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1.1. State of the art

The deep sea is the part of the world's ocean below the continental shelves, covering almost two third

of the earth's surface. Therefore, the deep-sea bottom can be seen as the most typical and extensive

environment, harbouring typical life forms (Gage & Tyler, 1991). Exploration of the topography of the

deep ocean started after World War ll, when researchers began systematically to survey and chart the

ocean bottom using new echo-sounding technologies. The deepc-sea bottom is not, as was widely

believed, monotonously flat and featureless. Rather, parts of it are as uneven and as rugged as the

familiar mountain topography on land.

Three large physiographic provinces can be distinguished, each having unique landform

characteristics: continental margins, deep-ocean basins and mid-ocean ridges. The system of broad

mid-ocean ridges, a continuous submarine mountain range, winds its way through all the oceans.

They are separated from the drowned edges of the continents, the continental margins, by large

intervening tracts of deep-ocean basins, the ocean floor that lies deeper than two kilometres below

the sea level (Pinet, 1998).

From a biological point of view, our awareness of the existence of a deep-sea fauna is remarkably

recent. lt is more than a century since the Challenger expedition (1872-1876) recorded the presence

of a deep-sea benthos throughout the oceans, refuting the concept that the great depths were devoid

of life (Rex, 1981). The ever expanding knowledge of the physical nature and processes of the deep

oceans has increasingly determined the approach and methodology adopted in the biological study of

this unique habitat. Recently, mainly through the use of adequate sampling techniques, biological

information of these habitats has become available.

High species diversity on continental margins, and in the deep sea in general, was first recorded by

Sanders et al. (1965) and Hessler & Sanders (1967). This discovery was made possible by advances

in sampling technology allowing collection of semi-quantitative and quantitative samples of smaller

animals (macrofauna and meiofauna) living in deep-sea sediments (Gage & Tyler, 1991; Gooday ef

a/., 1998). Subsequent obseruations have confirmed that high species diversity in the deep sea,

particularly the benthic macrofauna and meiofauna, is a global feature (Jumars, 1976; Hecker & Paul,

1979; Rowe eta1.,1982, Gage, 1996;Gooday eta1.,1998).

Due to intense observations, existing patterns in deep-sea density and diversity have been elucidated.

Firstly, the density of all size categories of organisms gradually decreases with increasing distance

from the continental shelf (Hessler & Sanders, 1967; Rex, 1981; Rex etal., 1990). Secondly, the

diversity within the deep sea is not evenly distributed amongst phyla, but polychaetes, crustaceans

(Peracarida) and molluscs (Bivalvia) form the highest proportions of species in the macrofauna

(Hessler & Sanders, 1967; Grassle & Maciolek, 1992). Finally, species diversity shows a parabolic

distribution with depth, reaching a peak in the bathyal zone, before decreasing to the abyssal plain

(Sibuet, 1977; Rex, 1981 ; Paterson et a1.,1985).
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Another deep-sea research topic, the zonation of fauna, has been documented extensively (Carney

et al., 1983). Zones are described as regions of lesser faunal change bounded by regions of greater

faunal change (Menzies et al., 1973; Hecker, 1990; Gage & Tyler, 1991). Previous workers have

focused either on general faunal zonation patterns (Le Danois, 1948; Rowe & Menzies, 1969;

Haedrich et a1.,1975; Ohta, 1983) or on the zonation of specific laxa, e.g. fish (Day & Percy, 1968),

gastropods (Rex, 1977), echinoderms (Gage, 1986), holothurians (Billett, 1991) and decapod

crustaceans (Cartes & Sardd, 1993). These studies have shown, regardless of the taxon examined,

that deep-sea fauna undergo a non-repeating sequential change with depth and most species have

predictable and restricted depth ranges (Rowe & Menzies, 1969; Carney et a1.,1983; Gage & Tyler,

1ee1).

There are many logistic problems associated with identifying and measuring factors that may affect

zonation and depth related distribution, and as a result, nearly all deep-sea studies were focussed on

those factors that correlate with changes in the fauna (Howell et al., 2OO2). These factors include

temperature (Rowe & Menzies, 1969; Haedrich ef a1.,1975), pressure (Siebenaller & Somero, 1978;

Somero et al., 1983; Young et al., 1996), oxygen minimum (Gage, 1986; Rogers, 2000), sediment

type (Day & Pearcy, 1968; Haedrich et al., 1975), water mass structure (Tyler & Zibrowius, 1992),

currents, topography and food supply (Rowe & Menzies, 1969; Hecker, 1990; Rice ef al, 1990; Cartes

& Sardd, 1993), larval dispersal (Rowe & Menzies, 1969; Grassle ef al., 1979, Billett, 1991),

competition, predation and trophic level (Rex, 1976; 1977; Haedrich et al., 1980; Cartes & Sardd,

1993).

ldentifying specific environmental variables that restrict the depth ranges of deep-sea species and

their etfects on an organism remains an unsolved problem. However, a more detailed knowledge of

the vertical distribution of deep-sea species may help to indicate factors that affect species distribution

and large-scale zonation (Young ef a/., 1996).

Recently, continental margins and the adjacent abyssal plains have been the focus for a number of

major scientific programs. The northeastern Atlantic Ocean has been the subject in a number of

national (e.9. British, Dutch, French and German) programs, and in international ones, mainly funded

by the European Union, which have influenced the development of modern themes in deep-sea

biology (Levin & Gooday, 2003): e.g. the International Council for the Exploration of the Sea (ICES)

(http://www.ices.dk); the Ocean Margin Exchange (OMEX) project (Huthnance et a1.,2001; Wollast &

Chou, 2001); the GEOmound/ECOmound project (http://geomound.ucd.iel) focusing on environmental

controls on mound formation along the European margin; the project ACES (Atlantic Coral Ecosystem

Study) studying the biology and ecology of deep-water coral ecosystems (http://www.pal.uni-

erlan gen. de/proj/aces/).

The Ocean Margin Exchange (OMEX) Programme was a large-scale multidisciplinary project bringing

together scientists from 40 universities and institutes throughout Europe. This project supported by the

European Commission in the framework of its Marine Science and Technology programme (MAST)
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aimed at gaining a better understanding of the physical, chemical and biological processes occurring

at the ocean margins in order to quantify fluxes of energy and organic matter across this boundary.

Recognising the environmental significance of shelf-edge exchange and its role in global

biogeochemical cycling, this MAST initiative aimed to characterise the flux of carbon, nutrients and

other trace elements between the coastal seas and the open ocean.

During OMEX l(1993-1996) investigations concentrated in the northeastern Atlantic Ocean on the

Celtic Sea shelf edge which links a relatively broad continental shelf with the deep sea (Flach et al.,

1998; Heip et al.,2OO1; van Weering et a1.,1998a). OMEX ll (1997-2000) was designed to look at a

contrasting system, the relatively narrow lberian margin off the north-western Spanish and Portuguese

coasts (van Weering et al.,2OO2; Davies et al.,2OO2). Designed to meet the priority objectives of the

International Geosphere-Biosphere Program (IGBP), OMEX took into account the specific features of

the European marine environments and settings, and capitalised on the expertise of the European

oceanographic community within the MAST framework.

Recognising the importance of deep-sea research, this PhD research aims at giving an overview of

the hyperbenthic fauna inhabiting the benthic boundary layer at two continental slope areas in the

northeastern Atlantic Ocean, the Porcupine Seabight, west of lreland and Meriadzek Terrace, west of

France. This study, based on quantitative samples of hyperbenthic fauna, determines the bathymetric

distribution and biodiversity of hyperbenthic taxa and species from the shelf break to bathyal depths

and examines the depth-related distribution and abundance of species within their depth ranges.

Patterns of the hyperbenthic distribution are discussed in terms of what is known about the ecology of

the taxa and species sampled. The main objectives are described in more detail at the end of this

chapter (see 1.5. Research objectives). The general aspects of the studied topographic unit and the

studied fauna are described in the next paragraphs.
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1.2. Definition of continental margins and slopes

Ocean margins are global scale features that mark the transition between the continental and oceanic

crust. They are the product of predominantly vertical (r.e. subsidence and uplift) rather than horizontal

movements and are the expression of sea-level changes throughout geological times (Henriet, pers.

comm.). Ocean margins are the transitional zones between the oceans and continents where most of

the sediments derived from the land are deposited (Wefer et a1.,2002). The effective processes here

are influenced by a variety of steering mechanisms, from mountain building and climate on the land to

tectonics and sea-level fluctuations at the margins of the seas. These areas are also of great

importance for the global biogeochemical cycles because, although they only make up about 20 % of

the ocean's surface, 50 % of the global marine production takes place here. The continental margins

can be broadly divided into the continental shelf close to the coast (down to about 200 m on

average), the adjacent and somewhat steeper continental slope (down to 3000 m) (Fig. 1.1), and the

continental rise at the limit with the abyssal plains (Blondel, 2OO2). Two types of continental margins

can be distinguished: active and passive ones.

1.2.1. Active and passive continental margins

Gontinental margins are of two types, depending on the tectonic condition: margins at the edges of

converging tectonical plates, where one lithospheric plate has to dive below another one (r.e.

subduction), are called convergent or active margins, while passive continental margins (Fig. 1.1)

are created by divergence as a result of tensile stresses (Henriet, pers. comm.). Active margins are

the sites of tectonic activity (e.9. earthquakes, volcanoes). Because of the mountainous terrain, most

of the rivers are fairly short, and the continental shelf is narrow to non-existent, dropping off quickly

into the depths of the subduction trench. A good example is the west coast of South America with the

Andes Mountains. At passive continental margins there is no subduction taking place, so tectonic

activity is minimal and the earth's weathering and erosional processes are winning. This leads to low-

relief (flat) land extending both directions from the beach, long river systems, and the accumulation of

thick piles of sedimentary debris on the relatively wide continental shelves. Passive margins are

typical for the Atlantic Ocean. This latter type of continental margin is the study object of this PhD

research.

6
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Fig.l.1 lllustration of the evolution of a passive continental margin with distension faults and sedimentation processes. The

major margin structures are indicated: continental shelf, continental slope and continental rise. (modified after Henriet & De

Batist,2001)

1.2.2. Topography of the deep-sea floor

The topography of the deep-ocean floor is predominantly the result of a cooling history of the ocean

crust (Henriet, pers.comm.). New lithosphere forms at a spreading center. As the new crust spreads

laterally it cools, becomes denser and gradually subsides. As the oceanic crusl ages and begins to

spread laterally the deep-sea sediment layer thickens. Moreover, the topography of the floor of the

deep ocean (Fig. 1.2) is a balance between this seafloor spreading and secondly sedimentation of

inorganic and organic particles. Most places along the boundary of every continent are characterized

by an area of shallow water, which may range from a few kilometres to more than 1000 kilometres in

width. These areas, where the oceans cover a portion of the continental landmass, are called

continental shelves. Averaging approximately 60 metres depth, these shelves slope gradually away

from the shore at a rate of about twelve metres every kilometre, ending at the shelf break.

The deep sea is usually defined as beginning at the shelf break, because this physiographic feature

coincides with the transition from the basically shallow water fauna of the shelf to the deep-sea fauna

(Sanders et al., 1965; Hessler, 1974; Merrett, 1989). In many parts of the ocean, the shelf break is

situated at about 200 m depth, initiating the deep sea (Thistle, 2003).

The transition from the gently sloping continental shelf to the deep ocean basin is called the

continental slope (Fig. 1.2). Here, the ocean depth increases rapidly, reaching several thousand

metres within a few kilometres. The base of the continental slope is the boundary between the

continental crust and the oceanic crust. The continental shelf and slope are often cut by deep

canyons running perpendicular to the shoreline. These canyons are associated with power{ul currents

which scour the canyon out of the surrounding sediment. The gradient of the slope may be interrupted
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by terraces and submarine canyons. The latter appear irregular, fissure-like channels cut down the

continental slope which may act as conduits for transport to the deep ocean basin beyond. The

canyons were most active as such during glacial periods when sea levels were lower, and downslope

processes far more intense than today. However, bottom cLrrrents, strong enough to resuspend the

sediment, may occur from internal tides focussed along the canyon axis (Gardner, 1989). Their V-

shaped profiles are probably the result of erosion by turbidity currents (Gage & Tyler, 1991).

Along passive margins, where sediments have moved down the continental slope to settle, a

formation called a continental rise may be found, or, if the base of the slope is offshore from a large

river, there may be a much larger formation of alluvial sediment called a submarine fan. These

formations vary greatly in width and in the thickness of the accumulated sediments. While relatively

gradual in slope, up to 25 degrees, continental rises are significantly steeper than continental shelves

(Gage & Tyler, 1991).

By a depth of ca. 4000 metres the seabed has levelled off to give a wide expanse of relatively flat

abyssal plain (Fig. 1.2), which extends gently from four kilometres to six kilometres depth. Abyssal

plains are often undulating and quite featureless, or they may be interrupted by numerous flat-topped

guyots or seamounts, which are inactive ocean-floor volcanoes that do not rise above sea level, and

sometimes occur in chains (Epp & Smoot, 1989).

The abyssal plains do not extend across the oceans but are separated by the mid-ocean ridge. The

ridge is the site of formation of new ocean crust and is a more or less continuous system occupying

about 33 o/o of the area of the ocean floor. Mid-ocean ridges are usually about 2.5 km below sea level,

but, with increasing distance from the ridge, depth increases to about five to six kilometres.

Trenches occur if the abyssal plain is bordered by an active margin, when the oceanic crust (the

lithosphere) buckles and deepens by subduction beneath an adjacent continent.
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Figure 1.2 Schematic diagram showing the topography of the deep ocean (Angel, 1997).

The terms applied so far are geological (such as margin, ridge, continental slope, shelf efc.), whilst the

ecological depth zones associated with them are also given in Fig. 1.2 and are described below

(Table 1.1). A first and obvious division is the separation of the sea bottom, the benthic province,

from the water column, the pelagic province. Because water depth and illumination directly and

indirectly affect the distribution of organisms, both the benthic and the pelagic province are subdivided

into smaller zones (Fig. 1 .2 and Table 1.1). ln addition the neritic zone is that part of the pelagic zone

which extends from the high tide line to the ocean botlom less than 200 m deep, while water deeper

than 200 m is referred to as the oceanic zone (Fig. 1.2).

Table 1.1 Characteristics of the different ecological depth zones in the oceans.

Pelagic Province
zone depth illumination

Benthic Province
zone

epipelagic
mesopelagic

bathypelagic

abyssopelagic
hadalpelagic

G200 m

2@10@m
1000-2700 m

2700-6000 m
>6@0m

euphotic
disphotic
aphotic

aphotic

aphotic

littoral

subliftoral
bathyal

abyssal
hadal

intertidal

0-200 m
20G27ffim
2700-@00 m

> 6000 m
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1.3. The northeastern Atlantic continental slope

Some specific aspects of the northeastern (NE) Atlantic continental slope will be described below

because this is the topographical feature studied in this PhD work.

1.3.1. NE Atlantic area situated

The research presented here is concentrated on two continentalslope areas in the NE Atlantic Ocean:

Porcupine Seabight (lreland) and Meriadzek Terrace (France) (Fig. 1.3). The NE Atlantic includes the

European part of the Atlantic Ocean. The area is limited to the south by the 36"N parallel, to the west

by the 42W, to the north by the 62'N and to the east by the Atlantic coast of Europe up to the British

Channel and further along the west coast of England and Scotland (Fig. 1.3). Porcupine Seabight is

part of the lrish continental margin, while the Meriadzek Terrace belongs to the French margin, both

situated in the NE Atlantic.

15'W

Figure 1.3 Map showing the NE Atlantic indicated by the dashed square. (modified after Encarta atlas) and a detailed map

indicating the two study sites Porcupine Seabight and Meriadzek Terrace (red arrows) (modified after

Pingree & Le Cann, 1990). The 100 feet (=30.48 m) and 1000 feet (=304.80 m) isobaths are indicated.
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Topography of a section of this area (Fig. 1.4) shows some of the most prominent physiographic

features of the deep ocean between 58-42" N and 0"-18" W. The Rockall Plateau (RP), built up of

almost completely submerged continental crust, is separated from the continental crust of northern

Europe by the Rockall Trough (RT). Two seamounts, the flat{opped Anton Dohrn Seamount (ADS)

and Hebridean Seamount (HS) lie on the continental rise of the eastern Rockall Trough. The latter

basin opens into the deeper Porcupine Abyssal plain (PAP). The steep continental margin lying

southwest of lreland is broken by a large bight-like terrace, the Porcupine Seabight and further south

by numerous canyons on the continental slope of the Bay of Biscay.

RP

4:_is

Bay of Biscay

":.: .E!.l, I. :-: - ' {
nt'F#E

Figure 1.4 Topography of a section of the NE Atlantic based on GEBCO (General Bathymetric Chart of the Ocean, version

2003) bathymetry. The different abbreviations are explained in the text above.

Porcupine Seabight

11



Vd ron i qu e V anq u i ckel be rg he Chapter 1. lntroduction and objectives

1.3.2. NE Atlantic continentalslope as a habitat

As mentioned before, the continental slope is the band of seabed that slopes steeply down from the

edge of the continental shelf (the shelf break), at about 200 m depth, to the deep-ocean floor at

between 1000 m and 2000 m depth. The habitat includes both the seabed and the overlying water

column. Some background information on this area as a habitat is outlined below.

Hydrographically the habitat is dominated by the slope current. The axis of this current is at a depth

of around 500 m. lt flows poleward at speeds of about a knot, transporting warm North Atlantic Central

Water (originating in the Bay of Biscay) over the Wyville-Thomson Ridge and through the Shetland

sub-region into the Norwegian Sea. At a depth of 600 m in the Rockall sub-region, water temperatures

are still quite high (circa 7'C) and there is a salinity maximum of Mediterranean water origin. In the

Shetland sub-region water temperatures drop rapidly to less than 0"C below about 550 m, the sill

depth of the Wyville-Thomson Ridge. Consequently the fauna living deeper than 550 m is boreal in the

Shetland sub-region and temperate in the Rockall sub-region.

Almost allfood available to the deep-sea benthos is derived from primary production in the euphotic

zone. The North Atlantic has been an impoftant area for the development of ideas about the delivery

of food to the ocean floor (Gooday & Turley, 1990; Rice & Lambshead, 1994). The long-held notion of

a uniform (non-seasonal) rain of fine particles was swept aside in the late 1970s and early 1980s by

two discoveries. Firstly, it was found that the flux of settling particles may have a distinct seasonal

component. Secondly, in areas of the North Atlantic which experiences a strong spring bloom, this

seasonal flow is dominated by sinking aggregates of phytoplankton detritus (phytodetritus). These

escape recycling in the mixed layer of the ocean and settle to the abyssal ocean floor over a period of

several weeks (Turley et al., 1995; Lampitt & Antia, 1997). This mass seasonal deposition of

aggregated phytodetritus to the ocean floor was first revealed at the Porcupine Seabight

(Rice etal., 1991). Phytodetritus has been observed at a variety of other continental margin sites in

the NE Atlantic, including the Bay of Biscay (Sibuet, 1985) and the Norwegian continental margin

(Graf, 1989). The delivery of phytodetritus to the seafloor appears to occur in areas of the north

Atlantic where the winter thermocline is relatively deep (>500 m on the Porcupine Abyssal Plain),

leading to a strong spring bloom and an accumulation of phytoplankton biomass (Rice ef al., 1994).

Thus, primary productivity in the region follows a seasonal fluctuation. lt is low during the winter when

day lengths are short and the upper water column is mixed to depths of several hundred meters.

Between spring and early summer, as weather conditions moderate and day length and solar radiation

increase, the upper few tens of meters of the water column become thermally stratified. Phytoplankton

ceases to be either light- or nutrient-limited and some species, particularly diatoms, grow rapidly. A

spring bloom develops rapidly using up all the available nutrients. The stratification inhibits

replacement by vertical mixing, so the bloom collapses. Heavy deposition of phytodetritus usually

follows the collapse of the bloom and stimulates a marked seasonal response in the seabed

12
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communities. In the post-bloom period the productivity remains at a relatively low levelthroughout the

summer until autumnal storms begin to erode the stratification. When the early storms do not totally

disrupt this stratification, there is a short-lived autumnal bloom before the onset of winter conditions.

Pulses of phytodetritus and other forms of organic matter typically evoke a rapid response by the

benthic community and serve to couple processes on the deep-sea floor and in the upper water

column (benthopelagic coupling) (Gooday & Turley, 1990).

An important feature of the continental slope is the shelf break, Le. the transition zone between the

continental shelf and slope (Wefer et al.,2OO2). Along the shelf break in the NE Atlantic there is a front

between shelf (neritic) and oceanic waters. Oceanic fronts are sites of enhanced productivity

because nutrients tend to be resupplied to the euphotic zone by upwelling. Another important process

enhancing productivity at the shelf-break is the generation by tidal oscillations of internal wave

packages (solitons) which break, under cedain circumstances, vertically mixing the water (Wefer ef a/.,

2OO2). The shelf-break front marks a sharp change in the species composition. Offshore there is an

increase in species richness in benthic and pelagic communities, and the mean size of phytoplankton

generally becomes smaller (Gage & Tyler, 1991).

The high production of plankton at the shelf break makes it an impofiant feeding ground for large

schools of fish, flocks of oceanic birds and cetaceans. Several commercially exploited fish species

spawn along the shelf break including mackerel (Scomber scombrus) and blue whiting (Micromesistius

poutassou) (http://www.ukbap.org. uk).

Species richness, in both pelagic and benthic taxa, increases with depth (along the slope) reaching a

maximum at 1000 to 2000 m, despite community biomass generally decreases by an order of

magnitude from the shallowest depths (Gage & Tyler, 1991). However, the decline in benthic biomass

is erratic and high concentrations of biomass occur especially where internal waves result in

resuspension and a local increase in suspended material (Rex, 1981).

In recent times, deep-water communities along the continental margins have received increasing

attention because of the interest in new fishing grounds and fisheries at bathyal depths (Hopper,

1994). The number of fish species caught rises to a maximum at a depth of 1000 m, and then declines

slowly into deeper water. Mean body size and longevity tend to increase with depth, whereas fecundity

declines. Gonsequently deeper-living species are more susceptible to over-exploitation

(Lacketal.,2003). Commercial fishing for orange roughy (Hoplostethus atlanticus) started only

recently (1991) but stocks of this long-lived, slow-growing and low fecundity species have already

fallen to near extinction levels (Lack ef al., 2OO3). Other species caught regularly include blue ling

(Molva dypterygia), roundnose grenadier (Coryphaenoides rupeslns) and a variety of deep-sea sharks

(including Centrophorus spp, Centroscymmus spp and Etmopterus spp) (Basson et al., 2OO2;

Large et a1.,2004).

Deep-water coral banks are widespread along the NE Atlantic margin, at shelf breaks and on the

upper continental slope. The majority of these coral banks, whose biodiversity is comparable to those

13
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of tropical coral reef settings, are constructed by the framework builder Lophelia and associated fauna

(Jensen & Frederiksen, 1992; Mortensen et al., 1995; Rogers, 1999). A wide variety of animals such

as bryozoans, hydroids, sponges and other corals are attached to the coral framework. Several fish

species, (e.9. redfish, cod, ling), crustaceans, molluscs, starfish, brittle stars and other animal taxa live

in association with the corals.

1.3.3. Gurrent factors affecting the habitat

Anthropogenic activities in the coastal areas and in the open sea will affect marine ecosystems in

different ways. Around the NE Atlantic Ocean, the human population is concentrated in the coastal

area. An increasing human population in this area has led to an increase in sewage discharge, in

maritime transport, use of the sea for tourism and recreation and exploration of the natural resources

in the sea. Over-fishing, eutrophication, dumping, direct discharges and spills of contaminants are all

threats to the biodiversity in the ocean.

Many factors have been identified as possible influences on the quality of the continental shelf/slope

habitat by the UK Biodiversity action plan (http://www.ukbap.org.uk). A short discussion of these

threats and possible solutions is given below.

Fishing activity has extended into deep water as stocks on the shelf have dwindled. Some

trawling and lining has been conducted for demersal species to depths of 1000 to 2000 m.

There is little regulation of this activity at present and some species have been driven to very

low, nearly extinction stock levels. As an example of over-fishing, intensification of fishing in

the southern Bay of Biscay has led to the virtual extinction of elasmobranches (e.9. rays,

skates, sharks), which have a long reproduction time. Most of the commercialfish stocks are

outside 'safe biological limits' in the Atlantic area (OSPAR, 2000), including cod, hake,

sardine, etc. The International Council forthe Exploration of the Sea (ICES, 1996) indicate

that there is a need for a 40 7" reduction in the fishing fleet to avoid over-fishing and match

available fish resources.

The input of contaminants and discarded materials from shipping traffic is becoming a real

threat. This is being reduced but offshore monitoring is ditficult. The offshore environmental

impacts of aerialsources of contaminants are not known.

The most recent potential threat is posed by the offshore oil exploration and associated

activities, causing contamination and disturbance to the seabed and an increased risk of

accidental oil spills from platforms and maritime transport. For example the accidental oil spill

caused by the tanker 'Prestige' in 2OO2 had a major impact on seabirds, mammals, fishing and

the marine life at the polluted seashore.

14
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1.3.4. Current regulations for protection

In the NE Atlantic Ocean there is a large diversity of ecosystems. To protect ecologically valuable

areas, all countries have established some form of Marine Protected Areas (MPA's). Most of the

MPA's so far established are close to or adjacent to shores. However, many offshore areas are

impoftant spawning areas and nursery grounds that need protection, thus a considerable increase of

offshore MPA's could be considered. The introduction of No-Fishing Zones (NFZ's) may be useful to

protect some species of fish and ecosystems. lnternational legislation and agreements have a major

influence on the rnanagement measures (hilp://www.ukbap.org.uk; UK Biodiversity Action Plans,

1999). Some of the internationalagreements and regulations are outlined below.

the UN Convention on the Law of the Sea (1982) which was ratified by the UK in 1997 and

which provides a framework for the regulation of all ocean space. lt sets out responsibilities of

coastal nations for marine habitats and wildlife.

the London (Dumping) Convention which is concerned with the protection of the marine

environment from ship pollution, aircraft and man-made structures and resulting from normal

operations (i.e. not from deliberate dumping). lt covers a wide range of substances with some

generally biodegradable or innocuous bulky substances specifically excluded. lt includes a

ban on incineration at sea.

the International Convention for the Prevention of Pollution from Ships (MARPOL Convention)

which covers pollution from shipping and includes provisions for identifying Particularly

Sensitive Sea Areas and Special Areas, where stronger regulations to limit ship-based

pollution apply.

the Oslo and Paris Conventions (OSPAR) which aim to prevent pollution of the marine

environment of the northeastern Atlantic from land-based sources, and from dumping from

ships and aircraft. Unlike the previous two conventions, which are global, these are only

regional but cover a wider range of sources.

the EU Common Fisheries Policy which is aimed at the management of the fish stocks in the

UK waters, along with those of other EU coastalstates.

the UN agreement on Straddling Stocks which tries to achieve the holistic management of

migratory stocks.

the lnternationalWhaling Commission (lWC) which has banned the commercial exploitation of

whales. Not all nations agree with these measures, for example Nonrvay continues to catch

minke whales (Balaenoptera acutorostrata).

the Bonn Convention which aims to improve the status of all threatened migratory species

through national and international agreements between range states of particular groups of

species, for example the Agreement on the Conservation of Small Cetaceans of the Baltic and

North Sea (ASCOBANS).
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Many other national and international requirements have an indirect etfect on the quality of the oceans

by regulating matters such as ship construction and other safety issues. All these actions rely on and

are supported by major scientific research.
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1.4. Hyperbenthos living in the benthic boundary layer

The hyperbenthos, the studied fauna in this PhD research, is a term applied to the association of

small animals living in the water layer close to the seabed (Mees & Jones, 1997). The species

composition of the hyperbenthos is distinctly different from that of other benthic and planktonic

groupings, and includes typical species, planktonic species derived from their downward

extensions and endo- or epibenthic species as they emerge into the water column (Mees & Jones,

1997). Besides this theoretical definition of hyperbenthos, a working definition of this fauna for this

particular study is described in chapter 2 (2.2Working definition for hyperbenthos).

ln recent years, there have been considerable developments in hyperbenthic research in the tropics,

in temperate to cold-water coastal and shelf regions, and in the deep sea. Unfortunately, there is little

or no mutual acknowledgement of results partly due to differences in terminology. For example,

'hyperbenthos' and 'suprabenthos' are used mainly in temperate and northern areas, whereas

'demersal zooplanhon' and 'benthopelagic plankton' are preferred to designate the same fauna in

tropical areas and the deep sea respectively (Mees & Jones, 1997). Sampling these often highly

mobile animals is not easily done as they are not collected efficiently by conventional benthic or

pelagic samplers. A wide range of hyperbenthic sampling devices has been constructed and used with

varying success. Typically, soft-bottom communities are sampled with sledges and hard substrata

(including coral reefs) with traps. Problems with quantitative hyperbenthic sampling are discussed in

chapter 2 (2.3.2. Problems with quantitative hyperbenthic sampling).

Despite the scattered knowledge on hyperbenthic communities, evidence of the potential role of this

fauna in marine ecosyrstems has often been emphasized. Hyperbenthos plays an important role in

marine food webs. Hyperbenthos as a food source for juvenile demersal fish species and adult shrimp

species is well documented for shallow coastal areas and estuaries (e.9. Mauchline, 1980;

Mees & Jones, 1997; Hostens & Mees, 1999; Beyst et al., 1999; Oh et al.,2OO1) and more recently for

the deep sea as well (Mauchline, 1986; Cades, 1998; Bjelland et a1.,2000). So a function in carbon

flux to higher trophic levels is established. Hyperbenthic species are also believed to contribute to the

conversion and recycling of organic matter as several species were indicated to feed on non-refractory

detrital matter (Kost & Knight, 1975; Jansen, 1985; Fockedey & Mees, 1999). Particularly for the deep

sea, scavenging amphipods and isopods might be of specific importance for the flux of organic matter

to the sea floor (Thurston, 1979; Lampitl et a1.,1993; KaTm-Malka, 1997). The swimming activities of

the hyperbenthos may also contribute to the fragmentation of organic matter or marine snow in the

water column, as was indicated for Euphausiacea (Dilling & Alldredge, 2000; Graham et al.,2OOO)'.

Disaggregation of marine snow alters the availability and size distribution of particles possibly leading

to a change in the rate of particulate carbon utilization and overall microbial activity in the water

column (Dilling & Alldredge, 2000). In addition, the motility and behaviour of the hyperbenthos at the
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water-sediment interface can cause bioresuspension and biodeposition, resulting in an increasing

particle flux (Graf & Rosenberg, 1997).

The hyperbenthic fauna is an important component of the benthic boundary layer (BBL) fauna. In

nearly all marine ecosystems investigated to date, there is a general increase in the biomass at the

benthic boundary layer relative to the water column immediately above it. The benthic boundary layer

is defined as the layer of water, often tens of metres thick, adjacent to the seabed and with

homogeneous properties of temperature and salinity, which sometimes contains resuspended detrital

particles (Turley, 2000). lt is an environment of great complexity both from a physical (Gage &

Tyler, 1991) and biological (Smith & Hinga, 1983) perspective, because it is the interface between

pelagic and benthic environments, communities and processes (Wishner & Meise-Munns, 1984).

Faunal biomass close to the bottom seems to be higher than biomass further away from the bottom

(Wishner, 1980b, Smith, 1982). Measurements of ATP suggest that bacterial abundances are also

elevated (Karl ef a1.,1976). Data from nephelometers (Eittreim et al., 1976; Biscaye & Eittreim, 1977),

sediment traps (Rowe & Gardner, 1979) and water samples (Baker & Feely, 1978; McCave, 1983)

indicate that there is much sediment resuspension from the bottom into the BBL, and material

transported downward from the upper ocean must also pass through the BBL before becoming

available as food to benthic consumers or being deposited on the bottom as sediment. The increased

concentrations of particles and greater biomass of organisms that may be utilizing and altering these

particles suggest that the BBL is a zone of relatively intense biological activity within the deep sea.

This is also supported by the elevated rates of zooplankton oxygen consumption and ammonium

excretion (Smith, 1982). Thus, within the deep sea, the BBL can be distinguished from the remainder

of the water column by its species composition, increased concentrations of particulate material and

biologically active chemical substances, elevated biomasses of organisms from bacteria to fish, and

elevated metabolic rates (Wishner & Gowing, 1987).

Besides this biological approach of defining the benthic boundary layer, this layer is also

mathematically described by Thomsen (2002). Approaching the sea floor from above, the upper limit

of the BBL is defined as the distance above bottom at which the mean flow velocity is 0.99 u-, where

u- is the free-stream velocity. The BBL at continental margins is in the order of 5 to 50 m thick

(Thomsen, 2002). More than the theoretical 10 % of the BBL thickness obeys what is known as the

law of the wall:

u.. zulz) = -ln-KZo

which is often used to describe the mean velocity profile in regions near the bed where the flow is fully

turbulent and neutrally stable (r.e. not stratified) (Thomsen, 2OO2). Convention in BBL work is to use z

as a distance (L) upward from the bottom, K is von Karman's constant (0.41, dimensionless), u. is

shear velocity (LT-l) and zs is the roughness height. The a of a natural sea floor is strongly affected by

benthic organisms structuring the microtopography of the sediment surface.
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The existence of specific BBL assemblages (mainly composed of crustaceans) at continental slope

environments was already suggested by Marshall & Merrett (1977), Wishner (1980a, 1980b),

Hargreaves (1984) and Gordon & Mauchline (1990). Moreover these deep-water communities have

received increasing attention because of the interest in new fishing grounds and fisheries at bathyal

depths (Hopper, 1994; Merrett & Haedrich, 1977). Despite of the growing effort to study these

communities, the dynamics of the bathyal benthic boundary layer and its fauna is still far from being

wellunderstood.

For this PhD research the term BBL is used to describe the part of the water column sampled by the

hyperbenthic sledge just above the ocean floor, r.e. 0-100 cm above the bottom.

1.5. This study: overview and obiectives

1.5.1. Overview

Traditional marine biology has long been conditioned by what is most accessible. Our knowledge has

perhaps been overly influenced by what can be learned from intertidal and shallow subtidal systems

that represent only a very small portion of the total ocean bed and its biological populations (Gage,

2002). On the shore, easier access and greater visibility of biota, has provided a rich fund of

knowledge compared to what we know about life in deeper waters. Here, direct observations might

only be possible from hugely expensive manned submersible and deep-diving ROV's. Yet most of

what we know of the rich biodiversity at the continental margins and beyond is still very largely based

on what can be retrieved in trawls and grabs lowered to the bottom on hundreds or thousands of

metres of wire rope. Deep-sea environments are likely to harbour high levels of natural biodiversity,

and although there is a large (and growing) body of evidence both for and against hypothesis, the

deep sea remains relatively poorly unexplored. This has meant that, despite more than a century of

study, knowledge of the deep-sea benthos is still limited (Horton, 2003).

Ocean margins are the prime sites for marine biodiversity research since they offer an extraordinary

range of environmental gradients and contrasts that will help unravel the highly complex relationship

between the environment and biodiversity at all of its scales. Growing exploration of continental

margins has indicated the existence of specialized benthic communities in association with a large

variety of seafloor habitats at depths from 200 m up to 4000 m. These habitats are characterized by

particular substrate features (from fine pelagic sediments up to Lophelia rubble), by specific

topographic profiles (created by mounds, slopes, canyons), by biogeochemical gradients (due to

seepage, oxygen minimum zones) and by differences in productivity in relation to latitudinal or

bathymetric gradients. As these habitats are often fragmented in nature, their communities may be

more sensitive to disturbance. There is a growing scale of interuention by man in the deep waters of

the continental margins which poses a threat of disturbance to what is perceived as a pristine

ecosystem. The main actualand potentialthreats to the margin system habitats and biodiversity in the

NE Atlantic are the lack of sustainable regulation of fisheries, the pollution from maritime transport and
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the oil/gas prospecting. Therefore further attention should be given to particular continental margin

ecosystems since growing exploitation pressure could soon lead to irreversible changes to these

hotspots of biodiversity.

Despite recent advances in ocean margin research providing us with new insight and hypotheses as

to the nature of geosphere and biosphere interactions, knowledge on hyperbenthic communities

inhabiting this unique habitat along continental margins is still limited. One might expect clear diversity

and community patterns of this BBL fauna with depth along continental slope areas. This PhD

research aims at improving the knowledge on spatial distribution and biodiversity patterns of the

hyperbenthic fauna along the continental slope by studying this fauna in two sites along the NE

Atlantic Ocean: Porcupine Seabight and Meriadzek Terrace. These two transect represent a natural

depth gradient along the European ocean margin and were selected for different reasons. The

Porcupine Seabight is a bight-like terrace which interrupts the steep continental margin southwest of

lreland. The sampled transect in this area is characterized by the nearby mound provinces and

associated deep-water coral reefs, which might able us to study possible influences of this habitat.

Moreover, no hyperbenthic research was performed in this area before. The second transect is part of

the continental slope of the Bay of Biscay and was studied before, but within a restricted depth range,

which is extended by this research. Both transect, as part of the European ocean margin might

provide new insights to across and along slope spatial distribution and biodiversity patterns of

hyperbenthic fauna. Moreover, comparing these two unique sites to other studied sites in more

northern and southern areas may create useful hypotheses on large scale phenomena.

An overview of the research objectives is given in the next paragraph.

An overview of recent literature reporting on the hyperbenthos (or on certain hyperbenthic taxa) of

deep-sea areas (deeper than 200 m) is given in Table 1.2. Deep-sea communities have been

described, both from a faunistic and community structure perspective (e.9. Elizalde et al., 1991:

Dauvin et al., 1995; Sorbe, 1999; Cartes & Sorbe, 1995, 1996, 1997; Cartes, 1998).
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Table 1.2. Overview of recent literature reporting on the ecology of hyperbenthos (or on hyperbenthic taxa) occuning at depth

strata below 200 m. All studies applied sledges for sampling: BB: Brandt-sledge (Brandt & Barthel, 1995), BS: benthopelagic

sampler attached to Agazzis trawl (see Sirenko et a/., 1996), MG: Macer-GIROQ sledge (Dauvin & Lorger6, 1989), RP:

Rothlisberg and Pearcy sledge (Rothlisberg & Pearcy, 1977), SH: Sanders and Hessler sledge (see Marquiegui & Sorbe, 1999),

SS: Sorbe sledge (Sorbe, 1983), WH: Woods hole epibenthic sledge (Svavarsson etal., 1990).

Source Sledge Mesh size Depth
range

Fauna

NE Atlantic - temperate waters
Norwegian Sea and fjords

Buhl-Jensen (1986) RP
FossA & Brattegard (1990) RP

Meriadzek Terrace (W Bay of Biscay)
Vanquickelberghe (1999) SS
Dewicke (2002) SS

Cap Ferret area (SE Bay of Biscay)
Elizalde etal. ('199'l) MG
Elizalde eral. (1993) MG
Dauvin & Sorbe (1995) MG

Dauvin etal. (1995) MG

Sorbe & Weber ( 1995) SS
Sorbe (1999) MG

Capbreton canyon (SE Bay of Biscay)
Marquiegui & Sorbe (1999) SH
Corbari & Sorbe (2001) MG

Asturian Central Coast (S Bay of Biscay)
Anad6n (1993) SH

Portuguese continental margin (off Aveiro)
Cunha etal. (1997) SS

Catalan Sea (NW Mediterranean)
Cartes & Sorbe (1995) MG

Cartes & Sorbe (1996) MG

Cartes & Sorbe ('1997) MG

Cartes & Sorbe (1998) MG
Cartes & Sorbe (1999a) MG

Cartes & Sorbe (1999b) MG

Cartes & Maynou (200'l) MG

Cartes efal. (1994) MG
Cartes ('1998) MG

Cartes etal. (2004) MG

SW Balearic lslands (SW Mediterranean)
Cartes ef a/. (2003) MG

Northern (sub)polar regions
Laptev Sea (Siberian Arctic)

Sirenko efal. (1996)

Westwind Trough (off NE Greenland)
Brandt (1995)

Off E Greenland
Brandt (1997a, 1997b) BB

Kolbeinsey Ridge (off N lceland)
Brandt (1993), Brandt & Piepenburg (1994) BB

Northern Seas
Svavarsson etal. (1990)

Svavarsson etal. (1993)

Southern (sub)polar regions

BS

0.5 mm

0.5 mm

1mm
1mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm
0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.5 mm

0.4 mm

0.3 mm

0.3 mm

0.3 mm

147-550m Amphipoda
32-1260m Mysidacea

200-700 m Hyperbenthos

200-700 m Hyperbenthos

346-1099m Mysidacea
425 - 1043m Hyperbenthos

346-1099m Amphipoda
346-3070m Hyperbenthos

392-717 m Hyperbenthos
2400,3000m Hyperbenthos

1000 m Hyperbenthos

162-987m Hyperbenthos

50-1347m Mysidacea

21-299m Hyperbenthos

385-1859m Mysidacea

389 -'1808 m Cumacea
389-1859m Cumacea
355-1355m Mysidacea
389 - 1859 m Amphipoda
391-1255m Peracarida

638-1256m Mysidacea

389-1859m Euphausiacea

389- 1859m Hyperbenthos
147 -2266m Peracarida

249 - 1622 m Peracarida

51- 3042 m Hyperbenthos

45-517m

197-2681 m

830- I100m

794 - 3709 m
't0 - 3970 m

Peracarida

Peracarida

Peracarida

lsopoda
lsopoda

South Shetland lslands & Bransfield Strait (Antarctic Peninsula)

WH and RP 0.5 mm

WH and RP 0.5 mm

MG 0.5 mm

0.3 mm

45-650m Hyperbenthos

40-665m Peracarida

San Vicente et al. (1997)
Beagle Channel (Patagonia)

Brandt etal. (1997)

Vanquickelberghe (2005) SS 1 mm 200 - 1250 m Hyperbenthos

Peracarida
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1.5.2. Research objectives

The aim of this study is to characterise the hyperbenthic communities inhabiting continental margin

areas in the NE Atlantic. ln a first part an extensive study covering the complete hyperbenthos (on

higher taxon level) in the two study areas, Porcupine Seabight (lreland) and Meriadzek Terrace

(France), is performed. A second part covers the detailed study of the main inhabitants of the studied

benthic boundary layer (BBL): the peracarid crustaceans (on species level). This group of animals

comprises the orders Mysidacea, Cumacea, Amphipoda, lsopoda and Tanaidacea. The study sites

description and the methodology used are given in chapter 2.

For the first part (chapters 3 and 4) the study's approach is to assess the fauna of the hyperbenthal

zone (i.e. the zone occupied by the hyperbenthos) as an ecological entity at the interface between the

benthic and the pelagic realms. Thus, rather than to focus on one or two specific taxa, the entire

hyperbenthic community is considered, i.e. allsmallanimals swimming in the vicinity of the seabed.

In chapter 3 the hyperbenthic fauna of the continental slope (between 200 and 1250 m water depth)

at Porcupine Seabight, offshore southwest of lreland is studied in order to characterise the BBL

assemblages on the continental slope environment as suggested by Marshall & Merrett (1977),

Wishner (1980a, 1980b), Hargreaves (1984) and Gordon & Mauchline (1990). Studying the vertical

or near-bottom distribution (also referred to as stratified distribution) of the hyperbenthic fauna in

the BBL in the first part of this chapter can provide more information on community structure patterns

within the BBL: is this BBL layer one homogeneous water mass or are there smaller scale patterns

within this one metre of water? Patterns of vertical distribution of the hyperbenthic fauna are discussed

in terms of what is known of the ecology. The second part of this chapter determines the horizontal or

bathymetric distribution (also referred to as across isobaths distribution) of the hyperbenthic fauna

along the slope environment and examines the zonation and abundance of the different higher taxa

within their depth ranges. Large-scale zonation will be analysed in view of the physical environment

and the ecology of the hyperbenthic taxa.

Chapter 4 presents the investigations made on the hyperbenthic communities of the second study

area Meriadzek Terrace and these results are compared with the data collected from a similar

bathymetric transect at Porcupine Seabight (see chapter 3). The two slope areas in the NE Atlantic

were sampled from 200 to 1250 m depth, following a standardised sampling strategy. Three important

distribution patterns will be studied and discussed in order to find out what mechanisms are important

for the structuring of the hyperbenthic communities: 1) vertical or stratified distribution of the

hyperbenthos in the BBL, 2) across isobaths or bathymetric distribution and 3) along isobaths or

geographical distribution of the hyperbenthic fauna. This near-bottom or hyperbenthic fauna, a link

between the benthos and the water column, may quantitatively as well as qualitatively differ from the

rest of the deep-sea plankton (pelagial) and may be important in biological interactions within the BBL.

These animals, because of their proximity to the bottom, inhabit a more heterogeneous and possibly
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richer environment than deep plankton higher in the water column and may show a clear stratified

distribution within the BBL. More niches may be available, and a specialized hyperbenthic fauna

probably exists along with the regular deep-sea zooplankton (Wishner, 1980a). By comparing the data

from both study sites by means of multivariate analysis, some specific questions can be addressed

here: are the major hyperbenthic stratified and bathymetric or across isobaths distribution patterns

similar for both slope areas and can they be explained by environmental variables sampled along the

slope? Can comparison of the hyperbenthic community structure found in Porcupine Seabight and

Meriadzek Terrace put forward some general trends in geographical distribution patterns (r.e. along

isobaths distribution), depth related distribution patterns (r.e. across isobaths distribution) or stratified

distribution patterns (r.e. lower BBL zone 0-50 cm versus upper BBL zone 50-100 cm) of hyperbenthic

fauna? The results will be discussed in terms of taxa composition, hyperbenthic densities and

environmental variables and in relation to other hyperbenthic community studies from the northeastern

Atlantic described in literature.

Chapter 5 (second part of the thesis) emphasizes the depth related distribution of peracarid

crustacean species along the two studied slope areas Porcupine Seabight and Meriadzek Terrace and

how the species of the different taxa Amphipoda, Mysidacea, Cumacea, lsopoda and Tanaidacea

behave along this bathymetric gradient. One might expect different strategies within the different taxa,

e.g. occurrence in a preferred depth range. In addition to the distribution this chapter deals with the

alpha and beta component of diversity of peracarid crustaceans along both continental slope areas.

Alpha diversity is translated into diversity of the peracarid species associated with one station or one

depth along the continental slope. Beta diversity is designated as the degree of species change along

the depth gradient characteristic of the studied continental slopes. Are both spatial levels of diversity

similar for the five major peracarid taxa, Amphipoda, Mysidacea, lsopoda, Cumacea and Tanaidacea

on species level and how does the species turn-over (beta diversity) along the continental slope

relates between the different taxa?

These interpretations will be discussed in terms of the ecology (e.g.feeding strategy) of the different

soecies.
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2.1. Characterisation of study sites

2.1.1. Area of interest

The two study sites, Porcupine Seabight (lreland) and Meriadzek Terrace (France) are situated

along the northeastern (NE) Atlantic continental margin between the Porcupine Bank and the Bay of

Biscay (Fig. 2.1). More specifically this research concentrates on the upper and middle part of the

continental slope in both study sites, between 200 and 1250 m of water depth (see 2.3. Sampling

strategy). Both study sites are described below in more detail.

N

54'

15"W 10' 50

Figure 2.1 Part of the NE Atlantic continental margin between the Porcupine Bank and the Bay of Biscay, with the two study

sites Porcupine Seabight and Meriadzek Terrace indicated (arrows) (modified after Pingree & Le Cann, 1990). The 100 feet

(=30.48 m) and 1000 feet (=304.80 m) isobaths are indicated.

Generally, between the Goban Spur (northerly delimited by the Porcupine Seabight) and the northern

Bay of Biscay (Fig. 2.1) from a depth of 150-4000 m, the NW European margin of the NE Atlantic

Ocean is characterized by a relatively mature, mud/sand rich system with deeply incised canyons on

the continental slope and submarine fans on the continental rise (Cunningham ef a/., 2003). The upper

part of the system (on the continental shelf) shows two sets of sand features: sand banks that are

orthogonal to the shelf break and sand waves that are parallel to the shelf break. The latter comprise
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parallel sand dunes between water depths of 150-300 m and provide a sand source for the sediment

transported via the canyon system to the abyssal plains. The middle paft of the system is made up of

a series of incised canyons with depths of 50-200 m and lengths of up to 2 km. The lower paft of the

system comprises a series of divergent, braided and meandering channels, which funnel major

turbidity flows (Cunningham et al.,2OO3).

2.1.2. PorcupineSeabight

The Porcupine Seabight is a bathymetric feature that forms an amphitheatre-shaped embayment in

the NE Atlantic continental margin southwest of lreland (Fi9.2.2). lt extends for about 230 km in the

nodh-south direction, and is 100 km wide at most (Masson & Miles, 1986; Rice ef al., 1991',

Huvenne et al.,2OO2). The Porcupine Seabight is bounded on its west and north-west side by the

Porcupine Bank, on its south and south-east side by the Goban Spur and to the east by the lrish Shelf

(Moore, 1992) (Fig. 2.2).

