(Rhi ful) 
(Tel acu) 

Eutreptia 
Eutreptiella 

Euglena 
Phacus 
Scenedesmus 
Crucigenia 

sp, Tomas, 1973 
hirudoidea, Butcher, 1961 
marina, da Cunha 1914 
sp. Butcher, 1961 
triqueter Butcher, 1961 
quadricauda (Turpin) Bret). Et Goday 
tetrapedia (Kirchner) W. et G. S. West 

(Eut spe) 
(Eut hir) 
(Eut mar) 
(Eug spe) 
(Pha tri) 
(Sce qua) 
(Cm tet) 

Division: Chlorophyta 
Class: Prasinophyceae 
Micromonas 	pusilla (Butcher) ) Manton & Parke 1660 

	
(Mic pus) 

Pyramimonas 	sp. Tomas, 1973 
	

(Pyr spe)) 
Resultor 	 mikron (Throndsen) Moestrup 1991 

	
(Res mik) 

Tetraselmis 	suecica (Kylin) Butcher. 	 (Tet sue) 

Class: Chlorophyceae 
Chlamydomonas 	reginae Ettl & Green 1973 

	
(Chl reg) 

coccoides Butcher 1959 
	

(Chl coc) 
Dunaliella 	tertiolecta Butcher 1959 

	
(Dun ter) 

Coccolithophorids 
Acanthoica 	aculeata Kamptner 

	 (Aca acu) 
Crystallolithus 
	

hyalinus Gaarder & Markali 
	

(Cry hya) 
Syracolithus 
	

dalmaticus (Kamptner) Loeblich & Tappan 
	

(Syr dal) 
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Table 3.2 The results of Mann Whitney-U test comparing 
abundance of main groups of phytoplankton on the Gootebank (G), 
Westhinder (W), and Buitenratel (B) (* p<0.05, ** p<0.01). 

Groups G& B W& G W& B 
Chlorophyta G> B** W> G** W> B** 
Chrysophyta no W < G* W < B* 
Pyrrophyta no no no 
Cryptophyta no W > G* W > B** 
Euglenophyta  G< B* W< G** W< B** 

Except for Pyrrophyta, the abundance of each of the phytoplankton groups 

was significantly different between Westhinder and the two other sandbanks 

(ANOVA, p< 0.05). Only Chlorophyta and Euglenophyta showed significant 

differences in abundance between Gootebank and Buitenratel (Table 3.2). 

Euglenophyta and Chrysophyta (mainly composed of diatoms) had the 

highest relative abundance on all sandbanks (Figure 3.3). The dominance of 

Euglenophyta and to a smaller extent of Chrysophyta was somewhat reduced on 

Westhinder in comparison to the two other banks. On Westhinder Chlorophyta 

and Cryptophyta were relatively more important. 

123 Bacillariophyceae 

❑ Chlorophyceae 

▪ Coccolithophorids 

• Cryptophyceae 

▪ Dinophyceae 

Euglenophyceae 

▪ Prasinophyceae 

3% 4% 

  

3.5% 
3% 	1.5% 

 

8% 

33% 
33% 

27% 

Westhinder 

 

Gootebank 

 

Buitenratel 

 

Figure 3.3. Percentage numerical abundance distribution of phytoplankton taxa at 
the three sandbanks. 
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The dendrogram for the TWINSPAN analysis of the phytoplankton 

abundance (Figure 3.4) showed a clear splitting, with a first division separating 

Westhinder from the 2 other sandbanks with indicator species Chlamydomonas 

coccoides (Chlorophyceae), Metromonas simplex (Chrysophyceae) and Resultor 

mikron (Prasinophyceae). The left hand split consisted of Gootebank and 

Buitenratel stations with Rhizosolenia hebeteta (Bacillariophyceae) as indicator 

species. A second division splitted Buitenratel-samples from those of 

Gootebank. Three Westhinder stations were included with the Gootebank 

cluster. 

Zooplankton: 42 zooplankton taxa were identified most of which down to 

species or genus level, some at higher levels. The list of taxa is given in Table 

3.3. 

Copepods were strongly dominant constituting over 90% of numerical 

zooplankton abundance in all stations. At the species level dominant copepod 

species were Temora longicornis around 

Chlamydomonas coccoides 
Metromonas simplex 
Resultor mikron 

Rhisozolenia hebetata 

F -I 
B09 B12 B16 B05 BOI B06 GI 1 GIO G02 G03 001 

	

BIO B13 B17 B07 B02 	GI5 G12 G07 G05 G04 
BI I 	B20 	B03 	GI6 G14 G13 G06 G09 

	

B04 	 G18 G19 G20 G17  

1 
W15 WO1 W02 W06 W14 W16 
W17 W12 W04 W20 
WI8 W13 W10 

W11 

W05 	W03 
W07 	WI9 
WO8 
W09 

Fig 3.4 Twinspan analysis dendogram for phytoplankton on the Buitenratel, 
Gootebank and Westhinder stations. 
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Gootebank (72%), Buitenratel (59%) and Westhinder (54%). Pseudocalanus 

elongatus had the highest percentual abundance on Westhinder (41%) compared 

to Buitenratel (38%) and Gootebank (18%). Centropages hamatus contributed 

6% to copepod abundance on Gootebank and only 2% on Westhinder and 1% on 

Buitenratel (Figure 3.5). 

Other species that were regularly occurring around all sandbanks, but in 

smaller numbers, were: Acartia clausi, Paracalanus parvus and Calanus 

helgolandicus. Centropages typicus occurred only on Westhinder. 

Figure 3.5 Percentage distribution of dominant copepods species at the three 
sandbanks. (Others: Acartia clausi, Centropages hamatus &Pseudocalanus parvus) 

TWINSPAN analysis showed a quite undistinctive division of the three 

sandbanks (Figure 3.6). While there was a clear splitting in two clusters, stations 

of all banks occurred in both of these clusters. 

The three dominant species, T. longicornis, P. elongatus and C. hamatus, 

which were abundant at all sandbanks, were excluded from the analysis to look 

for any specific patterns in the less abundant species. The original relative 

abundances of the remaining taxa were maintained because the relative 

abundance reflects the importance of a particular taxon in the study area. 
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Table 3.3 List of zooplankton taxa observed 

Phylum: Cnidaria 

Class: Hydrozoa 

Order: Hydroida 

3 unidentified species 

Phylum: Ctenophora 

Class: Tentaculata 

Order: Cydippida 

Pleurobrachia pileus O.F. Muller, 1776 

Phylum: Annelida 

Class: Polychaeta Grube, 1850 

Order: Errantia Audouin & MILNE EDWARDS, 1832 

Family: Syllidae Grube, 1850 
Procerae cornuta (AGASSIZ, 1862) 
Family: Spionidae G. 0. Sars, 1872 
Spionid sp. 
Family: Polynoidae MALMGREN, 1867 
Lepidonotus sp. 
Family: Phyllodocidae WILLIAMS, 1852 
Phyllodoce sp. 
Family: Terebellidae MAMLGREN, 1865 
Terebellia sp. 

Phylum: Mollusca 

Class: Bivalvia 
Order: Anasomyaria 

Family: Mytiladae 
Mytilus edulis 

Class Gastropoda 

Order: Mesogastropoda 

Family: Littorinidae 
Littorina sp. 

Phylum: Arthropoda 

Sub Phylum: Crustacea 
Class: Copepoda Edwards, 1840 
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Order: Calanoida Sars, 1903 
Family: Acartiidae Sars, 1903 
Acartia clausi Giesbrecht, 1889 
Acartia longiremis Lilljeborg, 1853 
Family: Temoridae Giesbrecht, 1892 
Temora longicornis 0. Fr. Muller, 1792 
Family: Pseudocalanidae 
Pseudocalanus elongatus Boeck, 1872 
Family: Pseudocyclopidae Sars, 1902 
Pseudocyclopsobtusatus (Brady & Robertson, 1873) 
Family: Centropagidae Giesbrecht, 1892 
Centropages hamatus Lilljeborg, 1853 
Centropages typicus Kroyer, 1849 
Family: Calanidae Dana, 1849 
Calanus finmarchicus Gunner, 1765 
Family: Paracalanidae Giesbrecht, 1892 
Paracalanus parvus Claus, 1863 

Order: Harpacticoida Sars, 1903 

Family: Euterpinidae Boeck, 1864 
Euterpina acutifrons Dana, 1852 
Family: Longipediidae Brady, 1880 
Longipedia helgolandica Klie, 1949 

Order: Poecilostomatoida Thorell, 1859 

Family: Corycaeidae Dana, 1852 
Corycaeus ditrichoconjcaeus anglicus Dana,1849 
Family: Clausisiidae Giesbrecht, 1895 
Hemicyclops purpureus Boeck, 1872 

Order: Siphonostomoida Thorell, 1859 

Family: Asterocheridae Giesbrecht, 1899 
Acontiophorus scutatus Brady & Robertson, 1873 

niat 
Order: Thoracica Darwin, 1854 

Family: Balanidae LEACH, 1806  S3441)1  QQa.triA\ 
Balanus sp. 

Class: Malacostraca LATREILLE, 1806 

Order: Decapoda LATREILLE, 1803 

Family: Crangonidae HAWORTH, 1825 
Crangon crangon Sars, 1890 
Family: Paguridae LATREILLE, 1803 
Pagurus bernhardus (LINNAEUS, 1758) 
Family: Portunidae RAFINESQUE, 1825 
Portunus puber (LINNAEUS, 1758) 

Order: Mysidacea BOAS, 1883 

- 4 - 
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Family: Mysidae DANA, 1850 
Sriella jaltensis Czerniaysky, 1868 
Anchialina agilis (0.G. Sars, 1877) 
Mesopodopsis slaberri (P.J. van Beneden, 1861) 
Gastrosaccus spinnifer (Goes, 1864) 
Schistomysis spiritus (Norman, 1860) 

• 
Order: Amphipoda LATRULLE, 1816 

Family: Hyperiidae H. MILNE EDWARDS, 1830 
Hyperia galba Montagu, 1815 

Order: Cumacea ICROYER, 1846 

Family: Pseudocomatidae G.O. Sars, 1878 
Pseudocoma longicornis Bate, 1858 

Class: Branchiopoda LATREILLE, 1817 

Order: CLADOCERA LATREILLE, 1829 

Family: PODONIDAE MORDUKHAI-BOLTOVSKI, 1968 
Evadne nordmani LOVEN, 1836 

Phylum: Chaetognatha 

Sagitta elegans Verrill, 1873 
Spadella sp. J. Muller, 1847 

Phylum: Chordata 

Class: Appendiculata 

Order: Appendicularia 

Family: Oikopleuridae 
Oikopleura sp. Lohman, 1896 

Subphylum: Vertebrata 

Class: Ostiechthyes 

Order: Clupeiformes 

Family: Clupeidae 
Clupea harengus L. Kuffer, 1878 
aura sprattus L. 1710Ftseff:1883 

A1/4  (DAA 
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Figure 3.6 Twinspan analysis dendogram for all zooplankton species on the 
Buitenratel, Gootebank and Westhinder stations. 

The dendrogram of TWINSPAN analysis for the remaining taxa showed a 

clearer split between three sandbanks (Figure 3.7). The right side cluster 

contained all stations from the Westhinder with Clupea harengus and Sprattus 

sprattus larvae as indicator species. The split on the left side of the diagram with 

Paracalanus parvus as indicator species consisted of two subclusters. The 

cluster on the left hand side with a medusa species and the ctenophore 

Pleurobrachia pileus as indicator species represented mostly Gootebank stations. 

The cluster on the right side mainly represented Buitenratel stations and the 

remainder of the Gootebank stations. 

The plots for species and sample scores as a result of the CCA analysis on 

the total zooplankton dataset are shown respectively in Figure. 3.8a and 3.8b. 

Eigenvalues percentage explained variance and correlations coefficients with 

environmental factors for the first 4 axis are given in Table 3.4. Monte Carlo 

testing showed the variance in zooplankton species data to be explained in 

descending degree by temperature (9%, p= 0.01), Euglenophyceae abundance 
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Paracalanus parvus Clupea harengus 
Sprattus sprattus 

Acadia Iongiremis 
Acadia clausi 

Med. apt 
PIe. pit. 

G17 G08 G13 001 G07 	B08 	BOI B02 	804 	WOl W02 W13 W20 W04 	W06 
GI8 GI I G14 G05 GIO 	 G02 B05 	809 	WIO W03 W14 	W16 	W07 

G19 G12 015 G06 	 G03 806 	B16 	WII W08 W15 	WI7 	W09 
G20 	B17 G09 	 G04 B13 	 W12 	W19 	W18 	B12 

Figure 3.7 Dendogram from Twinspan analysis of zooplankton, excluding 
dominant species. 

(3%, p= 0.01), salinity (2%, p= 0.02), and Chlorophyceae abundance (2%, p= 0.04). 

Temperature was highly correlated with axis 1, and salinity with axis 2. 

Gootebank stations were found on the left side of axis 2, with the majority of 

stations situated below axis 1. Westhinder stations were situated to the right of 

axis 2 while Buitenratel stations are distributed along the lower part of axis 2, in 

between Gootebank and Westhinder stations. Arrows for Euglenophyceae and 

diatoms point to the same direction, the lower left quadrant while 

Chlorophyceae, in the upper right quadrant, are associated with increasing 

salinity and temperature. Further details on the association between 

phytoplankton groups and physical environmental factors can be seen from the 

correlation matrix of environmental variables shown in Table 3.5. Figure 3.8b 

shows that the most dominant copepod species, T. longicornis and C. hamatus 

were found close to the centre of the plot, while P. elongatus was more 

associated with Gootebank stations. Also close to the centre of the plot, on the 
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Figure 3.8 CCA analysis of zooplankton relative species abundance with respect to 
environmental factors: (a) Species biplot: List 1, including species which are close 
together: Acartia clausi, Barnacle larvae, Calanus finmarchicus, Copepod eggs, Hyperia 
galba, Pagurus bernhardus, Lepidonotus, Proceraea cornuta, Pseudocalanus elongatus, 
Pseudocalanus longicornis, Sagitta elegans, Sirella jaltensis, and Single species in the plot 
are, Aca Ion = Acartia longiremis, Anc agi = Anchialina agilis, Biv spe = Clams, Cen ham = 
Centropages hamatus, Cen Typ = Centropages typicus, Clu har = Clupea harengus, Cop 
nau = Copepod nauplii, Cor dit = Corycaeus ditrichocorycaeus angtlicus, Cra cra = 
Crangnon crangnon, Eut acu = Eutrepina acutzfrons, Eva nor = Evadne nordmani, Fis egg 
= Fish eggs, Gas psi = Gastrosaccus spinnifer, Gas Vel = Veliger larvae, Hem pur = 
Hemicyclops purpureus, Hyd spl = Hybocodon, Hyd sp2 = Steenstrupia nutans, Hyd sp3 
= Cladonema radiatum, Lon hel = Longipedia helgolandica, Mes sla = Mesopodosis slaberri, 
Mut edu = Mytilus edules, Oik spe = Oikopleura, Par par = Paracalanus parvus, Pol spl = 
Terebellia, Pol sp2 = Polychaete, Pol sp3 = glyceriid larvae, Pol sp4 = Phyllodocidae, Pol 
sp5 = Polychaete, Por pub = Portunus puber, Pse obs = Pseudocyclops obstusatus, Tem Ion 
= Temora longicornis, Sch spi = Schistomysis spiritus, Spa spe = Spadella species, Sph Bin 
= Bolinopsis infundibulum, Sph Tra = Trachymedusae, Spr spr = Sprattus sprattus, and 
Environmental factors are : CHL = Chlorophyceae, DIA = Diatoms, EUG = 
Euglenophyceae, SAL = Salinity, TEM = Temperature. (b) Stations biplot. 
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Westhinder side, was a list comprising the calanoid C. typicus, polychaete 

larvae, fish eggs and larvae of C. harengus and S. sprattus. More typically 

associated with Westhinder were Polychaete species, the calanoid Pseudocyclops 

obtusatus and the Poecilostomatoid Corycaeus ditrichocotycaeus anglicus. 

Table 3.4 Weighed correlation matrix (inter-set correlation) showing relationship 
between zooplankton species axes and environmental variables: (1) CCA analysis 
with temperature, salinity, turbidity and phytoplankton taxa as environmental 
factors, (2) CCA analysis without phytoplankton taxa. 

Axis 1 2 3 4 
Eigenvalues: 

(1) 0.103 0.039 0.026 0.019 

(2) 0.095 0.021 0.016 0.018 

Cummulative pecentage 
variance of species-
environment relation: 

(1) 72 88 100 0 
(2) 71.8 87.9 100 0 

Correlation coefficient: 
(1) Temperature 0.90 0.02 0.09 0.11 

(1) Salinity -0.024 0.32 0.05 0.69 

(1) Euglenophyceae -0.39 -0.48 0.3 -0.24 

(1) Chlorophyceae 0.12 0.15 0.43 0.23 
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Table 3.5 Weighed correlation matrix (intra-set correlation) for environmental variables used in 
canonical correspondence analysis. DIA=Diatoms, DIN= Dinophyceae, CRS= Crysophyceae, CRP= 
Cryptophyceae, EUG= Euglenophyceae, PRA= Prasinophyceae, CHL= Chlorophyceae,RHA= 
Rhaphidophyceae, HAP= Haptophyceae, COCCOLIT= Coccolitophorids, Sal= Salinity, Tem= 
Temperature, and Tur= Turbidity. 

DIA 	1.0000 

DIN 	.1642 	1.0000 

CRS 	-.3502 	.1916 	1.0000 

CRP 	.0175 	.3535 	.4446 	1.0000 

EUG 	.6684 	.0897 	-.2908 	-.0184 	1.0000 

PRA 	-.1389 	.4193 	.7747 	.3531 	-.0835 	1.0000 

CHL 	-.2483 	.0766 	.5948 	.2971 	-.1267 	.5141 	1.0000 

RHA 	.1808 	-.1067 	-.2230 	-.1610 	.1290 	-.0870 	-.2087 	1.0000 

HAP 	.0345 	.1368 	.2895 	.1789 	-.2874 	.1058 	.0642 	.0352 	1.0000 

COCCOLIT 	-.0672 	.2682 	.1123 	.0806 	-.0649 	.2556 	.0512 	.2431 	-.0530 

Sal 	 -.3066 	.1629 	.3339 	.1150 	-.4814 	.3936 	.1804 	.1789 	.2709 

Tern 	-.5693 	-.0301 	.6229 	.3001 	-.4199 	.4217 	.4191 	-.1087 	.1302 

Tur 	-.2338 	.0602 	.0797 	.0353 	.0709 	.0663 	.0272 	.1051 	-.0552 

1.0000 

.1597 

.1761 

.0484 

1.0000 

.0476 

-.1552 

1.0000 

.3297 1.0000 

DIA DIN CRS CRP EUG PRA CHL RHA HAP COCC- Sal 	Tern Tur 
OLIT 
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4. Discussion 

Most of the phytoplankton species reported in this study are common in the 

coastal waters of Atlantic Ocean (Reid et al., 1990) and have been mentioned 

before by previous investigators around the Belgian coastal zone (Louis et al., 

1974; Louis and Smeets, 1981). 

Louis and Smeets (1981) report phytoplankton cell numbers in the same area 

from February 1974 till 1978. They observe a considerable variation in species 

composition from year to year and find diatoms to be dominant and already 

blooming as early as February. Euglenophyceae are more abundant in November 

and Chlorophyceae in October and November (Louis et al., 1974). Lancelot and 

Mathot (1987), mention that diatoms are the dominant phytoplankton species in 

February in coastal waters of the Belgian coastal zone. 

Our data show that, within the area covered by the three sandbanks studied, 

clear spatial heterogeneity in phytoplankton - and to a smaller extent zooplankton 

species composition occurred. 

As shown by the subsequent splittings in the TWINSPAN analysis (Figure 

3.4), the phytoplankton community of the Westhinder differed most strongly from 

that of the Gootebank and Buitenratel, which were nevertheless also different from 

each other. Although salinity, temperature and turbidity differences observed 

between the sandbanks were rather limited, these differences in environmental 

factors measured can explain the differences in species distribution and 
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abundance. Indeed, phytoplankton species distribution was shown to be 

significantly related to all three factors. 

These differences in environmental conditions can be explained by the 

positioning of the banks. The Westhinder, positioned furthest from the coast, is 

obviously influenced by the Southern intrusion of Atlantic water, which explains 

the higher temperature and salinity values observed on this bank compared to 

values measured on the other banks positioned closer to the coast. 

As shown in Figure 3.3, the main difference in phytoplankton composition -in 

general terms- was a predominance of Chrysophyta (with diatoms as strongly 

dominant family) and Euglenophyta at the coastal banks, which was partially 

replaced by Chlorophyta on the Westhinder bank. This could be due to the above 

mentioned environmental conditions, possibly combined with a number of other 

factors such as the amount of nutrients and pollution associated with the 

freshwater influence on the coastal zone (Leewis, 1985) as opposed to the Atlantic 

influenced Westhinder area. 

Plankton samples from shallow, turbulent water, often contain benthic 

diatoms (most of them being pennate diatoms) which have been whirled up into 

the water (Newell and Newell, 1967). The Buitenratel area, with an average 

minimum depth of 4-7 m, is less deep than the Gootebank which has a water depth 

of 12 m at the centre of the bank (Lanckneus et al., 1993). Turbidity is quite high 

and constant at all Buitenratel stations, but more variable at Gootebank stations 

(Figure 2.3c). We compared the ratio of the centric diatoms to pennate diatoms in 
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Buitenratel and Gootebank samples. The ratio was significantly (Mann Whitney-U 

test, p=0.013) higher at Gootebank than at Buitenratel. Thus, the split between 

Buitenratel and Gootebank, is probably due to a more important contribution of 

benthic phytoplankton species in the shallower Buitenratel area. 

Also the zooplankton species observed are known to be common species from 

the North Sea (reviewed by Franz et al., 1991; Hay et al., 1991; Hay, 1995) as 

well as from the Channel (Le Fevre-Lehoerff et al., 1983; Brylinsky et al., 1988). 

The dominant species, the copepods T. longicornis, Pseudocalanus elongatus and 

Centropages hamatus were observed on all banks, resulting in a higher degree of 

mixing of stations of the various banks in the TWINSPAN analysis than was 

observed from the phytoplankton data. Williams et al. (1993), studied spatial 

patterns in phyto- and zooplankton data from continuous plankton records 

collected in the North Sea between 1984 and 1987, in the area between 44° N and 

60° N. From their cluster analysis, they also report a higher similarity in 

zooplankton than in phytoplankton species composition. 

Omitting the dominant species from the CCA analysis revealed a different 

zooplankton species composition between Westhinder and the two coastal banks. 

Herring and Sprat larvae were the indicator species for the Westhinder in the 

TWINSPAN dendogram. Herring spawn in the Central and Northern North Sea 

during August-September, and in the Southern Bight and the English Channel 

between November and January, and are carried towards the continental coast 

during the remainder of winter (Bartch et al., 1989 and references therein). Other 

species typically occurring at Westhinder were the calanoids C. typicus, 
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Pseudocyclops obtusatus polychaete larvae and the Poecilostomatoid Corycaeus 

ditrichocorycaeus anglicus. C. typicus is known to be an indicator of Atlantic 

temperate water, which can also be common more inshore (Fransz et al., 1991). 

