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1
Introduction

1.1. Motivation and outline
The research presented in this thesis was motivated by the hydrodynamics in the
Rhine estuary. In estuaries, these hydrodynamics are created by the interplay of
several physical actors and influence the distribution of sediment, other suspended
particles, contaminants, marine species, etc. Near the mouth of the Rhine, a key role
is played by the competition between buoyancy input and mixing, which generates
significant fluctuations in the stratification of the water column (Simpson et al., 1993).
Although, the most important physical forcing mechanisms are large scale processes
such as the river outflow, the tide and the Coriolis force, smaller scale processes play
a determinant role. Indeed, most of the mixing occurs at these small scales due to
turbulent eddies, while gradients can also be large, implying significant changes in
density over limited length scales. Unfortunately, it is difficult to observe these small-
scale processes in field measurements. In addition, the small scales are not resolved in
three-dimensional numerical simulations based on Reynolds averaged Navier-Stokes
(RANS) equations, commonly used to model estuaries and shallow-seas. Accordingly,
modeling estuarine physics with high resolution numerical simulations could shed
light into turbulent processes. However, using high resolution numerical simulations
requires the incorporation of all the relevant physical processes at once in a direct
numerical simulation (DNS) model, which is particularly challenging. In this thesis,
two of these processes are isolated and investigate separately.

First, the turbulent flow generated by an oscillatory pressure gradient, as a model
for the tide is studied. The aim is to elucidate the role of the water depth on the flow,
a process relevant for the Rhine estuary but not described in the (DNS) literature.
Second, we analyze the effect of the water depth and the oscillatory flow on the validity
and properties of the logarithmic velocity profile assumption. This velocity profile is
often used in RANS models as an approximated boundary condition, but it is in part
based on the assumption of steadiness of the flow.

Additionally, we develop a new parametrization for horizontal density gradients
so that strongly stratified exchange flows driven by horizontal density gradients can

1
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be modeled accurately with one-dimensional vertical (1DV) models. These flows are
a characteristic feature of estuaries. However, until now, their investigation with 1DV
models was limited to configurations with a weak horizontal density gradient since,
otherwise, the phenomenon of runaway stratification occurs. After validation of the
one-dimensional parametrization, we extend it to a three-dimensional DNS model and
are able to simulate a strongly stratified, turbulent shear flow, equally driven by a
horizontal density gradient. It is the first time that density-driven exchange flows are
simulated with this approach.

1.2. Historical importance of estuaries
The Rhine is the second largest river in Europe after the Danube and is playing
a major role in Europe’s economy and infrastructure since Roman times. In the
Antiquity, it was a section of the limes Germanicus, i.e. the northern border of the
Roman Empire (Hisgen & Laane, 2008, p. 46, 48). Today, it is the primary entry
gate for goods in Western Europe (Hisgen & Laane, 2008, p. 46, 84), being part of
the main transport axis linking the industrial Ruhr area, in Germany, to the North
Sea. Furthermore, the Rhine basin is one of the most densely populated regions of
the world.

The population density and the economic importance are features the Rhine basin
shares with many other estuaries. In general, people seem to have always had a
preference for settling near river deltas. The earliest civilizations appeared more than
5000 years ago along some of the world’s most famous rivers: the Nile in Egypt, the
Tigris and the Euphrates in modern day Iraq, the Indus between Pakistan and India
and the Yangtze and Yellow rivers in China (Könemann, Stefánik, Gurňák, Hartstein,
& Hanula, 2016, p.22). This settling preference is not coincidental. Rivers offer very
advantageous living conditions, such as fertile soil for agriculture, a proximate source
of food (e.g. fish) and excellent trading opportunities. Today, rivers and seas are still
the most favored route for the exchange of goods. Transport over water is cheaper
than transport through the air, and geopolitically less complex than transport over
land. As an illustration, 469.4 million tons of goods transited through the port of
Rotterdam in 2019 (Port of Rotterdam-Press release, 2020), compared to 1.83 million
tons through the Dutch airports (Schiphol and Maastricht) in 2018 (Centraal Bureau
voor de statistiek (CBS), 2018) and 34 million tons of goods coming from, or going to
the Netherlands by rail in 2018 (CBS, 2019a). Furthermore, 361 million tons of goods
were transported via inland navigation (CBS, 2019b). This preference is not a recent
development. Indeed, although the silk road (a land route) is maybe one of the most
famous ancient trade routes, intensive maritime trade is probably much older. For
example, maritime trade relying on the monsoon winds between Sumer (nowadays
southern Iraq) and the Indus valley dates back to the 2nd and 3rd millennium before
common era (BCE), while the Phoenicians used maritime trade routes from Lebanon
up to the Atlantic coast of North Africa in the 7th century BCE.

Nevertheless, living in the proximity of a dynamic water body has always come
with many challenges. There is the risk of inundations, as testify the yearly Nile floods
caused by heavy monsoon rains, the more occasional floods threatening Baghdad
(Marozzi, 2014, p. 80), and the exceptional floods in the Netherlands like in 1953
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(Hisgen & Laane, 2008, p. 57). There is also the need for infrastructure. Modern
engineering projects like the extension of the port of Rotterdam with Maasvlakte 2
(Port of Rotterdam) and the construction of the Deurganckdok (Port of Antwerp) can
be named in one breath with ancient achievements such as the canal of the Pharao’s
(6th century BCE) or the tidal dock of Lothal (20th century BCE).

With the investments in the infrastructure comes the concern of its maintenance.
Inhabitants of the Indus valley civilization were already conscious about this challenge.
They constructed the harbor of Lothal some distance from the main river channel to
reduce sedimentation. The disastrous effects of sedimentation can be illustrated by
several examples. The famous antique city of Ephesus (modern day Turkey) was once
located on the shore of the Aegean Sea, while it is now located several kilometers
inland due to the sedimentation of the Cayster River. In Western Europe, the city of
Bruges could flourish between the 12th and the 15th century when storms created a
tidal inlet, the ‘Zwin’, connecting the city to the North Sea. However, sedimentation
of this tidal inlet over the centuries hindered the port activities (Hisgen & Laane, 2008,
p. 12), and the most important port of Flanders eventually became Antwerp. In both
cases, sedimentation ultimately lead to the decline and even to the abandonment, of
the city in the case of Ephesus. A last example illustrating the effect of sedimentation
can be found in the Rhine itself. Its course was located nearby Utrecht during Roman
times, while its main distributary branch today is the Waal, about 40 km southwards.
The port of Rotterdam was threatened by sedimentation of the Brielse Maas in the
19th century, at that time the principal channel linking the port to the sea. This
threat ultimately lead to the construction of the ‘Nieuwe Waterweg’ (or Rotterdam
Water Way) in 1872, which is still the main channel of the Rhine-Meuse estuary today
(Hisgen & Laane, 2008, p. 82).

Naturally, the management bodies governing the important trading axis face the
same issues nowadays. Fortunately, modern dredging techniques allow for the main-
tenance of the waterways such that sedimentation does not lead to the inaccessibility
of ports. Nevertheless, these operations are extremely expensive. For example, main-
tenance dredging in the Scheldt for the accessibility of the port of Antwerp costs
about 200M€ yearly (Rekenhof, 2016). As a result, new methods or constructions are
investigated in order to try to reduce sedimentation and thus dredging costs. These
investigations begin with an in-depth knowledge of the physical processes governing
the estuary, starting with the hydrodynamics. Although the world’s estuaries share
their economical importance, they are unique in the natural conditions that determine
their dynamic evolution. The Rhine is no exception.
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1.3. Hydrodynamics of the Rhine Region of Freshwa-
ter Influence

1.3.1. General description
Freshwater input
Important aspects determining the hydrodynamics of estuaries are usually the bathy-
metry, the river discharge, the tide, the Coriolis force (due to the rotation of the
Earth) and meteorological conditions such as wind and heating processes. Their rela-
tive importance makes each estuary unique. The Rhine is, with an average discharge
of 2200 m3 s−1, the second largest river in Europe, after the Danube (Simpson et al.,
1993). This discharge is mainly divided over the Rotterdam Waterway (1500 m3 s−1)
and the Haringvliet (de Kok, 1996). River water flows into the North Sea at Maasvlakte
2, located on the Dutch coast (see Fig. 1.1). The huge input of freshwater creates a
salinity deficit area called Region Of Freshwater Influence (ROFI). This term was first
coined by J.H. Simpson as the "region between the shelf sea regime and the estuary
where the local input of freshwater buoyancy from the coastal source is comparable
with, or exceeds the seasonal input of buoyancy as heat which occurs all over the
shelf" (Simpson, 1997).

To gain insight in the relative magnitude of the buoyancy input through the river
discharge, it is necessary to compare it to the buoyancy input caused by the heating
and cooling of the sea surface. In the Rhine ROFI, the buoyancy input rate of the
lateral river alone is about 5.4× 105 N s−1 (based on the river discharge and an average
density difference of 25 kg m−3), which is equivalent to a peak summer heating over
an area of 104 km2 (Simpson et al., 1993). This feature means that the system can be
stratified even when the rest of the shelf is completely mixed. Therefore, the seasonal
stratification/mixing pattern usually occurring in the shelf-sea is supplemented by
alternative time scales of stratification variation within the water column related to
tidal mixing and tidal straining (this phenomenon is described below).

The spreading of the river water in the North Sea has a well-defined shape. The
bulge of freshwater resulting from the Rhine river extends 20 to 25 km offshore and
about 100 km alongshore. Rhine water can even be traced until 60 km offshore and
stratification may be observed at 40 km from the coast in case of favorable winds (de
Kok, 1996). The bulge turns to the right under the influence of the Coriolis force
(on the Northern Hemisphere) and creates a baroclinic circulation. As a result, three
different regions may be distinguished: a source, a plume region and a coastal current
(Münchow & Garvine, 1993). The plume has two favorite spreading modes. In the
first mode, it reattaches to the coast and forms a narrow coastal jet, northeastwards,
within 10 km from the coast. In the second mode, it separates from the coast and
flows to the North. The occurrence of one or the other mode is believed to depend
on the wind direction and magnitude (de Ruijter, van der Giessen, & Groenendijk,
1992).

Although the high inflow of buoyancy from the river is a distinctive feature of
the Rhine, it is not the only important physical actor. A competition between river
runoff (stratifying forces), wind, waves and tides (stirring forces), eventually coupled
by the Coriolis force, leads to alternations between vertically well-mixed and stratified
conditions. The tidal currents along the Dutch coast are of order of magnitude 1 m s−1,
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Figure 1.1: (a) Map of the North Sea with the location of the Rhine mouth. (b) Close-up on the
Rhine mouth with the indication of the two main channels of the Rhine estuary: the Rotterdam
Waterway (Nieuwe Waterweg) and the Haringvliet. A frame of reference (x, y) aligned with the
coast is introduced. The letter A represent the emplacement of a mooring and the letter N a
transect orthogonal to Noordwijk. These locations where used for the measurements reported by
Simpson et al. (1993).
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while the latitude of 52◦N is responsible for significant Coriolis effects. Finally, the
average water depth of the North Sea around the Dutch coast is about 20 m (de
Boer, 2009, p.96). It is the mutual interaction of all these elements which makes
the particular case of the Rhine unique and leads to very specific hydrodynamic
conditions.

Residual alongshore currents
The residual surface current in the Rhine ROFI is aligned parallel to the coast. Its
direction is towards the Northeast (de Ruijter, Postma, & De Kok, 1987). There
are three main contributors to this residual flow: the interaction between the river
outflow and the Coriolis force, the tide and the wind.

The Coriolis force constrains the discharge of river water into a flow parallel to the
coast, with the land on its right in the Northern Hemisphere (Simpson, 1997). The
nature of this flow is geostrophic which means that the pressure gradient balances the
Coriolis force due to Earth rotation according to

fv = 1
ρ

∂p

∂x
, (1.1)

fu = −1
ρ

∂p

∂y
, (1.2)

where u, v are the flow velocities in the alongshore direction x and in the cross-
shore direction y (see Fig.1.1b for a frame of reference), respectively. The Coriolis
parameter is represented by f and is equal to 1.25× 10−3 at 52◦N, while the pressure
gradients ∂p/∂x and ∂p/∂y are caused by density gradients. The alongshore flow is
then a classical coastal current (Münchow & Garvine, 1993) in which the buoyant-
layer depth is of the same order as the water depth due to the shallowness of the
continental shelf.

In the North Sea, the tide takes the form of a cyclonic Kelvin wave. The tidal wave
enters the North Sea close to Scotland and travels southwards with the coast on its
right. When approaching the Channel, it turns to the Northeast, following the coast.
Here the North Sea tidal current is met by a secondary tidal current comming from
the Channel. This property implies that the tidal currents oscillate back-and-forth,
parallel to the coast (de Boer, 2009). Around the mouth of the Rhine, the dominant
tidal constituents are semi-diurnal, such that the period of oscillation is also semi-
diurnal. Due to changes in the bathymetry, the amplitude U0 of tidal velocities can
vary with the alongshore coordinate x (see Fig.1.1b for a frame of reference). As a
result of these amplitude variations, a mean current is generated aligned with the
flow oscillations. To prove this statement, we first assume that the depth-averaged
alongshore velocity 〈u〉z evolves according to

〈u〉z(x, t) = U0(x) cos
(

2π
TM2

t− 2π
λM2

x

)
, (1.3)

with TM2 and λM2 the period and the wave length of the main tidal constituent (M2)
respectively, and t the time. If we insert this expression in the alongshore advection
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term of the Navier-Stokes equations, we obtain

〈u〉z
∂〈u〉z
∂x︸ ︷︷ ︸

alongshore
advection

=1
2U0

∂U0

∂x

(
cos
(

4π
TM2

t− 4π
λM2

x

)
+ 1
)

+ 1
2U

2
0

4π
λM2

(
sin
(

4π
TM2

t− 4π
λM2

x

))
.

(1.4)

Averaging this expresion over a tidal period TM2 gives

1
TM2

∫ TM2

0
〈u〉z

∂〈u〉z
∂x︸ ︷︷ ︸

alongshore
advection

dt = 1
2U0

∂U0

∂x︸ ︷︷ ︸
residual
flow

(1.5)

In the Rhine ROFI, this tidally-induced mean residual current is mainly directed
parallel to the coastline in the Northeast direction, generally following the isobaths
(Simpson et al., 1993).

The average predominant southwesterly winds also drive a northeastward directed
flow, reinforcing the tidally-induced residual flow. However, wind conditions are
highly variable and may create deviations in the mean flow pattern. Unfavorable
wind directions can even cause a complete reversal of the residual flow direction
(De Ruijter, Huber, & Backhaus, 1987).

Tidally-averaged density gradients
The Rhine discharges into the shallow Southern Bight of the North Sea. Consequently,
considerable amounts of fresh water, interact with the saltier sea water. It is mainly
the difference in salinity that leads to density differences. However, temperature
differences between the Rhine waters and the Channel waters may also results in
small-scale density differences. Globally, the isotherms follow the same pattern as the
isohalines (de Kok, 1996) and the density differences generate a three-dimensional
flow and density structure.

The density gradients are directed normal to the coast with isohalines and iso-
therms parallel to it. When the water column is well-mixed, the isohalines are vertical.
This situation is sketched in Fig. 1.2. More generally, sharp fronts, eddy development,
growing internal waves and a discontinuous vertical density profile are observed (de
Kok, 1996). The density increases from relatively fresh water near the shore to more
saline water further offshore. This horizontal gradient in density leads to a horizontal
pressure gradient which drives a typical exchange flow. In this exchange flow, low
density water is advected in the offshore direction at the surface which is compensated
by higher density water moving in the onshore direction at the bottom: an estuarine
circulation.

This type of circulation is characteristic of estuaries or coastal waters (van der
Giessen et al., 1990) and it tends to induce (vertical) stratification, particularly in the
absence of stirring mechanisms (Simpson, 1997). During times of large river runoff (>
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Figure 1.2: Density distribution in a cross-shore plane (y, z) for a well-mixed water column. The
horizontal density gradient generates a typical exchange flow, the estuarine circulation, shown in red.

1500 m3s−1) stratification is noticed 15 km away from the outflow points Haringvliet
and Rotterdam Water Way. Two distinctive layers with a sharp interface are then
formed.

The hydrodynamics are further strongly influenced by the wind conditions. Wind
can inhibit stratification, by stirring the water column or by counteracting the estu-
arine circulation. In case of favorable direction, it can also increase stratification, on
the basis of two mechanisms. First, the quicker response to anomalous wind forcing of
the top layers in comparison to the lower layers leads to a more pronounced vertical
structure (van der Giessen et al., 1990). The wind increases the magnitude of the
flow in surface layers to a larger degree than in the bottom layers, so that fresh river
water is advected faster offshore. Second, the proximity of the coast (Simpson, 1997)
implies that no net flow in the cross-shore direction can take place, such that any
wind-driven offshore flow of fresh water in the top layer has to be compensated by
an onshore flow of saltwater in the bottom layer. As a result, strong upwelling wind,
with a speed higher than 7 m s−1 (Münchow & Garvine, 1993) enhances stratification
causing the buoyant water plume to move offshore near the surface and denser shelf
waters to move onshore. As a result, stratification can be observed from the mouth
of the Scheldt (30 km southwest of the Haringvliet) to even north of the Wadden Sea
(de Kok, 1996).

Finally, the tidal flow has a global stirring effect (Simpson, 1997), which is mainly
periodic. It influences the dynamics and dispersion of river water. The tidal streams
depend usually on the topography and the shape of the coastline. They show a
double periodicity: the semi-diurnal ebb-flood periodicity and the fortnightly spring-
neap cycle. Depending on their magnitude, the strong tidal streams might mix up
the plume completely. However, the longer the periods between stirring events, the
more time stratification has to re-establish (Simpson, 1997).
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1.3.2. Tidal currents and stratification: coupled processes with
distinctive time scales

Observations of tidal velocities

Figure 1.3: Tidal ellipses in the Rhine ROFI sketched by de Boer (2009) in a well-mixed situation
(top left) and a stratified situation (bottom left). The paths described by the tidal velocity vector
are enlarged on the right hand side and known as tidal ellipses. The velocity vector is explicitly
shown at high-water (HW), low-water (LW) and slack tide.

As mentioned previously, the main tidal components in the Rhine ROFI are semi-
diurnal. According to the Kelvin wave theory, water particles are expected to move
back-and-forth along the Dutch coast. However, measurements revealed that the
velocity vector of the tidal currents describes, in fact, an ellipse, which we call the
tidal ellipse. The ellipticity of these ellipses changes both over depth and with the
mixing ratio (i.e. homogeneous or stratified) of the water column (Visser et al., 1994).
This process is illustrated in Fig. 1.3. The ellipticity is defined as the ratio between
the semi-minor axis and the semi-major axis, such that the ellipticity of a circle is 1
and of a straight line is 0 (Visser et al., 1994).

In well-mixed conditions, the ellipses are degenerate (i.e. the ellipticity is very
small) and the tidal currents are indeed almost rectilinear, parallel to the coast. A
cross-shore component is observed, but it is very weak. The vertical variation between
the ellipses in a water layer close to the bottom, and the ellipses in a water layer close
to the surface is very small; the tidal ellipses are oriented in the same direction within
5◦ (Souza & Simpson, 1996; Visser et al., 1994).

In contrast, during stratified conditions, a significant cross-shore component of
the tidal currents was observed. This cross-shore component leads to a strong ellip-
tical path described by the vector of the tidal velocity. Furthermore, the alongshore
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Figure 1.4: Periodic stratification identified through the lines of equal density (pycnoclines) measured
during a survey along transect N (see Fig. 1.1b). a) Post spring tide survey (9 October 1990) and
b) post neap tide survey (15 October 1990).

component of the top and bottom layer are out of phase by 180◦. Additionally, the
relative orientation of the tidal ellipses in the two layers also changes, and there is a
bottom-surface orientation difference up to 15◦ or 20◦ (Souza & Simpson, 1996; Visser
et al., 1994). The motion of the surface ellipses is strongly anti-cyclonic (clockwise in
the Northern Hemisphere), whereas in the bottom layer, the motion becomes more
cyclonic (anti-clockwise in the Northern Hemisphere).

Observations of stratification
Measurements of the mixing rate of the water column show strong variations which
seem to be correlated with the tidal currents. As discussed previously, the large input
of freshwater into the salty North Sea leads to stratification, which is modulated
by stirring mechanisms such as tides and waves. As a result, the ROFI does not
experience a seasonal periodicity of stratification due to heating-stirring competition,
but more daily and weekly alternations due to the variability of river run-off, wind and
wave stirring. In particular, the tidal cycle seems to impose two time scales during
which the stratification pattern exhibits more structure (Simpson et al., 1993), a
fortnightly time scale and a semi-diurnal time scale.

On a fortnightly time scale, mean stratification over a longer period is followed by
complete vertical mixing. This process is illustrated by the surveys taken along N,
a cross-section of the Rhine ROFI orthogonal to Noordwijk (see Fig. 1.1b). Figure
1.4a (taken from Simpson et al. (1993)) shows a well-mixed water column during the
survey just after spring tide, while 1.4b shows a stratified water column during the
survey just after neap tide.

The time series recorded at location A (see Fig. 1.1b) and reported by Simpson et
al. (1993) show that changes in the mean stratification are correlated with the mag-
nitude of the tidal velocity related to the spring-neap tidal cycle. This phenomenon
can be explained by taking into account tidal stirring. The loss of energy E over time
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Figure 1.5: Time series of current velocity and mean stratification of the water column. The semi-
diurnal oscillation and spring-neap cycle are clearly observed in the current velocity. These time
series were recorded at mooring A (see Fig.1.1) and show: (a) the east-west tidal velocity 4m above
the sea bed and (b) the salinity difference between 1 and 16m below the surface. This figure was
taken from in (Simpson et al., 1993).

due to bottom friction can be written as

∂E

∂t
= τwuw, (1.6)

where τw is the near-bottom friction (wall shear-stress), uw the near-bottom velocity
and · denotes an ensemble average (Simpson & Hunter, 1974). Using a quadratic
friction law for the velocity leads to ∂E/∂t ∼ |uw|3, i.e. the tidal stirring power is
proportional to the cubic power of the tidal velocity. As a result, changes in the
magnitude of the tidal velocity, lead to more stirring, thus more mixing of the water
column. As can be seen on Fig. 1.5, minimum velocities occur around neaps and the
stability of the water column is observed to increase from well-mixed to maximum
stratification several days later. As the stirring increases thereafter, stratification
declines until complete vertical mixing around spring tide. Nevertheless, the reduction
of mixing must reach a critical level in comparison to the buoyancy input in order to
allow the onset of stratification (Simpson, Brown, Matthews, & Allen, 1990; Simpson,
1997).
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Surprisingly, even during periods of large time-averaged stratification, the instan-
teneous stratification rate was observed to oscillate with a semi-diurnal frequency be-
tween very strong stratification and conditions of nearly full vertical mixing (Simpson
& Souza, 1995; Simpson, 1997). These oscillations are very clear in Fig. 1.5a with
minimum stratification occurring at the time of local low water (Simpson & Souza,
1995; Simpson, 1997). The amplitude of the oscillations in instanteneous stratifi-
cation are in some cases of the same order as the time-averaged stratification, so
that the water column is completely vertically mixed once per tide. The periods of
mean and semi-diurnal stratification seem to be inextricably linked. Indeed, in the
absence of time-averaged stratification there is no semi-diurnal cycle in instanteneous
stratification (Simpson & Souza, 1995; Simpson, 1997).