57T{ 57N

56tI 56N

5st.I 551\l

54t{ 54N

53T1I 53N

52T{

51N

501\I
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51t'l

50T{

lr'w 16'w 14'w 12"w 10'w B'w

s
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=="1

:
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Figure 2.2 The study site Porcupine Seabight (anow) situated along the NE Atlantic continental margin. The position of three

important carbonate mound provinces, the Magellan mound province, the Hovland mound province and the Belgica mound 
l

province, are also indicated (http://geomound.ucd.ie/).
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Its sides slope steadily from the edge of the lrish shelf at 200 m down to a depth of about 3000 m. At

the mouth of the Seabight, the seabed slopes away more steeply to a depth of about 4000 m to join

the Porcupine Abyssal Plain. The western slopes of the Porcupine Seabight are steeper than the

eastern slopes. The eastern and nofthern slopes are the sites of important coral mounds (see 2.1.2.3.)

like the Hovland mounds and the Belgica mounds (Huvenne et al., 2002) (Fig. 2.2). On the eastern

slope of the Seabight are a series of channels, knows as the Gollum Channel System, running roughly

east-west through the Seabight.

2.1.2.1. Physicaloceanography of the Porcupine Seabight

The physical oceanography of the Porcupine Seabight has been reported by Rice et al. (1991) and

van Weering et al. (1998b), while a more extensive review of the currents and water masses in the

area was published recently by White (2001). A short overview of the main points is given below.

Water mass structure

The description of the hydrographic conditions at the mouth of the Porcupine Seabight is based on

potential temperature-salinity plots of CTD (Conductivity, Temperature, Depth) measurements

(Hargreaves, 1984; Ellet ef a/., 1986; Vangriesheim, 1985) (Fig.2.3). An upperlayerof Eastern North

Atlantic Water (ENAW) was found to a depth of about 750 m where it overlies a core of Mediterranean

Outflow Water (MOW), reaching down to about 1500 m, and marked by a salinity maximum and an

oxygen minimum at a depth of about 950 m (Fig. 2.3). A fresher and more oxygen-rich layer of

Labrador Sea Water (LSW), was located between 1500 and 1800 m. A small increase in salinity at

about 1900 m indicates the influence of Norwegian Sea Water (NSW), while below this depth there

are only small changes in temperature and salinity. A similar water column structure was found by

Ellet ef a/. (1986) a little further north along the Porcupine Bank, and by White (2001) from a large

number of CTD casts in the Porcupine Seabight. There is a permanent thermocline between 600 and

1400 m depth, with temperatures reducing from 10 to 4"C, while a seasonal thermocline forms at

about 50 m depth (Rice et a1.,1991).
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Figure 2.3 CTD (Conductivity, Temperature, Depth) profile in the Porcupine Seabight mouth showing the water mass

characteristics between 0-1250 m water depth (Rice ef a/., 1991). T= temperature; O= orygen; S= salinity; ENAW= Eastern

North Atlantic Water; MOW= Meditenanean Outflow Water; LSW= Labrador Sea Water.

Flow patterns and currents

A general northward current system, the slope current, is present along the NE Atlantic continental

slope margin (Huthnance & Gould, 1989; Pingree & LeCann, 1989, 1990; Huthnance ef al.,2OO1;

Pingree et al., 1999). This slope current is an eastern boundary current (Smith, 1989) comprising at

the upper levels a relativelywarm and saline shelf edge current (SEC) between depths of 150-400 m.

Below this level the Mediterranean Outflow Water and deep ocean re-circulation boundary also flows

poleward (Dickson etal., 1985).

Based on historical and recently gathered current data of a few EOOmound (Environmental Controls

on Mound formation along the European margin, European project; Henriet et al., 1998) and ACES

(Atlantic Coral Ecosystem Study; Freiwald et al., 1999) moorings in the Rockall Trough and the

Porcupine Seabight region, a map was produced with the mean current vectors between 2OO-1400 m

depth (White,2001) (Fig.2.4). Nor interannual variability, nor seasonal variability was taken into

account in this plot, due to different measurement periods. lt is clearly imaged that the poleward

(northward) flowing current has been recorded at all depth levels along the continental slope, in

panicular close to the seabed. The driving mechanism of the slope current is the poleward decline in

sea-surface height, caused by the increase of water density with latitude. The rate of reduction in sea-

surface height is greater over the deeper ocean than over the continental shelf, so that a difference in

sea-surface height is generated across the continental margin, which becomes larger further to the
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north (Huthnance & Gould, 1989; Pingree & Le Cann, 1989; Huthnance et al.,2OO1\. Beside the

baroclinic effect, friction also plays a role in the current pattern, which results in different

characteristics in the slope flow at different locations along the Atlantic margin

(Pingree & Le Cann, 1990). Friction slows down the effect of continuously increasing current speed

further northwards along the slope due to the baroclinic effect (White, 2001).

'2o -t8 -16 
rll.,gil"oi 

-10 '8 -6

Figure 2.4 Mean current vectors of bottom and surface currents in the northern part of the NE Atlantic (White, 2001)

The existence of this general slope current has been confirmed by several sets of current

measurements along the North West European continental shelf and slope (Pingree et al., 1999). In

general mean poleward currents of about 5 cm/s have been measured along the Celtic Sea slope

(Pingree & Le Cann, 1990; Huthnance ef a1.,2001). ln the Porcupine Seabight, a mean poleward

current is observed with a mean speed of 4 cm/s in the near-bottom current meters on the eastern

flank (Pingree & Le Cann, 1990). At the northern end of the Porcupine Seabight, currents are relatively

weaker (1-5 cm/s) with some evidence of a topographic steering of the mean flow, cyclonically

(anticlockwise) along the slope to the Porcupine Seabight. In general, the stability of the current in
Porcupine Seabight is stable to a large degree (White, 2001). The most stable currents are associated

with the strongest speeds and generally the greatest mean flows. Overall, the northern Porcupine

Seabight moorings adjacent to the Hovland mound province have the lowest current stability and

speeds. This might be expected as it is located near the barrier of the relatively deep shelf between

the Porcupine Bank and the lrish continental margin, which is a barrier to flows below about 350 m

o:o
E
J

CM means (2@14OOm depth)
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(White,2001). An important seasonal variation in the slope current regime (speed and direction) at

ceftain locations was observed (Pingree & Le Cann, 1990; White,2OO1; Huthnance et al.,2OO1).

South of the 53'N maximum poleward slope and shelf edge currents are found in winter (December-

February) with strong flows west of the Porcupine Bank (>10 cm/s) and at the slope of the eastern

Porcupine Seabight (Huthnance et al., 2001, White, 2001). At the northern paft of the Seabight the

poleward flow is the strongest through the deeper portion of the lrish shelf in January/February. The

flowfirstturns on-slope in FebruarylMarch and than reverses in April/May. Mean monthlyspeeds are

also weakest at this time. The reverse and significant weakening in the upper level currents are not

apparent in the lower layer current measurements although minimum current were found in summer in

the Porcupine region. Pingree & LeOann (1990) relate this effect partly to changes in large scale

density/pressure forcing or a change in wind stress at these times.

2.1.2.2. Sedimentary environment

Sediment type

The present-day sedimentation in the Porcupine Seabight seems to be dominated by pelagic and

hemipelagic depositions with sediments becoming finer towards greater depths (Rice ef al., 1991,

Huvenne et al., 2OO2). Between 500-900 m depth, often strongly bioturbated coccolith-foraminiferal

marls were found, (Lampitt et al. 1986). However, in many occasions, the uppermost centimetres of

cores sampled contained watery clayey sands. This is also the general succession described by

Foubert (2002), and suppofied by observations of Coles et al. (1996) and De Mol et al. (2002): an

upper layer of Holocene, foraminiferal sands, representative of the interglacial sedimentary

environment, overlying several meters of silty clays deposited during the last glacial event.

In addition, ample evidence has been found for the presence of rock debris on the Porcupine seafloor,

mainly of glacial origin (Kidd & Huggett, 1981). The same authors also report a large amount of clinker

and coal residues dumped from steamships decennia ago. Surprisingly these residues can be, in

some locations, even more abundant than ice-rafted debris or other materials transported by

geological agents.

Nepheloid layers

Nepheloid layers are layers of suspended sediment in the water column. The sediment has been lifted

into suspension by the mixing processes at the seabed, forming bottom or benthic nepheloid layers

(BNL) or intermediate nepheloid layers (lNL), layers detached from the seabed in mid water. In light

attenuation profiles on the eastern flank of the Porcupine Bank, Rice ef a/. (1991)found indications of

nepheloid layers at different depths. An intermediate nepheloid layer (lNL) occurred between 700 and

800 m depth, while a bottom nepheloid layer (BNL) was encountered up till circa 50 m above the

seabed (at 950 m). Similar INL and BML have been found on the western flank of the Porcupine Bank

(Dickson & McOave, 1986), and on the Goban Spur (van Weering et al.,2OO1). These nepheloid
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layers at Porcupine Seabight are thought to originate from the Porcupine Bank, where they are formed

through the erosion of the seabed by internal waves and tides. They detach from the seabed and

move off-slope along isopycnalsurfaces untila depth of 700-800 m.

Sedimentation along the continental slope

The sedimentary processes along a continental margin often consist of an interplay between

downslope and alongslope sediment transport. Depending on the sediment input and the strength

of bottom currents, one of the processes will be rather dominant (Cremer et al., 1993;

Faugdres ef a/., 1999). ln Porcupine Seabight, both processes are important (Huvenne et a1.,2002).

The existence and strength of bottom currents, especially on the eastern slope of the Seabight

illustrates alongslope sediment transport and has been discussed above. They severely influence the

sedimentation. Evidence for the existence of 2 types of sediment drift, an elongated and a confined

drift, on the eastern flank of the Porcupine Seabight (Belgica mound area) has been presented by

Van Rooij et al.,2OO3. The occurrence of the sandy top layer in the cores points to the reworking and

the presence of a contourite or drift sedimentation in the interglacials, linked to a higher bottom current

activity (Foubert, 2OO2; Yan Rooij et al., 2QO3l. A similar situation has been found in the northern

Rockall Trough, where several indications for sediment drifts and increased bottom currents during

interglacials were described by Masson et al. (2002). Although there is no general relation between

climate and drift development (Faugbres et al.,'1999), both Rockall Trough and Porcupine Seabight

are influenced by similar water masses and current systems, and may very well have known a similar

development. In addition to the alongslope sediment transpofi, evidence for downslope transport

between water depths of 500 to 3000 m, apart from channel and canyon systems, from the shelf into

the Seabight has been pointed out by Lampitt ef a/. (1986). However, in deeper areas shells of upper-

slope Foraminifera were encountered, indicating at least a limited amount of downslope transport

(which may be linked to the presence of nepheloid layers). According to Rice ef a/. (1991), the main

sediment supply zone is located on the shelves (Celtic and lrish shelf), while the input from the

Porcupine Bank is much smaller. Therefore only on the eastern flank of the Seabight, channels and

canyons are found. Some of these are partly buried, but on the steepest flanks (2-3") a dendritic

channel system was recognised by Brenot & Berthois (1962). lt was named 'Gollum Channel', by

Kenyon et al. (1978), who studied its lower stretches by means of sidescan sonar imagery. They found

flat-floored, deeply cut channels (100 to 280 m deep), with a high-backscatter floor, indicating the

presence of coarse material and hence of recent activity. However, submersible dives by

Tudhope&Scoffin (1995) revealed soupy, biodetrital materials and oozes on the channel floors, and

hence an as yet inactive channel. The upper parts of the Gollum Channel System seem to be more

dynamic. Rippled sands indicate reversing currents, although the actual long-term sediment

displacement is rather limited. Tudhope & Scoffin (1995) measured instantaneous currents of up to 50

cm/s, and report the occasional occurrence ol Lophelia and Madrepora corals.
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2.1.2.3. Carbonate mounds and coral banks in Porcupine Seabight

Carbonate mounds are found at several locations along the margin of the NE Atlantic between depths

of 500-1000 m. These mounds consist of a sediment-filled framework composed of carbonate

matedal, principally dead deep-water coral, live specimens of which are prevalent in the NE Atlantic

(Freiwald, 2002). These mound structures have been associated with deep-water corals and occur in

well-defined areas in the Porcupine Seabight. The coral banks in the Porcupine Basin reach

spectacular sizes, up to 200 m height and 5 km length. They occur in three mound provinces, each

with a different mound type displaying distinct morphological features (Henriet et al., 1998;

De Mol et a1.,20Q2).

. The Hovland mound province, in the central part of the Porcupine Seabight (Fig. 2.2), is

characterized by high-relief surface mounds which have a dimension of one by five kilometres

and a height up to 200 m.

o The Magellan mound province (Fig. 2.2) occurs north to nofthwest of the Hovland mound

province and is characterized by buried mounds, somewhat smaller (up to 90 m) in a large

variety of irregular shapes. These mounds have been reported in a site survey by the

commercialsurvey ship RV "Svitzer Magellan", a few months before the Belgica cruise.

o The Belgica mound province is located on the south-eastern margin of the Porcupine

Seabight between 51"10'N and 51"40'N (Fig 2.2), which is aligned roughly north-south. Large

mounds, which display a well-exposed downslope side in the bathymetry but an almost

entirely buried upslope side, characterize this province. These mound structures were called

"Belgica mounds" after their discovery by the RV Belgica on high-resolution seismic profiles.

Subsequent sampling and recording of some video transects illustrated clearly the growth of the cold-

water deep-sea coral species Lophelia pertusa (L.) and Madrepora oculata (L.) on these mound

structures (Kenyon et al., 1998). Further study showed that L. pertusa forms the main framework

builder on (at least the upper part of) the mounds.
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2.1.3. MeriadzekTerrace

The Meriadzek Terrace is a large relatively llat plateau at 2100-2300 m depth situated in the Bay of

Biscay south-east of the Goban Spur (van Weering et a1.,2001) (Fig. 2.5). The (Eperon) Berthois Spur

forms the connection between Meriadzek Terrace and the continental shelf and lies between 200 and

2000 m depth. Strictly spoken, sampling in this area was performed along the Berthois Spur, but the

name Meriadzek Terrace is used in this research, because this is more frequently recognized in

literature. Moreover, the name Meriadzek Terrace is often used in literature to describe the area

comprising Berthois Spur and Meriadzek Terrace.

15" W 10' 5"

Figure 2.5 The sludy site Meriadzek Terrace situated along the NE Atlantic continental margin (red arrow) (modified after

Pingree & Le Cann, 1990). The 100 feet (=30.48 m) and 1000 teet (=304.80 m) isobaths are indicated. A detailed map of the

Eperon Berthois Spur area is shown.

The Berthois Spur and the Meriadzek Terrace spreads out into the Trevelyan Escapment forming a

morphological boundary between the Celtic Margin and the Armorican Margin (Fig. 2.5), which splits

the shelf supply between the Celtic Fan and the Armorican Fan (Zaragosi et al.,2OOO). The Meriadzek

Terrace is less intensively studied than Porcupine Seabight. Van Weering et al. (2OO1) investigated

the benthic dynamics and the carbon fluxes on the NW European continental margin at Goban Spur
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and Meriadzek Terrace in the framework of the OMEX (Ocean Margin Exchange) project. An overview

of observations on the hydrography and current regime in the Meriadzek Terrace area is given by

Vangriesheim (1985). More observations resulting from a lander deployment on Meriadzek Terrace

are reported by Vangriesheim & Khripounoff (1990). A short overview of the main points is given

below.

2.1.3.1. Oceanography and hydrography

The Meriadzek Terrace is bathed by three main water masses, the North Atlantic Central Water

(NACW) from the thermocline down to 800 m, the Mediterranean outflow water (MOW) from 800 m to

1200 m water depth, and the North Atlantic Deep Water (NADW) from 1200 m downwards with a

contribution of oxygen-rich Labrador Sea Water (van Weenng et a\.,2001).

The noftherly and north-westerly directed, along-slope currents (Pingree & Le Cann, 1989;

Pingree eta1.,1999) and internal waves and tides (Dickson & McOave, 1986, Huthnance el a1.,2001)

are considered impofiant to sediment transport and energy dissipation at the NE Atlantic margin. At

Meriadzek Terrace currents show a strong semi-diurnal tidal pattern, with speeds in the same order as

observed on Goban Spur (circa 5 cm/s on average). The residual current is directed to the north, often

with a westerly component. At about 3000 m depth however, photographs provide evidence of high

current speeds (Auffret & Sichler, 1981). Overall, a dynamic near-bed current regime at the upper

slope was shown, with currents sufficiently high and directed off-slope, capable of resuspension and

transport of particles in the benthic boundary layer (BBL), and maintaining a benthic nepheloid layer of

varrable extension and particle concentration (van Weering et al.,2OO1).

2.1.3.2. Sedimentary environment

The variations in near-bed current conditions along the Meriadzek Terrace are reflected in the surface

sediment grain size, with the median grain size decreasing from 100 pm on the shelf to below 10 pm

on the lower slope (van Weering et al., 1998b). Surface sediments on Meriadzek Terrace consist

predominantly of hemipelagic ooze, comparable to lower slope sediments on Goban Spur (van

Weering et al., 2OO1). On the Berthois Spur, upslope of Meriadzek Terrace, terrigenous silty clay of

Pleistocene age was found below a few centimetres of gravely relict sand (van Weering et a1.,2001).

The Meriadzek Terrace is presently characterized by low terrigenous supply in contrast to the

southern Bay of Biscay margin marked by high terrigenous input (Cremer et al., 1992).

Compared to Goban Spur, the central Meriadzek Terrace appears to receive a markedly higher input

of fithogenic material, CaCOo and organic carbon (van Weering et a1.,2001). These data suggest a

trend of decreasing lithogenic fluxes along the nofthern Biscay margin from SE to NW. Taking into

account the general northwestern current direction along the slope, the decreasing lithogenic flux

seems to be related primarily to the increasing distance to continental sediment sources

(van Weering et a1.,2001). The higher CaCOg flux is in accordance with the higher primary productivity
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at the shelf edge near Meriadzek Terrace (Joint et al., 2OO1) and higher CaCO3 production in the

surface water (Wollast & Chou, 1998). The area is also known for the occurrence of coccolith blooms

(Holligan etal, 1983).

2.1.3.3. Utilization

Kenyon & Hunter (1985) conducted a long-range side-scan sonar suryey in the area in order to

determine a suitable route for the construction of the transatlantic fibre optic cable in this area. The

few strips of smooth seafloor on the continental slope in the Bay of Biscay were recommended as

potential routes for undersea cables by Belderson & Kenyon (1976). The Meriadzek Terrace is one of

the largest of these strips of smooth floor. lt can be divided into an Upper Meriadzek Terrace and a

Lower Meriadzek Terrace. Both parts of the Terrace appear to be free from any relief features or other

acoustic targets and have gradients less than 2 degrees.
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2.2. Working definition for hyperbenthos

Due to the discussion on ecological terminology of the studied fauna (as described in chapter 1) a

working definition for this PhD study is given below. As mentioned before, the hyperbenthos is

defined as the association of small animals living in the water layer close to the seabed (Mees &

Jones, 1997). The applied working definition forthis studytherefore categorizes the hyperbenthos as

all animals caught with the hyperbenthic sledge modified after Sorbe (1983) (see 2.3. Sampling

strategy), with a size range between 1 and 20 mm. Hyperbenthos can be divided into two main

groups: the holohyperbenthos and merohyperbenthos (Fig. 2.6A). The holohyperbenthos consists of

small animals that spend variable periods of their adult life in the hyperbenthal zone (Mees & Jones,

1997). Most abundant holohyperbenthic taxa are mysids, amphipods, isopods, copepods and

chaetognaths (Fig. 2.6A). The term merohyperbenthos is applied for the early life history stages of

species that subsequently recruit to the nekton, epibenthos and endobenthos communities (Mees &

Hamerlynck, 1992). Caridean shrimps, brachyuran crabs, postlarval fish and polychaete larvae are

most common. For this PhD research this division in holohyperbenthos and merohyperbenthos will not

be applied due to the very small amount of merohyperbenthos sampled in the studied areas. Figure

2.68 shows the most abundant hyperbenthic species belonging to the peracarid crustaceans sampled

in this PhD research.

As a general rule, all animals larger than approximately 20 mm and animals manifestly belonging to

the endo- or epibenthos (attached organisms and animals being strictly buried in, or sitting onto the

bottom) were considered as non-hyperbenthos. Most of these animals were rather occasionally caught

and were removed from all analyses. For juvenile and adult polychaets it was more difficult to decide

upon, as they are generally burrowing, but might spend some time swimming in the water column. Yet,

they were poorly caught, except in few cases when the catch was slightly contaminated by touching a

sand ripple or some mud from the bottom. These catches could be distinguished, as we experienced

the presence of other endobenthic organisms. Therefore, it was decided to exclude all polychaetes

(apart from larual stages).

Recently Sorbe (1999) mentioned that according to the definition of Brunel et al. (1978), suprabenthos

components are bottom-dependent animals that perform dai$ or seasonal vertical migrations above

the bottom and due to the unknown degree of sled biting into the sediment on deep-sea muddy

bottoms, hyperbenthic samples may be contaminated by some infaunal elements from the uppermost

layer of the substrate. Therefore, Sorbe (1999) suggests it is preferable to use a more neutral

terminology referring to the natatory abilities of the near-bottom collected species. Such a terminology

(BBL macrofauna) was used by Wildish et al. (1992) for Browns Bank community studies in the

northwest Atlantic and by Dauvin et a/. (1995) for the slope communities from the southern margin of

the Cap-Ferret Canyon. Arguments for using the term hyperbenthos are given in Mees & Jones (1997)

and this term will be used for this research.
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Figure 2.6 A) The major taxonomic groups belonging to the holohyperbenthos and merohyperbenthos, with illustrations of

coastal species (after Dewicke, 2002) B) lllustration of abundant holohyperbenthic species belonging to the Peracarida studied

in this PhD work.
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2.3. Sampling strategy

Sampling was done during three RV Belgica sampling campaigns (Table 2.1). This research vessel is

managed by the Management Unit of the North Sea Mathematical Models (MUMM). At Porcupine

Seabight sampling was pedormed from 9-29 June 2000, while the hyperbenthic sampling at

Meriadzek Terrace was conducted from 22 April.ll May 2002. Due to bad weather conditions

sediment samples at Meriadzek Terrace could not be taken during the expedition in 2002. A second

cruise to Meriadzek Terrace was organised from 11-18 May 2003. A summary of the number of the

different samples taken during the three RV Belgica campaigns is given (Table 2.1) and the sampling

strategy for the different samples is described below.

Table 2.1 Number of the ditferent samples taken during the three RV Belgica expeditions performed in the framework of this

PhD research.

Three RV

Date
Hyperbenthic samples
Boxcore sediment samples
Boxcore water samples
Niskin water samples
SCTD

2.3.1. Hyperbenthicsampling

For the sampling of the hyperbenthic fauna a hyperbenthic sledge (Sorbe, 1983) was used,

designed to collect the fauna of the lower 100 cm of the water column. The sledge (Fig. 2.7 A) is

301 cm long, 169 cm wide and 137 cm high; total weight is approximately 500 kg. Two pairs of nets

(3 m long) were attached in a frame next to each other. Mesh sizes of the two superimposed nets to

the left were 1 mm, while only 0.5 mm to the right. The lower nets sample the hyperbenthal zone from

0 to 50 cm above the sea floor, while the upper nets cover the adjacent stratum from 50 to 100 cm.

The collector of each net is fixed onto the frame along an angle of 45" (Fig. 2.7 B\. This prevents the

collected fauna to escape (by swimming back) or to get damaged by the strong flow. An opening-

closing mechanism (i.e. a roller blind) automatically operates when touching the bottom, preventing

contamination by upper water strata. An odometer (registering the towing distance) and a flow meter

(for calculating the volume of water filtered trough the nets) were also attached to the sledge, but were

damaged during most of the sampling. Towing distance was therefore calculated from the coordinates

of the start and stop positions of the hyperbenthic sledge (Table 2.2 and Table 2.3). The hyperbenthic

sledge was consistently towed at an average ship speed of 1.5 knot. Towing duration was

standardized to five minutes.

0
8
0

0
0

8
0
0
I
8
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Figure 2.7 A) The hyperbenthic sledge (Sorbe, 1983) used to sample the hyperbenthic fauna during the expeditions. B) a

detailed view of the collectors (filled with hyperbenthic fauna) attached at the end of each net on the backside of the

hyperbenthic sledge.

In both sampling sites, Porcupine Seabight and Meriadzek Terrace, a standardized sampling

strategy was followed. Eight sampling slations, between 200 and 1250 m water depth, were selected

along the continental slope in the two areas, so a total of 16 stations over both sites were sampled.

Between each station approximately 150 m difference in water depth existed, resulting in a

bathymetric transect along both continental slope areas. The names of the stations are composed of

the first letter of the study site (P for Porcupine Seabight samples and M for Meriadzek Terrace

samples) together with the rounding off of the sampling depth in metres (200, 350, 500, 650, 800, 950,

1100 or 1250) (Table 2.2 and Table 2.3). At each station one hyperbenthic sample was taken with the

hyperbenthic sledge described above. The hyperbenthic sampling was carried out during daytime and

towing lasted five minutes at an average ship speed of 1.5 knot. Sampling was done parallel to the

isobaths. An overview of the exact positions, exact depths and dates of the hyperbenthic samples is

given for Porcupine Seabight (Fig. 2.8 and Table 2.2) and for Meriadzek Terrace (Fig. 2.9 and

Table 2.3). The start position and the stop position are the positions of the hyperbenthic sledge at the

beginning of sampling and after five minutes of trawling. For each station the distance trawled in

metres is also indicated.

At each station four different net samples were collected, an upper (U) and lower (L) sample from the

nets with 0.5 mm mesh size and an upper and lower sample from the 1 mm nets. The catches from

the upper and lower 1 mm and 0.5 mm nets were rinsed separately over a 1 mm and 0.5 mm mesh

size sieve respectively and preserved in a neutralised formaldehyde solution (7 o/otinal concentration).

For this PhD research only the samples (upper and lower) from the 1 mm nets were worked out and

analysed. Also note that the terms upper slope, mid slope and lower slope in this research are used to

describe the different community zones within this bathymetric transect of 2OO-1250 m depth,

nevertheless this depth range only covers the upper part of the geographical continental slope.
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Figure 2.8 Porcupine Seabight situated (arrow) (map modified after Pingree & Le Cann, 1990) and a detailed map indicating the

location of the eight sampled stations (P200-P1250) along the bathymetric transect on the Porcupine Seabight continential slope

between 200 and 1250 m water depth. On the left map, the 100 feet (=30.,18 m) and 10@ feet (=304.80 m) isobaths are

indicated.

Table2.2 Date, sampling coordinates, depth, trawling duration and distance trawled at the eight stations (P200-P1250) sampled

at Porcupine Seabight. Stad position= position when the sledge is on the bottom, starting to trawl; stop position= position after

five minutes of trawling.

Porcupine Seabiqht 2000

station date start position start position stop position stop position depth trawling distance
N W N W (m) (min) trawled (m)

P200
P350

P500

P650

P800

P950
P1 100

P1250

24/0612000
25/0612000

2410612000

2510612000

24t06t2000
25t06t2000
25/0612000

25t06t2000

51" 47.15'
51'42.28',
51" 40.92'

51" 39.64'

51'37.75',
51" 35.79'

51" 35.11'

51" 34.92',

11'18.78'
1 1' 33.98'

1 1' 39.1g',

11" 43.69'
11" 50.04',

11" 56.10'
11" 59.44'
12' 01.42',

51'47.20'
51'42.42'
51" 41.02'

51" 39.76'
51" 37.85'

51" 35.90'
51'35.22',
51" 34.99'

11" 18.57'
1 1" 33.89'

1 1" 39.14'

11" 43.58'
't 1' 49.90'
11" 56.07'
1 1' 59.36'
'12' 1.45',

207

336

469

628
765

914
1067

1215

260

283
187

259
24'l
195

216
124

5
5

5

5
5

5

5

5
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15"W 10" 5"

Figure 2.9 Meriadzek Terrace situated (anow) (map modified after Pingree & Le Cann, 1990) and a detailed map indicating the

location of the eight sampled stations (M200-M1250) along the bathymetric transect on the Berthois Spur continental slope

between 200 and 1250 m water depth. On the left map, the 100 feet (=30.a8 m) and 1000 feet (=304.80 m) isobaths are

indicated.

Table 2.3 Date, sampling coordinates, depth, trawling duration and distance trawled at the eight stations (M200-M1250)

sampled at Meriadzek Tenace. Start position= position when the sledge is on the bottom, starting to trawl; stop position=

position after five minutes of trawling.

Meriadzek Terrace2OO2
station date start position start position

NW
stop position stop position

NW
depth trawling
(m) (min)

distance
trawled (m)

M200
M350

Ms00

M650

M800
M950

M1100
M1250

25t04t2002
25t04t2002
2510412002

24t04t2002
2510412002

4t05t2002
5t05t2002
5t05t2002

47" 53.24'
47" 51.10'

47" 49.29'

47' 47.25'
47'45.22'
47" 44.53',

47. 42.10',

47'41.01'

7" 50.57'
7" 54.59'

7'58.61'
8'02.73'.
8'02.53'
8" 06.17'
8" 09.19'

8'12.54'

47" 53.27'
47' 51.22'

47'49.42',
47" 47.28'
47'45.15'
47" 44.59'
47. 42.03'
47. 40.93'.

7" 50.79'
7'54.67',
7" 58.69'

8" 2.84'

8" 2.39'
8'6.33'
8" 9.07'

8'12.43'

227
352
494
678
795
953
1110
't215

284
241

258
152
212
225
203
't99

F

5

5
5

5
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2.3.2. Problems with quantitative hyperbenthic sampling

The choice of the studied fauna and the sampling site faces different practical problems with

quantitative sampling. The use of an adequate sampling method is crucial to provide a quantitative

data set to study spatial distribution and biodiversity patterns. Some shortcomings for hyperbenthic

sampling are still important topics of discussion and are described below and are of critical

importance.

No replicate sampling was performed. Replicability of hyperbenthic sledges was tested by different

authors (Hesthagen & Gjermunsen, 1978; Schnack, 1978; Brattegard & FossA, 1991)concluding that

samples are highly representative as long as towing distance is adequate.

Catch efficiency of sledges remains largely unknown (Mees & Jones, 1997). Most sledges are at best

semi-quantitative. The ability to capture all animals within their sweep, might largely vary amongst

taxa. As an example, mysids have been observed to avoid capture by swimming in front of trawls

(Lasenby & Sherman, 1991). Therefore, no adjustments for net efficiency were made. Consequently,

all densities values should be considered as minimum estimates.

Standardized sampling for hyperbenthos is mostly carried out with 0.5 mm mesh size nets (Mees &

Jones, 1997). The steepness of the continental slope in combination with the fine sediment

composition in the study area the filter capacity of the 0.5 mm nets was strongly reduced. lt was

therefore decided on to only examine the samples derived from the 1 mm nets, being acceptable in

such cases (Mees & Jones, 1997), although being aware of the underestimation of smaller individuals

of certain hyperbenthic taxa (e.9. copepoda, ostracods).

2.3.3. Environmental samples

In addition to the hyperbenthic samples, following environmental variables were sampled at each

station of Porcupine Seabight and Meriadzek Terrace. The oceanographic instruments used on board

of the RV Belgica are managed by the Management Unit of the North Sea Mathematical Models

(MUMM).

Sediment samples

At each station a large boxcore (Fig.2.10) was lowered to sample the sediment. Dates, the exact

coordinates and depth for each boxcore sample taken at Porcupine Seabight and Meriadzek Terrace

are summarized (Table 2.4). A small subsample (using a core) of sediment was taken from the box

and dried to perform grain fraction analysis in the laboratory. During the RV Belgica cruise at

Porcupine Seabight the overlying water from the boxcore was sucked of to perform water analysis

(see below).
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Table 2.4 Geographic positions and depth of the boxcore samples

taken at Porcupine Seabight and Meriadzek Terrace.

Porcupine Seabight 2000
position position

NW
depth

(m)
P200

P350
P500
P650

P800

P950
P1 100

P1250

5't'47.07',
51" 42.37'

51" 40.72',

s1'39.€'
51" 37.03'

51" 35.36',

51" 34.05'
51" 33.30'

26t06t2000
26/06/2000
26t06/2000
26/06t2000
2610612000

26t06t2000
26t06/2000
26/06t2000

11'18.86' 207
11'34.03' 337
11'39.98' 494
11" 44.04'. 628
11" 51 .09' 765
1 1" 56.18' 914
11'59.97' 1067
12'1.88' 1215

Figure 2.10 Boxcore sampling during RV Belgica

expedition.

Meriadzek Terrace 2ff)3
station date position position depth

Nw(m)
M200 13/0512003 47" 53.28', 7" 50.68',

M350 1310512003 47" 51.05', 7" 54.49'
M500 1310512003 47. 49.24' 7" 58.65',
M650 1310512003 47" 47.19', 8.02.83'
M800 13105/2003 47. 45.39' 8" 02.52',
M950 13/05/2003 47" 44.42' 8" 06.08',
M1100 13105t2003 47" 41.97', 8.08.33',
M1250 13/05i2003 47.40.85', 8. 12.79'

228
347
491

676
778

953
1110

1280

The grain fraction analysis was performed with a Coulter LS 100 particle size analyser with a measure

range of 2 pm to 850 pm. These grain fractions were calculated as percentages of volume (vol%).

Fractions larger than 850 pm were sieved and calculated as percentages of weight (mass%). For the

classification of the particle size the Wentworth scale (Buchanan, 1984) was used (Table 2.5). For

each station the granulometric composition was determined. In addition the median grain size,

percentage mud (r.e. sum of percentage silt and clay; <63 prm) and the sorting coefficient were

calculated for each station, the latter being an index for the range of the grain size distribution present

in a sample (Dyer, 1986). The sorting coefficient was calculated using the diametervalues (in pm) at

the 25th and 75th percentiles.

Table 2.5 Wentworth scale (Buchanan, 1984) used for the classification of the particle sizes of sediment samples.

Fraction Size (pm)

Very coarse sand 850-2000
Coarse sand
Medium sand
Fine sand
Very fine sand

1 000-s00
500-250

250-125
1 25-63

63-4
<4

silt
Clay

Water samples

Waterfrom just above the bottom was sampled using the Niskin bottles (Fig.2.11). During the RV

Belgica cruise to Porcupine Seabight an older version of these Niskin bottles carousel was on board

and could not take water samples deeper than 500 m due to technical failing. This problem was solved
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by sucking up the overlying water from the boxcore samples and pedorming the same analysis on this

water. For Meriadzek Terrace this problem was not encountered and 8 Niskin water samples could be

taken. The water samples were analysed for nutrients and pigments in the laboratory. Pigments

(chlorophyll a) were analysed from the water by filtering the water over a GF/F filter. Pigments were

extracted using 90 70 aceton and analysed by the technique of high-pressure liquid chromatography

(HPLC). Nutrient contents of the water was analysed using a segmented flow analyser device. The

quantity (gg/litre water) of NOz, NO3, NH4 en POa was measured. Only the pigment data were useful,

nutrients were non detectable in the water samples, probably due to technical failure during the

sample processing.

Figure 2.11 Niskin- bottles for water sampling attached to a carousel which also contains the SCTD-probes for measuring

different physico-chemical parameters.

Othe r envi ron menta I pa ra meters

The SCTD-system allowed measurement of different physico-chemical parameters: salinity,

temperature, concentration dissolved oxygen, turbidity and water density. This device, attached to the

same carousel as the Niskin bottles (Fig. 2.11), was lowered into the water at a speed of 0.8 m per

second and measured every parameter every 1 m it was lowered. This device was at our disposal

during the cruise to Meriadzek Terrace, but SCTD data for Porcupine Seabight lack.
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2.4. Sample processing

In view of the characteristics of the selection of the organisms, the study sites and the sampling

method in combination with the time management of this research, some important choices

concerning the sample processing were made. As mentioned before only the upper (U) and lower (L)

net samples of the 1 mm nets were processed further for this research due to the reduced filter

capacity of the 0.5 mm nets, keeping in mind an underestimation of smaller individuals of certain taxa

(e.9. copepods, ostracods). Given the main aim of this research, studying the community structure of

the total hyperbenthos and a detailed study of the Peracarida, only density measurements were

performed; no biomasses were calculated and staging of the organisms was not performed. Moreover,

identifying all peracarid crustaceans sampled (>250 species) was a very time-consuming work as no

expertise for identifying this unique but difficult fauna was available at the UGent Marine Biology

Laboratory. These well considered choices are acceptable in order to obtain a useful and detailed

dataset for exploring the hyperbenthic community structure and biodiversity patterns in the unique

habitat along the ocean margins. The sample processing is described in more detail below.

Both the upper and lower 1 mm net sample of each sampling station were processed separately in

order to obtain information on the stratified distribution of the hyperbenthic fauna within the one metre

water layer above the seafloor. After sorting out, all organisms were identified to higher taxon level

(e.9. Phylum, Classis, Ordo) and counted. After identification, non-hyperbenthic representatives were

removed from the dataset (see 2.2. Working definition for hyperbenthos). For this research these were

juvenile or adult organisms belonging to the phyla Cnidaria, Echinodermata (mainly belonging to the

Classis Ophiuroidea), Annelida (Classis Polychaeta), Brachiopoda and Mollusca. Also adult organisms

of the Classis Pisces and Decapoda were caught in the hyperbenthic sledge, but were removed from

the hyperbenthic dataset. Most of these non-hyperbenthic organisms were only occasionally caught in

the hyperbenthic sledge. This selection resulted in a hyperbenthic dataset, with all organisms counted

and identified on higher taxon level. After identification and counting of the hyperbenthic organisms on

higher taxon level, densities were calculated. ln this study densities are expressed as individuals per

100 m2 (surface unit), since most fauna was restricted to the bottom (r.e. caught with the lower net of

the hyperbenthic sledge). Densities were calculated based on the trawled distance and the width of

the hyperbenthic sledge net (0.71 m). This hyperbenthic taxa density dataset was used for analysis

in this PhD study (see Chapter 3 and 4) and is listed in appendix 1.

Furthermore all peracarid crustaceans (Amphipoda, lsopoda, Cumacea, Mysidacea and Tanaidacea),

the most abundant group in the studied hyperbenthic fauna, were identified to species level (full

species list in appendix 2) and densities were also calculated. This resulted in a peracarid species

density dataset which was also further analysed in this study (see Chapter 5) and is listed in

appendix 3. ldentification of the Peracarida on species level was possible for the majority of the

species. Some organisms could only be identified to genus or family level and were named as 'Genus-

name species 1' or 'Family-name species 1', others as 'Genus-name aff. species-name' when the
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organisms showed great affinity to a cefiain species, but were another species. Table 2.6 lists the

books with identification keys used for the identification of the Peracarida species.

Table 2.6 List of books used for identification of the Peracarida.

British marine Amphipoda: Gammaridae Lincoln, R.J., 1979

The Amphipoda of the Mediterranean Ruffo, S., 1982

The families and genera of marine gammaridean Amphipoda Bamard, J.L. & Karaman, G.S., 1991
(except marine gammaroids)

Faune de France no 9 Amphipodes Chevreux, E. & Fage, L., 1925

Faune de France 54 Cumac6s Fage, L., 1951

Synopses of the British Fauna no 7 British Cumaceans Jones, N.S., 1976

Synopses of the British Fauna no 3 British Marine lsopods Naylor, E., 1972

The British Mysidacea Tattersall, W.M. & Tattersall, O.S., 1951

Synopses of the British Fauna no 27 Tanaids Holdich, D.M. & Jones, J.A., 1983

An account of the Crustiacea of Norway, with short descriptions Sars, G.O., 1895
and figures of all the species. Vol. 1. Amphipoda

Abyssal Crustacea Bamard, J.L., Menzies, R.J. & Bacescu, M.C., 1962
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2.5. Data analysis

Data analysis was performed on two datasets: the hyperbenthos taxa density dataset and the

peracarid species density dataset. Both datasets were transformed prior to analysis in order to scale

down the effect of abundant species (Field ef al., 1982; Clarke & Green, 1988). The hyperbenthos

dataset was fourth root transformed while the peracarid dataset was square-root transformed.

In order to study the community structure of the hyperbenthos and the Peracarida, the transformed

data were ordinated by non-metric Multi-Dimensional Scaling (MDS) (Kruskal, 1964) and cluster

analysis (group-average linkage method; Bray-Curtis similarity coefficient) was performed. A

measurement of goodness-of-fit test of the MDS ordination was given by the stress value. A low stress

value (<0.2) indicated a good ordination with no real prospect of a misleading interpretation (Clarke,

1993). Ordination techniques are most accurate for interpretation of community composition in terms

of species response to environmental gradients (Ter Braak & Prentice, 1988). One-way analysis of

similarities (ANOSIM, Clarke, 1993) was subsequently applied to asses the significance of differences

between groups of multivariate samples from different zones along the continental slope areas. The

similarity percentages programme (SIMPER, Clarke, 1993) was applied to identify the species

primarily providing the discrimination between the zones along the continental slopes. The distribution

of environmental variables along the transects was analysed using correlation-based principal-

component analysis (PCA) on normalised log(x+1) transformed values as described by Clarke (1993).

The relationships between multivariate assemblage structure and combinations of environmental

variables were analysed using the BIO-ENV procedure (Clarke & Ainsworth, 1993) to define suites of

variables that best explain the hyperbenthic assemblage structure. Scatter plots of all pair wise

combinations of environmental variables indicated that conversion to approximate normality using

log(x+1) transformation was appropriate before multivariate analysis. The described analyses were

performed by using the PRIMER v5.2.9 software package (Clarke & Gorley, 2001).

2.6. Calculating biodiversity

There are strong relationships between sampling scale and the processes that influence diversity

(Huston, 1994). At small scales all species are presumed to interact with each other and to compete

for similar limiting resources (Gray, 1997). This is called within-habitat diversity or alpha diversity

(Fisher et al., 1943; Whittaker, 1960, 1967). At slightly larger scales, habitat and/or community

boundaries are crossed and sampling covers more than one habitat or community. This level is

referred to as between-habitat diversity or beta diversity (Whittaker, 1960, 1975, 1977). At an even

larger scale (regional scale) where evolutionary rather than ecological processes operate the patterns

are defined as gamma diversity or landscape diversity (Whittaker, 1960; Cody, 1986). This idea can

be easily adapted for this particular study by clearly defining the different levels (Whittaker, 1977).

Alpha diversity in this study is translated into diversity associated with one station or one depth along

the continental slope. Beta diversity is designated as the degree of species change along the depth

gradient characteristic of the studied continental slopes. Gamma diversity is defined as the change in
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species in the similar habitat, the continental slope over broad geographic areas, the two sampling

sites. Many indices have been proposed to calculate diversity (see Magurran, 1988). A fundamental

drawback of many diversity indices is their sample-size dependence (Sanders, 1968), making

comparison between studies difficult. Soetaert & Heip (1990) argued that this dependence is more

pronounced in high diversity than in low diversity assemblages. Moreover indices more sensitive to

rarer species require larger sample sizes to estimate diversity with reasonable precision than indices

which put more weight on commoner species (Soetaert & Heip, 1990). For reasons of standardization

some widely used indices were selected in the present study.

The diversity indices of Hill (Hill, 1973) were used to calculate diversity of both hyperbenthic higher

taxa and peracarid species. Ne or the number of higher taxa or species, N1, the inverse natural

logarithm of the Shannon-Wiener diversity index and N- or N;n1, the reciprocal of the relative

abundance of the most common higher taxa or species were calculated. The Kruskall-Wallis test was

used to compare sample series.

Some other commonly used diversity indices were used to quantify alpha and beta diversity of the

peracarid species dataset. To avoid incomparability of measurements resulting from different-sized

samples, the density-independent index ES(n) was calculated. This Hurlbert's modification of Sanders'

rarefaction curues (Hurlbert, 1971) was used to calculate diversity for a standardized sample size:

ES(100) determines the expected number of species present in a sample of 100 individuals. Because

ES(n) does not cover all information present in the community as it is not related to the way the

individuals are divided among species (Soetaert & Heip, 1990), other diversity measures were

considered as well: Pielou's evenness (J') (Pielou, 1975), Hill's Ns, N1 and N- (Hill, 1973), and the

Shannon index of diversity (H', log base e). In addition average taxonomic diversity (A) and average

taxonomic distinctness (A.) (Warwick & Glarke, 1995) were calculated to describe the peracarid

diversity. Equal step-lengths between each taxonomic level were assumed, setting the path length trr

to 100 for two species connected at the highest (taxonomically coarsest) possible level as stated by

Clarke and Wanruick (1999). Nine taxonomic levels were used (species, genus, family, order,

superorder, subclass, class, subphylum and phylum). ln addition to the selected diversity indices, k-

dominance curves were calculated in order to draw conclusions (Lambshead et al., 1983). A

k-dominance curve is obtained by plotting k-dominance as percentage cumulative abundance against

k (species or taxon rank). An assemblage A is considered to be more diverse than assemblage B if

the k-dominance curve for assemblage A is always below or touching the k-dominance curve of

assemblage B. Platt et al. (19841argued that diversity can only be unambiguously assessed when the

k-dominance plots do not overlap. Diversity measurements were performed using the PRIMER v5.2.9

software package (Clarke & Gorley, 2001).
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3.1. Introduction and objectives

Research on hyperbenthos, also referred to as suprabenthos (Kaartvedt, 1989; Sorbe, 1989) and

benthopelagic plankton (Marshall & Merrett, 1977; Wishner, 1980a, 1980b), started in the late 1950's

when this faunal group was first recognised as a functional unit by Beyer (1958). Most studies were

carried out over the last three decades, reporting mainly on temperate and cold-water environments

ranging from shallow coastal to deep-sea areas (reviewed by Mees & Jones, 1997). Marine coastal

hyperbenthic communities have been studied in the North Sea (Buhl-Jensen & FossA, 1991;

Hamerlynck & Mees, 1991; Beyst ef al, 1999), the English Channel (Dauvin et al., 1994;

Wang & Dauvin, 1994; Zouhiri & Dauvin, 1996), the Bay of Biscay (Sorbe, 1981a, 1981b, 1982, 1989;

Cornet et al., 1983) and the Portuguese margin (Cunha et al., 1997). A few brackish water

hyperbenthic communities have been investigated: in the Westerschelde, The Netherlands

(Mees & Hamerlynck, 1992; Cattrijsse et a1.,1993; Mees et a1.,1993a, 1993b); in the Gironde, France

(Sorbe, 1981a; Fockedey & Mees, 1999); in the Rias de Guipuzcoa, north of Spain

(San Vicente ef a/., 1993) and in two tidal channels of the Ria de Aveiro, NW of Portugal

(Cunha ef a/., 1999).

Deep-sea hyperbenthic communities have been described, both from a faunistic and community

structure perspective (Elizalde et al., 1991; Dauvin et al., 1995; Sorbe, 1999; Cartes et al., 2OO1a,

2001b; see also Table 1 .2 in chapter 1). Deep-water communities have received increasing attention

because of the interest in new fishing grounds and fisheries at bathyal depths (Hopper, 1994;

Merrett & Haedrich, 1977). Despite of the growing etfort to study these communities, the dynamics of

the bathyal benthic boundary layer is still far from being well understood.

The benthic boundary layer (BBL) is the layer of water, often tens of metres thick, adjacent to the

seabed and with homogeneous properties of temperature and salinity, which sometimes contains

resuspended detrital particles (Turley, 2000). lt is an environment of great complexity both from a

physical (Gage & Tyler, 1991) and biological (Smith & Hinga, 1983) perspective. The existence of

specific BBL assemblages (mainly composed of crustaceans) at continental slope environments was

already suggested by Marshall & Merrett (1977), Wishner (1980a, 1980b), Hargreaves (1984) and

Gordon & Mauchline (1990).

One of the most important biological characteristics of the BBL is the progressive increase of biomass

near the bottom (from around 100 m above the sea bed) within this layer (Angel, 1990), in contrast to

the general exponential decline of pelagic biomass with depth in the water column

(Vinogradov&Tseitlin, 1983). Since the first qualitative data obtained on the BBL (Wishner, 1980b),

the studies carried out on the composition and structure of this environment, both at bathyal and

abyssaf depths, have been relatively scarce (Hargreaves, 1984, 1985; Wiebe et al., 1988; Angel,

1990). Benthopelagic organisms, inhabiting the near bottom environment, are a fundamental part of

the BBL. These communities of organisms living above the seabed have been included in distinct
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concepts, such as suprabenthos (Brunel eta1.,1978), hypoplankton (Mauchline & Gordon, 1991)and

hyperbenthos (Mees & Jones, 1997) resulting in a discussion on terminology.