Hay et al. (1991) describe the species as common in mixed coastal and oceanic 

waters. The presence of polychaete larvae and Corycaeus ditrichocorycaeus 

anglicus, a benthic-parasitic species, are consistent with the rather high turbidity 

values measured at stations 10 - 20 of Westhinder. Not considering the dominant 

copepods, Gootebank and Buitenratel zooplankton species composition also 

differed, although some degree of mixing remained to be observed in the 

positioning of the stations in the TWINSPAN dendogram. Species typically 

associated with Buitenratel were the cladoceran E. nordmani, a medusae species 

and mussel larvae. 

The phytoplankton and zooplankton data presented here show that the 

different sandbanks studied harboured different planktonic populations at the end 

of winter 1994. Salinities measured at the three banks were all below 34 psu and 

as such the study area could be considered as 'coastal water'. Differences in 

salinity and temperature values observed were maximally 0.61 psu and 0.56 °C 

respectively. Nevertheless, the area studied apparently covered the bordering line 

or mixing zone of two water masses in which different planktonic communities 

were surviving. Westhinder was clearly within the Atlantic water influence, in 

contrast to the two coastal banks, Gootebank and Buitenratel. The latter 

nevertheless also differed from each other in both phytoplankton and zooplankton 

populations, probably because of the shallower depth at Buitenratel than at 

Gootebank. Running the CCA with only physical environmental variables reduced 
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the eigenvalue of the first axis from 0.103 to 0.095 and explained percentage 

variation in species data from 72.0 to 71.8 for the first 4 axis (Table 3.4). Thus the 

significant association of some phytoplankton groups with zooplankton species 

distribution can be considered a consequence of their covariation with the physical 

environmental factors. A similar separation of planktonic populations has been 

reported by Brylinsky (1986) and Brylinsky et al., (1988), who studied copepod 

species composition, abundance and size distribution of T longicornis and A. 

clausi in a transect of the Channel between Boulogne-sur-mer and Dover. They 

demonstrate a discontinuity in copepod species abundance and distinct differences 

in developmental stage and size distribution of T longicornis between the coastal 

waters on the one hand, and the open sea waters on the other. In their study 

however, the separation of the two communities is associated with an abrupt 

increase in salinity from below to above 34 psu, indicating poor mixing of the 

coastal and open sea water masses (Quisthoudt et al., 1987; Brylinsky et al., 

1988). In front of the Belgian coast, stronger mixing of these two water bodies 

could be occurring because of the limited depth, presence of sandbanks and of the 

gyre circulation induced by the Schelde estuary (Joiris et al., 1982). 

Apart from the detailed phytoplankton studies performed by Louis et al. 

(1974) and Louis and Smeets (1981), the spatial heterogeneity in plankton 

communities in front of the Belgian coast is little documented in open literature 

because most spatial studies consider the South-Eastern part of the North Sea as 

one compartment (e.g. box 4 of the 'Flushing Times Group division of North Sea' 

(ICES, 1983). Our early February observations represent the end of the over 

wintering season, during which feeding activity of the zooplankton is known to be 
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low or non existing. Nevertheless Hay et al. (1991; 1995), studying egg 

production of the dominant copepod species in the North Sea between 54° and 60 

° N, show that C. typicus, T longicornis, P. elongatus and P. parvus all have a 

limited but continuous production during winter, the latter three species showing a 

substantial production in February, especially in the Southern part of their study 

area. Hay (1995) also demonstrates that production rates of copepods do not 

correlate with temperature or chlorophyll concentrations, suggesting that the 

relationship between primary and secondary production is complicated by 

copepod omnivory and selective feeding. Differences in phytoplankton species 

composition such as the stronger dominance of Euglenophyta in the coastal zone 

as opposed to a higher abundance of Chlorophyta and Prasinophyta in the Atlantic 

waters may represent a considerable difference in the feeding conditions to the 

zooplankton. The dominant copepod species are found at all three sandbanks and 

the continuous production during winter need not necessarily reflect active 

feeding during this period. Nevertheless our data suggest that within the area 

covered by the Belgian coastal sandbanks, 'starting positions' for the plankton 

spring bloom are considerably heterogeneous. 
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Abstract 

Distribution of phytoplankton around several sandbanks of the Belgian Coast 

was investigated in February 1995 and 1997.The dendogram, for the 2 years, 

showed a clear separation of cluster correponding to different sandbanks. The 

nearshore banks phytoplankton community structure differed significantly in terms 

of species composition from the offshore Banks. Canonical Correspondence 

Analysis (CCA) of the phytoplankton data-set revealed, that beside temperature, 

salinity and turbidity nutrient concentration (NO 3") contributed substantially to 

explaining the variance in phytoplankton species. The observed differences in 

phytoplankton species distribution could be explained by the position of the 

sandbanks. Westhinder, OostDyck and Oosthinder are positioned further from the 

coast than Kwintebank, Middelkerke, and Stroombank, while the plankton 

community over Westhinder, Oostdyck, and Oosthinder are clearly influenced by 

the Atlantic current penetrating the southern North sea from the English channel. 

Thus, earlier reports difference in phytoplankton community exist in February 1994 

within the study area (M'harzi et al. 1998; Journal of Plankton Research Vol.20 

no.11 pp.2031-2052), were confirmed to be a regular feature at the end of winter. 
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I. Introduction 

In 1994, a multidisciplinary ecological survey to study the underlying 

trophic structure and possible differences between the various sandbanks 

along Belgian coastal zone was performed. Primarily results of the 

distribution of phytoplankton and zooplankton in February 1994 are reported 

and discussed by M'harzi et al (1998). This study showed the existing spatial 

differences in phyto- and zooplankton communities between the nearshore 

and the offshore banks in the study area. These differences could be 

explained by the Atlantic water intrusion in the Southern Bight of the North 

Sea from the English Channel influencing the offshore banks. Several studies 

have reported the role of the hydrodynamic regime and meteorological 

conditions on the spatial structure and distribution of suspended particulate 

matter (e.g. Eisma & Kalf, 1979), nutrients (e.g. Van Bennekom A. J. & F. J. 

Wetsteijn, 1990), phytoplankton (e.g. Gieskes & Kraay, 1975, Louis et al., 

1974; Louis & Smeets, 1981 etc...), zooplankton (e.g. Fransz et al., 1991 

etc...), meroplankton (e.g. Belgrano et al., 1995; and Luczack et al., 1993) 

during winter in coastal areas of the Southern North Sea. Moreover, the 

spatial structure within higher trophic levels also showed a quite clear spatial 

heterogeneity of epibenthic fishes and invertebrates (Dalmas 1999), the 

meiofauna- nematodes and harpacticoid copepods- (Heip et al., 1990) and 

seabirds (Joiris, 1983) during winter in the Belgian coastal area. 

This study verifies whether these 1994 observations are a regular feature 

at the end of winter. This paper reports observations on the distribution of 

phytoplankton over several sandbanks along the Belgian coastal zone, for 

February 1995 and 1997, in addition to the 1994 data. Beside the 
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phytoplankton communities analysis as carried out in Chapter 3, we also 

consider diversity, and analyse the phytoplankton biomass (expressed as 

volume and carbon) ad its size distribution as releavant feature to the 

potential trophic importance of the phytoplankton communities around the 

different sandbanks. 

Figure 4.1. Location of the sampled sandbanks in the Belgian coastal zone. (The 

sampled stations for February 1994: See Figure 3.1, chapter 3) 

2. Materials and methods 

2.1 Study area 

Figure 4.1 shows the position of the Stroombank, Buitenratel, 

Kwintebank, Middelkerke, Gootebank, Oost Dyck, Oosthinder and 
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Westhinder sandbanks within the study area. Sampling stations on each 

sandbank are also indicated. 

2.2. Field sampling 

Phytoplankton sampling. Sampling was performed on board of the R/V 

Belgica at several stations on the Buitenratel, Gootebank and Westhinder 

sandbanks on February 7 and 8 during 1994, on the Kwintebank, 

Middelkerke, and Oost Dyck sandbanks on February 7 and 8 during 1995; on 

the Stroombank, Kwintenbank, Middelkerke, Oostdyck, Oosthinder and 

Wethinder sandbanks on February 1, 3, 4, 5, 6, 10 and 12 during 1997. 

Water samples were collected with a Niskin bottle at 3-meter depth. Sub-

samples of 250 ml were preserved with lugol's solution for phytoplankton 

counting. (Detailed methodology in Chapter 3). 500-200 ml of water was 

filtered over GFC filter and stored in deep freeze for analysis of dry weight 

(DW), particulate total carbon concentration (PTC) and particulate inorganic 

carbon concentration (PIC). 

Environmental factors. Temperature and salinity were determined by 

CTD, simultaneous with phytoplankton sampling at each sampling station. 

Methodology and results of the campaign 1994 are reported and discussed in 

Chapter 3. Turbidity measurements are missing for the campaign 1995 and 

1997. Nutrient concentrations, dry weight, Particulate Organic Carbon and 

Chlorophyll a, which were missing for the 2 first campaigns 1994 and 1995, 

were measured in 1997. Water samples for nutrient analyses (nitrate, nitrite, 

ammonia, and silicate) were stored frozen and analyzed later with a 

Technicon AutoAnalyser TM  II autoanalyser, following the procedure 

described in Elskens, (Pers. Comm.). 
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Each sample was given a letter designation followed by a number to 

represent sampling stations of the sandbanks as: W for Westhinder, G for 

Gootebank, 0 for Oost Dyck, OT for Oosthinder, B for Buitenratel, K for 

Kwintebank, M for Middelkerke and S for Stroombank. 

2.3. Laboratory analysis 

Phytoplankton 

The preserved 250-m1 samples were concentrated to 5 ml by decantation. 

Phytoplankton cells in the concentrated sample were counted with an inverted 

microscope at 10x20 and 10x40 magnification, and species abundance 

expressed as cells per liter (details see Chapter 3). 

Keys and references books used for identification were Van Heurck 

(1896), Schiller (1937), Cleve-Euler (1951), Butcher (1961), Hendey (1964), 

Drebes (1974), Hartley (1986), Pankow (1990) and Tomas (1993). 

Biomass and size structure 

Cell volumes were calculated from cell dimensions of all phytoplankton 

species (length, diameter and width) using appropriate geometric formulae 

(Edler et al., 1979). Cell carbon (PCC) (C, pg. cell"), for diatoms and non-

diatoms was estimated from cell volume (V, ium3  cell -1 ) using the conversion 

factor of Eppley et al. (1970) for phytoplankton: 
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logC = 0.76 x (log V) - 0.352 for diatoms 

IogC = 0.94 x (log V) - 0.60 for non-diatoms 

Total phytoplankton volume (PV, ppm= 10 6 ,um3  ml- ') and phytoplankton 

carbon (PC, pg. ml - ') was then obtained by summing individual cell volume 

and cell carbon over abundance of all species respectively, for all species 

showing >1% of total numerical abundance. No attempt was made to 

distinguish between autotrophic and heterotrophic dinoflagellate species 

except for few well-known heterotrophic species. Phytoplankton volume 

Cum -3  cell -1 ) was differentiated by size. From cell volume, spherical 

equivalent diameter (SED, pm) was calculated and this was used to allocate 

the species PV value into a given size class. The size classes used were 

logarithmic, corresponding to TA II Coulter size classes in the 5-100 pm size 

range (Tackx et al., 1991). PV values for each size class were averaged over 

each of the three stations situated at the same bank. 

Chlorophyll (Chl a) 

Chlorophyll a (Chia) concentration were determined using a high 

Performance Liquid Chromatography (HPLC) using 90% acetone as 

extractant. The extracted (Chla) in the samples was quantified by HPLC 

(using water C18 3.9 x 150-mm column, a waters Model 440 UV absorbance 

detector and a Waters 470 Scanning fluorescence detector). The solvent 

mixture used was 75% methanol, 22% acetone, 3% water. Calibration was 

done using commercial standards. 



Chapter 4 	Winter distribution of phytoplankton ...1994, 1995 and 1997 

Thy Weight (DW) 

The filters used for DW determination had previousely been dried at 60°C 

during 12h and weighed on a Mettler balance with sensitivity 0.1mg. 

Particulate Organic Matter (POC) 

Total particulate carbon (TPC) concentration and particulate inorganic 

carbon (PIC) concentration were measured on two replicate filters with 

Coulomat 702 (Stohlein) using heating at 900°C and 8.5 % H3PO4 to convert 

respectively TPC and PIC to CO2, which was quantified by an automatic 

coulometric titration of a Ba(CI04) solution. The coulomat was standardised 

with CaCO3. Particulate organic carbon concentration (POC, mg 1 - ') was 

calculated as the difference between TPC and PIC. 

2.4. Data analysis 

Diversity in each station was calculated using the Shannon and Weaver 

(1963) index: 

S 
H = - 	Pi in pi ) 

i=1 

Where S is the number of species and pi is the proportion of the 
collection belonging to the ith species. 

Values measured for environmental factors on the all banks were 

compared using one way analysis of variance. Phytoplankton absolute 

abundances on the different banks were compared by Mann Whitney-U test. 

Two Way Indicator Species Analysis (TWINSPAN) (Hill, 1979) was 

used to analyze the spatial distribution and community structure of 
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phytoplankton over the study area. Species abundance was expressed as 

percentage, and the default options of the TWINSPAN routine were used 

thoughtout the analysis. 

Canonical Correspondence Analysis (CCA), using the CANOCO 

package program (Ter Braak, 1987b and 1988), was used to determine the 

relation between phytoplankton abundance and environmental variables. 

Phytoplankton data were used as abundance and ln+1 transformed. 

Downweighing of rare species was performed. Temperature, salinity, 

turbidity, and temperature, and salinity were used as environmental data in 

case of the phytoplankton analysis for the year 1994, and 1995 respectively. 

A Monte Carlo test using 999 unrestricted permutations was performed to test 

the significance of the relationships. 

3. Results 

3.1. Environmental variables 

Values of temperature and salinity for the Campaign 1995, and of 

temperature, salinity and nutrient concentrations for the Campaign 1997 are 

shown in Figures 4.2a,b and 4.3a-g, respectively. Temperature ranged from 

7,8 to 8,4°C in all stations in 1995, and Oostdyck values were significantly 

higher than those of Kwintebank and Middelkerk values (ANOVA, p< 0,05). 

Salinity varied between 33,698 psu and 34,233 psu during campaign 1995 

(Figure 4.2a,b). The offshore banks showed generally high values of salinity 

and temperature during campaign 1997 (Figure 4.3a,b), except at the 

Stroombank stations where higher temperatures were registered (Figure 
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4.3b). Nutrient concentrations decreased significantly from the nearshore 

banks to the offshore banks (ANOVA, p< 0.05) (Figure 4.3c-g). 
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4 	0 • 
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offshorebanks 

nearshorebanks 	offshorebanks 

Figure 4.2. Environmental factors measured at the three sandbanks in 
February 1995: (a) Salinity, and (b) Temperature. 
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3.2. Phytoplankton abundance and diversity 

Abundance 

A total of 132 phytoplankton identified up to species or genus level are 

already reported by M'harzi et al., (1998) (See Table 3.1 in Chapter III). Few 

in these assemblages were resuspended benthic species. 

A comparison of numerical abundance of phytoplankton taxa, for 2 

years, between the sandbanks studied is shown in Table 4.1. Figures. 4.4, 

4.5and 4.6 shows the detailed distribution gradients. 

For campaign 1995, there was no significant difference in the 

phytoplankton taxa abundance between the sampled sandbanks, except that 

Chrysophyta abundance was significantly different between offshore and 

nearshore banks (p< 0,05). 

The abundance of Chrysophyta (Bacillariophyceae), Cryptophyta 

(Cryptophyceae) and Chlorophyta (Chlorophyceae) was significantly lower at 

the offshore banks than at the nearshore banks (p< 0,05) during the Campaign 

1997. Dinophyceae, Haptophyceae, Prasinophyceae (Chlorophyta), and 

Euglenophyceae showed no difference in abundance between the banks. 
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Table 4.1 Mann.Whitney U-test comparing the abundance of the main 
groups of phytoplankton on the offshorebanks (Westhinder, 
Oosthinder and Oostdyck) and the nearshorebanks (Stroombank, 
Middelkerke, and Kwintenbank). (*) significant at p < 0.05; ns, non-
significant 

Taxa 1995 1997 

Chrysophyta Offshore banks <nearshore* Offshore banks <nearshore* 

Cryptophyta ns Offshore banks <nearshore* 

Pyrrophyta ns us 

Chlorophyta ns Offshore banks <nearshore* 

Euglenophyta ns ns 
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Figure 4.7 Shannon's diversity index (H') of phytoplankton during: (a) 
1994, (b) 1995, and (c) 1997. 

Diversity 

The spatial pattern of the diversity (Shannon-Weaver index) in 1994, 1995 

and 1997 are quite similar (Figure 4.7). Values of the index were high in most 
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sampled stations (>3) in the three years, except a few neashore stations in 

February 1997 with values between 1 to 2 and 2 to 3 (Figure 4.7c). 

3.3. Twinspan analysis 

Results of the Campaign 1994 were reported in detail in Chapter 3. For both 

the 1995 and 1997 campaigns (Figure 4.8a and b, respectively), the dendrogram 

for the TWINSPAN analysis of the phytoplankton abundance showed a clear 

splitting. For campaign 1995, a first split divided the data in cluster with samples 

from Oostdyck on the left side with Micromonas pusilla as indicator species and 

samples from Kwintebank and Middelkerke stations at the right side (Figure 

4.8a). The dendrogram for the 1997 campaign also showed a clear split of the 

Westhinder, Oosthinder and Oostdyck stations in the left side, with Odontella 

rhombus, Plagiogramma brockmanii and Rhodomonas sp. as indicator species. 

While, in the left side cluster consisting on Stroombank stations, Navicula 

fusiformis was the indicator species (Figure 4.8b). 

The nearshore banks phytoplankton community structure differed 

significantly in terms of composition from the offshore Banks. The 95 and 97 

results confirm the observation of the campaign 1994 reported in the Chapter 3. 

3.4. CCA analysis 

Phytoplankton-environment relationships 

CCA analysis was performed on the total phytoplankton numerical 

abundance dataset. The plots for species and sample scores combined with 
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environmental factors are shown in Figures 9.4, 10.4 and 11.4 for the 1994, 1995 

and 1997 campaigns, respectively. 

(a) 
M. pusilla 

Grammatophora sp 

01 03 06, 07 013 K4 
02 04 08,09 014 M1, 2, 3 
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Figure 4. 8 Twinspan analysis dendograms for phytoplankton species s abundance 
on the: (a) February 1995 and (b) February 1997. 

The axes 1 and 2 explained 53% and 30%, respectively, of the variance in the 

species-environmental biplot in 1994 (Figure 9.4), 64% and 46%, respectively, 

for Campaign 1995 (Figure 4.10) and 37% and 21 %, respectively, for Campaign 
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1997 (Figure 4.11). Eigenvalues, percentage explained variance and correlation 

coefficients with the environmental factors for the first 4 axes are given in Table 

4.2. Monte Carlo test showed that the variance in phytoplankton species can be 

explained in ascending way by (a) temperature (3%, p= 0.01), salinity (3%, p= 

0.01) and turbidity (3%, p= 0.01) for 1994; (b) temperature (10%, p= 0.01) for 

1995, (c) temperature (17%, p= 0.01) and nitrate (13%, p= 0.01) for 1997 (Table 

4.3). As shown in Figure 4.9b -campaign 1994-, Gootebank stations were found 

on the right side of axis 1, with the majority of stations situated under axis 1. 

Westhinder stations were situated to the left of axis 2 while Buitenratel stations 

were distributed along the lower part of axis 1. Arrows for temperature and 

salinity are in the lower quadrant, both point in opposite direction as turbidity. 

Figures 4.10a,b -campaign 1995- shows that samples from Oostdyck sandbank 

were located in the left side of the sample biplot, Kwintebank and Middelkerke 

stations on the right, confirming the clustering in the Twinspan. On the 

correlation biplot of the CCA (Figure 4.10b), the nearshore stations and the 

offshore stations each took different positions. Except for those of the 

Kwintenbank which were found together with the offshore stations in the lower 

left corner in the plot (Figure 4.11b). The nearshore banks stations were situated 

both in lower right corner and the higher part of the diagram and seemed to be 

correlated with temperature and nutrients (nitrate). 

Diatoms (e.g. Odontella spp, Rhizosolenia spp, Pleurosigma navicula, 

Diploneis didyma) and Euglenophyceae (e.g. Euglena sp.) were the indicator 

taxa in the Buitenratel bank stations in the campaign 1994. All others groups had 

their maximal abundance in the offshore banks, Gootebank and Westhinder 

(Cryptophyceae, Prasinophyceae, and Dinophyceae) (Figure 4.9a). Figure 4.10a, 

shows also that diatom species (such as Odontella spp, Rhizosolenia spp, 

-79- 



Chapter 4 	Winter distribution of phytoplankton ...1994, 1995 and 1997 

Pleurosigma naviculaculaceum, Diploneis didyma) were the most important 

group in the nearshore stations, and Euglena sp. While, non diatoms species (e.g. 

Maniscula bipes, Prorocentrum micans, Gymnodinium spe, Chlamydomonas 

reginae, Telonema subtilis, Cryptomonas spe, Eutreptia spe, and Eutreptiella 

hirudoidea) reached their maximal abundance in the offshore banks stations 

(Oostdyck). Finally, diatom species such as Odontella spp, Diploneis spp, 

Pleurosigma normanii, Rhizosolenia shrubsolei, Cylotella comta, Nitzschia spp, 

and non-diatoms species such as Eutreptiella hirudoidea, Micromonas pusilla 

and Crucergia tetrapedia characterised the nearshore banks (Stroombank, and 

Middelkerke). Offshore bank stations (Kwintenbank and Oosthinder) were 

characterized mainly by some diatoms species (e.g. Paralia sulcata, Odontella 

sinensis, Thalassionema nitzschoides, Navicula marina, and Rhaphoneis 

amphiceros) and non-diatoms species such as Rhodomonas sp., Eutreptia sp., 

Tetraselmis suecica, Leucocryptos marina, Cryptomonas spe, Amphidinium sp., 

Diplopsalis minor, Gymnodinium spe and Peridinium sp. (Figure 4.11 a). 

Further details on the association between environmental factors can be seen 

from the correlation matrix of environmental variables shown in Table 4.4 The p 

values of the combined and individual environmental factors and their variance 

after subjection to the Monte Carlo Permutation test (99 unrestricted 

permutations) are given in Table 4.4. 
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Table 4.2 Weighed correlation matrix (inter-set correlation) showing relationship 
between phytoplankton species axes and environmental variables: (1) Campaign 
1994, (2) Campaign 1995 and (3) Campaign 1997. 