The relation between changes in tidal currents and stratification.
In an open ocean, far from the coast and without stratification, tidal ellipses can
be very well explained by Ekman theory. To this purpose, Prandle (1982a, 1982b)
defined a complex number R based on the two horizontal components of the velocity
vector (u and v), following R = u+ iv, with i the imaginary unit. In a configuration
of a flow forced by the tide and the Coriolis force, R can be expressed as

R(z, t) =
(
R11 exp

(
−(i + 1) z

δ+

)
+R12 exp

(
(i + 1) z

δ+

)
− i ‖G1‖
f + ω

)
eiωt

+
(
R21 exp

(
−(i + 1) z

δ-

)
+R22 exp

(
(i + 1) z

δ-

)
− i ‖G2‖
f − ω

)
e−iωt,

(1.7)

i.e. the sum of an anti-clockwise rotating component and a clockwise rotating compo-
nent (Gonella, 1972). In this solution, z is the vertical coordinate, R11, R12, R21 and
R22 are integration constants and ω = 2π/TM2 is the tidal frequency. The quantities
G1 and G2 are related to the surface elevation (i.e. the tidal forcing). Similarly
to the velocity R, Prandle (1982a, 1982b) defined a complex number G being the
sum of surface elevation gradient along x and i times the surface elevation gradient
along y. The terms ‖G1‖ and ‖G2‖ are then the magnitudes of the counterclock-
wise and clockwise components of G (for more details see Prandle (1982a) and App.
A). Quite remarkable is the appearance of two different boundary layer thicknesses
δ+ =

√
2νT /(f + ω) and δ- =

√
2νT /(f − ω) in Eq. (1.7). These boundary layer

thicknesses are associated to the anti-clockwise and clockwise rotating components of
the solution and depend on the eddy-viscosity νT (for more details, again see Prandle
(1982a) and App. A). Prandle found that, over the depth of a water column, the clock-
wise component was more reduced due to frictional effects than the anti-clockwise one
and that this reduction is maximum at the bed, explaining the differences in rotation
direction between the top and the bottom ellipse.

However, this theory does not hold in the Rhine ROFI (see Fig. 1.3). During
spring tide, the along-shore tidal motion is the strongest. As a result, according to
the Ekman theory, strong cross-shore currents generating tidal ellipses, are expected.
However, during spring tide, the tidal ellipses degenerate into a rectilinear motion.
Therefore, a different explanation for the tidal tidal ellipses is required.

In the Rhine ROFI, the presence of the coast plays a determinant role, by pre-
venting strong cross-shore currents. The coast implies that the tidally and vertically
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Figure 1.6: Conceptual sketch from Visser et al. (1994) showing the evolution over the depth of
vertical structure of the magnitude of the cyclonic |U+| = ‖R1‖ and anticyclonic |U-| = ‖R2‖
rotary components of the tide for (a): well-mixed, (vertically uniform νT ) and (b): stratified (νT
reduced in the vicinity of the pycnocline) conditions. For the definitions of ‖R1‖ and ‖R2‖, the
reader is referred to App. A.

averaged velocity in the cross-shore direction should be zero. However, Prandle’s
model ignores the presence of a coast. In fact, the presence of a coast should sig-
nificantly reduce the cross-shore currents all the time, even during neap tide. The
reason why the cross-shore currents related to the tidal ellipses occur during neap
tide is explained by a second omission of Prandle’s model: vertical variation in the
eddy viscosity. Indeed, Prandle used a constant eddy viscosity model, which is a good
approximation for a well-mixed water column, but a very poor approximation for a
stratified water column. Visser et al. (1994) shows that the response of a two-layer
model to a semi-diurnal tidal forcing depends to a large extent on the viscous coupling
between the two layers. When the viscosity in the pycnocline is reduced, significant
cross-shore velocities can occur in the upper layer, leading to clockwise tidal ellipses.
Due to the proximity of the coast, a net zero flow is required in the cross-shore direc-
tion. As a result, the bottom current becomes strongly anti-clockwise to compensate
for the clockwise motion of the surface current. This mechanism is sketched in Fig.
1.6. The model results are very consistent with what has been observed in the Rhine
ROFI (Visser et al., 1994). During periods of stratification, vertical motions within
the pycnocline are suppressed and so are the vertical eddies, inhibiting momentum
transfer (Maas & van Haren, 1987). This reduced momentum transfer results in a
reduction of the eddy viscosity.
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Tidal straining
In the previous section, it is shown that the tidal ellipses in the Rhine ROFI are caused
by the onset of stratification in the water column. However, a feedback mechanism,
of the tidal ellipses on the stratification also exists. This feedback mechanism leads
to the semi-diurnal oscillations of the stratification through the effect of differential
advection on the horizontal density gradient. This process is called tidal straining,
and is accompanied by the generation of strong fronts (Simpson et al., 1993; Simpson
& Souza, 1995).

Figure 1.7: The tidal straining mechanism in a configuration in which the main tidal currents are
aligned with the main horizontal density gradient, as sketched by de Boer (2009).

This mechanism of tidal straining can easily be understood if the main tidal cur-
rents are aligned with the horizontal density gradient. This situation is represented
in Fig. 1.7. Initially, the water column is well-mixed. During ebb, the currents are
directed offshore, but the velocity near the surface is larger than near the bottom. As
a result, fresh-water is transported further offshore at the surface than at the bottom
generating stratification by straining the density field. During flood, this process is
reversed and freshwater is brought back onshore. In the case that the flood veloci-
ties are larger than the ebb velocities, unstable stratification might be generated, but
would be immediately suppressed by convective overturning.

In the Rhine ROFI, the situation is more complex since the main tidal currents
are orthogonal to the main horizontal density gradient. However, due to the tidal el-
lipses, significant cross-shore currents are present and the mechanism of tidal straining
can be understood by combining the field observation of Simpson et al. (1993) and
Simpson and Souza (1995), the model formulation of de Ruijter (1983) and the exper-
imental results of Linden and Simpson (1986, 1988) and Simpson and Linden (1989).
Under the influence of significant turbulent activity, even strong stratification can be
destroyed as shown by the experiments of Linden and Simpson (1986, 1988). In such
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a case, the effect of the river on the buoyancy distribution is restricted to the presence
of a horizontal density gradient which corresponds to spring tide in the Rhine ROFI.
When turbulence decays, the experiments Linden and Simpson (1986, 1988) show
that isobars relax under gravity, accompanied by the generation of fronts in the form
of an exchange flow. In a later experiment, Simpson and Linden (1989) used a config-
uration in which the shape and the magnitude of the horizontal density gradient was
better controlled. They studied gravity currents generated by an initial horizontal
density gradient. They investigated two different configurations. The first configu-
ration had an initial constant horizontal density gradient. The second configuration
had an initial piecewise constant horizontal density gradient. In the latter configura-
tion the initial value of the density would increase at a certain constant rate along the
streamwise horizontal coordinate, before abruptly increasing with a different constant
rate. Simpson and Linden (1989) showed that only the second configuration would
lead to the formation of fronts.

Figure 1.8: The tidal straining mechanism in the Rhine ROFI configuration as sketched by de Boer
(2009). During neap tide, the upper and lower layer in the water column are uncoupled. Strong
cross-shore currents can exist and stratify the water column during flood and destratify the water
column during ebb. This process is accompanied by upwelling (UW) and downwelling (DW).

In the Rhine ROFI, the tidal ellipses are responsible for the shear that is necessary
to generate the fronts (Simpson & Souza, 1995). The exchange flow relative to the
tidal ellipses is stabilizing during flood and destabilizing during ebb. During flood, the
flow in the top layer is oriented offshore, and the flow in the bottom layer is oriented
onshore. The action of the shear generated by this exchange flow on the horizontal
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density gradients generates stratification accompanied by fronts. The stratification is
strained, potential energy is consumed, or mixed, and mechanical energy is created
(Linden & Simpson, 1988; de Ruijter, 1983). During ebb, the situation is reversed.
The flow in the top layer is directed onshore, and the flow in the bottom layer is
directed offshore. The stratification is destroyed, not because of turbulent mixing,
but because of differential advection. Mechanical energy is consumed and potential
energy created. The semi-diurnal oscillations in the stratification rate of the water
column are called strain induced periodic stratification (SIPS) and is shown in Fig.
1.8. It is accompanied by periods of upwelling and downwelling, as shown in sea
surface temperature images (de Boer, Pietrzak, & Winterwerp, 2009).

1.4. Numerical simulations for ROFI studies
1.4.1. Traditional research tools
The literature involved in the description of the ROFI shows that field measure-
ments are a primary source of information for the understanding of estuarine physics.
Observations of physical processes (e.g. variations in the mixing rate of the water
column, characteristics of tidal currents) during field measurements have lead to the
development of several theories (e.g. tidal straining, tidal ellipses) which were backed
up by relatively simple conceptual models (Simpson & Souza, 1995; Visser et al.,
1994). Nevertheless, while field measurements reflect processes that occur in the
Rhine ROFI, there are two reasons for which additional knowledge is required. First,
field measurements are often limited to a small number of discrete locations, which
makes it sometimes difficult to link local observations to large-scale events. Second,
field measurements offer no control of the system, so that recurrent manifestations
such as SIPS can be obscured by sudden events such as changes in wind direction
(Visser et al., 1994).

Recent studies of the ROFI’s and other river plumes are still extensively based on
measurement campaigns (Nash & Moum, 2005; Nash, Kilcher, & Moum, 2009; Flores,
Rijnsburger, Horner-Devine, Souza, & Pietrzak, 2017; Flores et al., 2020; Horner-
Devine et al., 2017; Rijnsburger et al., 2016; Rijnsburger, Flores, Pietrzak, Horner-
Devine, & Souza, 2018). However, studies based on numerical model results are
more and more common (de Boer, Pietrzak, & Winterwerp, 2006; Flores et al., 2018;
Fischer, Burchard, & Hetland, 2009; MacCready, Banas, Hickey, Dever, & Liu, 2009;
Vlasenko, Stashchuk, & McEwan, 2013). The amount and accuracy of the output
data of simulations can be directly controlled by refining the computational domain.
Subsequently, time series of quantities such as velocity or density can in theory be
obtained at any desired location of this computational domain. Furthermore, physical
processes (such as SIPS) can be isolated by switching off disturbing processes (such as
wind or variable river discharge). A drawback of numerical simulations is that the data
output is not related to events that ’really’ happened. As a result, numerical models
need to be calibrated on, or at least compared to, data from field measurements, so
that they are considered trustworthy. Overall, numerical models and measurements
should be considered as complementary to each other.

Besides being used in fundamental research, numerical models are also extensively
used in engineering for their ability to forecast. For example, they can be employed to
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predict the effect of changes in bathymetry (dredging activity) or boundary conditions
(river runoff, sea-level rise) on the hydrodynamics and sedimentation processes. For
this task, it is common practice to use large scale three-dimensional models covering
an area much vaster than the actual region of interest. This approach was also utilized
by de Boer et al. (2006), in which Delft3D (Delft3D-FLOW User Manual, 2003) was
used, and by Flores et al. (2018), in which ROMS (Regional Ocean Model System)
was used.

There are several reasons behind this choice for numerical modeling. First of all,
these large regions allow to incorporate all the relevant physical processes. This factor
is important since previous studies have shown that these processes are linked and
interplay. Second, undesired boundary effects are believed to not influence the results
as long as these boundaries are located sufficiently far away from the region of interest.

In contrast, an inconvenience of this approach is that it is computationally very
expensive. As a result, several methods to reduce the computation time are ap-
plied. For example, the equations of motion governing the flow are transformed from
three-dimensional Navier-Stokes equations to the shallow water equations. This trans-
formation has the advantage of reducing the computational time, due to a different
solving procedure in the vertical direction. However, due to this solving procedure,
the set-up becomes quasi-two-dimensional at the cost of vertical resolution. Addi-
tionally, a Reynolds averaging approach can be used. In this approach, the Reynolds
averaged Navier-Stokes equations (RANS) are solved for the mean value of the vari-
ables. Fluctuations related to turbulence are not resolved, but their contribution to
the large-scale velocity field is parametrized. Accordingly, much coarser grid resolu-
tions are possible at the price of loss of accuracy and detail.

A point of attention is that turbulence plays a determining role in the competi-
tion between mixing and stratification, as shown by the experiments of Linden and
Simpson (1986, 1988). Accordingly, turbulence directly affects sediment transport,
and water quality. Consequently, the reliability of the output of RANS simulations
depends on the quality of the turbulence closures. The RANS approach can be de-
scribed as seeking an approximate solution to an exact problem. The ‘problem’, i.e.
the bathymetry and physics governing the flow are exact, but the ‘solution’, i.e. the
average velocity field is approximate. A different procedure would be to seek an (al-
most) exact solution to an approximate problem. The uncertainty of the turbulence
models is then bypassed by using a type of numerical model in which all the scales of
turbulence, or at least the most important scales responsible for mixing, are resolved.

Numerical simulation methods in which only the large scales of turbulence are
resolved are named Large-eddy Simulations (LES), while numerical simulations in
which all the scales of turbulence are resolved are called Direct Numerical Simulations
(DNS). The price to pay is again expressed in computational time, particularly for
DNS. A way to overcome the computational time without sacrificing resolution is to
model only a restricted region of the estuary, or in our study the ROFI, in which the
important physical mechanisms subject of this study are represented.

A computational domain as depicted in the white bounded area in Fig. 1.9 (not
to scale) would fulfill these requirements. It is located slightly offshore and slightly
downstream of the river plume. This location is comparable with the location at
which the transect near Noordwijk (the N survey) documented in Simpson et al.
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Figure 1.9: Idealization of the Rhine mouth, with the two branches (Haringvliet and Rotterdam
Waterway) and the river plume deflected to the right, due to Coriolis force. The location of a
DNS/LES computational domain is depicted by the white bounded area. Note that this area is only
a sketch and is not too scale (the actual would be much smaller).

(1993) took place (also see Fig. 1.1b), at which observation data from a well-mixed
post-spring water column, and a stratified post-neap water column were reported. A
major challenge is to incorporate the necessary physical mechanisms in such a domain.
These mechanisms should be idealized, such that the problem is ‘approximated’ but
that the solution is ‘exact’ in DNS configuration, or ‘almost exact’ in case of the LES
configuration.

1.4.2. State of the art DNS configuration
To investigate the competition between mixing and stratification in the Rhine ROFI,
DNS/LES simulations should be able to reproduce the fortnightly and semi-diurnal
oscillations in the stratification rate of the water column. Accordingly, the DNS/LES
set-up requires all the necessary and sufficient ingredients governing this switching.
Based on the literature study above, these ingredients are

• alongshore oscillations of the semi-diurnal ebb-flood tidal cycle;

• a turbulent boundary layer spanning the entire water column to provide suffi-
cient turbulent mixing;

• fortnightly modulation of the turbulent mixing due to the spring-neap tidal
cycle;

• horizontal momentum transfer between the alongshore and the cross-shore di-
rection due to Coriolis force;

• horizontal, cross-shore density gradients driving cross-shore exchange flows, in
turn generating stratification;
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• the presence of a coast, forcing a zero depth integral of the cross-shore velocity
profile.

Several other physical mechanisms influence the stratification pattern but are believed
to be rather irrelevant for reproducing the periodic stratification events. These me-
chanisms include changes in water level, variations of the bathymetry, stirring effects
of wind and waves, as well as residual currents driven by the Stokes drift of the Kelvin
wave, the geostrophic balance or the average wind pattern over the North Sea.

Figure 1.10: Sketch of the model domain of vertical size h, with the direction of the tide and the
density gradient. The initial density distribution goes from sea-water density, ρsea (left) to river-
water density, ρriver (right). Horizontal boundary conditions are periodic. A no-slip condition is
applied at the bottom (z = 0) and a no-stress boundary condition at the top (z = h)

As we will see below, several of the physical ROFI mechanisms governing SIPS in
the North Sea have never been investigated using a schematized DNS/LES approach,
or at least not in a satisfactory way. For example, the study of Li, Radhakrishnan,
Piomelli, and Geyer (2010) suffered from an increase in stratification over the dura-
tion of the simulations. Therefore, substantial efforts to include these elements are
necessary and it appears that fitting all the important physical ROFI components in
the DNS/LES configuration is a giant leap. Unfortunately, giant leaps usually come
with numerous challenges. These challenges are difficult to identify in advance, es-
pecially if they are not isolated nor considered individually. As a result, taking the
leap at once makes the identification non-trivial and the subsequent implementation
of the relevant processes very laborious. A better approach is to divide the giant leap
into several smaller steps, that are taken and validated independently. The number
and the direction of the steps is guided by the state of the art literature about the
use of DNS/LES in modeling river outflow. The process starts by defining a suitable
model for the main mechanism driving mixing (the tidal driven turbulence) and the
main mechanism driving stratification (the river outflow).

In a Kelvin wave, which is the model for the tidal currents in the North Sea, the
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tidal currents are directed alongshore, with the coast on their right (in the Northern
Hemisphere). A flow driven by a homogeneous oscillating pressure gradient is an
excellent model for this type of flow. Although this set-up does not take into ac-
count changes in the surface elevation, it reproduces the back-and-forth motion of the
alongshore tidal currents in the Rhine ROFI. It has been used intensively in DNS/LES
configurations (see among others Salon, Armenio, and Crise (2007); Radhakrishnan
and Piomelli (2008), and a more detailed literature review in Chapters 2, 3 and 4).
This type of oscillatory-flow set-up was also investigated under the influence of rota-
tion (see among others Salon, Armenio, and Crise (2009); Salon and Armenio (2011);
Momen and Bou-Zeid (2017); Sakamoto and Akitomo (2006, 2008)). Tidal ellipses
were reproduced, particularly in the studies of Salon et al. (2009); Salon and Armenio
(2011). However, in these studies, the set-up did not include the effects of stratifi-
cation, and/or the presence of the coast. Accordingly, the observed tidal ellipses are
related to Ekman boundary layer effects (Prandle, 1982a, 1982b), rather than to the
exchange flows occurring under stratified conditions with reduced vertical motion in
the pyncocline identified by Visser et al. (1994). In other studies, the oscillatory-flow
set-up was combined with stratification (Gayen, Sarkar, & Taylor, 2010) and eventu-
ally with both stratification and rotation (Sakamoto & Akitomo, 2009). Nevertheless,
these studies generally focused on scaling characteristics and scaling properties of the
turbulent boundary layer. Accordingly, the water depth was chosen much larger than
the thickness of the turbulent boundary layer and the simulation set-up was never in
the Rhine ROFI parameter regime.

River outflows always generate horizontal density gradients in the cross-shore di-
rection caused by the large input of fresh-water in a salty environment. This property
is a major issue since the simplest set-up for DNS/LES simulations is a cubic compu-
tational domain with periodic horizontal boundary conditions, such as displayed in
Fig. 1.10. A method to by-pass this issue, is to assume the horizontal density gradient
constant and incorporate its effect as a body force in the momentum equations and a
source term in the density equation. This approach was used by Li, Trowbridge, and
Geyer (2008); Li et al. (2010), but the inconvenience is that it only works with sig-
nificant turbulent mixing that is sufficient to destroy strong stratification. For weak
turbulence, this approach fails, and the phenomenon of runaway stratification occurs
(Blaise & Deleersnijder, 2008). As a result, the constant horizontal density gradient
method cannot be used under its currents form for strongly stratified flows such as
occurring in the Rhine ROFI.

1.4.3. Research question
The current advances in modeling estuarine physics with DNS/LES simulations imply
that a complete DNS/LES model is too much of a giant leap. Instead, we will focus
on two major ingredients of the mixing stratification competition and study them
separately. The first question concerns the mixing process: what is the importance of
the water depth on the structure of the turbulent boundary layer and its subsequent
modeling? The second question involves the stratification process: how to improve
the existing one-dimensional and three-dimensional models for exchange flows, so that
they can handle the strongly stratified, and eventually turbulent regime?

In Chapter 3, we define an oscillating flow model that is closer to the Rhine ROFI,
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by considering a configuration in which the turbulent boundary layer extends over the
entire water depth. In particular, we first use a set-up in which the vertical dimension
is large enough to contain the full turbulent boundary layer. Subsequently, we perform
simulations with a smaller water depth than the previously defined boundary layer
thickness. Accordingly, we investigate the effect of the reduced water depth on the
turbulent boundary layer. In Chapter 4, we study the implication of this limited
water depth on the validity of the boundary conditions usually applied in RANS type
of models. More precisely, we thoroughly test the existence and properties of the
logarithmic velocity profile.

In Chapter 5, we draw our attention to the stratifying processes by developing
a new set of one-dimensional parametrizations for the horizontal density gradients.
These new parametrizations are meant to overcome the problem of runaway stratifi-
cation and to be able to simulate laminar exchange flows under strong stratification.
In Chapter 6, the newly developed one-dimensional model is used to derive a ve-
locity scale for density driven flows in inclined ducts, that converges towards the
velocity scale for density driven flows in horizontal ducts, in the limit of small incli-
nation angles. The velocity scale is eventually validated against experimental data.
In Chapter 7, we implement and extend the one-dimensional parametrizations to
three-dimensional flows. We simulate a strongly stratified exchange flow driven by a
horizontal density gradient, characteristic of the Rhine ROFI.

The results show that the water depth plays a crucial role in turbulent oscillatory
flows. A small water depth affects the balance between the oscillatory pressure gradi-
ent driving the flow, the viscous dissipation and the acceleration/deceleration term.
As a result, it can change the amplitude and the phase lag of the velocity profile,
and even lead to relaminarization. The logarithmic velocity profile is found to be
present during large time-intervals in the oscillatory cycle. However, the duration of
these intervals appear to be dependent on the value of the Reynolds number and on
the ratio between the water depth and the boundary layer thickness. Additionally,
the properties of the logarithmic layer are found to depend on these parameters, and
on the phase. The new one-dimensional parametrizations for the exchange flow out-
perform the classic parametrization of the horizontal density gradient in which the
latter is assumed constant. One-dimensional models reproduce well the velocity and
density profiles from two-dimensional exchange flows, for a wide set of parameters.
Finally, the implementation of the new parametrizations in three-dimensional models
with periodic boundary conditions was successful. The simulated turbulent exchange
flow was found to undergo several stages also reported in the literature. These stages
include a stage in which Holmboe waves are observed and a stage in which turbulence
is observed.