From a biological viewpoint, the near-bottom layer lies between two principal oceanic biotopes:

pelagial and benthal. Therefore, its animal population should be expected to be most diverse and

consisting of various ecological groups. The deep-sea BBL is enriched in biomass and number of

species, relative to the overlying water column (Wishner, 1980b; Angel, 1990; Cartes, 1998;

Christiansen et al., 1999). lt is inhabited by pelagic species whose ranges are truncated by the

seabed, by benthic species using this zone as a refuge, for dispersal and for locating their food and

also by other species from a wide variety of taxonomic groups that seem to be specialized to the

benthopelagic environment (Angel, 1 990).

These studies are closely linked to benthopelagic coupling studies as reviewed by Angel (1984, 1990),

Deuser (1986) and Fowler & Knauer (1986). Particulate matter reaching the seafloor primarily

originates from the ocean's surface layers. As the particles sink, their concentration and composition

are altered by aggregation, disaggregation, zooplankton grazing, decomposition and dissolution.

Understanding these processes is complicated by horizontal advection and by the existence of

nepheloid layers caused by resuspension of already deposited particles from the bottom

(Thomsen&Graf, 1995). Once deposited in deep-sea environments, sedimented detritus decays

rapidly (Lampitt, 1985; Thiel et al., 1989; Rice et al., 1986). For certain continental margin

environments, benthic-pelagic coupling is tight and the benthic community responds rapidly to a pulse

of natural organic matter.

ln this chapter the hyperbenthic fauna of the continental slope (between 200 and 1250 m water depth)

at Porcupine Seabight, offshore southwest of lreland is studied in order to characterise the BBL

assemblages on the continental slope environment as suggested by Marshall & Merrett (1977),

Wishner (1980a, 1980b), Hargreaves (1984) and Gordon & Mauchline (1990). Studying the vertical
or near-bottom distribution (also referred to as stratified distribution) of the hyperbenthic fauna in

the BBL in the first part of this chapter can provide more information on community structure patterns

within the BBL: is this BBL layer one homogeneous water mass or are there smaller scale patterns

within this one metre of water? Patterns of vertical distribution of the hyperbenthic taxa are discussed

in terms of what is known of their ecology. The second part of this chapter determines the horizontal

or bathymetric distribution (also referred to as across isobaths distribution) of the hyperbenthic taxa

along the slope environment and examines the zonation and abundance of the taxa within their depth

ranges. Large-scale zonation will be analysed in view of the physical environment and the ecology of

the hyperbenthic taxa. For detailed information of the study site Porcupine Seabight and the sampling

strategy and methodology we refer to chapter 2.
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3.2. Results

The results are based on the hyperbenthic fauna collected during the RV Belgica expedition in June

2000 at Porcupine Seabight (lreland) (see chapter 2tor study site description and sampling strategy).

Along the continental slope, eight stations, ranging trom 2OO-1250 m of water depth were sampled

with the hyperbenthic sledge and the boxcore.

3.2.1. Sedimentology

The granulometric results from the eight stations at the Porcupine Seabight (for details of methodology

see chapter 2) are summarized (Fig.3.1 and Table 3.1 and Table 3.2).

100%
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Figure 3.1 Relative sediment composition at the eight stations (P200-P1250) of the Porcupine Seabight continental slope.

Table 3.1 Sediment composition of the eight stations (P200-P1250) along the depth gradient at Porcupine Seabight.
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Table 3.2 Median grain size (pm) and the sorting coefficient of the eight stations (P200-P1250) at Porcupine Seabight.

median sorting
(um) coefficient

P200

P350

P500

P650

P800

P950

P1100

P1250

215

tcz

129

7

6

5

140

't22

o,44

0,59

0,50

2,34
174

1,42

0,97

1,58

Stations P200, P350 and P500, at the upper part of the continental slope, are characterized by a

relative high percentage (more than 40 %) of fine sand. At station P200 the median grain size is

highest,215 prm due to a high percentage (33 %) medium sand in combination with the high

percentage fine sand. In the two deeper stations P350 and P500, the median grain size is smaller,

152 prm and 129 pm respectively, caused by a higher percentage (respectively 27 o/o and 35 %) of very

fine sand in combination with the percentage fine sand. The trend of increasing percentages of

fine-grained sediments continues till 950 m water depth (P950). The sediment at stations P650, P800

and P950 are characterized by very high percentages (more than 35 %) of silt and clay, resulting in a

very low median grain size of 7 pm, 6 ;rm and 5 pm respectively indicating muddy sediment. Deeper

than 950 m, at stations P1100 and P1250 an increase of coarser sediment, mainly of the percentage

fine sand is observed, resulting in a higher median grain size of 140 Um and 122pm respectively. The

percentage clay and silt at these two deepest stations shows an obvious decrease compared to the

three shallower stations, so no continuous increase of fine sediment with depth was observed. Sorting

coefficient is lowest for the three shallow stations, indicating a better distribution of grain sizes within

the substratum compared to the other stations.

3.2.2. Hyperbenthos

According to the working definition (see chapter 2) a selection of the taxa in the samples was made,

meaning that some organisms not belonging to the hyperbenthos (r.e. juvenile or adult organisms

belonging to the phyla Cnidaria, Echinodermata, Annelida, Brachiopoda and Mollusca) were totally

excluded from the dataset, resulting in a hyperbenthos taxa abundance dalaset, on which these

results are based. The dataset used for this chapter is given in appendix 1.

In order to obtain information on the distribution of the hyperbenthic fauna in the 100 cm sampled

benthic boundary water layer, the data of the two nets from the hyperbenthic sledge, the lower net

(0-50 cm) and the upper net (50-100 cm), are treated separately in the first part of the results,

describing the vertical or stratified distribution of the hyperbenthic fauna. The bathymetric distribution

of the hyperbenthos along the continental slope is discussed in a second part, by taking the eight

stations, as the sum of the two nets, into account.
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3.2.2.1. Taxonomic composition and density of the hyperbenthos at Porcupine Seabight

The number of hyperbenthic individuals counted at Porcupine Seabight was 41 964. In total twelve

hyperbenthic taxa were found over the eight stations sampled. The systematic position of the different

taxa is given below (Table 3.3). Besides the eleven hyperbenthic taxa, the group 'latvae' comprising

all Decapoda larvae is considered as a taxon and belongs to the merohyperbenthos. The amount of

merohyperbenthos caught is very small compared to the holohyperbenthic abundances. Table 3.4 lists

the twelve taxa together with the total number of individuals and the total density (individuals/100 m')

respectively per net (lower and upper net) and per station. Note that the different taxa considered

belong to different taxonomical levels (e.9. Phylum, Classis, Ordo).

Table 3.3 Systematic position ot the twelve hyperbenthic taxa (in bold) sampled at Porcupine Seabight.

Phylum Chaetognatha
Phylum Arthropoda

Subphylum Crustacea
Classis Copepoda
Classis Ostracoda
Classis Malacostraca

Subclassis Phyllocarida
Ordo Leptostraca

Subclassis Eumalacostraca
Superordo Eucarida

Ordo Euphausiacea
Superordo Peracarida

Ordo Mysidacea
Ordo Cumacea
Ordo Amphipoda
Ordo lsopoda
Ordo Tanaidacea

Subphylum Chelicerata
Classis Pycnogonida

Group larvae

Table 3.4 A) Total number of individuals for the twelve hyperbenthic taxa B) Total density (ind./800 m2) for the

hyperbenthic taxa for both nets and for the sum of the nets (per station).

A. Taxon Lower nets Upper nets Station B. Taxon Lower nets Upper nets Station
Amphipoda

lsopoda

Cumacea
Tanaidacea
Mysidacea

Euphausiacea

Leptostraca
Copepoda

Chaetognatha
Pycnogonida
Larvae

Ostracoda

1 1830

5347
12479

138

1 689
155

5
1141

269

0

184

87

0
1026

213
e

41
't1'l

12365

5383
12727

138

1 873
242

2167
482

535

36

248

Amphipoda

lsopoda

Cumacea
Tanaidacea
Mysidacea

Euphausiacea

Leptostraca
Copepoda

Chaetognatha
Pycnogonida
Larvae

Ostracoda

9830,81

4279,10

1 1006,54
129,83

1159,94

86,64

5,70
826,93
177,12
571 ,65
105,31

5028,66

395,67 10226,48

29,23 4308,33
213,18 11219,73

0,00 129,83
141,25 1301,19
53,45 140,10

0,00 E1rr

867,21 1694,14
157,17 334,29

1,96 573,61
20,79 126,09

95,23 5123,88

540
249

5793

537
208

5682

33208,24 1975,14 35183,38
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The difference in total number of individuals and density of the hyperbenthos caught with the lower

nets (0-50 cm zone) and the upper nets (50-100 cm zone) of the hyperbenthic sledge is very obvious

(Table 3.4). All densities (except for Copepoda) are much lower for the upper net samples compared

to the densities for the lower net samples. Crustaceans are the dominant fauna in the BBL at the study

site sampled with the hyperbenthic sledge. Within the hyperbenthos of the lower zone (0-50 cm) of the

BBL along the sampled continental slope, Cumacea are most abundant with a total density in the

lower nets of 11006 ind./800 m2, followed by Amphipoda with 9830 ind./800 m2, Ostracoda with

5028 ind./800 m2, lsopoda with 4279 ind./BO0 m2, Mysidacea with 1'159 ind./800 me and Copepoda

with a density in the lower nets of 826 ind./800 m2. The upper 50-100 cm zone is mainly dominated by

Copepoda with a density of 867 ind./800 me, followed by Amphipoda with 395 ind./800 m2.

3.2.2.2. Vertical distribution

Absolute densities

Most taxa show a different pattern in their vertical distribution throughout the two BBL layers 0-50 cm

and 50-100 cm, which is illustrated by the absolute density of each taxon for the lower and upper nets

separated (Fig. 3.2). Note the different scales used in both sets of graphs.
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Total absolute density for the hyperbenthos is higher in the lower nets compared to the upper nets at

each station sampled (P200-P1250). ln the lower net samples density values range from

265 ind./100 m2 at station P200 to a maximum of 18418 ind./100 m2 at the deepest station P1250. In

the upper net samples the minimum density value was also found at station P200 (34 ind./100 mz) and

a maximum density value was found at station P1250 (1069 ind./ 100 m2). A higher density in the

lower nets or 0-50 cm BBL zone is also a general feature for the Amphipoda, lsopoda, Cumacea,

Mysidacea, Euphausiacea, Pycnogonida and Ostracoda. Two taxa, Tanaidacea and Leptostraca are

only found in the lower nets and the latter taxon only at station P1250. Copepoda show a different

trend, in cefiain stations they are more abundant in the lower nets, while for the deeper stations they

show higher densities in the upper layer. Chaetognatha densities remain similar in the lower and

upper BBL water layer, except for lhe 3 upper slope stations (P200, P350 and P500), where they are

more abundant in the lower nets. ln general, there is an important difference in densities in both water

layers (0-50 cm and 50-100 cm) in the BBL.
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Relative composition

The vertical distribution of the different taxa is illustrated by the relative composition at each station for

the lower and upper nets separately (Fig. 3.3). To keep this stacked bars figure orderly, a 'rest' group

was created. This 'rest' group is the sum of the percentages of the taxa that make up less than 3 % of

the hyperbenthos in a certain sample. The composition of this 'rest' group and the number of taxa

consequently differs for each station. Only the taxa Tanaidacea, Pycnogonida and Leptostraca belong

to the 'rest' group at each station.
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Figure 3.3 Relative hyperbenthic ta(a composition for the A) lower nets (0-50 cm) and B) upper nets (50-100 cm) for the

eight stations (P200-P1250) at Porcupine Seabight. The absolute total hyberbentic density per sample is indicatod above

each bar.
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Comparing the relative composition (Fig. 3.3) of the different hyperbenthic taxa for the lower and

upper BBL zone gives some striking results. Generally the upper zone is dominated by Copepoda at

each station, while in the lower zone they are only abundant in the upper slope area (stations P200,

P350 and P500). A similar trend is obserued for Chaetognatha, although they are generally less

abundant and belonging to the rest group at station P950 in the upper zone. In addition Cumacea are

abundant in the lower zone especially in the mid and lower slope part (650-1250 m), and also in the

upper BBL zone, but here only at the three deepest stations. Euphausiacea, Amphipoda and

Ostracoda show a quite similar distribution in both zones at the different stations. Mysidacea show a

rather uneven distribution, they are very abundant at the upper and mid slope area, decreasing with

depth, in the lower nets, while in the upper BBL zone they also appear in the deeper stations and in

P350 and P650. Larvae are only abundant at station P350 in the two BBL layers.
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Alpha and beta diversity

The diversity of the hyperbenthic taxa is veftically structured as well. Diversity indices of Hill (Hill,

1973) (Fig. 3.4) are higher for hyperbenthic samples from the lower BBL zone, except N1 and N- at

stations P650 and P1100, indicating a higher dominance. The k-dominance plot (Fig.3.5) indicate a

stronger dominance of Amphipoda (50 %) in the lower net sample of P650 compared to a dominance

ol 34o/o of Copepoda in the upper net sample of the same station. Also for station P1100 a higher

dominance of Cumacea (35 o/o) is illustrated for the lower net sample in comparison to the 28 o/o

dominance of the same taxon in the upper net sample (Fig. 3.5). At station P350 species richness (Ns)

is equalfor both BBL zones.
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Community structure

Multivariate analysis was performed with the PRIMER version 5. Hierarchical clustering with group

averaged linking and non-metric multi-dimensional scaling (MDS) was performed (Fig. 3.6). The

original hyperbenthos density data were fourth-root transformed and the taxon Leptostraca was left

out because it only occurred in one station.
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Figure 3.6 A) Multi-dimensional scaling (MDS) plot and B) cluster analysis dendrogram based on fourth-root transformed

hyperbenthic taxa data ot the eight Porcupine Seabight stations (P200-P1250) with the nets (lower and upper) separated.

The MDS diagram (Fig. 3.6A) shows a pronounced distinction between the lower and upper nets

samples for all stations. In addition with the cluster analysis (Fig. 3.68), this distinction can be refined

and four groups can be distinguished. There is a clear separation of the 5 lower net samples from the

lower slope area (P650-P1250), while the upper net samples of these stations are divided over two

other groups. One group clusters the upper BBL samples of stations P650, P950 and P1 100 together.

The same samples of stations P80O and P1250 are clustered together with the lower net samples of
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the 3 upper slope stations (P200, P350 and P500) and with the upper net sample of station P350. The

two upper nets from the upper slope area, P200 and P500, are also similar in taxa composition. The

vertical distribution for the lower slope zone seems more pronounced than for the upper slope zone

illustrated by the clear separation of the lower net samples and the upper net samples of the stations

P650, P800, P950, P1100 and P1250. Although MDS and cluster analysis divide the different

hyperbenthic samples in four hyperbenthic communities, the one-way ANOSIM test indicate that these

four groups are not significantly different f rom each other (global R= 0.291, significance level= 0.7 o/o).
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Figure 3.7 Bubble plots based on the MDS plot (cfr. Fig. 3.5), indicating the absolute density (ind./1OO nlz2; of A) Euphausiacea,

B) Mysidacea and C) lsopoda for each Porcupine Seabight station (P200-P1250). U= upper net sample; L= lower net sample.

Three bubble plot diagrams based on the MDS diagram (cfr. Fig.3.6A) illustrate which taxa contribute

to the division of the different samples. Euphausiacea (Fig. 3.7A) are important at the upper slope

stations, while lsopoda (Fig. 3.7C) show a high abundance at the two deepest stations. Note that the

very high abundance of lsopoda in the lower net at the two deepest stations P1 100 and P1250 cause

a slightly distorted picture. lsopoda are also present in other samples but due to a large difference in

abundance compared to the deep stations, the bubbles are very small. Mysidacea (Fig. 3.78) are

mainly important in the division of the lower net samples from the upper net samples.
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3.2.2.3. Bathymetric distribution: zonation of the hyperbenthic taxa

The bathymetric distribution of the hyperbenthos from eight stations along the Porcupine slope (200-

1250 m) is reported as the total of the upper and lower nets for each station (Fig. 3.8).
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Figure 3.8 The absolute density (ind./100 m2) of the total hyperbenthos and all hyperbenthic taxa for the eight Porcupine

Seabight stations (P200-P1250) along the continental slope (continued).
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Figure 3.8 The absolute density (ind./100 m2) of the total hyperbenthos and all hyperbenthic taxa for the eight Porcupine

Seabight stations (P200-P1250) along the continental slope.

Total absolute density of the hyperbenthos along the depth gradient shows an obvious increase

towards the two deepest stations (P1 100 and P1250). Density values of the hyperbenthos range f rom

299 ind./100 m2 at station P200 to 19487 ind./100 m2 at the deepest station P1250. Amphipoda,

lsopoda, Cumacea, Tanaidacea, Pycnogonida and Ostracoda show a conspicuous increase at

stations P1100 and P1250 (Fig.3.8). In contrast, the Euphausiacea are more abundant at the three

upper slope stations. Other taxa like Mysidacea, Copepoda and Chaetognatha display a rather

irregular distribution along the continental slope.

69



V 6 ro n i q u e V anq u ickelbe rghe Chapter 3. Hyperbenthos at Porcupine Seabight

Relative composition

The stacked bars figure (Fig. 3.9), illustrates the relative taxa composition along the depth gradient. A

'rest' group (i.e. group comprising all the taxa with abundance < 3 "/") was created in order to keep the

figure uncomplicated. The taxonomic composition of the hyperbenthos differs considerably along the

continental slope (Fig. 3.9). Amphipoda is the only taxon that accounts for a substantial fraction (> 20

%) of total hyperbenthic density at all stations, except one (P200). At station P650 Amphipoda reach

up to 48 % of the total density. Some important shifts in the community structure can be pointed out.

Mysidacea are very abundant at the upper slope stations and account for more than 14 % of the total

density in station P200 to P650, with a maximum of 24 o/o at station P500. A similar trend is recognized

for the Euphausiacea, which show a high percentage in the three upper slope stations. In contrast,

lsopoda and Cumacea appear in very high abundance at station P650 and account for a large part at

all the deep stations. lsopoda percentage ranges from 10 7o at station P1250 up to 20 7o at station

P800, while the relative part of the Cumacea is even higher, up to 35 % at the three deepest stations.

A pronounced shift in community structure is illustrated (Fig. 3.9).
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Figure 3.9 Relative taxa composition along tho eight stations (P200-P1250) on the Porcupine Seabight slope. The absolute
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Alpha and beta diversity

Alpha diversity of the hyperbenthic taxa at each station (P200-P1250) at Porcupine Seabight is

illustrated by the diversity indices of Hill (Fig.3.10) and the corresponding k-dominance plot

(Fig.3.11). By comparing the alpha diversity of the different stations along the depth gradient on the

continental slope, beta diversity is illustrated. The number of hyperbenthic taxa is higher for the four

deepest stations compared to the upper slope stations. Taxa diversity expressed as N1 is highest at

station P350 and station P800, although at the latter a dominance ol 34 o/o for Amphipoda was found,

resulting in the k-dominance curve lying higher than the Pg50 curve (with Cumacea as the most

abundant laxon, 30 Vol in the plot (Fig. 3.1 1). At station P350 Amphipoda are most abundant (23%).

The highest dominance effect was found for the hyperbenthos at station P650 (49 % for Amphipoda),

resulting in the lowest diversity.
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Community structure

Multi-dimensional scaling (MDS) pedormed on the eight station samples along the Porcupine Seabight

continental slope shows an obvious depth gradient (Fig.3.12A). Also in the cluster analysis

dendrogram (hierarchical clustering with group averaged linking) (Fig.3.128) this gradient along the

slope is illustrated and an upper slope (stations P200, P350 and P500), mid slope (stations P650,

P800 and P950) and lower slope (stations P1100 and P1250) group can be recognised. An ANOSIM-

analysis indicated these groups as not significantly different (global R= 0.959, significance level=

O.4o/o). This is probably due to the low number of taxa and the occurrence of most taxa in most

samples.
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Link with environmental variables

Due to the paucity of environmental variables measured at Porcupine Seabight, the BIO-ENV analysis

was limited to the sediment characteristics (percentage mud, median grain size and sorting coefficient)

and depth. BIO-ENV analysis was pedormed with the similarity matrix from the hyperbenthic taxa data

and the log(x+1) transformed environmental dataset, using a Spearman rank correlation method. The

draftsman plot indicated no correlations between the used environmental variables. The BIO-ENV

analysis was performed for the upper net samples and the lower net samples separate. For both sets

of samples a combination of the four environmental variables best explain the hyperbenthic

community structure, with p=9.222 for the upper net samples and p=6.539 for the lower net samples,

indicating a closer link with the sediment of the lower net samples. Due to the paucity of the dilferent

environmental variables, cautious interpretation is in order.
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3.3. Discussion and conclusions

3.3.1. Verticaldistribution

Density, community structure and diversity

The hyperbenthic fauna is recently recognised as a specific fauna, living in the benthic boundary layer

(BBL) and conducting a specific role in the marine ecosystem functioning. As reviewed by Angel

(1990) the hyperbenthic fauna can be considered as a combination of pelagic species, benthic species

and other species specialized to the hyperbenthic environment. This combination of species in the

specific BBL zone should be expected to be very diverse and comprising high densities of various

ecological taxa. The results of the vertical distribution of the hyperbenthos at Porcupine Seabight in

the present study verify this species combination, as 12 hyperbenthic taxa show a specific distribution

throughout the slope BBL. In this research the BBL water layer is divided, by means of the sampling

device, in two separate layers, one from 0-50 cm above the bottom, the second layer 50-100 cm

above the sediment. There is a clear division of certain taxa throughout this 1 m water layer,

characterized by a pelagic fauna in the upper 50-100 cm layer, dominated by Copepoda and a

benthopelagic fauna in the 0-50 cm layer, mainly composed of peracarid crustaceans.

All taxa except the Copepoda reach higher densities in the lower zone (0-50 cm) compared with the

higher zone (50-100 cm) of the BBL. Copepods are more abundant in the upper water layer, with

densities doubling those in the first 50 cm of the water layer. All copepods caught, belong to the Order

of the Calanoida (Mauchline, 1998), but no further determination was done for this taxon in this PhD

research. Nevertheless certain copepods are referred to as typical hyperbenthic copepods, with some

species endemic to this environment (Mauchline, 1998). On the other hand, many of the species

normally living in the pelagic water column can have downward extensions of their populations into the

BBL. Hyperbenthic species tend to be small in body size and are often robustly built but studies of

their biology are few (Mauchline, 1998).

Besides the pelagic copepods, several benthopelagic taxa like Amphipoda, Cumacea, lsopoda,

Tanaidacea, Pycnogonida and Ostracoda are an important portion of the hyperbenthos in the studied

area. Tanaidacea are strictly limited to the lower 50 cm of the BBL. Very little is known about the

ecology of tanaids, especially those living offshore. Most species are benthic, while some species are

able to swim very fast for short periods by beating their pleopods (Holdich & Jones, 1983).

Amphipoda, lsopoda and Cumacea, belonging to the Peracarida, and the taxa Pycnogonida and

Ostracoda show strong differences in densities between the two BBL layers, with very high densities

in the lower layer for all five taxa. The obvious increase of benthic taxa in the lower nets and

particularly in the deeper stations is also reported by Sorbe (1999) for the Cap-Ferret Canyon in the

Bay of Biscay. lt is important to mention that the catch by the hyperbenthic sledge may have been
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slightly contaminated by benthic fauna present in the upper centimetre of the bottom triggered by

disturbance and resuspension of the soft bottom. Despite this possible contamination, most of these

benthopelagic animals are described as hyperbenthos, showing high swimming capability, which

enable them to migrate into the water column, indicating no strict benthic life style.

Mysidacea, Euphausiacea and Chaetognatha are also more abundant in the 0-50 cm water layer, but

with a smaller discrepancy with the 50-100 cm BBL zone. In the Catalan Sea a similar trend for mysids

was described (Cartes & Sorbe, 1995). Hargreaves (1985) mentions that food supply is probably one

of the causal factors for the increase in numerical abundance of some species near-bottom when

considering the vertical distribution of Mysidacea.

Such a stratified distribution pattern of the fauna in the immediate vicinity of the seafloor was also

noticed for shallower assemblages from the continental shelves and slopes at least in their daytime

structure (Sorbe, 1989; FossA, 1985, 1986; Sainte-Marie & Brunel, 1985; Brattegard & FossA, 1991;

Wildish et a1.,1992). Dauvin & Sorbe (1995) also found higher amphipod densities in the lower BBL

zone at the Cap-Ferret Canyon in the Bay of Biscay. Similar results were reported along the

Norwegian coasts and Gullmarfjord (Buhl-Jensen, 1986; Buhl-Jensen & FossA, 1991). In contrast to

the English Channel, the amphipods occupied the full BBL (1 m) sampled by a sledge and the density

showed no drastic reduction from the lower net to the upper net (Vallet & Dauvin, 1995). As a general

trend, most of the motile species within these assemblages performed noctural migrations upwards

into the water column (Macquart-Moulin, 1984, 1991;Sorbe, 1989; Kaartvedt, 1985, 1989) and the

amplitude of such migrations seem to be species-specific. Overall, these migration patterns together

with other factors such as light, currents or food availability determine the swimming activity of the

hyperbenthic t€xa and thus the vertical distribution.

3.3.2. Bathymetricdistribution

Zonation of the hyperbenthos

Studying one of the major environmental gradients, that relating to depth on the sloping parts of the

seabed and the associated faunal zonation is one of the challenges of this PhD. lmportant faunal

boundaries, found globally, are believed to occur at around the shelf break/upper slope 200-500 m

and around 1000-1400 m depth (Day& Pearcy, 1968; Rowe & Menzies, 1969; Sanders & Hessler,

1969; Dayton & Hessler,1972; Rex, 1977; Hecker, 1990). The depth at which faunal boundaries occur

varies with taxa studied and geographical location (Gage & Tyler, 1991). Observations of these depth

boundaries occurring at many locations worldwide, indicates that important controlling variables are

present at these depths and that these may occur globally. The present study, at Porcupine Seabight,

finds comparative faunal boundaries for hyperbenthos at -500 m and -1000 m. These boundaries

involve some important taxon shifts determining three zones along the continental slope. An upper

slope zone (stations P200, P350 and P500) characterised by high abundances of Euphausiacea,
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Mysidacea and Copepoda and with a relatively low taxon richness. The other two zones, the mid slope

zone (stations P650, P800 and P950) and the lower slope zone (stations P1100 and P1250) are

mainly characterised by the significant increase of the Cumacea and lsopoda. The mid slope zone, in

contrast to the lower slope zone, also comprise an impoftant share of Mysidacea and Copepoda.

Similar studies have focused either on general faunal zonation patterns (Le Danois, 1948;

Rowe & Menzies, 1969; Haedrich et al., 1975; Ohta, 1983) or on the zonation of specif ic taxa, e.g. f ish

(Day & Pearcy, 1968), gastropods (Rex, 1977), echinoderms (Gage, 1986; Howell et al.,2OO2),

holothurians (Billet, 1991) and decapod crustaceans (Cartes & Sardir, 1993). These studies have

shown, regardless of the taxon examined, that deep-sea fauna undergo a non-repeating sequential

change with depth and most species have predictable and restricted depth ranges

(Rowe & Menzies, 1969; Carney et a1.,1983; Gage & Tyler, 1991).

Few studies on hyperbenthic communities have considered the continental slope area, including the

shelf break transition (see Table 1 .2 chapter 1). This area nevertheless coincides with strong gradients

in the physical environment and it is characterised by a very pronounced transition in fauna, as was

already reported for the macro-endobenthic and mega-epibenthic fauna (Rex, 1981;

Flach&Thomsen, 1998; Duineveld et al., 1997; Flach & de Bruin, 1999). For hyperbenthos

Dauvin & Sorbe (1995) defined two bathymetric faunistic changes for Amphipoda at the Cap-Ferret

Canyon in the Bay of Biscay: 400-500 m and 1000 m. On the same set of samples

Elizalde et al. (1991) identified three bathymetric zones for Amphipoda and Mysidacea: 350-520 m,

520-925 m and stations lower than 1000 m

Howell et al. (2002) recognised different faunal zones for starfish in the Porcupine Seabight and

Porcupine Abyssal Plain, which are very similar to the zones defined in the present study for

hyperbenthic taxa. They defined six zones between the shelf break zone (-150 m) and 4950 m depth

with every zone characterised by specific starfish species. Similar boundaries at -700 m and -1100

m, also found in the present study were recognised.

In the present study, as with most deep-sea zonation studies, there is a paucity of environmental data

available. The discussion is therefore limited to those environmental factors that show, often very

loosely, a relationship to the faunal changes observed. Some characteristics from the physical

oceanography at Porcupine Seabight (as described in chapter 2) can complement the interpretation of

the zonation patterns found in the present study. At Porcupine Seabight, the start of a permanent

thermocline occurs at 600 m. Temperature decreases from 10"C at 600 m to 4'C at 1400 m, the base

of the permanent thermocline (Rice ef a/., 1991). Both the 10'C and 4'C isotherms have been

suggested to mark important faunal boundaries (Gage et a1.,1985; Gage, 1986). Deep-sea animals

are thought to be very sensitive to small changes in temperature (Somero et al., 1983). Other

important factors are the hydrographic conditions of the study area. Water mass structure at

Porcupine Seabight has been reported by Hargreaves (1984) and Rice et al. (1991). The boundary
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between Eastern North Atlantic Water (ENAW) and Mediterranean Outflow Water (MOW) occur at

-750 m depth in the Porcupine Seabight. Boundaries between water masses have been correlated

with changes in the composition of benthic fauna (Tyler & Zibrowius, 1992; Bett, 2001). At Porcupine

Seabight no common boundary in the hyperlcenthic zonation pattern and water mass structure could

be established.

In the present study the mid slope zone extends to about 1000 m. Previous studies have found a

comparative faunal boundary at 1200-1300 m for decapod crustaceans (Cartes & Sardd, 1993) and

1000 m for cerianthid anemones (Shepard ef a/., 1986). At Porcupine Seabight the 1000 m boundary

is associated with changes in currents. The variability in the currents will have an effect on sediment

transport, food supply and larval dispersal and is likely to affect the faunal zonation. Flach ef a/. (1998)

found flow velocities to be important in structuring the benthic community at Goban Spur. The change

in currents at about 1000 m water depth is also reflected in the sediment composition along the

studied continental slope and can be linked to the hyperbenthic zonation pattern observed. At stations

P1100 and P1250 a dominant fine sand fraction was found indicating a high-energy environment.

Along the sampled transect the upper slope is characterized by fine sand sediments, while a high

percentage of mud was found at the mid slope with smaller median grain size. The interpretation of

the observed zonation pattern and possible causes will be discussed on species level for the main

group, the Peracarida, in chapter 5 and in comparison with the bathymetric distribution patterns found

at Meriadzek Terrace in chapter 4 and chapter 6.
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4.1. Introduction and objectives

Geographical patterns in the distribution of species (or higher taxa) and the causes of those patterns

are poorly known for animals of the deep-sea floor. This situation arises, in part, because of the great

mismatch between the vastness of the habitat and the low sampling intensity (Thistle, 2003). The

shape of the ocean floor sets the stage for deep-sea biogeography. Briefly, within major ocean basins

at slope depths, the habitat is more or less continuous along isobaths, interrupted by relatively small

structures, such as submarine canyons. The major oceans and most of the world's seas are

connected at these depths. Below about 2500 m, the mid-ocean ridges and submarine mountain

ranges divide the major oceans into regions, for instance, the eastern Atlantic and the western

Atlantic. Below about 3500 m, the deep-sea floor consists of isolated basins (Allen & Sanders, 1996).

These major geographical features have led to different studies based on distribution of fauna along

isobaths and patterns with depth or across isobaths. Few studies combined the along- and across-

isobaths patterns, mainly because of the incomplete sampling. The distribution of higher taxa along

isobaths is unusually homogeneous in the deep sea (Gage & Tyler, 1991). For example, of the 143

genera of asellote isopods known from the World Oceans, all but nine are found in the Atlantic

(Hessler et al., 1979). For deep-sea species, the distribution is slightly different, some species are

widespread, but many have restricted distributions (Kussakin, 1973; Hessler & Thistle, 1975;

Svavarsson, 1 988).

Concerning the patterns with depth or the across isobaths distribution, the faunal break at the

shelf/slope transition (at circa 200 m water depth) has been confirmed repeatedly

(Sanders & Hessler, 1969; Haedrich ef al. 1975; Carney & Carey, 1982). Below 200 m, regions of

relatively slow faunal change (= zones) are separated by bands of more rapid faunal change. The

depths of zone boundaries vary among higher taxa and locations, but in the North Atlantic appear to

be at about 500, 1000, 1500 and 2000 m (Gage & Tyler, 1991). Below 2000 m, the rate of change of

the fauna decreases, and zonation does not appear to be as marked, perhaps partly due to the

smaller sampling effort at these depths. Combining the along- and across-isobaths patterns was done

in relatively few deep-sea studies (Allen & Sanders, 1996; Carney et a1.,1983; Grassle & Maciolek,

1992; Maynou et a1.,1996).

Specific hyperbenthos studies at greater depths (> 200 m) in the NE Atlantic, have been performed

along the continental slope and adjacent canyons in the south-eastern Bay of Biscay (Elizalde ef

a/., 1993; Dauvin et al., 1995; Sorbe & Weber, 1995; Sorbe, 1999; Marquiegui & Sorbe, 1999; Corbari

& Sorbe,2001), in the Catalan Sea (Cartes, 1998) and at the shelf break off Portugal (Cunha etal.,

1997). The hyperbenthos of polar areas has been studied in Antarctic regions (around the South

Shetland fslands and in the Bransfield Strait, San Vicente et al., 1997) and in Arctic waters (the Laptev

Sea, Sirenko et al., 1996). Other studies again focused on the entire peracarid community of the
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benthic boundary layer (BBL) or concentrated on separate orders such as Amphipoda, lsopoda,

Cumacea, Mysidacea or Euphausiacea (see Table 1.2 in Chapter 1).

This study deals with the hyperbenthic component of the BBL fauna, defined as the small (1 - 20 mm)

animals that swim in the vicinity of the seabed (Mees & Jones, 1997). The main representatives of the

hyperbenthos are peracarid crustaceans, a group that shows a rich diversification in the deep sea

often reaching high abundances (Gage & Tyler, 1991). Since the last decade, evidence for their

potential function in deep-sea trophic webs is growing. Vertical migration behaviour may affect the

energy transfer between the pelagic and benthic realm, either in the form of gut contents or as a result

of predation (Angel, 1990; Longhurst & Harrison, 1988). Swimming activities might also contribute to

the fragmentation of marine snow in the water column, as was shown for euphausiids

(Dilling & Alldredge,2000; Graham et al., 2000). Extremely high feeding rates were reported for

scavenging amphipods, which are numerous in the deep-sea BBL (Angel, 1990). Recently, certain

asellote isopods have been shown to feed predominantly on benthic foraminifers, suggesting an

important trophic link (Svavarsson et a/., 1993; Gudmundsson et a1.,2000). Several hyperbenthic

crustaceans constitute an important part of the food exploited by megafaunal decapods (Cartes, 1998)

and demersal fish (Mauchline, 1982; Mauchline & Gordon, 1991). Cartes (1998) could even indicate a

link in seasonal abundance of the hyperbenthos and megafaunal decapods.

The first part of this chapter present the investigations made on the hyperbenthic communities of the

second study area Meriadzek Terrace (see chapter 2 tor study site description). In a second part these

results are compared with the data collected from a similar bathymetric transect at Porcupine Seabight

(raw data presented in chapter 3). The two slope areas in the NE Atlantic were sampled from 200 to

1250 m depth, following a standardised sampling strategy (see chapter 2: methodology). Three

important distribution patterns will be studied and discussed: 1) vertical or stratified distribution of the

hyperbenthos in the BBL, 2) across isobaths or bathymetric distribution and 3) along isobaths or

geographical distribution of the hyperbenthic fauna. This near-bottom or hyperbenthic fauna, a link

between the benthos and the water column, may quantitatively as well as qualitatively differ from the

rest of the deep-sea plankton (pelagial) and may be important in biological interactions within the BBL.

These animals, because of their proximity to the bottom, inhabit a more heterogeneous and possibly

richer environment than deep plankton higher in the water column and may show a clear stratified

distribution within the BBL. More niches may be available, and a specialized hyperbenthic fauna

probably exists along with the regular deep-sea zooplankton (Wishner, 1980a).

By comparing the data from both study sites by means of multivariate analysis, some specific

questions can be addressed here: are the major hyperbenthic stratified and bathymetric or across

isobaths distribution patterns similar for both slope areas and can they be explained by environmental

variables sampled along the slope? Can comparison of the hyperbenthic community structure found in

Porcupine Seabight and Meriadzek Terrace put fonnrard some general trends in geographical

distribution patterns (r-e. along isobaths distribution), depth related distribution patterns (i.e. across
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isobaths distribution) or stratified distribution patterns (r.e. lower BBL zone 0-50 cm versus upper BBL

zone 50-10O cm) of hlperbenthic fauna?

The results will be discussed in terms of higher taxa composition, hlperbenthic densities and

environmentalvariables and in relation to other hyperbenthic community studies from the northeastem

Atlantic described in literature.
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4,2. Results

4.2.1. Environmental variables at Meriadzek Terrace

A description of the study site Meriadzek Terrace and the sampling strategy used, are presented in

chapter 2.

4.2.1.1. Abiotic data

The different environmental variables measured by the 'Seabird Conductivity Temperature Depth'

(SCTD) instrument are data from three metres above the ocean floor, this is a safety margin to prevent

the oceanographic instrument from touching the bottom. The SCTD data were collected during the first

sampling campaign to Meriadzek Terrace in 2OO2 (see chapter 2). At each station (M200-M1250) the

SCTD data were collected immediately after the hyperbenthic sledge was hauled in. A summarize ol

the SCTD data, together with depth for each station is given in Table 4.1.

Table 4.1 SCTD data for the eight stations sampled at the Meriadzek Terrace (M200-M1250).

M 200 M 350 M 500 M 650 M 800 M 950 M 1100 M 1250
depth (m) 227 352 494 678 795 9s3
temperature ('C) 11.il 11.53 11.00 10.47 9.75 9.26
salinity (psu) 35.58 35.58 35.55 35.57 35.68 35.71

dissolved orygen (pmol/kg) 258.90 255.97 231.82 215.74 202.65 203.11

water density (kg/ms)

1 1 10 1215
8.18 7.52
35.58 35.49
214.45 220.45
27.72 27.7527.12 27.13 27 .22 27 .33 27 .s4 27 .65

Depth values range from 227 m lo 1215 m, with a difference in depth of 141 m on the average

between two stations. Water temperature values measured during this study decreased from 11.64 to

7.52 "C with depth. Salinity values are constant along the depth gradient. Dissolved oxygen

concentration decreases from 258.90 pmol/kg at station M200 to a minimum of 202.65 pmol/kg at

station M80O and then increases again with depth. Water density slightly increases with increasing

depth.

4.2.1.2. Sediment characteristics

Sediment samples were taken during the second cruise to Meriadzek Terrace in 2003 (see chapter 2:

methodology) and were performed at the same locations of the hyperbenthic samples taken during the

first expedition to Meriadzek Terrace in 2002. Table 4.2 and figure 4.1 give an overview of the

granulometric analysis. The median grain size (gm) and the sorting coefficient are given in table 4.3,

the latter being an index for the range of the grain size distribution present in a sediment sample

(Dyer, 1986).
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Table 4.2 Sediment composition of the eight sampling stations at the Meriadzek Terrace (M200-M1250).

station clay silt very fine fine
volo/o volo/o sand sand

volo/o volo/o

medium
sand
volo/o

coarse
sand
volo/o

very coarse granule mud
sand mass7" (=clay+silt)

massTo volo/o

M200 0.80

M350 0.60

M500 1.20
M650 1.30
M800 25.90
M950 41.60

Ml100 40.00
Ml250 48.30

2.90

2.40
7.70

5.70
33.40
c!t. t/
43.30

48.90

7.60

16.40

36.1 0
17.80
9.90
5.23
5.00
2.70

63.30

57.40
41.50

45.30
17.30

0.00
6.78
0.t0

23.92

21 .40

11.61

28.33
10.76

0.00
4.46
0.00

1.48

1.80

1.89
1.57
2.74
0.00
0.46

0.00

3.63

0.16

0.00
0.00
0.00

0.00
0.00
0.00

8.35

0.07

0.00
0.00
0.00

0.00
0.00
0.00

3.70
3.00
8.90
7.O0

59.30
94.77
83.30

97.20

M200 M350 M500 M650 M800 M950 M1100 M1250

lClay
IMedium sand

ISiIt
llCoarse sand

tr Very fine sand tr Fine sand

IVerv coarse sand ElGranule

Figure 4.1 Relative sediment composition at the eight sampling stations at the Meriadzek Terrace (M200-M1250).

Table 4.3 Median grain size (gm) and the sorting coefficient of the eight sampling stations at the Meriadzek Terrace

(M200-M1250).

station median grain size
(pm)

sorting
coefficient

M200
M350

M500

M650

M800

M950
M1100
M1250

200
180

134
185

28

6

6

4

0.34
0.42

0.54
0.55
2.74
1.56

1.81

1.32

Granulometric analyses (Table 4.2and Fig.4.1) indicate an obvious increase of veryfine sediments

(clay and silt), starting at station M650. Clay, silt and very fine sand represent the entire 100 % of the

sediment composition at station M950 and almost the entire 100 % at station M1250, resulting in a

very low median grain size of 6 prm and 4 Um respectively. Median grain size at station M1100 is also

6 Um, this stations also contains a very small share of coarse, medium and fine sand. At the more

shallow stations (M200-M650) fine sand is the major component of the sediment, ranging lrom 41,5 o/o

to circa 63,3o/" at stations M500 and M200 respectively. The generaltrend is a continuous increase of
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very fine sediments with depth. Sorting coefficient (Table 4.3) is lowest for the four shallow stations,

indicating a better distribution of grain sizes within the substratum.

4.2.1.3. Environmental variables along the slope transect

The distribution of the environmental data (STD and sediment data: percentage mud, median grain

size, soding coefficient, depth, temperature, salinity, dissolved oxygen, water density and chla) along

the transect was analysed using correlation-based principal-component analysis (PCA) (Fig.  .2).

Data were converted to approximately normality using a log(x+1) transformation prior to the analysis

as described by Clarke (1993). The first two components of the ordination plot accounted for 90.8 % of

the total variance of the data with 75.1 o/o and 15.7 % for the first and the second axis respectively.

The first PC axis (PC1) is that of decreasing (from left to right) values of mud, water density and depth

and explains the largest part of the variance while the second axis (PC2) is explained by the variable

salinity, but only a small percentage is ascribed to this second axis.

2'51

2.0 +M1250

1.5 i
1.0 I

0.5 +M1 
100

0l

-0.s t
-1.0 +

-r.ca

-2.0'
-3

M500

M650
M359,,tzoo

M800

M950

PC1

Figure 4,2 Principal component analysis (PCA) ordination on the log(x+1) transformed environmental variable matrix.

The draftsman plot (pairwise scatter plots) (Fig. 4.3) of all environmental variables illustrates the fact

that some environmental variables are strongly correlated (see result file in appendix a). Variable sets

whose mutual correlation coefficients, after log(x+1) transformation, average more than 0.95 were

reduced to a single representative. For this environmental data set these were the sets mud/median

grain size, median grain size/density and temperature/density. The abiotic variable 'density' was left

out, reducing the correlated variable sets to only the 'mud/median grain size' set. For this latter median

grain size was left out, because the variable mud is a frequent used variable in other studies, so

comparison is allowed. For further analysis based upon this environmental data set, the abiotic

variables 'density'and 'median grain size'were left out.
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Figure 4.3 Scatter plot (Draftsman plot) for the different abiotic variable pairs illustrating correlation of certain variables.

The reduced dataset of environmental variables is used for the BIO-ENV procedure

(Clarke&Warwick, 1994) to define suites of environmental variables that best determine the

hyperbenthos community structure (see further in this chapter).

4.2.2. Hyperbenthic density at Meriadzek Terrace

fn totaf 22 4O3 hyperbenthic individuals were counted at Meriadzek Terrace from all samples,

belonging to 13 hyperbenthic highertaxa (Table 4.5) (including juvenile Polychaeta and larvae). This

latter group mainly comprises Decapoda larvae, which were considered as a taxon. Densities are

given (Table 4.5) for the sum of the lower nets (0-50 cm zone) and the sum of the upper nets (50-100

cm zone) separated and for the sum of the nets or eight stations at the Meriadzek Terrace.
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Table 4.4 A) Total number of individuals for the 13 hyperbenthic taxa. B) Total density (ind./800 m2) for the 13 hyperbenthic

higher taxa for the lower and upper nets and for the sum of the nets (station) at the Meriadzek Terrace.

A. Taxon Lower nets Upper nets Station B. Taxon Lower nets Upper nels
Amphipoda

lsopoda

Cumacea

Tanaidacea

Mysidacea

Euphausiacea

Leptostraca

Copepoda

Chaelognatha

Pycnogonida

Laruae

Ostracoda

Juv. Polychaeta

4753

1'101

1 836

4'l

4677

886

2

2871

166

180

669

265

240

389
a1i

259

12

112

s24

0

2441

63

165

5142

1215

2095

53

4789
'1810

2

5313

342

184

732

43'l

294

Amphipoda

lsopoda

Cumacea

Tanaidacea

Mysidacea

Euphausiacea

Leplostraca

Copepoda

Chaetognalha

Pycnogonida

Larvae

Ostracoda

Juv. Polychaeta

2809,08

717,78
'1298,60

27,85

2522,83

503,29

1,25

1635,95

103,02

1 19,48

374,'t6
'165,67

1 59,31

245,20

7't,63

167,38

7,60

72,65

540,09

0,00

1560,96

1 18,05

2,58

36,90

1 10,65

33.92

3054,28

789,42

1 465,99

35,44

2595,47

1 043,38

1,25

3196,91

221,06
't22,06

411,O7

276,32

193.22
1 7689 4715 10438,27 2967,60

The difference in density of the hyperbenthos within the lower net and the upper net is very obvious.

All higher taxa, except Euphausiacea and Chaetognatha, represent a higher density in the lower nets

in comparison to the upper nets (Table 4.5). The hyperbenthos caught at Meriadzek Terrace is mainly

dominated by Copepoda and Amphipoda, with 3197 ind./800 m2 and 3054 ind./800 m2 respectively,

followed by Mysidacea with a total density of 2595 ind./800 m2 and Cumacea with 1466 ind./800 m2.

4.2.2.1. Vertical distribution of the hyperbenthos at Meriadzek Terrace

The vertical distribution of the hyperbenthos in the two superimposed nets of the hyperbenthic sledge

is studied. The densities of the lower nets (0-50 cm) are compared to the densities in the upper nets

(50-100 cm).

M200 l,'1350 M50C l\4650 M800 l\,4950 I\1110C l\,11250

Figure 4.4 Total absolute density (ind./100 m2) of the hyperbenthos in the lower nets (dark grey) versus the upper nets (light

grey) for each station at Meriadzek Terrace (M200-M1250).

Relative abundance of the hyperbenthic higher taxa

Relative hyperbenthic higher taxa composition illustrates the vertical distribution of the fauna (Figure

4.5). To keep this stacked bars figure orderly, a 'rest' group was created. This 'rest' group is the sum

of the percentages of the taxa that make up less than 3 "/o ol the hyperbenthos in a certain sample.

The composition of this 'rest' group and the number of taxa it comprises differs for each station. For all

B8
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lower net samples the taxa Tanaidacea, Leptostraca and Chaetognatha always belong to the 'rest'

group, while for the upper nets Tanaidacea, Leptostraca and Pycnogonida are part of the 'rest' group

in each station.

A. Meriadzek hyperbenthos lower nets
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Figure 4.5 Relative hyperbenthic higher taxa composition for the A) lower nets (0-50 cm) and B) upper nets (50-100 cm) for the

eight stations at the Meriadzek Terrace (M200-M1250). The absolute total hyperbentic density per sample is indicated above

each bar.

The Amphipoda are very abundant in the hyperbenthos caught by the lower nets along the complete

depth gradient. Also in the lower nets starting at 500 m depth (M500) the lsopoda exceed the 3 % and

start to increase with depth. A similar trend is observed for the Cumacea. In contrast the Mysidacea

are strongly abundant between 200 m and 500 m, but an obvious decrease with depth is observed.

Euphausiacea only exceed the 3 o/o at stations M350 and M500. The Copepoda are very abundant in
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the lower nets at the stations M200-M650, but they also make up a significant part at the stations

M800 and M1250. Larvae are only found at M200, M350 and M500 while the juvenile polychaetes

appear at the three deepest stations. Generally this picture shows an increase in number of taxa with

depth, station M500 shows the highest number of taxa (seven plus 'rest' group).