Axis 1 2 3 4 
Eigenvalues: 

(1) 0.04 0.027 0.016 0.071 
(2) 0.100 0.058 0.073 0.054 
(3) 0.193 0.113 0.076 0.048 

Cummulative pecentage 
variance of species-
environment relation: 

(1) 52 82.8 100 0 
(2) 63.3 100 0 0 
(3) 36.5 57.9 72.3 81.4 

Correlation coefficient: 
(1) Temperature -0.422 -0.678 0.051 0.000 
(1) Salinity 0.507 -0.335 0.517 0.000 
(1) Turbidity -0.604 0.105 0.513 0.000 
(2) Temperature -0.979 -0.080 0 0 
(2) Salinity -0.857 0.458 0 0 
(3) Temperature 0.925 -.028 0.169 0.049 
(3) Salinity 0.286 0.003 0.345 0.497 
(3) Nitrite 0.708 -0.232 0.239 -0.537 
(3) Nitrate 0.210 -.182 -.087 -.827 
(3) Ammonium 0.639 -.229 -.081 -.597 
(3) Silicate 0.133 -.229 -.188 -.771 
(3) Phosphate  0.550 -.379 -.197 0.270 

Table 4.3 p-values using Monte Carlo permutation tests from the CCA analysis, 
percentage variance explained by selected environmental variables for the 1994, 
1995 and 1997 campaigns. N.S = non significant; (*) explained by each variable selected 
and (**) explained by all variables selected 

Environmental factor 
1994 

% Variance 	p 
(*) 

1995 

% Variance 	p 
(*) 

1997 

% Variance 	p 
(*) 

Temperature 03% 	0.01 10% 	0.01 17% 	0.01 
Salinity 03% 	0.01 09% 	N.S 08% 	N.S 
Turbidity 03% 	0.01 xxxxxxxxxxxxxx xxxxxxxxxxxxxx 
Nitrate xxxxxxxxxxxxxx xxxxxxxxxxxxxx 13% 	0.01 
Ammonium xxxxxxxxxxxxxx xxxxxxxxxxxxxx 09% 	N.S 
Phosphate xxxxxxxxxxxxxx xxxxxxxxxxxxxx 07% 	N.S 
Silicates xxxxxxxxxxxxxx xxxxxxxxxxxxxx 06% 	N.S 
Variance (**) 9% 10% 49% 
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Figure 4.9 CCA analysis of phytoplankton species abundance with respect to 
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Figure 4.11 CCA analysis of phytoplankton abundance with respect to 
environmental factors in 1997. (a) Species biplot: both Listl and 2 (species, which 
are close together) and single species in the plot are reported in Table 3.1 in 
Chapter 3. Environmental factors are: Tem= temperature, Sal= salinity, Si= 
silicate, NO3-= nitrate, NO 2-= nitrite, NH4 = ammonium, Pho= phosphate. (b) 
Stations biplot: Oost= Oosthinder, Kwin= Kwintenbank, Mid= Middelkerke, Str= 
Stroombank. 
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Table 4.4. Weighed correlation matrix (intra-set correlation) for environmental variables used in the Canonical 
Correspondence Analysis. SAL= Salinity, TEMP= Temperature, TUR= Turbidity, and nutrients (NO 2-= nitrite, 
NO3-= nitrate, Si= silicate, PO 4= phosphate and NH 4+= ammonium). 

1994 TUR SAL TEMP NO2 NO3  Si PO4  NH4+  
TUR 1.0000 

SAL 0.0725 1.0000 

TEMP - .3209 -0.098 1.0000 

1995 

SAL 1.0000 

TEMP 0.8272 1.0000 

1997 

SAL 1.0000 

TEMP 0.5724 1.0000 

NO2 0.608 1.0000 

NO3 0.014 0.756 1.0000 

Si -0.097 0.675 0.983 1.0000 

PO4 0.406 0.393 0.160 0.193 1.0000 

NH4 0.452 0.934 0.874 0.833 0.443 1.0000 
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3.5. Biomass and size structure 

Spatial distribution of phytoplankton biomass (expressed as biovolume, 

ppm) ranged from 0.01 to 1.0 * 10 6  prn3  ml- '. In Figure 4.12 the phytoplankton 

volume distribution is presented for February 1994, 1995 and 1997. The gradual 

decrease in cell volume from nearshore banks towards offshore seems to be a 

characteristic pattern of the spatial phytoplankton volume distribution. 

In February 1994 and 1995 cell carbon volumes were generally lower, 

<10 gg C 1- ' (Figure 4.13a, b) than in February 1997 (Figure 4.13c). Carbon 

biomasses were higher at the nearshore banks and decreased towards the sea at 

the offshore banks for the three Campaigns (Figure 4.13a,b and c). Mean Carbon 

biomass of each bank ranged from 4 to 6 gg C 1 - ', 2 to 6.5 gg C 1 - ' and 18 to 50 

C 1- ' for 1994, 1995 and 1997 respectively (Figure 4.13). 

Carbon stocks were fractionated into <20 gm and >20 gm size fraction 

using spherical equivalent diameter (Table 4.5). The <20 gm fraction increased 

from the nearshore banks to offshore banks during 1994 and 1995. But is more 

or less constant in 1997 (Table 4.5). 

The fraction > 20 gm was higher in the nearshore banks in 1994 and 1995, 

and equally distributed in 1997 (Table 4.5). 

Diatom distribution showed a spatial variability for the three years (Table 

4.5), with decreased contribution to total carbon during 1997, compared to the 

previous years 1994 and 1995. Crytophyceae biomass was slightly higher at the 

nearshore banks, while Prasinophyceae and Dinophyceae increased offshore in 

1997 (Table 4.5). 
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Figure 4.12 Distribution biovolume (ppm) of the total phytoplankton 
community in February: (a) 1994, (b) 1995 and (c) 1997. 
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Figure 4.13 Carbon stocks of phytoplankton in February: (a) 1994, (b) 1995 and (c) 
1997 at the different sandbanks. Stroom= Stroombank, Midd=Middelkerke, Kwin= 
Kwintenbank, Oosdy= Oostdyck, Oostin= Oosthinder and Westh= Westhinder. 
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Table 4.5 Carbon biomass and phytoplankton taxa on the different banks in 
February 1994, 1995 and 1997. Values between ( ) represent the percentage of the 
biomass of different size classes and taxa, on the nearshore and offshore area, 
respectively. 

1994 	 1995 	 1997 

Carbon biomass (ttg C 

nearshore 

offshore 

offshore nearshoreoffshore nearshore 

Total carbon 5.21 4.0 4.44 3.58 35.42 18.23 
(PPC) 

SED < 20 gm 2.43 2.25 0.93 0.95 25.94 10.30 
(%) (46.6) (56.3) (20.9) (26.5) (57.5) (56.5) 

SED > 20 pm 2.78 1.75 3.51 2.63 9.48 7.93 
(%) (53.4) (43.7) (79.1) (73.5) (42.5) (43.5) 

Relative contribution (%) in terms 

of carbon biomass 

Bacillariophyceae (89.6) (78.3) (94.7) (91.8) (63.1) (71.5) 

Dinophyceae (4.0) (6.0) (2.0) (2.3) (2.5) (4.5) 

Prasinophyceae (0.4) (1.0) (0.0) (0.3) (3.6) (8.5) 

Chlorophyceae *** *** (0.4) (0.5) *** *** 

Euglenophyceae (0.8) (0.7) (0.1) (0.0) (0.0) (0.0) 

Cryptophyceae (5.0) (13.5) (2.2) (3.6) (30.0) (15.2) 

Chrysophyceae *** *** *** *** (0.7) (0.1) 

Small unidentified ** * *** *** *** (0.04) (0.1) 
Flagellates 
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3.6 Chlorophyll 

Chlorophyll a stocks during February 1997 (Figure 4.14) varied from 0.31 

to 4.55 1.ig 1". Spatial distribution had a similar pattern as was observed for 

biomass (Figure 4.13c), with high chlorophyll concentrations around the 

nearshore banks and decreasing towards sea. 
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Figure 4.14 Distribution of chlorophyll a stocks in February 1997. 

3.7. Dr.), Weight (DW) and Particulate Organic Carbon (POC) 

Figures 4.15 and 4.16 show the concentration of DW and POC on all 

sandbanks during February 1997. 

DW (Figure 4.15) fluctuated from the highest values (160 mg 1") at 

nearshore stations to the lowest (68 mg 1 -1 ) offshore. POC (Figure 4.16) showed 

the same value gradient ranging 0.53 to 1.31. A significant correlation was 

observed between DW and POC (r= 0.960, p= 0.0003), but no significant 

correlation was observed between POC and Chla. 
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Figure 4.15 Mean dry weight concentrations (DW) around the 
Belgian sandbanks, during February 1997. Stroom= 
Stroombank, Midd= Middelkerke, Kwin= Kwintenbank, 
Oosdy= Oostdyck, Oostin= Oosthinder and Westh= 
Westhinder. 
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Figure 4.16 Mean Particulate Organic Matter concentrations 
(POC) around the Belgian sandbanks, during February 1997. 
Stroom= Stroombank, Midd= Middelkerke, Oosdy= Oostdyck, 
Oostin= Oosthinder and Westh= Westhinder. 

Looking at the ratios, Chla:POC is generally higher on the nearshore banks 

than in the offshore banks (Figure 4.15a). POC:DW was highest at the nearshore 

bank Middelkerke and decreased slightly towards offshore banks (Figure 4.15b). 
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Figure 4.17 Variation of ratios: (a) Chla:POC and (b) 
POC:DW, in February 1997. Stroom= Stroombank, 
Midd= Middelkerke, Oostin= Oosthinder and Westh= 
Westhinder. 
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4. Discussion 

Most of the phytoplankton species reported in this study are common in the 

coastal waters of Atlantic Ocean (Reid et al., 1990). They have been mentioned 

by previous investigations in the same area (e.g. Louis et al., 1974; Louis and 

Smeets, 1981, Gieskes and Kraay, 1975, Leewis, 1985, Novarino et al., 1997). 

Louis and Smeets (1981) report a considerable variation in phytoplankton 

species composition from year to year in the same area from February 1974 to 

1978. They found the dominant species belonging to the Bacillariophyceae, 

while Euglenophyceae are more abundant in November and Chlorophyceae in 

October and November (Louis et al., 1974). Moreover, several studies mention 

that diatoms are the dominant phytoplankton species in February in well-mixed 

coastal waters of the Southern North Sea (Gieskes and Kraay , 1975; Lancelot 

and Mathot, 1987, Reid et al., 1990 etc...). Leewis (1985) reported also, in this 

area, the observation of 108 and 64 phytoplankton species during February 1974 

and 1975, respectively. He observed no distinct species assemblages but only 

one 'association' existing in the whole area, with only variations in species 

composition according to season, weather etc.... Leewis (1985) also reports high 

values of Shannon-Weaver index (H'= 3-4) in February 1974 in the Dutch 

coastal zone (See Figure 10 in Leewis, 1985). He concludes, based on yearly 

data, that the H' index can be useful to indicate the stage of a succession of the 

phytoplankton population (e.g. dominance of Phaeocystis pouchetii and micro-

algae is illustrated by the lowest H' values) much better to predict the spatial 

pattern, in the Ducth coastal zone. While, Novarino et al. (1997) reported more 

than 84 pelagic flagellates species during the period 1988-89 in several sub-areas 
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in the Southern part of the North Sea. They report 52 dinoflagellates species, 6 

cryptomonads, 5 green flagellates, one euglenoid, and one silicoflagellate. 

Our results showed a clear spatial heterogeneity in phytoplankton occurs 

and for the three years, when data were expressed in terms of abundance. Thus, 

we confirmed our observations reported in Chapter 3. These showed, that in 

February 1994 an heterogeneity occurred in phytoplankton composition and to 

some extend in the zooplankton composition, between the offshore and the 

nearshore banks (M'harzi et al., 1998). 

Twinspan analysis made clear that phytoplankton species composition was 

different between the areas covering the different sandbanks studied in the three 

years. Underlying differences in environmental conditions can be explained, as 

we already reported in Chapter 3, by the positioning of the banks. The 

Westhinder, Oostdyck, Oosthinder, and Kwintenbank positioned farest from the 

coast, and are obviously influenced by the southern intrusion of Atlantic water, 

which explains the higher temperature and salinity values observed on these 

bank, than on the other ones positioned closer to the coast. So in fact the 

neashore and offshore banks are positioned in two different water masses. As 

shown in Table 5 the main difference in phytoplankton composition- in general 

terms- was a predominance of Chrysophyta (represented by diatoms taxa) on the 

coastal banks, which was partially replaced by Dinophyceae and Cryptophyceae 

on the offshore banks, for the two first years. During 1997, Chrysophyta, 

Dinophyceae and Prasinophyceae taxa increased in contribution towards the Sea, 

while a quite high contribution of Cryptophyceae was observed on the coastal 

banks (Table 5). Leewis (1985) reported that the presence of phytoplankton 

species (e.g. Ceratium spp. and some small Dinophyceae species) originated 

from other North Sea floristic areas, linked to the tongue of oceanic water 
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coming from the English Channel. Leewis (1985) also found a quite different 

pattern of phytoplankton assemblage compared to the results reported by Giekes 

and Kraay (1975). Leewis (1985) explains this discrepancy by the fact that his 

results were expressed in terms of abundance whereas the results of Gieskes and 

Kraay (1975) were based on the biomass. 

For the three years data, the first two CCA axes separated nearshore and 

offshore bank stations. The nearshore stations displayed a number of distinct 

characteristics when compared to the offshore ones. They have higher 

phytoplankton cells numbers and biomass (Table 1 and 5, Figures 4a, b and c) 

than the offshore and diversity is more variable than those in the offshore and 

does not differ significantly from year to year. Leewis (1985) found also a high 

diversity values (H' range 3-4) during February 1974 in the Dutch coastal zone. 

He noted that around the borderline of two sea areas, diversity could be high due 

to mixing of two water masses, which included different plankton communities. 

This spatial phytoplankton heterogeneity can be due to the differences in the 

measured environmental factors. Salinity was found to be connected to a number 

of other factors with possible influence on phytoplankton distribution, such as 

nutrients associated with the freshwater flowing into the sea (Leewis, 1985). He 

found that salinity, temperature and wind are the important factors influencing 

significantly the phytoplankton distribution in the Dutch coastal zone, during 

summer and during the cold season, respectively. Van Bennekom and Wetsteijn, 

(1990) found that the winter distribution of nutrients in the eastern part of the 

Southern Bight of the North Sea is influenced by phytoplankton growth. They 

report that the N11 4-N is firstly used during the phytoplankton growth, and NO 3 - 

N and NO2-N were used when the NH,-N is depleted. They conclude, also, that 

the NO2  maxima could be used as indicators of the start of the phytoplankton 
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spring bloom, causing minima of Si, PO 4-P and NO3-N. Van Bennekon A. J. and 

F. J. Wetsteijn, (1990) report an uptake of nutrients by phytoplankton in offshore 

waters (central part) in the Southern Bight of the North Sea, in February and 

already in January in some years. Gichuki (1997) found that an elevated 

ammonium concentration has a leading role in regulating the removal of nitrate 

and consequently, a reducing effect on the primary production in the southern 

Bight of the North Sea during spring 1997. The nutrient uptake regime in 1997 

was characterized by high specific and absolute uptake rates of nitrate during the 

earliest stage of the growth season in the southern Bight (Gichuki, 1997). 

Moreover, the nitrate uptake rates values in 1997 were an order of magnitude 

higher than those measured at the same period -early growing season- of the 

previous year 1996 (Gichuki, 1997). This trend was maintained during the 

following days of the spring bloom (Gichuki, 1997). Based on culture and field 

experiments of nutrient assimilation by phytoplankton, it is well known, that the 

uptake and assimilation of NH,' inhibits the uptake/assimilation of NO 3" with 

complete inhibition of NO3" uptake occurring at NH4+  concentrations > 1 1..1M 

(Lomas and Glibert, 1999). Gichuki (1997) found high NO 3" uptake rates during 

early March 1997, in the Belgian coastal zone, and this probably is a 

continuation of what happened the month before, during February 1997. Our 

study reports high NO 3", low NI-14-1- concentrations (< 1 gM), and temperature 

values < 5°C. The positive correlation between NO 3" and NH4+  (r2= 0.87), NO2 " 

and NH4+ (r2= 0.93) and low temperature values had a significant effect on the 

phytoplankton distribution (Table 4). In the February 1997 multivariate analyses, 

nitrate concentrations contributed significantly to explain the variation in species 

composition. Thus, the inhibition of the NH 4+ on the NO3"/NO2" uptake rates was 

not yet predominant during February 1997. However, the positive correlation 
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between NO 211•103 -  and NI-14+, could be explained by nitrification by bacteria 

during autumn and winter in the Southern part of the North Sea (Nielsen and 

Stefels 1988). 

The significant correlation between species composition and NO 3-

concentrations indicates that the differences in phytoplankton species 

composition, observed between nearshore and offshore banks, are not merely 

consequence of the presence of two phytoplankton communities in two distinct 

water masses of different origin. In this case nutrient data would not contribute 

to the explanation in phytoplankton species variability offered by the basic 

physical characteristics of the water masses: temperature and salinity. 

Differences in nutrient regime occurring within the study area seem to influence 

phytoplankton species composition. 

Our studies showed also spatial variation in the different characteristics of 

measured SPM, DW, POC and Chla concentrations. Higher values of these 

factors were observed on the nearshore banks and then decreased seawards at the 

offshore banks. High POC concentrations (> 1 mg C 1') have been found in the 

shallow coastal zone of the North Sea (Cadee, 1982; Eisma et al., 1982a, 1982b; 

Ittekkot et al., 1982; Laane, 1982; Hickel, 1984) and in the Channel (0.1 - 0.7 

mg C 1-1 ) (Banoub and Williams, 1973; Bos et al., 1987). This can be due to the 

riverine particulate matter trapped in the coastal zone gyre circulation (Nihoul 

and Ronday, 1975) and sedimentary organic matter originated from bottom 

erosion in this shallow area (Brockmann et al., 1990). Suspended particulate 

matter concentrations of more than 40 mg 1 - ' during February 1976 and January 

1977, 1978 and 1980 were reported in the English/Scottish and continental 

coastal area of the southern North Sea (Figure 5b,e andg in Eisma and Kalf, 

1979; and Figure 3 in Eisma and Kalf, 1987). A decrease towards sea was, also 
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observed in these studies. The strong tides, the supply of river water and erosion 

of coast of East Anglia mainly control the distribution of suspended matter in 

this area of the North Sea (Eisma and Kalf, 1987). POC and DW patterns 

seemed closely linked and this link was confirmed by significant correlation 

between the two measurements. Both showed consistent high values in the 

nearshore banks stations, and decreased towards Sea at the offshore banks. The 

spatial distribution of POC has similar pattern of the DW reported in the studies 

of Eisma and Kalf (1987). A high value is observed in most coastal stations of 

1 mg 1 .1  (Figure 3 in Eisma and Kalf, 1987), decreased towards sea to 0.5mg 1 - ' 

(Eisma and Kalf, 1981). They attributed the high concentrations of POC in the 

coastal water in the southern North Sea to the detritus. However, they report a 

low contribution of POC in the suspended matter (less <20%). Indeed, the 

resuspension of the bottom material can result in a high-suspended matter 

concentration, but with a low organic matter content (Eisma and Kalf, 1987). 

This is due to the consumption of the settled organic matter by bottom organims, 

including bacteria mineralization (Eisma and Kalf, 1987). Our studies showed a 

significant correlation between POC and DW, but with a very low contribution 

(maximally 1%) of POC to DW during winter 1997. The non-significant 

correlation between Chla and POC shows that the organic matter is mainly 

detritus. Using a Chla-POC conversion factor of 50, phytoplankton represents 

maximally 0.4% of the total POC. 

Giekes and Kraay (1975) reported a high cell volume in the offshore areas 

of the Dutch coastal zone and in the French-Flemish Banks areas, during Winter-

early spring 1974. Then the phytoplankton stock began to decrease gradually 

towards the sea in the Belgian coastal area during the same period of the year 

(Gieskes and Kraay, 1975). Our data showed the same scenario for the three 

-98- 



Chapter 4 	Winter distribution of phytoplankton ...1994, 1995 and 1997  

years, high concentrations in nearshore stations and a significant decrease 

towards Sea at the offshore stations. But, a very low phytoplankton standing 

stock was observed in February 1994 and 1995 compared to the high 

phytoplankton crops in February 1997. Such variation is also reported by several 

authors within the coastal area and the Southern part of the North Sea (Table 6), 

and is in a good agreement with the results given by Rousseau (1999, pers. 

comm) who reported a significant variation in phytoplankton stock from year to 

year (Table 6.4). Giekes and Kraay (1975) attributed the high observed 

phytoplankton stock in the Belgian banks to the potential fertilizing effect of the 

river waters (e.g. Schelde) which does not seem to be counterbalanced by the 

turbidity. While, the low phytoplankton standing stock in the nearshore stations 

of the Dutch coastal area is more influenced by the turbidity of Rhine (Giekes 

and Kraay, 1975). 

During February 1994 and 1995 diatom biomass constituted a large fraction 

of the biomass in the < 20gm and > 20gm sizes classes (Table 5.4). However, a 

quite different pattern was observed during 1997. Cryptophyceae , together with 

diatoms, constituted a large fraction of the total carbon biomass and contributed 

significantly to the highly abundant small fraction (< 20 gm) on the nearshore 

banks (Table 5.4). Whereas, is attributed to the diatoms, Prasinophyceae and 

Dinophyceae in the offshore banks. The biomass of the fraction > 20 gm, was 

quite similar in both neashore and offshore banks. This can be explained by the 

fact that the decrease observed in Cryptophyceae taxa in the offshore banks was 

replaced by other small cell taxa belonging to Prasinophyceae and Dinophyceae, 

which hide the effect of the increase of diatoms. Gieskes and Kraay (1975) 

observed that diatoms were dominant and their cell volume (more than 95 %) 

consisted of a wide variety of species (e.g. Biddulphia sinensis, B. regia, 
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Lauderia borealis, Thalassiosira spp, Coscinodiscus spp., Guinardia flaccida, 

Rhizosolenia imbricata, R. stolterfothii, R. hebetata, Bacillaria paradoxa, 

Melosira sulcata and Thalassionema), during winter until April 1974. Also, 

Table 6.4. Ranges in biomass values (pg C 	of phytoplankton group taxa in 
the two main areas of the Belgian coastal zone, and some coastal zones along 
the North Sea ecosystem. 

Taxa (Total pg C 1-1) Offshore areas Nearshore areas authors 

Total biomass 
Feb 94 4.44 5.21 Our data 
Feb 95 3.58 4.44 
Feb 97 18.23 35.42 

Bacillariophyceae 26 — Mills et al., (1994) 
Cryptophyceae 0.76 — (Spring data) 

Unidentified flagellates 2.03 — 
Phytoplankton (surface 76 — 

value) 5.5 -- 
Protozoa (surface value) 4.0 — Holligan et al., 

Microzooplankton 16.3 — (1984) 
Meosozooplankton 3.76 -- (Summer data) 

Total particle Volume 0.14-0.21 — 
(PPm) 

Diatoms -- <20 Peperzak et al., 
Autotrophic flagellates — <20 (1998) 

February 
Total phytoplankton 65 -- Nielsen and Richardson, 
Heterotr. Nanoflagellates 0.09-0.10 — (1989) 

February/March 
Total particle volume 

(ppm) 
-- 0.2-2.6 Richardson K., 

(1985) 
In the Danish coast (spring data) 

Total particle volume 
(ppm) 1-5 0.1-1 Gieskes and Kraay, 

(1975) 
Danish coast and the 

Belgian coast 0.2-0.5 1-5 February 1974 

Bacillariophyceae 
(Diatoms) 

Stn 330: 	Feb 90 ** 97.4 Rousseau V., (pers. 
Feb 93 ** 24.1 comm) 
Feb 94 ** 19.9 
Feb 95 ** 5.3 
Feb 96 ** 5.7 
Feb 97 ** 37.9 
Feb 98 	_ ** 52.6 	_ 

Stn, means station 
Feb, means February. 
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Nielsen and Richardson, (1989) found that some diatom species (e.g. 