2
Numerical methods and flow

configurations
To perform the high-resolution numerical simulations of inhomogeneous turbulent
flows mentioned in the introduction, an adequate numerical software package is re-
quired. The software package used in this thesis, if not specified otherwise, is LES-
Coast. LES-Coast is developed by the University of Trieste, and succesfully used in
several academic studies (Salon et al., 2007, 2009; Salon & Armenio, 2011; Roman,
Stipcich, Armenio, Inghilesi, & Corsini, 2010; Galea et al., 2014; Lefauve, Partridge,
& Linden, 2019b; Santo, Toffolon, Zanier, Giovannini, & Armenio, 2017). It is based
on a combination of adequate numerical techniques and appropriate algorithms that
are described hereafter. Additionally, suitable domain sizes and sufficient resolution
are discussed for each of the two flow configurations, the oscillating flow and the
density-driven flow, separately. Correct choices for these parameters strongly depend
on the properties of the flow and geometry of the flow domain. LES-Coast offers the
possibilities to solve the Navier-Stokes and continuity equation using two different
techniques: (i) direct numerical simulations (DNS), and (ii) large-eddy simulations
(LES). The difference between these two techniques is their approach for dealing with
the smaller scales of the motion. Therefore, a brief description of fluid motion in
turbulent flow is first given, to understand these differences, .

2.1. Direct numerical and Large-eddy simulations
A turbulent flow is characterized by the presence of numerous eddies of various sizes.
The largest eddies belong to the macrostructure and scale directly with the charac-
teristic length scales of the flow domain. This scale is denoted by L. These eddies are
generated by instabilities of the flow, and their dynamics are dominated by non-linear
processes. They contain the most energy; they are responsible for mixing, and they
are barely affected by viscosity. The large eddies successively break up into smaller
eddies due to higher order instabilities. This process continues until the eddies are
small enough for viscosity to play a significant role and dissipate the energy. The

23



24 2. Numerical methods and flow configurations

y

z

E
ne

rg
ie

Wave number

k−5/3

L η

macro-
scales

energy
cascade micro-scales

inertialrange

Figure 2.1: Schematized one-dimensional energy spectrum in logarithmic scale.

smallest eddies belong to the microstructure, to which we can associate a length scale
η called the Kolmogorov scale, equal to

(
ν3/ε

)1/4, with ν the kinematic viscosity and
ε the dissipation.

If we characterize the different eddies by their wave number, instead of by their
length scale, we can sketch the energy E(k) contained in each wave number range,
between k and k + dk. The scaling of the energy as function of the wave number
is given in Fig. 2.1. In this figure, the wave numbers belonging to the macroscale
(small wave numbers) contain the most energy, while the wave numbers belonging
to the microscale (large wave numbers) contain the smallest amount of energy and
the energy is rapidly dissipated at the Kolmogorov scale. In between, in the inertial
range, the energy decreases algebraically, according to E(k) ∝ k−5/3, in a process
called the energy cascade. As stated previously, the key difference between DNS and
LES is their way of dealing with the large wave numbers. In DNS, all the scales are
resolved, theoretically up to the Kolmogorov scale. In LES, the scales until a certain
wave number belonging to the energy cascade will be included. The smallest (and
here discarded) scales are represented by the means of the subgrid-scale model. The
excess of energy is then dissipated at sub-grid level using this subgrid-scale model.

Accordingly, on the one hand, the strength of DNS resides in the fact that all
scales of motion are resolved, and that no extra model is used. The inconvenience
is that, since the ratio of L/η is proportional to the Reynolds number value to the
power 3/4, the required resolution increases exponentially fast with the Reynolds
number. As a result, high Reynolds number simulations are unfeasible with the
current computational resources. On the other hand, LES resolves the largest scales
of motion such that mixing processes are accurately reproduced and can be studied.
The use of subgrid scale models allows for not resolving the smallest scales and can
be used to save computation time. For more general details about turbulence, DNS
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Figure 2.2: Standard computational domain for the three-dimensional DNS/LES used in this thesis.
The domain is not on scale and the horizontal sizes of the domain, Lx, Ly , can vary depending on
the flow configuration.

and LES techniques, the reader is referred to Nieuwstadt, Westerweel, and Boersma
(2016); Sagaut (2006); Pope (2001); Geurts (2003).

2.2. Governing equations
The fluid motion is governed by the continuity equation for an incompressible fluid
and the Navier-Stokes equations for conservation of momentum under the Boussinesq
approximation (i.e. any variations in the density are small with respect to the average
density and the density differences affect the flow through the buoyancy term only).
In the xi = (x, y, z) reference frame, with z along the vertical, depicted in Fig. 2.2
they read

∂ui
∂xi

= 0, (2.1a)

∂ui
∂t

+ ∂uiuj
∂xj

= − 1
ρref

∂p

∂xi
+ ν

∂2ui
∂x2

j

− ρ

ρref
gδi3 + F b

i , (2.1b)

in which t denotes time, ui = (u, v, w) the velocity in the xi direction, p the pressure,
ρref the reference density, ρ the density variable, g the gravitational acceleration and
F b
i the different body forces (other than buoyancy) applied on the fluid. The symbol
δi3 represents the Kronecker delta (also represented thereafter as δij , δi1 or δi2) and
Einstein’s summation convention has been adopted for repeated indices. The exact
expression of the body forces depends on the flow configuration and is detailed in Sec.
2.5.

The variations of the density ρ are described by an additional equation of state
and one equation for transport of salinity. For convenience, a linear equation of state
linking the density to salinity, and the equation of transport for salinity are combined
in one equation describing transport of density

∂ρ

∂t
+ ∂ρuj

∂xj
= κ

∂2ρ

∂x2
j

+ Ss, (2.2)
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in which κ is the kinematic diffusivity of salt and Ss represents the additional sources
or sinks of density. Note that the equation of transport is only used in the density-
driven flow configuration. In the oscillating flow configuration, the density is uniform
and constant. The above set of equations, i.e. Eqs (2.1, 2.2), are used in the DNS
configuration, implying that all scales of motion are resolved. However, some simula-
tions are run in LES configuration obtained by applying a filtering operation to Eqs
(2.1, 2.2). This filtering operator G̃ is defined as

f̃(x) =
∫
f(x̆)G̃(x, x̆)dx̆, (2.3)

where the integral is extended to the entire computational domain. The application
of this filter to the governing equations leads to (Sagaut, 2006; Germano, Piomelli,
Moin, & Cabot, 1991)

∂ũi
∂xi

= 0, (2.4a)

∂ũi
∂t

+ ∂ũiũj
∂xj

= − 1
ρref

∂p̃

∂xi
+ ν

∂2ũi
∂x2

j

+ F b
i −

∂τij
∂xj

, (2.4b)

for the continuity and Navier-Stokes equations and

∂ρ̃

∂t
+ ∂ρ̃ũj

∂xj
= κ

∂2ρ̃

∂x̃2
j

+ Ss − ∂λj
∂xj

, (2.5)

for the density equation. In theses equations, ·̃ denotes a filtering operation. Ac-
cordingly, ũi(ũ, ṽ, w̃) is the filtered velocity, p̃ the filtered pressure and ρ̃ the filtered
density. The subgrid scale (SGS) stresses for momentum and density are denoted by
τij and λj and verify (Germano et al., 1991)

τij = ũiuj − ũiũj , (2.6a)
λj = ρ̃uj − ρ̃ũj . (2.6b)

2.3. Subgrid-scale stress model
In Section 2.2, the equation for the filtered variables are derived and the SGS τij
as well as the density flux λj are introduced. While running LES-Coast in DNS
configuration, both τij and λj equal zero and no other filtering other than the grid
coarseness is applied. When run in LES-mode, several subgrid-scale models exist in
literature for τij and λj (Smagorinsky, 1963; Germano et al., 1991; Sagaut, 2006;
Armenio & Piomelli, 2000; Lilly, 1992; Bardina, Ferziger, & Reynolds, 1980). We
will focus here on the one that have been used in our simulations: the dynamic
Smagorinsky model (Germano et al., 1991; Lilly, 1992).

The procedure to determine the parametrization of τij and λj involves several
steps which we detail below for the Navier-Stokes equation, following Germano et al.
(1991). First, we define a second filter Ĝ, called test filter as

f̂(x) =
∫
f(x̆)Ĝ(x, x̆)dx̆. (2.7)
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The width of filter Ĝ is assumed to be larger than the width of filter G̃. Applying
this new filter to Eqs (2.4) gives

∂̂̃ui
∂xi

= 0, (2.8a)

∂̂̃ui
∂t

+ ∂̂̃uî̃uj
∂xj

= − 1
ρref

∂̂̃p
∂xi

+ ν
∂2̂̃ui
∂x2

j

+ F b
i −

∂Tij
∂xj

, (2.8b)

with
Tij = ̂̃uiuj − ̂̃uî̃uj , (2.9)

the SGS stresses of the test filter. Subsequently, we define the resolved turbulent
stresses as Lij as

Lij = ̂̃uiũj − ̂̃uî̃uj , (2.10)

and consequently verifying
Lij = Tij − τ̂ij . (2.11)

If we assume that both Tij and τij can be parametrized using the same form, i.e.

τij − τkk
δij
3 ≈ −2C∆̃2|S̃|S̃ij , (2.12a)

Tij − Tkk
δij
3 ≈ −2C ̂̃∆2|̂̃S|̂̃Sij , (2.12b)

where C is a Smagorinsky like constant, and ∆̃ and ̂̃∆ are the filter widths associated
to G̃ and ̂̃G. The quantities S̃ and ̂̃S are the strain rate tensors corresponding to the
filtered velocities

S̃ij = 1
2

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
, (2.13a)

̂̃
Sij = 1

2

(
∂̂̃ui
∂xj

+ ∂̂̃uj
∂xi

)
. (2.13b)

The respective magnitudes of the strain rate tensors are

|S̃| =
√

2S̃ijS̃ij , (2.14a)

|̂̃S| = √2̂̃Sij ̂̃Sij . (2.14b)

Using Eqs (2.12a) and (2.12b) into Eq. (2.11), and applying plane averaging along x
and y leads to an expression for the constant C (Germano et al., 1991; Lilly, 1992)

C(z, t) = −1
2

〈
LklS̃kl

〉
̂̃∆2
〈
|̂̃S|̂̃SmnS̃mn〉− ∆̃2

〈
|̂̃S|̂̃SpqS̃pq〉 . (2.15)
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Finally, the subgrid-scale stresses can be expressed as

τij − τkk
δij
3 ≈

〈
LklS̃kl

〉
̂̃∆2/∆̃2

〈
|̂̃S|̂̃SmnS̃mn〉−〈|̂̃S|̂̃SpqS̃pq〉 |S̃|S̃ij . (2.16)

2.4. Main algorithm of LES-Coast
The main algorithm of LES-Coast is based upon the algorithm described in Zang,
Street, and Koseff (1994). Hereunder we briefly describe its important elements; the
software package was already used and validated extensively (Salon et al., 2007, 2009;
Salon & Armenio, 2011; Roman et al., 2010; Galea et al., 2014; Lefauve et al., 2019b;
Santo et al., 2017). For extended details, the reader is referred to Zang et al. (1994).

The governing equations are discretized on a computational domain meshed by
a non-staggered grid following Rhie and Chow (1983). The use of this type of grid
implies that, in the computational space, the velocity variables ũi, the pressure vari-
able p̃ and the density variable ρ̃ are defined at the cell center. At the same time,
the volume fluxes are defined at the mid-point of the corresponding cell faces (Rhie
& Chow, 1983, see). This technique combines the benefits of a non-staggered grid,
i.e. less equations to solve with respect to a staggered grid (Rhie & Chow, 1983),
while not being affected by the decoupling between the pressure field and the velocity
field (see Harlow and Welch (1965); Rubin and Harris (1975)). Equations (2.4, 2.5)
are solved in curvilinear coordinates, such that the grid properties are absorbed in
a Jacobian matrix (for the first order derivatives) and a ‘mesh skewness tensor’ (for
the second order derivatives). For more details about the variable transformation, see
Fletcher (1988); Zang et al. (1994). For the simulations carried out in the framework
of this thesis, the grid is Cartesian, i.e. orthogonal and only stretched in the z direc-
tion. This means that all the metric tensors are reduced to diagonal tensors, which
decreases the effective number of operation during each timestep.

Equations (2.4) are discretized using the finite-difference scheme with a second-
order-explicit Adams-Bashforth method for the convective terms (respectively the
advection terms in the density equation) and a second-order-implicit Crank-Nicolson
method for the viscous terms (respectively the diffusive terms in the density equation),
following Kim and Moin (1984). The body force term in the momentum equations is
evaluated explicitly, while the source term in the density equation is evaluated using
the same Adams-Bashforth discretization as the advection term. The stability limit of
the viscous and diffusive terms is much more restrictive than the Courant-Friedrichs-
-Lewy (CFL) condition for the non-viscous terms. As a result the (semi-)implicit
treatment of the viscous and the diffusive terms via the Crank-Nicolson scheme is
imperative.

Mass conservation is ensured by integrating of the discretized system of equations
using the fractional step method (Kim & Moin, 1984; Zang et al., 1994). In the
fractional step method, an intermediate velocity ũ∗ is introduced in the momentum
equation. This procedure allows to split the original momentum equation into two
equations. The first equation, the predictor equation, links the intermediate velocity
ũ∗, to the terms depending on the velocities evaluated at time steps n and n− 1 (i.e.
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ũn and ũn−1). It can be put under the form

M(ũ∗i − ũni ) = frhs(ũn, ũn−1), (2.17)

where M is a tridiagonal matrix and frhs regroups the right hand side terms of the
equation. It depends on ũn, ũn−1 but not on the pressure. This equation is solved
by using the approximated factorization technique (see Kim and Moin (1984); Zang
et al. (1994)): the tri-diagonal matrix M is written as the product of three diagonal
matrices. The inversion of three diagonal matrices is computationally much cheaper
than the inversion of a tri-diagonal matrix, while the error made by the approximation
is of order O(∆t)3.

The second equation, the corrector equation, ensures the conservation of mass. It
links the intermediate velocity to the velocity un+1 at the next time step n + 1 and
the discretized pressure term. In contrast with the predictor equation, the corrector
equation is rewritten at the cell face and can be put under the form

Ũn+1
m = Ũ∗m − grhs(pn+1). (2.18)

where Ũn+1
m and Ũ∗ are the volume fluxes defined at the cell faces, by linear interpo-

lation of the velocity defined at the cell center. The function grhs represents the right
hand side terms of the equation. It depends on the pressure. Continuity (i.e. mass
conservation) is enforce by applying the requirement that the divergence of Ũn+1

m to
be zero.

Taking the divergence of Eq. (2.18) leads to an equation in which the only un-
known variable is the pressure. The equation is then solved using a multi-grid suc-
cessive over relaxation (SOR) method. Additionally, the code is parallelized in the
spanwise direction using the Message Passing Interface (MPI) technique. Recently,
the pressure solver (i.e. the bottleneck in terms of computational requirements) has
also been parallelized in a second direction. This has made the algorithm roughly one
order of magnitude faster according to our own tests.

Except when specified, the spatial discretization of all terms consists of centered
differences, which are second order accurate in space. However, the convective and
advective terms are susceptible to generate overshoots when discretized using stan-
dard centered differences. These overshoots have the potential to seriously alter the
results. Accordingly, the implementation of a different advection scheme leading to
significantly less overshoots was necessary: the SHARP scheme (see Leonard (1988);
Choi, Nam, and Cho (1995); Zhu (1992)).
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2.5. Simulation dependent settings
Two types of flow configurations are simulated in this thesis: the flow driven by
an homogeneous oscillatory pressure gradient, and the flow driven by a homogeneous
horizontal density gradient. The correct simulation of these two flows requires specific
numerical settings according to the expected behavior and regime transition in each
flow. Hereunder, we briefly present any important features of each flow as they are
described in the literature. Based on these feature, we introduce the subsequently
chosen numerical settings.

2.5.1. Oscillatory flow configuration: regime transitions
Oscillatory flows have been investigated intensively in the past, both experimen-
tally (Jensen et al., 1989; Carstensen, Sumer, & Fredsøe, 2010; Chen, Chen, Tang,
Stansby, & Li, 2007; Hino, Kashiwayanagi, Nakayama, & Hara, 1983) and numeri-
cally (Radhakrishnan & Piomelli, 2008; Salon et al., 2007; Costamagna, Vittori, &
Blondeaux, 2003; Li, Sanford, & Chao, 2005; Spalart & Baldwin, 1989). For a long
time, the focus of these studies was to establish the different regimes undergone by
the flow, and to determine the Reynolds number at which these regimes changed
(Hino et al., 1983; Jensen et al., 1989; Blondeaux & Vittori, 1994). Four different
regimes were observed: the laminar regime (L), the disturbed laminar regime (DL),
the intermittent turbulent regime (IT) and the turbulent regime (T) (Hino et al.,
1983; Jensen et al., 1989; Costamagna et al., 2003; Salon et al., 2007). The exact
threshold value of the Reynolds number governing the regime transition is difficult to
determine with high accuracy (Hino, Sawamoto, & Takasu, 1976; Vittori & Verzicco,
1998). Discrepancies between the different studies were observed, and they could be
related to the unsteady character of the flow, as well as to the symmetric properties of
the oscillation cycle. For example, during the transition from the L to the DL regime,
small disturbances appear due to shear instability (Hino et al., 1983). However, these
disturbances cannot grow and are suppressed by the accelerating pressure gradient
(Hino et al., 1983). In contrast, the transition from the DL regime to the IT regime
is characterized by turbulence bursts at the beginning of the deceleration cycle (Hino
et al., 1983). Nevertheless, during the subsequent acceleration cycle the flow may still
be subject to relaminarization (Hino et al., 1983).

These features are fundamentally different from steady wall bounded flow. For
steady flows, turbulence needs to be generated initially, but once present, it persists
as long as the forcing remains unchanged. The mechanisms generating turbulence in
oscillatory set-ups need to be adequately reproduced in numerical simulations: the
spark generating the low-Reynolds number turbulent bursts needs to be sufficiently
strong to overcome eventual damping effect of the pressure gradient. Accordingly,
Blondeaux and Vittori (1994); Verzicco and Vittori (1996) showed that the presence of
small wall imperfections could explain the transition from the L to the DL regime. The
transition from the DL to the IT regime is less well understood. However, according
to Vittori and Verzicco (1998); Akhavan, Kamm, and Shapiro (1991), the growth
of three-dimensional perturbations is linked to the presence of large two-dimensional
waves.

These events of turbulent burst and relaminarization (also referred to as ‘intermit-
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tency’) put some serious requirements on the grid properties and eventual subgrid-
scale stresses. Indeed, if the grid is too coarse or the subgrid scale stresses are too
dissipative, it might delay the transition to turbulence or overestimate the relaminar-
ization. On the other hand, if no mechanisms generating instabilities are included,
the flow might remain laminar longer than necessary.

2.5.2. Oscillatory flow configuration: numerical settings
According to the available literature (Jensen et al., 1989; Hino et al., 1983; Vittori &
Verzicco, 1998; Salon et al., 2007), regime transitions in oscillatory flows are governed
by the Reynolds number Reδ based on the Stokes boundary layer δs. This Reynolds
number is defined by:

Reδ = U0δs
ν

, (2.19)

where
δs =

√
2ν
ω
. (2.20)

The experimental and numerical set-ups of these studies were in a configuration in
which the water depth was much larger than the thickness of the (turbulent) boundary
layer. In contrast, this configuration is very different from the Rhine ROFI, in which
the boundary extends over the entire water column. Unfortunately, there are very
few studies (in fact, only Li et al. (2005) to our knowledge), that studied the effect of
a reduced water depth on the flow driven by an oscillatory pressure gradient over a
flat plate.

However, for a closely related configuration, the oscillatory pipe flow with a circular
cross-section, an analogous effect was studied: the effect of the radius of the pipe on
the flow. This effect is governed by the Womersley parameter (also referred to as
Stokes parameter), which is defined as the ratio between the pipe radius and the Stokes
boundary layer. Pipe flow studies indicated that the Womersley parameter affects the
Reynolds number at which transition to turbulence occurs (Hino et al., 1976; Tuzi &
Blondeaux, 2008; Lodahl, Sumer, & Fredsøe, 1998; Eckmann & Grotberg, 1991).

Although similar, the Womersley parameter is not exactly the same as the ratio
between the water depth and the thickness of the Stokes boundary layer. The Wom-
ersley parameter is defined for a pipe flow of circular cross-section. As result, it is not
only a measure for the distance between the ‘bottom’ and the ‘top’ of the flow section,
but also of the curvature of the boundary normal to the flow direction. Therefore, it
measures an additional effect (the curvature), which is absent in flows over flat plates.

Nevertheless, oscillatory flows over flat plates could experience the same delays in
transition to turbulence as oscillatory flows in pipes, if the wall-normal dimension is
reduced. Therefore, we conducted numerical simulations for three different values of
the Reynolds number, and fives different values of the ratio between the water-depth
and the thickness of the Stokes boundary layer, h/δs. We choose Reδ = 990, 1790
and 3460, and h/δs = 5, 10, 25, 40 and 70. These values are based on the available
computational resources and the available experimental data needed for validation.
In total 15 different parameter combination were studied (see Section 2.1).

From a mathematical point of view, the oscillatory motion of the flow can be
obtained by a large-scale oscillatory pressure gradient along the x-coordinate. The
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previously mentioned body force F b
i is expressed as

F b
i = ρrefU0 cos (ωt) δi1, (2.21)

where U0 and ω are the amplitude and the frequency of the free-stream oscillations,
respectively, and δi1 the Kronecker delta. In this flow configuration, Eqs (2.4), can
be made non-dimensional by scaling xi with the vertical length scale h, the velocity
variables ũi with U0, the time t with h/U0, the pressure p̃ with ρrefU

2
0 and the subgrid

scale stresses τij with U2
0 . The resulting non-dimensional equations are

∂ũi
∂xi

= 0, (2.22a)

∂ũi
∂t

+ ũi
∂ũj
∂xj

= − ∂p̃

∂xi
+ 1

Reδ
δs
h

∂2ũi
∂x2

j

+ 2
Reδ

h

δs
cos
(

2
Reδ

h

δs
t

)
δi1 −

∂τij
∂xj

. (2.22b)

Note that for conciseness, no differentiation in the notation was made between a di-
mensional variable and its non-dimensional counterpart The size of the computational
domain and the grid resolution was chosen based on previous studies (Costamagna et
al., 2003; Salon et al., 2007). In most of the simulations, the computational domain
was chosen with horizontal size of 65δs in the streamwise direction (x) and 32δs in
the spanwise direction (y). Only for Reδ = 1790 or Reδ = 990 and h/δs = 5 (i.e.
simulations characterized by high intermittency), the domain was doubled in both
horizontal directions, keeping the grid-spacing constant. The boundary conditions
are periodic in the horizontal directions, a no-slip condition is applied at the bot-
tom and a rigid-lid no-stress condition at the top. This means that dynamic vertical
variations in the water level were neglected.