Comparing the two figures, lower nets versus upper nets, some clear shifts in the taxa composition are

obvious: Copepoda becomes the dominant taxon in the upper nets, they constitute more than 50 % of

the hyperbenthos in six of the eight stations. Amphipoda, Cumacea and lsopoda are still important in

the upper nets, but only in the deeper stations. The percentage of the Euphausiacea is larger in the

upper nets and they are also found at greater depths. Other taxa such as the Chaetognatha and

Ostracoda are more abundant in the upper nets than in the lower nets. Overall, a pelagic fauna is

found in the upper nets (50-100 cm) and a benthopelagic fauna dominated the lower nets (0-50 cm).

Hyperbenthic communities at Meriadzek Terrace

MDS- and cluster-analysis show an obvious division between the upper net samples (group lll) and

the lower net samples (group I and group ll) (Fig. 4.6 and Fig. 4.7). As an exception, the upper net

sample of station M950 is more related to the lower net samples. Furthermore within the lower net

samples there is a clear division between the three shallow stations (M200, M350 and M500, group l)

and the deeper stations (M650-M1250, group ll), while this division is not found for the upper net

samples. The MDS-ordination (Fig. a.6) for hyperbenthic taxa shows a low stress value (0.07),

indicating a good and useful 2D-representation.

Stress; 0.07

group I

group II

group Ill

  A^
r,,rs6l ,uto.

t
M65OL

 
T

V

VM650u V
M800u ;:.TT'l^n-

M1 100L

V
M200u

V
M1 250u

Figure 4.6 Multi-dimensional scaling (MDS) plot based on fourth-root transformed hyperbenthic taxa data of the eight sampling

stations at the Meriadzek Terrace (M200-M1250) with the lower and upper nets separated. u= upper net, L= lower net.
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Figure 4.7 Cluster analysis dendrogram based on fourth-root transformed hyperbenthic taxa data of the eight sampling stations

at the Meriadzek Terrace (M200-M1250) with the lower (L) and upper (U) nets separated. The three groups (1, ll and lll) are

indicated.

In general MDS- and cluster-analysis divide the total hyperbenthos community on the continental

slope into three different taxa associations, reflecting their position in the BBL zone and along the

continental slope: the lower BBL zone (0-50 cm) on the upper pan of the slope (group l), the lower

BBL zone on the lower part of the continental slope (group ll) and the upper BBL zone (50-100 cm)

along the whole slope (group lll), with sample M950u as exception.

Plotting the absolute densities (ind./100 m2) (as a bubble value) of certain taxa on the MDS plot

(cfr. Fig.4.6) illustrates the taxa responsible for the community structure patterns for the hyperbenthos

along the Meriadzek Terrace slope (Fig. 4.8) (see also SIMPER-lists Table 4.6). Group I or the lower

BBL on the upper slope is discriminated by the taxa Amphipoda, Mysidacea and Copepoda. This latter

taxon, together with the taxa Euphausiacea and Chaetognatha, are the taxa characterizing group lll or

the upper BBL along the complete slope. Clustering of the samples from group ll is mainly based on

the high abundances of the taxa Amphipoda, Cumacea, lsopoda and Tanaidacea.
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Meriadzek Terrace station (M200-M1250). U= upper net sample; L= lower net sample.
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Significance tests for differences in the hyperbenthic community structure between the three defined

groups (1, ll and lll) were performed using the one-way ANOSIM tests (Clarke, 1993). The ANOSIM

results (Table 4.5) indicate that the three hyperbenthic taxa associations are significantly different, with

the highest dissimilarity (44 o/o) between the groups ll and lll. The average dissimilarity between all

assemblages is 37 %.

Table 4,5 Results of the ANOSIM and pair-wise tests for difference on hyperbenthic community structure between the zones of

the benthic boundary layer and along the continental slope (l= lower BBL on upper slope; ll= lower BBL zone on lower slope;

lll= upper BBL zone along the whole slope).

Dissimilarity R-value p-value
Global test

groups compared
I-tr
I-m
II-m

0.001

The taxa contributing to dissimilarities between the three groups were investigated using a similarity-

percentages procedure (SIMPER, Clarke, 1993). The SIMPER-list (Table 4.6) shows the contribution

percentages of the top three discriminating taxa for each defined group. Group lll shares no top three

taxon with any of the other two groups, while the lower BBL associations have Amphipoda as the most

discriminating taxon.

Table 4.6 SIMPER-lists, showing the contribution percentages of the top three discriminating taxa for each taxa association.
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Alpha diversity and dominance structure of hyperbenthic communities

Diversity indices of Hill of the three defined groups are significantly different (Kruskall-Wallis test

significance levels: p= 0.0155 for No, p= 0.0482 for Nr, p= 0.0319 for N;6; p<0.05 for all Hill indices)

(Fig. a.9A). Highest diversity is found for the lower BBL on the lower Meriadzek Terrace slope. Overall,

very similar patterns are found for the three communities in the k-dominance plots (Fig.4.9B). The

upper BBL community (group lll) shows the highest dominance, 63 o/o Copepoda. For the two lower

BBL communities this is 35 % Mysidacea and 29 7" Cumacea for the upper slope and lower slope

community respectively.
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Figure 4.9 Alpha diversity of the hyperbenthic communities within the BBL along the Meriadzek Terrace slope: A) diversity

indices of Hill (No, Nr and Nirr) and B) corresponding k-dominance curyes.
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Link with environmental variables

A BIO-ENV analysis, with a Spearmann rank correlation method, with the similarity matrix from the

hyperbenthic taxa density data and the reduced environmental variables dataset (see Draftsman plot)

was performed for the upper and lower BBL zone (net) samples separated. For the lower BBL

samples along the continental slope a combination of mud and dissolved oxygen best explain

(p=0.883) the hyperbenthic community structure. A slightly different combination is found for the upper

BBL samples, where salinity and dissolved oxygen best explain (p=0.553) the hyperbenthic

community structure, thus indicating a closer link of the hyperbenthic taxa (mainly Cumacea and

lsopoda) in the lower BBL zone with the very fine sediments, while the upper BBL zone taxa seem to

be more influenced by environmental variables linked to the water column. This latter may be a

ref lection of a 'pelagial' fauna in the 50-100 cm BBL zone.
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4.2.2.2. Bathymetric distribution of the hyperbenthos at Meriadzek Terrace

For the bathymetric distribution (i.e. along the slope in the zone 0-100cm above the sediment) the

station samples as the sum of the upper and lower net sample are considered and analysed.

Relative abundance

The distribution of the hyperbenthic taxa along the continental slope is illustrated by the relative taxa

composition of each station (M200-M1250) (Fig. 4.10). The distribution of the hyperbenthos along the

depth gradient on the continental slope is studied by means of the eight stations ranging from 200 m

to 1250 m of water depth.

Meriadzek hyperbenthos por station

PEES
S' "'o -$ d

M200 M350 M500 M650 M800 M950 M1100 M1250

Figure 4.10 Relative hyperbenthic taxa composition for the eight stations (M200-M1250) at the Meriadzek Terrace. The

absolute total hyperbentic density per station is indicated above each bar.

Amphipoda are of great importance along the complete continental slope (across isobaths), ranging

from 11 o/o al station M650 to 34o/o al station M1250. The lsopoda exceed the 3 %-limit at station

P500 and then show an increase with depth, except at station M1100, with a maximum ol21 o/o al

station M1250. A similar pattern is observed for the Cumacea which display relative high percentages

starting at station M650 (30 %) with a high share in all deeper stations. Mysidacea are present in all

stations, decreasing with depth, in station M1100 they belong to the'rest'group. Euphausiacea are

mainly present at stations M350 (27 %) and M500 (12 %).
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Alpha and beta diversity

Diversity indices of Hill are very similar for the eight stations at Meriadzek Terrace (Fig. a.11A), at

station M950 a very small peak is observed. The k-dominance plot (Fig. 4.118) confirms this trend and

indicates the lowest diversity at station M200, with the highest dominance of 44 o/o Mysidacea.
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Figure 4.11 Alpha and beta diversity of the hyperbenthic taxa along the Meriadzek Terrace continental slope (M200-M1250):

A) diversity indices of Hill (No, Nr and Ni*) and B) corresponding k-dominance plot.



V6ronique Vanquickelberghe Chapter 4. Hyperbenthos at Meriadzek Terrace

Hyperbenthic communities along the Meriadzek continental slope

MDS-analysis clearly divides an upper slope group from a lower slope group (Fig. 4.12). The distance

between two groups of stations clearly illustrates the faunal break at the shelf/slope transition (at circa

500 m). This pattern is confirmed by the hierarchical clustering with group averaged linking illustrated

by the cluster-analysis dendrogram (Fig. 4.13) but an ANOSIM-analysis indicated these groups as not

significantly different (global R= 0.99, significance level= 1.8 o/ol, which may be due to the low number

of taxa and the occurrence of most taxa in each sample.
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Figure 4.12 Multi-dimensional scaling (MDS) plot based on fourth-root transformed

(M200-M1250) at the Meriadzek Terrace.
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Figure 4.13 Cluster analysis dendrogram based on fourth-root transformed hyperbenthic taxa data of the eight stations

(M200-M1250) at the Meriadzek Terrace.

Compared to the community structure of the hyperbenthos with the two BBL zones separated (r.e. two

nets, see vertical distribution Fig. 4.6), the effect of the upper net samples is minimal in the community

structure pattern when the stations are considered (see further 4.2.2.3.)
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Plotting the absolute densities of four dominant taxa (Fig. 4.14) on the MDS plot (cfr. Fig.a.12)

illustrates the taxa reflecting the community structure pattern found. Mysidacea (Fig.4.14A) and

Euphausiacea (Fig. 4.148) mainly characterize the upper slope community, while the taxon Cumacea

(Fig. a.1aC) plays an important role in shaping the lower slope community (also for lsopoda but not

shown). Amphipoda (Fig. a.1aD) arefound along the complete gradient, but an obvious difference in

density between the two slope communities is illustrated.
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Figure 4.14 Bubble plots based on the MDS plot (cfr. Fig. 4.12), indicating the absolute density (ind./100 m2) of A) Mysidacea,

B) Euphausiacea, C) Cumacea and D) Amphipoda.

Link with environmental variables

A BIO-ENV analysis, with a Spearmann rank correlation method, with the similarity matrix from the

hyperbenthic taxa data and the reduced environmental variables dataset (see above) was performed.

A combination of mud, depth and dissolved oxygen best explain (p=0.846) the hyperbenthic

community structure along the continental slope, thus the effect of the lower BBL taxa is also found

here, in combination with depth being a structuring factor for the distribution of the hyperbenthos along

the continental slope.
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4.2.2.3. Comparing the hyperbenthic distribution and community structure along continental

slopes: Porcupine Seabight versus Meriadzek Terrace

Comparing the hyperbenthic absolute density (Fig.4.15) along the depth gradient of Porcupine

Seabight (P200-P1250) and Meriadzek Terrace (M200-M1250) a different trend is observed. At

Porcupine Seabight density increases with depth reaching highest density at the two deepest stations

P1100 (1O 232 ind./100 m2 in the lower and upper nets) and P1250 (19 487 ind./100 m2), while at

Meriadzek Terrace density decreases with depth and reaches highest density values at station M200

(2543 ind./100 m2) and atstation M500 (3126 ind./100 mz). Densityvalues between 650-950 m depth

are comparable for both sites.

The difference in density between the upper and lower net samples is obvious for both sites, with

highest density values for the lower nets except at station M950.

18300

?100

Figure 4.15 Total absolute density (ind./100 m2) of the hyperbenthos in the lower nets (dark grey) versus the upper nets (light

grey) for each station at both study sites Porcupine Seabight (P200-P1250) and Meriadzek Terrace (M200-M1250). Note the

different scales used.

Community structure is illustrated in the MDS plot based on the upper and lower net samples of the

eight Porcupine Seabight stations and the eight Meriadzek Terrace stations (Fig. a.16).

* 1800
E
a

= 1500
E

1 200

900

600

300

0

P2C0 P350 P500 P650 P800 P950 p1100 p125C t\4200 r!1350 [4500 t\.4650 M800 M950 Mli0o M1250

100



VE ron ique Vanq uickelbe rghe Chapter 4. Hyperbenthos at Meriadzek Terrace

A,

\\
towef nets F

t uppernets

Stress: 0. I

P 200

 
P 1100

A
P 1250

\\ P950
\\

p 650 t.

^ .P 1100P650

P 950 .. M 1250 p 500,r D Cnn

M95ooM S* -- 
tt.. 

M6so
M 8000 y eso \"'""" u tfso. t'^{90 Psoo M2oo

M 650 to.=.,
p l2_0 ,.(" M 500

.A\
Msoo. o . tip_+^ ttoSr.",,,oo

M200 M350 P)UU ..
\ M350\\\

ta

an'* 
"!ro^ 

M500
P 1250

P 650

o; . u?'so
. .''"M llso

p o'so tM 8oo

M ll00
a

M 950

P 350

P 500

P 1100

P 200

c.B.

M 150
M ll00

P l25O P 350

M 500

M 950
M 800 p8oo 

M 2oo
M 6io

P 200
M 1250

P il00 P650

Po50 P50O

Figure 4.16 Multi-dimensional scaling (MDS) plot based on the fourth-root transformed hyperbenthic taxa data for A) the eight

lower net sarlples (full symbols) and upper net samples (open symbols) of the eight stations of Porcupine Seabight (P, triangle

symbol) and Meriadzek Terrace (M, circle symbol); for B) the 16 lower net samples of Porcupine Seabight (P, triangle symbol)

and Meriadzek Terrace (M, circle symbol) and for C) the 16 upper net samples of Porcupine Seabight (P, triangle symbol) and

Meriadzek Terrace (M, circle symbol).

Between geographical areas or hyperbenthic distribution along isobaths

The MDS plot (Fig. 4.164) shows no clear separation of the samples of the two geographic areas

Porcupine Seabight and Meriadzek Terrace indicating small differences in faunal composition between

the two study sites, thus the hyperbenthic taxa distribution along isobaths in the present study seem to

be quite homogeneous.
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Stratified distribution within the BBL

Although the separation of the samples by geographic areas is not clear, the communities from the

two different water layers (0-50 cm and 50-100 cm) occupy defined positions in the MDS plot

(Fig. a.164). The distance between the two water layers (0-50 cm versus 50-100 cm) from the same

station reflects the near-bottom vertical or stratified distribution of the hyperbenthic {auna. At the

stations with the hyperbenthos more concentrated in the immediate vicinity of the seafloor (higher

density), the distance between water layers in the MDS plot (Fig. a.16A) is larger. The different

dispersion of the points referring to the upper and to the lower layer illustrates the differences in the

structure of the faunal assemblage of the two water layers. The larger dispersion of the upper layer

points may be interpreted as a result of the impoverished faunal assemblage with lower number of

taxa and density values. The higher abundance of the lower water layer allows a better

characterization of the faunal assemblages which is illustrated in the MDS plot (Fig.4.16A) by the

closeness of the points and the marked delineation of the groups.

Bathymetric distribution or across isobaths distribution of the hyperbenthos

By analyzing the lower BBL zone (0-50 cm) and the upper BBL zone (50-100 cm) separately

(Fig. a.168 and Fig. 4.16C respectively) there is a clear bathymetric distribution found for the

hyperbenthos living in the lower BBL zone (Fig. a.168). First of all, a clear separation of the upper

slope stations (200, 350 and 500 m) of the two study areas is seen. The two deepest stations of

Porcupine Seabight (P1100 and P1250) are completely distinct from the other stations, while the

deepest stations of Meriadzek Terrace are clustered together with the mid slope stations of both

areas. Generally three groups can be distinguished, an upper slope group, a mid slope group and a

lower slope group (the latter only for Porcupine Seabight). Within the upper BBL zone samples no

obvious bathymetric pattern is found (Fig. a.16C), indicating no differences in the across isobaths

distribution of the hyperbenthic taxa occupying the 50-100 cm BBL zone, which may indicate a

reflection of a'pelagic' assemblage.
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4.3. Discussion and conclusions

4.3.1. Hyperbenthic communities at Meriadzek Terrace and Porcupine Seabight: along

isobaths distribution

The two study sites, Porcupine Seabight and Meriadzek Terrace, were sampled during the

spring/early summer period by a standardized sampling strategy (see Chapter 2). At Porcupine

Seabight hyperbenthic sampling was done in June 2000, while at Meriadzek Terrace hyperbenthic

sampling was performed in April-May 2OO2. A similar hyperbenthic taxa composition was found at the

two slope sites. Density values ditfer significantly between the two areas, with higher total densities at

Porcupine Seabight, for the eight stations this values 35 183 ind./800 m2, while for Meriadzek Terrace

this is about 2.6 times less (13 406 ind./800 m2). This difference in total density is mainly ascribed to

the lower net samples, more specifically those of the two deepest stations, at Porcupine Seabight,

tripling the density of the lower net samples at Meriadzek Terrace. For the upper net samples the

densities are very comparable with the highest total value for Meriadzek Terrace, 2967 ind.l800 m2

and 1975 ind./800 m2 for Porcupine Seabight. Amphipoda, lsopoda, Cumacea, Ostracoda and

Pycnogonida are the taxa attributing to the higher density values in the lower net samples at

Porcupine Seabight, while the Mysidacea, Euphausiacea and Copepoda show higher densities at

Meriadzek Terrace.

According to Gage & Tyler (1991), distribution of higher taxa is rather homogeneous along isobaths in

the deep sea. This is also confirmed for hyperbenthic higher taxa along the two studied continental

slopes as no clear separatiorl between the two geographical areas was found, so the along isobaths

distribution of the hyperbenthic higher taxa is wide spread. Although the geographic distribution of

individual taxa is quite homogeneous, this cannot be generalized for all species belonging to these

higher taxa. Some deep-sea species are widespread while many others have a restricted distribution.

In the present study, the species-specific distribution of the major hyperbenthic higher taxa

(Peracarida) is studied in detail in chapter 5. lt is difficult to compare the present density estimates of

major higher taxa to other published observations on abyssal benthic assemblages from the NE

Atlantic due to the disparity of sampling and sorting methods (e.9. different sampling devices and

mesh size).

4.3.2. Stratified distribution of the hyperbenthos at Meriadzek Terrace and Porcupine

Seabight

The most striking division found for the hyperbenthic higher taxa of the two study sites (each separate

and both sites together) was the one related to their stratified or near-bottom distribution. An obvious

separation of the lower (0-50cm) and the upper (50-100 cm) BBL zone was found in the analysis,

reflecting a stratification of pelagic higher taxa inhabiting the upper BBL zone and benthopelagic

higher taxa concentrated in the 0-50 cm BBL zone. This vertical distribution within the BBL zone of
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the hyperbenthic higher taxa is very obvious in both study areas. Copepods make up the largest

percentage in the upper BBL zone (50-100cm) in both continental slope areas with an average

percentage of 40 "/" and 57 o/o al Porcupine Seabight and Meriadzek Terrace respectively. At

Porcupine Seabight, in contrast to Meriadzek Terrace, Amphipoda and Cumacea still make up a
significant part in the upper BBL zone with an average ol 20 o/o and 19 o/o respectively. At Meriadzek

Terrace Euphausiacea are more important (average of 20 o/o) in the upper BBL zone than in Porcupine

Seabight, even in the deeper stations. Although the general patterns in higher taxa composition in the

upper BBL zone in the two areas are very similar, some differences in relative share of the different

higher taxa were found.

Comparing the higher taxa composition found in the lower BBL zone (0-50 cm), this also shows

similar patterns for both study sites. Amphipoda appear along the complete slope in both areas with

an average of circa 30 7", followed by the Cumacea with an average of circa 25 o/o lor both areas. This

latter taxon belongs to the rest group in some upper slope stations (P200, M200 and M35O) of both

areas and is absent in station P500. Both Cumacea and lsopoda increase significantly with depth

starting from circa 500 m depth in both sites. Mysidacea are strongly abundant at the upper slope

stations but a decrease with depth is observed at both Porcupine Seabight and Meriadzek Terrace.

Moreover, the multivariate analysis of only the upper BBL zone samples of the two slope areas did not

reveal any significant differences in the hyperbenthic distribution related to depth and the associated

environmental factors. Previous results in this PhD research already revealed the dominance of

Copepoda in the upper BBL zone. Euphausiacea are important, mainly at Meriadzek Terrace, while

Mysidacea displays higher densities at Porcupine Seabight. For both areas Amphipoda, Cumacea and

Chaetognatha also determine a small part of the upper BBL zone fauna. These organisms, mainly

Copepoda, Euphausiacea and Mysidacea have higher swimming capabilities and their bottom

dependence is much smaller then for benthopelagic taxa. Moreover they display different feeding

strategies, but this subject will be studied and discussed in more detail in chapter 5.

Despite the problem of comparison to other published observations on bathyal benthic assemblages

from other deep-sea areas due to the disparity of sampling and sorting methods (e.g. different

sampling devices and mesh size), some general vertical distribution patterns can be demonstrated

based on previous studies on hyperbenthic communities conducted on the continental margins in the

Bay of Biscay (Dauvin et al., 1995; Elizalde ef a/., 1993; Sorbe & Weber, 1995; Sorbe, 199g;

Marquiegui&Sorbe, 1999; Corbari & Sorbe,2OOl; Vanquickelberghe, 1999; Dewicke,2002), the

Portuguese margin (Cuhna et al., 1997, 1999) and the Catalan Sea (NW Mediterranean) (Cartes,

1998). These studies, where sampling was performed with similar hyperbenthic sledges (sampling one

meter of the water column), report a similar taxonomic composition and indicate distinct differences in

the near-bottom environment. On the continental margin, the BBL fauna shows a general trend of

decreasing numerical density with increasing distance to the ocean floor. This near-bottom distribution

was also illustrated in this PhD research. Swimming activity and diel changes in the vertical

distribution of hyperbenthic organisms have been studied and described by several authors

(Macquart-Moulin, 1984, 1991 ; Dauvin & Zouhiri, 1996). Species-specific behavioural patterns
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together with other factors such as light, currents or food availability determine the swimming activity

and thus the vertical distribution of hyperbenthic animals (FossA, 1985, 1986; Elizalde et al., 1991;

Vallet ef a/., 1995). The results discussed here are based on data on higher taxonomic level, while

information on causes for the vertical distribution of organisms is very species-specific. The lack of

knowledge on specific species ecology therefore restricts further insight into possible direct relations.

4.3.3. Across isobaths distribution: zonation of the hyperbenthos at the two continental

slopes

Studying the bathymetric distribution of the hyperbenthic higher taxa along the two continental slope

areas Porcupine Seabight and Meriadzek Terrace, some patterns become even more pronounced.

There is a clear shift in higher taxa composition with depth, which can be generalized for the two sites.

A significant increase of Cumacea and lsopoda is seen starting at the station at circa 650 m depth,

this in contrast to a decrease of Mysidacea and Euphausiacea with depth. Copepoda and Amphipoda

show a more evenly spread distribution along the slope.

Similar bathymetric distribution patterns for the hyperbenthic higher taxa as found for Porcupine

Seabight and Meriadzek Terrace are described in literature. High percentages of mysids at the upper

slope zone and the obvious decrease with depth were also reported for other Atlantic deep-sea

communities (FossA & Brattegard, 1990; Elizalde et al., 1991; Cafies & Sorbe, 1995; Sorbe, 1999;

Vanquickelberghe, 1999; Dewicke,2002). This bathymetric zonation of hyperbenthic mysids is quite

similar for different geographical areas (Cartes & Sorbe, 1995; FossA & Brattegard, 1990), and might

be caused by their feeding strategy in combination with other factors (see chapter 5). The relatively

importance of Amphipoda in the one meter BBL in both Porcupine Seabight and Meriadzek Terrace

was also found at the Cap-Ferret Canyon (Sorbe, 1999) and on the Catalan Sea slope (Cartes,1998).

Gumacea and lsopoda were nearly absent at the upper slope region and tended to expand with

depth along the slope. At bathyal depths of the Cap-Ferret canyon, isopods accounted for more than

4O o/o ol the total hyperbenthos density (Sorbe, 1999). The numerical importance of the lsopoda in the

deep sea was also previously recognized in many other Atlantic communities (Sander et al., 1965;

Dahl ef al., 1976; Gage, 1977, 1979; Gage et al., 1980; Laubier & Sibuet, 1979; Sibuel et al., 1984;

Thistle et a1.,1985).

Grain size distribution of the sediment was often correlated with abundances of hyperlcenthic

amphipods (Buhl-Jensen, 1986; Marques & Bellan-Santini, 1993; Dauvin & Sorbe, 1995), isopods

(Svavarsson et al., 1990) and cumaceans (Roccatagliata, 1991). The increased density for

amphipods, cumaceans and isopods at the lower slope at Porcupine Seabight and Meriadzek Terrace

coincides with a decrease in median grain size and a higher mud content of the sediment. This trend

is more pronounced at Meriadzek Terrace, for Porcupine Seabight the sediment composition along the

slope is slightly different, with a very fine sediment between 650 and 950 m water depth, but an

increase of fine sand and thus the median grain size at the deepest stations (between 1100-1250 m)

(see chapter 3). lt is also important to mention that catches by the hyperbenthic sledge may have
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been slightly contaminated by the fauna present in the upper centimeter of the bottom triggered by

disturbance and resuspension by the biting of the sledge into the sediment, which may be a parameter

to keep in mind especially for the stations where the sediments is mainly composed of mud (< 63 pm).

Sediment characteristics of the biotope in which species are found, are generally reported in

hyperbenthic literature (e.9. Cunha et al., 1997; Dauvin et al.,2OO0). Dauvin et al. (1994) mentioned

that the highest densities were generally recorded on fine sediments in regions with an important input

of organic matter to the bottom environment. Still, evidence for species-specific relations remains

poorly documented. Muddy bottoms are often thought to have potential food availability. The grain size

distribution is here believed to reflect the exposure and dynamics of the area. The majority of the

hyperbenthic fauna is non-burrowing and may rather be dependant on the hydrodynamical

mechanisms causing deposition and resuspension, than on the sediment structure itself. Yet, several

exceptions certainly exist, as there are some burrowing mysids, several amphipod and cumacean

species (Jones, 1976; Lincoln, 1979).

Bathymetric distribution and more specifically the distribution related to the shelf break area is a hot

topic in deep-sea research. Early studies related the major physiographical and hydrographical

features of the continental margin to boundaries of major zones of the fauna down the depth gradient.

In the present study a marked distinction could be made concerning the community structure patterns

related to depth found in the lower versus the upper BBL zone, when separating the samples of both

BBL zones. lt was clear that no depth related structure was found within the upper BBL samples,

indicating a homogeneous distribution of the hyperbenthic higher taxa within the 50-100 cm water

layer along the complete continental slope in both study sites. This in contrast to the hyperbenthic

higher taxa distribution in the lower 50 cm of the BBL, which shows an obvious depth related

distribution or zonation along the depth gradient of both slopes.

The lower BBL zone samples of Porcupine Seabight are clearly divided in three depth zones: an

upper slope, a mid slope and a lower slope community. The lower BBL zone samples of Meriadzek

Terrace are divided in only two depth zones. For both sites, the shelf break (or upper slope) is clearly

split of from the deeper slope although there is no common separation for the deepest stations of the

two sites: the deepest stations at Porcupine Seabight (P1100 and P1250) are clearly distinct from all

the other deeper stations. Explanation for the observed bathymetric patterns can be looked for in the

measured environmentalvariables and in the oceanographical data available.

Shelf/slope transition

As mentioned before, patterns with depth linked to the shelf/slope transition zone has been confirmed

repeatedly (Sanders & Hessler, 1969; Haedrich ef al., 1975; Carney & Carey, 1982). The shelf break

is likely to be intermediate between the two contrasting situations of shelf and slope and this atfects

various marine organisms.

Nevertheless this shelf break coincides with strong gradients in the physical environment and it is
characterized by a very pronounced transition in fauna. Zonation control however can be explained by
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a wide variety of depth related gradients including physical (e.9. temperature, currents) and biological

(e.9. resource availability, interspecific competition) factors, but it still remains poorly understood which

factors causes hyperbenthic zonation patterns. Dewicke (2OO2) studied the bathymetric distribution of

hyperbenthos along the shelf break and upper slope zone at Meriadzek Terrace between 200-700 m

and found a pronounced shift in community structure between the shelf break (250-300 m depth) and

the upper slope (600-700 m depth). The bathymetric distribution of mysids, euphausiids and decapods

(good swimmers) is believed to be rather related to properties of the water column (e.9. light

transmission, suspended matter concentration), than to sediment characteristics (Dewicke, 2002). The

increase at the upper slope of bottom-dependant taxa such as amphipods, cumaceans and isopods is

suggested to be more related to a change in sediment structure, in addition to variations in organic

particle transport in the benthic boundary layer (Dewicke,2002).

Mid- and lower slope communities

A clear discontinuity in sediment composition below 1000 m was observed at Porcupine Seabight in

contrast to Meriadzek Terrace. The sediment at the two deepest stations (P1100 and P1250)

becomes coarser than the above stations, revealing the existence of a high energy environment.

Besides the discontinuities in sediment composition at Porcupine Seabight, the explanation for the

separation of stations P1100 and P1250 related to higher densities found at those depths, can be

searched for in the local hydrographical features. These features can result in an ample supply of

food. The most obvious agency by which this might be explained is the resuspension of sedimented

organic particles by near-bed water currents. Besides the general poleward flows (the slope current as

described in chapter 2), there exist relatively strong internal tides and associated internal waves

inducing these near-bed currents. Internal tides and waves have been observed at several locations

along the NE Atlantic margin (Sheruvin & Taylor, 1987). They are periodic oscillations in the water

column formed by disturbances in the vertical density stratification (White, 2001). They generally

originate from the interaction of the stratified water column with sharp changes in the seabed

topography. The Celtic slope is one of the classical examples, and appears to be one of the most

energetic slopes of the world, from this respect (Baines, 1982). Locations along the continental slope

where the slope of the bathymetry is equal or exceeds the characteristic slope angle (o), as defined by

Huthnance (1986), are likely locations for internaltide and wave generation. This characteristic slope

(u) is defined as a function of the wave frequency, the Coriolis frequency at this latitude, the depth and

the degree of water stratification (Huthnance, 1986). This is in particular the case in the eastern

Porcupine Seabight, where the local slope exceeds the characteristic slope (o). This can result in

enhanced near-bottom currents and turbulence (Rice ef a/., 1990), which dependant on theirvelocity

can induce resuspension. The strongest across-slope near-bottom tidal currents in the Porcupine

Seabight are probably of the order of 15-20 cm/s, and occur around the 500-1000 m depth contours

on the eastern flank (Rice et a1.,1990). Such currents are certainly sufficiently powerful to resuspend

flocculent phytodetrital material (Lampitt, 1985) and might even resuspend less flocculent sedimented

material. They would also delay the deposition of any sinking material entering the region compared
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with areas where the near-bed currents are less rapid. These rather perturbed conditions can be

considered as natural causes of stress or instability that certainly influence the community structure of

the hyperbenthos of Porcupine Seabight.

These observations were also the argumentation of Rice et a/. (1990) who found dense aggregations

and high biomass of the hexactinellid sponge Pheronema carpenteriin the Porcupine Seabight in a

very restricted bathymetric zone between 1000 and 1300 m depth. Although Pheronema is not found

within these areas of enhanced currents, Rice et a/. (1990) states that the suspension feeding sponge

is probably unable to withstand exposure to the high current speeds directly, but is dependent upon

the resulting increased organic particulate load being deposited downslope or carried along the slope

in the generally northward drift of the slope current.

A peak in density and biomass of suspension feeding taxa within macrofauna, megafauna and benthic

foraminifera was observed at circa 1000-1500 m along the continental slope in the Goban Spur area

(NE Atlantic) (Flach et a1.,1998). These peaks coincided with a zone where the highest flow velocities

were measured along this continental slope. Thus, at these depths a high load of (re)suspended

material provides good feeding conditions for suspension and interface feeders.

In contrast to Porcupine Seabight, the fine particles enrichment trend with increasing depth at

Meriadzek Terrace indicates calmer conditions along this continental slope. Hydrodynamic conditions

are less pronounced in this area due to the less steep slope, reducing the current velocities. These

features can possibly explain the observed hyperbenthic density and community patterns at Meriadzek

Terrace and the differences with the patterns found at Porcupine Seabight.
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5.1. Introduction and objectives

Diversity has been a major topic of deep-sea biology since the discovery that deep-sea faunas are

highly diverse (Sanders et a1.,1965; Sanders & Hessler, 1969). The pattern of diversity in the deep

sea appears to be less predictable than previously thought and the pattern differs between taxa and

even within short distances (Jumars, 1976), suggesting that local environmental phenomena may be

involved in maintaining a high diversity. With high diversity now accepted as a characteristic of the

deep-sea fauna, several hypotheses were otfered to explain this: among them the 'time-stability

theory'' (Sanders, 1968) and the 'spatial heterogeneity theory' (Grassle, 1977) are tested. The 'time-

stability theory' attributes diversification to evolutionary time: older communities are more diverse than

younger ones (Sanders, 1968). 'Spatial heterogeneity theory' argues that the more heterogeneous

and complex the physical (topographical) environment is the more complex and diverse its fauna

becomes (Grassle, 1977). Both disturbance in the long term and spatial heterogeneity obviously play a

major role in structuring and maintaining highly diverse deep-sea species assemblages, as long as the

disturbance is not too severe (Brandt, 1997c).

In addition to the theories, a number of factors have been discussed which possibly shape abundance

and biodiversity in the deep sea. Some of these factors are absence of light and the high hydrostatic

pressure (Dayton & Hessler, 1972), the low temperature (about 4"C; at 4500 m only 2.5"C), the

currents and the seamounts. Generally also a low food supply (Hessler & Jumars, 1974;

Hessler&Wilson, 1983) has been assumed to be important for a high spatial variability of feeding

conditions on the ocean floor. The search for food is one of the most important tasks in marine

environments (KaTm-Malka, 1997). Food determines animals' activities, reproduction, development,

juvenile recruitment and the maintenance of the species in the field. lt is widely recognized that the

food available becomes scarcer as the depth increases and that species have evolved very elaborate

behavioural patterns to find food and make the best possible use of it.

In addition, as deep-sea sediments are usually very fine, it is not astonishing that deposit feeders

comprise the ovenlrhelming majority (Hessler & Jumars, 1974). Lampitt ef al (1986) published data

from a suruey of the Porcupine Seabight between 500 and 4100 m depth and found about a 3O-fold

decrease in biomass over this depth range. Within this biomass suspension-feeding crustaceans were

dominating.

Among the more diverse major (hyper)benthic taxa in the deep sea are peracarid crustaceans

belonging to the orders Amphipoda, lsopoda, Cumacea, Tanaidacea and Mysidacea

(Jones & Sanders, 1972; Cartes & Sorbe, 1996). However the Mysidacea are distributed mainly in the

upper bathyaland seem to have originated from the continental shelf (Gage & Tyler, 1991). Peracarid

crustaceans are well adapted for a life in the deep sea due to their small body size and brood

protection in the marsupium (Hessler & Wilson, 1983). This latter might favour the Peracarida over

other Crustacea, such as larger decapods, which are relatively rare in the deep sea (Brandt, 1997c).

The long evolutionary history of peracarids in the deep sea, as can be deduced from fossil records of
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isopods and cumaceans from the upper Carboniferous and Permian respectively (Hessler & Wilson,

1983), might represent another advantageous factor (Gage & Tyler, 1991). Amphipods were probably

not present untilthe Tertiary period (Hessler & Wilson, 1983).

Peracarid crustaceans are mostly deposit feeders, their aggregations might cause small-scale

disturbances on the seafloor due to bioturbation, which can also be associated with some level of

organic enrichment (Gage & Tyler, 1991). Bioturbation and sediment mixing are known to enhance

microbial activity (Kristensen & Blackburn, 1987). Peracarids are potentially important in maintaining

high faunal diversity in the deep sea. Piepenburg ef al. (1997) documented that peracarid crustaceans

are primarily correlated with the potential food supply and sediment composition. However, the

relationship between productivity and diversity in the deep sea is still poorly understood

(Warwick, 1996).

As peracarid crustaceans are known to increase in impofiance with depth (Dahl et al., 1976;

Grassle & Maciolek, 1992), one might expect that a vertical transect along the continental slope areas

would reveal highly diverse peracarid communities.

Hyperbenthic data from this PhD research along two continentalslope areas (Porcupine Seabight and

Meriadzek Terrace) suggest that Peracarida are important in terms of abundance. At Porcupine

Seabight and Meriadzek Terrace respectively 77 o/o and 59 o/o ol the total hyperbenthos belong to the

Peracarida (see chapters 3 and 4). Are these high abundances translated in high diversity along both

continental slopes? What might favour Peracarida in this environment? Species which posses a

certain degree of eurybathy are usually considered as pre-adapted for an abyssal life (Bruun, 1957).

In addition, there are strong relationships between sampling scale and the processes that influence

diversity (Huston, 1994). At small scales all species are presumed to interact with each other and to

compete for similar limiting resources (Gray, 1997). This is called within-habitat diversity or alpha

diversity (Fisher et al., 1943; Whittaker, 1960, 1967). At slightly larger scales, habitat and/or

community boundaries are crossed and sampling covers more than one habitat or community. This

level is referred to as between-habitat diversity or beta diversity (Whittaker, 1960, 1975). At an even

larger scale (regional scale) where evolutionary rather than ecological processes operate the patterns

are defined as gamma diversity or landscape diversity (Whittaker, 1960; Cody, 1986).

This chapter emphasizes the depth related distribution of peracarid species along the two slope areas

Porcupine Seabight and Meriadzek Terrace and how the species of the different taxa Amphipoda,

Mysidacea, Cumacea, lsopoda and Tanaidacea behave along this bathymetric gradient. One might

expect different strategies within the different laxa, e.g. occurrence in a preferred depth range. In

addition to the distribution this chapter deals with the alpha and beta component of diversity of

peracarid crustaceans along both continental slope areas. Alpha diversity is translated into diversity of

the peracarid species associated with one station or one depth along the continental slope. Beta

diversity is designated as the degree of species change along the depth gradient characteristic of the
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studied continental slopes. Are both spatial levels of diversity similar for the five major peracarid taxa,

Amphipoda, Mlaidacea, lsopoda, Cumacea and Tanaidacea on species level and how does the

species turn-over (beta diversity) along the continental slope relates between the different taxa?

These interpretations will be discussed in terms of the ecology (e.9. feeding strategy) of the different

species.
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5.2. Results

5.2.1. lmportance of Peracarida within the hyperbenthos

The importance of the peracarid crustaceans within the hyperbenthic fauna in the two studied areas is

illustrated by their relative abundance: at Porcupine Seabight 77 o/o ol the total hyperbenthos belong to

the Peracarida, at Meriadzek Terrace this is 59 %. These percentages correspond with an absolute

total Peracarida densily of 27 186 ind./800 me at Porcupine Seabight and 7940 ind./800 m2 at

Meriadzek Terrace (see chapters 3 and 4).

Further identification on species level of all Amphipoda, Mysidacea, Cumacea, lsopoda and

Tanaidacea was performed in order to obtain detailed information on the diversity of this group along

the continental slope areas. The species list with the taxonomic information and the density for all

species per station are given in appendix 2 and 3. The number of species, genera and families for

each order within the Peracarida (Amphipoda, Cumacea, lsopoda, Mysidacea and Tanaidacea) is

given for both study sites separate and for the total over the two sites (Table 5.1).

Table 5'1 Number of species, genera and families for the peracarid orders Amphipoda, Cumacea, lsopoda, Mysidacea and

Tanaidacea for Porcupine Seabight (PSB), Meriadzek Terrace (M) and total dataset over the two sites (l-).

# Species # Genera # Families

PSB/M/T PSB/M/T PSB/M/T
Amphipoda

Cumacea

lsopoda

Mysidacea

Tanaidacea 2t5t5 21414 2t4t4

From both transects combined, 258 peracarid species have been identified comprising 164 peracarid

genera and 63 peracarid families belonging to the orders Amphipoda, Cumacea, lsopoda, Mysidacea

and Tanaidacea. Among these species 152 are Amphipods, 45 belong to the Cumacea, 30 to the

lsopoda, 26 to the Mysidacea and 5 to the Tanaidacea (Table 5.1). On a generic levelamphipods are

afso most diverse with 101 genera, followed by lsopoda with 22, Mysidacea with 19, Cumacea with 18

and Tanaidacea with 4 genera (Table 5.1). Amphipoda show usually the highest abundance, except at

the deeper stations Cumacea are more numerous (see chapter 3 and 4).

5.2.2. Stratified distribution of the Peracarida

As illustrated before (see chapter 3 and 4) the hyperbenthic fauna shows an obvious distribution within

the benthic boundary layer of one meter, as seen in the abundances and composition of the different

hyperbenthic taxa in the lower (0-50 cm) and upper (50-100 cm) nets of the hyperbenthic sledge. A

clear distinction of pelagic taxa, as chaetognaths, euphausiids and copepods, in the upper nets and a

97 | 1261 152 68/90/ 101 29t32t35
341331 45 16/ 16/ 18 6 / 6t6
19127 130 15t20t22 11 | 13t 14

15119126 12t't5t19 2t3t4
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benthopelagic (related to the bottom) fauna in the lower nets was found, mainly composed of the

peracarids.

As a result an obvious vertical distribution of the Peracarida is found in both study sites (Fig. 5.1). The

absolute densities in the lower net at each station are much higher at every station than for the upper

nets, with the exception of station M950 of Meriadzek Terrace (Fig. 5.1). At this station the peracarid

density is evenly distributed between the two nets (49 7o in the lower net, 51 o/"in the upper net). For

the remaining stations the percentage peracarids in the lower nets ranges from a minimum of 69 o/o

(P350) to more than 95 7o in twelve stations.

M200 M350 tu1500 M650 M800 M950 M1100 M1250

Figure 5.1 Total absolute density (ind./100 m2) of the Peracarida in the lower nets (dark grey) versus the upper nets (light grey)

for each station at both study sites Porcupine Seabight (P200-P1250) and Meriadzek Terrace (M200-M1250). Note the ditferent

scales used.

In addition to the observed stratified distribution, another important trend is observed in terms of

differences between the two studied areas. lf the total absolute abundances of all Peracarida (e.9.

sum of lower and upper nets) are considered, the abundance seems to differ significantly between the

two sites Porcupine Seabight and Meriadzek Terrace. At Porcupine Seabight the abundance is low at

the shallower stations and increases significantly with depth. Only station P650 shows a higher

abundance than the two deeper stations P800 and P950. An opposite pattern is observed at

Meriadzek. Here the highest abundance is found at the shallow stations and decreases with depth.

Within the deeper stations an increase of abundance is found between 650 m and 950 m and

decreases towards 1 100 m and 1250 m.

Besides the share of Peracarida in each net, the species composition per net in the different stations

is illustrated by the top 10 of the peracarid species based on the absolute abundance per net

(Table 5.2). The total number of peracarid species (No) for each sample (e.g.net) is also given and for

each station, again with the exception of station M950, No is always lower for the upper net sample

compared to the lower net sample at the same depth. Due to the large number of species, the top 10

of each net sample does not show a general trend.

1 000

r 800
E
C

P200 Ps50 F500 P650 P800 P950 P1100 P1250
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I Pseudomma affine

A Astyraabyssi

A Hemilamprcpsuniplicata

A Carangolia all barnardi

A Rhachotropistostrata

A Proboloidesgrundimanus

Synhoe affnis

Astacilla intemedia

Eusirus longip€s

A Panthemisto oblivia

M Janiridae species 'l

A Amblyopsabbreviata

C Epimeila@migen

A Epimeria parusitica

A Acidostomasarsi

A Plsustidae spocies 2

A Hemilamprcpsuniplbata

A

A Campylaspis verrucosa

I Unciola planipes

M Hemilampropsuniplbata

A Pseudomma afline

A Ampdlis@ gibba

A Makrol<ylindruslongipes

A Amblyops abbreviata

C Stegocephaloiclesaurutus

Bathycopea Whlops
Campylaspis glaba

C Hemilampropsuniplicata

A Campylaspisveftucosa

C Anpelisca gbba

M Cyclasp6bngicaudata

A BoreomysistMens

C Campylasp6 rostata

M FlhachotropErostrata

A Stdgo@phaloidesaurctus

I Panlamqops species 1

C Epimeria @migera

C Borcornysis tticlens

C Ampelisca gibba

A Tmetonyxcicada

Q Campylaspishoridoides

M Cyclaspislongicauclata

C Rhachottopisgracil6

A Metacirclanahanseni

A Campylaspis rostrata

C Ttyphosella hoingi

A Syrrho€attinis

M

A

A
n

A

I

A

A
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Mysklopsis diclelphys

Melphdip€lla macra

Epimeila @migera

Stegocsphaloktes auratus A Pseudomma affine

Leptostylis villosa C Epimeria parasilkE

M Campylaspis glabn
A Natatolanaborealis

C Epimeda parasitkta

A Hyperetythrops seriventet M Syffhoe affinis

A Rhachottopisintegicauda A Haeiniaantennaia

l Astacilla intermedia

A Janiridae spscies 1

A Astyaabyssi

A Astacilla longicomis

M Hhpomedondentbulatus A Uroilloeelegans

A Amblyoq abbrcviata M Stenothoe matina

I Metacirolana hanseni

I Cressadubia

A Astacilla longicomis

I Astacilla longicomis

A Bathy@pea typhlops

I Ampelisca gibba

I Campylasp6 nacrcphthalma C Astaciila intemedia

A Janiridae spsciss 1

A Ampelis@gibba

I Cumellopsis puritani C Cyclaspis longicaudata C

I Hemilamprops uniplicata C Makokylindrus longip€s C

A Cyclaspislongicaudata C Lapechinellamanco A
I Paralamprops spacies1 Q Hemilamprops uniplicata C

I Makowidrus longipes C Makrckytindrus josephinae C Littjeborgia fissicomb A
A Pseudomma affine M Twhosella insignis A Argissa hamatipes A
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Alyrus species 1

Leu@thoe lilieborgii

Melita obtusata

A Stegocephaloidesauratus A Ampeliscagibba

A Hweilaschingcneois

A

A Boreomysis arctica

A Lampropsfasciata

Pseudomma affine M Syffho€allinis

Ampelisca brevi@mis A Synhoites walked

Lepedinellamanco A Natatolanaborcalb

Anonwliljeboryi

I l.lemilamprcps nomani

C Liiljeborgiafissi@mis

A Ceratocumahodda

C Bathycopeawhlory

M Metacirclanahanseni

A Stegocephaloides auhtus A Phrcina semilunata

A Syrhoites walkeri A Campylaspisrostrata

C Borcomysis microps

I BoreomFis tidens

A Liiljeborgia fissicomis A

M Lepillepeueum cwatum A

C Parcthemisto oblivia

A Eucopia ungubulata
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M Campylaspkrostrata
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I Tmetonyx similis A Stegocephaloidesauratus

I Stego@phaloides auratus A Janirclla nansedi

A

M

M
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I Haminia truncata A Natatolanacaeca

A Campylaspissquamilera C Stegocephaloiclesauratus A Hemilamprops uniplicata C

A ilyaadrna longiltornis

Q Hemilamprops normani

M Eucopiasculpticauda

M Eucopia ungubulata
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5.2.3. Bathymetric distribution of the Peracarida

For the discussion on the bathymetric distribution, all the data are pooled as the sum of the two nets,

which makes comparison with literature possible.

5.2.3.1. Composition of the Peracarida

An obvious shift in peracarid taxon composition along the depth gradient is observed (Fig. 5.2).

Amphipoda make up a significant part at all stations in both areas. Mysidacea show high percentages

at the upper slope stations (200-500 m) at Porcupine Seabight and Meriadzek Terrace, but their share

decrease with depth, stafiing at 650 m. lsopoda and Cumacea show a reverse trend which is more

pronounced for the latter taxon. The general trends are similar for the two study sites.

M 2iX)

P 200

M 350

P 350

M 5U)

P 5{i0

M 650

P 650

M 800

P 800

\,t 950

P 950

M ll00

Pll00

M 1250

P 125()

Elmplqr1 !l.gs1 !!u*!:a EtTanaidacea lltlysidaccr I

Figure 5.2 Relative composition of Peracarida in the two study sites Porcupine Seabight (P) and Meriadzek Terrace (M) with

stations at similar depths (200-1250) of the two areas put together in the figure.