Rhizosolenia spp., Plagiogramma brockmanii) dominated the phytoplankton 

population (in terms of carbon) at the stations south of Dogger Bank in the North 

Sea - during February/March 1988 cruise. While, heterotrophic and autotrophic 

flagellates, and protozooplankton were present in low numbers before and during 

the spring bloom. Mills et al., (1994) reported also, in the shallow area of the 

South British coast, a dominance of diatom species (e.g. Odontella sinensis, 

Rhizosolenia fragilissima, Stauroneins membranaceae, Coscinodiscus sp. 

Paralia sulcata), other unidentified flagellates and Cryptomonas acuta. 

As we already mentioned above, the early onset of the growing season of 

phytoplankton is well established during February 1997, but not with the same 

rate in the whole sampled area. Fact which is enhanced by the different 

developments in species composition (Leewis, 1985), which could explain the 

observed spatial trend within the phytoplankton size structure in the Belgian 

coastal zone. 

5. Conclusion 

We confirm in this study our first observations already reported in chapter 3. 

A spatial heterogeneity seems to be a general trend within the phytoplankton 

during winter around the Belgian sandbanks. The best explanation of the 

variance in phytoplankton community is obtained when nutrient concentration 

were included in the CCA analysis. This indicates that, besides the fact that the 

study are cover two water masses of different origin, variations in nutritional 

conditions also influence phytoplankton species composition. Differences in 

-101- 



Chapter 4 	Winter distribution of phytoplankton ...1994, 1995 and 1997  

phytoplankton species composition and taxa contribution also resulted in 

differences in biomass and size structure between nearshore and offshore banks. 

These may represent differences in the feeding conditions of the zooplankton. 

How this spatial heterogeneity affects the potential energy flux transfer from 

phytoplankton (considered as prey) to zooplankton (considered as predator) 

between the nearshore and offshore banks in the Belgian coastal area will be 

examined in detail in chapter 6. 
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Abstract: 

Phytoplankton samples were collected from 27 stations within a transect located 
between 60°56'86"N/1°01'81"W to 61 '03'64"N/0°26'44"W and 
55°12'10"N/3°00'88"E to 55°17'00"N/3°29'56"E (Dogger Bank area) in 
March/April 1994. Temperature, salinity and nutrient concentrations (SiO4 2-, 
PO42- , NO3-, NO2-  and NH4+) were measured as environmental factors. A total of 
100 species of phytoplankton were identified. The dominant taxa were 
Bacillariophyceae (Coscinodiscus spp, Chaetoceros spp, and Rhizosolenia spp.), 
Dinophyceae (Ceratium spp.) and flagellates (Prasinophyceae, Cryptophyceae, 
Phaeocystis sp. and some small unidentified flagellates). Phytoplankton 
concentration, decreased in terms of numerical abundance and biovolume, from 
the Dogger bank area (DB) to Central (cNS) and the Northern part of the North 
Sea (nNS). Twinspan analysis discriminated phytoplankton communities between: 
(1) the shallow water of Dogger bank (DB) area and (2) deeper water of Central 
(cNS)/northern (nNS) in which parallel subgroups could be distinguished. 
Canonical Correspondence Analysis (CCA) confirmed this pattern and indicated 
that the species distribution was significantly related to environmental factors, 
particularly to silicate, nitrate and nitrite concentration, temperature and salinity. 
Within the phytoplankton fraction > 5 gm a significant increase in biomass of 
species > gm was observed -both in terms of volume and carbon concentration-
from the North to the South, big diatoms dominating in the Dogger Bank area. 
Although the biomass of cells < gm was higher in the Dogger Bank area than in 
the Central and Northern stations, their contribution to total phytoplankton 
biomass in the former was limited. 
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1. Introduction 

The amount of information available on how hydrographical, chemical and 

biological factors affect the seasonal and geographical variation in 

phytoplankton communities in the North Sea has increased substantially over the 

past years. Phytoplankton and the environmental conditions that govern its 

production and abundance in the North Sea are, for example, extensively 

discussed by Reid et al. (1990) and reviewed by Brockmann et al. (1990) and 

Nelissen and Stefels (1988). 

Ecosystem depth is known to have a structuring influence on the dominance 

of small versus large algal cells, and consequently on the food chain structure of 

the system (Cushing, 1989; Legendre, 1990; Legendre and Le Fevre, 1989; 

Kiorboe, 1990). Indeed, large phytoplankton tend to dominate in neretic waters 

and areas of higher and variable nutrient levels, and smaller cells in open sea 

conditions and areas of stable nutrient levels (Varela, 1987; Morris, 1980; 

Kiorboe, 1990 and 1993). In addition to bottom-up forces such as turbulence and 

nutrient levels, top down control by grazing influences phytoplankton abundance 

and species composition (Kiorboe, 1993). 

The concept of size differential control of phytoplankton biomass 

(Thingstad and Sakshaug, 1990) forms one of the theoretical frameworks for 

interpretation of observed phytoplankton communities. It states that, while 

biomass of small algae is mainly controlled by microzooplankton grazing, larger 

phytoplankton species are less subjected to predation and their abundance is 

mainly regulated by the balance between growth and sedimentation rates 
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(Riegman et al., 1993). This concept was successfully evaluated in several areas 

(e.g. for the North Atlantic by Taylor et al., 1993; Central North Sea and 

Mardsiep Sea by Riegman et al., 1993; a North Sea transect from the Dogger 

Bank to the Shetland islands by Riegman et al., 1998). 

In this latter case, which considers the same study area as this paper, 

Riegman et al. (1998) consolidated this concept for the phytoplankton spring 

bloom, based on two size classes (< 5 ,um and > 5 pm fractions). Riegman et al., 

(1998) showed that, on average over the entire transect, both carbon and 

nitrogen uptake rates based specific growth rates were significantly lower in the 

> 5 pm fraction than in the < 5 ,um fraction. Nevertheless, in the Dogger Bank 

area, where the spring bloom had already started, 89 % of chla concentration 

was present in the > 5 /dm fraction, while in the central North Sea and near the 

Shetland islands, 60 % of Chla was present in the > 5 pm fraction. Riegman et 

al., (1998) conclude that, in the Dogger Bank area, stronger grazing on small 

sized algae favored the biomass build up of large algal species, which were 

shown to be diatoms by qualitative microscopic observations. Kuipers and 

Whitte (1999) reported a higher microzooplankton grazing rate on the > 5 

algal fraction in the Dogger Bank area than in the deeper stations during the 

same transect. 

In this paper we report, for the same spring campaign of 1994, the results of 

detailed microscopical observations on phytoplankton species abundance and 

spatial distribution in the > 5 ,um fraction. The principal aim of this study is to 

compare the phytoplankton community structure along a longitudinal transect in 

the Southern-Central North Sea and to assess the association between 
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phytoplankton communities and environmental factors. Secondly, we investigate 

in how far differentiation in phytoplankton species composition results in 

differentiation in the phytoplankton biomass and size distribution of the 

phytoplankton community. 

The North Sea has been subdivided into a number of distinct areas by 

several authors (c.f. Williams et al. 1993). Parallel, several biological studies 

[e.g. microbial activity, Van Duyl et al. (1990); phytoplankton, Riegman et al. 

(1990); phytoplankton and zooplankton, Williams et al. (1993); zooplankton, 

Fransz et al. (1991 and 1998); macrobenthos, Duineveld et al. (1990) and fish, 

Daan et al. (1990)] have been carried out in the North Sea to identify the 

presence of floral and faunal assemblages which are associated with 

geographical boundaries. These studies generally report 3 main floral and faunal 

groups which are associated with: (1) a mixed shallow isothermal water (< 50 m 

depth); (2) frontal-central waters of the North Sea; and (3) stratified deeper 

waters, north of the Dogger Bank. Changes which are usually associated with 

the "front" occurring between different water masses within the North Sea are an 

elevation in terms of biomass, production and shift in community composition of 

the different biological components (Williams et al., 1993). Williams et al., 

(1993) described plankton assemblages and its dependence on physical and 

chemical factors covering North Sea Continuous Plankton Recorder (CPR) 

transects between 44 °N and 60°N. Their analysis was based on data from July 

1984 to June 1987, using 36 phytoplankton taxa and species, which entities 

exceeded 10 % in the data tables and a spatial resolution of 1° latitude by 1° 

longitude. Our study was carried out along a North-South transect in the North 
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Sea with a spatial resolution of 1° latitude, from 61°N to 55°N latitude. A high 

number of phytoplankton taxa and species (44) were included in the analysis to 

identify possible phytoplankton assemblage and its geographical boundary in the 

North Sea. 

2. Materials and methods 

2.1 Sampling 

Samples were collected in early spring (28 March to 12 April 1994) in the 

North Sea on board research vessel 'Pelagia'. A total of 21 station, distributed 

along three parallel transects were investigated (Figure 5.1). CTD profiles were 

obtained to provide information on temperature, light attenuation, turbidity and 

fluorescence. 

Sampling was done with a 12 L Nansen bottle at 3 depths: 5, 10 and 40 m. 

12 liters of sea water was filtered through a plankton net (30 ,um) and 

concentrated to a volume of 100 ml or 200 ml. The samples were kept in glass 

bottles and preserved with Lugol's iodine solution. 

2. 2 Laboratory analysis 

For microscopic analysis, the samples were concentrated to 100 ml by 

decantation. 5 ml of concentrated sample was pipetted into a cuvette and allowed 

to stand for 20-30 minutes. Phytoplankton cells were identified and counted with 

an inverted microscope at 10x20 and 10x40 magnification, and species 
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abundance expressed as cells per liter. Keys and reference books used for 

identification were Van Heurck (1896), Schiller (1937), Cleve-Euler (1955), 

Butcher (1961), Hendey (1964), Drebes (1974), Hartley (1986), Pankow (1990), 

and Tomas (1993). 

Cell volumes were calculated from cell dimensions (length, diameter and 

width) of all phytoplankton and microzooplankton species using appropriate 

geometric formulae (Edler et al., 1979). Cell carbon (PCC, pg. cell), for 

diatoms and non-diatoms was estimated from cell volume (V, ,um 3  cell) 

Figure 5.1 Map of study area showing the sampling stations along the 
transect. 
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using the formula of Eppley et al. (1970) for phytoplankton, and a conversion 

factor of 0.19 pg. C ,um -3  for microzooplankton (Putt and Stoecker, 1989). Total 

phytoplankton volume (PV, ppm= 106  ,um3  m1-1 ) and phytoplankton carbon (PC, 

pg C m1-1 ) was then obtained by summing individual cell volume and cell carbon 

over abundance of all species respectively, for all species showing >1% of total 

numerical abundance. No attempt was made to distinguish between autotrophic 

and heterotrophic dinoflagellate species except for a few well-known 

heterotrophic species. Phytoplankton volume was differentiated by size (pm 3 

cell -1 ). From cell volume, spherical equivalent diameter (SED, ,um) was 

calculated and this was used to allocate the species PV value into a given size 

class. The size classes used were logarithmic, corresponding to TA II Coulter 

size classes in the 5-100 pm SED range (Tackx et al., 1991). PV and PC values 

for each size class were averaged over each of the three stations situated at the 

same latitude. 

Detailed results of ammonium, nitrate and urea concentrations along the 

same transect are reported by Riegman et al., (1998). In this paper, only the 

distribution of the environmental factors that came out as significant in relation 

to phytoplankton distribution by Monte-Carlo-testing (see data analysis), will be 

considered. 

2.3 Data analysis 

The main multivariate technique employed for the analysis of physico- 

chemical surface data was cluster analysis (joining tree clustering). Distance 
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metrics was Euclidean, employing the single linkage method (nearest 

neighbour). The data were previously standardized. 

'Two Way Indicator Species Analysis' (TWINSPAN) (Hill, 1979) was 

performed on the abundance matrices to analyze the spatial distribution and 

community structure of phytoplankton over the study area. Taxa and species 

abundance (Table 1) were expressed as percentage and the default options of the 

TWINSPAN routine were used throughout the analysis. 

Canonical Correspondence Analysis (CCA) using the CANOCO package 

(Ter Braak, 1987b and 1988) was used to determine the relation between 

phytoplankton species numerical abundance and environmental variables 

(temperature, salinity and nutrient concentrations). Species abundance data were 

ln+1 transformed. Downweighing of rare species was performed. Significance of 

the correlations between species distribution and environmental factors was 

tested by Monte Carlo using 99 unrestricted permutations. 

3. Results 

3.1 Environmental factors 

Temperature, salinity and nutrient profiles revealed vertical homogeneity at 

all stations (see Riegman et al., 1998). Thus, the results reported here include 
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only surface water samples. Marked horizontal nutrient gradients were, however, 

observed. 

Temperature in the investigated area ranged from 5.5 to 7.5°C with 

maximum values at the nNS stations (W7, H7, 07, W6, H6, and 06) and a 

decrease in the stations W5, H5, 05, W4, Et, 04, W3, H3, 03, W2, H2 and 02 

(Figure 5.2a). Salinity values higher than 35 psu were observed in all stations 

except stations W3, H3 and 03 (Figure 5.2b). 

Surface nutrient concentrations were high in the north and decreased 

towards the south (DB). Silicate concentration was high at all stations with a 

maximum value of 4.4 pmol 1-1 , except at the stations around the DB (W 1 , H I , 

0 1 , Wo, Ho, and 00), where a minimum value of 2.60 pmol 1 -1  was measured 

(Figure 5.2c). Nitrate+nitrite and phosphate concentrations (Figure 5.2d,e) were 

high at the nNS stations (11.72 and 0.76 pmol 1 -1  respectively), showing the 

inflow of the Atlantic at the northern boundary. They decreased towards the 

south (DB) to 0.10 pmol 1 -1  and 0.09 pmol 1-1  respectively. 

The cluster analysis for the environmental factors (temperature, salinity and 

nutrients) produced two well defined groups. The first group was composed of 

the shallow stations situated in the DB area. The second group was composed of 

the deeper stations of the cNS and nNS area. Within this group the central 

stations (W2, H2, and 02) split from the rest of the northern stations. Within the 

first group, stations (Wo, Ho, 00) in the DB area split from stations (W1, HI, 01) 

which are situated in a transition zone between the deeper and shallower stations 

of the transect (Figure 5.3). 
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Figure 5.3 Cluster analysis of the stations based on the data-set of environmental 
factors. 

3.2 Phytoplankton species abundance 

A total of 100 species of phytoplankton and microzooplankton were 

identified (Table 4.1). Figure 5.4 shows the numerical abundance of the major 

taxonomic groups of phytoplankton. Bacillariophyceae (mostly diatom species) 

abundance was low in the Shetland area and Central North sea, and increased, by 

more than 5 times towards the Dogger Bank. Prasinophyceae + Chlorophyceae 

were restricted to stations W 1 , H 1  and 01, their abundance was similar to that of 

the Bacillariophyceae. Small-unidentified flagellates were also observed, in low 

abundance, at these stations only. Chrysophyceae and Dinophyceae occurred in all 

stations but in very low abundance compared to other classes. Haptophyceae were 

restricted to the Dogger Bank area (stations Wo, Ho, 00) and occurred in a 20 

times higher abundance than Bacillariophyceae in this area. 
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The contribution of Bacillariophyceae (diatoms) to total phytoplankton 

abundance was 92% in most of the northern and central stations (H2, W2, 02, H3, 

W3, 03, H4, W4, 04, H5, W5, 05, H6 and W6), and decreased to 54% in the 

transition zone (W1, H 1 , 01) and to 4% in the Dogger Bank area (Wo, Ho, 00). The 

contribution of Prasinophyceae and Cryptophyceae in stations W1, H 1 , 0 1  and 

Haptophyceae in stations Wo, Ho  and 00  was 48% and 96% respectively. Thus, 

diatoms dominated the phytoplankton community in terms of numerical 

abundance in all stations, except at the Dogger Bank stations, where the flagellate 

community was important. 

Among the diatoms, Thalassiosira spp., was the dominant genus, with 

T rotula (Meunier), T gravida (Cleve) and T. hyalina (Grunow), as dominant 

species, contributing 21% of total phytoplankton abundance in the northern and 

central stations. It was accompanied by Chaetoceros spp. and Nitzschia spp., 

mainly C. borealis (Cleve), C. diadema (Cleve), C. didymus (Ehrenb.), 

PseudoNitzschia. serriata (Cleve) and N. longissima (Breb. ex Katz), with 13% 

and 38% respectively, of total phytoplankton abundance. 

At stations H2, W2 and 02, a large single celled diatom, Coscinodiscus 

concinnus (Smith) was dominant (21%). Tetraselmis suecica (Kylin) represented 

37% of total abundance at stations W1, H 1 , 01, accompanied by a small 

unidentified Thalassiosira sp. (20%) and Rhodomonas (Karsten) (9%), while 

Phaeocystis sp. (96%) was dominating at stations Wo, Ho and 0o. 
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Table 5.1 Species List 

Division: Chrysophyta 
Class: Bacillariophyceae 
Order: Centrales 

Odontella 

Paralia 
Aulacoseira 
Aulacoseira 
Skeletonema 
Stellarima 

Thalassiosira 

Roperia 
Ditylum 
Leptocylindrus 

Actinoptychus 
Corethron 
Guinardia 

Rhizosolenia 

Bacteriastrurn 
Chaetoceros 

Eucampia 

aurita (Lyngb.) Ag. 
regia (Schiltze) Simonsen 
sinensis (Grey.) Grun. 
mobiliensis (Bailey) Grunow 
sulcata (Ehrenb.) Cleve 
distans (Ehrenb.) Simonsen 
granulata (Ehrenb.) Simonsen 
costatum (Grey.) Grun. 
stellaris (Repor) Hasle & Sims 
radiatus (Ehrenb.) 
centralis (Ehrenb.) 
eccentrica (Ehrenb.) Cleve 
Antartica Comber 
rotula Meunier 
nordenskioeldii Cleve 
hyalina (Grun.) Gran 
subtilis (Ostenf.) Gran 
gravida Cleve 
sp. small unidentified species (S.E.D= 8 gm) 
leptopus (Grun. in Van Heurck) Fryxell et Hasle 
tesselata Grunow ex Pelletan 
brightwellii (West.) Grunow 
danicus Cleve 
minims Gran 
senarius Ehrenberg 
criophilizm Castr. 
delicatula (Cleve) Hasle 61 5583 
striata (Stolterfoth) Hasle 
delicatula Cleve 
setigera Brightwell 
hebatata (Bail.) Gran 
imbricata Brightw. 
pungens Cleve 
hyalinum Laud. 00 
danicus Cleve 
densus Cleve 
didymus Ehrenb. 
socialis Lauder 
borealis (Bail.) 
teres Cleve 
decipiens Cleve 
similis Cleve 
diadema (Ehrenb.) Gran 
cornpressus Laud. 
zodiacus Ehrenb. L153 
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Guinardia 
	

flaccida (Cast.) H. Perag. 
Lauderia 	annulata Cleve 253; 

Order: Pennales 
Fragilaria sp 
Gyrosigma sp 
Brockmanniella 
Plagiogrammopsis 
Pleurosigma 

Ctenophora 
Thalassionema 
Asterionellopsis 
Amphiprora 
Navicula 

Meuniera 41 SP/ 
Trachyneis f`l 1  
Bacillaria 
Rhabdonema 
Nitzschia 

Pseudonitzschia 
Pseudonitzschia 
Cylindrotheca 
Pennates diatom 
Triceratium 

Lyngb. 
Hass. 44711,  
brockmannii (Hust.) Hasle, Von Stosch & Syvertsen 
vanheurckii (Grun.) Hasle, Von Stosch & Syvertsen 
normanii Rails in Pritchard 
sp. 
pulchella (Ralfs ex Ki.itz.) Williams et Round 
nitzschioides Grunow 
glacialis (Castracane) Round in Round al. Mi. 
alata Ehrenb. 
distans W. Sm. after Grunow 
sp 
membranacea (Cleve) Silva 410194 
aspera (Ehrenb.) Cleve 4 chg. 
paxillifer (Muller.) Hendey 
sp. 
longissima (Bret)) Ralfs 
sp 
seriata (Cleve) H. Peragallo 
delicatissima (Cleve) Heiden 
closterium (Ehrenb.) Reiman et Lewin 
sp 
spinosum J. W. Bail. 

Class: Chrysophyceae 

Distephanus 	speculum (Ehrenb.) Haeckel 

Class: Prasinophyceae 

Tetraselmis 	suecica (Kylin) Butcher. 

Class: Cryptophyceae 

Rhodomonas 	sp. Karsten 

Class: Haptophyceae 

Phaeocystis 	sp. 

Division: Pyrrophyta 
Class: Dinophyceae 
Order: Prorocentrales 

Prorocentrum 	micans (Ehrenb.) 
Mesoporos 	perforatus (Gran) Lillick 
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Order. Peridiniales 
Dinophysis 	acumunita Clap. et Lachm. 

ovum Schutt 
Amphidinium 	sp. 
Gymnodinium 
	

fissum Levander 
splendens Lebour 

Gymnodinium 	sp. Conrad & Kufferath, 1954. 
Noctiluca 	scintillans (Macartney) Kof. 
Pyrophacus 	sp. Stein 
Diplopeltopsis 	minor (Pauls.) Pavillard 
Dissodium 	assymmetricum (Mangin) Loeblich III 
Protoperidinium claudicans (Paulsen) Balech 

leonis (Pavillard) Balech 
Peridinium 	sp Drebes 

ovatum (Pouchet) Schutt 
Gonyaulax 	grindleyi Reinecke 
Ceratium 
	

lineatum (Ehrenb.) Cleve 
arietinum Cleve 
macroceros (Ehrenberg) Vanhoffer 
tripos (0. F. Muller) Nitzsch 
horridum (Cleve) Gran 
longipes (Bailey) Gran 
furca (Ehrenberg) Clap. et Lachm. 
fusus (Ehrenberg) Duj. 
sp. 

Microzooplankton: 

Hemicostonella 	sp. 
Tintinnopsis 	sp. 
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3.3 Phytoplankton community analysis 

The TWINSPAN results (Figure 5.5) showed a clear splitting, separating the 

Dogger Bank area, with indicator species Navicula spp. from the central and 

northern stations of the transect, with Thalassionema nitzschioides as indicator 

species. Within the left group a split of stations just North of the Dogger Bank 

(H 1 , 0 1  and W 1 ) from those situated in the Dogger Bank area (W01-1000) occured, 

the latter having Odontella spp. as indicator species. 

Nanicula spp 
Prorocentrum spp 

Thallassionema nitzschioides 

Thallassionema 
nitzschioides 

Skeletonema costatum 
Coscinodiscus spp 
Ditylum brightwelii 

Odontella spp 

W2 	W6 
H2 	H6 
02 

W3 W5W4W5 
H5 H4 115 H3 

05 04 05 03 

 

WO 	 WI 
HO 	 H1 

00 	 01 

     

Central (cNS)-northern (nNS) stations 	Dogger Bank (DB) 
stations 

Figure 5.5 Twinspan analysis dendogram for phytoplankton along the transect. 