For the simulations with Reδ = 1790 or Reδ = 990 and h/δs = 5 wall imperfections
in the spirit of Blondeaux and Vittori (1994) are applied to favor retransition to
turbulence after previous relaminarization. In order to resolve the wall-structures, the
horizontal resolution in wall units, defined in dimensional form by x+

i = xiν/uτ (with
uτ =

√
τw/ρref the friction velocity and τw the wall shear stress and xi = (x, y, z)),

was chosen such that ∆x+ (streamwise) was less than 45z+ for the LES simulations
and 12z+ for the DNS simulations (Piomelli & Balaras, 2002). The spanwise grid
spacing ∆y+ was chosen to be at most 22y+ for the LES simulations and 14y+ for
the DNS simulations. To have higher resolution close to the walls, the grid cells are
stretched in the vertical direction with their size increasing with distance from the
wall. The relative size difference between two adjacent cells was kept lower than
3%. This limit was set because a higher stretching would reduce the accuracy of
the numerical algorithm. As a result, the cell size in the vertical direction increases
from ∆z+ = 2z+ to ∆z+ = 22z+ (to ∆z+ = 14z+ for the DNS simulations). Once
the maximum grid spacing was reached, the grid spacing was kept constant in the
remaining part of the domain. These criteria have been based on the estimated size
of turbulence structures (Piomelli & Balaras, 2002; Pope, 2001) and results from
previous studies (Costamagna et al., 2003; Salon et al., 2007).

For simulations characterized by a low h/δs ratio, time step convergence has been
checked by decreasing the Courant number. This number is defined as max(ui∆t/∆xi),
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with ∆t the time step. It was found that the Courant number value of 0.6 gave con-
verged results for all the simulations except for Reδ = 1790, h/δs = 5 (i.e. simulations
characterized by high intermittency) for which convergence was achieved for a Courant
number equal to 0.3. Additionally, it has to be mentioned that the results for the
simulations with Reδ = 990 and h/δs = 5 where still highly grid dependent, probably
because the flow relaminarizes through the whole cycle. Initial turbulence was gener-
ated by interpolating the velocity field from a converged turbulence simulation (either
a plane channel flow or an oscillatory flow at lower resolution) for which the mean ve-
locity was removed. The transient of the simulations takes several periods. Therefore,
we started to average from period six to skip the transient regime (first fives periods).
The velocity profiles and other statistical quantities have been obtained by averaging
over horizontal planes as well as by performing phase averaging. An overview of the
simulation settings is given in Table 2.1.

Table 2.1: Numerical settings for each simulation. The symbols nx, ny and nz are the number of
grid cells in the streamwise, spanwise and vertical. The symbols Lx and Ly are the domain size in
the streamwise and spanwise direction. The water depth is given by h, the thickness of the Stokes
boundary layer by δs and the Reynolds number based on the Stokes boundary layer thickness by
Reδ.

Reδ h/δs nx nz ny Lx/δs Ly/δs technique
990 5 512 64 512 130 64 DNS
990 10 256 80 256 65 32 DNS
990 25 256 144 256 65 32 DNS
990 40 256 208 256 65 32 DNS
990 70 256 352 256 65 32 DNS
1790 5 256 80 256 130 64 LES
1790 10 128 112 128 65 32 LES
1790 25 128 176 128 65 32 LES
1790 40 128 256 128 65 32 LES
1790 70 128 376 128 65 32 LES
3460 5 192 96 192 65 32 LES
3460 10 192 144 192 65 32 LES
3460 25 192 304 192 65 32 LES
3460 40 192 480 192 65 32 LES
3460 70 192 640 192 65 32 LES

2.5.3. Exchange flow configuration: regime transitions
Similarly to oscillatory flows, density-driven exchange flows have also been investi-
gated previously. This research has mainly focused on the formation of fronts in
transient currents, also called gravity currents (e.g. Benjamin (1968); Shin, Dalziel,
and Linden (2004); Ottolenghi, Adduce, Inghilesi, Roman, and Armenio (2016); Ot-
tolenghi, Adduce, Inghilesi, Armenio, and Roman (2016); Ottolenghi, Adduce, Ro-
man, and Armenio (2017); Lefauve et al. (2019b)). Two reasons might explain this
fact: (i) the difficulty to sustain a steady state density-driven flow for a significant
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time, and (ii) the variation of the density in the streamwise direction of the flow.
The first difficulty is associated with experiments. The second difficulty is associated
with numerical simulations and the apparent incompatibility between density-driven
flows and the horizontal periodic boundary conditions characteristic of most DNS
simulations.

However, Meyer and Linden (2014); Lefauve et al. (2018, 2019a); Lefauve and
Linden (2020a) were able to investigate density-driven flows more recently, in an
experimental set-up with large salt- and fresh-water reservoirs connected by a channel.
They added another degree of freedom to the system by allowing the channel to be
tilted. They were able to sustain a steady flow for a significant time and identified four
different regimes based on the inclination of the duct and the gravitational Reynolds
number. This Reynolds number is defined as

Reg =
√
gh3

ν

√
∆ρ
ρref

, (2.23)

with ∆ρ the initial density difference between the two fluids brought in contact.
Linden and co-authors (Meyer & Linden, 2014; Lefauve et al., 2018, 2019a; Lefauve

& Linden, 2020a) observed that for low values of the Reynolds number the flow was
laminar. This regime is called the laminar regime. By increasing the tilting angle
of the duct or the Reynolds number, characteristic cusped waves would appear at
the interface. This regime is called the Holmboe wave regime. By increasing the
tilting angle or the Reynolds number even further, the waves break down generating
turbulence and mixing. The regime in which this break down is intermittent is called
the intermittent regime, while the regime in which this break down is sustained is
called the turbulent regime.

2.5.4. Exchange flow configuration: numerical settings
The reproduction of the regimes of a sustained density driven flow with a DNS simu-
lation was until now not possible. As mentioned earlier, the required computational
domain would be too large. Often, the requirements for the use of large computational
domain are bypassed in DNS/LES configuration by restricting the computational do-
main to a small section of the total domain, and by applying horizontal periodic
boundary conditions. This approach is successfully used hereafter for the oscillatory
flow. However, it turned out to be incompatible with the horizontal density gradient
and strong stratification, and no reformulation of the problem circumventing the need
for a large computational domain was available.

As a result, recent DNS studies of steady exchange flows either focused on very
weakly stratified exchange flow (Li et al., 2008, 2010), or on simulations in which
the velocity profile and the density profile are imposed (Salehipour, Caulfield, &
Peltier, 2016; Salehipour, Peltier, & Caulfield, 2018; Salehipour, Peltier, & Mashayek,
2015). However, using a new mathematical formulation developed during this PhD
project, we were able for the first time to simulate a strongly stratified exchange flow
with periodic boundary conditions. Hereafter, we briefly describe the mathematical
formulation allowing these type of simulations. For more detail, and for a derivation
of the mathematical model, the reader is referred to Chapter 7.
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In the exchange flow configuration, the flow is driven by a large-scale horizontal
pressure gradient along the y-coordinate, generated by a horizontal density gradient.
Density plays an active role. As a result, the body force F b

i is expressed as

F b
i = − g

ρref

(∫ h

z

∂ρ

∂y
dz̆ − 1

h

∫ h

0
z
∂ρ

∂z
dz

)
δi2 (2.24)

where ρr is the ‘resolved’ density and ρ is the horizontally averaged density. For more
information about these quantities, the reader is referred to Chapter 7.

For the density-driven flow, Eqs (2.4), can be made non-dimensional by scaling
xi with the vertical length-scale h, the velocity variables ũi with Ug, the time t with
h/Ug, the pressure p̃ with ρrefU

2
g and the density with the density difference ∆ρ. The

gravitational (or buoyancy) velocity scale Ug is defined as

Ug =

√
∆ρ
ρref

gh. (2.25)

The non-dimensional equations are

∂ui
∂xi

= 0 (2.26a)

∂ui
∂t

+ ∂uiuj
∂xj

=− ∂p

∂xi
+ 1

Reg

∂2ui
∂x2

j

− ρrδi3 −

 1∫
z

∂ρ

∂y
dz̆ −

1∫
0

z
∂ρ

∂y
dz

 δi2,

(2.26b)
∂ρr
∂t

+ ∂

∂xj
(ρruj) = 1

ScReg

∂2ρr
∂x2

j

− v
∂ρ

∂y
, (2.26c)

in which some new symbols are introduced: the resolved density ρr (derived in Chap.
7), the horizontally averaged velocity in the y−direction v and the Schmidt number
Sc. In this configuration, only DNS simulations have been carried out. As a result,
no subgrid-scale terms nor filtered variables appear. In these equations, two sets of
non-dimensional numbers emerge, the Reynolds number Reg and the Schmidt number
Sc. The expression of the non-dimensional numbers is

Reg =Ugh

ν
, (2.27a)

Sc =ν

κ
. (2.27b)

In reality, a third non-dimensional number also plays a role: the ratio Γ between
the water depth and the length of the duct linking the salt water reservoir and the
fresh water-reservoir. More details about these non-dimensional numbers is given in
Chapters 5-7.

As mentioned above, very few numerical simulations of strongly stratified exchange
flow exist. Since the present set-up is innovative, no bench-mark data was available
to estimate the numerical settings required to perform simulations in specific regimes.
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Both the size of the computation domain, and the resolution were arbitrary chosen,
and evaluated a posteriori. Only one set of parameter values was simulated: Reg =
4×105, Γ = 1/60 and Sc = 50. The computational domain was chosen with horizontal
size of 4π in the streamwise (y) direction and 2π in the spanwise (x) direction. The
grid comprised 256 cells in each direction, and the non-dimensional time step was
5× 10−3.



3
Effect of the water depth on
oscillatory flows over a flat

plate: from the intermittent
towards the fully turbulent

regime

3.1. Introduction
As discussed in Section 1.4.2, the flow driven by an oscillatory pressure gradient is
studied in this thesis as a model for purely tidal flows. Flows driven by an oscillating
pressure gradient were studied extensively in the passed (e.g. Jensen et al. (1989);
Salon et al. (2007); Costamagna et al. (2003)). However, the majority of these studies
were performed in experimental set-ups or computational domains where the water
depth h was much larger than the thickness of the turbulent boundary layer δ. To
evaluate if this model is a good approximation of the Rhine-ROFI, it is necessary
to estimate the thickness of the turbulent boundary layer in the Rhine ROFI and
compare it to the average water-depth. The first step is to estimate the thickness
of the boundary layer δ that would exist in an infinitely deep water column, i.e. if
h� δ. According to Jensen et al. (1989); Salon et al. (2007), δ is defined as the height
at which the velocity is maximum for the phase ωt = π/2, where ω is the angular
frequency and t the time. This phase is defined relatively to the the free-stream
velocity U∞ = U0 sin(ωt), with U0 the amplitude of U∞. This definition is valid for
both experiments (Jensen et al., 1989) and numerical simulations (Salon et al., 2007).
Jensen et al. (1989) determined the values of δ as a function of the Reynolds number
using experimental data. They plotted the non-dimensional boundary layer thickness
δω/U0 as a function of the Reynolds number based on the free-stream velocity, Refs
(see their Fig. 24).

37
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Table 3.1: Recapitulation of the turbulent tidal boundary layer thickness in the Rhine estuary for
spring tide and neap tide. The results are obtained for a tidal period TM2 = 12.42 h (Zimmerman,
1986), a tidal angular frequency ω = 1.41 · 10−4 s−1, a kinematic viscosity ν = 1.14 · 10−6 m s−1, a
non-dimensional boundary layer thickness δω/U0 ∼ 5 · 10−3 (Jensen et al., 1989) a depth h = 20 m,
and the velocity measurements of van der Giessen et al. (1990) to estimate U0.

U0 (m s−1) Refs δ (m) h/δ

neap tide 0.7 3.06·109 24.88 0.51
spring tide 1.1 7.55·109 39.11 0.80

An example of tidal flow in which δ > h can be found along the Dutch coast,
around the mouth of the river Rhine. In this region, the tidal flow takes the form of a
Kelvin wave (Van Alphen, De Ruijter, & Borst, 1988), and the boundary layer extends
over the entire water depth (de Boer, 2009). Under unstratified conditions, the tidal
currents are therefore rectilinear along the coast (Visser et al., 1994; Simpson et al.,
1993), making them a prototype of an environmental oscillatory flow. In this case,
Refs can be estimated using measurements of the surface velocity (see Table 3.1) and
according to the expression Refs = U2

0 /(ων), where ν is the kinematic viscosity. The
values of Table 3.1 combined with an extrapolation of the scaling graph by Jensen et
al. (1989) give a non-dimensional boundary layer thickness δω/U0 ∼ 5 · 10−3. As a
result, 0.51 . h/δ . 0.80, i.e. the theoretical boundary layer is larger than the water
depth.

However, this scaling law is based on experiments and simulations in which the
water depth was much larger than the thickness of the turbulent boundary layer,
and this is not the case in the example of the Rhine estuary above. Previously,
the influence of a reduced water depth on an oscillatory flow has only been briefly
investigated by Li et al. (2005). He showed in a preliminary study that a reduced
water depth greatly influences the momentum balance between the pressure gradient,
the local acceleration of the flow, and the wall shear stress.

To obtain more insight into the effect of shallowness on oscillatory flows, we pro-
pose to study a simplified model in which the effect of the water-depth has been
isolated. In particular, we focus on flows within the intermittent turbulent regime
reaching the start of the fully turbulent regime. This choice has lead to a simplified
approach in which variations in the surface elevation and the bottom roughness have
been neglected. These choices are further motivated in the discussion section. We
performed a series of idealized simulations in which the tidal forcing is modeled by a
horizontal uniform oscillating pressure gradient:

∂P

∂x
= −ρrefU0ω cos(ωt), (3.1)

with P the pressure, ρref the density, x the streamwise direction and U0 the previously
mentioned amplitude of the free-stream velocity. This approach has been used in
Li et al. (2005); Radhakrishnan and Piomelli (2008); Salon et al. (2007), and the
simplicity of such a numerical set-up allows easy comparisons with experiments in
similar configurations (Carstensen et al., 2010; Jensen et al., 1989). We have simulated
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the oscillatory flow for three different values of the Reynolds number

Reδ = U0δs
ν

(3.2)

based on the thickness of the Stokes boundary layer δs =
√

2ν/ω. Note that this
definition differs from that of δ which was previously defined as the depth of the
velocity maximum at ωt = π/2. In fact, this depth in the laminar case is given by
δ = 3

4πδs (Carstensen et al., 2010). The chosen values for Reδ (Reδ=990, 1790 and
3460) correspond to tests 6, 8 and 10 in the study of Jensen et al. (1989). For each
value of Reδ, we varied the ratio h/δs from 5 to 70.

In the remaining part of this manuscript, we first briefly present a laminar analy-
tical solution. Afterwards, we describe the numerical model and the set-up. Finally,
we expose our numerical results on the turbulent flow in shallow water environments
through a study of mean velocity profiles, the mean wall shear stress, and the depth-
integrated turbulent kinetic energy (TKE).

3.2. Laminar solution
In the laminar case, the flow is governed by the simplified Navier-Stokes equations,

∂u

∂t
= ν

∂2u

∂z2 + U0ω cos(ωt), (3.3)

in which the streamwise velocity u depends on the vertical coordinate z (positive
upwards) and on time. This equation can be rewritten as

∂u

∂t
= − 1

ρref

∂P

∂x
+ 1
ρref

∂τs
∂z

, (3.4)

where τs represents the shear stress defined as τs = ρrefν(∂u/∂z). In order to analyze
the influence of the reduced water depth on the velocity profile, the analytical solutions
to equation (3.3) can be studied via: (i) a phase difference Φ, and (ii) a change in
the amplitude A. Both Φ and A are defined with respect to the free-stream velocity
U∞, i.e. the time-signal of the velocity infinitely far away from the bottom wall. For
more details about the analytical solutions, the reader is referred to Appendix B.
Since the flow is investigated in terms of velocity profiles, water depth and wall shear
stress, three different phase shifts and three different amplitudes are considered: Φ∞,
Φh,f and Φτ , and A∞, Ah,f and Aτ . The shift Φ∞ and the amplitude A∞ are not
related to a reduced water depth. They simply denote the phase shift and amplitude
of the infinite velocity profile as a function of the position z in the water column; the
shift Φh,f and amplitude Ah,f denote the phase shift and the amplitude of the surface
velocity signal in a reduced water depth configuration as a function of the total water-
depth h; shift Φτ and amplitude Aτ denote the phase shift and the amplitude of the
wall-shear stress signal in a reduced water depth configuration as a function of the
total water-depth h.

As expected, the phases and amplitudes change with changing depth. Figure 3.1
shows these different phase shifts (i.e. positive phase differences Φ) defined with
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Figure 3.1: Phase shift (a) and the amplitude (b) of the surface velocities and the wall shear stress
with respect to U∞. Note that Φ∞ and A∞ are function of z/δ while Φh,f, Φτ , Ah,f and Aτ are
function of h/δ.

respect to U∞ as a function of z/δ (for Φ∞) or h/δ (for Φh,f and Φτ ). This figure
also shows of A∞, Ah,f and Aτ From Fig. 3.1, it can be seen that the influence of the
water-depth on the velocity phase and amplitude becomes significant from h . 2δ.
For a general description, four different cases can be identified.

Case 1: h & 2δ. The wall shear stress leads the free-stream velocity by an angle
Φτ = π/4. The momentum balance is mainly between the local acceleration and
the pressure gradient. When h decreases, the phase shifts and amplitudes remain
constant but the contribution of the wall shear stress to the momentum balance
becomes increasingly more important

Case 2: δ . h . 2δ. When h ∼ 2δ, the velocity profile changes to accommodate to
the no-stress boundary condition at the free-surface which results in slight adjustments
of Φh,f, Φτ and Ah,f. When h approaches δ, the amplitude of the free surface velocity
Ah,f reaches a maximum and the phases Φh,f, Φτ increase significantly. This is due
to the size reduction of the upper water layer lying in between the heights z = δ and
z = h. As this upper layer is resisting via viscous forces the motion of the lower water
layer, lying between z . δ, its size reduction implies a reduction of its damping effect
on the lower such that Ah,f can reach a maximum.

Case 3: h . δ. First, the increasing amplitude of the velocity generates higher
gradients close to the wall resulting in an increase in the shear stress amplitude Aτ .
Second, when h becomes too small, the oscillating boundary cannot fully develop
anymore: Ah,f and Aτ both decrease towards zero. At the same time, Φh,f and Φτ
keep increasing until they converge to π/2.

The analytical laminar solutions give an overview of the influence of the water
depth on the oscillating boundary layer in the laminar regime. It is also a model for
turbulent flows if the eddy viscosity is considered constant. Nevertheless, a constant
eddy viscosity is not realistic (see the plane averaged eddy viscosity calculations of
Salon et al. (2007, 2009); Salon and Armenio (2011)). In order to investigate the
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turbulent oscillatory flow accurately, we performed numerical simulations which we
describe in the following sections.

3.3. Numerical set-up
In high resolution numerical simulations, the value of the Reynolds number that can
be achieved is limited by computational requirements. In fact, the value for most tidal
flows cannot be reached with the current day resources. This is also the case for the
Rhine estuary: the characteristics of the Rhine estuary presented in the introduction
(i.e. ω = 1.41·10−4s−1; ν = 1.14·10−6m2 s−1 and 0.7m s−1 ≤ U0 ≤ 1.1 m s−1) suggest
Reδ ∼ 105. The highest Reynolds number that we can compute with the present day
resources at a satisfactory resolution is Reδ = 3460, and this is also the highest value
of Reδ for which experimental data is available. A similar ’down-scaling’ approach
has already been used by Salon et al. (2009) to study turbulence in an oscillatory flow
subjected to rotation. Simulations with Reδ = 1790 (using large eddy simulations,
abbreviated ’LES’) and Reδ = 990 (using direct numerical simulations, abbreviated
’DNS’), have also been performed to investigate the influence of this parameter on the
flow, between the laminar and fully turbulent flow. For these values of the Reynolds
number, either fully developed turbulence (for Reδ = 1790) or intermittent turbulence
(for Reδ = 990) is present (Costamagna et al., 2003; Salon et al., 2007), although not
throughout the full tidal cycle.

The equations governing the flow were given by Eqs (2.22) in Sec. 2.5.2. The
simulations at Reδ = 1790 and Reδ = 3460 are performed with LES, while the sim-
ulations at Reδ = 990 are performed in DNS (i.e. with finer resolution and τij = 0).
This is motivated by the fact that, although the dynamic Smagorinsky model proved
to give excellent results for highly unsteady flows (Scotti & Piomelli, 2002), it is not
able to reproduce well the relaminarization occurring at the lower Reynolds number
of Reδ = 990 (Salon et al., 2007).

3.4. Results
3.4.1. Validation against experimental data
The data of Jensen et al. (1989) was used to validate several numerical simulation stud-
ies with similar set-ups to ours, including Costamagna et al. (2003) (for Reδ = 990),
Salon et al. (2007) (for Reδ = 3460) and Radhakrishnan and Piomelli (2008) (for
Reδ = 3460). Jensen et al. (1989) performed their experiments in a U-shaped water
tunnel with a 10m long working section, a 0.39m width and a 0.28m depth. The
velocities were measured with two laser-Doppler anemometers, and the wall shear
stress with a hot film probe using a sample interval of 14 and 48ms within an oscil-
lating cycle of 9.72s (i.e. 200 to 600 samples per cycle). For more details about the
experimental set-up, the reader is referred to Jensen et al. (1989).

Among the several numerical studies, the one of Salon et al. (2007) used a previous
version of our code. Salon and co-authors extensively compared their numerical results
at Reδ = 1790 and h/δs = 40 to the experimental results in terms of wall shear
stress, velocity profiles, turbulence intensities and Reynolds shear stresses, and they
claimed a very good agreement except for some discrepancies between some of the
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Figure 3.2: Comparison between the results of the numerical simulations and the data from the
experimental results of Jensen et al. (Jensen et al., 1989). On the left hand side (a) the numerically
computed, plane and phase averaged wall shear stress is displayed for the three values of the Reynolds
numbers in the largest depth configuration (i.e. h/δs = 70). On the right hand side (b), the plane and
phase-averaged velocity profiles for Reδ = 3460 and h/δs = 70 are shown for ωt = {π/4, π/2, 3π/4, π}.
Wall shear stress data for Reδ = 990 was not available.

numerical and experimental turbulent intensities. Since our simulations at Reδ =
3460 are the first simulations at this high Reynolds number value for which the wall
layer is resolved (in Radhakrishnan and Piomelli (2008) a wall model was used), we
display the wall shear stress and four velocity profiles in Fig. 3.2 together with the
available data of Jensen et al. (1989). Note that · denotes a plane and phase-averaged
quantity. The wall shear stress agreement is excellent for Reδ = 1790 and very good
for for Reδ = 3460 except that the maximum in the numerical signal is slightly higher
than the maximum in the experimental signal. This feature was also observed by
Radhakrishnan and Piomelli (2008) and the difference is consistent with the rounding
performed by Jensen et al. (1989) (private communication) to compute the value of
the Reynolds number.

The agreement of the velocity profiles is also excellent in the wall region but differs
non-negligibly higher in the water column. We can however argue about the accuracy
of the experimental data higher in the water-column. Indeed, far from the wall, the
surface velocity evolves as sin(ωt) and the velocity profiles at ωt = π/4 and ωt = 3π/4
should coincide. This concurrence is observed in the numerical profiles but not in the
experimental data. Furthermore, the divergence between numerical and experimental
results are also visible in the modelled wall simulations of Radhakrishnan and Piomelli.
A possible explanation of these discrepancies is that the experimental set-up does not
lead to a perfectly symmetric flow as suggested by the authors themselves in Sumer,
Laursen, and Fredsøe (1993) and later pointed out by Salon et al. (2007).
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Figure 3.3: Velocity profiles for h/δs = 70 every ∆ωt = π/12 in the acceleration phase and for three
different Reynolds number values.