Considering the two sampling sites together, 119 peracarid species of the total of 258 species (see

Tabfe 5.1.) are sampled in both areas Porcupine Seabight and Meriadzek Terrace. These are 72

species of Amphipoda, 22 species of Cumacea, 15 species of lsopoda, 8 species of Mysidacea and 2

species of Tanaidacea. At a generic levelthis correspond with 56 genera of Amphipoda, 14 genera of

Cumacea, 13 genera of lsopoda and 8 and 2 genera of Mysidacea and Tanaidacea respectively

(Table 5.3). Of these, genera which had a bathymetric range of more than 1O0O m, r.e. sampled along

the complete bathymetric range on the continental slope, were considered as eurybathic, and may

have had the potential to submerge into the deep sea from the shelf (Table 5.3). These are 22 genera,

with only one genus of Mysidacea, the 21 others belonging to the Amphipoda, Cumacea and lsopoda.
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Table 5.3 Peracarid genera sampled in both study sites Porcupine Seabight and Meriadzek Terrace with their maximal depth

range found in the present study. Genera indicated with (.) are considered as eurybathic (> -1000 m bathymetric range).

Taxon Depth (m) Taxon Depth (m)

Amphipoda
Acidostoma
Ampelisca *

Amphilochoides
Argissa
Astyra
AUlus.
Bathyamaryllis
Bathymedon.
Bruzelia
Byblis
Carangolia*
Cerapus

Chevreuxius

Cressa
Epimeria *

Euonyx
Eusirus"
Gammaropsis*
Halicoides
Haliragoides
Haploops
Harpinia
Hippomedon
lleraustroe
Laetmatophilus
Lembos*
Lepechinella
Lepidepecreum*
Liiljeborgia
Lysianassa
Melphidipella
Melphidippa
Metambasia
Nicippe
Orchomene

Orchomenella
Paracentromedon

Paraphoxus
Parathemisto.
Pardalisca
Pontocrates
Proboloides
Rhachotropis "
Scopelocheirus
Siphonoecetes
Sophrosyne
Stegocephaloides "
Stenopleustes
Stenothoe
Synchelidium
Syrrhoe
Tmetonyx

Tryphosella

Tryphosites

Unciola
Urothoe

336-953
227-1215
207-494
795-1215
336-1215

227-1215
628-1215
207-1215
494-1215
628-953

227-1215
795-'t2't5
678-'t215
765-1215
207-1215
1110-1215
207-1215
227-1215
795-1215
678-1215

628J1215
469-1215
336-1215
914-1215
628-1215
227-1215

494-1215
227-1215
678-1215
795-1 067
207-953
628-1215
953-1215

336-1 1 10

336-1 21 5

227-1110
914-12't5
628-1 1 1 0
207-1215
1067-1215

227-914
336-1 21 5
207-1215
336-1215

352-1215
953-1067
207-1215
628-79s
628-795

469-1 1 1 0

336-1215
469-1215
628-1215
352-1067

628-1067
336-1215

Cumacea
Campylaspis
Ceratocuma
Cumellopsis
Cyclaspis*
Diastylis
Diastyloides.
Hemilamprops"
Leptostylis"
Leucon

Makrokylindrus
Paralamprops
Platysympus
Procampylaspis
Vaunthompsonia

lsopoda
Aega
Astacilla
Bathycopea
Disconectes.
Eurydice*
Gnathia*
llyarachna
Metacirclana
Munna*
Munnopsis
Munnopsurus*
Natatolana
TWhocope

Tanaidacea
Apseudes
Typhlotanais

Mysidacea
Amblyops
Boreomysis

Erythrops
Hypererythrops

Mysidopsis

Paramblyops
Parerythrops
Pseudomma"

336-1 21 5

953-1215

953-1 21 5
227-1215
336-1 21 5

207-1215
227-1215
207-12't5
953-1 21 5

494-1215
678-1215
678-1215
352-1215
795-121 5

227-914
227-1067

336-1 21 5

227-1215

227-1215
227-1215
336-1215
628-1215
207-1215
678-1215
227-1215

336-1215
678-1215

795-1215
765-1215

469-12't5
336-1 21 s
207-795
227-494

207-336

469-1215
227-76s
227-1215
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5.2.3.2. Gommunity structure

MDS-analysis (Fig. 5.3) and cluster-analysis (Fig. 5.4) divided the total peracarid community of the

continental slope at Porcupine Seabight and Meriadzek Terrace into four species associations,

reflecting their geographical and bathymetrical distribution: a first division in an upper slope (200-

500 m) and a lower slope (650-1250) association and within the upper and lower slope association the

division of both study sites Porcupine Seabight (P) and Meriadzek Terrace (M) exists. The MDS-

analysis showed a low stress value (0.1), indicating a good and useful 2D-representation of the

groups.

Stress:0,1

o
P650

 
P500

A
P350

o. P1100
P1250

oO PSOO
P950

^P200

tffio t8uo r,,,,too ,3uoa. Ml100
M1250

 
M200

Figure 5.3 MDS plot based on the square-root transformed Peracarid species dataset of the eight samples of both sampling

sites Porcupine Seabight (P200-P1250) and Meriadzek Terrace (M).
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Meriadzek upper slope

Meriadzek lower sloDe
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Similailty

Figure 5.4 Cluster dendrogram from a group average sorting using Bray-Curtis similarities of the square-root transformed

Peracarid species dataset of the eight stations ol both sampling sites Porcupine Seabight (P200-P1250) and Meriadzek Terrace

(M200-M1250).
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The ANOSIM-results (Table 5.4) indicate that the four peracarid species associalions were

significantly different. An additional SIMPER-analysis indicates a strong dissimilarity between the

upper and lower assemblage of both study sites: 89 "/" between the upper and lower slope

assemblage at Porcupine Seabight, Sl o/" dissimilarity between both associations at Meriadzek

Terrace. The difference between the upper slope assemblage and the lower slope assemblage of both

areas is characterized by the high number of Mysidacea species and Amphipoda species at both

upper slope groups and the higher number of Cumacea and lsopoda species at both lower slope

assemblages (Table 5.5). In addition, a strong dissimilarity is found between the Porcupine upper

slope assemblage and the other assemblages: 89 % with the Meriadzek lower slope and 83 o/o with

the Meriadzek upper slope. These significant differences are largely the result of the high abundances

of the mysid Erythrops serrata at the Porcupine upper slope, while this species is absent in the other

assemblages. The average dissimilarity between allspecies assemblages was 84 7o.

Table 5.4 Results of the ANOSIM and SIMPER analysis for differences on peracarid community structure between the four

groups on the continental slope (I= Porcupine upper slope, II= Porcupine lower slope, III= Meriadzek upper slope,

lV= lt4g,i.6r.* lower slope).

Groups compared
I-II
I-ru
I.IV
II.M
II-ry
n-IV

89%

83o/"

89"/"

86"/"

75"/"
81%

0,795

o,741

0,908

0,805
0,540
0,938

0,018

0,100
0,018
0,018
0,080
0,018
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Table 5.5 SIMPER lists, showing the contribution percentages of the top ten discriminating species for each species

association. For each species, the order they belong to is indicated: M= Mysidacea, A= Amphipoda, C= Cumacea, l=lsopoda.

Species association I Polcupine upper slope Species association 2 Porcupine lower slope
Erythrops serrata
Scopelocheirus hopei
Parathemisto oblivia
Steg oce p h al o i d es a u ratu s
R hac h otropis i nteg icaud a
Pseudomma affine
Bathymedon species 1

Mysidopsis didelphys
Epimeria parasitica
H iDDomedon de ntic u latus

M

A
A
A
A

160/"

15o/"

11o/o

9o/o

60/"

5o/o

5o/o

5o/o

5o/o

3o/o

H e m i lam p rops u nipl i cata
Pseudomma affine
Ampelisca gibba
Bathycopea typhlops
Metacirolana hanseni

Astacilla intermedia

Astacilla longicomis
Haryinia pectinata
Orchomene pectinatus
LaetmatoDh i I us a rmatus

11o/o

5o/o

5o/o

4o/"

4o/o

4%
3o/o

3o/o

3o/o

3o/o

c
M

A
I

I

I

I

A
A
A

M

A
M

A
A

Lembos longipes
Erythrops neapolitana
Melita gladiosa
Westwoodilla caecula
HW re ryth rops se nive nte r
Pseudomma affine
Hemi I amprops un i pl icata
Stegoce phal oides au ratus

Amphilochoides boecki
Megamphopus comutus

A
M

A
A
M

M

c
A
A
A

Se/o

5o/o

5o/o

5o/o

4o/o

4o/"

4o/o

3o/o

3o/o

3o/o

I

c
A
I

c
c
A
c
c
M

8o/o

7o/o

7o/o

6o/"

6o/o

5o/o

4o/o

4o/o

3o/"

3o/o

Bathycopea Whlops
Hemilamprops normani
Li I lj ebo rg i a fiss icom i s
llyanchna longicomis
Campylaspis glabra
Platysympus typicus

St e g oce p h al o i d es a u ntu s
M akrokyl i nd rus j osephi nae
Hemi I am p rops u n i pl icata
Pseudomma affine

This distinct preference or zonation of certain taxa and species along the depth gradient on the

continental slope will be discussed in more detail in a neld part of this chapter. Three case studies will

be worked out and explanations for this pronounced zonation will be looked for in the ecology of the

different species (see 5.2.4.).
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5.2.3.3. Alpha and beta diversity

In order to illustrate alpha and beta diversity, different diversity indices were calculated, based on the

relative peracarid species abundances per station (r.e. alpha diversity) along the depth gradient in both

study areas (r.e. beta diversity) (Table 5.6 and Fig. 5.5). Generally species richness and diversity is

higher for the lower slope stations (650-1250 m) compared to the upper slope stations (200-5OO m).

For both areas a similar trend is observed for the upper slope stations: the station at 350 m depth

shows the highest diversity in comparison to 200 m and 500 m station. At Porcupine Seabight P350

also shows the highest species richness. Within the lower slope stations peracarid diversity for both

study sites shows a different pattern. At Porcupine Seabight diversity shows two peaks, first at station

P800 and afterdecreasing towards P1100, diversity increases again at P1250. At MeriadzekTerrace,

peracarid diversity increases towards an obvious peak at stations M800 and Mg50 and then

decreases again with a very small increase at M1250. The species richness (Ns) is highest at 1250 m

water depth at Porcupine Seabight (96 species), while at Meriadzek this is the case at 950 m depth

(102 species). Overall, species richness is higher at Meriadzek Terrace than at Porcupine Seabight

when similar depths are compared, except for the deepest station (1250 m).

The Hill index N1 and the Shannon Wiener index (H') indicate that dominance is most pronounced at

the shallower stations. Diversity expressed as the expected number of species (ES(100)) (Table 5.6

and Fig. 5.5) is highest at P80O (41) and P1250 (37) at Porcupine Seabight, for Meriadzek Terrace

highest ES(100) is found around 800-950 m depth (38 at M800,45 at M950). Average taxonomic

diversity (delta (A)) and average taxonomic distinctness (delta. (A.)) (Wanruick & Clarke, 1995) (Table

5.6) do not show large differences between the different stations at each site, indicating small

differences in taxonomic composition between the stations. Only the shallowest station in both sites

(P200 and M200) shows a significant lower value for both indices.

122



A.

V6 ro n iq u e Vanq uickelbe rg he Chapter 5. Peracaid crustaceans

Table 5.6 Alpha and beta diversity of the peracarid species expressed in terms of different diversity indices for each station in

both study site: A) Porcupine Seabight (P200-P1250) and B) Meriadzek Terrace (M200-M1250). The dashed line indicates the

separation of the upper and lower slope community.

Upper slope
P200 P350 P500 P1100 P1250

Number of species (N6)

Hill Diversity (N1)

Hill Diversity (N6)

Evenness (J')

Shannon Diversity (H')

ES(1 00)

Delta 30 36 34

Delta- 36 40 40 :

8,46 16,47 8,56

3,19 4,40 3,46

0,75 0,73 0,68

2,13 2,80 2,15

17 24 12

50

15,92

0,71

2,77

24

37

41

63 63

32,21 20,29

9,27 4,90

0,84 0,73

3,47 3,01

41 27

39 38

77

18,66

5,04

0,67

2,93

za

37
41

32,74

6,74

0,76

3,49

38

40

Lower slope
M800 M950 M1100

Upper slope
M350

29,44

8,01

0,81

3,38

33

41

63 86 102 84
19,50 43,05 46,43 28,05

3,78 8,84 10,86 4,42

0,72 0,84 0,83 0,75

2,97 3,76 3,84 3,33

31 38 45 33

35 39 40 38

39 41 41 40

15,09

2,76

0,66
271

24

35

41

48 48

6,86 19,72

1,80 4,87

0,50 0,77

1,93 2,98

14 30

1t .tc
40 38

Number of species (No)

Hill Diversity (N1)

Hill Diversity (N;6)

Evenness (J')

Shannon Diversity (H')
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The MDS bubble plots illustrating the Hill diversity numbers (No, Nr and N;fi and ES(100) (Fig. 5.5),

plotted on the peracarid community structure, are based on the MDS analysis of the Peracarid species

of the eight stations of each study site separated. Comparing these MDS plots with the community

structure found based on the complete hyperbenthic fauna (see chapter 3 and chapter 4), a very

similar community structure, with an upper and lower slope community, was found for Meriadzek

Terrace for both the hyperbenthos and the Peracarida. For the Peracarida community structure at

Porcupine Seabight the distance between the three upper slope stations (P200, P350 and P500)

becomes larger and the separation of the mid and lower slope becomes more pronounced.

The k-dominance plots (Fig. 5.6) and the top ten of the most abundant species per station (see

appendix 5) based on the peracarid species composition ol all samples for both Porcupine Seabight

and Meriadzek Terrace add some extra information on diversity in combination with the diversity

indices. The k-dominance plot for Meriadzek Terrace (Fig. 5.6 A) explains the major difference for the

Hill number N1 for the stations M2O0 and M35O compared to the very similar species richness (No=48).

The curve for station M200 clearly indicates a very high dominance of 55.5"/" of the mysid species

Erythrops neapolitana, compared to the relative abundance of 20.5 o/o ol Siphonoecetes striatus,lhe

most dominant species sampled at station M350 (see appendix 5). Generally, both plots illustrate a

lower diversity for the upper slope stations (mainly 200 and 500 m) compared to the lower slope

stations. As mentioned before, highest peracarid diversity and lowest dominance is found for the

stations P800 and P1250 at Porcupine Seabight and for M800 and M950 at the Meriadzek Terrace.

Overall, caution should be taken into account with the interpretation of the different curves, especially

these of the remaining stations as the corresponding k-dominance curues intersect (Lambshead ef a/.,

1983; Platt et al., 1984\.
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5.2.4. Three case studies

5.2.4.1. Mysidacea: upper slope preference

A total of 26 mysid species, belonging to 19 genera was collected during the two expeditions, with 15

species sampled at Porcupine Seabight and 19 species at Meriadzek Terrace (see appendix 2 for full

species list and appendix 3 for absolute density values). Both study sites have eight mysid species of

the total of 26 in common and eight genera of the total of 19. Pseudomma affine (406 ind./800 m'),

Paramblyops rostrata (292 ind.l8OO m2) and Boreomysis tridens (79 ind./800 m2) are the three most

abundant species at Porcupine Seabight. At Meriadzek Terrace these are Erythrops neapolitana

(9a0 ind./800 mr), Pseudomma affine (584 ind./800 m2) and Hypererythrops serriventer

(114 ind./800 m2). For both study sites the distributional range of each mysid species is showing an

obvious zonation along the depth gradient on both continental slope sites (Fig. 5.7). Only one species,

Pseudomma affine, can be said to be eurybathic in both sampling sites. This species shows a

maximal depth range between 200 and 1250 m depth, only at station P200 it was not found in the

samples. At both sites the upper slope stations comprise more mysid species than the lower slope

stations. Within this upper slope part some differences between the two sampling sites Porcupine

Seabight and Meriadzek Terrace can be outlined. At the upper slope, seven mysid species in both

sites are restricted to the shallowest three stations (200-500). Most of the species from the upper

slope at Porcupine Seabight show a smaller distributional range (200-350) compared to the species at

Meriadzek Terrace, where most species are distributed from 200-500 m depth. From these seven

species only two species are found in both sites: Mysidopsis didelphys and Hypererythrops

serriventer. Both species show a slightly different distribution along both continental slopes (Fig. 5.7),

but their maximum distributional range over the two sites is 200-350 m and 200-500 m respectively.

Besides these two species at Porcupine Seabight, five other species have their distribution restricted

to the upper slope and none of these five species were sampled at Meriadzek Terrace. At Meriadzek

Terrace in contrast only three other species which were not sampled at Porcupine Seabight are found

at the upper slope. Two other species found restricted to the upper slope at Meriadzek Terrace, show

a rather different distribution at Porcupine Seabight: Erythops neapolitana and Parerythrops obesa.

Erythrops neapolitana was also sampled deeper at Porcupine Seabight (at 800 m), while Parerythrops

obesa was, in contrast to Meriadzek Terrace, not sampled at the upper slope at Porcupine Seabight

but was found in the samples from 650-800 m depth.

The lower slope part at Meriadzek Terrace is characterized by a higher total number of mysid species

compared to Porcupine Seabight although Ne (Fig. 5.8) is only higher at M650 and M1100. Only three

species are common for both siles: Amblyops abbreviata, Paramblyops rostrata and Boreomysis

tridens. From this latter genus, two other species are found at the lower slope at Meriadzek Terrace.

Besides this genus the upper slope community at Meriadzek is characterized by species belonging to

the genera Eucopia, Hansenomysis, Dactylerythrops and Parapseudomma. These genera were not

sampled at Porcupine Seabight. At each site only two species are sampled which are only found at the

deepest station (1250 m) and both sites have none of these species in common.
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Figure 5.7 Mysidacea species occurrence along the continentral slope at Porcupine Seabight (P2OO-P1250) and Meriadzek

Terrace (M200-M1250). The dashed line indicates the boundary between the upper and lower slope zone.

The diversity indices off Hill (Fig. 5.8A) indicate higher species richness at the three upper slope

stations (200, 350 and 500 m) compared to the lower slope for both sites. The highest diversity is

found for the station at 350 m depth at both sites Porcupine Seabight and Meriadzek Terrace. A

second peak of myrsid diversity was found at P800 and M1100 for Porcupine Seabight and Meriadzek

Terrace respectively. The corresponding k-dominance plot (Fig. 5.88) shows a high dominance of

mpid species for the majority of the lower slope stations of both sites.

128



V6ron iqu e Vanq u ickelberghe Chapter 5. Peracaid crustaceans

N"-l

a

!

I

a

t ^
t

l

a

I
a
A

a
A

A. 10

d

6

4

5

3

2

1

3
D

6

='o
eos

. P200

r P360

r P500

r P650

o P800

. P950

^ P11 00

'P1250
. M200
t M3so
r M5@
t Ma5o
o M8@
o Mgso

'M11oo
. M1250

Species rank

Figure 5.8 Alpha diversity of Mysidacea species along the depth gradient (200-1250 m) at Porcupine Seabight and Meriadzek

Terrace: A) Diversity indices of Hill (No, Nr and N- and B) corresponding k-dominance curyes.

I

A

Nl

l

a

I

A

a

a

a

l
a

a
A
a

l

a

Nrnt
a totl

rt^r
a

A

a

l



V6 ro n i que Van q ui ckelbe rg he Chapter 5. Peracarid crustaceans

5.2.4.2. Cumacea, lsopoda and Tanaidacea: preferring the deep

As illustrated before (see figure 5.2.), Cumacea and lsopoda are two hyperbenthic taxa becoming very

abundant with increasing depth. In addition Tanaidacea are completely absent from the samples of the

upper slope stations. These three taxa are identified at species level and their bathymetric distribution

is studied (see appendix2tor fullspecies list and appendix 3 for absolute density values).

For Cumacea 22 species on a total of 34 at Porcupine Seabight and 33 at Meriadzek Terrace are

sampled in both areas. The most abundant cumacean species at Porcupine Seabight are

Campylaspis rostrata (2921 ind.l800 m2), Hemilamprops uniplicata (1239 ind./800 m2) and Cyclaspis

longicaudata (1116 ind./800 mt), for Meriadzek Terrace these are Ceratocuma horrida

(259 ind./800 m2), Hemilamprops uniplicata (236 ind./800 mt) and Hemilamprops normani

(245 ind./800 m'). The bathymetric distribution patterns of the Cumacea species differ significantly for

both areas (Fig. 5.9), mainly due to a larger distribution range of many common species at Meriadzek

Terrace compared to the distribution range of the same species found at Porcupine Seabight. At

Porcupine Seabight 19 species are only sampled in the two deepest stations, while eleven species of

these 19 are also sampled at Meriadzek Terrace but within a larger depth range. This trend is less

pronounced at the shallower stations, where most common species of the two sites show similar

distribution ranges. At a generic level (see table 5.3. and Fig.5.9), 14 genera are found at both

sampling sites, while Bathycuma and Cyclaspoides are only sampled at Porcupine Seabight. At

Meriadzek Terrace also two genera are only sampled in this area: lphinoe and Lamprops. From these

14 genera seven genera have, seen over the two sites, a wide maximal distribution range

(200-1250 m or 350-1250 m). Seven other genera are only sampled at the lower slope part in both

sampling sites.
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Figure 5.9 Cumacea species @currence along the continental slope at Porcupine Seabight (P200-P1250) and Meriadzek

Terrace (M200-M1250). The dashed line indicates the boundary between the upper and lower slope zone (continued).
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Figure 5.9 Cumacea species occurrence along the continental slope at Porcupine Seabight (P200-P1250) and Meriadzek

Terrace (M200-M1250). The dashed line indicates the boundary between the upper and lower slope zone.

The diversity indices of Hill (Fig.5.10A) indicate a higher species richness and diversity of the

Cumacea for Meriadzek Terrace, with the exception of the two deepest stations, which are more

diverse at Porcupine Seabight. At Meriadzek Terrace a gradual increase of species richness with

depth is observed, with a peak at 950 m depth (22 species) and then a decrease is initiated. This trend

is not seen at Porcupine Seabight. Here a gradual increase of species richness with depth is obserued

with a maximum Ns at P1250 (24 species). Overall, species richness and diversity of cumaceans is

higher at the deeper stations compared to the upper slope stations. The k-dominance plot (Fig. 5.108)

indicates a larger dominance effect for Cumacea at the upper slope of Porcupine Seabight compared

to the upper slope stations at Meriadzek Terrace.
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Figure 5.11 lsopoda species occurrence along the continental slope at Porcupine Seabight (P200-P1250) and Meriadzek

Terrace (M200-M1250). The dashed line indicates the boundary between the upper and lower slope zone.

Overall, species richness and diversity increase with depth reaching a maximum value at 800 m at

Porcupine Seabight (12 species) and at 950 m at Meriadzek Terrace (19 species). For the deepest

stations a small decrease in both sites is observed. From the eleven species sampled only at

Meriadzek Terrace, nine were found at 950 m resulting in the higher Ns at this depth. Besides the

different species, both study sites have 16 species of a total of 19 at Porcupine Seabight and27 al

Meriadzek terrace in common. Most of the common species show a deeper distribution at Porcupine

Seabight compared to Meriadzek Terrace. Only one species has a limited distribution in the upper

slope paft: Gnathia oxyuraea. At a generic level, 13 genera are found in both sites (see Table 5.3 and

Fig. 5.11). From these 13 genera only three are restricted to the lower slope part (650-1250). Most
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genera show a wide distribution along the continental slopes. The k-dominance curve indicates a large

dominance effect at the stations P200 and P500 (Fig. 5.128).
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Figure 5.12 Alpha diversity of lsopoda species along the depth gradient (200-1250 m) at Porcupine Seabight and Meriadzek
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Tanaidacea are sampled in small abundances and also the species number is very low (see Table 5.1

and Fig. 5.13). A total of five species was sampled, only two at Porcupine Seabight, five at Meriadzek

Terrace. All tanards are sampled in the deeper stations and are completely absent at the upper slope

from both sites.
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Apseudes spinosus
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Figure 5.13 Tanaidacea species occurrence along the continental slope at Porcupine Seabight (P200-P1250) and Meriadzek

Terrace (M200-M1250). The dashed line indicates the boundary between the upper and lower slope zone.

5.2.4.3. Generalists: patterns of Amphipoda

The peracarid taxon with the highest total number of species is Amphipoda (Fig. 5.14), with 97 and

126 species at Porcupine Seabight and at Meriadzek Terrace respectively (see Table 5.1) (see

appendix 2 for full species list and appendix 3 for absolute density values). Both areas have 72

amphipod species and 56 genera in common. The diversity pattern for both areas shows a slightly

different picture as illustrated by the diversity indices of Hill (Fig.5.15A). Overall, the amphipod

species richness and diversity is higher at Meriadzek Terrace compared to Porcupine Seabight,

except for the deepest station. At Meriadzek Terrace N6 peaks at 950 m (55 species) and than

decrease with depth, while at Porcupine Seabight Ns first peaks at 800 m (40 species) than decreases

with depth, but increases again at 1100 m and 1250 m resulting in the highest species richness

(54 species) and diversity at Porcupine Seabight at this latter depth. The k-dominance plot (Fig.

5.158) indicates a clear division of the upper and lower slope stations, mainly at Meriadzek Terrace,

with a larger dominance effect for the upper slope stations. The distribution pattern of the different

amphipod species along both continental slopes is rather difficult to interpret due to the large amount

of species. Some general patterns can be outlined and further interpretation is done on genus level. In

the distribution of the amphipod species (Fig. 5.14) an obvious zonation or species turnover can be

seen between the upper and lower slope, but both zones comprise a high number of species. From

the 56 common amphipod genera, twelve were sampled along the complete depth gradient from 200-

1250 m and can be considered as eurybathic genera (see Table 5.3.). Only one genus,

Amphilochoides, was sampled only at the upper slope (200-500 m), while eight genera covered the

complete lower slope (650-1250 m) and were not found on the upper slope: Bathyamaryllis,

Chevreuxius, Haliragoides, Haploops, Laetmatophilus, Liljeborgia, Melphidippa and Tryphosella.

Another 18 genera comprise a wide distribution range overfive or more sampling depths/stations. 17

genera have a rather limited depth distribution (over less than five sampling depths) and these are

only found within the lower slope area: e.g. Euonyx and Pardalisca are two genera found f rom 1100-

1250 m depth.
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Ganmarcpsis palmata

Ttyphoselh nanoides

Ttphositds longipes

B athya nE ryl I i s haswe I I i
Melphidiwamacrun
Anp€iiiffaspinipes
Hapbopstubi@la
Lenbos longipes

Stenopleustes latipes

Pleustidae species 2

Ttyphosella insignis

Cressa duua
Sipho/to€€€.tes stiatus
I'lalingaides species 1

Hatpinia ctenulata

Harpinia laevis

Aweli*a brevicomis

P2(n P350

-
-

P500 P650 P1100 P12s0
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Rhachottopis glabn
Pontor,'ates altamadnus
Cer4pus species 1

Lysianassa plwrnsa
llenustoe species 1

Tryphoseila horingi
BruzeliaWca
Liiljeboryia tissico.mis

Aryissa hanatipes
Battrynedu saussurei
P a ra@ntofiedon c re nu I atu s
Sopht6we robercili
Pelt@oxa brcvircstis
Hali@ides anomalus
Pleustidae species 1

Padalise mditenanea
Metambasia laercilsis
Batlvmeclon lryitosttis
Lepidepreum clypatun
Chevreuxius grandin anus
Le@rineilanan@
Euonyx chelatus
Rhadnttopis inermis

Podoceridae species I

Awdiwe*hichtii
Aweli*a tenuknmis
Hypeia latissints
Lenbos vtle,bstei

P8{n P950 P1100

---

-
-

-
-

-
-

-
-
--I

-
-
-
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B.
Apherusa bispinosa
Atylr.rs species 1

Ch e i tw ratus i nte mBd i u s
Lepidepecreum bngicome
Maem othonis

Moneides species 1

Pontocntes altimainus
EpinEfia comigen
Leucothoe liiljeborgii

Rachottopis inwncauda
Amphilodtoides boecki

Melita gladiosa

westwodilla caeanla
Meganphopus comutus
Stegeephaloides du 

'a'tus
Lenbos longipes

Eusirus longipes

lrlelphidipeila nacn
Ampelisca aequicomis
Gamrmrqsis naculatd
Melitaobtusah
OtchonEnella nana

futlrynedon species 1

Carangolia al| bamadi
Lepidepecreum clyryatum
AnpeliscaWia
Halbe walkei
Hypena schimgeneios
Apherusa ovalipes
Epinaria pansitica
Peti@uldes longimanus

SiphonffiIes stiatus
Syrrhoe aflinis
Tryphosites longipes

Radottopis inemis
Ampeli*a gibba

H i ppo nEdon de nti cu I atu s
Rachottopis gimaldii
Ochoflrene humilis

Arnpelis,a sprnipes
Ampeli*a brevicomis
Anontp( fiAeborgi

Urothoe elegans

Urothoe nBfiM
Phippsia gibbosa

BruEliaWca
RadDtropis rostrata

Lepehinella mdn@

Ambasia atlantba
Nicippe tunida
Haryinia antennada
Trphosites aileni
lchnopus spinicomis

OrchonwE p&Iinatus
Panthemi$o oAivia
Micerrysis brevicomis
Harpinia laevis

De)aminidae sDocies 1

lschyroceridae species 1

Pimno brevidens
Unciola planipes

Melphidipry gaesi

Sythoites walked

Liiljeboryia tissicomis

Synchelidium maculatum

Astyn abyssi
C h ev reurt u s g rand i ma n u s
Laefrnatoph i I us tu berc u I atu s
Mon@ulodes packatdi

M200

-
-
-
-
-
-
-

-
-
-
-
-

-
-
-

-
-

-
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Figure 5.14 Amphipod species @currence along the continental slope at A) Porcupine Seabight (P200-P1250) and

B) Meriadzek Terrace (M200-M1250). The dashed line indicates the boundary between the upper and lower slope zone.
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5.3. Discussion and conclusions

5.3.1. lmportance of Peracarida

In the present study, the hyperbenthrc peracarid crustacean assemblages of both continental slopes at

Porcupine Seabight and Meriadzek Terrace were studied in terms of abundance, diversity and

community structure. Peracarid crustaceans are dominant in the vagile macrofauna (called

suprabenthos or hyperbenthos) in deep-sea assemblages, and they are a key group in the

benthopelagic coupling (Graf, 1992; Cartes et a\.,2002). The numerical importance of Peracarida at

bathyal depths in the deep sea has been confirmed in this study as well: the peracarid crustaceans

made up 77 o/o and 59 % of the total hyperbenthic fauna sampled at Porcupine Seabight and

Meriadzek Terrace respectively.

Most studies on deep-sea hyperbenthos concentrate on the bathymetric distribution and the

community composition of deep-sea peracarids (see table 1.2 chapter 1). Although numerical

comparison with these studies is difficult due to the different sampling devices and mesh sizes used,

some information on bathymetric distribution and community structure can be discussed. A

comparison of the maximal depth range of all the Peracarida species identified in the Porcupine

Seabight and the Meriadzek Terrace in the present study with bathymetric ranges found in similar

peracarid studies pedormed on species level is given in Table 5.8, Table 5.9, Table 5.10, Table 5.11

and Table 5.12. These studies comprise bathymetric transects in areas from the northern Polar Seas

(Brandt, 1997c; Sirenko et al., 1996; FossA & Brattegard, 1990; Svavarsson ef a/., 1990, 1993), the

Bay of Biscay (Elizalde et a1.,1991, 1993; Sorbe & Weber, 1995; Dauvin & Sorbe, 1995; Marquiegui &

Sorbe, 1999; Dewicke,2002), the Portuguese margin (Cunha et al., 1997) and the Mediterranean

waters (Cartes & Sorbe, 1995, 1 997, 1999a; Cartes et a1.,2003). Most of these studies concentrate on

one particular peracarid crustacean order (Amphipoda: Dauvin & Sorbe, 1995; Cartes & Sorbe, 1999a;

Mysidacea: Cartes & Sorbe, 1995; FossA& Brattegard, 1990; Elizalde et al., 1991; lsopoda:

Svavarsson et al., 1990, 1993; Cumacea: Cartes & Sorbe, 1997), others studied all the Peracarida

(Brandt, 1997c; Cafies et aL, 2003;) or the complete hyperbenthic fauna (Sirenko et al., 1996; Elizalde

et al., 1993; Sorbe & Weber, 1995; Marquiegui & Sorbe, 1999; Cunha et a\.,1997; Dewicke, 2002).

Comparing the peracarid species composition and depth ranges found in the present study to these

other studies (Table 5.8 to Table 5.12), a significant resemblance was found mainly with the peracarid

fauna sampled in areas in the Bay of Biscay and the Mediterranean. The number of common species

with northern areas is much lower indicating the impofiance of the south to north directed slope

current (Pingree & LeCann, 1989, 1990; Huthnance ef a\.,2001) in the faunal dispersal. Peracarid

species richness (Ne) found at Porcupine Seabight and Meriadzek Terrace is comparable to areas in

the Bay of Biscay (Table 5.8-5.12), where the relatively high species richness can be explained by the

presence of a major gradient of substrate (for Porcupine Seabight and Meriadzek Terrace see chapter

3 and chapter 4) and depth, and the conjunction of the northern limit of warm-temperate species and
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the southern limit of cold-temperate species (Dauvin & Bellan-Santini, 1996). In our results some cold-

temperate peracarid species (e.9. the amphipods Atylus smithi and Lepedepecreum afl umbo) were

sampled which were not found in more southern regions in the Bay of Biscay, indicating their southern

limit in these areas. A comparison of peracarid species diversity found in this study (see Table 5.6 in

this chapter) with other bathymetric gradient studies (Brandt, 1993, 1995, 1997a; Cunha et a|.,1997;

Vanquickelberghe, 1999) is given in Table 5.13. Similar diversity pattern with depth for the Peracarida

are found. Moreover, the diversity and density patterns observed at Meriadzek Terrace confirm the

general view of deep-sea diversity and density, which postulates that diversity increases with depth

(Sanders, 1968), while abundance is high at shallower sites and decreases with depth (Dahl et al.,

1976, Dauvin et al., 1995). Additionally, the predominant pattern of species diversity in both

macrobenthos and megabenthos appears to be parabolic, with a peak at intermediate depths and

lower values on the upper slope and abyssal depths (Rex, 1983). The density and diversity patterns

found at Porcupine Seabight show a different trend, indicating the existences of different

environmental conditions or other factors influencing the hyperbenthos distribution at both study sites.

Community structure analysis illustrated that the continental slope hyperbenthic peracarid species of

the two areas adjust to two more or less clearly delimited faunistic zones: an upper slope zone (200-

500 m), where species diversity is low and a lower slope zone (650-1250 m), where species diversity

attain maximum values. This analysis additionally indicated that the upper and lower slope faunistic

zones of both study sites showed significant differences in species composition between the two sites.

Similar zonation patterns for Peracarida have been obserued in the Mediterranean by Cartes ef a/.

(2003), who found three faunistic slope zones: an upper slope belt above approximately 400 m, a mid

slope belt from 400-1200 m and a lower slope belt below approximately 1200 m.

Abundance, diversity and community analysis all indicate the importance of Mysidacea on the upper

part of both continental slopes, while Cumacea, lsopoda and Tanaidacea prefer the deep (as also

illustrated previously in chapter 3 and 4). Amphipoda seem to be important along the complete depth

gradient. This observation was studied in this chapter in more detail in three case studies:1)

Mysidacea: upper slope preference; 2) Cumacea, lsopoda and Tanaidacea: preferring the deep; 3)

Generalists: patterns of Amphipoda, and indicated different diversity patterns for the different

Peracarida groups. Mysidacea showed a high species richness and diversity at the upper slope in

both sites, followed by a decrease till 950 m to increase slightly towards the deepest stations.

Cumacea species richness and diversity increased with depth, with a maximum at 1100 m at

Porcupine Seabight and at 950 m at Meriadzek Terrace. Also an increasing trend with depth was

found for the lsopoda although maximum diversity was found at 800 m at Porcupine Seabight and at

950 m at Meriadzek Terrace. A similar trend was found for Amphipoda. Tanaidacea were not

frequently caught and were restricted to the deepest stations.

However, the study of diversity and the relationships between community structure and environmental

gradients such as depth or food supply has rarely been attempted (Brandt, 1995, 1997a, 1997b,

1997c; Cartes et al.,2OO3), and the results obtained are often inconclusive. Studies trying to relate

changes in hyperbenthic assemblages with environmental variables that could explain possible
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zonation patterns are almost nonexistent. Factors limiting the presence of Peracarida are a

combination of biogenic microhabitat heterogeneity, which is also influenced by the peracarid

crustaceans themselves and other small-bodied animals. Other limiting factors could be

sedimentological conditions, disturbance created by feeding and burrowing activities, predation, food

resources and availability and their dependence on hydrography and depth (Brandt, 1997c).

All observation of the peracarids combined with the results on the hyperbenthic taxa (see chapter 3

and chapter 4) clearly indicate that different combinations of factors might play a structuring role for

the benthic boundary layer fauna along the two slope sites Porcupine Seabight and Meriadzek terrace.

This will be discussed in chapter 6 (general discussion and conclusions), taking into account the

different patterns found at the two sites. The next part of this discussion concentrates on the link of

specific distribution patterns of Peracarid families, genera and species with food availability along the

continental slopes.

5.3.2. Zonation of Peracarida in the deep sea: a matter of food availability?

Most aspects concerning the organization of animal communities in the deep sea remain poorly

understood. Despite this there are some relatively well-documented patterns such as species

replacement with depth and depth zonation (Gage & Tyler, 1991). Causes responsible for observed

changes in these patterns are difficult to establish, although both physical and biological causes in

origin have been argued. Among the possible causes of biotic origin, food resource partitioning

between coexisting species is one of the most widely discussed (Cartes, 1998).

The deep-sea ecosystem is considered as an environment dependant on the import of energy from

outside (Rowe, 1981). In such a system the decline of faunal abundance seems to be related to the

amount and the quality of organic matter reaching the sea floor and thus influencing the faunal

zonation (Sanders et al., 1965: Rowe ef al., 1974; Laubier & Sibuet, 1979). On continental slopes, the

abundance of life in benthic assemblages is intermediate between those of the shallow continental

shelf (highest) and the abyssal plain (lowest). In this environment two major pathways of energy are

recognized: the first one from the euphotic zone (vertical flux) and the second from the adjacent

continental shelf via bottom nepheloid layers and submarine canyons (advective flux) (Sorbe, 1999).

As the particulate organic matter (POM) produced by primary production in the euphotic zone sinks to

the sea floor, it provides a potential link between surface and the deep-sea communities (Rowe, 1983;

Watts et al., 1992; Cartes et al., 2003). Recently there has been increasing interest in studying

benthopelagic coupling in order to establish these pathways linking secondary production in the

benthos and top predators in demersal communities to primary production at the surface. This topic

has been increasingly documented in deep-sea environments (Graf, 1992; Gooday et a1.,1992, 1996;

Dell'Anno et al.,20OO) where it is generally assumed that availability of food is the main factor limiting

secondary production in benthic organisms (Gage and Tyler, 1991).
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In the deep sea evidence for the arrival of phytodetritus at the water-sediment interface has been

documented photographically (Lampitt, 1985; Hecker, 1990), or by sediment cores collected at

bottoms as deep as 5000 m depth or more (Rice ef al., 1994i Smith et a/., 1996). Whereas the

dynamics of many deep-living deposit-feeders appear to be closely linked to phytodetritus events

(Billet & Rice, 2001), several dominant species of macrofauna are indirectly coupled to temporal

changes in particle flux, because they feed mainly on meiofaunal taxa such as foraminiferans.

Moreover, peracarid crustaceans, a dominant faunal component in deep-sea assemblages, are a key

group linking lower trophic levels with top predators such as fish (Cartes, 1998;

Carrass6n & Cartes, 2OO2; Cartes et a1.,2003).

Additionally, evidence has accumulated that the deep-sea floor is not a stable environment, but shows

seasonal variation. Billett ef a/. (1983) reported seasonal pulses of phytodetrital material to bathyal

and abyssal depths in the Porcupine Seabight. This material appears to originate directly from the

surface primary production and to sink rapidly (1OO-150 m d-') to the deep-sea floor (Billett ef

a/., 1983). Once on the seabed, the detrital material is moved over the sediment surface by bottom

currents. When currents exceed about 7 cm/s (at 1 m above the bottom), the material is resuspended

(Lampitt, 1985). Lampitt (1985) speculates that because resuspension of the detritus will make the

material more readily available to suspension feeders, quite subtle changes in the near-bottom current

regime may have substantial effects on the structure of benthic and hyperbenthic (benthopelagic)

communities.

Furthermore large differences in timing of the spring bloom were reported between 1982 and '1983 in

the Porcupine Seabight (Lampitt, 1985). In 1982 the bloom occurred in early April and the detritus

reached a depth of 2000 m on 1 May, whereas in 1983 the bloom did not occur until mid May and

detritus reached a depth of 4000 m in mid-June. No data on bottom detritus were included in this

research but interpretation of satellite images (http://seawifs.gsfc.nasa.gov/) of both study sites before,

during and after the sampling periods indicated sampling at Porcupine Seabight was performed during

a post-bloom period (bloom in May); at Meriadzek Terrace a phytoplankton bloom was present at the

moment of sampling. In this study, changes in assemblages and zonation patterns found in both

continental slope areas, may be related to differences in the regime of flux and deposition of organic

matter between both slope areas but an analysis of these causes is difficult due to the lack of

simultaneous environmental data and to the absence of detailed information on food consumed by

Peracarid species. Although some studies on feeding biology of deep-sea organisms were performed,

the feeding biology of bathyal and abyssal crustaceans is complex and poorly understood

(Elizalde ef a/., 1999).
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Mysidacea: upper slope preference

Deep-water mysids have mainly been described from faunistic and systematic viewpoints, resulting in

relatively well known systematics (Bacescu, 1989; Tattersall & Tattersall, 1951;

Lagarddre&Nouvel, 1980; Mauchline, 1980), but little information exists on their ecological role in

deep-water communities. In general, mysids are detritivores or carnivores (Mauchline, 1980;

Hargreaves, 1985) though there are hardly any data on their trophic preferences in the deep sea.

Generally the species occurrence (r.e. zonation and community structure) of the mysids found at

Porcupine Seabight and Meriadzek Terrace was consistent with previously known geographical

distributions (Hargreaves, 1985;Anad6n, 1993; Mauchline, 1986; Cartes & Sorbe, 1995, 1998; Cartes

& Maynou, 2001; FossA & Brattegard, 1990; Elizalde et al., 1991) (Table 5.1 1).

Some mysid species normally associated with the continentalshelf and coastalwaters were present at

Porcupine Seabight and Meriadzek Terrace: e.g. Lophogaster typicus, Haplostylus normani,

Anchialina agilis and Mysidopsis didelphys, Leptomysis lingvura. Downslope penetration to the upper

continental slopes at Porcupine Seabight and Meriadzek Terrace by these shelf species can be

supposed. These shelf species all have a very restricted depth distribution along the Porcupine and

Meriadzek slopes, they are only found between 200-350 m depth, r.e. around the shelf break,

confirming a limited downslope movement.

Two species, Amblyops kempi and Bathymysis helgae at Porcupine Seabight and two species,

Eucopia sculpticauda and Hansenomysis fyllae were only sampled in the deepest station (1215 m).

Three of these four species were also sampled at the Rockall Trough (Mauchline, 1986) (northerly of

Porcupine Seabight). lnformation on Amblyops kempiis scarce, this species occurred in stomach of

fish caught at 1000 and 1250 m depth in the RockallTrough. Eucopia sculpticauda is a cosmopolitan,

bathypelagic species with a bathymetric range of 800-1500 m. Another representative of this genus

Eucopia unguiculata was also found only at Meriadzek Terrace but within a wider range (650-1250m).

Hansenomysis fyllae was found in the Rockall Trough between 1000 and 1750 m. lt has been

recorded off southwestern lreland near 51" N, 11" 40'W and this is described as its southern limit

(Tattersall & Tattersall, 1951). Although in this study, this species was sampled at Meriadzek Terrace

at 47" N, 8' 13' W what lies more to the south.

A general pattern which was illustrated by the hyperbenthic and Peracarida data was the obvious

zonation of the Mysidacea along the continental slope characterized by a numerical decrease with

depth. The high abundance of Mysidacea on the upper slope part in both study sites might be

explained by the feeding strategy of these organisms. Species-specific trophic preferences can also

partially explain their distribution with depth in the present study. Mysids can have a very diversified

diet. Depending on the food availability, certain mysids seem to prefer crustacean remains (e.9. mainly

copepods) above detritus of phytoplankton origin (Cartes & Sorbe, 1998). This change in diet possibly

could explain the gradient distribution of the mysids at the upper slope because their dominant food

source is also very abundant at the upper slope (see chapter 3 and 4). The relative abundance of
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copepods at the upper slope in both areas Porcupine Seabight and Meriadzek Terrace is respectively

26 o/o and 24 o/o, campared to 7 o/o and 22 o/o at the lower slope. The difference in copepod abundance

at Meriadzek is rather small, but for the Euphausiacea this is more pronounced:13Y" at the upper

sfope, 1.3o/o al the lower slope, while at Porcupine Seabight the relative abundance of Euphausiacea

is 9% and 0.13o/o lor the upper and lower slope respectively. At Meriadzek the abundances of

Mysidacea, Copepoda and Euphausiacea are higher compared to Porcupine Seabight (see chapter 3

and 4). Moreover Gartes & Sorbe (1998) also found an increase of phytodetritus as a food source in

the stomach content of mysids, which were caught on greater depths (between 1250-1350 m in the

Catafan Sea). This lower specificity in the diet of some mysid species (e.9. Boreomysis arctica) would

support different characteristics in its biology, such as its wide bathymetric distribution range (Cartes &

Sorbe, 1998). Moreover, mysids are well-known aggregators (Mauchline, 1980), which can possibly

reinforce the numerical dominance of certain mysids at the upper slope stations (e.9. 55.5 %

Erythrops neapolitana at M200; 31.4o/o Erythrops serrata at P200; 36.27o Pseudomma affine al

M5o0).

lsopoda and Gumacea: preferring the deep

Carey ('1972) observed changes in feeding types with increasing depth from predators to detritus-

feeding forms. Moreover, as deep-sea sediments are usually very fine, it is not astonishing that

deposit feeders comprise the overwhelming majority (Hessler & Jumars, 1974). Lampitt ef a/. (1986)

published data from a survey in the Porcupine Seabight between 500 and 4100 m depth and found

about a 3O-fold decrease in invertebrate megabenthos biomass over this depth range. Within this

biomass, again, suspension-feeding crustaceans were dominating.

According to Wilson (1998) most isopod crustaceans in the North Atlantic deep sea belong to the

suborder Asellota. ln contrast, South Atlantic isopod faunas have a significant component of

flabelliferan isopods (Wilson, 1998). This study shows that both suborders are important in the studied

areas, with Flabellifera dominating in seven of the 16 bathyal slope stations.

Many flabelliferans, especially Cirolanidae, have a high proportion of scavengers or predators that

may be disadvantaged in the abyss owing to the rarity of prey (Hessler & Wilson, 1983; Gage & Tyler,

1991). In contrast, some highly active swimmers among the Cirolanidae seek out food falls (Wong &

Moore, 1995, 1996) and may be well adapted to deep-sea conditions owing to their ability to find food

over fong distances (Wilson, 1998). The Cirolanidae species Natatolana borealis, an important

scavenging isopod species was found in this studywithin a depth range of 350-1100 m in Porcupine

Seabight and between 350 and 800 m at Meriadzek Terrace. This species construct U-shaped

burrows in soft sediments and shows a circadian rhythm of emergence from the substratum (Taylor &

Moore, 1995; Kalm-Malka, 1997). Furthermore swimming behaviour controlled by smell has been

described for this isopod (Kaim-Malka, 1997), which may explain its rather wide distribution along the

studied continental slopes. At the deeper stations another Cirolanidae species becomes abundant,

Metacirolana hanseni. Other isopods are parasitic during some stages of their life cycle and may be
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similarly disadvantaged. A predominance of these life styles among flabelliferans (e.9. Anthuridae,

some Cirolanidae, Aegidae, Gnathiidae) might explain some of their decline with depth, but only

partiaffy. Parasitic Gnathia species were mainly caught at the upper slope of Meriadzek Terrace.

Dependance on carnivory or parasitism does not explain reduced diversity in other abundant groups

among the flabelliferans that are detritivorous (e.9. the family Sphaeromatidae) (Wilson, 1998). This

latter family showed a similar distribution pattern in both study sites, becoming very important with

increasing depth.

Asellote isopod crustaceans are among the most divers group in the deep sea

(Hessler&Wilson, 1983). Little is still known of the ecological factors that shape their diversity and

abundance in the deep-sea environment. The deep-water asellote isopods have generally been

considered detritus feeders (Wolff, 1962) but recently Svavarsson ef a/. (1993) and Gudmundsson ef

al. (2OOO) showed that certain deep-sea munnopsid asellote isopod species feed on foraminifers

(Protozoa) and that their selection of food may depend upon the shape of their mouthparts. Another

isopod species, Munnopsurus atlanticus potentially feeds on meiofauna (Elizalde et a1.,1999i Cartes

et al.,2OOO). This species was also sampled in this study, but mainly at Meriadzek Terrace between

950 and 1100 m.