The plots for sample and taxa - species and scores as a result of a 

combination of environmental factors are shown in Figure 5.6 a and b, 

respectively. CCA axis 1 and 2 explained 37% and 33%, of the variance in the 

species - environmental biplot (Figure 5.6a). Axes 3 and 4 explained 18% and 

-121- 



Chapter 5 	Spring phytoplankton community...North Sea transect 

7% of the variance. For axis 1, axis 2, axis 3 and axis 4, the eigenvalues were 

0.380, 0.338, 0.190 and 0.073, respectively. Correlations between ordination 

axes and environmental variables (Table 5.2) showed that silicate, nitrate and 

nitrite concentrations and salinity were correlated with axis 1, temperature with 

axis 2 and axis 4. The station biplot showed a clear split along the transect 

between the Northern and central area and the Dogger bank area. Axis 1 had a 

high correlation with silicate, nitrate and nitrite concentrations and salinity (r = 

0.886, 0.737, 0.425 and 0.434 respectively) which ordered stations and taxa 

along nutrient and salinity gradients (Table 5.3). Stations W6H 606, W5HSO5, 

W4I-1404, W3H303 and W2H202 were found on the right side of axis 1, with 

generally higher salinity, and silicate, nitrate and nitrite concentrations (Figure 

5.6b). The Dogger Bank stations WoH000 were situated higher on axis 2, 

associated with higher values of temperature, and low nutrient concentrations. 

Stations W 1 11 1 0 1  took up an intermediate position on the left side of axis 2. Taxa 

with high positive correlation with axis 1 were those occurring in the majority of 

the stations (except stations W1H101 and WoH000). Axis 2 and 4 were positively 

correlated with temperature (r= 0.358 and 0.464 respectively). Taxa with the 

highest positive correlations with Axis 2 and 4 were Phaeocystis sp., Tetraselmis 

sp, Rhodomonas sp., Thalassiosira sp., Rhizosolenia spp, Paralia sp, 

Staurauneis membranaceae, Guinardia flaccida, Pleurossigma spp, 

Bacteriastrum hyalinum, and microzooplankters They exhibited maximum 

abundance in the Dogger Bank area. 

Forward selection by Monte-Carlo testing in the CCA showed that the 

variance in phytoplankton species data were explained in descending degree by 
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the silicate concentration (37%, p = 0.01), concentration of nitrate (28%, p = 

0.01), salinity (18%, p = 0.01), temperature (8%, p = 0.01) and nitrite 

concentration (7%, p = 0.01). 95% of the variance in phytoplankton taxa was 

explained by the entire set of environmental factors tested. The p-value of the 

test of significance of the first canonical axis was 0.01. 

Table 5.2 Summary of CCA results on phytoplankton data. 

p-values Variance explained by the 
variables selected 

Silicate 0.01 37% 
Nitrate 0.01 28% 
Salinity 0.01 18% 
Temperature 0.01 8% 
Nitrite 0.01 7% 
Test of significance of 

first canonical axis 
0.01 

Axis 
1 2 3 4 

Silicate 	0.886 -0.381 -0.007 0.006 
Nitrate 	0.737 -0.609 -0.077 -0.003 
Salinity 	0.434 -0.253 -0.585 -0.081 
Temperature 	-0.159 0.358 -0.446 0.464 
Nitrite 	0.425 -0.776 -0.032 0.005 

Table 5.3 Weighed correlation matrix (intra-set correlation) for 
environmental variables used in canonical correspondence analysis. 
SIL=Silicates, PO4= Phosphate, NO3= Nitrate, NO2= Nitrite, NH4= 
Ammonium, and URE= Urea. 

SAL 
TEM 
SIL 
PO4 
NO2 
NO3 
NH4 
URE 

1.0000 
.2449 
.5293 
.5717 
.5006 
.5980 

-.0886 
-.1502 

1.0000 
-.2885 
-.3130 
-.3583 
-.3102 
.4154 
-.0449 

1.0000 
.8771 
.7690 
.9465 

-.2791 
.0648 

1.0000 
.8545 
.9390 
-.3391 
.0006 

1.0000 
.8694 
-.2795 
-.0273 

1.0000 
-.3554 
.0115 

1.0000 
.2467 1.0000 

SAL 	TEM 	SIL 	PO4 	NO2 	NO3 	NH4 	t R I 
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3.4 Phytoplankton size distribution 

Figure 5.7 shows the PV distributions observed as average at each groups of 

stations situated at the same altitude in the transect. In the northern and central 

stations, one, two or three volume peaks occurred in the 20 to 50 pm size range, 

which generally showed concentrations < 0.04 ppm (Figure 5.7 a, b, c, and d). 

At stations W 2H202  (Figure 5.7e) and in the Dogger Bank area (W I 1-1 1 0 1  and 

WoH000) (Figure 5.7 f, g) peak volumes were over an order of magnitude higher 

than in the northern and central part of the transect. A typical pronounced peak 

around 100 pm SED occurred in stations W2H202 and in the Dogger Bank area 

(W1l-1101 and W011000), where it was associated with a few smaller peaks of 

smaller sized species. The particle-size spectrum was dominated by the large 

diatom Coscinodiscus concinnus (66 % of PV and > 62 % of PC) at W 2H202  and 

Rhizosolenia spp. (53 % of PV and > 25 % of PC) in the Dogger Bank area 

(Wil-1101 and WoH000). Total phytoplankton biomass showed high values 

around Dogger Bank, compared to the central and northern stations of the 

transect where significantly lower values were found (Table 5.4). 
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4 Discussion 

The non-significant differences between different depths of one station and 

between stations on the same latitude for the prevailing environmental factors 

and phytoplankton species abundance revealed homogeneity in the water column 

during the spring bloom period. Rather homogeneous vertical and horizontal 

conditions in the FLEX box at end of March 1976 (Svanson, 1980) and a vertical 

homogeneity in temperature and salinity were also observed in various regions 

of the North Sea during February-March cruise by Nielsen and Richardson 

(1989). 

As shown by the subsequent splitting in the TWINSPAN analysis (Figure 

5.5), the phytoplankton communities of the central and northern stations differed 

substantially from that around Dogger Bank, and were also different from each 

other. CCA analysis showed that about 95% of the variability in the 

phytoplankton species could be explained by the selected physical-chemical 

variables. The transect showed distinct communities along a nutrient-salinity-

temperature gradient: a low abundance of phytoplankton in the Central and 

Northern zone, where North Atlantic water mass intrusion provides high nutrient 

concentrations and salinity, and a high abundance in Dogger Bank area with low 

nutrient concentrations and relatively high temperature (Figure 5.6b, and Table 

5.2). This corroborates the general picture of the early onset of the spring bloom 

in the shallow Dogger Bank due to the relative increase in irradiance, 

homogeneity of the water column, the availability of the nutrients during spring 

1994 (Riegman et al., 1998). While, in the Central and Northern North Sea, low 
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incident irradiance in combination with deep mixing provides light limitation for 

the phytoplankton (Williams and Lindley, 1980; Reid et al., 1990; Nielsen and 

Richardson, 1989). 

During our sampling campaign, the spring bloom had clearly already started 

in the Dogger bank area, leading to substantially higher phytoplankton stocks 

than in the central and northern North Sea, both in terms of numerical (Figure 

5.4), volumetric (Figure 5.5) and carbon (Table 5.4) concentrations. Indeed, the 

high abundance of microflagellates (Prasinophyceae, and Chlorophyceae) and 

Phaeocystis sp. in the Dogger Bank area is due to the advantage of the non-

diatoms species for growth in a nutrient-limited environment after exhaustion of 

nutrients (mainly silicate) by diatoms (Bauerfeind et al., 1990). This was 

confiremd by our CCA analysis where these microflagellates taxa were 

positioned in the Dogger Bank stations and in the opposite direction of the 

nutrient concentrations (Figure 5.6a). Nevertheless, some large diatoms, such as 

Rhizosolenia spp. were found to be associated with these microflagellate taxa, in 

the silictae-depleted environment in the Dogger Bank area (Figure 5.6a). The 

contribution of large diatoms to total biomass, expressed in term of biovolume or 

carbon content, exceeded that of the microflagellates taxa (Table 5.4). The 

apparent contradiction of a high stock of diatom species occurring at low silicate 

concentrations, can be explained if we consider the following: (a) the onset of 

spring bloom started already in the course of February or early March in the 

Dogger bank area (e.g. Richardson et al., 1998), while the Dogger Bank stations 

were sampled in the mid of April (12 and 13) during our cruise; (b) Rhizosolenia 

spp. are often observed together with Phaeocystis and are known to grow under 
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lower silicate concentrations than other diatom species (Lancelot et al., 1998; 

Rousseau and Lancelot, in prep.). Mills et al., (1994) also, reported a dominance 

of some diatom species such as some Rhizosolenia spp, Paralia sulcata and 

Thalassiosira eccentrica, in terms of volume, during April 1989. These were 

observed in stations associated with a 40m-depth coutour and situated at the 

latitude of 55°N in the central North Sea (station CT, in Mills et al., 1994). 

During our campaign, the large diatom species Coscinodiscus concinnus, 

however was observed in the W2H202 stations related to high silicate 

concentrations (List 1 in Figure 5.6a). This species contributed a major fraction 

of the phytoplankton biomass in these stations. A high contribution of 

Coscinodiscus concinnus of more than 60 % of total phytoplankton biomass was 

also noted during the spring diatom bloom -April 1985- in the southeastern part 

of the North Sea (Bauerfeind et al., 1990). Indeed, the high biomass produced 

during the course of the spring bloom is due to the capacity of some 

phytoplankton species to grow and exploit the initial high winter nutrient 

concentrations (Harris, 1986; Bauerfeind et al., 1990). 

The non-diatom species, mainly Rhodomonas, Tetraselmis, Phaeocystis 

found only in the Dogger Bank stations (List 2, Figure 5.6a) also are positioned 

in the opposite direction of maximum nutrient concentrations (Figure 5.6a). 

Indeed, the non-diatoms species are found to grow in Si-depleted environment 

(Bauerfeind et al., 1990), if the nitrogen pool is sufficient, and a quick tunover of 

phosphorus is assumed (Bauerfeind et al., 1990). In our study, CCA analysis 

showed that the variance in species distribution is explained significantly by 

nitrate and nitrite concentrations (Table 5.2), but this is not the case for 
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phosphorus concentration. Kuipers and Witte (1999) report, for the same 

transect, that the ammonium uptake is not negligible for the total phytoplankton 

fraction in the Dogger bank. After the early spring diatom bloom a non-

diatomous phytoplankton bloom of mainly Phaeocystis and other flagellates-

increases in terms of biomass and this is due to Si and or P limitation 

(Bauerfeind et al., 1990) and to nitrogen, phosphorus and silicon limitation 

(Riegman et al. 1990). 

In general terms, distinct early spring phytoplankton communities revealed 

in this study confirm a distinction between the northern deeper and southern 

shallower water zones in the North Sea. Such distinction was also reported by 

several studies as was mentioned in the beginning of this paper (e.g. Williams et 

al., 1993). Indeed, Williams et al. (1993) and Fransz et al., (1991) reported that 

the distribution of the pelagic biota in the North Sea, is affected by the 

bathymetry and hydrography. Thus the northern-central deeper water is more 

influenced by the oceanic species which were carried with the inflow of the 

North Atlantic Ocean (Fransz et al., 1991). While, the contribution of benthic 

biota - meroplankton and supra benthis species- to the community observed in 

the water column increased in the shallower water of the Dogger Bank and 

towards the south of the southern North Sea (Williams et al., 1993). 

The variation in size-distribution of phytoplankton along the transect fits the 

expectation of dominance of large diatoms in shallow water of the Dogger Bank 

areas and small phytoplankton species in the deeper stations of the central and 

northern the North Sea. The concept of size-differential control of phytoplankton 

communities demonstrated by Riegman et al., 1998 for the same transect was 
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based on two fractions < 5/cm and > 5 ,um. Our results consider essentially cells 

fractions bigger than 5 pm along this transect. Within this fraction, a high 

biomass were observed in the Dogger Bank area while decreasing towards North 

in the deeper stations of the transect (Figure 5.7). The contribution of the lower 

or the upper end of the spectrum (ca ranges between 5-10gm and 50-100gm 

SED, respectively) were high in the Dogger Bank (Figure 5.7 f and g). The size 

classes in between (10-50gm, SED) were dominant in the central- northern area 

of the North Sea (Figure 5.7a, b, c, d and e). In the Dogger Bank area, a 

phytoplankton volume peak in the size range 5-10 gm was observed (Figure 5.7 

f and g) which was absent in the Central and Northern stations. It is known that 

Table 5.5 Ranges in biomass values (ug C r') of phytoplankton classes in the two 
main areas of the North Sea (DB= Dogger Bank area, CNS+NNS= central and 
northern North Sea. 

Taxa (Total pg C 1-1) Range NNS+CNS Range DB authors 
Bacillariophyceae (Diatoms) 1,062-9,411 23-39 
Dinophyceae 0,7-16,001 1,8-7,08 
Haptophyceae 0 0-11.22 Our data 
Prasinophyceae 0 8.92 
Chlorophyceae 0 0.9 
Microzooplankton 0 0.1 
Bacillariophyceae 93 
Dinophyceae 24.31 
Haptophyceae 1.52 Mills et al., (1994) 
Unidentified Prasinophyceae 1.71 (Spring data) 
Unidentified flagellates 16.58 
Cyanophyceae 0.25 
Autotr. Nanoflagellates xxxx 1-175 

(without Phaeocystis) Van Duyl et al., (1990) 
Phaeocystis-like cells xxxx 1-26 (Summer data) 
Heterotr. nanoflagellates xxxx 4-287 
Algae < 5pm 10 12.5 Riegman et al., (1998) 
Algae > 5 pm 25 125.0 In Fransz et al., (1998) 
Total phytoplankton 15.8 42.5 Nielsen and Richardson, 
Heterotr. Nanoflagellates 0.06-0.15 0.08-0.26 (1989) 
Total phytoplankton xxxx 50-100 Bauerfeind et al., (1990) 
Bauefreind (spring data) 
Phytoplankton > 1 1pm 123 83 Nielsen et al., (1993) 
Phytoplankton < 11 pm 	_ 994 438 (Summer Data) 
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small cells may have competitive advantage over larger sized species in nutrient-

depleted and stratified environment (Fenchel, 1988, Kiorboe, 1993). This can 

also explain the presence of the observed microzooplankton stock in the Dogger 

Bank area (List 2 in Figure 5.6a and Table 5.4. The stock of cells size at the 

lower end spectrum (fraction between 5-10 gm in Figure 5.7 f and g), which 

approach the lower limit of the food size spectra for adult copepods (e.g. 

Berggreen et al., 1988; Nielsen et al., 1993), probably does not constitute an 

optimal size to be grazed by mesozooplankton in the Dogger Bank area. It could 

however, provide adequate prey for microzooplankton. Indeed, Kuipers and 

Witte (1999) reported a relatively high grazing rate of the microzooplankton, 

within the fraction of > 5gm, in the Dogger Bank area compared to the deeper 

stations. 

Besides the size differential control concept reported for both fractions (< -5 

gm and > 5 gm) by Riegman et al., (1998), our results showed that within the 

> 5 gm size range different contribution of cells < 10 gm may also provide 

different trophic situation for the micro/meso-zooplankton. 

Our results also showed that, despite a substantial species variety along the 

transect, there was not much variety in the dominant species within each zone 

(central-northern and Dogger Bank). Also, each of the two zones was 

characterised by a rather typical phytoplankton volume and size structure. The 

consequences of this to the trophical chain structure will be discussed in the next 

chapter and in a further paper. 
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1. Introduction 

1. 1. Size and trophic relationships in the plankton: prey size and 

copepod feeding 

Copepods being dominant zooplankters in most marine ecosystems, their 

feeding activity is subject to intensive research. In relation to the construction of C-

cycling models, the feeding activity of copepods has to be analysed as a function of 

food concentration. Ingestion rates (I; e.g. 1.1g C ind. -1  hr 1  ) of dominant copepods in 

most marine system are known to follow a saturation type curve as a function of prey 

concentration (Fig 6.1) (Frost, 1972, Mullin et al., 1975). Increases with prey 

concentration up to a maximum, which is reached at the incipient limiting 

concentration (ILC). Feeding does not occur at prey concentrations below the low 

treshold concetration (LTC). 

A second important aspect to correctly evaluate the role of zooplankton in an 

ecosystem, is to know which of the potential prey items within the suspended 

particulate matter are eaten in what degree. While in principle all suspended 

particulate matter between a few and around 100 iim can be taken up by copepods, 

many studies show that, withing a certain size spectrum of prey (particles) biomass 

distribution, copepods select larger particles, often those forming the peak of the 

volume distribution (Poulet, 1973; 1974; Allan et al., 1977). Such selective feeding 
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behaviour is evidenced by enhanced clearance rates (F; ml ind - I hr-1 ) (=predation 

pressure) on these prey type (Fig 6.2). 

Many investigations on copepod feeding show selective feeding on 

phytoplankton and/or microzooplankton in the field (Gamble 1978; Tackx et al., 

1989; Gasparini and Castel, 1997). Within phytoplankton assembleges, certain sizes 

are sometimes selected (Paffenhofer, 1984; Paffenhofer and Van Sant, 1985). This 

selective feeding behaviour can be explained by the superior food quality of phyto-

and microzooplankton in comparison to other suspended particles, such as detritus 

(Stoecker and Cappuzo, 1990). Indeed, recent studies, both from laboratory and field 

experiments, show the important role of food quality on the copepod production (e.g. 

Steittrup and Jensen, 1990; Jonasdottir, 1994; Jonasdottir et al., 1995; Pond et al., 

1996 and Meyer-Harms et al., 1999). 

Prey concentration 

Figure 6. 1. The curvilinear curve describing the feeding activity of 
copepods (after Mullin et al., 1975). ILC= incipient limiting 
concentration; LTC= low threshold concentration. 

-137- 



cn cn cis 
E 
O

_ 

50% of 
the total 
prey stock 

        

Biomass of the prey (e.g. Phytoplankton) 

Clearane rate (F) by predator (e.g. Zooplankton) 

 

         

         

    

Potential prey sire 

  

           

           

           

          

           

            

  

••■ ••
.....0,.

....... ...
.................... 

...... 0 

        

          

        

I 	1 	I 	I 	I 	I 	I 	1 

 

            

Chapter 6 
	

Plankton size distribution ...in the North Sea 

MSED of the prey (pm) 
	SED (.1m) 

Figure 6. 2. Example of Clearance rates (F) as a function of prey volume 
distribution. MSED= median SED (pm) at which half of total prey stock 
is reached. 

1. 2. Size distribution of particles in the pelagic system 

The biomass size spectrum in an aquatic ecosystem is the distribution of living 

biomass across the range of organism size (Sprules et al., 1991). Predation, in aquatic 

ecosystems, is defined as the consumption of one organism (the prey), by another 

organism (the predator) (in Baretta-Bekker et al., 1998). 

Several researches have supported and confirmed the usefulness of size to 

classification of and ecological studies on marine organisms (e.g. Fenchel 1974; 

Kerr, 1974; Platt and Denman, 1977, 1978; Silvert and Platt 1978, 1980; Platt and 

Silvert 1981; Schwinghamer 1981; Sprules and Munawar 1986; Gasol et al., 1991). 
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Sheldon et al., (1972) showed that phytoplankton, zooplankton and fish reach 

about equal biomass in marine ecosystems and developed a prey- predator model 

which allows to predict stocks of one trophic level based on stock data of the 

previous trophic level. This new approach to predict fish biomass in the ocean was 

soon used in several studies. Thus, large data-sets were collected in marine and 

freshwater environments, confirming and providing further evidence of patterns in 

biomass-size spectra (e.g., Schwinghamer 1981; Sprules and Munawar 1986; Ahrens 

and Peters 1991; Cattaneo 1993). The models were also applied, successfully, to 

predict dynamic variables such as, fish production (Borgmann 1982; Sprules et al., 

1991 Cyr and Peters, 1996) and contaminant cycling (Griesbach et al. 1982; 

Borgmann and Whittle 1983) 

As stated by (Sprules and Munawar, 1986; Cyr and Peters, 1996), major 

supporting factors for the usefullness of the biomass spectrum appraoch can be 

summarized as followed: (1) The structure of the biomass spectrum is characteristic 

of the environment, (2) The slope of the biomass spectrum is an indicator of the state 

and productivity of the ecosystem, (3) Predation can easily be described on the basis 

of size, (4) based on the size spectrum, models can be easily developed. 

1. 3. Sheldon model 

In order to test the Sheldon model (Eq. 1), data on the standing stock (Sc and Sp) 

and sizes (Dc and Dp) of the predator(s) and prey(s), respectively, are necessary. The 
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growth efficiency and predation impact of predators on a certain prey can be 

calculated as follows: 

Sc/Sp= (Dc/Dp)" 2  Ge.Ce 	(Eq. 1) 

Where 

Sc= the standing stock of the predator 

Sp= the standing stock of the prey 

Dc= the mean size of the predator 

Dp= the mean size of the prey 

Ge= the growth efficiency, which is the quantity of tissue formed relative to 

the amount of prey ingested. A Ge values of 15% is generally assumed for 

zooplankton (Sheldon et al., 1977) 

Ce= the fraction of prey production taken by the predator 

In our datasets, all elements were known except Ce. We apply the model to 

calculate Ce values for each zone, in order to verify the transfer rate of phytoplankton 

primary production that would need to occur if the observed zooplankton stock lives 

on phytoplankton as sole prey. 

1. 4. Trophic structure in the North Sea 

Intensive research carried has been caned out in the North Sea in order to gain 

information on the food chain structure and its relationship with fisheries (Tett and 

Mills, 1991). In Sheldon et al.'s model (1977), transfer efficiencies from one trophic 

level to the next are considered to be in principal —100%. This is the case of the open 
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oceanic systems, where zooplankton consumes up to 100% of the primary production 

(Joiris et al., 1982). In the simple food-chain of Steele (1974), about one third of the 

North Sea primary production goes to the benthos, and the other two-thirds are eaten 

by herbivorous zooplankton (Table 6.1). The results of Fransz and Gieskes (1984) 

and Smetecek (1984) suggest that the transfer is less efficient during blooms -Spring 

and early summer- (<10% of the primary production) and more efficient during the 

'regenerated' primary production period -later in the season-. Gamble (1978) 

compared the grazing rates of larger (Calanus finmarchicus ) and smaller (Acartia 

clausii, Pseudocalanus elongatus ) copepods during a declining spring 

phytoplankton bloom in the northern North Sea, and found that grazing activity of 

the copepods is phytoplankton size depended. 

In coastal areas of the Southern Bight of the North Sea, the flux of new primary 

production to zooplankton is less than 50% (Joiris et al., 1982; Billen et al., 1990), 

due to an inportant role of the microbial food web (Kuipers et al., 1981) and benthos 

(Peinert et al., 1982; Smetacek, 1984). The main explanation is sumarized by De 

Wilde et al., (1992) as: (1) zooplankton stock is at low levels in early spring and thus 

can not utilize the excess food supply (e.g. Fransz and Gieskes, 1984; Smetacek, 

1984). (2) The abundance of non-favorable food items for copepods, represented by 

the well-known blooming algal species in the coastal zone (i.e. Phaeocystis globosa) 

(Lancelot et al., 1998). 
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Table 6. 1. Zooplankton grazing as percentage of phytoplankton primary 
production in the North Sea (in Tett and Mills, 1991). 