3.4.2. Velocity profiles and turbulent boundary layer thickness
The velocity profiles for the three values of Reδ (i.e. 990, 1790 and 3460) and h/δs =
70 are displayed in Fig. 3.3, and the turbulent boundary layer thickness δ can be
estimated from the graph by determining, for each value of Reδ, the height at which
the velocity profile for the phase ωt = π/2 is maximum.

Reδ δ/δs δ/h

990 7.76 0.11
1790 12.60 0.18
3460 17.60 0.25

Reδ, h/δs 5 10 25 40 70

990 0.64 1.29 3.22 5.15 9.02
1790 0.40 0.79 1.98 3.17 5.56
3460 0.28 0.57 1.42 2.27 3.98

Table 3.2: Turbulent boundary layer thickness for the three different Reynolds numbers in sufficiently
large domains, i.e. h/δs = 70, (left) and the corresponding h/δ ratio for the 15 different (Reδ, h/δs)
couples. The cells colored in gray represent simulations for which the h/δ ratio is comparable with
the h/δ ratio estimated for the Rhine estuary.

Table 3.2 shows that the turbulent boundary layer grows in size with Reδ. As a
result every simulation is characterized by a specific value of h/δ and the simulations
cover a wide range of values for h/δ, including simulations that are not influenced and
simulations strongly influenced by the finite water depth. Three simulations have a
value for h/δ similar to those of the Rhine estuary.
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Figure 3.4: Plane and phase averaged velocity profiles at ωt = π/2 (left column, i.e. (a), (c) and
(e)) and wall shear stress series (right column, i.e. (b), (d) and (f)) for Reδ = 990 (top, i.e (a) and
(b)), Reδ = 1790 (middle, i.e. (c) and (d)) and Reδ = 3460 (bottom, i.e. (e) and (f)). The laminar
analytical solutions are also displayed and the subscript 5 refers to h/δs = 5.

3.4.3. Surface velocity and turbulent wall shear stress
The impact of a reduced water-depth on the flow properties is observable in Fig. 3.4.
In this figure, the wall shear stress is shown as a function of time, and the velocity at
ωt = π/2 is shown as a function of depth, for all the combinations of values of Reδ and
h/δs. For simulations with Reδ = 990 and Reδ = 1790 and h/δs ≥ 25, the velocity



3.4. Results 45

profiles are hardly affected by the water depth, but for simulations with Reδ = 3460,
the profile is already affected when h/δs = 25. According to Table 3.2, h/δ = 1.98
for the simulation with (Reδ = 1790;h/δs = 25) and h/δ = 1.42 for the simulation
with (Reδ = 3460;h/δs = 25). This means that the effect of the water depth becomes
clearly visible for 1.5 . h/δ . 2.0.

Similar to the velocity profiles, the wall shear stress is also affected by the water
depth. For all the values of the Reynolds number simulated, the signals of the wall
shear stress as a function of time are nearly equal as long as h/δ ≥ 25 but the signals
react differently for each Reδ-value if a smaller depth is considered, see Fig. 3.4. For
Reδ = 1790 and for Reδ = 3460, the amplitude of the wall shear stress is the largest
for h/δs = 10, followed by h/δs = 5 and finally by h/δs ≥ 25. This behavior suggests
that for 0.50 . h/δ . 2.00, the amplitude of the wall shear stress is maximum.
In contrast, for Reδ = 990 the magnitude of the wall shear stress decreases slightly
for h/δs = 10 compared to the cases with h/δs ≥ 25 and almost collapses on that
of the laminar solution for h/δs = 5. This drop is probably related to a complete
relaminarization of the flow except for the deceleration phase where disturbances are
still generated. Despite this complete relaminarization is not observed for the other
simulations, some elements suggest that a strong decrease of turbulent activity occurs
for these other simulations too, although during only part of the oscillation cycle. In
fact, it is well known that the transition to turbulence is marked by a sudden increase
in the slope of the wall shear stress time-series (Jensen et al., 1989; Costamagna et al.,
2003; Salon et al., 2007). This phenomenon of sudden increase is observed in all the
simulations but the wall shear stress follows the laminar solution for some part of the
cycle only (i) for Reδ = 990 and h/δs ≥ 10, (ii) for Reδ = 1790 and h/δs ≤ 10 and (iii)
for Reδ = 3460 and h/δs = 5. This behaviour suggests that these latter simulations
experience partial relaminarization, the simulation with h/δs = 5 and Reδ = 990
experiences complete relaminarization while the other simulations just experience a
reduction in turbulent activity.

Additionally, a more careful look at the velocity profiles for Reδ = 990, Reδ = 1790
and h/δs = 5, indicated already relaminarization since the velocity profiles converge
towards the analytical laminar solution. This tendency might be caused by the water
depth becoming too small to contain the largest turbulence scales. Earlier studies of
oscillating pipe flows have also shown that reducing the diameter of the pipe delays
the transition to turbulence (Hino et al., 1976; Tuzi & Blondeaux, 2008). During
this regime, the boundary layer thickness probably switches between its laminar and
turbulent thickness. This process is further investigated by means of the TKE in the
next section.

3.4.4. Turbulent kinetic energy
In order to estimate the amount of turbulence in the computational domain, we define
the resolved plane averaged TKE, Ek

p, by

Ek
p = 1

2U2
0

((
u− upp

)2
+
(
v − vpp

)2
+
(
w − wpp

)2
)

(3.5)

where ·p refers to plane averaging only. The choice of not using a combined plane and
phase averaged velocity for the computation of the plane and phase averaged TKE,
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Ek, is motivated by the turbulence intermittency observed in some simulations. For
example, for h/δs=5 and Reδ = 1790, there is a certain randomness in the phase at
which transition to turbulence occurs, and the flow at a specific phase can be either
laminar during a certain cycle or turbulent during a different cycle. The mean velocity
of the flow in laminar conditions is different from the mean velocity of the flow in
turbulent conditions. As a result, computing Ek

p for each phase using the local mean
velocity gives more reliable results than using the phase-averaged mean velocity. The
mean resolved TKE Ek is defined as the phase average of the Ek

p over the number
of cycles nc:

Ek = 1
nc

nc∑
i=1

Ek
p

i . (3.6)

where the cycle numbers 1 and nc do not account for the discarded cycles in the
transient regimes. To have a fair comparison between the different simulations, Ek is
integrated between 0 and 5δs:

Ek,5δs
(t) =

∫ 5δs

0
Ek(z; t)dz. (3.7)

This quantity is displayed as a function of time in Fig. 3.5. For Reδ = 3460, the
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Figure 3.5: Resolved turbulent kinetic energy integrated over 0 ≤ z ≤ 5δs, Ek,5δs for Reδ = 990 (a),
Reδ = 1790 (b) and Reδ = 3460 (c).

minimum value of Ek,5δs
decreases with h/δs. Furthermore, the lowest values of Ek,5δs
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for h/δs = 5, Reδ = 3460 occur slightly before ωt = π, just before the increase in
slope of the wall shear stress, a strong indication of relaminarization in the acceleration
phase. This feature confirms that the sudden increase in slope of the wall shear stress
signal is due to transition to turbulence after previous relaminarization. For the lower
Reδ values, the results are similar. The temporal minimum of Ek,5δs still decreases
with h/δs, and the extent of the cycle for which Ek,5δs stays low increases, particularly
for h/δs = 5. Additionally, for all the values of Reδ, Ek,5δs

decreases during large
parts of the cycle for h/δs = 10 when compared to the simulations with higher h/δs
ratios. The turbulent kinetic energy shows a maximum, which is actually the highest
for h/δs = 10. This could mean that there are higher levels of turbulence during the
decelerating phases of the cycle even if the rest of the cycle relaminarizes. This finding
was already suggested by the wall shear stress in Fig. 3.4: the evolution of the wall
shear stress has a higher maximum but also suggests a longer period of turbulence
activity reduction for h/δs = 10 and Reδ = 1790 or Reδ = 3460 than for the large
depth simulations.

An additional feature is the apparent decrease of Ek,5δs
with increasing Reδ values.

This could have several origins: (i) at high Reynolds numbers, turbulent kinetic
energy is faster transported away from the wall and does not remain in the region
0 ≤ z ≤ 5δ5; (ii) the use of DNS for Reδ = 990 while LES is used for Reδ = 1790
and Reδ = 3460 resulting in a larger fraction of the resolved fluctuations (this only
explains the increase in Ek,5δs between Reδ = 990 and Reδ = 1790). The exact cause
of this increase in Ek,5δs

remains however unclear and is of minor importance for our
investigation.

3.4.5. Amplitude and phases of the velocities and wall shear
stresses

Figs 3.4 and 3.5 have shown that both the value of Reδ and the value of h/δs impact
the the velocity, the wall-shear stress and TKE. Since the flow is periodic in time, the
velocity and the wall shear-stress can be investigated by means of the phase and the
amplitude of the periodic signal, in a similar way as for the laminar solution.

The results for Φ∞, Φh,f, A∞ and Ah,f are shown in Fig. 3.6 for the turbulent
results as well as for the analytical solution. The dependence of Ah,f on h/δ and of A∞
on z/δ are similar for the data from turbulent numerical simulations and the laminar
analytical solutions. The amplitudes A∞ and Ah,f are maximum around h = δ and
then decrease towards zero. The deviation of A∞ curves near the bottom is due to
the differences in vertical shear between a laminar bottom boundary and a turbulent
bottom boundary. The agreement between the laminar and turbulent results for Φh,f
and Φ∞ is more qualitative: for the simulations as well as for the laminar theory, Φh,f
increases with decreasing z/δ and Φ∞ increases with decreasing h/δ. However, the
rate of increase is faster and the limit values are different when the flow is laminar
than when the flow is turbulent: Φ∞ increases towards π/4 in the laminar case while
it increases towards approximately π/16 in the turbulent case. Additionally, the data
points from the simulations characterized by relaminarization of the flow are slightly
out of trend. A last remarkable feature is that both the turbulent profiles of A∞ and
of Φ∞ collapse on each other, for the three Reynolds numbers. This proves that δ is
an excellent scaling parameter.
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Figure 3.6: Phase shift (a) and the amplitude (b) of the surface velocity with respect to the free-
stream velocity, for Reδ = 990,Reδ = 1790 or Reδ = 3460. Note that Φ∞ and A∞ are functions of
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presented as symbols. The subscript ’an’ refers to the laminar analytical solution while the subscript
’num’ refers to the numerical solution.

The variation of the magnitude Aτ and phase-shift Φτ of the wall shear stress is
also studied, but the analysis of this quantity is more delicate. Indeed Fig. 3.4 has
shown that the temporal signal of the wall-shear stress is not sinusoidal for the tur-
bulence simulations which makes the identification of the phase shift rather difficult.
As a result, the phase lead of the wall shear stress with respect to the free-stream
velocity is defined as the phase difference between the maximum wall shear stress and
the maximum free stream velocity, in agreement with Jensen et al. (1989). Never-
theless, also this definition is difficult to handle. Previous studies have shown that
turbulence was characterized by a reduction of the phase lead of the wall shear stress
with respect to the free-stream velocity (Jensen et al., 1989; Carstensen et al., 2010),
while the laminar theory suggests an increase of this phase lead with decreasing h/δs
and thus with h/δ, see Fig. 3.1). We are, therefore, in the presence of two competing
mechanisms: on one side, transition to turbulence decreases the phase lead of the wall
shear stress while the interference between the boundary layer and the free surface
increases this phase lead. Nevertheless, the amplitude and phase angles for the wall
shear stress have been displayed in Fig. 3.7. In order to eliminate the influence of
the Reynolds number, Aτ and Φτ have been scaled, so that for high values of h/δ, Aτ
and Φτ are close to their laminar value, respectively π/4 and

√
2/2. The amplitude

of the wall shear stress Aτ for the turbulence simulations shows a similar behaviour
as in the laminar theory, as long as the flow stays turbulent. The data points lying
slightly out of trend correspond to the lowest Reynolds number (Reδ = 990). For this
value of Reδ, there is no maximum in the wall shear stress and Aτ decreases with h/δ
due to relaminarization.

The behavior of the turbulent phase shift Φτ is very different from the laminar
case: it decreases instead of increasing for decreasing h/δ. It remains unclear if this
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discrepancy is due to the relaminarization occurring for low values of h/δ, to the
non-sinusoidal shape of the wall shear stress signal or to a combination of these two
phenomena. The reason of this behavior could partly be clarified with simulations
at a much higher Reynolds number, but they are not achievable with the current
resources yet.

3.5. Discussion
Numerical simulations have shown that a reduction of the water depth strongly af-
fects turbulent oscillatory flows by generating changes in the amplitude and in the
phase of both the velocity signals and the wall shear stress signals. The evolution
of the phases and the amplitudes with the water depth shows a similar trend to the
analytical solution in which a constant (kinematic) viscosity has been used. In many
environmental applications, turbulence is not resolved but modelled for cost efficiency
purposes. In this regard, an analytical model of the turbulent flow using a constant
eddy viscosity approach could give a quick first estimation of the velocity profiles and
the wall-shear stress. However, for more accurate results, environmental flows often
rely on somewhat more sophisticated turbulence models, such as the k − ε model.
The k − ε model could be a time saving alternative to high resolution simulations,
under the condition that it is able to reproduce the features observed in the present
numerical simulations and in particular the relaminarization. In this regard, the re-
sults presented in this paper could be an interesting bench mark for k − ε based
solvers (such as in the paper by Pu (2015)), so that more realistic oscillatory flows,
incorporating free-surface, bottom roughness, rotation or just a higher value for the
Reynolds number, can be simulated reliably at lower computational costs.

The role played by the ratio h/δ in the theoretical solution of the oscillating
boundary layer flow is also relevant for applications in environmental flows. Our
results confirm the finding of Li et al. (2005), that for small ratios of h/δ (such as tidal
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flows along the Dutch coast), the momentum balance is between the local acceleration,
the driving pressure gradient and the wall shear stress τw, whereas for large values
of h/δ (tidal currents in deep oceans, wave boundary layers or seiches in lakes), the
balance is mainly between the local acceleration and the driving pressure gradient.
The claim by Lorke, Umlauf, Jonas, and Wüest (2002), that the momentum balance
for seiches in an Alpine lake (lake Alpnach) is not comparable with the momentum
balance of tidal oscillatory flows, is explained by the large h/δ ratio of the lake when
compared to tidal flows. Note that the oscillatory flow in this Lake is generated by a
diurnal wind forcing. As a result, free surface effects do not play an important role
and due to the absence of the Coriolis force (because of the small size of the lake), Lake
Alpnach can be considered as a prototype example of our deep-water simulations.

Additionally, the present results could play a role in estimating the free-stream
velocity or the friction parameter fw of oscillating tidal flows such as for example
in the North Sea, the main channel of Skagit Bay (studied for example in Gross
and Nowell (1983)) or the tidal channel in Three Mile Slough (studied for example
in Stacey, Monismith, and Burau (1999)). The results even suggest that the tidal
free-stream velocity along the Dutch coast, presented in the introduction, could be
overestimated by 10% to 20% since it does not coincide, as implicitly assumed, with
the surface velocity. However, it is necessary to evaluate how accurate the oscillating
boundary layer model is for actual tidal flows. As mentioned in the introduction,
four simplifying assumptions have been used: (i) the absence of the Coriolis force,
(ii) the presence of a flat bottom, (iii) a rigid-lid assumption and a (iv) a relatively
low Reynolds number. The first assumption, the absence of the Coriolis force can
be justified because the purely oscillating motion of the flow is a direct result from
the Earth’s rotation, via the Kelvin wave. The incorporation of the Coriolis force
would generate a Stokes-Ekman boundary layer (Salon et al., 2009; Salon & Arme-
nio, 2011) and generate tidal ellipses that are only observed near the Rhine mouth
under stratified conditions, or far away from the coast (Visser et al., 1994). For the
current study, it seems less relevant. The second assumption, ignoring of bottom
roughness, is clearly a disadvantage of the model. However, roughness is known to
facilitate transition to turbulence (Jensen et al., 1989), so that it can be expected
that oscillatory flows with rough bottoms are less affected by relaminarization, main-
taining the similar trends for laminar and turbulent oscillating flow at lower value of
the Reynolds number. The third assumption, the rigid lid assumption is probably
the most challenging one. Near the Rhine mouth, the tidal amplitude varies roughly
between 1m during neap tide to 2m during spring tide on a water depth of approxi-
mately 20m (Rijkswaterstaat Waterinfo, n.d.), so that the free surface might play an
important role. these first three assumptions could be investigated in the future with
a DNS or LES approach providing tailor-made models. However, the fourth assump-
tion, increasing the Reynolds number value significantly is not realistic in the near
future. Therefore, although we do believe that the reduction of the water-depth has
a non-negligible impact on oscillating tidal flows, we recommend to quantify this im-
pact with Reynolds-Averaged Navier-Stokes simulations. The present results are then
very useful as a reference case and including understanding of the basic phenomena
a calibration for the Reynolds-Averaged Navier-Stokes simulations.
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3.6. Conclusion
The influence of a reduced water depth on turbulent oscillatory flows has been inves-
tigated using a high resolution numerical approach (direct numerical simulations and
wall-resolving large eddy simulations) and compared to a laminar analytical solution.
In this study the water depth h was compared to the thickness of the boundary layer
δ. It was found that turbulent, oscillatory flows are characterized by an increase of
the phase lead of the surface velocity and the wall shear stress on the free-stream ve-
locity, if the water-depth is decreased. The evolution of the phase and the amplitude
of the turbulent velocity time-signals shows similar trends to the analytical laminar
solution. However, if the water-depth is decreased too much, the flow relaminarizes.
We would expect that for very high Reynolds numbers this relaminarization will only
take place for very low values of h/δs (i.e. h/δs < 5), but we cannot currently con-
firm or validate this statement due to the high computational costs such simulations
require.

The results of our study may have implications for applications of oscillatory
flows such as tidal flows. For example, the tidal currents along the Dutch coast are
in the shallow water regime. However, the influence of other physical actors such as
free-surface or bottom-roughness have been neglected in the present study and they
might be responsible for additional effects on these tidal flows. Therefore, we believe
that the present findings constitute an excellent benchmark for typical environmental
fluid mechanics configurations and their associated numerical solvers with which the
impact of a reduced water depth on environmental flows can be further investigated.

A point of attention is that the majority of the large-scale, RANS-type, numerical
solvers do not usually resolve the entire boundary layer. As seen in this chapter, the
large gradients in this region require a significant number of grid points in the wall
normal direction. In most RANS models, the resolution in the vertical is low enough
to require to accurately model the velocity at the wall. The most common of these
models relies on the assumption of a logarithmic dependence of the velocity on the
depth for some section of the velocity profile. The validity of this assumption is the
subject of the next chapter.





4
Existence and properties of

the logarithmic layer in
oscillating flows

4.1. Introduction
Oscillatory flows, such as the one investigated in the previous chapter, are part of the
wall-bounded flow category. The wall-bounded flow category also includes classical
steady flow configurations, such as the plane channel flow (Afzal & Yajnik, 1973; Kim
et al., 1987; Bernardini, Pirozzoli, & Orlandi, 2014; Hoyas & Jiménez, 2006) flow
or the Couette flow (Pirozzoli, Bernardini, & Orlandi, 2014). Wall-bounded flows
are extensively studied with high resolution numerical simulations (Hoyas & Jiménez,
2006; Kim et al., 1987; Jiménez & Moser, 2007) because they allow to gain insight in
turbulent processes, but also because they are relatively simple models of geophysical
flows. However, such flows are generally computationally expensive to fully resolve
numerically (Piomelli & Balaras, 2002; Radhakrishnan & Piomelli, 2008). Sufficient
resolution is required in the wall normal direction to resolve the boundary layer.
Additionally, sufficient resolution is also important for resolving the separation of
scales between the large-scale energy carrying eddies and the small-scale dissipative
eddies. As a result, these difficulties are often bypassed using a so called wall-model, in
which the wall velocities are parametrized (Piomelli & Balaras, 2002; Radhakrishnan
& Piomelli, 2008). Although different wall models exist, the most commonly used
is based on the ‘the law-of-the-wall’ (Piomelli & Balaras, 2002; Radhakrishnan &
Piomelli, 2008; Marusic et al., 2010), a classical theory for wall bounded flows and
described below.

In classical wall bounded flow theory, it is assumed that the velocity distribution
in a wall-bounded flow can be categorized in four regions or layers (Nieuwstadt et
al., 2016; Radhakrishnan & Piomelli, 2008). Starting at the wall, there is, first,
the viscous sub-layer, where the flow is dominated by viscous forces and where the
non-dimensional velocity u+ = u/uτ varies linearly with the non-dimensional height

53
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z+ = zuτ/ν according to u+ = y+. In these formulae, u is the ensemble averaged mean
velocity in the stream-wise direction, uτ =

√
τw/ρref =

√
ν(∂u/∂z)w is the friction

velocity, z is the height above the wall, τw is the wall shear stress, ρref is the fluid
density, and ν is the kinematic viscosity. Second, there is the buffer layer, where the
viscous model is not valid anymore and no simple scaling for the velocity exists. The
buffer layer is connecting the viscous sub-layer to the the third layer, the logarithmic
layer. In the logarithmic layer (in this manuscript also referred to as log-layer or
log-region), the velocity is logarithmically dependent on z+ according to

u+ = 1
k

ln(z+) +B, (4.1)

with k the von Kármán constant and B the logarithmic layer intercept. Finally, there
is the outer layer, for which a theoretical expression depending on the type of flow is
also possible, but will not be considered here (e.g. Kundu and Cohen (2002)).

In most models relying on the law-of-the-wall, the first computational point is
assumed to be located within the log-layer (Piomelli & Balaras, 2002). The suitability
of these models is now widely accepted. First, it is possible to derive the log-layer
analytically, based on scaling arguments (Nieuwstadt et al., 2016), and second, the
existence of the log-layer has been observed for steady flows in many studies, including
numerical simulations (Hoyas & Jiménez, 2006; Kim et al., 1987; Jiménez & Moser,
2007), experiments (Marusic, Monty, Hultmark, & Smits, 2013; Perry & Li, 1990;
Mckeon, Li, Jiang, Morrison, & Smits, 2004) and field measurements (Andreas et
al., 2006; Frenzen & Vogel, 1995). Moreover, a log-region has also been detected
in streamwise oscillating flows (Akhavan et al., 1991; Tuzi & Blondeaux, 2008; Hsu,
Lu, & Kwan, 2000; Jensen et al., 1989; Salon et al., 2007; Jonsson & Carlsen, 1976;
Scandura, Faraci, & Foti, 2016) even if its theoretical derivation ignores the mean local
acceleration (Nieuwstadt et al., 2016; Piomelli & Balaras, 2002). It is important to
note that the log layer was also studied in spanwise oscillating flows. Under spanwise
wall oscillations, the transient behaviour of the boundary layer when adjusting itself
to a lower drag state has implications for the log-region (Skote, 2014).