Another family within these Asellota, Eurycopidae, was shown to be important along the complete

studied continental slope (200-1215 m) at Meriadzek Terrace, compared to the very low abundances

found at Porcupine Seabight. Species belonging to the family Eurycopidae are considered as

epifaunal isopods, characterized by natatory legs,which enables the animals to walk on the surface of

the sediment or to swim rapidly (Thistle & Wilson, 1987). Therefore these animals will be more subject

to erosion (e.9. caused by benthic storms) than animals that live in or can shelter in the seabed

(Thistle & Wilson, 1987). In contrast, infaunal isopods are likely to be unaffected by a few millimeters'

increase or decrease in the amount of overburden (Thistle & Wilson, 1987). Eurycopidae are

foraminifera eaters. Furthermore, the asellote families llyarachnidae and Munnopsididae are

modified for swimming (Hessler et a1.,1979). The latter family shows insignificant abundances in both

study site compared to the dominance of the family llyarachnidae mainly at the deeper stations at

Meriadzek terrace. Species within this family have enlarged heads to accommodate crushing jaws

enabling them to eat foraminifera (Hessler et al., 1979). The family Janirellidae is considered as

epifaunal but no other information concerning the biology of this family is known (Thistle & Wilson,

1987). lschnomesidae are considered infaunal, tube-burrow dwellers commonly found in sudsurface

layers (Thistle & Wilson, 1987). ln this study these are only found at station P1250, which can be an

indication of a limited contamination in the hyperbenthic sledge at this particular station. The

Arcturidae is a dominant isopod family sampled between 650 and 1100 m at Porcupine Seabight and

which is less important at Meriadzek Terrace. The Arcturidae are isopods that have developed a

unique body morphology enabling them to live as passive filter feeders among plants and plant-like (in

structure) animals such as bryozoans and sponges. In arcturids, the posterior pereopods are adapted

for clinging while the anterior pereopods are long and hold rows of long setae (hairs). Their bodies are

often elongated at the fourth segment so that they are able to tilt upwards and get their anterior legs
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higher in the water column (for more food). They swash their anterior pereopods around, collect small

food particles out of the water and send them to the mouthparts.

Overall different isopod families show a different dominance pattern along the depth gradient between

the two sampling sites Porcupine Seabight and Meriadzek Terrace. At Porcupine Seabight a

dominance of filter feeding isopods (e.9. Arcturidae) and Cirolanidae are found, in contrast to a

dominance of scavengers and predators at Meriadzek Terrace.

Compared to other groups of peracarid crustaceans (e.9. mysids and amphipods), cumaceans are

more closely associated with the substratum (Cartes & Sorbe, 1997). Most deep-sea cumacean

species have close relatives in shallow waters (Gage et al.,2OO4), the exception being one family, the

Ceratocumidae, which is a small overwhelmingly deep-water family (Gage et al.,2OO4). This is also

illustrated in this study where this family makes up around 50 o/o ol all cumaceans caught at the two

deepest stations at Meriadzek Terrace and 21 % at 950m. At Porcupine Seabight this family is only

present at the deepest station, but in a relatively small amount. One might expect the difference in

substrate between both sites may play an important role in the distribution of this typically deep-sea

family. At Meriadzek Terrace very fine sediment is found at those depths, compared with coarser

sediment at Porcupine Seabight at the same depths (see chapter 3 and chapter 4). Furthermore at

Meriadzek Terrace, the cumacean family Lampropidae (e.g.species Hemilamprops species) is the

dominant family in all stations except at the two deepest stations where the Ceratocumidae (e.9.

Ceratocuma horrida) are dominant. At Porcupine Seabight, where the abundance of cumaceans is

much higher, the Nannastacidae (e.9. Campylasprb species) make up the largest percentage in the

two deepest stations, while the Lampropidae (e.9. Hemilamprops species) are dominant (more than

50 %) between 650 and 950 m. Around the shelf break (200-350 m) a dominance of Diastylidae was

found. Within the former family, the Nannastacidae, the genus Campylaspis and some related genera

the mandibles and second maxillipeds are modified as piercing organs and they probably feed on

foraminiferans and perhaps small crustaceans (Jones, 1976). This dominance may be explained by

the coarser sediment type at stations P1100 and P1250. Other deep-sea cumaceans are believed to

live partially or completely buried in the top layer of the sediment, with many species being surface

deposit-feeders or resuspension filter-feeders (Gage et al.,2OQ4). The food-manipulating appendages

and mouthparts are suitable armed with spines and bristles (Jones, 1976). ln some bathyal species,

movement off the bottom is known predominantly to involve adult males (Cartes & Sorbe, 1997).

Some bathyal cumaceans show a reproductive response to seasonally pulsed fluxes of organic

material to the seabed (Bishop & Shalla, 1994; Cartes & Sorbe, 1996). lt follows that utilization of this

material may also fuel population expansion among these cumaceans similar to the way in which it

increases abundance among foraminiferan phytodetritus opportunists (Gage et al.,2OO4).

In both sites more cumacean families are represented at the lower slope compared the upper slope

part, resulting in higher diversity. Due to the smaller amount of feeding strategies and the intense

relationship of cumaceans with the sediment, no large differences were detected between the two
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study sites. In both sites the importance of Cumaceans increases with increasing depth, probably

mainly explainable by the sediment change with depth along the continental slopes.

Amphipoda: generalists?

Amphipoda are an important and a diversified part of the bathyal and abyasal fauna. Concerning the

diet and food sources exploited, amphipods seem a more heterogeneous taxon than, for instance,

cumaceans or mysids, since they have different feeding strategies, which range from filter{eeding to

scavenging or predation (Mills, 1967; Sainte-Marie, 1992), which might partly explain the high number

of species and a wide bathymetric distribution along the studied slopes. There is limited detailed

information about the feeding habits of deep-sea amphipods (Sainte-Marie, 1992;

Cartes & Sorbe, 1999a) and other ecological aspects, such as oxygen consumption and food

assimilation (Smith & Baldwin, 1982; Hargrave et a1.,1995). Some indirect ecological data on the role

of amphipods in deep-sea food webs have been obtained from studies of trophic relationships with

megafauna (Lagarddre, 1977: Carles, 1998). Many species or families of amphipods are widely

consumed by fishes and decapod crustaceans. Among them, Lysianassidae and Eusiridae are the

most commonly preyed upon by deep-water shrimps in the western Mediterranean (Cartes, 1998).

Also related to feeding preferences, amphipods show different swimming capacities and a distribution

above the sediment surface that ranges from infaunal to bathypelagic or hyperbenthic species

(Sainte-Marie & Brunel, 1985; Sainte-Marie, 1992). Many are nehonic and are dispersed by migration

and water mass movements. Others presumably are obligatorily benthic, swimming only small

distances (Barnard, 1962). Cartes & Sorbe (1999a) studied the swimming capacity of bathyal

amphipods sampled at the Catalan Sea slope. Generally swimming activity of bathyal Gammaridea

species was low, demonstrating their close relationship to the water-sediment interface, but was

higher for Hyperiidea. All Lysianassidae and some Eusiridae had relatively high swimming capacities,

while all the Liljeborgiidae, some small Oedicerotidae, Phoxocephalidae, Gammaridae, Aoridae and

Haustoriidae were linked more closely to the substratum and thus showing none or very low swimming

activity (Cartes & Sorbe, 1999a).

The zonation of the amphipod families shows some differences in the two studied continental slope

areas, which may, in combination to the trophic diversity, be linked to changes in the flux of particulate

organic matter from the water column. At Meriadzek Terrace the upper and mid slope (200-800 m) is

mainly inhabited by a mixture of suspension-feeding families (e.g Melphidippidae and Corophiidae)

(Dauby et al.,2OQ1) and scavengers (Lysianassidae and Eusiridae) (Rutfo, 1982; Dauby et a1.,2001),

while the deeper stations are dominated by Lilljeborgidae and Lysianassidae, a deposit-

feeding/predatory type and a scavenger family respectively (Ruffo, 1982; Dauby et al., 2001).

Scavenging is a widespread feeding mode in deep-sea species (Kaim-Malka,2003) with Amphipods

being one of the main groups of scavengers in the deep sea. The importance of suspension-feeding

amphipods at the deeper stations of Meriadzek Terrace significantly decreases.
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At Porcupine Seabight the trophic diversity and the bathymetric zonation relate different. Here, the

upper slope (350-500 m) is dominantly occupied by Lysianassidae and the shelf break (200 m) by

Hyperiidae and Eusiridae, though mainly scavengers. At the lower Porcupine slope (650-1250 m) an

increase of suspension-feeding families (e.g Ampeliscidae, lsaeidae, Corophiidae) (Dauby et al.,

2001) is obvious. Amphipoda of this group are typically epibenthic and feed selectively on discrete

particles of organic matter (Barnard, 1962), which suggests that they can be sensitive to changes in

the flux of particles and organic matter deposition (Cartes & Sorbe, 1999a). These animals are always

weakly motile, or sedentary. lt may be an indication of an important flux of particulate organic matter

from the water column after a phytoplankton-bloom at Porcupine Seabight as illustrated also for the

lsopods and to a less extend for the Cumacea.

5.3.3. Gomparison of distribution and biodiversity patterns of Peracarida with shelf/coastal

systems

It was thought to be useful to discuss the results in relation with the current knowledge on the

peracarid fauna of continental shelf systems and coastal systems in order to confirm the high diversity

subscribed to deep-sea habitats like the continental slope. Gomparison with the peracarid fauna from

different sites in the North Sea (Dogger Bank (do), Frisian front (ff) and the Belgian continental shelf

(bcs)) after Dewicke (2OO2) was pedormed. The work of Dewicke (2002) provides a baseline study of

the species composition and spatio-temporal distribution of the hyperbenthic communities of the North

Sea. This comparison is possible because a similar standardized methodology, as described in the

present study, was used in the study of Dewicke (2002). Three areas in the southern North Sea are

compared to the continental slope areas at Porcupine Seabight and Meriadzek Terrace. Two North

Sea areas are situated at the transition between mixed and stratified water masses, r.e. in a frontal

boundary area. The Dogger Bank is located in the central North Sea and borders the southern North

Sea to the north. This vast, submerged sandbank is regarded as a special ecological region (Kroncke

& Knust, 1995). Phytoplanhon production is nearly continuous throughout the year related to near-

stable abundances for macrofauna and fish. The Dogger Bank (between 15 and 70 m depth) has a

significant impact on the circulation in the central and southern North Sea and is an important fishing

area (Dewicke, 2OO2). The Frisian front (located off the northwest Dutch coast at the boundary

between the Southern Bight and the Oyster Ground; situated between the 30-40 m isobaths)

approximately coincides with the position of the summer tidal mixing front and has very particular

characteristics regarding its benthic community (Creutzberg, 1985). High sedimentation of organic

matter occurs in the area leading to an enriched bottom fauna (Baars et al., 1991). The largest area

for comparison of the peracarid fauna is the Belgian continental shelf (on average 30 m deep). This

area is characterized by numerous linear sandbanks, reflected as sets of parallel groups. Their close

position to the coastline and the shallowness of the area makes them unique, both from an ecological

as well as from a geological point of view. The continuous interaction between morpho- and

hydrodynamics results in a complex heterogeneous structure, generating a variety of habitats for
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marine life. lt has additionally often been hypothesized that the protective character of this sandbank

system possibly sustains a nursery function for several fish and crustacean species (Dyer & Huntley,

1 999).

The total number of peracarid species of each taxon (Amphipoda, Cumacea, lsopoda, Mysidacea and

Tanaidacea) is higher for the continental slope fauna compared to the North Sea areas (Table 5.7). In

terms of species number, the Dogger Bank shows the highest number of species in common (39

peracarid species) with the continental slope fauna (Porcupine Seabight and Meriadzek Terrace)

(Table 5.7). Frisian front and Belgian continental shelf have a similar number of species in common

with the continental slope fauna (17 and 15 peracarid species for the Frisian front and the BCS

respectively) (Table 5.7). Tanaidacea were not sampled in any of the shallow areas.

Table 5.7 The total number of Amphipoda, Cumacea, lsopoda, Mysidacea and Tanaidacea species found along the continental

slope studied in this work (Porcupine Seabight and Meriadzek Terrace) and in three coastal systems: Dogger Bank, Frisian

Front and Belgian Continental Shelf (after Dewicke, 2002). The number of common species in each coastal slrstem in

comparison with the continental slope fauna is also indicated.

Bank Fd3ian Fronl BCS
#@mmon # common #@mmon

Amphipoda
Cumacca
lsopoda

30
45'14360
302220

30
7
3

Irtysidacea 26 14 4 9 1 10 2
Tanaidacaa5000000
Peracarida 258 91 39 53 17 50 15

The maximum depth range of allsampled amphipods, cumaceans, isopods, mysids and tanaids in the

present study along both continental slope areas are listed in Table 5.8, Table 5.9, Table 5.10, Table

5.11 and Table 5.12 respectively, with indication of the presence of these species in the three

shelf/coastal systems after Dewicke (2002). The small portion of species found in common between

the deep slope habitat and the shallow North Sea habitats indicate that most species caught along the

continental slope are typical deep-sea species. This observation is very obvious for most of the

cumacean and isopod species, which became very abundant with increasing depth in the present

study.

Moreover alpha and beta diversity for the Peracarida of the Dogger Bank, Frisian front and the Belgian

continental shelf r.e. the different sandbank groups and Westerschelde were calculated in the present

study in order to compare with diversity data of the continental slope areas (Table 5.6 in this chapter)

and are listed in Table 5.14. Highest peracarid diversity in the North Sea is found at the Dogger Bank,

but overall a higher peracarid diversity is established on the continental slope. Lowest diversity is

found at the Westerschelde. Diversity on the Belgian continentalshelf is lower compared to the Frisian

front and the Dogger Bank and is much lower in comparison with the peracarid diversity found along

the deeper continental slope. The sample-size independent diversity index ES(100) of the Dogger

Bank ranges between 9 and 27 expected number of species (Table 5.14) and is comparable to the

upper slope diversity of Porcupine Seabight (12-24 expected number of species) and Meriadzek

Terrace (14-30 expected number of species) (Table 5.6). ES(100) of the lower slope of both study

sites is much higher: between 25-41 and 31-45 expected number of species at Porcupine Seabight
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and Meriadzek Terrace respectively. The Dogger Bank and Frisian front as frontal zones have often

been mentioned as biological 'hot spots' (Nielsen & Munk, 1998). Within short distance, not only the

productivity, but also the structure and the trophic diversity of the communities may change

significantly. lt is hypothesized that such areas might in particular be attractive for the

holohyperbenthos, through their motility and omnivorous behaviour.

It can be concluded that much higher peracarid diversity was found along the depth gradient of both

deep continental slope areas Porcupine Seabight and Meriadzek Terrace compared to the different

shallow areas in the North Sea i.e. Dogger Bank, Frisian front, Belgian continental shelf. The high

species richness at the continental slope is mainly ascribed to the high number of Cumacea and

lsopoda species. The orders Cumacea and lsopoda has been described as showing their most

impressive radiation in the deep sea, where they are found at all depths down to the deepest trench

(Gage & Tyler, 1991).
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V6 ron ique Vanq u i ckelbe rghe Chapter 5. Peracarid crustaceans

Table 5.14 Alpha and beta diversity of the peracarid species expressed in terms of different diversity indices for ditferent

shallow area in the North Sea: Dogger Bank, Frisian front and Belgian continental shelf (divided in the different sandbank

groups and Westerschelde). Depth of the stations/areas is indicated. MLLWS= Mean Lowest Low Water Spring Level. All

diversity values were based on data after Dewicke (2002) and were calculated in the present study.

Dogger Bank do3 do4 do7 do2 do6 dos do8 dol dog
depth (m) 15 20 26 27 2A 32 37 58 70

Number ol species (Nd 20 22 25 30 20 21 30 47 72

Hill Diversity (N1)

Hill Diversity (Nid)

Evennes (J')

Shannon Diversity (H')

ES(r00)

deDlh betwsn 3(H0 m iaobath
Number of sp@ies (NJ 10 13 18 20 19 14 13 17 13 15

Hill Diversity (N1)

Hill Diversity (Nitr)

Evennss (J')

Shannon Dive6ity (H')

ES(100)

W6teEchelde w2 w3 w4 wl
D6pth befow MLLWS (m) 9,0 18,0 12,4 14,1

Hill Diversity (Nl)
Hill Diversity (Nitr)

Evennss (J')

Shannon Diversity (H')

ES(100)

Dspth below MLLWS (m) 14,9 A,A 14,6 26,9 11,0 7,4 9,0 33,2 12,0 38,4 36,8 30,9 2s,0 8,8 14,8

Number of spsies (NJ 16 I 7 g I 7 7 27 15 18 13 17 16 12 14

11,87 14,M 4,57 12,35 11,43 8,07 3,47 11,58 21,60
4,33 4,92 3,23 3,41 3,75 2,06 1,41 4,66 6,05
0,83 0,85 0,67 0,74 0,81 0,69 0,37 0,64 0,72
2,47 2,64 2,15 2,51 2,44 2,09 1,25 2,45 3,O7

13914201615101827

8,85 3,25 4,86 4,11 4,39 4,35 8,58 6,94 4,10 4,45

s,00 1,43 1,93 1,74 1,65 1,56 3,00 3,17 2,06 3,03

0,95 0,46 0,55 0,47 0,50 0,56 0,84 0,68 0,55 0,55

2,18 1,14 1,58 1,41 1,48 1,47 2,15 1,54 1,41 1,49

1011101191491287

1,54 1,3t 1,43 3,16

1,14 1,08 t,13 2,03

0,18 0,20 0,22 0,55
o,43 0,27 0,36 1,15
3227

Hill Diversity (N1)

Hill Diversity (Nid)

Evenness (J')

Shannon Diversity (H')

ES(100)

2,51 2,45 4,49 3,37 2,29 3,49 1,84 5,81 2,65 3,61 1,73 2,44 2,82 7,06 7,69
1,31 1,36 2,99 1,77 1,28 2,01 1,17 2,56 1,39 1,87 1,16 1,53 1,84 4,OO 4,45

0,33 0,41 0,77 0,55 0,38 0,64 0,31 0,53 0,36 0,44 0,21 0,32 0,37 0,79 0,77

0,92 0,90 1,50 1,21 0,83 1,25 0,61 1,76 0,98 1,28 0,55 0,89 1,04 1,95 2,04
7 5 6 6 5 5 5 I 7 I 4 5 6 11 11

below lrlLLWS

Hill Diversity (N1)

Hill Diversity (Nid)

Evennss (J')

Shannon Diversity (H')

ES(100)

2,59 2,58 3,32 5,80 4,26 3,36 6,08 6,26 2,60 3,69 5,64

1,86 1,53 2,21 2,55 2,86 1,60 2,25 2,29 1,30 1,59 2,00

0,31 0,37 0,45 0,85 0,74 0,68 0,73 0,71 0,41 0,48 0,54

0,95 0,95 1,20 1,76 1,45 1,21 1,81 1,83 0,96 1,31 1,73
4 5 5 8 7 6 12 11 8 9 t2

Zeland 8ank8

Hill Diversity (N1)

Hill Diversity (Nid)

Evennss (J')

Shannon Diversity (H')

ES(100)

Zgs Zgc Z10E Z1'lc Z12a Z18a Z1c Z2c 238 Z4c Zsa ZGc Z7a Z13c Z14a Z15s Z16c Z17c Z19c Z2Oa
DepthbefowMLLWS(m) 13,1 38,5 12,9 10,9 21,8 18,5 9,6 13,5 11,6 22,6 16,0 25,7 15,7 19,0 13,6 36,3 16,8 27,6 13,a 2O,O

4,06 2,53 4,43 4,55 3,33 4,s1 4,41 3,04 2,66 5,01 7,64 4,29 8,95 6,66 1,67 6,06 4,64 6,90 5,63 4,03
2,OO 1,32 2,05 2,32 1,63 2,57 2,44 1,38 1,30 1,90 3,81 1,90 3,34 3,06 1,12 2,75 1,71 3,00 2,75 1,60

o,7a 0,40 0,60 0,63 0,50 0,63 0,55 0,51 0,45 0,67 0,72 0,57 0,70 0,82 0,26 0,72 0,58 0,84 0,83 0,58
1,40 0,93 1,49 1,51 1,20 1,51 1,48 1,1 r 0,98 1,61 2,03 1,46 2,19 1,90 0,51 1,80 1,53 1,93 1,73 1,39
6 8 8 9 8 I 10 I 8 9 1l I t6 10 7 10 11 10 8 11

t1

Depth befow trlLLWS (m) 11,6 21,4 24,0 17,5 29,8 16,4 10,3 14,0 22,4 35,5 34,6 35,1

Numberofspsies(No\ , 12 7 I I 4 10 6 3 5 6 I
Hill Diversity (N1)

Hill Diversity (Nhr)

Evenness (J')

Shannon Dive6ity (H')

ES(100)

1,92 5,24 2,86 3,52 2,00 1,81 4,70 4,23 2,30 3,10 4,45 4,17
1,25 2,74 1,48 2,00 1,17 1,19 1,84 1,94 1,45 '1,64 3,10 2,18

0,34 0,67 0,54 0,61 0,32 0,43 0,67 0,80 0,76 0,70 0,83 0,6s
0,65 1,66 1,05 1,26 0,69 0,60 1,55 1,44 0,83 1,13 1,49 1,43
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6.1. Introduction

The hyperbenthic fauna living in the benthic boundary layer (BBL) of two continentalslope areas in the

northeastern (NE) Atlantic Ocean was studied. This faunal component has been defined in previous

chapters (chapter 1 and chapter 2) and can be considered as a combination of pelagic species (e.9.

copepods), (epi)benthic or benthopelagic species (e.9. isopods, cumaceans) and species specialized

to the hyperbenthic environment (e.9. mysids) (Angel, 1990) (Fig. 6.2). The benthic boundary layer is

the water layer above the sediment interface which is characterized by homogeneous temperature

and salinity conditions (Turley, 2000) and which, at times, is enriched with resuspended detritus

through increased bottom currents (Lampitt et al., 2OOO). This detrital or particulate organic matter

(POM) coming from the richer productive surface layer of the ocean (e.9. the euphotic zone) often

forms a seasonal flutfy layer on the sediment and is the nutritional basis for benthic life on the ocean

floor (Turley, 2000). In this PhD study, the BBL and its specific fauna was sampled by means of a

hyperbenthic sledge, which covers the one metre water layer above the seafloor. Moreover, as a

result of the used sampling device the fauna was sampled in two separate levels: 0-50 cm and

50-100 cm above the bottom, which made research on the stratified distribution of the fauna within the

BBL possible.

The BBL hyperbenthos of two continental slope areas in the NE Atlantic, Porcupine Seabight (lreland)

and Meriadzek Terrace (France), was studied with emphasis on the taxonomic composition, the

distribution patterns, community structure and diversity. Both study sites (for detailed description see

chapter 2) are situated along the European continental margin and the sampling transect covers a part

of the continental slope between 2OO-125O m water depth.

Overall, the study's approach is to assess the BBL hyperbenthic fauna as an ecological entity at the

interface between the pelagic and benthic realm along one of the major environmental gradients, that

related to depth on the sloping parts of the ocean floor, in two NE Atlantic slope areas. This approach

enabled us to clarify distributional patterns (stratified, bathymetric and geographical distribution) of the

hyperbenthos, which are summarized and discussed here (Fig. 6.2). There are many logistic problems

associated with identifying and measuring factors that may affect zonation and depth related

distribution, and as a result, nearly all deep-sea studies looked at those factors that correlate with

changes in the fauna such as temperature, pressure, oxygen minimum, sediment type, water mass

structure, currents, topography and food supply, larval dispersion, competition, predation and trophic

level (Howell et al.,2OO2). Despite the paucity of environmental data available in the present study

some possible explanations for the observed faunal distributional patterns were put forward. According

to Carney ef a/. (1983) three types of depth related gradients control the distribution of benthic

organisms across continental margins: physiologically important factors (e.9. temperature, salinity,

pressure), 'partionable resources' (e.9. sediment structure, currents) and available resources (e.9.

food, space) (Pfannkuche & Soltwedel, 1998).
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6.2. Study site comparison

Porcupine Seabight and Meriadzek Terrace are two continental slope areas with similar physical

oceanographic characteristics although some differences are illustrated in figure 6.1. Both sites are

characterized by a Mediterranean Outflow Water (MOW) water mass layer between circa 750 m and

circa 1500 m (Rice et al., 1991) and the general south to north directed (e.g.poleward) slope current

with a mean speed of 4 cm s-1at the eastern flank of the Porcupine Seabight and a comparable mean

speed at the Meriadzek Terrace slope (Pingree & Le Cann, 1989; Huthnance et al., 2001; van

Weering et al.,2OO1). At Porcupine Seabight measurements of near-bed currents as part of the slope

current showed that when current speed was higher than 7 cm s-t, currents were able to resuspend

phytodetrital matter, making it available for suspension feeders (Rice ef a/., 1990). Besides the general

poleward flows, there exist relatively strong diurnal and semidiurnal internal tides and associated

internal waves (Huvenne et al., 2OO2), which are directed across the slope (Rice ef a/., 1990). These

waves are present in the areas where the shelf slope exceeds the characteristic slope defined by

Huthnance (1986) as a function of the semidiurnal frequency, the Coriolis frequency at this latitude,

the depth and the degree of water stratification. This is in particular the case along the eastern flank of

the Porcupine Seabight, where the local slope (2-3') exceeds the characteristic slope. At the northern

end of this eastern slope internal tides are found around 1000 m water depth, where they can result in

enhanced near bottom currents and turbulence (Pingree & Le Cann, 1990; Rice et al., 1990). For

Meriadzek Terrace less detailed information on hydrography was found in literature, although

Thomsen & van Weering (1998) described near bottom currents (between 1-6 m above the bottom) at

mid depths along the continental slope between Meriadzek Terrace and Goban Spur, which were

markedly directed downslope, reaching mean speeds of 15 cm s't.

Besides physical oceanographical characteristics of the study sites, food availability has been put

forward several times as being a structuring variable for the deep-sea fauna (Hessler & Jumars,1974;

Hessler & Wilson, 1983; Kaim-Malka, 1997). In recent years, it has been recognized that the biology

and chemistry of the deep sea is strongly influenced by processes occurring in surface waters. Strong

seasonal pulses of phytodetritus (particulate organic matter, POM) to the seafloor, which are exported

from the euphotic zone are common in many areas of the oceans (e.9. Billett et al., 1983; Lampitt,

1985; Rice et al.,'1986, 1994; Baldwin et a1.,1998; Conte et al., 1998). Generally export of organic

material to the deep-sea floor ranges from 1 to 3 "/" of the primary productivity of the photic layer

(Lampitt & Antia, 1997) and is the most important food source for deep-sea benthic communities

(Bett& Rice, 1993; Gooday & Turley, 1990; Pfannkuche, 1993). Short bursts of rapid POM transport

associated with productivity events controlthe composition of the settling particles (Conte et a1.,1995,

1998). Physical and biological conditions drive the fate and residence time of this material. lmportant

physical factors include pressure, temperature, topography, currents and advection, while biological

ones include degree and timing of flux via pelagic-benthic coupling, remineralisation, bioturbation and

bioirrigation (Turley, 2000). However, the chemical characteristics of the settling POM changes

significantly during its transit down through the water column (e.9. Lee & Wakeham, 1989; Wakeham

& Lee, 1989; Conte et al., 1995; Wakeham ef al., 1997, Turley, 2000). As a result of biological
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reworking and microbial colonisation (Cho & Azam, 1988), most labile organic compounds associated

with sinking POM (e.9. polyunsaturated fatty acids: PUFA's; Wakeham et al., 1997) are utilised before

they reach the deep-sea floor. Resuspension and/or lateral advection of particulate material may also

have an impact on the benthic boundary layer (BBL). lt can affect the quantity (material can be

advected into or out of the BBL) as well as the quality (mixing of 'old' refractory with 'newer' fresher

material) of POM arriving at the sediment surface (Thomsen & van Weering, 1998).

The Porcupine Seabight and Meriadzek Terrace in the NE Atlantic Ocean are known to be subject to

substantial phytodetrital depositions (Billett et al., 1983; Lampitt, 1985; Gooday et al., 1996). The

detritus itself as well as the Bacteria and Protozoa that rapidly colonize it are the main food source for

the deep-sea fauna. The POM descends rapidly through the water column at a rate of 100-150 m d1,

arriving at the seafloor at 2000 m a few weeks or so after its export from the euphotic zone (Billett et

a/., 1983; Lampitt, 1985; Rice et al., 1986). This influx of material at the sediment-water interface is

thought to influence the benthic biology strongly (Rice et a1.,1994; Thurston et a1.,1998; Kiriakoulakis

et al.,2OO1). In the present study no direct measurements of annual primary production are available

for both sites, but the general rate appears to be within the range of 60-100 g C m-t y1 at Porcupine

Seabight (Berger et at., 1988) and 245 g C m-' y-1 at La Chapelle Bank (Joint et at., 2OO1), a site

northerly of the Meriadzek Terrace. These numbers can strongly be influenced by local hydrography

and show seasonal and annual variations. In the present study sampling at Porcupine Seabight was

performed during a post-bloom period (June 2000), while at Meriadzek Terrace a phytoplankton bloom

was in progress (April-May 2002).

Overall, combined data from hydrography and phytodetritus flux to the deep-sea floor, indicate a

decoupling between the food supply to the lower slope (> 3000 m) and the upper and mid slope,

where the major pulse to the former comes from an offshore summer bloom via a benthic nepheloid

layer (BNL), while the upper and mid slope appear to be fuelled by spring bloom material from the

shelf (Duineveld et aL, 1997). Only a small fraction of the shelf phytodetritus is exported to the upper

and mid slope, while the majority of the shelf production was degraded on the shelf proper (Rowe ef

a/., 1986). Moreover, evidence was found for a so called'carbon depot'at 1000 m along the

continental slope in ceftain regions, resulting in a higher sediment carbon content and benthic

respiration (Rowe et a1.,1994).
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While no significant differences between the two sites can be proved based on previous

characteristics, sediment structure of both sampling transect is different (Fig.6.1). At Meriadzek

Terrace there is a continuous decrease in median grain size with depth, the result of a large

percentage of mud (> 50 %) at the stations between B0O m and 1250 m (M800-M1250). A similar

sediment composition was found at Porcupine Seabight but was restricted between 650 m and 950 m.

In contrast the deepest stations, P1100 and P1250, contained a coarser sediment structure. The

sediment at the upper slope (200-500 m) of both sites was very similar in composition. A coarser

sediment structure at the eastern Porcupine Seabight slope was also illustrated at the Belgica mound

province (Huvenne et al., 2OO2). The occurrence of coarser sediments in the Belgica mound area

could be explained by the presence of locally enhanced current systems, which increase the

resuspension of fine pafticles, leaving the coarser ones on the seabed (Huvenne et al.,2OO2\. Note

also that the sampling transect at Porcupine Seabight is situated between two important mound

provinces (see Fig. 2.2 in chapter 2), which are characterized by the presence of cold-water corals,

but prove of direct influence on e.g. food supply do not exists.

The observed patterns in density, diversity, community structure, zonation and feeding strategy of the

hyperbenthos and the Peracarida are summarized in figure 6.1 and discussed below in 6.3.
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6.3. Major hyperbenthic patterns along the continental slope

In general three important distributional patterns of the hyperbenthos on the continental slopes were

studied (Fig.6.2): (1) a stratified distribution of the hyperbenthos within the one meter benthic

boundary layer (BBL) at each sampling station, (2) an across isobaths distribution or zonation of the

hyperbenthos with depth on each slope transect and (3) an along isobaths or geographical distribution

between the two slope areas. The results of these patterns in Porcupine Seabight and Meriadzek

Terrace are described in chapters 3, 4 and 5. A summary of the most important results of these

patterns of the hyperbenthic fauna and the Peracarida will be discussed below and are illustrated in

figure 6.1.

Figure 6.2 Overview of the malor distributional patters studied in the present study: (1) stratified distribution of the hyperbenthos

within the BBL, (2) across isobaths or bathymetric distribution and (3) along isobaths or geographical distribution of the

hyperbenthos and the Peracarida.

6.3.1. General characteristics

On the higher taxonomical level, the hyperbenthic composition at both sites is very similar, with a high

importance of the peracarid crustaceans (r.e. Amphipoda, Cumacea, lsopoda, Mysidacea and

Tanaidacea) in both sites of 77 "/" and 59 7" in Porcupine Seabight and Meriadzek Terrace

respectively. Density values differ significantly between the two areas, with higher total densities at

Porcupine Seabight, the total hyperbenthic densityforthe eight stations is 35 183 ind./8OO m2, while

for Meriadzek Terrace this is about 2.6 times less (13 406 ind./800 m2) (see chapter 3 and chapter 4).

This difference in total density is mainly due to the high values in the two deepest stations P1 100 and

P1250 at Porcupine Seabight. Absolute density values at the eight stations at Porcupine Seabight

range from 299 ind./100 m2 at station P200 to a maximum value of 19487 ind./1OO m2 at station

P1250. For Meriadzek Terrace absolute density values range from 770 ind./100 m2 at the deepest

station M1250 to 3126 ind./100 m2 at station M500. The absolute hyperbenthic density of the three

shallowest stations (at 200, 350 and 500 m) is higher for the Meriadzek Terrace stations, while the

total hyperbenthic abundance of the stations at 650, 800 and 950 m depth are very similar for both

sites. The largest difference is found for the two deepest stations, as mentioned before, with a
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significant increase of the values at Porcupine Seabight. Furthermore, the higher total densities are

mainly concentrated in the lower net samples at Porcupine Seabight, tripling the density of the lower

net samples at Meriadzek Terrace. For the upper net samples the densities are very comparable with

the highest total value for Meriadzek Terrace, 2967 ind./800 m2 and 1975 ind./800 mz for Porcupine

Seabight. Amphipoda, lsopoda, Cumacea, Ostracoda and Pycnogonida are the taxa attributing to the

higher density values in the lower net samples at Porcupine Seabight, while the Mysidacea,

Euphausiacea and Copepoda show higher densities at Meriadzek Terrace.

Diversity at taxon level can be considered as almost equal with depth for both sites (Fig.6.1). At

Meriadzek Terrace a more or less increase of diversity (N1) is shown with depth, with the highest value

at 950 m depth, in contrast to Porcupine Seabight were the diversity pattern is less uniform. In this

atea, a maximum value is found at 350 m depth and at 800 m depth. Detailed description of the

diversity was given in previous chapters.

6.3.2. Stratified distribution

The stratified distribution of the hyperbenthic taxa within the BBL zone in the present study was

characterized by an upper (50-100 cm) and lower (0-50 cm) BBL zone associated with a pelagic and

benthopelagic fauna respectively (Fig. 6.2). Copepods, Euphausiacea and Chaetognatha were the

main taxa inhabiting the upper BBL zone, while lsopoda, Cumacea and Amphipoda, showing a more

benthopelagic life style, mainly in the lower BBL zone. Community structure analyses of all samples

(0-50 cm and 50-100 cm samples) of both study sites (see chapter 4) indicated no clear trend with

depth of the upper net samples, suggesting a homogeneous upper BBL zone along both depth

transects. In contrast, the lower net samples showed a clear community structure pattern with depth

which reflects the overall community structure (see further) found for the hyperbenthos when the

samples were considered as stations (e.9. sum of the two net samples), indicating a closer link with

the sediment and associated environmental variables. Total abundance in the upper and lower BBL

layers also differed significantly, mainly at Porcupine Seabight (33 208 ind./800 m2 in the eight lower

nets, 1975 ind./800 mz in the upper nets), at Meriadzek the difference was smaller (10 438 ind./800 m2

in the lower nets, 2967 ind./800 m2 in the upper nets).

Such a stratified distribution pattern of the fauna in the immediate vicinity of the seafloor was also

observed in other geographical regions including the Bay of Biscay (Sorbe, 1989, 1999; Dauvin &

Sorbe, 1995) and the Portuguese continental margin (Cunha et al., 1997). lt has been described in

terms of swimming activity and diel migrations of the organisms (Macquart-Moulin, 1984, 1991 ; Dauvin

& Zouhiri, 1996). These studies documented an increasing swimming activity during the night.

Amphipods and Cumaceans usually emerge from the sediment but do not commonly swim high up

into the water column (Kaartvedt, 1986, 1989), thus limiting their distribution to the lower BBL zone

just above the seafloor. In contrast to the amphipods and cumaceans, most of the hyperbenthic

mysids migrate upwards during the night (Kaartvedt, 1985), indicating higher swimming capability

which explains why some mysids were also caught in the upper BBL zone, although in smaller

abundances than in the lower BBL zone. Moreover, among Peracarida, the natatory capability varies
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between species (Cartes & Sorbe, 1995) or even, as in the case of cumaceans, on the sexual state

(Cartes & Sorbe, 1996). For the present study sampling was performed during daytime, explaining the

higher abundances of the Peracarida in the lower BBL zone. Copepoda, Euphausiacea and

Chaetognatha (dominant in the upper zone) are animals with high swimming capabilities which allow

them to swim higher up in the BBL zone and in doing so actively searching for food. Overall, species-

specific behavioural patterns together with other factors such as light, currents or food availability

determine the swimming activity and thus the vertical distribution of hyperbenthic animals (FossA,

1985, 1986; Elizalde et al., 199'l; Vallet et a/., 1995).

Vertical migration has also been studied in pelagic and demersal fish species which prey upon

Mysidacea along the continental slope at the Rockall Trough (NE Atlantic Ocean) (Mauchline, 1982).

Mysids contributed significantly to the diets of many demersal fish (r.e. fish caught in epibenthic trawls

and living in close association with the sediment) but were not apparently important constituents of the

food of pelagic fish (r.e. fish caught in pelagic trawls). Most of the fish are probably opportunistic

feeders, the choice possibly being governed by availability and size spectrum of potential prey.

Availability in the case of the mysids and other organisms may mean successful encountering of

mysid aggregations, which was confirmed by Mauchline (1982) who found several mysid individuals of

a same species in fish stomachs.

6.3.3. Across isobaths or bathymetric distribution

Different faunal (both within hyperbenthic taxa and Peracarida species) associations were found along

the continental slope at Porcupine Seabight and Meriadzek Terrace indicating the faunal zonation with

depth (Fig. 6.1). At Meriadzek Terrace an upper (M200-M500) and lower (M650-M1250) slope (or

bathyal) hyperbenthic association was distinguished, while at Porcupine Seabight three hyperbenthic

associations were found along the slope, an upper (P200-P500), mid (P650-P950) and lower slope (or

bathyal) group (P1100-P1250). Overall, for both study sites a similar faunal boundary associated with

the shelf break/upper slope zone (200-500m) was characterized by high abundances of Mysidacea

and Euphausiacea, but between 650 and 1250 m both sites showed different faunal boundaries,

although all characterized by an increase in abundance of cumaceans and isopods. Amphipoda were

relatively important in all communities. Moreover, a similar community structure along the slope was

also reflected in the peracarid community structure, when all samples of both sites were analyzed.

Four significantly different peracarid species associations were found with highest dissimilarity (89 %)

between the Porcupine upper slope associations and the lower slope associations of both study sites

(see chapter 5). In this case the two deepest sampling stations at Porcupine Seabight (P1100 and

P1250) showed a more similar species composition with the mid slope stations and were clustered

together.

In general, in other studies examining general faunal change from the shelf break at 200 m to abyssal

depths, up to seven different faunal zones have been recognized (Menzies et al.,'1973; Musick, 1976;

Haedrich et al., 1980). Three faunal zones have been reported consistently in the literature: (1) the

shelf breaUupper slope (200-500 m), (2) a less pronounced boundary around 1000-1400 m and (3) a
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general boundary at circa 3000 m for megafauna (Howell et al.,2OO2). This latter boundary at 3000 m

has been proposed as the start of the abyssalfauna (Hansen, 1975; Sibuet, 1979; Billett, 1991). That

these depth boundaries occur at many locations worldwide indicates that important controlling

variables are present at these depths and that these may occur globally (Howell et al., 2OO2).

Moreover the depth at which faunal boundaries occur varies with taxa studied and geographical

location (Gage & Tyler, 1991).

For hyperbenthos specifically, the bathymetric distribution or zonation observed in the present study

agreed with previous results on the same depth range. Le Danois (1948) distinguished for the Bay of

Biscay macrofauna two levels in the bathyal zone between 200 and 1000 m with faunistic changes

around 5OO m depth. Lagarddre (1977) defined three bathymetric assemblages for the crustacean

fauna of the continental slope of the Bay of Biscay: (1) 200-400 m, transitional zone between the

continental shelf and the bathyal, (2) 400-1000 m, upper horizon of the bathyal, and (3), deeperthan

1000 m, lower horizon of the bathyal. Also in the Cap-Ferret Canyon Dauvin & Sorbe (1995)

documented zonation of Amphipoda with faunalchanges at 400-500 m and 1000 m.

As mentioned before, in this study, as with most deep-sea zonations studies, there is a paucity of

environmental data available, which limits the discussion on possible explanations for the observed

zonation patterns.

Structuring factors for the faunal boundary associated with the shelf break (-200 m) and the upper

slope zone (200-500 m), which was observed in both study sites Porcupine Seabight and Meriadzek

Terrace can be looked for in the physical environment. The shelf break is likely to be intermediate

between the two contrasting situations of shelf and slope and this affects various marine organisms.

Nevertheless this shelf break coincides with strong gradients in the physical environment. The upper

slope in the present study is characterized by the start of the permanent thermocline at 600 m.

Temperature decreases from 10 "C at 600 m to 4 "C at 1400 m, the base of the permanent

thermocline (Rice ef a/., 1991). Deep-sea animals are thought to be very sensitive to small changes in

temperature (Somero et al., 1983). Moreover other factors associated with this boundary around

500 m could be important. An obvious change of sediment structure at 500 m was also obserued in

both study sites, with finer sediments becoming more important deeper which might explain, in

combination with other factors, the faunal change at this depth. lt is known that cumaceans and

isopods prefer muddy sediments, which could explain their low abundances at this upper slope zone.

Furthermore this boundary around the shelf break possibly marks the change from shelf species to

bathyal species. In the present study species data of the Peracarida illustrated this trend for the

Mysidacea, where some shelf species were found along the continental slopes, but with a very

restricted depth range (200-500 m) (see chapter 5). Furthermore, mysids are known to migrate

actively to areas of high primary productivity (Wooldridge, 1989) and several authors (Clutter, 1967;

Foss6, 1985; Hargreaves, 1985) suggest that increased food availability may be an important factor

acting on the swimming activity and causing local increased abundance of these hyperbenthic

organisms, which can be translated in their bathymetric distribution. Species-specific trophic

preferences can also partially explain their distribution with depth in the present study. Mysids can
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have a very diversified diet. Depending on the food availability, certain mysids seem to prefer

crustacean remains (e.9. mainly copepods) above detritus of phytoplankton origin (Cartes & Sorbe,

1998). This change in diet possibly could explain the gradient distribution of the mysids at the upper

slope because their dominant food source is also very abundant at the upper slope. Moreover Cartes

& Sorbe (1998) also found an increase of phytodetritus as a food source in the stomach content of

mysids, which were caught on greater depths (between 1250-13500 m in the Catalan Sea). This lower

specificity in the diet of some mysid species (e.9. Boreomysis arctica) would support different

characteristics in their biology, such as their wide bathymetric distribution range (Cartes & Sorbe,

1998). Moreover, these peracarid crustaceans are also known as aggregators (Mauchline, 1980),

which may also explain local increased abundances. ln some upper slope samples certain mysid

species were significantly dominant indicating swarms of mysids (e.9. at station M200 56 o/o Erythrops

neapolitana, at M500 36 o/o Pseudomma affine and at P200 31 o/o Erythrops serrata).

Below the shelf break zone at the upper slope, a lower bathyal zone with specific characteristics was

found in the present study (Fig.6.1) (from 650-1250 m at Meriadzek Terrace; from 650-950 m at

Porcupine Seabight). A very important shift in hyperbenthic taxa composition with depth was illustrated

by the significant increased abundance and number of species of Cumacea and lsopoda. At both sites

this faunal association is characterized by similar density values and a peak in hyperbenthic and

peracarid diversity around 800-950 m. In both study sites this zone is also characterized by a very fine

sediment structure with a high percentage of mud and a very low median grain size, which might be

one of the main factors explaining the observed faunal patterns. Cumaceans and lsopods are known

to prefer very fine sediments. The faunal association boundary found at Porcupine Seabight and

Meriadzek Terrace do not match a boundary of water masses (Fig. 6.1), although the change in water

masses has already been correlated with changes in composition of benthic fauna in other studies

(Tyler & Zibrowius, 1992; Bett, 2001; Howell et al.,2OO2): e.g. the MOW mass is associated with a

decrease of the oxygen concentration, which could be a factor explaining faunistic changes. Besides

these physical factors, biological causes for faunal zonation such as food availability could play a role.

A change in feeding strategy along continental slopes is thought to be a result of the decrease in food

availability with increasing depth. Food availability, both in terms of supply and composition, might be

another factor affecting the distribution of hyperbenthic and peracarid populations in the Porcupine

Seabight and Meriadzek Terrace (as discussed in chapter 5). Changes in feeding strategy with depth

have been observed in asteroids (Carey, 1972; Howell et al., 2002) and many other taxa (Gage &

Tyler, 1991; Flach et al., 1998). Feeding strategy of the different peracarid orders was discussed in

detail in chapter 5, explaining the preferences of Mysidacea along the upper slope. Moreover these

data could explain partially the differences found in the peracarid community structure between the

two continental slopes (see further 6.3.4. geographical distribution).

Along the Porcupine continentalslope athird hyperbenthic communitywas determined between 1100

and 1250 m depth, characterized by very high abundances (Fig.6.1). The studied transect at

Porcupine Seabight is located between two mound provinces, the Hovland mounds and the Belgica
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mounds, two sites associated with cold-water coral reefs (Huvenne ef al.,2OO2) (see chapter 2). To

what extend this presence of coral reefs can have a direct influence on the observed hyperbenthic

patterns is not clear. Some small dead coral parts were found in the hyperbenthic samples, indicating

the presence of the cold-water corals, which might act as a factor increasing the habitat heterogeneity

within the sediment. Several species of crustaceans, molluscs and other animals have been found to

live in association with the corals (Jensen & Frederiksen, 1992; Mortensen et al., 1995; Rogers, 1999).

Physically this part of the Porcupine slope is characterized by a coarser sediment structure compared

to the zone between 650-950 m depth, which indicates a high-energy environment with enhanced

currents (as described above, 6.2. Study site comparison). High speed currents have been shown to

increase the (re)suspension of particulate matter on the seafloor, making it more available as food

source for a high variety of animals, mainly filter-feeders and suspension feeders (Lampitt, 1985).

6.3.4. Along isobathsor geographical distribution

Overall, concerning the along isobaths distribution or geographical distribution, both slope areas have

a similar hyperbenthic faunal composition when taxa are compared, but community structure showed

differences as described above. Moreover, general density and diversity patterns along the two slopes

were significantly different. Most explanations for these differences were looked for in the physical

environment of both slope areas, although not every observed pattern could be explained based on

these environmental parameters. Factors related to the distribution of species may vary with time and

space (Cartes et al., 2O04). Marine species, particularly benthopelagic fish or crustaceans having

swimming capacity, can perform daily or seasonal migrations upward or downward along the slope,

presumably to feed, or related to their reproductive cycle (Cartes et a1.,1994). Such movements have

been suggested, and sometimes relatively well documented, on the upper part of the continental slope

(Wenner & Read, 1982). In the same way, species distributed across wide geographical areas may

also exhibit variations in their depths of occurrence at different localities (Cartes et al., 2004).

Horizontal variability in the form of patchiness can originate from local phenomena (e.9. hydrography

or geomorphology) (Maynou et a1.,1996). However, for deep-sea fauna, information on such changes

are scarce (Maynou & Cartes,2000).

For the Peracarida a similar bathymetric distribution pattern along both slopes was found, but the

species composition were significantly different between the two study sites (see chapter 5). Results

based on the Peracarida on family level showed a higher percentage of suspension-and filter-feeding

cumacean, isopod and amphipod families along the Porcupine Seabight slope compared to higher

percentages of scavengers and other peracarid families found at Meriadzek Terrace. This should not

directly be a result of higher particulate matter on the seafloor at Porcupine Seabight, but might be

linked to an enhanced current regime in this area.
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6.4. General conclusions

Based on the results presented and discussed, and referring to the objectives of this study, following

conclusions can be drawn:

o The two continental slope study sites Porcupine Seabight and Meriadzek Terrace comprised a

specific hyperbenthic fauna in the 0-100 cm water column just above the ocean floor (r.e. the

benthic boundary layer), which was characterized by a combination of pelagic species,

benthopelagic species and species specialized to the hyperbenthic environment.

r The sampled hyperbenthic organisms belonged to a total of 13 hyperbenthic taxa, reaching

high abundances and diversity values along both bathymetric transects. The abundances at

Porcupine Seabight were significantly higher than the values found at Meriadzek Terrace.

o The hyperbenthos in both study sites was dominated by the peracarid crustaceans (i.e.