Grazing in % References 

Northern 

North Sea 

60-100 Steele (1974); Gamble (1978); Daro (1980); 

Radach (1980); Hay et al (1991). 

Southern 

North Sea 

10-50 Dagg 	et 	al. 	(1982); 	Joiris 	et 	al 	(1982); 

Nicolajsen et al. (1983); Baars and Fransz 

(1984); and Hay et al. (1991). 

A few studies, carried out over large areas in the North Sea, give comprehensive 

information on the seasonal distribution of the plankton, including the winter period 

(e.g. Rae, 1952; Glover, 1967; Colebrook, 1972, 1985, 1986; Nielsen and 

Richardson, 1989; Hay et al., 1991 and Fransz et al., 1991). These studies report 

higher copepod production in the South than in the northern North Sea, during 

winter. Indeed, Hay et al., (1991) report that, during winter 1988, Temora 

longicornis, Acartia clausi, Centropages typicus, Pseudocalanus elongatus, 

Paracalanus parvus and copepod nauplii, maintained substantial productivity in the 

southeastern part of the North Sea. Thus, the winter survival of herring larvae and 

other predators in this area is supported by this herbivorous production. At the same 

time, in the north of the North Sea, low zooplankton production influences predator 

survival negatively (Hay et al., 1991). Bathmann et al., (1990) studied the response 

of the grazing of copepods to increasing phytoplankton growth, during late winter 

1987 in the Norwegian Sea. They concluded that copepods actively grazing in 
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surface layers (0 to 200m) have important consequences on the whole pelagic 

biological regime in early spring (Bathmann et al., 1990). 

1. 5. Aim 

As was explained in section 1.1 and 1.2, the size structure and food quality of a 

given phytoplankton population influence the grazing activity and feeding behavior 

of zooplankton. In reverse, selective feeding by zooplankton potentially governs the 

composition of the phytoplankton community (Levinton, 1982; Kennish, 1990). 

In the two studies reported here (Belgian coastal zone and North Sea transect) 

we have two adjacent areas which, based on phytoplankton species composition, are 

illustrated to contain two seperate subareas (and possible further subdivisions) by 

statistical 'cluster' analysis (TWINSPAN). In each case, the two main subareas have 

been shown in chapter 3, 4, and 5 to harbour, besides differences in phytoplankton 

species composition, different phytoplankton biomasses and size distribution 

characteristics, which can be summarized as follows: 

Nearshore 
banks 

Offshore 
banks 

High biomass (abundance, 
volume, carbon stocks) 

Low biomass (abundance, 
volume, carbon stocks) 

Belgian coastal zone 
Winter situation 
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In the Belgian coastal zone, the two areas differ in phytoplankton biomass which 

is, a factor 2 higher in the neashore than in the offshore area (Fig 4.13c, Chapter 4). 

As to size distribution, both areas are characterised by several volume peaks spread 

over the 4 to 61 gm SED size range. This was accompanied by clear differences in 

phytoplankton community structure where contribution of the phytoplankton group 

taxa differed from neashore to offshore banks differed significantly (Table 4.5, 

Chapter 4). 

In the North Sea transect the phytoplankton volume is a factor 20 higher in the 

Dogger Bank than in the central-northern area. The size distribution clearly differs 

from Dogger Bank to central-northern areas with a dominance of large phytoplankton 

species in the Dogger Bank area and small ones in the deeper stations of the central 

and northern the North Sea. 

The aim of this chapter is to analyse if these subzones, separated on the basis of 

phytoplankton community composition, also represent various situations in relation 

to food web structure. This will be analysed using Sheldon's (1977) model. This 

model is constructed to analyse trophic transfer on a year or growth season basis. In 

our application, we apply it to the situation in the planktonic community occuring at 

the end of winter and early spring respectively for the Belgian coastal zone and the 

North Sea transect. As such it simply serves to evaluate the potential for trophic 

transfer in the various subareas. 
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2. Materials and Methods 

2. 1. Sampling 

The samples and sampling strategy in this chapter are the same as those of 

chapter 4 and 5. 

2. 2. Phytoplankton and zooplankton measurements 

2. 2. 1 Belgian coastal zone 

Phytoplankton 

Calculations of cell volume and cell carbon content was done following the 

procedure described in Chapter 4. Phytoplankton standing stock (expressed as gg C 

1-1 ) per bank for the 3 stations were pooled and averaged for each size class. 

Zooplankton 

Abundance of developmental stages of dominant mesozooplankton species 

(Temora longicornis, Pseudocalus elongatus, Centropages typicus, Paracalanus 

parvus, and Acartia clausii), stages (CI, II, III, IV, V and Nauplii) were determined 

from the microscopic counts. 

Dry weight of the zooplankton species and stage-groups were calculated from length 

and width measurements using the following formula given in litterature (Omori, 

1978; Fransz and van Arkel, 1980 and Diel , 1991): 
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Dry Weight (mg) = a * L (mm) b  (Eq.2) 

L, standard lengths 
(a), regression coefficient 
(b), exponent for the length (mm). 

For each copepod species and stage-groups, convertions from DW (gg) into Wet 

Weight (WW, gg), volume (µm 3 * 106) and carbon weight (gg C) was done using the 

following conversion factors: 

106  gm3  body volume — 1 gg wet weight (Omori and Ikeda, 1984). 

Dry weight — 20 % wet weight (Gifford and Dagg, 1988) and references therein. 

Carbon weight — 45% dry weight (Heinle et al., 1977; Sautour and Castel, 1995). 

For all species (Temora longicornis, Pseudocalus elongatus, Centropages typicus, 

Paracalanus parvus, and Acartia clausi) and stages (CI, II, III, IV, V and Nauplii), 

standard lengths and regression coefficient (a) and exponent (b) were obtained from 

Hay et al., (1991) (Tables 6.2A, 6.3A, 6.4A, 6.5A, 6.6A). Dry weight was then 

calculated for all species and stages by substituting lengths for equation 2 (Eq. 2). 

The mean lengths for stages (Cl/II, CIII/ly, CV and nauplii) were determined using 

standard lengths from Hay et al., (1991) (See Table 2 in Hay et al., 1991) by adding 

individual stages CI and CII, CIII and CIV, and Nauplii for all dominant species 

considered for the present study. The standard weights which was then calculated by 

substituting these mean lengths for differents copepodites stage-groups (C1!11, C111/1v 

and Cv) and Nauplii in eqaution 2, were expressed as percentage of the dry weight of 

adults male and female of each copepod species, also given in Hay et al., (1991) 

(Tables 6.2A, 6.3A, 6.4A, 6.5A, 6.6A). These percentages were then multiplied by 

values of the dry weight of adults male and female, respectively, of copepods species 

given in Van Gijsegem (1979) and Daro and Van Gijsegem (1988) (Tables 6.2B, 
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6.3B, 6.4B, 6.5B, 6.6B) to provide an estimation of the dry weight for each 

copepodite stage-groups (C1/11, C111/1v and Cv) and nauplii. Mean dry weight, wet 

weight and carbon weight for all copepod species and stage-groups (Cl/II, CIII/IV, 

CV and nauplii) were then calculated (Tables 6.2C, 6.3C, 6.4C, 6.5C, 6.6C). 

Finally, obtained values were multiplied by species and stage-groups abundances 

(derived from microscopic count) to calculate total zooplankton biomass (in terms of 

volume and carbon). 

Total average volume concentration (standing stock) values for phytoplankton 

and zooplankton were calculated by summing the mean average values over all size 

classes in which each component occurred. All standing stock values are expressed in 

ppm, equivalent to Arn 3  106.m1-1 . 

2. 2. 2. North-South transect 

Phytoplankton 

Calculations of cell volume and cell carbon content was done following the 

procedure described in Chapter 5. Phytoplankton standing stock (expressed as ptgC 

1 - ') per 3 stations, situated at the same latitude, were pooled and averaged for each 

size class (details in Chapter 5). 

Zooplankton 

Abundance of the dominant mesozooplankton species, Calanus finmarchicus, 

was determined from microscopic counts (Fransz, pers. comm.). Dry Weight (DW) 

calculation is given in Fransz et al., (1998). Data of the the total DW (ptg 1 -1 ) of 

Calanus finmarchicus was provided by NIOZ (Fransz, pers. comm.). Total volume 
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(ppm), and total carbon weight (pg C 1 - ') of Calanus finmarchicus in all stations was 

calculated following the same procedure given in the above section. Data on total 

biomass of all mesozooplankton species was provided by Fransz (pers. comm.) and 

also converted into carbon (.1g C 1 - ') and volume (ppm). Then, the total volume 

(ppm) and total carbon content of all mesozooplankton species (including C. 

finmarchicus) and only for C. finmarchicus were averaged per 3 stations situated at 

the same latitude. 



Table 6. 2. Dry weight (pig), volume (ppm) and Carbon weight (p.tg) for , Temora longicornis adult and stage-groups in the 
Belgian coastal zone (C), derived from the standard lengths at stage, regression coefficients (a) and exponents (b) for the 
major copepod species given in Hay et al., (1991) (A), and applied to Dry weight data set on adults given in Van Gijsegem 
(1979) and Daro and Van Gijsegem (1988) (B). 

Temora 
longicornis 

L (mm) a DW (pg) % of DW/ cr % of DW/ Y 

N1-6 0,23 0,009 2,17 0,3 1,5 1,1 
0,38 0,0313 3,06 1,6 6,9 5,0 

liCIV 0,53 0,0313 3,06 4,7 20,3 14,7 

Cv  0,75 0,0313 3,06 12,9 55,3 40,2 
0,91 0,0313 3,06 23,4 

9 1,01 0,0313 3,06 32,2 

Temora 
longicornis 

DW (pg) / DW (pg)/ Mean DW (pg) 

N1-6 0,23 0,16 0,20 

Cl/C11 1,04 0,71 0,88 

CI 3,05 2,0 2,57 

C‘ 8,30 5,71 7,00 
15 

9 14,2 

A 

B 

Temora longicornis Mean DW WW =DW*100/20 Carbon Weight Body volume Size class Size class 

(P9) (P9) (pg C) *10" pm' (SED, pm) (pm 3 ) 
N1-6 0,20 1,00 0,09 0,50 97 243418 

C l/C H  0,88 4,41 0,39 2,20 154 967128 

C HI/C R  2,57 12,87 1,15 6,43 194 1931345 

Cv 7,00 35,03 3,15 17,51 309 7725595 
15 75 6,75 37,5 389 15451189 

14,2 71 6,39 35,5 389 15451189 
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Table 6. 3. Dry weight (p.g), volume (ppm) and Carbon weight (pg) for, Pseudocalanus elongatus adults and stage-groups in 
the Belgian coastal zone (C), derived from the standard lengths at stage, regression coefficients (a) and exponents (b) for the 
major copepod species given in Hay et al., (1991) (A), and applied to Dry weight data set on adults given in Van Gijsegem 
(1979) and Daro and Van Gijsegem (1988) (B). 

Pseudocalanus 
elongatus 

L (mm) a b DW (pg) % of DW/ a' % of DW/ 9 

N1-6 0,3 0,017 2,27 1,1 14,5 9,2 

C1/C1 1  0,42 0,019 2,73 1,8 23,2 14,7 

Cm/Civ 0,58 0,019 2,73 4,3 56,3 35,8 

Cv 0,73 0,019 2,73 8,0 103,8 66,0 

d 0,72 0,019 2,73 7,7 
9 0,85 0,019 2,73 12,1 

Pseudocalanus 
elongatus 

DW (pg) / DW (pg)/ DW (pg) 

N1-6 14,51 9,22 1,13 

Cl/CH 23,23 14,76 1,81 

Cm/Civ 56,38 35,84 4,40 

Cv 103,83 66,00 8,11 
7,74 

9 12,4 

Pseudocalanus Mean DW WW =DW*100/20 Carbon Weight Body volume Size class Size class 
elongatus (Ng) (Ng) (pg C) *10(6)  pm 3  (SED, pm) (Pm3 ) 

N1-6 1,13 5,67 0,51 2,83 154 968128 

C l/CH  1,81 9,08 0,81 4,54 194 1931345 

CHI/Civ 4,40 22,03 1,98 11,01 245 3852724 

Cv 8,11 40,57 3,65 20,28 309 7725595 

e 7,74 38,74 3,48 19,37 309 7725595 

9 12,4 62 5,58 31 389 15451189 

A 

B 



Table 6. 4. Dry weight (tg), volume (ppm) and Carbon weight (gg) for , Paracalanus parvus adult and stage-groups in the 
Belgian coastal zone (C), derived from the standard lengths at stage, regression coefficients (a) and exponents (b) for the 
major copepod species given in Hay et al., (1991) (A), and applied to Dry weight data set on adults given in Van Gijsegem 
(1979) and Daro and Van Gijsegem (1988) (B). 

Paracalanus 
parvus 

L (mm) a DW (pg) % of DW/ (5.  % of DW/ Y 

N1 -6 0,19 0,0077 2,28 0,1 2,3 2,2 
0,27 0,0191 2,74 0,6 8,1 7,8 

Cni ICIV 0,51 0,0191 2,74 3,0 40,9 39,4 

Cv 0,65 0,0191 2,74 5,8 78,5 75,5 
0,71 0,0191 2,74 7,4 
0,72 0,0191 2,74 7,7 

Paracalanus 
parvus 

DW (pg) / DW (pg)/ DW (pg) 

N1 -6 2,33 2,24 0,18 

C,/C„ 8,14 7,83 0,65 

Cm/Civ 40,98 39,44 3,30 

C v  78,51 75,55 6,33 
7,47 

9 

Paracalanus parvus Mean DW WW =DW*100/20 Carbon Weight Body volume Size class Size class 

(Pg) (Pg) (pg C) *10(6)  pm 3  (SED, pm) (pm 3 ) 
N1-6 0,18 0,94 0,08 0,47 77,59 121950 

0,65 3,28 0,29 1,64 122,96 485402 
3,30 16,53 1,48 8,26 245,27 3852724 

Cv  6,33 31,66 2,85 15,83 309,02 7725595 

(3.  7,47 37,36 3,36 18,68 309,02 7725595 
9 45 4,05 22,5 309,02 7725595 

A 

B  

C 



Table 6. 5. Dry weight (Fig), volume (ppm) and Carbon weight (pig) for , Centropages hamatus adult and stage-groups in the 
Belgian coastal zone (C), derived from the standard lengths at stage, regression coefficients (a) and exponents (b) for the 
major copepod species given in Hay et al., (1991) (A), and applied to Dry weight data set on adults given in Van Gijsegem 
(1979) and Daro and Van Gijsegem (1988) (B). 

Centropages 
hamatus 

L (mm) a b DW (pg) % of DW/ % of DW/ 

N1-6 0,22 0,0145 2,24 0,4 1,7 1,3 

Cl/C11 0,38 0,0178 2,45 1,7 6,3 5,1 

CHI/CIV 0,66 0,0178 2,45 6,5 23,2 18,7 

Cv 0,99 0,0178 2,45 17,3 61,1 49,4 

1,21 0,0178 2,45 28,3 

9 1,32 0,0178 2,45 35,1 

Centropages 
hamatus 

DW (pg) / « DW (pg)/ Y DW (pg) 

N1-6 1,71 1,38 0,22 

Ci/CH 6,31 5,10 0,82 

C1111C1v 23,24 18,77 3,02 

C v  61,16 49,41 7,97 
13,3 
15,8 

C 	Centropages hamatus Mean DW WW =DW*100/20 
(Pg) 	 (Pg) 

Carbon Weight 
(pg C) 

Body volume 
*10 (6)  pm' 

Size class 	Size class 
(SED, pm) 	(pm3 ) 

A 

B  

. N1-6 0,22 1,11 0,10 0,55 97 	243418 

0,82 4,11 0,37 2,05 154 	968128 

C III /C iv  3,02 15,14 1,36 7,57 194 	1931345 

C ■  7,97 39,85 3,58 19,92 309 	7725595 

13,3 66,5 5,98 33,25 389 	15451189 

15,8 79 7,11 39,5 389 	15451189 
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Table 6. 6. Dry weight (pg), volume (ppm) and Carbon weight (pig) for , Acatia clausi adult and stage-groups in the Belgian 
coastal zone (C), derived from the standard lengths at stage, regression coefficients (a) and exponents (b) for the major 
copepod species given in Hay et al., (1991) (A), and applied to Dry weight data set on adults given in Van Gijsegem (1979) 
and Daro and Van Gijsegem (1988) (B). 

Acartia clausi L (mm) a b DW (pg) (Y0 of DW/ (3' % of DW/ 

N1 -6 0,19 0,096 3,21 0,4 5,5 4,7 
0,515 0,0152 2,97 2,2 27,1 23,5 

C IH /C iv  0,54 0,0152 2,97 2,5 29,9 26,0 

Cv 0,69 0,0152 2,97 5,0 59,8 51,9 
0,82 0,0152 2,97 8,4 
0,86 0,0152 2,97 9,7 

Acartia clausi DW (pg) / DW (pg)/ DW (pg) 

N1 -6 5,51 4,78 0,39 
27,12 23,54 1,92 

C ,,/C, 
Cv  

29,96 
59,89 

26,01 
51,99 

2,12 
4,24 
7,54 
7,66 

Acartia clausi Mean DW WW =DW*100/20 Carbon Weight Body volume Size class Size class 

(Ng) (Pg) (pg C) *10(6)  pm' (SED, pm) (pm 3 ) 
N1-6 0,39 1,95 0,17 0,97 122 485402 

1,92 9,62 0,86 4,81 194 1931345 
2,12 10,62 0,95 5,31 194 1931345 

C v  4,24 21,24 1,91 10,62 245 3852724 

(3' 7,54 37,7 3,39 18,85 309 7725595 
7,66 38,3 3,44 19,15 309 7725595 

A 

B 

C 



Table 6. 7. Median spheric equivalent diameter (MSED, p,m) and size range (min-max) of phytoplankton and zooplankton was used as (Dp) and 
(Dc), respectivelly. MSED is the size class (in pm) which corresponds to 50% of the total biomass. Str= Stroombank, Midd= Middelkerke, Kwint= 
Kwintenbank, Oosdy= Oostdyck, Oosthi= Oosthinder and Westh= Westhinder. Min-max: size range of phyto- and zooplankton (pm) 

str Midd Kwin Oosdy Oosthi Westh 

MSED min max MSED min max MSED min max MSED m in  max  MSED min max MSED min max 

Phytoplankton 24,55 3,89 61,64 15,49 3,89 48,97 24,55 4,9 61,64 24,55 3,89 61,64 15,49 4,9 61,64 15,49 3,89 48,97 

Zooplankton 490 194 490 389 122 490 389 122 490 490 194 490 389 122 490 389 122 490 
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2. 3. Biomass size distribution, normalisation and Sheldon Model 

Description of how biomass of phytoplankton and zooplankton, was 

differenciated by volume and then allocated into size classes (SED, gm) is 

reported in Chapter 4. Normalisation of the size spectra was done by dividing 

the volumetric of each size class by the width interval of each size class (Annex 

1) (Sprules and Munawar, 1986). The size classes and size intervals are shown in 

Annex 1. The normalized biomass distribution is then plotted against the size 

classes, both in log scales. For a pelagic community confirming to the theoretical 

steady state, the normalized spectrum will be linear with a slope close to -1 (Kerr 

1974; Sheldon et al., 1977; Platt and Denman 1978). The slope of such spectra, 

and the pattern of residual variation around the line, can thus serve both to 

characterize the size structure of the community and indicate the degree of 

deparature from the theoretical steady state (e.g. Sprules and Munawar, 1986 

and Gasol et al., 1991). 

The size distributions, obtained for each of the cases, were fitted with linear 

and polynomial functions. ANCOVA significance test was used to compare the 

goodness of linear fit of the functions (Sokal and Rohlf, 1981). 

2. 3. 1 Belgian coastal zone 

Standing stock measurements were measured as described above and 

averaged per 3 stations of each sandbank. Standing stocks were expressed in 

volumetric concentrations and in carbon units. 
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Mean sizes of phytoplankton group taxa and zooplankton are based on the 

dimensions measured as was explained above. The Dp (gm) and Dc (gm) values 

for phytoplankton and zooplankton taxa, respectively, were taken as the median 

spheric equivalent diameter (MSED) as was explained and reported in Table 6.7. 

2. 3. 2 North-South transect 

Standing stock of phytoplankton and Calanus finmarchicus or total 

zooplankton was measured and averaged per 3 stations, situated at the same 

latitude, as is described in chapter 5. The stock was measured and averaged per 3 

stations situated at the same latitude along the transect. Standing stocks were 

expressed in volumetric concentrations and in carbon content units. 

The mean sizes of phytoplankton group taxa are based on the dimensions 

measured as was explained in the section 2.3. The Dp values for phytoplankton 

were taken as the median of the Dp of the different size classes of phytoplankton 

species (Table 6. 8). When we considered only zooplankton species Calanus 

finmarchicus as a potential predator, we considered only one S.E.D of 618.04 

gm, which represented the Dc of the predator (Table 6. 9). Dc for total 

zooplankton was considered as 300 gm in correspondence with values of the 

mixed population measured in the Belgian coastal zone. 



Table 6. 8. The median spheric equivalent diameter (MSED, pm) of phytoplankton was used as (Dp). MSED is the size class (in pm) which correspond to 50% of 
the total biomass. Min-max: size range of phytoplankton (pm) 

W6H6 W5HSO5 W4H404 W3H303 W2H202 WIIHOI WOH000 

MSED min max MSED min max MSED  min max MSED min  max MSED min max MSED min max MSED  min max 

Phyto- 
plankton 

30,9 6,17 97,68 48,97 6,17 97,68 30,9 6,17 97,68 48,97 6,17 97,17 77,59 6,17 389 77,59 6,17 97,68 77,59 4,99 77,59 

Table 6. 9. Spherical Equivalent Diameter (S.E.D) and the size interval calculated for Calanus finmarchicus 
based on the Dry weight (DW) derived from : the the standard lengths provided by Fransz et al., (Pers. Comm.); 
(2)  regression coefficients (a) and exponents (b) given in Fransz et al., (1998). 

L (mm) (1)  a(2)  13(2)  DW (pg)(1)  WW= DW*100/20 
(1-1 9) 

Body volume 
*10(6)  pm3  

Size class 
(SED, pm) 

Size class 
(pm3) 

Calanus 
finmarchicus 

• 

1.345 13.2 3.26 34.690 173.4517087 173.45 618.04 61804756 
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3. Results 

3. 1. Biomass size spectra 

3. 1. 1 Belgian coastal zone 

Fig 6.3 shows the typical size distributions of the plankton on the 6 

sandbanks along Belgian coastal zone, expressed in volumetric concentrations. 

In summary, volume concentrations were highest on the nearshore banks 

(Stroombank, Middelkerke) and Oostdyck with several peaks reaching up to 

0.01ppm (Figure 6.3). Concentrations did not exceed values of 0.005ppm for the 

whole size spectrum on the Oosthinder and Westhinder banks within the range 4 

to 100gm representing the phytoplankton. However, the size range > 1001.1m 

showed high concentrations, more than 0.01ppm on the Westhinder, and 

Kwintenbank. Oostdyck exhibited a high peak (0.04ppm) around 30mm size 

class (Figure 6.3). 