In an early study, Jonsson (1980) developed a phase dependent expression link-
ing the velocity to the logarithm of the depth. However, this model was already
assuming the existence of a logarithmic layer. Although Sleath (1987) found that
this theoretical expression agreed well with his measurements, he also admitted that
equally good agreement could be obtained for several different values of the von
Kármán constant. Additionally, the expression was based on rough wall flows, and
Mujal-Colilles, Christensen, Bateman, and Garcia (2016) showed that rough walls
generated different coherent structures than smooth walls, at least in the transition
to turbulence. Radhakrishnan and Piomelli (2008) obtained good agreement between
numerical simulations of a streamwise oscillating flow and experimental data at high
Reynolds numbers, while using a law-of-the-wall as boundary condition. They used
a hybrid wall model composed of a viscous sub-layer part (in which the velocity
scales linearly with the depth), and a log-layer part, in order to take into account
low Reynolds number effects when the wall shear stress changes sign. Indeed, several
studies have shown that a log-region does not necessarily exist at all times in flows
for which the mean properties are highly time dependent (Hino et al., 1983; Jensen
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et al., 1989; Salon et al., 2007). For example, Jensen et al. (1989) found that for
a streamwise oscillating flow there can be large parts of the oscillation cycle where
no logarithmic layer is detected, with its presence interval depending strongly on the
value of the Reynolds number. As a result, the existence of the log layer and its prop-
erties need to be thoroughly investigated. Using these properties, the conditions for
which it is justified to use a wall model in turbulent non-steady flows can be defined.

In this manuscript, we present the results of an analysis of the existence and
the properties of the logarithmic layer in a canonical unsteady flow: the turbulent
oscillating boundary layer. Besides being a classical example of a statistically time-
dependent flow, the turbulent oscillating boundary layer has many applications, for
example, in biology (e.g. pulmonary flows; see Tuzi and Blondeaux (2008)) and in
coastal engineering (e.g. tidal channel flows; see Li et al. (2005); Gross and Now-
ell (1983)). Additionally, the existence and properties of the log-region are crucial
in many computer model applications where the boundary layer cannot be resolved.
These properties need to be known, and this is the purpose of the present study. Our
study is based on results of direct numerical simulations (DNS) and large eddy simu-
lations (LES) of an open channel flow driven by a homogeneous, uniform, streamwise,
oscillating pressure gradient,

− 1
ρref

∂P

∂x
= U0ω cos(ωt) (4.2)

with P the pressure, x the coordinate in the streamwise direction, U0 the amplitude
of the free-stream velocity, ω the angular frequency and t the time. The flow is
characterized by two non-dimensional parameters: the Reynolds number based on the
thickness of the Stokes boundary layer Reδ = U0δs/ν, characterizing the transition to
turbulence (Jensen et al., 1989; Salon et al., 2007), and the ratio between the water
depth h and the Stokes boundary layer thickness δs (for definitions, see Section 4.2).
Different configurations are simulated, covering different applications, e.g. high value
of Reδ and a relatively-low value of h/δs for simulations of tidal-like boundary layers,
or low value of Reδ and large value of h/δs for simulations of wave-like boundary
layers. As a result, for the first time, the logarithmic layer is characterized as a
function of Reδ, h/δs and the phase of the oscillating pressure gradient.

4.2. Problem formulation
If h/δs is large enough, Reδ is the only parameter governing the transition to turbu-
lence (Jensen et al., 1989; Salon et al., 2007; Kaptein et al., 2019). Here, large enough
means that the turbulent boundary layer is not influenced by the water-depth, which
is the case for h/δs ≥ 25 for Reδ ≤ 1790 or h/δs ≥ 40 for 1790 ≤ Reδ ≤ 3460 (Kaptein
et al., 2019). Previous studies (Kaptein et al., 2019; Jensen et al., 1989) show that
the flow is in the intermittent turbulent regime for Reδ = 990 and in the fully tur-
bulent regime for Reδ = 1790 and Reδ = 3460, although fully developed turbulence
is not observed through the entire oscillation cycle. Additionally, damping of turbu-
lence is observed during part of the cycle for h/δs ≤ 10 and throughout the entire
cycle for h/δs ≤ 5, for these three values of the Reynolds number (Kaptein et al.,
2019). The domain size is overall in agreement with the size of the turbulent struc-
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tures (Costamagna et al., 2003; Jiménez & Moin, 1991), and the horizontal boundary
conditions are periodic, see Sec. 2.5.2 for more details.

The value of z+ used for grid considerations is defined with respect to the maximum
of τw over the oscillation cycle, implying z+ = 1 is a ‘worst case scenario’. For
most of the oscillation cycle, the first grid point is located at z+ < 1. In both DNS
and LES configuration, there are at least five points (without counting the bottom
boundary itself) located in the viscous sub-layer and part of the buffer layer, i.e.
z+ ≤ 11. Additionally, for two of the simulations with h/δs ≤ 10 and Reδ ≤ 1790,
grid convergence was checked and obtained by doubling the vertical or the horizontal
resolution. For the particular case with h/δs and Reδ = 1790, convergence was only
obtained after reducing the value of the Courant number from 0.6 to 0.3. For h/δs
and Reδ = 990, grid convergence could not be obtained.

4.3. Results
4.3.1. Identification of the logarithmic layer
The determination of the existence and the extent of the logarithmic layer is a well
known challenge in the study of turbulent flows (Hoyas & Jiménez, 2006; Marusic
et al., 2013). The logarithmic depth dependence of the streamwise velocity is based
on the assumption that the turbulence eddies scale with the distance from the wall
(Townsend, 1961); a hypothesis that has been frequently debated and that seems
only satisfied at very high values of the Reynolds number (Perry & Li, 1990). As a
result, the velocity profile slightly deviates from the logarithmic asymptote, even in
the so-called logarithmic region (Bernardini et al., 2014). This is the log-layer defect
and makes the log-layer more challenging to detect (Marusic et al., 2013).

An additional challenge is that some of the present simulations are characterized
by intermittent turbulence. The intermittent character of the flow is visualized for
two simulations in Fig. 4.1, by means of the resolved turbulent kinetic energy (TKE),
integrated over a 5δs thick layer close to the wall. Identical phases are marked by
a symbol and the position of these symbols demonstrates that the TKE is nearly
constant from cycle to cycle for Reδ = 1790, h/δs = 70 and ωt = π/12 (low value of
the TKE) and ωt = 2π/3 (high value of the TKE). However for Reδ = 990, h/δs = 10
and ωt = π/2 the TKE strongly varies from cycle to cycle indicating intermittency
for these parameter settings.

The impact of this intermittency on the velocity profiles can be seen in Fig. 4.2, in
which the plane-averaged velocity profiles have been plotted for three different value
combinations of Reδ, h/δs and the phase of the surface velocity (denoted ωt). The
profiles have not yet been phase-averaged, which means that each value combination
leads to about 20 profiles, each of them corresponding to a distinct oscillation cycle.
The sub-figures of Fig. 4.2 clearly show three different regimes. In Fig. 4.2a, none of
the profiles for the parameter values Reδ = 1790, h/δs = 70 and ωt = π/12 approaches
the theoretical log-law curve given by Eq. (4.1): this is the non-logarithmic regime.
In Fig. 4.2b, some of the profiles for Reδ = 990, h/δs = 10 and ωt = π/2 do approach
this log-law while others are still a long way from it: this is the intermittent regime.
Finally, in Fig. 4.2c all the profiles for Reδ = 1790, h/δs = 70 and ωt = 2π/3
collapse on the log law: this is the logarithmic regime. The results of Fig. 4.2
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Figure 4.1: Resolved TKE within a 5δs thick layer adjacent to the bottom boundary layer for ten
successive half cycles. The two curves represent simulations with different values of the Reynolds
number and the h/δs ratio. The symbols mark the TKE values at specific phases.

reveal two important findings. First, the log-layer is not necessarily present for all
values of ωt, at given Reδ and h/δs. Second, still at given Reδ and h/δs, there might
be some phases where the presence of the log-layer for a certain ωt also depends
on the specific oscillation cycle. This latter finding is particularly important when
computing the values of k and B. The accuracy of these values is related to the size of
statistical sample from which they are computed, such that phase-averaging is needed
for improved precision. However, it only makes sense to average profiles that have
a log-layer. As a result, conditional averaging will be performed, and phases with
no well-defined log-layer will be excluded. Under the assumption that a log-layer is
a signature of the turbulent character of a flow, the conditional averaging can be
regarded as averaging exclusively over the turbulent flow fields.
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Figure 4.2: Profiles of the plane-averaged, streamwise non-dimensional velocity u+ in semi-logarithmic
scale for three different value combination of Reδ, h/δs and ωt. (a) Reδ = 1790, h/δs = 70 and
ωt = π/12, (b) Reδ = 990, h/δs = 10 and ωt = π/2, and (c) Reδ = 1790, h/δs = 70 and ωt = 2π/3.
The theoretical solution has been obtained for k = 0.41 and B = 5.5.

As a result, the plane-averaged velocity profiles with a logarithmic layer had to be
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identified by eye for all values of the parameters Reδ, h/δs and ωt. This identification is
obviously quite subjective, and had to be performed for about 12×2×20×5×3 = 7200
profiles. The number 12 refers to the number of phases considered, 2 to the symmetry
of the oscillation cycle, 20 to the number of oscillation cycles, 3 to the number of
different values for Reδ and 5 to the number of different values for h/δs.

To gain more confidence and objectivity in our estimations, but also to avoid to
repeat the subjective identification procedure in the future, we want to find a robust
signature of the log-layer in the simulation data. It has been suggested in previous
work (Pirozzoli et al., 2014; Bernardini et al., 2014; Jiménez & Moser, 2007; Afzal &
Yajnik, 1973) that a good method to analyze velocity profiles could be done through
the log-law diagnostic function Ξ defined as

Ξ = du+

d ln(z+) = z+ du+

dz+ . (4.3)

This quantity is supposed to reach a plateau equal to 1/k (the inverse of the von
Kármán constant) in the log-region but several studies (Hoyas & Jiménez, 2006;
Jiménez & Moser, 2007) report that such a flat region is never reached. This finding
suggest that the log-law diagnostic function is not more suitable for detecting the
log-layer than the velocity profile. However, Fig. 4.3 shows that Ξ still gives valuable
information. In Fig. 4.3a, the velocity profiles of Fig. 4.2b (in the intermittent regime)
are reproduced, while differentiating the profiles that are logarithmic (red-dashed), the
profiles that are not logarithmic (gray-solid), and the profiles for which the presence
of the log-layer is uncertain (black-solid). These three profile categories are then
investigated in terms of Ξ (see Fig. 4.3b), and one specific feature emerges concerning
the height in wall units at which Ξ is locally maximum. This height is larger than the
thickness of the viscous sub-layer (located at z+ = 5) but smaller than the center of the
buffer layer (located at z+ = 17). As a result, we will call this height the ‘thickness of
the viscosity dominated layer’: a layer where the molecular viscosity is dominant but
turbulent fluctuation are not necessarily negligible. The advantage of this definition
is that it can be used for laminar, turbulent and intermittent flows. The thickness
of the viscosity dominated layer seems to be constant and approximately equal to
z+ = 10, when the profile approaches the log-layer, but it increases significantly up
to values of approximately z+ = 22, when the flow does not have a log-layer. This
evolution in the location of the local maximum has been earlier observed by Hino et
al. (1983).

Taking advantage of this trend, two maps of points defined by the coordinates
(ln(z+

vs);u(z+
vs)/U0) are displayed in Fig. 4.4, with z+

vs the height of the first local
maximum of Ξ and u(z+

vs)/U0 the value of the velocity at that height. Figure 4.4a
contains points from all the simulations with Reδ = 990 while Fig. 4.4b contains points
from all the simulations with Reδ = 3460. Each point represents (ln(z+

vs);u(z+
vs/U0))

for a given phase ωt in an oscillation cycle for one of the simulations. The points in
each panel form a distinct shape with three branches: (i) a first branch drawing a
convex path from the bottom left corner to the top right corner of the figure, (ii) a
second branch going from the top right corner to the center of the figure and (iii) a
third branch going from the center of the figure towards the bottom. The first and
second branches coincide with points from the laminar analytical solution of Stokes’
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Figure 4.3: (a) Reproduction of the profiles of Fig. 4.2 while differentiating the profiles having a
log-layer (red-dashed) from the ones that did not have a log-layer (gray-solid) and the ones for which
the presence of the log-layer is uncertain (black-solid) and (b) their associated log-layer diagnostic
function Ξ for Reδ = 990, h/δs = 10 and ωt = π/2. The absence of a plateau at 1/k for Ξ might be
difficult detect in logarithmic scale. Therefore, this figure has been reproduced in normal scaling in
the Appendix, Fig. C.1 .

second problem displayed in blue (see e.g. Kaptein et al. (2019) or Chapter 3), while
the third branch approaches the theoretical line z+

vs = 11 displayed with a black
dashed line. This line results from the assumption that the thickness of the viscosity
dominated layer can be obtained by equating the scaling function in the viscous sub-
layer, i.e. u+ = z+, and the scaling function in the logarithmic layer, i.e. Eq. (4.1).
Forcing the intersection of these two lines at z+ = 11 gives B = 5.2 for k = 0.41.

The symbols in Figs 4.4a and 4.4b follow the same trend. At the beginning
of the oscillation cycle (denoted by the blue circle), the light gray diamonds are
distributed close to the curve of the laminar solution. The profiles are in the non-
logarithmic regime. As the oscillation cycle progresses, the gray diamond follow the
blue curve towards the top-right until they reach the phase at which transition to
turbulence occurs. This phase is highly dependent on the value of Reδ (Jensen et
al., 1989). When the flow transitions to turbulence, the gray diamonds leave the
laminar curve and migrate towards the line defined by z+

vs = 11. When approaching
this line, the profiles enter the logarithmic regime, marked by the red points. In the
logarithmic regime, the red points follow approximately the line z+

vs = 11, until they
reach again the blue line of the laminar solution. This joining happens at the end
of the deceleration phase, just before a new boundary layer builds up in the other
direction, and might indicate that the presence of the log-layer at theses phases is due
to a history effect rather than equilibrium turbulence.

Although the symbols in Figs 4.4a and 4.4b describe similar paths, there are
also discrepancies. First, it can be seen that the logarithmic branch in Fig. 4.4b
is closer to the theoretical line z+

vs = 11 than the logarithmic branch in panel 4.4a,
but it still deviates from it. These differences already suggest that the constants k
and B probably depend on both Reδ and the phase ωt. Second, some of the light
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gray diamonds in Fig. 4.4a are located outside the branches, on the right of the
non-logarithmic branch; these points are from the shallowest simulations, i.e. with
h/δs = 5 and h/δs = 10. These simulations are characterized by such a high level
of intermittency that the symmetry in the oscillation cycle is broken leading to a
net flow in one direction over an oscillation cycle. This phenomenon is not explicitly
shown or discussed here but has also been observed by Tuzi and Blondeaux (2008)
and might explain the out-of-trend location of these points, particularly because for
higher Reynolds number values, all points collapse into the curves (see Fig. 4.4b).
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Figure 4.4: Points of coordinates (ln(z+
vs);u(z+

vs)/U0), i.e. the height of the viscous sub-layer and
its associated velocity. Each point corresponds to a specific value of the phase ωt, a specific period
and a specific value of h/δs. (a) Reδ = 990 and (b) Reδ = 3460. The plane-averaged velocity u has
been made non-dimensional with the outer scale U0 instead of the inner scale uτ because in this way
the difference between the laminar points and the turbulent points is emphasized. The points of the
laminar solution are obtained by taking the first maximum of z+∂u∞/∂z, where u∞ is the analytical
solution under infinite depth assumption (Kaptein et al., 2019). The start of the oscillating cycle
ωt = 0 is marked by the blue circle.

The free-stream phases particularly characterized by intermittency are summa-
rized in Table 4.1. Intermittent turbulence is restricted to a few phases in simulations
with either a low value of Reδ or a low value of h/δs. The intermittency will be taken
into account while computing the ensemble-averaged statistics, i.e. we are consider-
ing in these cases conditional phase-averaged vertical profiles of streamwise velocity.
From now on, these profiles will be both plane and phase averaged. For the phases
characterized by intermittency, only the velocity fields in which the presence of the
logarithmic layer is confirmed by diagrams as shown in Fig. 4.4 are used in the phase
averaging. As mentioned previously, discarding flow fields with no log-layer comes
down to using only turbulent flow fields for computing the properties of the log layer.
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Table 4.1: Overview of the phases characterized by intermittency. These phases are defined as the
profiles for which, at identical value of Reδ, h/δs and ωt, the (ln(z+

vs);u(z+
vs)/U0) points are located

simultaneously on the logarithmic branch and significantly off the logarithmic edge.

Reδ h/δs ωt

990 5 7
12π,

2
3π,

3
4π,

5
6π

990 10 1
2π,

7
12π

990 25, 40, 70 5
12π

1790 5 5
12π,

1
2π,

7
12π

3460 5 1
12π

4.3.2. Von Kármán constant and intercept
Even if the velocity profile is characterized by the presence of a logarithmic region,
we anticipated that the characteristics of this region will depend on the value of the
governing parameters and on the phase. Here, we obtain the values of the von Kármán
constant k and the intercept B used in the logarithmic fit given by Eq. (4.1). Although
it is possible to find k and B by fitting Eq. (4.1) through the log region, we prefer
determining the constant and the intercept in a different way. In fact, the fitting
procedure requires to initially determine subjectively the extent of the log region and
this should be done for all the plane- and phase-averaged velocity profiles (up to 180
profiles). Instead, we propose a simpler procedure that is easier to reproduce. We
first assume the necessary but not sufficient condition that the logarithmic region can
only exist for z+

min < z+ < z+
max. The depth z+

min is then defined as the thickness
of the viscosity dominated layer, (which was computed in the previous section), i.e.
z+

min = z+
vs. The depth z+

max is in turn defined as the depth z+ at which u reaches
its first local maximum. In this way, z+

max can be interpreted as the thickness of
the boundary layer, depending on the phase ωt. For z+

min < z+ < z+
max, we then

determine the depth z+
c at which Ξ is minimum and call this depth z+

c the center of
the logarithmic layer. The introduced z+

min and z+
c are sketched in Fig. 4.5a while z+

max
is sketched in Fig. 4.5b. The value of the von Kármán constant is then k = 1/Ξ(z+

c),
and the value of the intercept is B = u+(z+

c)− ln(z+
c)/k.

Figure 4.6 displays k and B as a function of the phase for each value of Reδ and
h/δs. It can be seen, that the average values of k and B depend strongly on the
value of Reδ. The mean von Kármán constant k increases from 0.37 at Reδ = 990 to
0.46 at Reδ = 3460, which is slightly different from the values obtained by Tuzi and
Blondeaux (2008) in a pipe flow simulation. For Reδ = 8000 and R/δs = 4 (with R
the radius of their pipe), they found a von Kármán constant of 0.4 and an intercept
at 5.5. Note that R/δs is similar to h/δs except that R is also a measure of the
curvature of the bottom boundary, while the bottom boundary in the open channel
configuration is flat. Similarly, the mean value of B increases from 4.2 at Reδ = 990
to 8.0 at Reδ = 3460. The dependence of k on the Reynolds number was already
observed by Frenzen and Vogel (1995) and Nagib and Chauhan (2008) for steady
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flows. However, in those cases, k decreases with increasing value of the Reynolds
number. Additionally, Marusic et al. (2010) stated that the value of k depends on
the type of wall-bounded flow (e.g. pipe flow or channel flow), which might explain
the small discrepancies between our results and the results from Tuzi and Blondeaux
(2008). A last feature is the decrease of both k and B at the end of the deceleration
phase (around ωt = π), with a much stronger decrease for B than for k. This decrease
is remarkable as it is not observed at the beginning of the acceleration phase (i.e. in
the presence of a favorable pressure gradient), suggesting an asymmetry between the
acceleration and the deceleration phases (i.e. in the presence of an adverse pressure
gradient). The asymmetry reinforces an assumption mentioned earlier: the observed
log-layer is not related to the turbulence conditions at this particular phase, but to
the remainder of a log-layer that had been generated in an earlier stage of the flow.
Finally, similarly to the points in Fig. 4.4, some points are out-of-trend and these
points again correspond to simulations with h/δs = 5 making the presence of a true
logarithmic region at these values of h/δs questionable.

The established values and observed trends for k and B are critically based on
their definitions, i.e. k = 1/Ξ(z+

c) and B = u+(z+
c)− ln(z+

c)/k. To test the sensitivity
of the results to these definitions, k and B have also been estimated via a linear fit
in Fig. 4.7. The fitting interval was chosen such that the relative error Err satisfies

Err(z+) =
∣∣∣∣ 1
k ln(z+) +B − u+(z+)

u+(z+)

∣∣∣∣ ≤ ε, (4.4)

with ε maximum value of the error. The new values of k and B for Reδ = 3460
and h/δs = 40 are displayed in Figs 4.7a and 4.7b, respectively. On one side, it
is obvious from this figure that the previously mentioned discrepancies between the
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observed values of k and B in the present study, and the values in the literature, can
be attributed to the way of computing them. In fact, when the fitting method is used,
the von Kármán constant becomes extremely close to 0.41 for ε = 0.065. Similarly,
the value of B is then also lower with respect to the method using k = 1/Ξ(z+

c) and
B = u+(z+

c)− ln(z+
c)/k. For higher value of ε = 0.115, k and B decrease further. This

result proves that the method used to determine these constants is crucial for the
accuracy of the results.

On the other side the general trend in the phase-evolution of k and B is observed
throughout the oscillation cycle, except for the earlier phases. The reduction in k
and B at the end of the deceleration phases is still observed and supports once more
that the log-layer presence at these phases is due to a history effect. In contrast, the
different behaviour of k and B at ωt = π/6 and π/4 could imply that the formation
process of the log-layer is not yet completed at these phases.

4.3.3. Spatial and temporal extent of the logarithmic layer
The determination of the spatial extent of the log-layer is something quite subjective
too (Hoyas & Jiménez, 2006; Marusic et al., 2013). In Section 4.3.2 we mentioned
the necessary condition that the log-layer could only exist for z+

min < z+ < z+
max.