Amphipoda, lsopoda, Cumacea, Mysidacea and Tanaidacea); 258 species were identified

over the two continental slopes.

o Three important spatial distribution patterns of the hyperbenthos and the Peracarida on the

continental slopes were observed:

a stratified distribution within the one meter benthic boundary layer (BBL) at each

sampling station (with a clear difference between the 0-50 cm and the 50-100 cm

layer)

an across isobaths distribution or zonation with depth on each slope transect .

an along isobaths or geographical distribution between the two study areas.

The stratified distribution of the hyperbenthic higher taxa within the BBL zone was

characterized by an upper (50-100 cm) and lower (0-50 cm) BBL zone associated with a

pelagic (mainly copepods, Euphausiacea and Chaetognatha) and benthopelagic fauna

(mainly lsopoda, Cumacea and Amphipoda) respectively. The data suggested a

homogeneous upper BBL zone along both depth transects, while the lower net samples

showed a clear community structure pattern with depth.
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o An obvious higher taxa and species turnover or zonation along both bathymetric transects was

observed, with Mysidacea and Euphausiacea dominating the upper slope (-200-500 m), while

Amphipoda, lsopoda and Cumacea abundances increased significantly with depth (between

-650 m and 1250 m).

o The bathymetric distribution of Mysidacea and Euphausiacea seems to be rather related to

physical properties of the water column (e.g.swimming ability, light transmission, currents)

than to the sediment characteristics. The increase of more bottom dependent taxa, such as

Amphipoda, lsopoda and Cumacea at the lower slope however is suggested to be related to a

change in sediment structure and to the variations in organic particle transport in the BBL (e.9.

deposition and resuspension events). Biological factors (e.g. species-specific trophic

preferences) nevertheless might also contribute to this shift in community structure, as was

illustrated for the Peracarida species.

. Concerning the along isobaths distribution, a similar hyperbenthic fauna was observed at

Porcupine Seabight and Meriadzek Terrace, though differences in community structure on

taxa and on species level were clear. Local differences in the physical environment, such as

the current regime, sediment composition and the presence of carbonate mounds, of both

study sites may play a role.

o Based on the comparison with similar hyperbenthic research along depth gradients performed

in different regions in the NE Atlantic and Mediterranean, one can conclude that hyperbenthic

distribution along continental margins hold uniform characteristics in terms of zonation along

the depth gradient and the stratified distribution within the benthic boundary layer.

. From comparison with shallow coastal and shelf areas, it could be concluded that much higher

peracarid diversity was found along the depth gradient of both deep continental slope areas

Porcupine Seabight and Meriadzek Terrace compared to the different shallow areas in the

North Sea r.e. Dogger Bank, Frisian front, Belgian continentalshelf.
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Summary

The deep sea is the part of the world's oceans below the continental shelves, covering almost two

third of the earth's surface. The knowledge of the deep-sea fauna and its high species diversity is

remarkably recent and mainly through the use of adequate sampling techniques, biological information

(e.9. faunal zonation, species diversity) of this unique habitat has become available. lmportant

topographical features of the deep sea, r.e. the continental margins and adjacent abyssal plains,

have recently been the focus of a number of scientific research programs (e.9. the International

Council for the Exploration of the Sea (ICES), the Ocean Margin Exchange project (OMEX)).

Continental margins, which form the outer edges of the continents that lie under water, are built up of

three important features: the continental shelf, the continental slope and the continental rise. The

transition between the shallow, gently sloping continental shelf and the bathyal continental slope,

called the shelf break, indicates the beginning of the deep sea at -200 m. This physiographic feature

coincides with the replacement of the basically shallow water fauna of the continental shelf to the

deep-sea fauna (Sanders ef a/., 1965; Hessler, 1974; Menett, 1989). These sloping parts of the ocean

floor are characterized by one of the major environmental gradients, the one related to depth and this

bathymetric aradient consequently coincides with an associated faunal zonation. lmportant faunal

boundaries occur around the shelf break and upper slope zone i.e. at -200-500 m and around

-1000-1400 m waterdepth (Day & Pearcy, 1968; Rowe & Menzies, 1969; Sanders & Hessler, 1969;

Dayton & Hessler, 1972i Rex, 1977; Hecker, 1990), nevertheless, the depth at which faunal

boundaries occur varies with taxa studied and geographical location (Gage & Tyler, 1991).

Observations of these depth boundaries indicate that important controlling factors are present at these

depths and that these may occur globally.

Recognizing the importance of deep-sea research related to faunal diversity and distribution patterns

along depth gradients, the present study aimed to investigate spatial distribution patterns of benthic

communities and examine their underlying controlling environmental factors. In this study, focus is

given on the hyperbenthic fauna which was sampled between -200 m and -1250 m water depth,

using a standardized sampling strategy in two continental slope areas along the NE Atlantic

continental margin: one transect (lrom 207-1215 m water depth) in the Porcupine Seabight (southwest

of lreland) and another transect (227-12'15 m water depth) on the Meriadzek Terrace (west of France).

Sampling at both study sites was performed with the R.V. Belgica during different sampling

campaigns. Sampling at Porcupine Seabight was performed from 9-29 June 2000, while at Meriadzek

Terrace sampling was conducted from 22 April-11 May 2OO2. A second cruise to Meriadzek Terrace

for sediment sampling was performed from 11-18 May 2003.

The hyperbenthos is a term applied to the association of small animals living in the water layer close

to the seabed (Mees & Jones, 1997). The species composition of the hyperbenthos is distinctly

different from that of other benthic and planktonic groups and can be considered as a combination of

pelagic species, benthopelagic species and species specialized to the hyperbenthic environment
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(Angel, 1990). This fauna occupies the benthic boundary layer (BBL), r.e. the one metre water layer

above the sediment interface which is characterized by homogeneous temperature and salinity

conditions (Turley, 2000) and which, at times, is enriched with resuspended detritus through increased

bottom currents (Lampitt et al.,2OO0). In nearly all marine ecosystems investigated to date, there is a

general increase in the biomass at the BBL relative to the water column immediately above it but the

dynamics of the bathyal benthic boundary layer are still far from being understood. Despite the

scattered knowledge on hyperbenthic communities, evidence of the potential role of this fauna in

marine ecosystems has often been emphasized. Hyperbenthos plays an important role in marine food

webs e.g. as a food source for juvenile demersal fish species and adult shrimp species in shallow

coastal areas and estuaries (e.9. Mauchline, 1980; Mees & Jones, 1997; Hostens & Mees, 1999;

Belrst et a/., 1999; Oh et al.,2OO1) and more recently this was documented for the deep sea as well

(Mauchline, 1986; Cartes, 1998; Bjelland et a1.,2000). Hyperbenthic species contribute to the

conversion and recycling of organic matter as several species were indicated to feed on non-refractory

detrital matter and in doing so contributing to the benthopelagic coupling (Kost & Knight, 1975;

Jansen, 1985; Fockedey & Mees, 1999).

Among the more diverse major hyperbenthic higher taxa in the deep sea are peracarid crustaceans

belonging to the orders Amphipoda, lsopoda, Cumacea, Tanaidacea and Mysidacea (Jones &

Sanders, 1972: Cartes & Sorbe, 1996). They are well adapted for a life in the deep sea due to their

small body size and brood protection in the marsupium (Hessler & Wilson, 1983).

ln view of the characteristics of the selection of the organisms, the study sites and the sampling

method, it was possible to analyse and discuss three important faunal distributional patterns: (1) a

stratified distribution of the hyperbenthos within the one meter benthic boundary layer (BBL: 0-50 cm

and 50-100 cm) at each sampling station, (2) an across isobaths distribution or zonation of the

hyperbenthos and Peracarida with depth on each slope transect and (3) an along isobaths or

geographicaldistribution between the two slope areas. Characterizing these three distribution patterns

was approached by examining the hyperbenthic taxa composition, peracarid species composition,

density and diversity of the hyperbenthos and peracarid crustaceans in eight sampling stations along a

transect in both study sites. Patterns of hyperbenthic and Peracarid distribution were discussed in

terms of what is known of their ecology and possible explanations were looked for in the physical

environment of Porcupine Seabight and Meriadzek Terrace.

On the higher taxonomical level, the hyperbenthic composition of both sites was very similar, with a

high importance of the peracarid crustaceans (r.e. Amphipoda, Cumacea, lsopoda, Mysidacea and

Tanaidacea) in both sites of 77 o/o and 59 7o in Porcupine Seabight and Meriadzek Terrace

respectively. Density values differed significantly between the two areas, with higher total densities at

Porcupine Seabight, the total hyperbenthic density for the eight stations was 35 183 ind./800 m2, while

for Meriadzek Terrace this was about 2.6 times less (13 406 ind./800 mz). Diversity at taxon level

could be considered as almost equal for both sites. At Porcupine Seabight and Meriadzek Terrace a

total of 13 hyperbenthic taxa was sampled and 258 Peracarida species were identified for the two
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study sites together (152 Amphipoda species,45 Cumacea species,30 lsopoda species,26

Mysidacea species and 5 Tanaidacea species).

The stratified distribution of the hyperbenthic taxa within the benthic boundary layer (BBL) in the

present study was characterized by an upper (50-100 cm) and lower (0-50 cm) BBL zone associated

with a pelagic and benthopelagic fauna respectively. Copepods, Euphausiacea and Chaetognatha

were the main taxa inhabiting the upper BBL zone, while lsopoda, Cumacea and Amphipoda, showing

a more benthopelagic life style, were mainly sampled in the lower BBL zone. Moreover, no clear trend

with depth was found within the upper net samples, in contrast to the lower net samples, which

showed a community structure related to depth. This suggested a homogeneous faunal composition in

the upper BBL zone along the complete depth gradient and a closer link with sediment conditions and

other depth related variables of the fauna of the lower BBL zone. Mainly species-specific behavioural

patterns together with other factors such as light, currents or food avaihbility determined the

swimming activity and thus the vertical distribution of hyperbenthic animals (FossA, 1985, 1986;

Elizalde et a|.,1991; Vallet et a/., 1995).

Different hyperbenthic and Peracarida communities were observed along the continental slope at

Porcupine Seabight and Meriadzek Terrace characterizing the faunal zonation with depth. At

Meriadzek Terrace an upper (200-500 m) and lower (650-1250 m) slope hyperbenthic association was

distinguished, while at Porcupine Seabight three hyperbenthic communities were found along the

slope, an upper (200-500m), mid (650-950m) and lower slope group (1100-1250m). Moreover, a

similar community structure along the slope was also reflected in the peracarid community structure,

when all samples of both sites were analyzed. Four significantly different peracarid species

associations were found: an upper slope zone (200-500 m) with low species diversity and a lower

slope zone (650-1250 m) with high species diversity for the two sites Porcupine Seabight and

Meriadzek Terrace respectively. Overall, for both study sites a similar faunal boundary associated with

the shelf break/upper slope zone (-200-500 m) was characterized by high abundances of Mysidacea

and Euphausiacea. This zone coincides with strong gradients in the physical environment and

possible structuring factors for the faunal zonation might be changes in temperature and sediment

composition and species-specific trophic preferences. Between 650 and 1250 m water depth both

sites showed different faunal boundaries, although all characterized by an increase in abundance of

cumaceans and isopods. Amphipoda were relatively important in all communities. The 650-1250 m

zone at Meriadzek Terrace and the 650-950 m zone at Porcupine Seabight were both characterized

by a very fine sediment structure with a high percentage of mud and a very low median grain size,

which might be one of the main factors explaining the observed faunal patterns. Besides the physical

factors, biological causes for faunal zonation such as food availability could play a role. A change in

feeding strategy along continental slopes is thought to be a result of the decrease in food availability

with increasing depth. The third hyperbenthic community observed between 1100-1250m at

Porcupine Seabight, characterized by very high abundances might be the result of enhanced current
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regime and associated coarser sediment composition in combination with the presence of cold-water

coral-reefs.

Overall, concerning the along isobaths distribution or geographical distribution, both slope areas

have a similar hyperbenthic faunal composition when taxa are compared, but community structure

showed differences as described above. General density and diversity patterns along the two slopes

were significantly different. Most explanations for these differences were looked for in the physical

environment of both slope areas, although not every observed pattern could be explained based on

these environmental factors.

Based on the comparison with similar hyperbenthic research along depth gradients performed in

different regions in the NE Atlantic and Mediterranean, one can conclude that hyperbenthic distribution

along continental margins hold uniform characteristics in terms of zonation along the depth gradient

and the stratified distribution within the benthic boundary layer. Although minor differences were

illustrated indicating local environmentalfactors (e.9. currents, sediment composition) might act in the

different continental margin regions.
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Samenvatting

De diepzee is het deel van de wereldzee6n dat zich onder het continentaal plat bevindt en dat

ongeveer tweederde van het totale aardoppervlak omvat. Onderzoek naar diepzeefauna en

geassocieerde hoge soortenrijkdom is zeer recent gestart en mede dankzij de ontwikkeling van

geschikte staalnametechnieken werd tal van biologische informatie (zoals zonatie van fauna,

soortenrijkdom)van dit uniek habitat beschikbaar. Belangrijke topografische eenheden van de diepzee

zoals de continentale randen en nabijgelegen abyssale vlaktes zijn het onderwerp van talrijke recente

wetenschappelijke onderzoeksprojecten (r.e. de International Council for the Exploration of the Sea

(ICES), de Ocean Margin Exchange project (OMEX)).

De continentale randen zijn opgebouwd uit drie belangrijke onderdelen: het continentaal plat, de

continentale helling en de continentale voet. De overgangszone van het ondiep, licht hellend

continentaal plat, naar de bathyale continentale helling, de zogenaamde 'shelf break', wordt

gedefinieerd als het begin van de diepzee en bevindt zich in veel gebieden op ongeveer 200 m diepte.

Deze 'shelf break' zone wordt tevens gekenmerkt door een verandering in fauna: de fauna van het

ondiepe continentaal plat wordt vervangen door een diepzeefauna (Sanders et al., 1965; Hessler,

1974; Merret, 1989). Daarenboven zln deze hellende onderdelen van de oceaanbodem gerelateerd

aan een belangrijke diepte- of bathymetrische gradiEnt die resulteeft in een zonatie van de fauna

langsheen de continentale helling. Belangrijke faunale grenzen tussen verschillende zones werden

reeds beschreven in de omgeving van de 'shelf break' en de 'upper slope' op een diepte van ongeveer

200-500 m en eveneens op een diepte van -1000-1400 m (Day & Pearcy, 1968; Rowe & Menzies,

1969; Sanders & Hessler, 1969; Dayton & Hessler, 1972; Rex, 1977; Hecker, 1990). De dieptes

waarop deze grenzen van faunale zonatie zich bevinden varieert naargelang het bestudeerde taxon

en de geografische locatie (Gage & Tyler, 1991). Observaties van deze faunagemeenschappen op

welbepaalde dieptes impliceert dat op deze dieptes belangrijke factoren een rol spelen in de faunale

structurering en dat deze wereldwijd kunnen voorkomen.

Met het oog op het belang van diepzee-onderzoek gerelateerd aan diversiteits-en distributiepatronen

langsheen dieptegradi6nten heeft dit onderzoek tot doel het bestuderen van ruimtelijke

distributiepatronen van hyperbenthische gemeenschappen en hun onderliggende verklarende

omgevingsfactoren. De nadruk ligt op de hyperbenthische fauna bemonsterd tussen -200 m en

-1250 m waterdiepte op twee continentale hellingen langsheen de continentale randen in het

noordoosten van de Atlantische Oceaan: een eerste transect (207-1215 m diepte) in Porcupine

Seabight (ten zuidwesten van lerland) en een tweede transect (227-1215 m diepte) ter hoogte van

Meriadzek Terrace (ten westen van Frankrijk). Beide transecten werden bemonsterd volgens een

gestandaardiseerde staalnamestrategie vanop het onderzoeksschip RV Belgica gedurende

verschillende staalnamecampagnes. De staalnames in Porcupine Seabight werden uitgevoerd van

9-29 juni 2000, in Meriadzek Terrace van 22 april tot 1 1 mei 2002. Voor bemonstering van sediment in

Meriadzek Terrace werd een tweede campagne georganiseerd van 1 1-18 mei 2002.
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Hyperbenthos wordt gedefinieerd als de associatie van kleine organismen die in het onderste stratum

van de waterkolom leeft in de nabijheid van de zeebodem (Mees & Jones, 1997). De

soodensamenstelling van het hyperbenthos is duidelijk te onderscheiden van andere benthische en

pelagische groepen en kan beschouwd worden als een combinatie van pelagische soorten,

benthopelagische soorten en soorten gespecialiseerd voor een hyperbenthische levenswijze (Angel,

1990). Het hyperbenthon of de 'benthic bounday laye/ (BBL) wordt gedefinieerd als de 1 m hoge

waterkolom vlak boven de zeebodem, gekenmerkt door een constante temperatuur en saliniteit

(Turley, 2000). Verhoogde stromingen kunnen in deze BBL regelmatig resulteren in aanrijking van

geresuspendeerd detritus (Lampitt et al., 2000). ln alle tot op heden bestudeerde mariene

ecosystemen, werd een algemene toename van biomassa ter hoogte van de BBL waargenomen in

verhouding tot de erboven gelegen waterkolom, maar de structuur en dynamiek van de bathyale BBL

zijn nog steeds onvoldoende gekend. Ondanks de beperkte kennis omtrent hyperbenthische

gemeenschappen, heeft deze fauna een specifieke functie in mariene ecosystemen. Het

hyperbenthos speelt een belangrijke rol in mariene voedselwebben bvb. als voedselbron voor

juveniele bodemvissen en adulte garnalen in ondiepe kustzones en estuaria (e.9. Mauchline, 1980;

Mees & Jones, 1997; Hostens & Mees, 1999; Beyrst et al., 1999; Oh et al.,2OO1) en recent werd dit

ook voor diepzeehyperbenthos aangetoond (Mauchline, 1986; Cartes, 1998; Bjelland et al.,2OOO'1.

Deze organismen zijn ook belangrijk in de conversie en recyclage van organisch materiaal door hun

voedingsstrategiedn en zijn hierdoor een belangrijke schakel in de bentho-pelagische koppeling (Kost

& Knight, 1975; Jansen, 1985; Fockedey & Mees, 1999).

De meest diverse groep in diepzeehyperbenthos zijn de peracaride crustacee6n. Deze omvatten de

orden van de Amphipoda, lsopoda, Cumacea, Mysidacea en Tanaidacea en blijken zeer goed

aangepast aan een leven in de diepzee door hun kleine lichaamsafmetingen en broedzorg in een

marsupium (Hessler & Wilson, 1983).

Gelet op de karaheristieken van de geselecteerde organismen, het geselecteerde studiegebied en de

staalnamemethode was het mogelijk om drie belangrijke distributiepatronen van het hyperbenthos te

analyseren en te bediscussiEren: (1) een verticale distributie van het hyperbenthos in de 1 m hoge

BBL (0-50 cm en 50-100 cm) in elk staalnamepunt, (2) een 'across isobaths'distributie of zonatie van

het hyperbenthos en de peracaride crustaceedn met de diepte langsheen beide continentale hellingen

en (3) een 'along isobaths' of geografische distributie tussen beide staalnamegebieden. Om deze drie

distributiepatronen te karakteriseren werd de hyperbenthische taxasamenstelling, de Peracarida

soortensamenstelling, de densiteit en diversiteit van het hyperbenthos en de Peracarida bestudeerd in

acht staalnamepunten langsheen de twee transecten op de continentale helling in Porcupine Seabight

en Meriadzek Terrace. De geobserveerde patronen werden bediscusieerd op basis van de ecologie

van de bestudeerde organismen en mogelijke verklaringen werden gezocht in de fysische omgeving

van Porcupine Seabight en Meriadzek Terrace.
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Op hoger taxonomisch niveau is de samenstelling van het hyperbenthos in beide gebieden zeer

vergelijkbaar en wordt ze gekenmerkt door hoge abundanties van de peracaride crustaceeen (r.e.

Amphipoda, Cumacea, lsopoda, Mysidacea en Tanaidacea). In Porcupine Seabight en Meriadzek

Terrace maken de Peracarida respectievelijkTT % en 59 o/o uit van het totale hyperbenthos. Absolute

densiteiten vertoonden grote verschillen tussen de twee gebieden, met beduidend hogere waarden in

Porcupine Seabight. De totale hyperbenthische densiteit over de acht staalnamestations bedroeg

35 183 ind./800 m2, terwijl deze in Meriadzek Terrace slechts 13 406 ind./800 
^z 

(-2.6 maal minder)

bedroeg. Diversiteit op taxon niveau kan als zeer gelijk beschouwd worden. In beide gebieden werd

een totaal van 13 hyperbenthische taxa bemonsterd en 258 Peracarida soorten werden

geidentificeerd, waarvan 152 Amphipoda soorten,45 Cumacea soorten,30 lsopoda soorten,26

Mysidacea sooden en 5 Tanaidacea soorten.

De verticale distributie van het hyperbenthos in de BBL werd gekenmerh door een boven

(50-100 cm) en een onder (0-50 cm) BBL gemeenschap bestaande uit een pelagische en een

benthopelagische fauna respectievelijk. Gopepoda, Euphausiacea en Chaetognatha zijn de meest

abundante taxa in de boven-BBl zone, terwijl lsopoda, Cumacea en Amphipoda de onder-BBl zone

domineerden. Daarenboven werd voor de stalen uit de bovenste netten geen duidelijk patroon met de

diepte aangetoond, terwijl voor de stalen van de onderste netten een duidelijke

gemeenschapsstructuur geassocieerd aan de diepte gevonden werd. Dit suggereerde een zeer

homogene boven-BBl zone langsheen de volledige dieptegradidnt en een sterkere link met het

sediment en andere diepte-gerelateerde factoren van de fauna in de onder-BBl zone. Deze verticale

distributie is voornamelijk het resultaat van soortspecifieke factoren in combinatie met andere factoren

zoals licht, stromingen en/of voedselbeschikbaarheid (FossA, 1985, 1986; Elizalde et a1.,1991; Vallet

et a1.,1995).

Langsheen de continentale hellingen werden verschillende hyperbenthische en Peracarida

gemeenschappen aangetoond, die een duidelijke zonatie van deze fauna met de diepte

impliceerden. In Meriadzek Terrace werd een 'upper slope' (200-500 m) en een 'lower slope'

(650-1250 m) hyperbenthisch gemeenschap onderscheiden in tegenstelling tot Porcupine Seabight

waar drie hyperbenthische gemeenschappen langsheen de helling werden waargenomen: een 'upper

slope'(200-500 m), een'mid slope'(650-950 m) en een'lowerslope'(1100-1250 m) gemeenschap.

Daarenboven werd een gelijkaardige gemeenschapsstructuur waargenomen voor de peracaride fauna

van beide gebieden samen. Vier significant verschillende soortenassociaties werden aangetoond: een

'upper slope' zone (200-500 m), met een lage soortenrijkdom en een 'lower slope' zone (650-1250 m)

gekenmerkt door een hoge soortenrijkdom voor Porcupine Seabight en Meriadzek Terrace

respectievelijk.

Voor beide gebieden werd een verandering van de hyperbenthische zonatie aangetoond op een

diepte van -500 m. die gekarakteriseerd werd door hoge abundanties van Mysidacea en

Euphausiacea. Deze 'shelf break' is een gebied dat gekenmerkt wordt door sterke gradiEnten in de

fysische omgeving en deze veranderingen in temperatuur, sedimentsamenstelling en
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stromingspatronen in combinatie met soortspecifieke voedingspatronen zouden mogelijke

verklaringen kunnen bieden voor de waargenomen zonatiepatronen van het hyperbenthos en de

Peracarida. Tussen 650 m en 1250 m vertoonden beide gebieden andere zonatiepatronen, maar allen

werden ze gekenmerkt door een toename van lsopoda en Cumacea. Amphipoda bleken relatief

belangrijk langsheen de volledige dieptegradient in de verschillende gemeenschappen. De zone

tussen 650-1250 m diepte in Meriadzek Terrace en de zone tussen 650-950 m in Porcupine Seabight

werden beide gekarakteriseerd door een zeer fijne sedimentstructuur, bestaande uit een zeer hoog

percentage 'mud' (<63 gm) en een zeer kleine mediane korrelgrootte, wal een verklarende factor zou

kunnen zijn voor de verandering in fauna op deze dieptes. Naast deze fysische factoren, kunnen

biologische factoren zoals voedselbeschikbaarheid ook een belangrijke rol spelen in de structurering

van de fauna. Verandering van voedingsstrategie met de diepte wordt toegeschreven aan de afname

van beschikbaarvoedsel met toenemende diepte. Tussen 1100-1250 m diepte in Porcupine Seabight

werd een derde hyperbenthische gemeenschap waargenomen in dit onderzoek, met zeer hoge

abundanties die het resultaat zouden kunnen zijn van versterkte stromingspatronen en daarmee

geassocieerde grovere sedimentsamenstelling in combinatie met de aanwezige koud-water

koraalriffen in dat gebied.

Betreffende de 'along isobaths' distributie of de geografische distributie bevatten beide

bestudeerde gebieden een vergelijkbare hyperbenthische fauna, maar zoals hierboven besproken

vertoonden beide gebieden significante verschillen in densiteit, diversiteit en gemeenschapsstructuur.

De meeste verschillen werden verklaard aan de hand van de kenmerken van de fysische omgeving

van de twee continentale hellingen.

Vergelijking met gelijkaardig onderzoek van hyperbenthos langsheen dieptegradienten in vershillende

regio's in de noordoostelijke Atlantische Oceaan, leert ons dat de hyperbenthische distributie

langsheen continentale randen uniforme patronen vertonen betreffende zonatie langsheen de diepte

en de verticale distributie in de BBL. Lokale factoren (e.9. stromingen en sedimentcompositie) spelen

een belangrijke rol in de verklaring van de waargenomen verschillen in deze patronen.
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Appendix 1

Absolute densities (ind. 100 m-'1 for the different hyperbenthic ta(a sampled at the eight stations at Porcupine Seabight (P200-

P1250). Densities are given for each net sample (L= lower net, 0-50 cm; U= upper net, 50-100 cm) and per station (Le. sum of

both nets) (P200-P1250). Total density per net sample and per station is also indicated.

P200L P200U ft!501 P350U PS(XL PsmU P650L P650U P8q)L PSqrU P950L P950U P1100L P1lmU Pt250L P12s0U

Amphipoda 34,66 2,71 95,02 86,57 188,05 8,31 7U,5O 37,60 318,56 7,54 256,15 30,30 2908,88 39,14 5324,99 183,46

lsopoda 0,54 0,00 9,95 0,00 2A,7O 2,27 186,89 3,81 197,21 1,17 226,5 5,05 1690,92 3,26 1938,33 13,67

Cumacea 2,71 0,00 60,20 4,98 0,00 0,0o 189,06 4,90 96,85 0,58 371,59 39,68 3507,10 45,67 6779,02 '117,37

Tanaidacea 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 3,50 0,00 7,94 0,00 26,09 0,00 92,30 0,00

Mysidacea 64,44 0,00 92,04 21,39 124,61 0,76 280,60 23,97 72,35 2,33 I,U 11,54 144,A2 7,18 932,74 74,07

Euphausiac€a 41,15 8,66 27,36 21,89 '19,12 4,53 0,00 0,00 0,00 5,83 0,00 0,00 0,00 0,00 0,00 12,59

Leptoslraca 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 5,70 0,00

Copepoda 86,10 17,33 138,81 40,30 80,05 27,94 24,52 43,04 50,18 129,53 25,98 26,70 91,98 41,10 329,32 541,27

chaetognata 30,32 4,87 56,22 16,92 17,37 13,59 5,99 9,26 7,OO 25,67 1,44 2j6 0,65 20,88 58,12 63,81

Pycnogonda 0,54 0,00 0,00 0,@ 0,76 0,00 0,54 0,00 2,33 0,00 0,72 0,00 48,27 1,96 518,48 0,0O

Laruae 4,87 0,54 95,52 17,91 0,00 0,00 0,00 0,00 0,58 2,33 4,33 0,00 0,0O 0,00 0,00 0,00

Ostracoda 0,00 0,00 0,00 5,47 0,76 0,00 4,90 4,90 39,09 14,59 293,67 4,33 165'1,13 3,26 3039,11 62,67

Toral 255,34 34,11 575,12 215,42 458,41 57,rO 1397,01 127,5{' 787,66 189,62 1236,72 119,78 1(xl69,87 162,44 18418,11 1068,87

P2{X' P350 P5(n P050 P8{X' P950 Pt 100 P1250

Amphipoda

lsopoda

Cumacea

Tanaidacea

Mysidacea

Euphausiac€a

Leptostraca

Copepoda

Chaelognata

Pycnogonda

Larvae

Ostracoda

37,36

0,54

2,71

0,00

u,44
49,82

0,00

103,43

35,20

0,54

5,42

0,00

181,59

9,95

65,17

0,00

113,43

49,2s

0,00
'179,10

73,13

0,00

113,43

5.47

196,35

30,96

0,00

0,00

125,36

0,00
't07,99

30,96

0,76

0,00

0,76

742,O9

190,70

193,97

0,00

304,57

0,00

0,00

67,56

15,26

0,54

0,00

9,81

326,15

198,37

97,44

3,50

74,08

5,83

0,00

175,70

92,67

2,33

2,92

s3.68

286,45 2948,03 5508,46

231,62 1694,19 1952,00

411,24 3552,77 6896,39

7,94 26,09 92,30

s9,89 152,00 406,81

0,00 0,00 12,53

0,00 0,00 5,70

52,67 133,08 870,60

3,61 21 ,53 121,95

o,72 50,23 518,48

4,33 0,00 0,00

298,00 1654,39 3101,78

217



V6 ron ique Vanqu ickelbe rghe Appendix 1

Absolute densities (ind. 100 m-'; for the different hyperbenthic taxa sampled at the eight stations at Meriadzek Terrace (M200-

M1250). Densities are given for each net sample (L= lower net, 0-50 cm; U= upper net, 50-100 cm) and per station (Le. sum of

both nets) (M200-M1250). Total density per net sample and per station is also indicated.

M2mL U200U llSsOL il3sou lt5@L M500U lt650l ll050u llS(xL il8(xlu M950L it950u lt1100L M1100U M1250L M125{rU

Amphipoda 541,18 1,98 580,47 3,51 629,38 15,90 122,72 7,44 294,55 20,61 149,12 187,96 231,50 5,56 260,14 2,94

lsopoda s8,48 0,s0 17,55 0,00 119,10 2,19 92,97 0,93 115,04 5,32 82,08 63,28 68,82 0,00 163,74 1,42

cumacea 19,33 0,00 33,35 0,00 91,78 1,64 3/+3,98 19,95 232,75 11,30 141,60 139,09 294,76 0,70 141,06 0,7'l

Tanaidacoa 0,00 0,00 0,00 0,00 0,00 0,00 0,93 0,00 12,63 1 ,33 4,39 6,27 1,39 0,00 8,51 0,00

Mysidacea 1105,15 5,45 342,51 0,59 850,10 1,64 82,74 10,23 33,25 7,31 60,15 43,25 25,03 2,7A 24,10 1,42

Euphausiacea 3,47 10,41 241,08 349,33 245,85 118,01 7,44 3,72 3,32 11,3O 0,00 0,00 0,00 45,19 2,13 2,13

Leptostraca 0,00 0,00 0,0o 0,00 0,0o 0,00 0,00 0,00 0,00 0,00 1,25 0,00 0,00 0,00 0,00 0,00

Copepoda s92,72 53,s2 291,46 149,21 431,60 421,77 204,53 195,23 27,26 210,14 14,41 85,84 19,47 428,24 64,50 17,01

chaetognata 10,90 1,98 32,18 12,87 25,13 18,03 18,59 19,52 0,66 13,30 0,00 5,01 2,78 44,49 12,76 2,U
Pycnogonda 1,49 0,00 0,00 0,00 9,29 0,00 1,86 0,00 39,90 1,33 13,78 1,25 36,15 0,00 17,01 0,00

Larvae 124,39 8,92 107,67 11,70 9124 0,0O 213A 0,00 7,98 3,32 7,52 8,77 9,73 3,,18 4,25 O,7'l

Ostracoda 1,98 1,49 19,90 0,59 47,53 6,56 14,87 12,66 12,63 3,99 40,72 s9,88 16,68 22,94 11,94 3,54

Pol),chaeta juv. 0,00 0,00 0,00 0,00 0,0o 0,00 0,0o 0,00 18,62 0,00 65,79 33,21 47,97 0,00 26,94 0,71

Toral 2/t59,09 84,25 1655,97 527,80 2541,00 585,12 912,01 268,67 798,65 287,28 58{t,80 627,79 754,28 553,37 736,{8 33,32

ltl 1 00
Amphipoda
lsopoda
Cumacea
Tanaidacea
Mysidacea
Euphausiacea
Leptostraca
Copepoda
Chaelognata
P)rcnogonda

Larvae
Ostracoda
Pol)rchaeta luv-
Total

54i1,1 6
58,97
19,33
0,00

1 1 10,60
13,88
0,00

w,24
12,89

1,49

133,3't

3,47
0,00

2543.34

130,ts
93,90

357,92
0,93

92,97
1 1,16
0,00

399,76
8,12

1,86
21,38
Q,g
0,00

'r180.68

31s,21

118,37
244,6

13,96

40,s6
14,63
0,00

237,4
13,96

41,23

11,30

16,62

18,62

1o85.qt

583,98 U4,67
17,55 121,N
33,3s 93,42
0,00 0,00

u2,90 85'1,74

590,41 363,86
0,00 0,00

4fi,67 853,37
/15,06 43,16
0,00 9,29

1 19,37 9'l ,24
N,Q 54,09
0,00 0,00

21|e'.7t 3126.13

337,08 237,06 262,9t!
145,36 68,82 165,16
280,69 295,45 141,77
10,65 1,39 8,5't

103,38 27,41 25,52
0,00 45,19 4,25
1,25 0,00 0,00

100,25 447,70 81,52
5,01 47,27 ts,sg

15,04 36,15 17,01

16,29 13,21 4,96
94,61 39,63 14,89

98,99 47,97 27,il
1208.59 1307.65 769.79
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Appendix 2

Amphipoda species list of all species sampled at the two study sites Porcupine Seabight and Meriadzek Terrace.

Phylum Arthropoda
Subphylum Crustacea

Glassis lrlalacostraca
Subclassis Eumalacostraca

Superordo Peracarada
Ordo Amphipoda

Subordo Caprellidea
Familia Caprellidae

Pa rv i pa lpus ca pi I laceus (Chevreux, 1887)

Phtisica marina (Slabber, 1769)

Subordo Gamma.idea
Familia

Iphimedia obesa (Rathke, 1843)

Familia Ampeliscidae
Ampelisca aequicornis (Bruzelius, 1859 )
Ampelisca brevicornis (Costa, 1853 )
Ampeli*a diadema (Costa, 1853 )
Ampelisa eschrichtii (Kroyer, 1846 )
Ampelisa gibba (Sarc, L882 )
Ampelisca macrocephala (Lilueborg, 1852)

Ampelisca spinipes (Boeck, 1861 )
Ampelisca tenuicornis (Lilueborg, 1855 )
Ampelisca typrca (Bate, 1856)

Byblis gaimardi (Kroyer, 1846 )
Byblis guerni (Chevreux, 1888)
Haploops setosa (Boeck, 1871 )
Haploops tubicola (Lilljeborg, 1855 )

Familia Amphilochidae
Amphilochoides boecki (Sars, 1892)
Paramphilochoides intermedius (Scott, 1896)
Peltocoxa brevirostris (Scott & Scott, 1893)

Familia Aoridae
Lembos longipes (Stebbing, 1895)
Lembos websteri (Bate, 1857)
Lembos species 1

Familia Argissidae
Argissa hamatipes (Norman, 1869 )

Famalia Corophadae
Cerapus species 1

Chevreuxius grandimanus (Bonnier, 1869)
Corophium species 1

Siphonoecetes sfrratus (Myers and Mcgrath, 1979 )
Unciola planipes (Norman, 1867)

Familia Cressidae
Cressa dubia (Bate, 1857)

Familia Dexaminidae
Atylus smithi (Boeck, 1871)

Atylus species 1

Dexa m ine sprhosa (Montagu, 1813)
Dexaminidae species I

Familia Epimeriidae
Epimeria cornigera (Fabricius, 1779)
Epimeria parasitica (Sars, 1858)
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Phylum Arthlopoda
Subphylum Grustacea

Glassis lrlalacostraca
Subclaggis Eumalacostraca

Sup€rordo Peracarida
Ordo Amphipoda

Subordo Gammaridea
Familia Eusiridae

Apherue bispinosa (Bate, 1857)
Apherusa ovalipes (Norman & Scott, 1906 )
Apherusa species 1

Eusirus longipes (Boeck, 1861 )
Haliragoides species 1

Rhachotropis aeca (Ledoyer, 1977)
Rhachotropis glabra (Ledoyer, L977)
Rhachotropis gracilis (Bonnier, 1896)
Rhachotropis grimaldii (Chevreux, 1888)
Rhachotropis inermis (Ledoyer, L977)
Rhachotropis integ ricauda (Carausu, 1948)
Rhachotropis rostrata (Bonnier, 1896)

Familia Gammarida€
Gammarellus homari (Fabricius, 1779)

Familia Haustoriidae
Bathyporeia pelagica (Bate, 1856)

Familia Ischyroceridae
Ericthonius hunteri (c.O Sars, 1894)
Ischyroceridae species 1

Familia Isaeida€
Gammaropsis maculata (Johnston, 1828 )
Gammaropsis palmata (Stebbing & Robertson, 1891 )
Megamphopus cornutus (Norman, 1869 )
Isaeidae sDecies 1

Famalia L.rystiopsidae
Lafystiopsis aff. planifrons

Familia lcpcchinellidae
Lepechinella manco (Barnard, 1973 )
Lepechinella species I

Familia Leocothoadae
Leucothoe liueborgii (Boeck, 1861 )

Familia Lillicborgiidae
Ulueborgia fissbornis (Sars 1870)
Uueborgia macronyx (Sars, 1894)
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Phylum Arthropoda
Subphylum Crust cea

Glassis llrlacostraca
Subclassis Eumalacostraca

Supcrordo Peracarida
Ordo Amphipoda

Subordo Gammar:dea
Familia Lysianassidae

Acidostoma sarsi (Lincoln, 1979 )
Ambasia atlantica (Milne-Edwards, 1830 )
Anonyx liljeborgi (Boeck, 1871 )
Aristias neglech)s (Hansen, 1887 )
Bathyamaryllis haswelli (Stebbing, 1888)
Euonyx chelatus (Norman, 1867 )
Hippomedon denticulatus (Bate, 1857 )
Ichnopus spinicornrb (Boeck, 1861 )
Lepidepecreum clypea1rm (Ruffo & Schiecke, 1977 )
Lepidepecreum longicorne (Bate & Westwood, 1861)
Lepidepecreum aff. umbo
Lysianassa plumosa (Boeck, 1871 )
Metambasia faeroensis (Stephensen, 1923 )
Orchomene rurnllts (Costa, 1853 )
Orchomene pectinatus (Sars, 1882 )
Orchomenelh nana (Kroyer, L846 )
Paracentromedon crenulatus (Chevreux, 1900)

Scopelocheirus hopel (Costa, 1851 )
Sophrosyne robetboni (Stebbing & Robertson, 1891 )
Soernes crenulatus (Chevreux, 1911 )
Tmetonyx cicada (Fabricius, 1780 )
Tmetonyx similis (Sars, 1891 )
Trischizostoma nicaeense (Costa, 1853 )
Tryphosella horingi (Boeck, t87t )
Tryphosella insignis (Chevreux, 1935)
Tryphosella nanoides (Liueborg, 1865 )
Trypho*lla species 1

Tryphositesallent (Sexton 1911 )
Tryphosites longipes (Bate & Westwood, 1861 )

Familia ilclitidac
Cheirocratus intermedius (Sars, 1894 )
Eriopsia elongata (Bruzelius, 1859 )

Maera othonis (Milne-Edwards, 1830 )
Melita gladiosa (Bate, 1862 )
Melita obtusata (Montagu, 1813)

Familia Hclphidippidac
Megaluropus agtls (Hoek, 1889)
Melphidippa goesi (Stebbing, 1899 )
Melphidippa macrura (Sars, 1894 )
Melphidipella macra (Norman, 1869 )
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Phylum Arthropoda
Subphylum Crust cea

Classis Malacostraca
Subclassis Eumalacostraca

Superordo Peracarida
Ordo Amphipoda

Subordo Gammaridea
Familia Oedacerotidae

Bathymedon acutifrons (Bonnier, 1896 )
Bathymedon longimanus (Boeck, 1871 )
Bathymedon longirostris (Jaume, Cartes & Sorbe, 1998)
Bathymedon monoculodiformes (Ledoyer, 1983)
Bathymedon saussurei (Boeck, 1871 )
Bathymedon species 1

Monoculodes packardi (Boeck, 1871 )
Monoculodes sDecies 1

Oediceropsis brevi@rnis (Lilljeborg, 1865 )
Perioculodes longimanus (Bate & Westwood, 1868 )
Pontocrates albmarinus (Bate & Westwood, 1862 )
Synchelidium haplocheles (Grube, 1864 )
Synchelidium maculaa)m (Stebbing, 1906 )
Westwoodilla caecula (Bate, 1857 )

Familia Pardaliscadae
Halice walkeri (Ledoyer, 1973 )
Halicoides anomalus (Walker, 1893 )
Nicippe tumida (Bruzelius, 1859 )
Pardalisca mediterranea (Bellan-Santini, 1984 )

Familia Phoxocephalidae
Paraphoxus oculatus (Sars, 1879 )
Harpinia antennaria (Meinert, 1890 )
Harpinia crenulata (Boeck, 1871 )
Harpinia /aevrs (Sars, 1891 )
Harpinia pectinata (Sars, 1891 )
Harpinia truncata (Sars, 1892)

Paraphoxus ocubAts
Familia Pleustidae

Pleustidae soecies 1

Pleustidae sDecies 2

Stenopleustes /afrpes (Sars, 1858 )
Stenopleu*es malmgreni (Boeck, 1871 )

Familia Podoceridac
Dyopedes monocanthus (Metzger, 1875)

Laetmatophilus tuberculatus (Norman, 1869 )
Podoceridae species 1

Familia Stegoc€phalida€
Phippsia gibbosa (Sars, 1882 )
Stego@phaloides aurafus (Sars, 1882 )
Stego@phalidae species 1
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Phylum Art|rropoda
Subphylum CrudH.

Cbarla Irbcortr.cr
Subchrlr Eumrhcoatnc!

Suparordo Paf|carldr
Odo Amphlpod.

Subordo €ammarHa.
frmllh StonothoHro

Probololdes grandlmanus (Bonnier, 1896)
Sbnothoe marrna (Bate, 1856 )
Slenoth€ rlcharcil (Chevreux, 1895 )
Shnotholdae specles 1

Frmllh Stllld.c
Astyra abyssl (Boeclg 1871 )

FrrnllLSYnoplHro
Brtzelia typica (Soeck\ LAT| )
Ibraa.&rce specles 1

Syrrhoe alf,nls (Chevreux, 1908 )
SyrrhotF *rrat6 (Sars, 1879 )
Syrrllo.t|rls walkerl (Bnnnler, 1896)

Femllh Urothour.
Urothoe elegans (Bate, 1857 )
Urolhoe mailna (Ute, 1857 )
Carangolla aff, barnardl

Subordo Hyp.dld.r
Frnllb llypcrlHrc

Hypeila laf;tsstn'€ (Bovalllus, 1889)
Hyperb *hlzogcneots (Sbbbing, 1888)
Parathembb oDlivla (Boval, 1889)

Frmllh Phrc.lnH..
Phrcslna *milunata (Risso, 1882 )
Prlmno brevuens (Bowman, 1978 )
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lsopoda species list of all species sampled at the two study sites Porcupine Seabight and Meriadzek Terrace,

Phylum Arthropoda
Subphylum Crustacca

Classis ilalacostraca
Subclassis Eumalacostraca

Superordo Peracarida
Ordo Isopoda

Subordo Gnathiidea
Familia Gnathiidae

Gnathia albescens (Hansen, 1916 )
Gnathia oxyuraea (Lilljeborg, 1855 )
Gnathia vorax (Lucas, 1849 )

Subordo Anthuridea
Famil:a Paranthuridae

Lepbnthura chardyi (Negoescu, 1992 )
Leptanthura tel,uis (Sars, 1873 )

Familia Anthuridae
Anthuridae species 1

Subordo Flabellifera
Familia Aegidae

/4ega species 1

Familia Cirolanidae
Eurydice grimaldii (Dollfus, 1888 )
Metacirolana hanseni (Bonnier, 1896 )
Natablana borealis (Lilljeborg, 1851 )
Nabtolana caeca (Dollfus, 1903 )

Familia Sphaeromatidae
Bathycopea typhlops (Tattersall, 1905 )

Subordo Valvifera
Familia Arcturidae

Arcturella dilatata (Sars, L883 )
Astacilla intermedia (Goodsir, 1841 )
Astacilla longicornis (Sowerby, 1806 )
Astacilla pussila (G.O. Sars, 1873 )
Astacilla sDecies 1

Subordo Asellota
Familia Janiridae

Janira maculosa (Leach, 1814 )
Familia Janirellidae

lanirella nanseni (Bonnier, 1896 )
Familia ,aniridae

laniridae species 1

Familia Eurycopidae
Disconectes latirostris (Sars, 1882 )
Munnopsurus atlanticus (Bonnier, 1896 )
Tyttho@pe megalura (Sars, f872 )

Familia Ilyarachnidae
Aspidarachna longicornis (G.O. Sars, 1899)

Asp ida rach na cly peata (Chevreux, 19 1 1)
Bathybadistes hoprts (Hessler and Thistle, 1975)
Ilyarachna longicornis (G. O. Sars, 1864 )

Familia lrlunnidac
Munna limicola (Sars, 1866 )

Familia ltlunnopsidae
Munnopsis beddardi (Tattersall, 1905 )

Subordo valvif€ra
Familia lchnomesida€

Ischnomesus species 1
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Cumacea species list of all species sampled at the two study sites Porcupine Seabight and Meriadzek Terrace.

Phylum Arthropoda
Subphylum Crustacea

Classis ilalacostraca
Subclassis Eumalacostraca

Superordo Peracarida
Ordo Cumacea

Familia Bodotriidae
Subfamilia vaunthompsonia

Bathycuma brevirostris (Bonnier, 1896)

Subfamilia Bodotriina€
Cyclaspoides sarsi (Bonnier, 1896 )

Subfamilia vaunthompsonia
Vaunthompsonia crEtafa (Bate, 1858 )

Subfamilia Bodotriinae
Cyclaspis longicaudata (Sars, 1865 )
Iphinoe serrata (Norman, 1867 )
Iphinoe tenella (Sars, 1878 )

Familia Leuconidae
Leucon affinis (Fage, 1951)

Leucon longirostris (Sars, 1871)

Familia Nannastacidae
Campylaspis alba (Hansen, 1920)
Campylaspis glaDra (Sars, 1878 )
Campylaspis horridoides (Stephensen, 1915 )
Campylaspis macrophthalma (Sars, 1878 )
Campylaspis rostrata (calman, 1905 )
Campylaspis sptnosa (Calman, 1906)
Campylaspis squamifera (Fage, 1929 )
Campylaspis verrucosa (Sars, 1866 )
Campylaspis vitrea (Calman, 1906 )
Cumellopsis puritani (Calman, 1906 )
Proampylaspis armaE (Bonnier, 1896 )
Pro@mpylaspis bituberculata (Hansen, 1920 )
Pro@mpylaspis bonnieri (Calman, 1906 )
Proampylaspis macronyx (Hansen, 1920 )

Familia Ceratocumidae
ceratocuma horrida (Calman, 1905)

Familia Lsmpropidae
Hemilamprops normani (Bonnier, 1896 )
Hemilamprops uniplicata (Kroyer 1846)

I-amprops fasciata (G. 0. Sars 1863)
Paralamprops orbicularis (Calman, 1905 )
Paralamprops species 1

Platysympus typicus (sarc, l87O )
Familia Diastylidae

Diastylis doryphora (Fage, 1940)
Diasfylis /aevls (Norman, 1869 )
Diastylis rugosa (Sars, 1865 )
Diastylis tumida (Liljeborg, 1855 )
Diastyloides bacescoi (Fage, 1940 )
Diastyloides biplicata (Sars, 1865 )
Diastyloides serrafa (Sars, 1865)
Leptosty I is g ra ndrs (Hansen, 1920)
Leptostylis macrura (Sars, 1870 )
Leptostylis vr7losa (Sars, 1869 )
Makokylindrus anomalus (Bonnier, 1896)
Makrokylindrus insignis (Sars, L87 L)
Makrokylindrus josephinae (Sars, 1871)

Makrokylindrus longicaudatus (Bonnier, 1896)
Makrokylindrus longipes (Sars, 1871)
Makrokylind rus mystacinus (Sars, 1887)
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Mysidacea species list of all species sampled at the two study sites Porcupine Seabight and Meriadzek Terrace.