The normalized size distributions of the plankton are shown in Fig 6.4. The 

data were also tested for linear fit as well as for polynomial fit of second degree 

(Fig 6.4 and Table 6.10). The slopes (b) and x 2  coefficients (b') of the fitted 

equations are tabulated in Table 6.8. b and b' values are normally taken as 

absolute values with the sign '-' mainly used as indication of where the line is 

directed. Per sandbank, b values ranged from -2.42 to -3.43. b' values ranged 

from 0.3 to -1.05 with the neashore banks (Stroombank and Middelkerke) and 
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Oostdyck having the highest values and the offshore banks (Oosthinder and 

Westhinder) and Kwintenbank having the lowest values. 

Significance tests showed that both linear and polynomial functions fit the 

data significantly for all banks, but with a tendence of a better polynomial than 

linear fit on the most nearshore bank, Stroombank (Fig 6.4 and Table 6.10). 

ANCOVA test showed that only the slope of the linear fit of the 

Stroombank differed significantly (p < 0.05) from that of all other banks (Table 

6.11). 
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Fig 6. 3. Size distributions of phytoplankton and zooplankton in the Belgian coastal zone 
for 6 sandbanks (averaged over 3 stations) expressed in volumetric concentration (ppm= 
*106  pm3  m14): (a) Stroombank, (b) Middelkerke, (c) Oostdyck, (d) Kwintenbank, (e) 
Oosthinder and (f) Westhinder. 
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Fig 6. 4. Normalised mean size distributions of plankton in the Belgian coatal zone for 
6 sandbanks (averaged over 3 stations) expressed in volumetric concentrations fitted 
with linear and polynomial equations: (a) Stroombank, (b) Middelkerke, (c) 
Oostdyck, (d) Kwintenbank, (e) Oosthinder and (f) Westhinder. 
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Table 6. 10. Belgian costal zone: Slopes (b) of the linear equations and (b') coefficients of 
the second degree polynomial equations fitted on the normalized size distributions 
averaged per bank. r2  = regression coefficient of the fitted equations, n = number of 
samples, R= correlation coefficient. 

Bank n b r2  R p 	b' r2  R p 

Str 17 -3.43 0.84 0.920 <0.0001 -1.05 0.88 0.934 <0.0001 

Midd 17 -3.30 0.84 0.916 <0.0001 -0.44 0.87 0.927 <0.0001 

Kwint 17 -2.5 0.89 0.933 <0.0001 0.3 0.89 0.935 <0.0001 

Oostdyck 16 -2.89 0.85 0.922 <0.0001 -0.72 0.88 0.931 <0.0001 

Oosthin 17 -3.17 0.92 0.957 <0.0001 0.4 0.92 0.957 <0.0001 

Westhin 17 -2.42 0.87 0.927 <0.0001 -0.16 0.88 0.928 <0.0001 

Str= Stroombank; Midd= Middelkerke; Kwint= Kwintenbank; Oosthin= Oosthinder; Westhin= Westhinder 

Table 6. 11. Belgian coastal zone: Fs values calculated by Ancova 
testing for significant differences between the slopes of the linear 
functions fitted to the normalized spectrum between differents 
banks. (*) significant at 5%; ns= non significant 

Str Midd Kwint Oostdyck Oosthin Westhin 

Str xxxx 5.144* 5.144* 1.37 2.287* 4.59* 

Midd xxxx xxxx ns ns ns ns 

Kwint xxxx xxxx xxxx 2.151 1.32 ns 

Oostdyck xxxx xxxx xxxx xxxx ns 1.69 

Oosthin xxxx xxxx xxxx xxxx xxxx ns 

Westhin xxxx xxxx xxxx xxxx 'ow( xxx 

Str= Stroombank; Midd= Middelkerke; Kwint= Kwintenbank; Oosthin= 

Oosthinder and Westhin= Westhinder 

3. 1. 2 North-South transect 

The size distributions of the plankton on the different stations along a 

North-South transect expressed in volumetric concentrations are reported and 

discussed in Chapter 5. 
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The normalised size distributions (including phytoplankton and C. finmarchicus) 

are shown in Fig 6.5. The data were also tested for linear fit as well as for 

polynomial fit of the second degree (Fig 6.5 and Table 6.12). The slopes (b) and x2 

coefficients (b') of the fitted equations are tabulated in Table 6.10. Per 3 stations, 

situated at the same latitude, b values ranged from -1.44 to -2.71. b' values ranged 

from 0.42 to -0.77 with the Dogger Bank stations having the highest values and the 

central-northern stations of the North Sea having the lowest values. Significance 

tests showed that both linear and polynomial regression fit the data significantly for 

all stations (Table 6.12). 

While, the normalised size distributions (including phytoplankton and all 

dominant mesozooplankton species) were calculated. The data were also tested for 

linear fit as well as for polynomial fit of the second degree. The slopes (b) and x2 

coefficients (b') of the fitted equations are tabulated in Table 6.13. 

ANCOVA test showed -in both cases- that there were no significant differences 

between the slopes of the linear functions, fitted to the normalized spectrum, 

between the different groups of averaged stations. 
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Table 6. 12. The different slopes (b) of the linear equations and coefficients (b') of the 
second degree polynomial equations fitted on the normalized size distributions averaged per 
three stations situated at the same latitude. r 2  = regression coefficients of the fitted 
equations, n = number of samples, R= correlation coefficient. 

stations N b r2  R p b' r2  R p 

W6H6 12 -1.65 0.70  0.83 <0.0007 -0.22 0.70 0.84 <0.003 

W5HSO5  13 -1.99 0.73 0.85 <0.0002 -0.71 0.78 0.88 <0.0005 

W4H404 12 -2.13  0.67  0.82 <0.001 -0.45  0.68 0.82 <0.005 

W3H303  13 -1.80 0.58  0.76 <0.002 -0.77  0.64 0.80 <0.005 

W2H202 12 -1.44 0.53 0.73 <0.006 -0.49  0.56 0.75 <0.02 

W 1 1-1 1 0 1  14 -2.71 0.79 0.89 <0.0001 0.42 0.80  0.89 <0.0001 

WoHoOo 13 -2.64 0.78 0.88 <0.0001 0.03 0.78 0.88 <0.0005 

Table 6.13. The different slopes (b) of the linear equations and coefficients (b') of the second 
degree polynomial equations fitted on the normalized size distributions averaged per three 
stations situated at the same latitude. r 2  = regression coefficients of the fitted equations, n = 
number of samples, R= correlation coefficient. 

stations n b r2  R p b' r2  R p 

W6H6 12 -1.31 0.53 0.72 <0.007 0.30 0.53 0.73 <0.03 

W5HSO5  13 -1.70 0.64 0.80 <0.001 -0.60 0.66 0.81 <0.004 

W4H404 12 -1.95 0.56 0.75 <0.004 -0.64 0.58 0.76 <0.01 

W3H303  13 -1.64 0.44 0.66 <0.01 -0.64 0.47 0.68 <0.04 

W2H202 12 -1.45 0.49 0.70 <0.01 -0.60 0.52 0.72 <0.03 

W I H 1 0, 14 -2.74 0.75 0.87 <0.0001 0.80 0.77 0.88 <0.0003 

WoHoO0 13 -2.22 0.66 0.81 <0.0007 0.86 0.70 0.83 <0.002 
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Fig 6. 5. Normalised mean size distributions of plankton (phytoplankton + Calanus 
finmarchicus) along the spring North-South transect covering Dogger Bank central-
northern North Sea (averaged over 3 stations) expressed in volume concentration fitted 
with linear and polynomial equations: W6H6, W514505, W411404, W311303, W21 1202, 
represented central-northern part; and W1H 1 01 , and W011000  represented the Dogger 
Bank area. 
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3. 2. The Sheldon model applied 

3. 2. 1. Belgian coastal zone 

Considering all abundant zooplankton species as predator preying on 

phytoplankton stock, Sc/Sp values ranged from 0.02 to 2.00 and Dc/Dp ranged 

from 19 to 25 (in terms of volumetric concentrations), Ge*Ce values ranged 

from 0.003 to 0.19 (Table 6.14). Sc/Sp values, using carbon biomass, ranged 

from 0.004 to 0.23 and were generally lower than those calculated in volumetric 

concentrations. As a consequence, Ge*Ce values ranging from 0.0005 to 0.02 

were lower than those calculted in volumetric concentrations (Table 6.15). 

Ce values ranged from 0.02 to 1.31 and from 0.003 to 0.15, based on 

volumetric and carbon calculations, respectivelly. 

3. 2. 2 North-South transect 

Considering only the dominant zooplankton species, Calanus finmarchicus, 

as a potential predator preying on phytoplankton stock, Sc/Sp values ranged 

from 0.01 to 0.63 and Dc/Dp ranged from 7.96 to 20.00 (in terms of volumetric 

concentrations), Ge*Ce values ranged from 0.004 to 0.06 (Table 6.16). Sc/Sp 

values, using carbon biomass, ranged from 0.03 to 1.003 were generally higher 

than those calculated in volumetric concentrations. As consequence, Ge*Ce 

values were higher than those calculated in volmetric concentrations (0.008-

0.10) (Table 6.17). 
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Ce values ranged from 0.03 to 0.70 and from 0.05 to 0.70, based on 

volumetric and carbon calculations, respectivelly. 

Considering all abundant zooplankton species as predator preying on 

phytoplankton stock, Sc/Sp values ranged from 0.19 to 1.90 and Dc/Dp ranged 

from 3.8 to 9.7 (in terms of volumetric concentrations), Ge*Ce values ranged 

from 0.08 to 0.40 (Table 6.18). Ce values ranged from 0.53 to 2.69 based on 

volumetric calculations. 



Table 6. 14. Belgian coastal zone: the different values used in the Sheldon model wherein all dominant zooplankton (copepods) is 
taken as the predator and phytoplankton as prey. Standing stocks (Sc and Sp) are in terms of mean volumetric concentrations. The 
mean size of copepods (Dc) was taken as mean diameter dc from Table 6.7. The mean size of phytoplankton (Dp) is the median 
spheric equivalent diameter of the differents size classes given in Table 6.7. 

Bank name Sc 
(PPm) 

Sp 
(PPrn) 

Dc 
(pm) 

Dp 
(pm) 

Sc/Sp Dc/Dp (Dc/Dp) °.72  Ge*Ce Ce 

Stroombank 0,002 0,075  490 24,55 0,03 19,96 0,12 0,003 0,02 

Middelkerke 0,008 0,054 389 15,49 0,14 25,11 0,10 0,014 0,09 

Kwintenbank 0,041 0,030 490 24,55 1,34 19,96 0,12 0,156 1,04 

Oostdyck 0,015 0,057 389 24,55 0,27 15,85 0,14 0,037 0,24 

Oosthinder 0,009 0,015 389 15,49 0,61 25,11 0,10 0,060 0,40 

Westhinder 0,026 0,013 389 15,49 2,01 25,11 0,10 0,197 1,31 
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Table 6. 15. Belgian coastal zone:the different values used in the Sheldon model wherein all dominant copepods are considered a 
predator and total phytoplankton as prey. Standing stock biomass (Sc and Sp) are in terms of mean carbon concentrations. The 
median sizes (Dc and Dp) are the same as in Table 6.7. 

Bank name Sc 
(pg C1 -1 ) 

Sp 
(pg C 1 -1 ) 

Dc 
(pm) 

Dp 
(pm) 

Sc/Sp Dc/Dp (Dc/Dp)° ' 72  Ge*Ce Ce 

Stroombank 0,19 45,30 490 24,55 0,004 19,96 0,12 0,0005 0,003 

Middelkerke 0,68 45,15 389 15,49 0,015 25,11 0,10 0,0015 0,010 

Kwintenbank 3,71 19,58 490 24,55 0,190 19,96 0,12 0,0220 0,147 

Oostdyck 1,37 33,89 389 24,55 0,041 15,85 0,14 0,0055 0,037 

Oosthinder 0,92 11,23 389 15,49 0,082 25,11 0,10 0,0080 0,054 

Westhinder 2,36 10,17 389 15,49 0,232 25,11 0,10 0,0228 0,152 



Table 6. 16. North Sea Transect: the different values used in the Sheldon model wherein Calanus finmarchicus is considered a 
predator and total phytoplankton as prey. Standing stock biomass (Sc andSp) are in terms of mean volume concentrations. The 
median sizes (Dc and Dp) are the same as in Tables 6.8 and 6.9. 

stations Sc 
(PPrn) 

Sp 

(PPrn) 
Dc 

(pm) 

Dp 

(pm) 

Sc/Sp Dc/Dp (Dc/Dp) ° ' 72  Ge*Ce Ce 

W6H 6  0,02 0,03 618,04 30,9 0,638 20,001 0,102 0,065 0,437 

W5 H SO5  0,01 0,09 618,04 48,97 0,111 12,620 0,162 0,018 0,121 

W4H404 0,02 0,07 618,04 30,9 0,284 20,001 0,102 0,029 0,194 

W3 H 303  0,02 0,18 618,04 48,97 0,155 12,620 0,162 0,025 0,168 

W2H202 0,06 0,62 618,04 77,59 0,103 7,965 0,257 0,026 0,178 

W 1 11 1 0 1  0,03 0,69 618,04 77,59 0,044 7,965 0,257 0,011 0,076 

WoHoOo 0,01 0,88 618,04 77,59 0,019 7,965 0,257 0,004 0,033 



Table 6. 17. North Sea Transect: the different values used in the Sheldon model wherein Calanus finmarchicus is considered a 
predator and total phytoplankton as prey. Standing stock biomass (Sc andSp) are in terms of mean carbon concentrations. The 
median sizes (Dc and Dp) are the same as in Tables 6.8 and 6.9. 

stations Sc 
(pg C 1 -1 ) 

Sp 
(pg C1 1 ) 

Dc 
(pm) 

Dp 
(pm) 

Sc/Sp Dc/Dp (Dc/Dp)° ' 72  Ge*Ce Ce 

W6I16 1,81 1,80 618,04 30,9 1,003 20,001 0,102 0,103 0,687 

W5 H SO5  0,98 6,76 618,04 48,97 0,145 12,620 0,162 0,023 0,157 

V1/4141-1404 2,02 4,59 618,04 30,9 0,440 20,001 0,102 0,045 0,301 

W 3 H 303  2,55 17,87 618,04 48,97 0,142 12,620 0,162 0,023 0,154 

W2H202 5,83 14,20 618,04 77,59 0,411 7,965 0,257 0,106 0,707 

W 1 1-1 1 0, 2,79 38,70 618,04 77,59 0,072 7,965 0,257 0,018 0,124 

W01-1000 1,53 44,46 618,04 77,59 0,034 7,965 0,257 0,008 0,059 
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Table 6. 18. North Sea Transect: the different values used in the Sheldon model wherein all dominant zooplankton species are 
considered a predator and total phytoplankton as prey. Standing stock biomass (Sc andSp) are in terms of mean volume 
concentrations. The median size (Dp) is the same as in Table 6.8. 

stations Sc 

(PPm) 

Sp 

(PPm) 

Dc 

(pm) 

Dp 

(pm) 

Sc/Sp Dc/Dp (Dc/Dp)° • 72  Ge*Ce Ce 

W6H6 0,06 0,03 300 30,9 1,91 9,71 0,21 0,40 2,69 

W5HSO5 0,02 0,10 300 48,97 0,24 6,13 0,34 0,08 0,54 

W411404 0,04 0,08 300 30,9 0,46 9,71 0,21 0,10 0,65 

W 3H303  0,07 0,18 300 48,97 0,37 6,13 0,34 0,12 0,83 

W21-1202 0,12 0,63 300 77,59 0,20 3,87 0,53 0,10 0,70 

W 1 H 1 0 1  0,14 0,69 300 77,59 0,19 3,87 0,53 0,10 0,69 

W01-1000 0,20 0,88 300 77,59 0,23 3,87 0,53 0,12 0,80 
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4. 1. Plankton size distribution spectrum 

4. 1. 1 Belgian coastal zone 

In the Belgian Coastal zone, both linear and polynomial regression fitted the 

dataset for all banks. The regression coefficients of the linear regression were 

somewhat lower for the nearshore than for the offshore banks (Table 6.10). In 

fact, for most nearshore banks, there was a tendency for a better fit of the 

polynomial than the linear regression. This reflects a tendency for plankton in 

the lower or the upper end of the spectrum to have lower biomass compared to 

the size classes in between (Fig 6.1 a, b and c). 

A significantly higher slope (b) was found for the most nearshore bank 

(Stroombank) than for all the other banks. 

As our data describe only a momentary situation, we can merely interpret 

these differences in the fitting to the linear model as a descriptor of a different 

trophic situation between the phytoplankton and the zooplankton considered in 

the model. This differences can again be explained by the fact that the stations 

located in the proximity of the coast, are influenced by strong mesoscale currents 

produced by the presence of a residual gyre along the Belgian coastal zone off 

Zeebrugge (Belgrano et al., 1995). As the depth in this area is limited (< 8m) 

both benthic and littoral influence (import from the Scheldt estuary) are 
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considerable. Enhanced concentrations of non-phytoplankton particulate matter 

can hamper the feeding activity of the zooplankton on phytoplankton (Sherk, et 

al., 1974; Tackx et al., 1995; Gasparini et al., 1997). As a consequence, 

zooplankton survival or production in such areas can be limited. 

Several studies have confirmed the trends towards polynomial fit in many 

size distributions of living organisms, in lakes (e.g. Peters, 1983; Gasol et al., 

1991; Sprules et al., 1983; Sprules and Munawar, 1986, Hansen et al., 1989; 

Ahrens and Peters, 1991; Gaedke, 1992) and North Atlantic and Southern Ocean 

(e.g. Wells and Goldberg, 1994). Gasol et al (1991) observed that the 

polynomial fit is more pronounced in winter spectra in Lake Cis& Billones 

(1998) found a better polynomial fit in size spectra in the downstream stations of 

the Scheldt river than in the upstream ones during the year 1997. 

Sprules and Munawar, (1986) explained a good fit of the normalized size 

distribution to the linear regression observed in the open Pacific Ocean as a 

minimal influence of benthic or neashore processes on the major predator-prey 

interactions and the isolation of the offshore community due to the great depth 

and large surface area of the large oligotrophic Lake Superior. 

4. 1. 2 North-South transect 

The normalized size distributions averaged per 3 stations situated at the 

same latitude, in the open North Sea case, also fitted both the linear and the 

polynomial regression significantly. The Dogger Bank area showed the highest b 
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values of all the observed stations (Tables 6.12 and 6.13). This can be explained, 

as was already reported in the chapter 5, by an earlier onset of phytoplankton 

bloom around the shallow Dogger Bank area which is already established days 

before the one in the deeper central-northern stations, resulting in a higher 

biomass in the phytoplankton range of the spectrum. However, the size 

distributions did not exhibit a significant difference in the slope of the linear fit 

between the Dogger Bank stations and the central-northern stations. This can 

perhaps be explained by the fact that the biomass size spectra in our study 

included only phytoplankton and one zooplankton species (C. finmarchicus) or 

all dominant mesozooplankton species. Other components such as bacteria, 

benthos, and fish were not considered. 

4. 2. Predator-prey relationship (Sheldon model) 

This study uses the Sheldon model to evaluate the potential trophic transfer 

between phytoplankton and mesozooplankton, including all abundant copepods 

in the Belgian coastal zone. In the North-South transect phytoplankton and only 

the dominant zooplankter, Calanus finmarchicus are considered. 

4. 2. 1 Belgian coastal zone 

The observed ratio of zooplankton to phytoplankton standing stock (Sc/Sp), 

based on volume and carbon biomass, falls within the range of values calculated 
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by the model of Sheldon et al. (1977; 0.300 -2.000) and Tackx et al. (1994; 

0.070-0.280), for all banks except the most neashore one (0.004), where the 

standing stock ratio is rather low, indicating a very high prey standing stocks 

relative to its predator. Dc/Dp ratios found are within the range given by Sheldon 

et al., (1997; 5-25). The values of Ce must, theoretically, be 1, meaning that 

the predator eats only the production of its prey. Based on volume, Ce values are 

above 1 was calculated for the most offshore bank Westhinder, and also for the 

Kwintenbank. This means that, on these banks, copepods would have to 

consume more than > 100% of phytoplankton production to have a growth 

efficiency of 15%. On the nearshore banks, Ce values were < 1, the lowest value 

(0.02) being found for the Stroombank. 

Based on carbon values, the required consumption of the prey production by 

the predator, to have a growth efficiency of 15%, was only 14%, 5%, and 17% in 

the Kwintenbank, Oosthinder and Westhinder, respectively. On the nearshore 

banks maximally 3.6% (on Oostdijk) would be required. So, Ce values based on 

carbon were 1, on all banks, indicating that in most cases, phytoplankton could 

be sufficient as the sole food source for the dominant copepods. 

A discrepancy between the outcome of the model when calculated on a 

volume or a carbon basis was also found by Billiones (1998). Its evaluation is 

subject to a future paper (Tackx et al., in prep.). 

However, both calculations revealed the same differences in trophic 

potential between the nearshore and the offshore banks: the potential predation 

impact of the copepods on the phytoplankton is higher in the offshore area that 
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in the nearshore area. This is caused by both lower Sc and higher Sp values in 

the nearshore than in the offshore area. 

As explained before, a hindrance of the (selective) feeding by copepods on 

phytoplankton by high abundance of non phytoplankton suspended matter could 

explain the low development of zooplankton in the nearshore area, resulting in 

smaller standing stocks of zooplankton than in the offshore area, although 

phytoplankton stocks are significantly (Mann Whitney, p< 0.05) higher in the 

former (Table 6.14). 

As in the offshore areas, concentration of non phytoplankton potential food 

items such as detritus is also lower than in the nearshore area (DW: Chapter.4). 

Consequently, the presence of substantial zooplankton standing stocks in the 

offshore areas supposes a substantial transfer of phytoplankton (or 

microzooplankton) to zooplankton. 

Differences in phytoplankton species composition and size spectra from the 

neashore banks to the offshore might provide an explanation for this. The high 

phytoplankton stock on the neashore banks consisted of a co-dominance of 

Cryptophyceae and diatoms. On the offshore banks, diatoms dominated the low 

phytoplankton stock, but motile taxa such as Dinoflagellates and Prasinophyceae 

also contributed considerably to this stock (Table 5. 5, in Chapter 5) (Table 4.5, 

Chapter 4). This could also favour the predation on living prey and the 

development of copepods species in these areas. 

Hay et al., (1991) showed that several copepod species have a substantial 

production during winter, supposing active feeding even at low temperatures and 

phytoplankton concentrations. As explained in the introduction, many copepods 



Chapter 6 	 Plankton size distribution...in the North Sea 

tend to select the bigger phytoplankton species within a certain size range, and 

the diatoms within the 10 to 501.1m size range could provide a highly favored 

food source for the copepods in the offshore areas. 

Recent studies concerning selective feeding of calanoid copepods have 

shown that the motility of the prey can also influence their feeding behavior 

when phytoplankton stock is low (e.g., Saiz 1994; Saiz and Kiorboe 1995; 

Kiorboe et al., 1996; Kleppel et al., 1996; and Meyer-Harms et al., 1999). This 

was due to the switching feeding mode exerted by the copepods (Kiorboe and 

Saiz, 1995). Thus, copepods were found in laboratory as well as field 

experiments, to switch from suspension to ambush feeding prefering motile prey, 

such as dinoflagellates (e.g. Bellingshausen Sea, Atkinson 1995; Norwegian Sea, 

Meyer-Harms et al., 1999) or both dinoflagellates and ciliates (e.g. Kiorboe et 

al., 1996; Kiorboe and Saiz, 1995; and Saiz and Kiorboe 1995) when 

phytoplankton concentration is low. Laboratory experiments also showed that 

for Acartia tonsa, the ambush-mode feeding is much more dependent than 

suspension-mode feeding on turbulence (Saiz and Kiorboe, 1995). 