However, the spatial extent could also be smaller than [z+
min : z+

max], such that this
condition is not sufficient. Here, we assume that the spatial extent of the log-layer
is the space-interval at which the relative error, Err, defined in Eq. (4.4) is smaller
than ε = 5 · 10−3. The coefficients used in Eq. (4.4) are computed using the method
proposed in this paper, k = 1/Ξ(z+

c) and B = u+(z+
c) − ln(z+

c)/k. The start and the
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end of the log-layer for each ratio h/δs and each Reδ according to this definition are
plotted as a function of the phase in Fig. 4.8. For all the simulations, the log-layer
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Figure 4.8: Spatial extent and existence interval of the log-layer, depending on Reδ and h/δs: Reδ =
990 (a), Reδ = 1790 (b) and Reδ = 3460 (c). The open symbols and dashed line mark the start for
the logarithmic region and the filled symbols and solid line mark its end.

starts around 25 < z+ < 50 (in agreement with the literature results of Tennekes and
Lumley (1972)) but extends over different lengths, mainly depending on the value
of Reδ. Clearly, the spatial extent of the log-layer increases with the value of the
Reynolds number, although these increments are less significant between Reδ = 1790
and Reδ = 3460 than between Reδ = 990 and Reδ = 1790. In general, the water depth
does not seem to affect the spatial extent except for Reδ = 1790 and h/δs = 5 where
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it drastically increases when compared to the other values of h/δs. At ωt = π/2,
the log-region extends up to z+ = 300 while the surface is located at z+ = 414.
This difference is relatively small, particularly considering the small value of ε that
is used to define the spatial extent. The proximity of the end of the log-layer and
the surface could suggests an interaction between the logarithmic layer and the top
boundary. The choice of the boundary condition plays an important role in this
situation. In a lot of environmental applications, a free-surface boundary conditions
is more realistic. The free-surface would probably lead to more complex interactions
with the log layer. However, it also introduces an additional parameter, the Froude
number. The incorporation of a free-surface would make the isolation of the Reynolds
number effects or reduced water-depth effect more difficult and is not in the scope of
the present study. Finally, peaks in the spatial extent of the log-layer are observed
at the earliest phases where the log-layer is detected. These peaks might be related
to the formation process of the log-layer already discussed earlier, still ongoing at
these phases, making its detection and extent more sensitive to the setting of ε or
to the evaluation of the characteristic point defined by (ln(z+

vs), u(z+
vs)/U0). This

phenomenon also explains why a log-layer is detected at ωt = π/5 for Reδ = 1790 and
h/δs = 40 but not for the other values of h/δs at Reδ = 1790.

Similarly to the spatial extent, the phase interval during which the log-layer is
present (the presence interval) also increases with the value of the Reynolds number.
The size of the presence interval also appears to be related to the ratio h/δs. For
Reδ = 3460 and h/δs = 5, the presence interval of the log-layer is shifted by a
phase ∆ωt = π/12 towards the earlier phases, but the size of the presence interval
remains approximately the same compared to the higher h/δs values. For lower Reδ
values, the influence of the reduction of the water-depth is more significant as the size
of the presence interval reduces. For Reδ = 990, the presence interval reduces with
decreasing h/δs from π/3 ≤ ωt ≤ 11π/12 at h/δs = 10 to 5π/12 ≤ ωt ≤ π at h/δs = 5.
For Reδ = 1790, the size of presence interval reduces from π/4 ≤ ωt ≤ 11π/12 at
h/δs = 10 to π/3 ≤ ωt ≤ 5π/12 implying that this size reduction increases with
decreasing value of Reδ.

The findings about the spatial-extent and time-interval presence of the log-layer
have been obtained for a specific value of ε. To understand how the spatial-extent
changes for a different value of ε, the start and the end of the log-layer are plotted as
function of ε in Fig. 4.9, for Reδ = 3460, h/δs = 40. Each line represents the start (or
end) of the log-layer at different phase ωt. For ωt ∈ {π/6;π/4;π/3}, the end of the
log-layer reaches a plateau for a certain value of ε. This plateau is equal to z+

max and
implies that the log-layer has reached its maximum extent. For the other values of ωt,
the end of the log-layer increases and the start of the log-layer decreases uniformly
with ε, conserving the relative extent observed for ε = 5 · 10−3.

4.3.4. Reynolds number based on the friction velocity
So far, this study shows that the presence of the logarithmic layer in turbulent oscil-
lating flows depends on three different parameters Reδ, h/δs and ωt. Nevertheless,
previous research demonstrates that, when fully developed turbulence is observed in
the oscillating flow, the behaviour of the flow is nearly identical to that of a steady
wall-bounded flow (Salon et al., 2007; Jensen et al., 1989). In these steady boundary
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layer flows, the existence and properties of the log-layer are usually investigated in
term of one single parameter: Rτ, the Reynolds number based on the friction velocity
uτ ,

Rτ = uτd

ν
. (4.5)

where d is the channel half depth. As an example, Kim et al. (1987) detected a log-
layer in their velocity profile for Rτ = 180 in their pioneering DNS study of a steady
plane channel flow. The definition of a characteristic parameter for unsteady turbulent
flows was already discussed for pulsating flows (Ramaprian & Tu, 1983; Scotti &
Piomelli, 2001). It was propose to use the eddy viscosity to define a turbulent Stokes
layer thickness as a characteristic length scale rather than δs. However, although the
eddy viscosity could be computed directly from the simulations, its depth dependence
implies that a unique value of the eddy viscosity per phase does not exist.

Instead of using the turbulent Stokes layer thickness, we investigate the possibility
of extending the use of Rτ to an oscillating flow, to analyze the standard approach used
to study logarithmic layers in steady flows, and to test its validity of for non-steady
flows. This extension makes use of a different interpretation of d. In a turbulent
plane channel flow, d is also the largest distance that a fluid parcel can be separated
from the closest wall, such that d is a measure of the thickness of the wall dominated
layer. As a result, the velocity at a distance d of the wall is the maximum velocity in
the water column. The analogy with the turbulent oscillating boundary layer is then
quickly made: d should be defined as the height at which the velocity profile has its
(first) maximum. In fact, uτd/ν = z+

max, such that uτd/ν has already been sketched
in Fig. 4.5b for Rτ = 3460 and h/δs = 70.

A first advantage of using Rτ is that d and uτ , and therefore Rτ, depend on ωt.
Additionally, a previous study on the same data set (Kaptein et al., 2019) determined
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that Reδ is the only parameter governing the flow as long as d < h throughout the
oscillation cycle, but that h/δs has to be taken into account if d = h during at least
part of cycle. A second advantage of using Rτ is that it takes into account this specific
h/δs dependence. In Fig. 4.10a, h > d, and it can be seen that both d and uτ are
identical for h/δs = 40 and h/δs = 70 at fixed phase ωt, and for Reδ = 3460. This
similarity implies that Reδ is also identical for h/δs = 40 and h/δs = 70 at this
specific Reynolds number. In Fig. 4.10b, h 6> d for some part of the oscillation cycle,
such that d and eventually uτ are different between h/δs = 25 and h/δs = 70 for
Reδ = 3460. These differences result in divergent Rτ for these two cases.
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Figure 4.10: Velocity profiles every ∆ωt = π/12 starting at ωt = −5π/12 (most left profile) ending
at ωt = π/2 (most right profile) for Reδ = 3460. The thickness of the wall-dominated layer d, defined
as the height above the bottom at which the velocity profile has its first maximum is depicted by the
black dotted line. A distinction is made between the deep water solution (a) and the shallow water
solution (b).

In summary, Rτ depends on the phase ωt, the Reynolds number Reδ and on the
ratio h/δs. From these dependences, it might be expected that the existence of the
log-layer is only governed by Rτ. However, this claim appears to be refuted by Fig.
4.11, in which the presence of the logarithmic layer is displayed as a function of Rτ

and ωt. At ωt = π/3, no log-layer is detected for Rτ < 180, while a log-layer was
already detected at this value of the Reynolds number in a plane-channel flow (Kim
et al., 1987). In the region where the log-layer is present due to the local turbulence
properties and not due to a history effect (i.e. from the start of the existence interval
up to ωt < 5π/12), a threshold of about Rτ = 400 seems appropriate. However, for
ωt = 2π/3 a log-layer is detected for Rτ < 180. These results suggest that once the
log-layer enters the late deceleration phases, the threshold Rτ = 400 is not valid any
more. In addition, at ωt = π/3 and ωt = 7π/12, the log-layer is sometimes detected
for lower values of Rτ than the values of Rτ for which the log-layer is not detected.
These findings imply that it is not possible to reduce the number of parameters on
which the presence of the log-layer depends, using Rτ. As result, the log-layer in
a turbulent oscillating flow cannot be analyzed in a similar way as the log-layer in
a steady turbulent flow, despite the similarities between the flows. To our current
knowledge the three parameters Reδ, h/δs and ωt are necessary for this analysis.
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Figure 4.11: Link between the log-layer existence and the plane and phase averaged value of Rτ. The
threshold for which the log-layer has been identified in the plane channel flow of Kim et al. (1987),
i.e. Rτ = 180, is also displayed.

4.4. Discussion and conclusions
The present study confirms that a logarithmic region in the velocity profiles is present
for oscillating flows, with a phase interval and a spatial extent that increases with the
Reynolds number. A new identification method, the map of points of coordinates
(ln(z+

vs);u(z+
vs/U0)), where z+

vs is the thickness of the viscous viscosity dominated
layer, demonstrates that the points of logarithmic velocity profiles collapse onto a
single curve. This collapse makes the coordinates (ln(z+

vs);u(z+
vs)/U0) a distinct sig-

nature of the logarithmic layer and can help to identify its presence.
This study also shows that the logarithmic layer is never present throughout the

whole cycle at the values of the Reynolds number simulated in this investigation, in
agreement with previous studies (Salon et al., 2007; Jensen et al., 1989). Nevertheless,
the simulation results show that with increasing value of the Reynolds number, the log-
layer appears earlier in the oscillation cycle and grows in spatial extent. Furthermore,
the values of the von Kármán constant k and the intercept B are found to be phase
and Reynolds number dependent and to deviate by an order of 10% with respect
to the classical values of k = 0.41 and B = 5.5. This is particularly remarkable
because previous studies (Akhavan et al., 1991; Tuzi & Blondeaux, 2008; Scandura
et al., 2016; Pedocchi, Cantero, & García, 2011) reported a value of the von Kármán
constant much closer to the classical value. However, these studies were carried out in
pipe flows, and a study by Marusic et al. (2010) stated that the universality of the von
Kármán constant depends on the type of flow (pressure driven flow, plane channel flow
or pipe flow). Nevertheless, deviation of order 10% for k and a decrease of B towards
the end of the cycle was also reported by Salon et al. (2007). They attributed the
decreasing value ofB at the end of the deceleration phase, in the presence of an adverse
pressure gradient, to a low-Reynolds number effect, but we believe that the presence
of the log-layer at the end of the deceleration phase is just due to a history effect.
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Additionally, two other sources of discrepancies between different values of the log-
layer constants might be considered. First, the mechanism of turbulence generation
is not exclusively similar to that of steady wall-bounded flows, for low Reynolds
number values: during the acceleration phase small disturbances are damped (Vittori
& Verzicco, 1998) while turbulence at the end of the deceleration phase is generated
by the collapse of the wall shear stress, due to the adverse pressure gradient, and not
by the rigid wall itself (Jensen et al., 1989). This is only true for lower values of the
Reynolds numbers. For high Reynolds number values, turbulence appears already
during the acceleration phase (Jensen et al., 1989). Second, the method with which
the von Kármán constant was determined (i.e. by taking the local minimum of the
log-layer diagnostic function Ξ) might lead to a slight overestimation when compared
to fitting a log-layer through the velocity profile (Pirozzoli et al., 2014; Jiménez &
Moser, 2007). In fact, the present investigation demonstrates that when the fitting
procedure was applied, the obtained values of k and B could be much closer to the
values reported in literature. However, the new values are then dependent on the
size of the fitting interval. Therefore, the main result is that the values for k and B
strongly depend on three distinct parameters: Reδ, h/δs and the phase ωt. To our
current understanding, it is not possible to reduce the number of parameter on which
the properties of the logarithmic layer depend, like a Reynolds number based on the
friction velocity uτ .

Finally, the reduction of the ratio h/δs is found to (i) increase the phase interval for
which intermittent turbulence is observed and (ii) shifts the existence interval of the
log-layer to earlier phases. For these simulations characterized by intermittency, the
presence of the logarithmic layer also depends on the oscillation cycle. Nevertheless,
the values of the Reynolds numbers for the simulations presented here are relatively
low for some applications. In tidal flows for example, Reynolds number values might
be one order of magnitude higher (Kaptein et al., 2019), and we would expect the
logarithmic layer to be present for a longer phase interval and the properties of the
log-layer to be more constant.

Overall, we believe that the logarithmic assumption in wall models as formulated
by Piomelli and Balaras (2002) is (i) a good approximation for oscillating flows at very
high Reynolds number and (ii) an acceptable approximation at moderate Reynolds
numbers. Nevertheless, if more accurate results need to be obtained, or for oscillating
flows characterized by a strong reduction in turbulence activity or intermittent tur-
bulence during (at least part of) the oscillation cycle, more sophisticated wall models
are needed. These models should taking into account the phase and Reynolds number
dependence of (i) the existence of the log-layer and (ii) the values of the von Kár-
mán constant and the intercept. Also, if a wall model is used the height above the
bottom in wall units of the first computational point is crucial. Depending on the
phase within the oscillation cycle it can either be in the viscous sub-layer or in the
logarithmic region. Therefore, an accurate wall model would have to incorporate the
entire law-of-the-wall, i.e. u+ = z+ in the viscous sub-layer, u+ = 1/k ln(z+) +B in the
log layer, as well as an adequate parametrization of the buffer layer.

This last statement closes the study of the pure oscillatory flow. Some remarks
regarding this flow are given in the conclusion of this thesis. In the next three chapters,
the attention moves towards the flow driven by a horizontal density gradient.





5
Analysis of one-dimensional
models for exchange flows
under strong stratification

5.1. Introduction
As discussed in Section 1.4.2, the flow driven by a horizontal density gradient is stud-
ied in this thesis as a model for the horizontal density structure in the coastal sea,
particularly in the vicinity of a ROFI (see Sec 1.3.1 for a definition). In fact, gravity
driven exchange flows due to horizontal density differences occur in many natural
environmental situations, at the junction between two water-bodies with different
densities. A gravity driven exchange flow or gravitational current, broadly defined, is
a flow in which denser water flows over the bottom from the dense water body towards
the less dense water body, and lighter water flows at the surface in the opposite direc-
tion. This type of exchange flows can take various forms, such as lock-exchange type
of gravity currents with an initial horizontal density step (Benjamin, 1968; Shin et
al., 2004), the gravitational circulation in estuaries (Hansen & Rattray Jr, 1965; Mac-
Cready, 2004; Burchard & Hetland, 2010; Burchard, Hetland, Schulz, & Schuttelaars,
2011; Geyer & MacCready, 2014), natural convection in a closed cavity with heated
end walls (Cormack, Leal, & Imberger, 1974), exchange flows in straits (Gregg, Ozsoy,
& Latif, 1999; Gu & Lawrence, 2005) or exchange that are not confined to channels,
in coastal areas close to river plumes, such as described in this thesis (Simpson et al.,
1990).

Very often, these exchange flows strongly impact the hydrodynamics of a large
surrounding area due to the density stratification they generate. Additionally, strong
(vertical) stratification limits vertical mixing in the water column and these exchange
flows are known for driving disproportionately large horizontal transport of different
substances such as pollutants, sediment, and micro-organisms (Geyer & MacCready,
2014). These properties make the understanding of exchange flows of the utmost
importance in coastal oceanography.

71
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As a result, models have been developed to estimate their properties, ranging from
one-dimensional (1D) water-column models (Hansen & Rattray Jr, 1965; Blaise &
Deleersnijder, 2008; Burchard & Hetland, 2010), to two-layer models (Gu & Lawrence,
2005; Shin et al., 2004) or idealized three-dimensional models with periodic horizon-
tal forcing (Li et al., 2008, 2010), called from now on three-dimensional horizontally-
periodic models, abbreviated as 3D-HP models. A common challenge of all these
models is to parametrize the driving force due to the horizontal difference in density.
In 1D or 3D-HP models, the horizontal density differences are often parametrized
using an imposed, constant horizontal density gradient. This choice allows to refor-
mulate the governing equations (i.e., those for momentum and transport of salinity
or density) in such a way that the mean velocity variable and the mean density vari-
able are independent of the horizontal coordinate (an example of a reformulation is
given in Appendix D.1). This feature is crucial, particularly in the 3D-HP mod-
els, for the consistency with periodic boundary conditions and needs to be upheld
throughout a simulation. However, an inconvenience of imposing a constant horizon-
tal density gradient is that the steady state is determined by the equilibrium between
the imposed gradient and diffusion of both momentum and density. This equilib-
rium causes the stratification to grow out of bounds, a phenomenon usually called
’runaway-stratification’.

The extent to which 1D models and 3D-HP models are affected by runaway-
stratification differs. For example, in early 1D models of the gravitational circulation
(Hansen & Rattray Jr, 1965; Chatwin, 1976), the stratification generated by the den-
sity gradients was limited by turbulent mixing due to tides, via the eddy viscosity
and eddy diffusivity constants. The magnitude of the exchange flow was assumed
to be proportional to the horizontal density gradient and the mean eddy viscosity.
The eddy viscosity coefficient was then tuned to fit the measurements (Hansen &
Rattray Jr, 1965; Chatwin, 1976; MacCready & Geyer, 2010) if chosen sufficiently
high, it was able to counterbalance the increasing stratification. However, in estu-
aries characterized by very weak tides, the magnitude of the required eddy viscosity
turned out to become unrealistically large (Simpson et al., 1990). In 3D-HP models,
adjusting the eddy viscosity is not an option, since (a large part of) it is directly
resolved in the numerical computations (e.g., in an LES) and can, therefore, not be
imposed. Accordingly, the value of the horizontal density gradient should be kept
low to avoid runaway-stratification. This constraint implies that only exchange flows
driven by very weak density gradients can be investigated with existing 3D-HP mod-
els. An improved parametrization of the horizontal density gradient is required to
allow application of 3D-HP models, and even 1D models, to zones of the parameter
space currently out of reach due to runaway-stratification. Application of new and
improved parametrizations in these 3D-HP models requires conservation of the lin-
earity of the horizontal density gradient to properly satisfy the periodic boundary
conditions in the horizontal direction.

In the present study, we isolated the ingredients generating environmental ex-
change flows (i.e., an initial horizontal density gradient and a quasi-infinite source of
potential energy), and analyzed and modelled the resulting flow. We first propose
a two-dimensional (2D) numerical set-up to simulate idealized exchange flows inside
a channel for both the transient and the steady-state flow. This setup is similar to
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those used in previous numerical and experimental studies on idealized gravity driven
exchange flow (see e.g. Anati, Assaf, and Thompson (1977); Maderich, Konstantinov,
Kulik, and Oleksiuk (1998); Hogg, Ivey, andWinters (2001)). Subsequently, numerical
simulations using this set-up are performed to characterize the stratification process
associated with horizontal density gradients as a function of the parameters of the
problem. The results of the 2D model are then used to develop improved 1D models
for the cross-sectional velocity profile along the channel and for the density profile
at the center of the channel (with respect to the inlet and outlet). The performance
of the models is discussed as a function of their suitability to be incorporated in
water-column models and their suitability as homogeneous forcing in 3D-HP models.

5.2. Two-dimensional asymptotic model for exchange
flows

5.2.1. Numerical set-up

The numerical set-up for the 2D simulations is displayed in Fig. 5.1. The flow is
described in a Cartesian reference frame (y, z), in which y represents the along-channel
direction and z represents the vertical direction, with velocity vector v = (v, w).
Gravity acts in the negative z-direction. The set-up, which is inspired by different
experimental configurations (see, for example Simpson and Linden (1989); Meyer
and Linden (2014); Lefauve et al. (2018)), consists of two reservoirs connected by a
channel of height h and length L, with L � h (implicitly assuming that end effects
at y = ±L/2 can be ignored). Each reservoir contains water with a different initial
salt concentration, denoted by the salinities s1 and s2 in the left and right reservoirs,
respectively. Initially, the salinity s(y, z) in the channel is uniform in the vertical,
and the salinity gradient in the along-channel direction is constant: ∂s/∂y = (s2 −
s1)/L. The salt concentration is the only physical quantity altering the fluid density
in the present set-up. The inhomogeneous initial horizontal salt distribution leads
to an unstable horizontal density gradient driving an exchange flow and generating
vertical stratification. The steady state is reached once the driving mechanism (due
to the density difference between the two reservoirs) is balanced by diffusion of both
momentum and salt. Since this set-up represents environmental situations where the
availability of the fresher and saltier water can be considered infinite, the reservoirs
are much larger than the channel. In this way, the salinity of each reservoir can be
considered constant and will not be influenced by the inflow of water from the other
reservoir. In our 2D computational model, the size of a reservoir is equal to 6400h2,
which is basically a trade- off between available computational resources and keeping
the salinity in both reservoirs within an accepted margin of their initial values.

The 2D numerical set-up is implemented in COMSOL, using the ‘laminar flow’ and
the ’transport of diluted species’ modules. For details, see “COMSOL Multiphysics
Reference Manual” (n.d.). The flow is governed by the 2D continuity and Navier-
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Figure 5.1: Side-view of the 2D computational domain, with the initial distribution of salt.
This sketch is not to scale as L � h and we assume very large salt reservoirs. The salt
concentration in the left reservoir is denoted by the salinity s1 and will be kept constant
(as we assume an infinitely large reservoir). Similarly, the salt concentration in the right
reservoir is denoted s2 > s1 (and also kept constant). The acceleration of the gravity g is in
the negative z-direction. Note that this configuration is mirrored with respect to the ROFI
configuration of Chapter 1 and the configuration of Chapter 6.

Stokes equations in Boussinesq approximation for an incompressible fluid:
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where p denotes the pressure, and ρvar denotes the variable part of the total density.
The constant ν represents the kinematic viscosity of the fluid (which is assumed to
be independent of the salinity ). The density ρref is a reference density, related to
the total density ρ and to ρvar by ρ = ρref + ρvar, with ρref � ρvar. The salinity s is
governed by the advection-diffusion equation:
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, (5.4)

in which κ is the diffusivity of salt. The density ρ depends on the salinity s, via
the equation of state ρ = ρ0 (1 + βs), in which ρ0 is the density of fresh water and
β ∼= 7.7 × 10−4 (MacCready, 2004; Geyer & MacCready, 2014). The salinity is
expressed in the practical salinity scale (PSS). The reference density is defined as
ρref = ρ0[1 + 1

2β(s1 + s2)] = ρ0(1 + βsav), with sav = 1
2 (s1 + s2) the average salinity
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of both reservoirs. The equation of state for the variable part of the density is then

ρvar = ρ0β[s− 1
2(s1 + s2)] = ρ0β(s− sav) . (5.5)

For simplicity, only exchange flows with constant viscosity ν and salt diffusivity
κ are considered, i.e. no turbulence model is used. Furthermore, simulations are
stopped and results rejected for further analysis, once shear instabilities start to de-
velop at the quasi-horizontal density interface that emerge during the flow evolution
for simulations for high Reynolds number values. This justifies the use of a 2D numer-
ical set-up instead of a 3D one, saving computational time and allowing for a thorough
exploration of the parameter space. The use of a constant kinematic viscosity and salt
diffusivity for application to coastal flows can be regarded as considering a constant
effective turbulent (or eddy) viscosity and diffusivity. This simplification is common
in classical studies of exchange flows (see e.g. Geyer and MacCready (2014)), and it
is used here because it allows for analytical solutions that further our understanding
of the system.