Phylum Arthropoda
Subphylum Crustacea

Classis lrlalacostraca
Subclassis Eumalacostraca

Superordo Peracarida
Ordo llysadacea

Subordo Lophogastrida
Familia Lophogastridae

Lophogaster typicus (M. Sars, 1857 )
Familia Eucopidae

Eu@pia sculpticauda (Faxon, 1893 )
Eu@pia unguiculata (Willemoes-Suhm, 1875 )

Subordo Hysida
Familia Petalophthalmidae

Hansenomysis fylhe (Hansen, L887 )
Familia lrlysidae

Subfamilia Boreomysinae
Boreomysis arctica (Krayer, 1861 )
tureomysis megalops (G.O. Sars, 1872 )
Boreomysis microps (G.O. Sars, 1883 )
Boreomysistridens (G.O. Sars, 1870 )

Su bfam ilia Gastrosaccinae
Haplostylus normani (G.O. Sars, 1877)
Anchialina agilis (G.O. Sars, 1877 )

Subfamilia llysina€
Amblyops abbreviata (G.O. Sars, 1869 )
Amblyops kempi (Holt &Tattersall, 1905 )
Dactylerythrops dadylops (Holt & Tattersall, 1905 )
Erythrops neapolitana (Colosi, 1929 )
Erythrops serrafa (G.O. Sars, 1863 )
Erythrops species 1

Hypererythrops serriventer (Holt & Tattersall, 1905 )
Paramblyops rostrata (Holt & Tattersall, 1905 )
Parapseudomma calloplura (Holt & Tattersall, 1906)
Parerythrops oresa (G.O. Sars, 1864 )
Beudomma affine (G.O. Sars, 1870 )
Bathymysis helgae (W. Tattersall, 1907 )
Leptomysis lingvura (G. O. Sars, 1866 )
Mysideis insignis (G.O. Sars, 1864 )
Mysidetes farrani (Holt & Tattersall, 1905 )
Mysidopsis didelphys (Norman, 1863 )

Tanaidacea species list of all species sampled at the two study sites Porcupine Seabight and Meriadzek Terrace.

Phylum Arthropoda
Subphylum Crustacea

Classis lrlalacostraca
Subclassis Eumalacoctraca

Superordo Peracarida
Ordo Tanaidacea

Subordo Apseudomorpha
Familia Apseudidae

Apseudes grossimanus (Norman & Stebbing, 1886 )
Apseudes spinosus (M. Sars, 1858 )

Familia Sphyrapidae
Sphyrapus species I

Suboldo Tanaidomorpha
Familia L€ptognathiidae

Typhlotanais aequiremis (Lilljeborg, 1864 )
Familia Paratanaidae

HeErotanais species 1
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Appendix 3

Absolute densities (ind. 100 m-') for all Amphipoda species sampled at the eight stations along the depth gradient at Porcupine

Seabight (P200-P1250). Total density per station is also indicated. (continued)

P950 Pl t00

Phtisi@ maina

lphinedia obesa

Ampelisca aequiamis
Ampelisca brevicornis

Ampelisca eschtichtii

Ampelisca gibba

Ampelisca spinipes

Anpelisca tenuicomis

Byblis gaimardi

Haploops setosa

Haploops tubinla
Amphilochoides boecki

P anmph ilochoides intermedi us

Pelhcoxa brevirostris

Lembos longipes

Lembos webstei

Argissa hamatipes

Cerapus species 1

Chevre uxius g randiman us

Siphonoecetes stiatus

Unciola planipes

Cressa dubia

Atylus snithi
Epineria comigera

Epineia parasitica

Eusirus longipes

Haliragoides species 1

Bhachotropis caeca

Bhachotropis glabra

Bhachotropis gracilis

Rhachotropis grimaldii

Rhachotropis inernis

Rh ac h otto pi s i nte g r i cau d a

Rhachotropis tostata
Bathyporeia pelagia

Eicthonius hunteri

Ganmaropsis mawlata

Ganmatopsis palnata

Lepechinella manco

Li I I j e b o rg i a f i ssi co m i s

Acidostoma sarsi

B athy an a ry I I i s h asw e I I i
Euonyx chelatus

Hippomedon denticulatus

Lepidepeueu n cly pe atum

Lysianaxa plunosa

Metambasia faeroensis

Orchomene pectinatus

Orchomenella nana

P a r ace nt rome d o n cr e n u I at u s

Scopelocheirus hopei

Sophrosyne robertsoni

Tnetonyx cicada

Tnetonyx similis

T isch izutoma nicaeense

Tryphosella hoingi

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,54

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00
)71

0,00

0,54

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,54

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,50

0,50

2,99

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,50

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

8,46

1,00

0,00

1,00

0,00

0,00

3,48

0,00

1 1,94

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1,99

0,00

0,00

0,00

0,00

0,00

1,49

2,49

0,00

82,09

0,00

0,00

0,00
too

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

26,43

0,00

0,00

0,00

0,00

0,00

30,21

0,00

0,00

1,51

0,00

0,00

2,27

0,00

0,00

0,00

0,76

0,00

0,00

3,78

0,00

0,00

0,00

1,51

0,00

0,00

97,42

0,00

0,76

0,76

0,00

0,00

0,00

0,00

0,00

0,00

8,72

0,00

0,00

22,U
108,97

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00
,14
0,00

4,36

0,00

2,18

3,27

0,00

0,00

0,00

8,72
272

0,00

0,00

I,O.'

0,00

10,90

0,00

215,76

0,00

0,00

0,00

0,54

0,00

0,00

0,00

0,00

21,79

0,00

0,00

0,54

0,00

0,00

7,08

0,00

0,00

0,00

0,00

4,67

0,00

0,00

17,50

0,58

0,00
)49
9,92

3,50

0,00

0,00

0,00

0,58

0,00

0,00

0,00

0,00

10,50

2,33

24,50

6,42

0,58

0,58

1,17

0,58

0,00

0,00

1,17

0,00

0,00

0,00

0,00

0,00

1,75

7,00

44,93

0,00

0,00

0,58

0,00

0,00

0,00

0,00

0,00

0,00

9,34

0,s8

0,00

3,50

0,00

0,00

0,00

0,00

0,00

0,00 0,00 0,00

0,00 0,00 0,00

1 ,44 71,11 270,07

1,44 0,00 0,00

0,00 0,00 5,70

33,19 1608,07 872,87

0,00 0,00 0,00

0,00 0,00 5,70

0,00 0,00 0,00

0,72 0,00 7,98

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 5,22 0,00

0,00 0,00 0,00

0,00 0,00 12,53

1,44 130,47 372,62

0,72 0,00 0,00

0,00 23,49 248,42

0,00 0,00 s1,28

121,94 7,83 0,00

5,05 78,28 173,21

5,77 33,92 2,28

0,00 2,61 53,56

0,00 0,00 0,00

0,72 2,61 161,81

0,00 0,00 2,28

0,00 0,00 0,00

1,44 0,00 0,00

0,00 88,72 169,79

0,00 0,00 1,14

0,00 0,00 1,14

0,00 0,00 0,00

0,72 50,88 149,28

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 2,28

0,00 34,58 459,23

7,94 36,53 401,1 1

0,00 0,00 0,00

0,00 0,00 207,39

0,00 0,00 1,14

0,00 0,00 5,70

0,00 18,92 47 ,86

2,16 2,61 0,00

0,00 8,48 31,91

5,77 24,14 69,51

0,00 0,00 0,00

1,44 0,00 6,84

0,00 0,65 2,28

0,00 2,61 0,00

2,89 5,22 115,09

0,00 0,65 0,00

0,00 0,00 0,00

2,89 10,M 177,77
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(continued)

P350 P500 P800 P950 PIlotr Pfi150
nyphoseila insunis
Tryphosella nanoicles

Tryphosites alleni

Tryphosites longirys

Melphidwamacrura

Melphdipeila macra

Batlrynedon aattitrons

Bathynedon longinanus

tuthwetul longnodis
&thymedon rrcnoalMitormes
futhymedon nussurei
Bathymedon species 1

Pont@ntes altamainus
Sy nch e I i d iu m hap I och e les

Syncheliclium naculatum

Halilnlles anomalus

Nklippe tunida

Parclalisa mditercnea
Harpinia antennala

Harpinia uenulata

Harpinia laevis

Harpinia peciinata

Paraphonts oculatus

Pleustidae species 1

Pleustidae species 2
genopleustes latir€,6

Stenopleustes malngreni
Laetmato ph ll u s tu be rcu I atu s

Podocoridao species 1

Stegrcef,taloicles au ratus

Probolokles grandimanus

fienothoe marina

Stenothoidae species 1

Astyn abyssi

Bruzeliatypia
lleraustroe species 1

Syffhoe aftinis

Urothoe elegans

Carangolh atl. banarcli

HWefialafissina

Parathenisto oilivia
Anphipoda indet.

Total

s,42 0,00

0,00 1,49

0,00 1,00

0,00 0,00

0,00 0,50

0,00 0,00

0,54 2,49

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 10,95

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

2,71 28,86

0,00 0,50

0,00 0,00

0,00 0,00

0,00 0,50

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

13,54 2,99

1,08 3,98

0,00 0,00 0,00

1,51 0,00 0,00

0,00 0,00 0,00

1,51 0,00 0,00

0,00 2,18 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

3,78 0,@ 0,00

0,00 0,00 0,00

0,00 0,00

1,51 0,00

0,00 21,25

0,76 0,00 4,67

0,00 45,n 5,25

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00

7,94 15,66

6,49 57,41

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00 5,83 20,20 153,31 339,58

0,00 6,54 0,58 0,00 0,00 1,14

0,00 0,54 0,00 0,00 0,00 0,00

0,00 0,54 0,00 5,n 1,30 0,00

0,00 0,00 0,00 0,00 8,48 9,12

0,00 0,00 0,00 0,00 10,M 82,05

0,00 0,00 0,00 0,00 10,M 2,28

0,00 0,00 0,00 0,00 10,4 3,42

0,00 6,54 0,00 0,00 0,00

0,00 0,00 1,17 0,00 0,00

1,14

0,00

0,72 0,00 4,56

0,00 0,00 0,00

1,44 0,00 0,00

2,89 10,M 0,00

0,00 0,00 0,00

0,00 0,65 44,u
0,00 0,00 0,00

0,00 3,91 119,65

0,00 0,00 0,00

0,72 0,00 0,00

0,00 0,00 0,00 2,28

5,83 13,71 18,92 90,02

4,67 1,M 0,00 0,00

0,00 0,00 0,00 0,72 0,00 0,00

0,00 10,90 13,42 4,33 127,86 183,46

0,00 13,62 9,34 0,00 0,00 0,00

0,00 0,00 0,00 2,61 22,79

0,00 0,00 0,58 0,72 0,00 0,00

0,00 0,00 4,67 0,00 0,00 0,00

0,00 21,79 1,17 0,00 0,00 0,00

0,00 2,18 42,59 10,82 46,97 154,98

0,00 26,15 16,34 0,00 0,00 0,00

0,00

1,14

19,37

0,00

0,00

1,49 13,59 27,79 0,00

0,00 28,33 7,N 0,72 0,00

0,76 2,72 3,50 0,00 0,00

0,00 0,00 0,00 0,00 0,00

3,02 1,09 7,00 2,89 3,26

0,72 41,75 173,21

0,72 15,66 9,12

7,98

7,98

5,70

7,98

4,53 96,98 37,U 5,77 160,48 125,35

37,36 181.59 196.35 742,W 326.15 286.45 2948.03 55{t8.46
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Absolute densities (ind. 100 m-'1 for all lsopoda species sampled at the eight stations along the depth gradient at Porcupine

Seabight (P200-P1250). Total density per station is also indicated.

P950 P1100 P1250

Gnathtaoryunea

Gnath:avoratt

Anthuridae species 1

Aega species 1

Eurydkn griraldii

Metacirolana hanseni

Nahtolana borealis

Natatolana caeca

Bathy@peaWW
Astacilla intermdh
Astacilla longtunmis

Janiridae species 1

D i*on e cles I atirostris

Munnopstrus atlantbus

Tytthocope negalura

llyarachna longilnmis

Munnalim'vnla

Munnoryis beddardr

l*lnomews species 1

lsopoda hdet.

Total

0,00 1,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 1,49

0,00 0,00

0,00 0,50

0,00 1,00

0,00 0,00

0,00 0,50

0,00 0,00

0,00 0,00

0,00 0,00

0,00 5,47

0,54 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,54 9,95

0,00

0,00

0,00

0,00

0,00

0,00

30,96

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

30,96

0,00

0,00

0,00

1,63

5,45

1,09

0,00

0,00

16,89

69,20

u,87
s2,31

1,09

0,00

0,00

0,00

4,36

0,00

0,00

3,81

190,70

1,14

0,00

1,14

0,00 0,00 0,00 0,00

0,00 0,00 5,22 22,79

3,50 0,00 1,96 52,42

0,58 0,72 0,00 0,00

0,58 0,72 0,00 0,00

40,26 9,38 1508,26 1498,47

14,59 92,36 17,61 0,00

0,00 0,00 0,00 5,70

lau 46,18 147,43 43,30

54,84 29,58 5,22 0,00

21,59 44,74 5,22 0,00

21,59 2,16 0,00 0,00

0,00 0,00 0,00

0,00 1,44 0,00

1,17 0,00 0,00

9,92 2,16 3,26 59,26

13,42 0,00 0,00 36,46

0,00 0,72 0,00 46,72

0,00 0,00 0,00 't77,77

3,50 1,45 0,00 6,83

198,37 81,62 1694,19 1952,00
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Absolute densities (ind. 100 m-'; for all Cumacea species sampled at the eight stations along the depth gradient at Porcupine

Seabight (P200-P1250). Total density psr station is also indicated.

Pgfl' P1100 P1250

nthycuma uewrosttis

hlclaspodes aN
VaunthomwtiaqEtah
Cwaspis longi@udata

Lercon aftinis

CanMaspis alba

Canpylaqis glabra

Camp@spis hotr'rloides

CanMaqis naqophthalna
Campylavis tostnta
CarnpylaqE spinosa

Canpylaspis sqtanitera

Campylaqis verruan
Campylavis vilrea

Cunellopsis puritani

ProanylaspE bituberculata

Procanwhspis bonnieri

Cerat@unahoilida

Hemilamprcps normani

Hemilamprops unipliata
Paralamprops species 1

Plagsynpus typbus

Diastylis dotyphua

Dwlistunida
Dhswidesbaces@i
Diastyloides biplinta
Diastyloides semh
Leptoslylis nacrura

Leptostylis villoa
lllakroSidrus inspnis

tlakro$iMrus josc,phinae

M akrcky lindru I I o ngbaudatu s

M akroky lin d ru s I ongipe s
M akroky I in d ru s nyshcin us

Cumacaa indet.

Total

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,@

0,00

0,00

0,00

0,00

0,00

0,54

0,00

0,00

1,08

0,00

0,00

0,00

0,00

0,00

1,09

2,71

0,00

0,00

0,00

0,00

0,00

0,00

15,92

0,00

4,98

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1,00

0,00

0,00

0,00

1,00

0,50

0,50

0,00

0,00

39,80

0,00

0,00

0,00

0,00

0,00

1,49

65,17

0,00 0,00

0,00 0,00

0,00 0,54

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,54

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,54

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 192,33

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 193,97

0,00 0,@ 20,88 0,00

0,00 0,00 26,09 0,00

0,00 0,00 36,53 28,49

0,00 15,87 340,53 758,92

0,00 0,00 0,00 2,28

0,00 0,00 0,00 6,84

0,00 16,60 116,n 140,16

0,00 10,10 62,6i| 94,58

21,00 70,71 1,30 33,05

4,67 23,81 761,96 2130,91

0,00 0,00 0,00 1s,95

0,00 0,00 0,00 56,98

0,00 33,19 17,61 83,19

0,00 0,00 20,88 4,56

0,00 0,00 448,83 347,s5

0,00 0,00 0,00 56,98

0,00 0,00 0,00 74,07

0,00 0,00 0,00 182,32

0,00 0,00 668,02 245,00

67,10 194,82 368,58 414,79

0,00 3,61 165,05 1n,77
0,58 2,89 109,60 252,97

0,00 0,00 5,22 5,70

0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00

0,00 0,00 36,53 908,20

0,00 0,00 5,22 0,00

0,00 0,00 26,09 5,70

1,75 0,00 0,00 0,00

0,00 0,00 161,79 0,00

0,00 0,00 5,22 0,00
't,75 29,58 78,28 586,85

0,00 0,00 31,31 0,00

0,59 10,10 37,U 282,60

97,4 411,28 36,52,n 6896,39
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Absolute densities (ind. 100 m-'1 for all Mysidacea species sampled at the eight stations along the depth gradient at Porcupine

Seabight (P200-P1250). Total density per station is also indicated.

P950 PlilXt P1250

Lopnogastetwbus
Boreonysis megalops

Boreomysis tidens
Anblyops abbteviata

Anblyops kenpi
Erythrops neapolitana

Erythrops seffata

Hypere rythrops s ftiventel
Panmblwstostrcta
Parerythtrysobesa

Pseudomma alline

Bathymysis helgae

Leptonrysis lingvura

ltlysilletes farrani

fulysidopsb didelphys

ttysklacu indet.

Total

0,00 0,00

1,51 0,00

0,00 0,00

52,11 2,18

0,00 1,63

57,40 206,50

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

11,32 94,26

125,36 304,57

0,00 0,00 0,00

0,72 7,83 70,65

3,61 0,00 0,00

0,00 0,00 13,67

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,72 42,40 194,86

0,00 0,00 0,00

30,30 39,14 43,30

0,00 0,00 5,70

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

24,53 62,63 78,63

59,89 152,00 4{t6,81

0,54

0,00

0,00

0,00

0,00

9,75

31,41

0,00

0,00

0,00

0,00

0,00

13,54

0,00

6,50

2,71

il,4

3,46

2,49

0,00

0,00

0,00

1,49

30,85

13,43

0,00

0,00

11,44

0,00

0,00

1,99

44,78

3,48

113,43

0,00 0,00

0,00 0,00

0,00 0,00

3,02 0,00

0,00 0,00

0,00

0,00

J,JU

0,00

8,75

0,00

0,00

0,00

8,17

17,50

0,00

0,00

0,00

0,00

36,76

Absolute densities (ind. 100 m-'1 for all Tanaidacea species sampled at the eight stations along the depth gradient at Porcupine

Seabight (P200-P1250). Total density per station is also indicated.

Pl100

4,57 37,60

21,53 54,70

0,00 0,00 5,n
0,00 3,50 2,'t6
0,00 3.50 7,9

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

Apseudes spinosus

Typhlohnais aequiremis

Total
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Absolute densities (ind. 100 m'') for all Amphipoda species sampled at the eight stations along the depth gradient at Meriadzek

Terrace (M200-M1250). Total density per station is also indicated. (continued)

M950 Ml100 Ml250

P aruipalpus capill aceus

Anpelisca aequicomis

Anpelisca brevicornis

Ampelisca diadema

Ampelisca gibba

Ampe lisca macroceph ala

Anpelisca spinipes

Ampelisca gpica

Byblis gaimardi

Bybl:s gueni
Haploops setosa

Amphilochoides boecki

Lembos longipes

Lembos species 1

Argisa hanatipes

Cerapus species 1

Chevre uxius g nndiman us

Corophiun species 1

Siphonoecetes stiatus

Unciola planipes

Cressa dubia

Atylus snithi
Alylus species 1

Dexamine spinosa

Dexaminidae species 1

Epineria comigera

Epineia parasitica

Apherua bispinosa

Apherusa ovalipes

Apherusa species 1

Eusirus longipes

Haliragoides species 1

Rachotropis glabn
Rachotropis gracilis

Bachottopis grinaldii

Bachottopis inermis

R ach otro pis i nte g r iuu d a

Rachotropis tostruta

Gammarellus homari

lschyroceridae species 1

Gammaropsis maculata

Meganphopus comutus

lsaeidae species 1

Lafystiopsis afl. planilrons

Lepechinella manco

Lepechinella species 1

Leucothoe liljeborgii

Li ilj e bo rg i a f i s s i co r n i s
Lilljeborgia macronyx

Acidostoma sarsi

Ambasia atlantica

Anonw liljeborgi

Aistias neglectus

Bathyanaryllis haswelli

Euonyx chelatus

Hippomedon denticul atu s

Ichnopus spinicomis

Le p id e p eu e u n c ly p e atu m

Lepidepecreum longicome

Lepidepecreum alf. umbo

232

0,00 0,00

11,70 0,00

0,00 0,55

0,00 0,00

4,68 49,72

0,00 0,00

9,36 0,00

4,68 0,00

0,00 0,00

0,00 0,00

0,00 0,00

16,38 8,74

42,13 21,85

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

145,12 28,41

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

2,34 0,00

25,75 8,74

0,00 0,00

4,68 2,19

0,00 0,00

2,34 4,37

0,00 0,00

0,00 0,00

0,00 0,00

72,56 13,11

4,68 126,75

18,72 0,00

0,00 1,09

0,00 0,00

0,00 0,00

2,34 0,00

4,68 4,37

0,00 0,00

0,00 0,00

0,00 9,29

0,00 0,00

7,02 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 2,19

0,00 0,55

0,00 0,00

0,00 0,00

0,00 0,00

4,68 39,34

0,00 0,5s

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

4,87 23,39

0,00 0,00

0,00 0,00

2,09 4,2s

1,39 0,00

0,70 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,70 0,00

0,00 7,09

2,78 6,38

1,39 2,13

0,70 1,42

0,00 0,00

0,00 0,00

0,00 0,00

5,56 23,39

0,00 1,42

0,00 0,00

0,70 0,00

0,00 0,00

0,00 0,71

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

4,87 1,42

1,39 4,25

0,00 0,00

0,00 7,09

0,00 0,00

4,87 0,00

0,00 0,00

0,00 0,00

0,70 0,00

0,00 0,00

0,70 0,00

0,00 0,00

0,00 7,09

0,00 0,00

3,48 9,92

0,00 0,71

0,00 0,00

35,45 43,95

0,00 0,00

0,00 0,00

2,78 0,00

0,00 0,00

2,09 0,00

34,76 23,39

1,39 0,71

0,00 1,42

0,00 0,00

0,70 0,71

0,00 0,00

2,78 2,13

0,00

3,96

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

3,96

35,68

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,50

0,00

0,00
1()c

0,00

5,95

0,00

0,00

15,86

0,00

0,00

0,00

0,00

0,00

57,49

0,00

0,00

0,00
aoA

35,68

0,00

0,00

0,00

0,00

0,50

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1,98

1,98

0,00

0,00

1,86

0,00

0,00

2,79

0,00

0,00

0,00

0,00

0,00

0,00

0,00

9,30

0,00

0,00

0,00

1,86

0,00

12,09

8,37

0,00

0,00

0,00

0,00

0,93

0,00

0,00

0,00

0,00

0,00

0,00

3,72

0,93

0,00

0,00

5,t a

0,00

0,00

0,93

2,79

2,79

0,00

0,00
noe

0,00

0,00

1,86

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,93

0,00

0,00

0,00

0,00

0,66

o,5z

0,00

3,32

3,32

21,28

0,00

0,00

0,00

7,31

2,66

0,00

18,62

0,66

7,98

41,89

0,00

0,00

0,00

0,00

z,oo

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

2,66

0,00

0,00

0,00
1a2

5,32

0,00

2,66

0,00

0,00

|,\t\t

0,00

0,00

5,98

0,00

0,00

26,60

2,66

0,00

0,66

0,00

0,00

0,00

0,00

0,00

0,00

0,66

0,00

0,00

0,00

0,63

0,00

0,00

6,89

9,40

5,64

0,00

0,63

3,13

0,63

0,00

0,00

14,41

5,64

0,00

3,76

0,63

0,00

0,00

7,52

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1,25

8,14

0,00

3,76
'1,88

1,25

10,65

0,00

2,51

0,00

0,00

0,00

0,00

1,25

u,o\t

4,39

0,00

0,00

^q 
ao

0,00

0,63

1,25

0,00

0,63

6,27

0,00

0,00

0,63

1,25

0,00

0,00
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(continued)

M1100 M1250

Lysianassa plumosa

Metambasia faeroensis

Orchomene humilis

Orchomene oectinafus

Orchonenella nana

Pa race ntrom edon cren ul atus

Scopelocheirus hopei

Sophrosyne rcbeftsoni

Socames crenulatus

Tmetonyx similis

Tryphosella horingi

Tryphosella insignis

Tryphosella nanoides

Tryphosella species 1

Tryphosites alleni

Tryphosites longipes

C h e i rcc rutu s i nte rm e d iu s

Eriopsia elongata

Maera othonis

Melita gladiosa

Melita obtusata

Megaluropus agilis

Melphidippa goesi

Melphidippa macrura

Melphidipella nacn
Bathymedon acutifrons

Bathymedon longimanus

Batlry m e d o n m on ocu I odif o rm e s
Bathynedon species 1

Monoculodes packrdi

Monoculodes soecies 1

Oediceropsis b revbo rnis

Pe ioculodes longimanu s

Pontocrctes alhmailnus

Sy n c h e I idiu n n acu I atu n
Westwoodilla caecula

Halbe walkeri

Halhoides anomalus

Nicippe tunida

P a rd alisca medite rrane a

Paraphoxus oculatus

Haroinia antennaria

Harpinia laevis

Harpinia truncata

&en opleu ste s m almg re ni

Dyopedes nonocanthus

Laetm aW h il u s t u b e rcu I atu s

Phippsia gibbosa

Stegoceph aloide s auratus

Stegocephalidae species 1

Proboloides grandimanus

Stenothoe richardi

Stenothoidae soecies 1

Astyra abyssi

Bruzelia typiu
lleraustroe soecies 1

Synhoe alfinis

Syrrhoites serratus

Syrrhoites walkeri

Urothoe elegans

Urothoe marina

Carangolia all. barnardi

0,00

0,00

0,00

0,00

29,74

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00
toe

0,00

87,22

0,50

0,00

0,00

0,00

150,66

0,00

0,00

0,00

3,96

0,00

3,96

0,00

0,00

0,00

1 1,89

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00
aoA

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00
toA

0,00

0,00

1,17

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

37,45

0,00

0,00

0,00

11,70

0,00

0,00

0,00

0,00

2,U
0,00

0,00

0,00

0,00

0,00

0,00

0,00

2,U
0,00

0,00

28,09

7,02

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

15,21

0,00

0,00

0,00

0,00

0,00

0,00

0,00

4,68

0,00

0,00

0,00

0,00

0,00

0,00

0,00

6,56
)14
0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

10,93

31 ,14

0,00

0,00

0,00

45,89
,19
0,00

0,00

0,00
474
0,00

0,00

0,00

0,00

0,00

0,00

7,10

4,37

0,00

0,00

39,34

0,00

0,00

4,37

0,00

0,00
,1q
0,00

0,00

0,00

0,00

0,00

2,19

9,29

0,00

0,00

0,00

0,00

0,00

2,73

0,00

73,76

0,00

0,00

6,56

2,19

0,00

0,00

0,00

0,00

0,00

1,86

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

7,M
0,00

0,00

0,00

0,00

0,00

0,93

1,86

0,00

0,00

0,00

0,00

1 1,16

0,93

0,00

0,00

0,00

0,00

0,00

0,00

0,93

0,00

0,00

0,00

0,93

2,79

0,00

0,00

0,00

0,00

1,86

0,00

4,65

0,00

0,93

0,00

0,00

0,00

2,66

0,00

0,00

0,00

0,00

0,00

u,oo

0,00

0,00

0,00

0,66

0,00

0,00

0,00

z,oo

0,00

0,00

3,32

0,00

0,00

0,00

0,00

10,64

0,00

0,00

7,98

0,00

14,63

0,00

0,00

0,00

0,00

0,00

0,00

2,66

0,00

0,00

0,66

10,64

0,00

0,00

z,oo

0,00

1,33

2,66

0,00

0,00

0,00

3,99

0,00

15,96

2,66

0,00

z,ob

2,66

0,00

0,00

0,00

5,32

0,00

0,00

21,28

3,13

0,63

4,39

0,63

0,63

1,25

1,25

u,o\t

0,63

0,00

2,51

1,88

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1,25

0,00

0,00

0,63

0,63

0,63

1 1,90

0,00

0,63

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1,88

5,01

0,00

o,zt

0,00

0,00

0,00

0,00

0,00

3,13

0,00

19,42

0,00

0,00

0,00

0,00

0,00

8,14

2,51

0,00

0,00

21,30

0,00

0,00

12,53

0,00 0,00

1 ,39 12,05

0,00 0,00

0,00 0,00

0,70 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

1,39 0,00

2,78 0,00

8,34 0,00

4,87 0,00

0,00 0,71

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,70 6,38

0,00 0,00

0,00 0,00

0,00 0,00

0,00 1,42

1,39 0,00

1,39 0,00

0,00 0,00

0,00 4,96

0,00 0,00

0,00 0,00

0,70 0,00

0,00 0,00

0,00 0,00

4,17 0,00

8,34 0,00

1,39 0,71

1,39 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 1,42

0,70 0,00

0,00 0,00

14,60 17,72

4,87 0,00

0,00 1,42

0,00 0,00

0,70 0,71

0,00 2,13

0,00 0,00

19,47 18,43

0,00 0,00

4,87 7,80

2,78 0,00

0,00 0,00

0,00 0,00

0,70 0,71
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Pot F50 F(x, ffi50 ro F50 t11t0 tt25{l
nypnasdtizqernob
Panilnmbto&livb
Phrosina snlfunata
Prinrcbrw*jetts
Antphbeiltut
fob,l

0,00 0,s9 0,00 0,00 0,00 0,!0 T,m 0p0
0,00 0,00 1,0s 0,00 0,00 0,00 4@ 0,00

0,00 0,00 0,0 0,00 0,00 0,00 0,70 0,00

0,00 0,00 0,00 0,93 0,00 0,00 0,00 0,00

63,*1 89,53 60,@ 14,87 27,27 5952 29,89 13,47

5{3,16 s83.90 014,67 1311.15 31521 337,0E 237.06 262.98
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Absolute densities (ind. 100 m-'1 for all lsopoda species sampled at the eight stations along the depth gradient at Meriadzek

Terrace (M200-M1250). Total density per station is also indicated.

11850 U50O M65{l M800 111950 M1100 M125{l

Gnathiaahewns
Gnathiaoryunea

Lephnhura chardyi

LeptanthwaEnuis

Anthuridae soecies 1

Aega species 1

Eurydbe grimaldii

Mehcirolana hanseni

l,latatolana borcalis

I'latatolana caeca

Bathycopea gphlops

Mtreiladilatah
Astacilla intermedia

Astaciila longknmis

Astaciila pussila

Asfaoila spedes 1

Janiramaculos
Janirclla nanseni

Disf;onectes latirosttb

Munnopatrus ailanticus

Tytthocope nregalura

Aspidanchna longbomis

Aspidarachna clypeata

Bath@distes hoplitb

Ilyanchna longbomis

Munnalimbola

Munnopsis beddardi

lsqoda indet.

Total

0,00 0,00

0,59 1,09

0,59 1,09

0,00 0,00

1,76 102,71

0,00 0,00

0,00 4,37

zU 0,00

0,59 0,00

0,00 0,00

0,00 0,00

0,00 1,64

1,76 0,00

0,00 0,00

2,93 6,56

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,55

0,00 0,00

0,00 0,00

1,75 2,74

17,55 121,29

0,00 0,00 1,88

0,00 0,00 0,00

0,00 0,00 0,63

0,00 0,00 1,25

0,00 0,00 0,00

0,00 0,66 0,00

0,00 13,96 3,76

0,00 7,98 34,46

6,51 0,66 0,00

0,00 2,66 13,16

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

5,27 0,55

0,00 0,00

0,00 0,00

0,00

4,46

0,00

0,00

0,00

0,99

0,99

0,00

0,00

0,00

0,00

0,50

0,50

0,00

0,50

0,00

0,00

0,00

47,08

0,50

0,00

0,00

0,00

0,00

0,00

0,00

0,00

3,46

58,97

0,00 0,00

1,39 2,13

0,00 0,00

0,00 0,71

0,00 0,00

0,00 0,00

0,00 41,82

0,00 0,00

0,00 0,00

33,47 13,30 24,43 47,27 15,59

1,86 0,00 0,00

5,58 0,00 0,00

0,00 0,66 0,00

0,00 0,00 0,00

4,65 0,66 0,63

0,00 0,66 2,51

0,00 0,00 5,&l
3,72 14,63 3,76

1,86 0,00 11,90

0,93 3,32 1,88

0,00 0,00 2,51

0,00 3,32 2,51

0,00 5,32 0,63

34,40 38,57 25,69

0,00 0,00 3,13

0,93 11,30 0,63

0,00 0,67 4,39

93,90 118,37 145,36 68,82 165,16

0,00 0,00

0,00 0,00

5,56 55,29

1,39 1,42

1,39 5,67

4,87 9,21

0,00 0,00

0,00 0,00

0,00 0,00

2,09 24,81

0,00 0,00

0,70 0,71

2,8 7,80



V6 ron iq u e Van q u icke I be rg he Appendix 3

Absolute densities (ind. 100 m-21 for all Cumacea species sampled at the eight stations along the depth gradient at Meriadzek

Terrace (M200-M1250). Total density per station is also indicated.

t500 trt650 itE00 tt950 t1100 il1250
vaunnomwnadEtata 0,u)
Cyclaspb longknudaa 0,99

Iphinoesenata 0,50

lphinoe tenella 0,50

Leuconlongirosltis 0,00

Campylasp:s glabn 0,00

Canpylaspb honidoides 0,00

Campylaspis nacrophhalma 0,00

Campylaspis rostrata 0,00

Campylaspis sqnnifera 0,00

Carnpylaspbvemtcosa 0,00

Carnpylaspis vitrea 0,00

Cunellops6purihnl 0,@
Proanpfaqis armata 0,00

ProcampylaqE bituberculata 0,00

Procampylaqb bonnieri 0,00

Procanpylaspis macronyx 0,00

Ceratocuma honida 0,00

Hemilarnprops nomani 0,99

Hemilanprops uniplknfa 6,94

Larnpropsfa*bta 0,99

Paralamprops orbbularis 0,00

Platysqpusfukus 0,00

Diastylis laevis 0,00

Diastylis rugoa 0,00

Diastylistumida 0,00

Diastylokles baexoi 4,96

Leptostylis gnndis 0,00

Lephstylis maaun 0,00

Makro$indrus anonalus 0,00

Makro@indrus josephina 0,00

Makro@indrus longipes 0,00

Makro@indrus nystacinus 0,00

Cunacea indet. 3,47

Total 19,33

0,00

5,27

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,59

0,00

0,00

0,00

0,00

12,87

5,27

0,00

0,00

0,00

0,00

0,59

0,00

2,93

0,00

0,00

0,00

0,00

0,00

0,00
EIE

3i1,35

0,00 0,00 6,65 3,13 1 ,39 0,00

3,82 17,66 12,63 17,54 4,17 0,00

0,00 0,00 0,66 0,00 0,00 0,00

0,00 0,00 0,00 0,00 0,00 0,00

0,00 0,00 0,00 1,88 0,00 0,00

0,55 13,95 14,63 13,16 9,73 6,38

0,00 2,79 35,24 25,69 4,17 0,00

0,00 0,93 1,9s 1,25 0,00 3,54

0,00 0,00 0,66 0,00 0,00 0,71

0,00 0,00 0,66 0,00 0,00 0,00

4,39 4,87 2,13

0,00 0,00 1,33 3,76

0,00 0,00 0,00 0,00

0,00 0,00 0,00

7,10 4,65 6,65

2,19 0,00 0,00

3,48 1,42

1,39 0,00

0,00 0,70 0,00

1,88 1,39 0,00

0,00 0,00 0,00

3,82 3,72 0,00 4,39 0,00 0,00

0,00 0,00 0,00 0,63 5,56 0,00

0,00 0,00 0,00 0,00 2,@ 0,71

0,00 0,00 0,00 0,63 0,00 0,00

0,00 0,00 0,00 56,39 132,09 70,88

26,22 3,72 76,47 67,04 35,45 21,97

15,84 156,18 '.t7,29 19,42 14,60 0,00

2,73 98,55 0,66 0,63 2,78 0,7',1

0,00 4,65 3,99 1,88 4,17 0,00

0,00 7,M 4,65 10,65 17,38 13,47

0,00 0,00 0,00 0,63 0,00 0,00

1,09 0,00 0,00 0,00 0,00 0,00

0,00 0,00 4,65 11,28 1,39 1,42

21,85 22,31 0,66 0,00 0,00 0,00

0,00 1,86 26,60 13,16 35,45 7,09

0,00 0,00 19,28 I,n 6,26 2,13

2,19 4,65 1,33 0,00 0,00 0,00

6,01 14,87 7,31 12,53 6,95 9,22

c1A2 357,9 24,05 280,69 295,45 141,77
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Absolute densities (ind. 100 m-'; for all Mysidacea species sampled at the eight stations along the depth gradient at Meriadzek

Terrace (M200-M1250). Total density per station is also indicated.

M200 ]rl35{l M5{10 il800 1r195{l 1t11100 1f1250

E-ucopiasculptiauda

Eunpia ungubulata

Hansenonysis fyllae

Boreomysg arctica

Boreomysis mbrops

Boreontysis tidens
Gastrcs@us normani

Andialina agilis

Anblyops abbreviata

D acty I e ryth rq s da@l o ps

Erythrops neaplitana

Erythrops sp€cios 1

llype re ryth rops e r riv e nte r
Panmblyops tostrcta

Panpeudomma calhplura

Parerythrops obesa

Pseudomma affine

Mysideb insignb

Wsidopsis didelphys

Wsidacea indet.

Total

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 9,36 2,19

0,00 0,00 0,00

0,50 0,00 0,00

0,99 0,00 0,00

0,00 0,00 u,97
0,00 0,00 2,19

868,26 6s,s4 6,56

0,00 0,00 0,00

43,61 65,54 4,37

0,00 0,00 0,00

0,00 0,00 0,00

63,43 4,68 2,19

7,43 23,41 479,68

22,30 0,59 2,19

6,94 0,00 0,00

97,13 173,79 317,42

1110,60 342,9) 851,74

0,66 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,00 0,00

0,66 0,00

0,00 0,00

0,00 15,66

0,00 0,63

0,00 0,00

20,61 14,41

0,00 0,00

0,00 0,00

18,62 72,68

8,34 16,30

0,00

0,93

0,00

3,72

0,00

0,00

0,00

0,00

1,86

0,00

0,00

0,00

0,00

0,00

0,93

0,00

29,75

0,00

0,00

55,78

92,97

0,00

1,39

0,00

0,00

0,70

0,70

0,00

0,00

0,70

0,00

0,00

0,00

0,00

0,00

0,00

7,65

0,00

0,71

0,71

1,42

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,71

0,00

0,00

5,67

0,00 0,00

0,00 0,00

0,00 0,00

0,00

8,9
40,56 103,38 27,81 25,52

Absolute densities (ind. 100 m-'; for all Tanaidacea species sampled at the eight stations along the depth gradient at Meriadzek

Terrace (M200-M1250). Total density per station is also indicated.

mM500 M950 M1100 M1250

1,25 0,70 0,00

7,52 0,70 0,71

1,88 0,00 s,67

0,00 0,00 2,13

0,00 0,00 0,00

0,93 0,66

0,00 5,98

0,00 3,32

0,00 1,99

0,00 0,00

0,00 1,99

0,00 0,m 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,00 0,00

0.00 0,00 0,00 13,96 1,39

Apseudes grcssimanus

Apseudes qinosus
Sphyrapus species 1

Twhlotanais aequircmis

Heterctanais speci€s 1

Tanaidacea indet.

Total
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Appendix 4

Result file of Draftsman plot (pairuise scatter plot) illustrating correlation between certrain environmental variables

(correladon > 0.95)

varbD|o VadabL ffil-Iiort
muo
mud
mud
mud
mud
mud
mud
mud
median grain size
median grain siz€
median grain size
median grain size
median grain size
median grain size
median grain size
soning coeffbient
sorting coefficient
sorting coeffici€nt
sorting co€fficient
sorting coetficient
sorting coetficbnt
depur
depfl
depth
depth
depfl
bmp€rafure
tempetatufE
tempeEtur€
tempenture
salinity
salinity
salinity
dissolved oq/gan
dissolved oxygen
densiV

median gtain siz€
sorting coetticient
depth
temperature
salinity
dissolved orygen
d€nsity
chh (ss)
sorting coefficient
d€pth
temperature
salinity
dissolved ox)€en
density
chla (Ig)
depth
tempeElure
saliniV
dissolved oxygsn
density
chla (Ug)

tsmperatur€
saliniV
dissolv€d oqgen
densrty
chla (ug)

salinity
dissotu€d ox)€en
densiV
chh (ug)

dissolved ox]€m
density
chla (ug)
density
chla (pg)
chla (uo)

-0.965

0.886
0.900

-0.898
o.262

-0.813

o.974
4.742
4.774
-0.856

o.927
{.158
0.667

{.962
0.663
0.765

-0.686

o.472
-0.826
0.826
4.Tn
{.903
0.075

{.859
0.946

4.725
0.149
0.626

4.958
o.777

4.474
0.13s
0.159

4.792
0.556

4.741
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Appendix 5

Relative abundance of the ten most abundant Peracarida species per station along the depth gradient at Porcupine Seabight

(P200-P1250). The order each species belong to is indicated: M- Mysidacea, A= Amphipoda, l= lsopoda, C=Cumacea.

Etymropsseffa@ M
Leptonysislwun M
Paathemisto oAivia A
Rhachotrcpb integdauda A
Errthrcps neapolitana M
Mysktopsis didelphys M

Melphidipelh macn A
Epimeda@migen A
s'ego@phalohtes auntus A
LeDt6Mbvitllos C

31 ,35 s@NtOCneilUS nONl
13,51 Mysti&psktdktelphys
13,51 Leptostyrbviilosa
9,75 Etyfirqssern6
9,73 S:teg@haloil$auntus
6,49 Canpylaspis glaba
5,41 tlwerctythropsseftiventel
2,7o Rhaclotropisintegtuxuda
2,7O Pse.fromma alfino
1,08 Ni.iope tumkta

M

M
A

M

A
M

A

22,73
12,40
't 1,02
8,54
7,99
4,41

3,72
3,31

3,03

S@peloc/!eirus hopei
Pseudomma affine
Paramugps rostrata
l\btatolat€ borealb
Rhadlo,ttopb gdnaklii
Epineda pa/a.siti'€
Synhoe afhb
Hippomecbn denti&latus
Haryinbffitamatb
Panhemisto oblivb

A
M

A

A
I

A
A

M
M

A
A
A
A
A
A

A
I

I

I

A

M

28,92 Gammaropsispalmatu
17,U Pseudomma alfine
15,47 Hemllampropsuniplknb
9,19 Haploopssetosa
8,97 As|f,,ciilaintermedbt
7,85 Janiridas sp€cies 1

4,U As@abyssi
1,12 As/F,ciila bngicomb
1,12 Urothooelegans
0.90 Svnhoeaffinis

17,45
16,70
15,56
8,8'l

5,60
4,2
3,70
2,42
2,29
2.25

lldilEmgops untpllata
Astacilla intermedia
Gammaropsis palmata
Laetm atoph i I u s tu ba rcil btus
Mebdrdana hansni
Cress€ dubb
Astadlblwi@mb
Janiridae sp€cies 1

Campyraspis maqophthahna

c 10,79
| 4,82
A 7,22
A 6,85
| 6,47
A 3,94
I s,47
| 3,47
c 3,38

llemilamprqs uwizta
Unciob planipes
Nabtolana borcalis
Campylaspis macrophthalma
&tll@peaWhbps
Astacilla longi@mb
Ampefisa gibba
CamMaspis vefiu@sa
Pseudomma affuie

20,39
12,76

9,67
7,40
4,83
4,68
3,47
3,47
3,17
3.10Amaensca oibba A 2,81 Maktol<ylindrus lonailtes

Anpeltsca glDba

Metacirolana hanseni
Campytaspb rostrab
l'lemilamprops nomani
Cumelbpsis pudtani
tlemilamprcps uniplicata
Cyclaspis longkzda6
Panlamprops species 1

Makovindrus josephinae
TMhosella insitmis

A

A

19,E2 (AmWIaSptStogtata

18,59 Metacirobnahanseni
9,39 Diaswsemta
8,23 Amryl*tca glbba
5,53 Cwa€pisfongiauclata
4,54 Maktul(ylinclruslongipes
4,20 Le@chineila man@
2,03 Hemilamprcpsuniplknta
1,99 Uljeboryiafisskpmis
1.89 Amissa hamalroes

I

A

A

A
A

14,E4
10,43
6,32
6,08
5,28
4,09
3,20
2,89
2,79
2.59
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Relative abundance of the ten most abundant Peracarida species per station along the depth gradient at Meriadzek Terrace

(M200-M1250). The order each species belong to is indicated: M= Mysidacea, A= Amphipoda, l= lsopoda, C=Cumacea.

Erythtops neapolitana
Melphidipeila macra
Melita glactiosa

Parcryttuops obes
R adr ot ro p i s i nte g d aud a
Disconedes latircstds
Hwretyth rops se ftiventer
Lembos longipes
Megamphopus @mutus
Orchomenella nana

55,51 Siphonoecetesstdatus
9,63 Rachottopisgilmaldii
5,58 Erythropsneapolitana
4,06 Hypercrythropsseftiventer
3,68 Lemboslongipes
3,01 Tryphositeslongipes
2,79 Westwoodillacaecula
2,29 Epimeda pa/a.sitic€

2,28 Pseudommaaffine
1,90 Rachotropisinteoilcauda

M

A
A
M

A
I

M

A
A

A
M

M

A

A
A
M

A

20,53
10,26

9,27
9,27
5,96
5,30
3,97
3,64
a cl
z.oc

Pseudomma alfine
Rachottopis inemis
Natatolana borealis
Synh@ affinis
Anpelisca gibba
Melib gladiosa
H i p pomeclo n d e n tic u I atus
Westwoodilla caecula
Afrblyops abbreviata
Ttyphosites longipes

M

A
I

A
A
A

A
A
M

A

36,21 HemilamprcpsunipliHta
9,57 Lamprcps lasciata
7,75 ilyanchnalongitnnis
5,57 Bathy@pea Whlops
3,75 Pseudomma affine
3,46 Aaswides bac€/sc'/
2,97 Cyclaspislongicaudata
2,97 Campyhspis glabn
2,64 Siphonoemtesstriatus
2,35 Synchelidiummillatum

e 16/46
c 16,69
| 5,83
| 5,67
M 5,04
c 3,78
c 2,99
v z,oo
A 2,05
A 1.89

Hemilanprcps nonnani
Cenpw species 1

ll@nchna longicomis
Campylaspis mstnta
Liiljeboryia fissicomis
MakrcUindrus josephina

Ampe I isca mac roce p h al a
Canngolia alf. bamardl
Pseudomna alfine

Aa\rckylindrus longipes

A

A
c
A

M

1 1,31 Hemilanprcps nomani C
6,19 Lilljeboryia lissicomis A
5,70 Centocumahonida C
5,21 Metacirclanahanseni
3,93 ll@nchnalongicomis
3,93 Campylaspis rctrata C
3,15 Bathycopea Whlops I

3,15 Synhoite€walketi A
3,05 Slegocephaloidesauratus A

9,21

8,09
aa^

4,73
3,53
3,53

2,93
z,o r

2,85 l'lemilamprcps uniplicala C 2,67

Cetatocuma noticta
Bathy@peaWhlops
Liljeborgia lissic,,mis
Hemilamprcps nomani
Mak rolql i n d ru s jose ph i na
Bathyamaillis hasweili
//erausfroe soecies 1

Platysynpus Wicus
Stegffiphaloides auntus
le m i I qItppp-s u n i pl i cata

c 22,65

| 8,10
A 6,08
c 6,08
c 6,08
A 5,96
A 3,34
c 2,98
A 2.50

C€ratocuma hoftida
Janirella nanseni
Li I ljebo tg ia I i ssicr, m is
Metacirolana hanieni
ilyatadna longicgmis
Ampelisa aequicomis
Oessa clubia
Bathyamaryilis hasweili
Hemilampmps nompni
/r€raustroe soecies 1

A

I

A
A
A

A

12,48

9,74
7,74

4,37
412
4,12
4,12
3,47
3,252,50
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