Thus, in the less turbulent offshore banks, the phytoplankton community 

consisting of big diatoms and motile species, probably provides a food source on 

which the dominant copepod species can feed more efficiently than the 

nearshore phytoplankton communtiy. 

Similarly, Gowen et al., (1999), studying zooplankton. feeding in the Irish 

Sea, report a higher grazing efficiency (22%) of copepods (copepodites, and 

adults of Pseudocalanus and Temora) in the offshore western Irish Sea stations, 
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than in neashore stations (17%) during spring 1997. They attributed this pattern 

to the difference in populations size occurring during the spring bloom. 

In chapter 4, the question was raised: 'How does this spatial difference (in 

phytoplankton species composition) between nearshore and offshore banks 

affect the potential energy flux from phytoplankton to zooplankton?' 

Our data show that indeed, a difference exists in potential trophic transfer 

between phytoplankton and zooplankton. The high phytoplankton stock on the 

nearshore banks is underexploited by the zooplankton, while higher trophic 

transfers between phyto- and zooplankton must occur on the offshore banks. In 

terms of volumes, the phytoplankton seems to be even insufficient to support 

copepod production at some of the offshore banks at the time of our sampling. 

As to development conditions for the spring bloom, which is about to start 

shortly after the February situation analysed here, this suggest an 'advantage' for 

the nearshore zooplankton populations. However, considering the high 

concentrations of non-phytoplankton particulate matter in the nearshore 

environment, it is dubious that zooplankton development can really profit from 

this potential food resource. 

4. 2. 2 North-South transect 

The ratio of Calanus finmarchicus stock to phytoplankton standing stock 

(Sc/Sp), based on volume (Table 6.16), falls within the range of values given by 

Sheldon et al. (1977; 0.300-2.000) and Tackx et al. (1994; 0.070-0.280). This is 

also the case for the ratio, based on carbon content, except in the most northern 
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stations (W6H6) and in the central stations (W2H202) where values were quite 

high. Dc/Dp ratios found in our calculations are within the range given by 

Sheldon et al., (1977; 5-25). 

Except in the Dogger Bank area, the Ce values were quite higher, both in 

terms of volume and carbon stocks (Table 6. 16 and Table 6. 17). Highest Ce 

values (0.70) -but < 1- were calculated for the northern (W6H6) and central 

stations. This was however, expected if we consider that winter conditions were 

still prevailing in the northern North Sea. This can be said also in the case of the 

central stations where the potential feeding pressure of C. finmarchicus on 

phytoplankton stock was quite high, but still < 100%. 

Substantially lower Ce values were calculated for the Dogger Bank area 

(WoHo0o) and the stations just above the Dogger Bank (W1H101) than for the 

other stations. So, the earlier onset of the phytoplankton bloom in the Dogger 

Bank area, seems to provide sufficient phytoplankton food to meet the energy 

demand of the C. finmarchicus population in that area (Ce values are lower than 

< 1, both in terms of carbon and volume calculations; Tables 6. 16 and 6. 17). 

The C. finmarchicus population had to consume only between 3 % to 12 % of 

the phytoplankton stock to have a growth efficiency of 15%. While, a quite 

important phytoplankton stock is taken (69% to 80%, Table 6.18) by all 

dominant mesozooplankton species (Ce values is lower than < 1, but higher than 

Ce values reported in Table 6.16). So, there is a quite important flux of energy, 

which will be available to other primary consumers, such as other dominant 

zooplankters species (Oikapleura dioica and some meroplanktonic benthic 

species such as Lamellibranchidea) which were dominant in the Dogger Bank 
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area (Figure 6.6), but also to the benthos. Indeed, it is well known that in the 

shallower southern North Sea (depth is less than 40m in the Dogger bank area) 

the benthos also consumes a substantial fraction of the primary production (see 

also Joiris et al., 1982; Jones et al., 1984; Zijlstra, 1988; and De Wilde et al., 

1992). 

0 
W6 116 WS 115 05 W4 144 04 W3 H3 03 W2 112 02 WI HI 01 WO HD 00 

Fig 6.6 Percentage contribution of Calanus finmarchicus and the rest 
of zooplankton species (other) to total zooplankton biomass. (data 
provided by NIOZ (Fransz, pers. Comm.) 

Despite, a high phytoplankton stock at stations (W2H202), a rather high 

potential C. finmarchicus pressure on phytoplankton stock was obtained (17.8 

and 70% based on volume and carbon respectively, Table 6.16 and Table 6.17). 

This was mainly due to the fact that a maximum Sc values (0.06) was observed 

at these stations. Calanus sp. are able to eat larger preys than most other 

(smaller) copepod species in the North sea (Irigoien, pers. Comm.). Perhaps the 

association between the maximum of the C. finmarchicus population and the 

dominance of the large diatom Coscinodiscus concinnus (See Chapter 5) is not a 

coincidence. 



Chapter 6 	 Plankton size distribution...in the North Sea 

Richardson et al., (1998) report that copepod ingestion exceeds the primary 

production in May 1992 in the Central North Sea (north of Dogger Bank). Thus, 

they suggested that the copepods are exploiting either the protozooplankton 

production in addition to phytoplankton in order to satisfy their energy 

requirements. However, they reported lower copepod ingestion (less than 100%) 

on the primary production, during May 1992 in the Dogger Bank area. They 

explained that by the fact that the Calanus spp. stock contributed only as a small 

part of the total zooplankton stock at the stations less than 40m depth 

(Richardson et al., 1998). This was the case of the Dogger Bank area, in our 

study, where a small fraction of the phytoplankton stock seems to be sufficient to 

meet the energy demand of C. finmarchicus. The contribution of C. finmarchicus 

to the total zooplankton stock in this area is, however, reduced (Figure 6.6). 

As in the Belgian coastal zone, the subareas, which were separated, based 

on phytoplankton species composition, also display a different situation with 

regard to the potential trophic transfer between phytoplankton and zooplankton. 

In the North- South transect, the phytopankton stock seems sufficient as sole 

food source to the zooplankton over the entire study area. 
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Our results indicate a clear pattern in the biomass size spectrum of plankton 

community, during winter in the Belgian coastal zone, and during an early 

spring bloom in the North-South transect in the North Sea. Recognition of these 

trends is possible because the slope of the normalized biomass size spectrum is a 

quantitative index of the system structure. The application of the Sheldon model 

is limited to plankton communities and does not provide information on seasonal 

variability or benthic-pelagic coupling. Nevertheless, the trends we have noted 

are likely correct on a first approximation and are of sufficient general 

importance to warrant further investigation. A spatial heterogeneity was also 

observed in the Flemish banks along Belgian coastal zone: within the epibenthic 

fishes and invertebrates at the same area during winter 1997 and 1998 (Dalmas, 

1999) on the one hand; and of seabirds in the early eighties (Joiris, 1983) on the 

other hand. 

Moreover, this spatial heterogeneity was also observed within bacteria 

biomass in February-March 1988, with low stock in the northern stations (north 

of Dogger Bank) and an increased stock towards the Dogger Bank area (Nielsen 

and Richardson, 1989). Heterotrophic nanoflagellates (S.E.D= 3.5 gm) also 

showed a spatial heterogeneity (Nielsen and Richardson, 1989), as well as 

protozooplankton production along a May transect of 1992, between the Dogger 

Bank area and central north Sea (Richardson et al., 1998). Morover, a spatial 

heterogeneity within the heterotrophics protists, with a proncounced high stock 

in the Dogger Bank area compared to the low one in the deeper northern stations 

(Kuipers and Witte, 1999), and a 4 discernable latitudinal zones based on the 
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metazoan plankton distribution (Fransz et al., 1998), were observed for the same 

transect reported in our study. 
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A spatial heterogeneity seems to be a general trend within the phytoplankton 

and -to some extend- in zooplankton during winter around some sandbanks of 

the Belgian coastal zone. This could be due to the differences observed in 

environmental conditions (salinity, temperature, turbidity and nutrient 

concentrations) and can be explained by the positioning of the banks. The 

offshore banks (e.g. Oosthinder, Westhinder, and Oosdyck) positioned furthest 

from the coast, are obviously influenced by the Southern intrusion of Atlantic 

water. The best explanation of the variance in phytoplankton community was 

obtained when nutrient concentrations were included in the analysis. This 

indicates that, besides the fact that the study area covers two water masses of 

different origin, variations in nutritional conditions also influence phytoplankton 

species composition. Differences in phytoplankton species composition and taxa 

contribution also resulted in differences in biomass (in terms of volume and 

carbon concentrations) and size structure between nearshore and offshore banks. 

Our studies along a North Sea transect, showed large variations in 

phytoplankton community, biomass (in terms of volume and carbon 

concentrations) and size structure during early spring phytoplankton bloom. This 

was explained by the variations -along the transect- of the environmental factors 

such as temperature, salinity and nutrient concentrations (mainly silicate and 

nitrate concentrations). Results obtained, corroborate the general picture of the 

early onset of the spring bloom with higher phytoplankton stocks in the shallow 

Dogger bank area and lower in the deeper central and northern North Sea areas, 

both in terms of numerical, volumetric, and carbon concentrations. The high 

abundance of microflagellates (Prasinophyceae and Chlorophyceae) and 
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Phaeocystis sp. in the Dogger Bank area is explained by the advantage of the 

non-diatom species for growth in a nutrient-limited environment after exhaustion 

of nutrients (mainly silicate) by diatoms. Nevertheless, the contribution of large 

diatoms (e.g. Rhizosolenia spp.) to total biomass, expressed in term of 

biovolume or carbon content, exceeded that of the microflagellates taxa in the 

Dogger Bank area. This shows that the onset of spring bloom started already in 

the course of February or early March in the Dogger bank area, and illustrates 

the fact that some large diatoms (e.g. Rhizosolenia spp.) are often observed 

together with Phaeocystis and are known to grow under lower silicate 

concentrations than other diatom species. 

In general terms, distinct early spring phytoplankton communities revealed 

in this study confirm a distinction between the northern deeper and southern 

shallower water zones in the North Sea, and seem to be affected by the 

bathymetry and hydrography. The variation in size-distribution of phytoplankton 

along the transect fits the expectation of dominance of large diatoms in shallow 

water of the Dogger Bank areas and small phytoplankton species in the deeper 

stations of the central and northern the North Sea. Also, each of the two zones 

was characterised by a rather typical phytoplankton volume and size structure. 

Moreover, our results showed that within the > 5 1.1M size range different 

contribution of cells < 10 gm may also provide different trophic situation for the 

micro/meso-zooplankton. 

The last purpose of this study was to evaluate if the difference observed in 

phytoplankton communities (Chapters 3, 4 and 5) represented different 

situations to the potential trophic transfer phytoplankton-mesozooplankton, and 
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as such provided different structuring conditions at the onset of the spring 

bloom. Evaluation of the potential predation pressure exerted by the associated 

mesozooplankton communities, using the model of Sheldon et al., (1977) shows 

that indeed differences in potential trophic transfer are found between the 

subareas. 

In the Belgian coastal zone, different normalised size spectra are observed 

reflecting a different trophic structure between the nearshore and offshore banks. 

In the North-South transect, the size distributions did not exhibit a significant 

difference in the slope of the linear fit between the Dogger Bank area and the 

central-northern stations. However, the Dogger Bank area showed the highest b 

values of all the observed stations (Tables 6.12 and 6.13). This can be explained, 

by an earlier onset of phytoplankton bloom around the shallow Dogger Bank 

area days before the one in the deeper central-northern stations, resulting in a 

higher biomass in the phytoplankton range of the spectrum. 

In general term, the phytoplankton stock can support the carbon requirements 

of the dominant neretic copepod during the early onset of growing season along 

the Belgian coastal zone in one hand, and the dominant Calanus finmarchicus or 

total mesozooplankton along a North-South transect in the North Sea during the 

early spring phytoplankton bloom, in other hand. The maximum potential 

consumption impact (Ce S 15% and 70% in the sandbanks in the Belgian coast and 

in the open North Sea system, respectively) on the phytoplankton prey items does 

not exceed the prey's productivity. However, the dominant neretic copepods in the 

Belgian coastal zone and the Calanus finmarchicus in the North-South transect in 

the North Sea seem to be using only a small part of the high phytoplankton stock 
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(Ce 5_ 02% and 05% in the shallow stations of the Belgian coastal zone -e.g. in the 

Stroombank and Middelkerke- and in the Dogger Bank area, respectively). A quite 

important flux of energy is not channeled to holo-zooplanktoners and then to the 

higher trophic levels and will benefit to the benthos, either as food for 

meroplanktonic larval stages or after sedimentation to the benthic system (Figure 

1.7a). While, in the deeper stations of the Belgian coastal zone (e.g. in the 

Westhinder, Oosthinder, Oosdyck, and Kwintenbank) and the deeper central-

northern areas of the North Sea, a quite important carbon stock is channeled to the 

holo-zooplankton (Figure 1.7b). Based on these different considerations and the 

information available in literature, we draw here a diagram (Figure 7.1 a,b) to 

illustrate our finding in chapter 6. 

Finally, our results from different parts of the North Sea indicate that the 

spatial phytoplankton community structuring, in the North Sea, is not only limited 

to the 'blooming' period of the year, as was intensively reported during spring time 

(e.g. Gamble, 1978; Smetacek et al., 1978; Richardson, 1985; Nielsen and 

Richardson, 1989; Mills et al., 1994, Bauerfeiund et al., 1990; Kuipers and Witte, 

1999; and Meyer-Harms et al., 1999) or summer time (e.g.; Daro, 1980; Holligan 

et al., 1984, Kiorboe et al., 1990; Nielsen et al., 1993; Riegman et al., 1998; 

Richardson et al., 1998; Kuipers and Witte, 1999). Interactions between 

phytoplankton community structure and environmental factors, on the one hand, 

and to higher trophic level (mesozooplankton), on the other hand, can start already 

earlier in the year -late winter/early spring- (e.g. Nielsen and Richardson, 1989; 

Bathmann et al., 1990; M'harzi et al., 1998) and constitute an important factor 

affecting the pelagic biological regime later in the year in the North Sea. 
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Figure 7.1. Simplified representation of dominant pathways along which matter and energy are channeled in the: (a) 
Shallow water of the neashore banks of the Belgian coastal zone and in the Dogger Bank area and (b) deeper offshore 
banks of the Belgian coastal zone and in the Central-northern area of the North Sea. Quantitatives differences in these 
pathways are illustrated by the widths of the arrows based on literature and our observations. 
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Appendix 1 

The different logarithmic size classes of particles (base 2), the spheric equivalent 
diameters (SED) and the size intervals. (After Sheldon et al., 1972). 

Size class Volume (pm3) SED (pm) interval 

1 0,25 0,78 

2 0,49 0,98 0,24 

3 0.97 1,23 0,48 

4 1.95 1,55 0,98 

5 3.88 1,95 1,93 

6 7.79 2,46 3,91 

7 15,45 3,09 7.66 

8 30,82 3,89 15,37 

9 61,60 4.90 30,78 

10 122,99 6.17 61.39 

11 245,62 7.77 122,63 

12 489,80 9.78 244,18 

13 976,73 12.31 486,93 

14 1946.05 15,49 969,32 

15 3882.42 19,50 1936,37 

16 7747.35 24,55 3864.93 

17 15448,06 30,90 7700.71 

18 30821,05 38,90 15372.99 

19 61487,80 48,97 30666,75 

20 122627.00 61,64 61139,20 

21 244577,15 77,59 121950,15 

22 487995.23 97,68 243418,08 

23 973397.41 122,96 485402,18 

24 1941525,70 154,78 968128,29 

25 3872870,60 194,84 1931344,90 

26 7725594,60 245,27 3852724,00 

27 15451189,20 309,02 7725594.60 

28 30902378.40 389,34 15451189,20 

29 61804756.80 490,54 30902378,40 

30 123609513,60 618,04 61804756,80 

31 247219027,20 778,68 123609513.60 
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Appendix 2 

Scientific reports and publications: 

Below is a list of publications and reports wherein the author and his 

research study has contributed into: 

✓ H. Lung'ayia; A. M'harzi; J. W. Gichuki; M. Tackx; & J. J. Symoens (1999): 
Phytoplankton community structure in relation to environmental factors in Lake 
Victoria (Kenyan Part). Freshwater Biology: (Accepted, In press). 

✓ M'harzi A.; M. Tackx; M. H. Daro; I. Kesaulya and R. Caturao (1998): Winter 
distribution of phytoplankton and zooplankton around some sandbanks of the 
Belgian coastal zone: Journal of Plankton Research, Vol.20, Issue 11 pp. 2031-
2052. 

✓ G. Torres; Jerry Landivar; Q. L. Burgos; A. M'harzi; M. Osore; X. Irigoien; M. 
Tackx and N. Daro (1998): Phytoplankton and zooplankton community structure 
in the Guayaquil estuary and the Estero Salado during August 1996 (Ecuador). 

✓ M'harzi A (1998): A report on the distribution of phytoplankton and zooplankton 
around Buitenratel, Gootebank and Westhinder sandbanks of the Belgian coastal 
zone.Project: Advanced Modelling and Research on Eutrophication 
(AMORE).Programme "Gestion Durable de la Mer du Nord". Service du Premier 
Ministre, Services Federaux des Affaires Scientifiques, Techniques et Culturelles. 
February 1998. 

✓ G. Tones; Jerry Landivar; Q. L. Burgos; A. M'harzi; M. Osore; X. Irigoien; M. 
Tackx and N. Daro (1998): Phytoplankton and zooplankton community structure 
in the Guayaquil estuary and the Estero Salado during August 1996 (Ecuador). 
Proceeding Volume of the ICES International Symposium On Brackish Water 
Ecosystems. Helsinki, Finland. (25-28 August 1998). Page 48. 

✓ H. Lung'ayia, A. M'harzi, J. Gichuki & J. J. Symoens (1998): Relationships 
between chlorophyll a and environmental factors in Lake Victoria (Kenyan part). 
Proceeding volume of the XXVII SIL Limnological Congress, Dublin Ireland, 
(August, 9-14 August 1998). 

✓ M'harzi A, J. H. Vosjan; M. Tackx and N. Daro (1997): Changing phytplankton 
Community Structure along a North Sea transect (spring, 28 March to 15 April). 
Proceeding Volume of the 3RD LOICZ open science meeting on Global Change 
Science In The Coastal Zone. Leeuwenhorst Conference Centre, Noordwijkerhout, 
The Netherlands (October 10-13, 1997). No. 29; page 82. 

,.■ M'harzi A; M. Tackx; M. H. Daro; I. Kesaulya and R. Caturao (1997): Winter 
distribution of phytoplankton and zooplankton around some sandbanks of the 
Belgian coastal zone. Proceeding Volume of the 32ND European Marine Biology 
Symposium (EMBS), August 1997 Lysekil Sweden. page 119. 
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✓ Landivar, M. K. Osore, A. M'harzi, M. Tackx, and N. Daro (1997): A Report on 
Comparative Analysis of Zooplankton collected from two Tropical Estuarine 
Ecosystems- Estero Salado/Rio Guayas in Ecuador and Tudor Creek/Gazi Bay in 
Kenya. 

✓ G. Torres, A. M'harzi, M. Tackx, and N. Daro (1997): A Report on Comparative 
Analysis of phytoplankton collected from two transect in Guayaquil estuary 
(Ecuador). 

✓ H. Lung'ayia; A. M'harzi; J. W. Gichuki; M. Tackx; & J. J. Symoens (1997): 
Phytoplankton community structure in relation to environmental factors in Lake 
Victoria (Kenyan Part). Phycologia: Journal of the International Phycological 
Society.July 1997, Vol.36 No.4; page 67. 

✓ M'harzi A, M. Tackx, N. Daro and J. H. Vosjan (1996): Changing Plankton 
Community Structure along a North Sea Transect. Workshop of Progress in 
Belgian Oceanographic Research Brussels. page: 139-141. January 8-9 1996. 

✓ Tackx, N. Daro and A. M'harzi (1994): Characterization of particulate matter and 
quantification of particulate matterzooplankton interactions. IGBP and "Global 
Change" Related Research in Belgium II, 1994. page: 142-143 

✓ M'harzi A, M. Tackx and C. Bakker (1993): Changes in the summer succession of 
phytoplankton induced by the storm-surge barrier in the Oosterschelde 
(S.W.Netherlands). 
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Appendix 3 

Participation in International Scientific Activities: 

❑ First international conference on biodiversity and renewable natural 
resources preservation. Al AKHAWAYN University, Ifrane, Morocco. (May 13-
15, 1999). 

o Third Annual Meeting of the North Sea project "AMORE". Ecology and 
Systematic laboratory Free University of Brussels (V.U.B) Brussels Belgium 
(February 11, 1999). 

o Annual meeting of the Causal factors of Biodiversity project: Community 
structure, phylogeny and biogeography. (1996-2000) Coordinator: Prof. M. Vincx, 
Marine biology section, Zoological Institute. University of Gent, Belgium 
(December 3, 1998). 

❑ ICES INTERNATIONAL SYMPOSIUM ON BRACKISH WATER 
ECOSYSTEMS. University of Helsinki, Porthania, Yliopistonkatu 3, Helsinki, 
Finland (August, 25-28, 1998). 

❑ XXVII SIL of Limnology Congress. University of Dublin, Dublin, Ireland 
(August, 9-14 August 1998) 

o Second Annual Meeting of the North Sea project "AMORE". Laboratoire de 
Microbiologie des Milieux Aquatiques, University Libre de Bruxelles (U.L.B), 
Bruxelles Belgium (February 5, 1998). 

o Seminar "General introduction to the Schelde and the North Sea Project". at 
the Ecology and Systematics Laboratory, Free University Brussels (V.U.B), 
Brussels Belgium (January 12, 1998). 

❑ Seminar:"Phytoplankton" at the Ecology and Sytematics Laboratory, Free 
University Brussels (V.U.B) Belgium (November 10, 1997). 

❑ 3RD Loicz open science meeting on Global Change Science In The Coastal 
Zone. Leeuwenhorst Conference Centre, Noordwijkerhout, The Netherlands 
(October 10-13, 1997). 

o European Marine Biology Symposium. 32nd European Marine Biology 
Symposium (EMBS). Lysekil, Zweden, (August16-22, 1997). 

❑ The Sixth International Phycological Congress. Pieterskerk - Leiden The 
Netherlands. (August.09-16, 1997). 

o ENISMA Workshop, organized by the Free Univeristy Of Brussels (V.U.B) 
Belgium (May 29-31, 1997). 

o Workshop "Zandbanken-Sandbanks", organized by the Belgian Marine 
Scientific Research Institute (IZWO).in Brugge, 14 Mai 1997. 
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❑ Workshop (IZWO) organized by the International Marine Research supported by 
the European Commission. Brugge, 15 Mai 1996. 

o Workshop "Progress in Belgian Oceanographic Research", organized by the 
Royal Academy of Belgium & National Committee of Oceanology, in Brussels 
from 08 to 09 of January 1996. 
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