Initially, the fluid is at rest and the salinity in each reservoir is uniform. In the
channel, the salinity at initial time t0 is given by

s(y, z; t0) = ∆s
L
y + sav for − 1

2L ≤ y ≤
1
2L , (5.6)

where the initial salinity difference ∆s = s2 − s1 has been introduced. As a result,
the isopycnals at t = t0 are vertical and equidistant. The horizontal density gradient
in the center of the channel (y = 0) is given by

∂ρvar

∂y
(y = 0, z; t0) = ∆ρ

L
, (5.7)

with ∆ρ = ρ0β∆s the initial density difference. Subsequently, ρvar at y = 0 is equal
to zero at t = t0 over the whole depth.

At the solid walls of both reservoirs and the channel, no-slip boundary conditions
are applied for the fluid velocity and no-flux boundary conditions for the salinity. This
choice of boundary conditions in the channel results in an antisymmetric horizontal
velocity profile with respect to z = 0 at y = 0. Additionally, the profile of the variable
density ρvar and salinity svar are also antisymmetric with respect to z = 0 at y = 0.
The case with a no-slip boundary condition for the fluid velocity at the bottom and
a no-stress boundary condition at the top of the channel is discussed in Sec 5.3.4.

The equations are solved in their non-dimensional form. To make them dimen-
sionless, the buoyancy velocity scale Ug is introduced and linked to the previously
defined ∆s:

Ug =

√
ρ0β∆s
ρref

gh =

√
β∆s

1 + βsav
gh . (5.8)

The spatial coordinates are scaled with h, time with a buoyancy time scale h/Ug,
the fluid velocities with Ug, the pressure with ρrefU

2
g , the density with ∆ρ, and the
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salinity with ∆s. By eliminating the density in Eq. (5.3) using Eq. (5.5), the set of
Eqs. (5.1)-(5.4) are rewritten in non-dimensional form yielding
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= 0 , (5.9)
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where the asterisk (∗) denotes a non-dimensional variable. In the case that the left
tank contains fresh water, thus with s1 = 0, s∗av = s2/2 and Ug =

√
βghs2/(1 + 1

2βs2).
In these equations, there are two non-dimensional parameters: the gravitational
Reynolds number Reg = Ugh/ν and the Schmidt number Sc = ν/κ. The last non-
dimensional number we need to introduce is the aspect ratio Γ = h/L, that does not
appear explicitly in Eqs. (5.9)-(5.12) but plays a role via the computational domain.
Note that the Grashof number Gr, which quantifies the ratio of the buoyancy to vis-
cous force, is related to the Reynolds number such that Gr = Re2

g. Both Gr and Reg
are commonly used to characterize density driven flows govern by Eq. (5.12) (See e.g.
Ottolenghi, Adduce, Inghilesi, Armenio, and Roman (2016); Härtel, Meiburg, and
Necker (2000). Here, we will use the Reynolds number throughout.

The momentum equations are discretized using a first-order finite-element method
for the pressure and the velocity. The equation for the transport of salt is discretized
using a quadratic method. The computational domain is meshed with a triangu-
lar grid, using 62 elements over the depth of the channel. The time-integration is
performed with an implicit backward-difference scheme. More details about spatial
discretization, grids and time integration can be found in “COMSOL Multiphysics
Reference Manual” (n.d.). The grid in the reservoirs is coarser since these reservoirs
act just as a supply of water and salt, and the details of the hydrodynamics in these
reservoirs are not of interest to us in the present investigation.

5.2.2. Salinity distribution in the channel: flow regime identifi-
cation

Depending on the values of the parameters Reg, Sc and Γ, the initial situation evolves
towards a steady state governed by the competition between diffusive and advec-
tive processes. In this section, we describe the steady-state conditions of four dis-
tinct flow regimes: the diffusion-dominated regime, the transition regime, the high-
advection/high-diffusion regime, and the high-advection/low-diffusion regime. We
show results for three simulations with Sc = 300 and Γ = 1/60 for which we varied
the value of the gravitational Reynolds number, and one simulation with Sc = 1,
Γ = 1/60 and Reg = 5000. For these four simulations in the steady state, Fig. 5.2
shows the density field and the isopycnals, and Fig. 5.3 shows the vertical profiles of
density, of the horizontal density gradient, and of the mean horizontal velocity for
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y = 0. The results of a thorough exploration of the parameter space are presented in
Sec. 5.3.3.

Figure 5.2: The density distribution in the channel (not to scale as h� L) for four simulations
in the four different regimes: (a) the diffusion-dominated regime (here with Reg = 50, Sc =
300 and Γ = 1/60), (b) the transition regime (Reg = 200, Sc = 300 and Γ = 1/60), (c) the
high-advection/high-diffusion regime (Reg = 5000, Sc = 1 and Γ = 1/60) and (d) the high-
advection/low-diffusion regime (Reg = 1000, Sc = 300 and Γ = 1/60). Note that ρvar/∆ρ =
s∗ − s∗av. With s1 = 0 this implies s∗av = 1

2 and 0 ≤ s∗ ≤ 1 and thus −0.5 ≤ ρvar/∆ρ ≤ 0.5.

In the diffusion-dominated regime, a steady state is reached once the mechanism
driving the exchange flow due to the horizontal density gradient is balanced by mo-
mentum diffusion, and when the vertical stratification process is balanced by salt
diffusion. Effectively, the advective transport of salt from the saltier to the fresher
reservoir is fully counteracted. The isopycnals in the steady state of the diffusion-
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Figure 5.3: The profiles at y = 0 of (a) the resolved density, (b) the horizontal density gradient,
and (c) the mean horizontal velocity in the steady state for the same four simulations used
to describe the four regimes in Fig.5.2. The solid black line represents the initial condition.

dominated regime are no longer vertical but are sigmoid functions of the depth and
resemble the typical lines of equal density observed in some estuaries (MacCready
& Geyer, 2010), as can be seen in Fig. 5.2a. The isopycnals are still equidistant
close to the center of the channel (around y = 0), suggesting a conservation of the
linearity of the initial horizontal density gradient. Additionally, ρvar at y = 0 is no
longer constant and equal to zero over the height of the channel, as seen in Fig. 5.3a.
The water column is now stratified close to z = 0, and very weakly stratified close to
the top and bottom boundaries due to the no-flux boundary condition applied there.
Finally, the value of the horizontal density gradient at y = 0 has slightly decreased
with respect to its original value, but remains in good approximation constant over
the depth of the channel, as seen in Fig. 5.3b.

In the transition regime, momentum and salt diffusion are no longer strong enough
to balance the force driving the exchange flow and the formation of the stratification.
This means that net transport of salt from the saltier to the fresher reservoir will occur.
In the steady state, water with salinity s1, flowing along the top wall of the channel,
reaches the saltier water reservoir, and water with salinity s2, flowing over the bottom
of the channel, reaches the fresh water reservoir. This process can be oberserved in
Fig.5.2b, where the lines of equal density for ρvar/∆ρ = 0 and ρvar/∆ρ = ±0.2 span
over the entire channel in the horizontal direction between −L/2 ≤ y ≤ L/2. The
lines of equal density for ρvar/∆ρ = ±0.4 do not span the whole channel, suggesting
that diffusion of momentum and salt still plays a role in the steady-state balance.
The vertical density profile ρvar/∆ρ at y = 0 in the transition regime has a similar
shape to the density profile in the diffusion-dominated regime, but clearly, with a
larger amplitude (Fig. 5.3a). A clear stratification is present close to z = 0, and a
very weak stratification close to the top and bottom boundaries. In comparison with
the diffusion-dominated regime, the amplitude of the density profile has increased and
ρvar/∆ρ at z = ±h/2 has reached its possible extreme values: ±1/2 at z = ∓h/2.

In practice, this steady state is achieved already in a finite time denoted by ts.
The profiles of the horizontal density gradient at y = 0 in the steady state (i.e. for
t > ts) are significantly different to those of the diffusion-dominated regime, as seen
in Fig. 5.3b. The horizontal density gradient is no longer constant over the depth.
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Instead, it has decreased towards zero at the top and bottom boundaries, and it has
increased around z = 0, taking the shape of a Gaussian function.

In the high-advection/high-diffusion regime, the density distribution in the steady
state is similar to the distribution in the transition regime (see Fig. 5.2). In both cases,
fluid from each reservoir reaches the opposing reservoir, but there is a diffuse interface
separating them. Some differences between these two regimes are mainly observed at
the ends of the channel. In fact, Fig. 5.3a shows that the density profile at y = 0
for the simulations in these two regimes are almost indistinguishable. However, the
flow velocity (Fig. 5.3c) is clearly much stronger for the simulation within the high-
advection/high- diffusion regime. This implies that in spite of the strong advection
by the flow, the interface is spread out due to the high diffusion.

In the high-advection/low-diffusion regime, the steady state is characterized by
water from each reservoir being able to reach unmixed the opposite reservoir. Dif-
fusion of both momentum and salt play hardly a role in balancing the force driving
the exchange flow and the stratification. This can be seen in Fig. 5.2d, where all
the ispoycnals span over the entire channel length from y = −L/2 to y = L/2 and
nearly collapse onto each other: diffusion is too small to smoothen the sharp inter-
face generated by the exchange flow, an advective process. In Fig. 5.3a, it can be
seen that the thickness of the pycnocline decreases drastically and that any vertical
stratification is absent close to the channel boundaries. The density in the upper
layer is equal to −∆ρ/2 while the density in the lower layer is equal to ∆ρ/2. The
horizontal density gradient still takes the shape of a Gaussian function but with a
much narrower and much higher peak (Fig. 5.3b). This observation suggest that as
advection becomes increasingly important while diffusion is weak, the steady-state
system converges towards a two-layer system. At y = 0, each layer has a constant
density equal to ∆ρ/2 for z < 0 and −∆ρ/2 for z > 0. As a result, the density at the
top and bottom boundaries in the steady state is given by

ρvar

(
y = 0, z = ∓1

2h; t→∞
)

= ±1
2∆ρ. (5.13)

It is relevant to mention that, although this relationship must be satisfied in the
high-advection/low-diffusion regime, it already emerges in the transition regime, and
might also occur in the high-advection/high-diffusion regime. Similarly, the horizontal
density gradient at those boundaries is given by

∂ρvar

∂y

(
y = 0, z = ∓1

2h; t > ts

)
= 0. (5.14)

5.3. Proposals for one-dimensional models
Based on the characteristics of the different regimes and the initial condition, it is
possible to develop a parametrization of the horizontal density gradient at the center
of the channel, y = 0. In this way, the time evolution of the horizontal velocity profile
at y = 0 is governed by a 1D diffusion equation supplemented with a specific source
term containing information on the horizontal density gradient, and the time evolution
of the density profile at this location is governed by a classical 1D advection-diffusion
equation.
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5.3.1. Mathematical formulation
The equations governing the 1D model at y = 0 are

∂v

∂t
= ν

∂2v

∂z2 + g

ρref

∫ z

0

∂ρvar

∂y
dz̆ , (5.15)

∂ρvar

∂t
= κ

∂2ρvar

∂z2 − v ∂ρvar

∂y
, (5.16)

in which ∂ρvar/∂y is the term that needs to be parametrized. For a derivation of the
momentum equation, the reader is referred to Appendix D.1. Based on the steady-
state horizontal density gradient profiles obtained in Sec. 5.2.2, the parametrized
horizontal density gradient needs to satisfy three conditions. First, it should be
constant over the vertical in the absence of stratification. Second, it should decrease
at the boundaries with the onset of stratification. Third, it should increase in the
center of the channel once the flow converges towards a two-layer system. We expect
then that the parametrized horizontal density gradient ∂ρvar/∂y depends on both ρvar
and ∂ρvar/∂z. A parametrization satisfying these conditions is

∂ρvar

∂y
= a0 + a1 |ρvar|+ a2

∣∣∣∣∂ρvar

∂z

∣∣∣∣ , (5.17)

where a0, a1 and a2 are constants to be determined. Note that, in the case a2 = 0,
the parametrization resembles the one proposed by Blaise and Deleersnijder (2008),
while in the case a1 = 0 and a2 = 0, the classical constant horizontal density gradient
parametrization is recovered.

To find a0, the initial condition at t = t0 in the channel is used: ρvar = 0,
∂ρvar/∂z = 0 and ∂ρvar/∂y is given by Eq. (5.7). Substituting these values in the
density parametrization given by Eq. (5.17), yields

a0 = ∆ρ
L
. (5.18)

To find a1, Eqs. (5.13)–(5.14), which are valid from the transition regime are used
combined with the no-flux boundary condition at the top boundary of the channel,
i.e. ∂ρvar/∂z = 0 at z = h/2 to obtain

a1 = − 2
L
. (5.19)

Finding a2 is more challenging and, to our current knowledge, it cannot be obtained
from the steady-state conditions in the advection-dominated regime (Sec. 5.2.2). We
will see in Sec. 5.3.2 that its value can be chosen equal to Γ/3 for high Sc values, but
we leave a2 for now.

Equations (5.15)–(5.17) are scaled as in Sec. 5.2, i.e with h for the spatial coor-
dinates, h/Ug for the time, Ug for the velocities, ρrefU

2
g for the pressure, and ∆ρ for
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the density. This scaling results in

∂v∗

∂t∗
= 1

Reg

∂2v∗

∂z∗2
+
∫ z∗

0

∂ρ∗var
∂y∗

dz̆∗, (5.20)

∂ρ∗var
∂t∗

= 1
RegSc

∂2ρ∗var
∂z∗2

− v∗ ∂ρ
∗
var

∂y∗
, (5.21)

∂ρ∗var
∂x∗

= Γ (1− 2 |ρ∗var|) + a2

∣∣∣∣∂ρ∗var
∂z∗

∣∣∣∣ , (5.22)

where the asterisk (∗) denotes a non-dimensional variable. The aspect ratio Γ was
previously a parameter tunable through the computational domain, but in the present
1D model, it appears directly in the equations.

5.3.2. Limiting cases
The set of Eqs. (5.20)–(5.22) is a priori not integrable analytically. However, by
simplifying the equations, it is possible to have an exact solution of the approximated
problem, which can in turn provide some scaling properties for the amplitudes of the
exchange flow and the stratification.

In the diffusion-dominated regime, the horizontal density gradient is in good ap-
proximation constant over the depth, i.e. ∂ρ∗var/∂y

∗ = Γ, such that the equations
governing the flow and the density distribution in a steady state become

0 = 1
Reg

∂2v∗

∂z∗2
+ Γ z∗, (5.23a)

0 = 1
RegSc

∂2ρ∗var
∂z∗2

− Γ v∗. (5.23b)

Using no-slip boundary conditions for the velocity and no-flux boundary conditions for
the density at the top and at the bottom wall of the channel, we obtain vd,∞ and ρd,∞var ,
the steady-state solutions for the velocity and the density in the diffusion-dominated
regime

vd,∞(z)
Ug

= RegΓ
24

(
z

h
− 4

( z
h

)3
)
, (5.24a)

ρd,∞var (z)
∆ρ =

Re2
gΓ2Sc
24

(
− 1

16

( z
h

)
+ 1

6

( z
h

)3
− 1

5

( z
h

)5
)
. (5.24b)

It is clear that vd,∞ depends on RegΓ (this combination of parameters is also known
as the Simpson number) while ρd,∞var depends on Re2

gΓ2Sc so that only two parameters
govern the steady-state solutions. This solution is commonly known as the viscous
advective diffusive solution (VAD) (Cormack et al., 1974; Hogg et al., 2001). Notice,
however, that it is valid for both low and high Sc values.

As the value of RegΓ increases two distinct possibilities emerge. For small Sc
values, the flow will tend towards the hydraulic limit (Hogg et al., 2001). In this
regime, mixing, viscosity, and friction are neglected, and the density and velocity
both tend towards a two layer configuration. In each of these layers, the density and
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velocity can be considered as uniform, and the non-dimensional volume flux becomes
independent of RegΓ.

For large Sc values, the flow tends towards the high-advection/low-diffusion regime,
the exchange flow in the channel also converges towards a two-layer system. In
this case, the horizontal density gradient reduces to ∂ρ∗var/∂y

∗ = a2 |∂ρ∗var/∂z
∗| =

−a2∂ρ
∗
var/∂z

∗ (as ∂ρ∗var/∂z
∗ ≤ 0 for − 1

2 ≤ z
∗ ≤ 1

2 ) such that the equations governing
the flow and the density distribution become

0 = 1
Reg

∂2v∗

∂z∗2
− a2

∫ z∗

0

∂ρ∗var
∂z̆∗

dz̆∗ , (5.25a)

0 = 1
RegSc

∂2ρ∗var
∂z∗2

+ a2 v
∗ ∂ρ

∗
var

∂z∗
. (5.25b)

The last term in the first equation can be integrated, and in the limit Sc → ∞, the
system of Eqs. (5.25) can be rewritten as

∂2v∗

∂z∗2
= Rega2ρvar

∗ , (5.26a)

a2 u
∗ ∂ρ

∗
var

∂z∗
= 0. (5.26b)

The non-trivial solution (i.e. with v∗ 6= 0) for Eq. (5.26b) is the steady-state solution
for the density in the high-advection/low-diffusion regime where ρ∗var is a constant.
However, this solution can have a jump at z = 0 since v∗(z = 0) = 0 due to symmetry.
This can be seen by integrating Eq. (5.26b) from z = −ε̆ to z = +ε̆ (with ε̆ a positive
real number) yielding

lim
ε̆→0

v∗(z = 0)[ρ∗var(z = +ε̆)− ρ∗var(z = −ε̆)] = 0.

Since v∗(z = 0) = 0, [ρ∗var(z = +ε̆) − ρ∗var(z = −ε̆)] can take any value. This means
that the solution to Eq. (5.26b) is a piecewise constant function, and in agreement
with Eq. (5.13), we take

ρa,∞var (z)
∆ρ = 1

2 −H(z) , (5.27)

where H(z) is the Heavyside function which is defined as: H(z > 0) = 1, H(z < 0) =
0, and H(z = 0) = 1/2. Moreover, dH(z)/dz = δD(z) with δD(z) the Dirac delta
function (which also satisfies

∫ +∞
−∞ δD(z) = 1 and

∫ z
0 δD(z) = 1

2 ). The steady-state
solution for the velocity in the high-advection/low-diffusion regime, va,∞, follows:

va,∞(z)
Ug

=


Rega2

[
1
8
z

h
+ 1

4

( z
h

)2
]

for z ≤ 0,

Rega2

[
1
8
z

h
− 1

4

( z
h

)2
]

for z ≥ 0.

(5.28)

From this solution, the constant a2 can be determined by assuming that the shear at
z = 0 is conserved from the diffusion-dominated (obtained from Eq. (5.24a)) regime
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Figure 5.4: Shear at mid-depth as a function of RegΓ spanning all different flow regimes, from the
diffusion dominated to the high-advection/low-diffusion. Low Schmidt number values correspond to
Sc = 1, and high Schmidt number values correspond to Sc = 50, 300, 1000.

to the advection-dominated regime, which gives

a2 = 1
3Γ . (5.29)

This also means that the magnitude of the velocity and the volume flux still depend
exclusively on RegΓ as long as the Sc value is large. We use the 2D simulations
to test this assumption. The resulting shear at z = 0 is displayed as a function of
RegΓ in Fig. 5.4. Despite some small deviations, there is a good agreement between
our assumption and the 2D numerical data for high Schmidt number values where
the flow is dominated by the shear at the interface. Clearly, this agreement is not
as good for low Schmidt number values and large values of RegΓ (i.e. towards the
high-advection/high-diffusion regime and the hydraulic limit). The difference between
these two limiting cases is that in the high-advection/low-diffusion regime, viscosity
and friction play a role close to the top and bottom boundaries and at the interface
so that the velocity is not uniform in each of the layers.

The ability of the 1D model to reproduce correctly the steady-state velocity profiles
and density profiles in the different regimes determines its validity. This ability is in-
vestigated in the next section by comparing the results of the new 1D model to results
of the 2D model, and to results from 1D models using more classical parametrizations
of the horizontal density gradient.

5.3.3. Numerical results: model comparison
The 1D set of non-dimensional Eqs. (5.20)-(5.22) is integrated numerically using a
centred finite-difference scheme for the spatial derivatives, a trapezoidal numerical
method for the integral and an explicit upwind time integration scheme. The nu-
merical algorithm is, therefore, globally first order accurate in time and second order
accurate in space. The steady- state results of the 1D model are compared to the
steady-state results (evaluated for t > ts, with ts the time at which the steady state
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is reached) of the 2D model in terms of four different quantities: (i) the amplitude
of the stratification ∆ρvar = ρvar(− 1

2h) − ρvar( 1
2h), (ii) the integral over the channel

cross section of the absolute value of the density, (iii) the amplitude of the exchange
flow ∆vmax = vmax − vmin, and (iv) the integral of the absolute value of the velocity
profile over the channel cross section.

We consider three versions of the 1D model: the 1D0 model, where a0 = ∆ρ/L
and a1 = a2 = 0, which corresponds to the classical parametrization with a constant,
uniform horizontal density gradient; the 1D1 model, where a0 = ∆ρ/L, a1 = −2/L
and a2 = 0, which is similar to the parametrization suggested by Blaise and Deleer-
snijder (2008); and the new 1D2 model, where a0 = ∆ρ/L, a1 = −2/L, and a2 = Γ/3.
In the present study, four different values of the Schmidt number Sc are considered:
1, 50, 300 and 1000, and three different values of the aspect ratio, Γ = 1/30, 1/60,
and 1/120. The value of the Reynolds number Reg is varied between 2 and 4000.
For certain combinations of Reg, Γ and Sc, the simulations show the emergence of
shear instabilities, such as the appearance of Kelvin-Helmholtz billows. These simu-
lations are not considered in the analysis as they are outside the scope of the present
investigation.
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Figure 5.5: Magnitude of the steady-state stratification (a) and the steady-state exchange
flow scaled with Sc1/2 (b) as a function of RegΓSc1/2 as obtained from the 2D simulations.
Different Schmidt number values are displayed with different colors. The gray solid line
represents the analytical solution in the diffusion-dominated regime [i.e. the solution to
Eqs. (5.24b)–(5.24a)], and the gray dashed line represents the analytical solution for the
high-advection/low-difffusion regime [i.e. the solution to Eqs. (5.27)–(5.28)]. Both of these
solutions are derived in Appendix D.2. The black vertical dashed line at RegΓSc1/2 = 12

√
5

represents the transition at which the two analytical solutions for ∆ρvar/∆ρ intersect.

In Fig. 5.5, the magnitude of the steady-state stratification ∆ρvar/∆ρ and the
steady state exchange flow are first analyzed only for the 2D model. The main objec-
tive of this figure is to provide a first impression of the different trends that the 1D
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models should be able to reproduce. When plotting the magnitude of the steady-state
stratification ∆ρvar/∆ρ as a function of RegΓSc1/2 (Fig. 5.5a), there is a clear collapse
of the data. This collapse indicates that RegΓSc1/2 is the governing parameter for the
stratification. For small values of RegΓSc1/2, ∆ρvar/∆ρ follows the theoretical curve
of the diffusion-dominated regime. For intermediate values of RegΓSc1/2, ∆ρvar/∆ρ
deviates from this theoretical curve as the increase in stratification slows down. In this
transition, the data points for Sc = 1 lie slightly under the data points for other Sc
values. For high values of RegΓSc1/2, ∆ρvar/∆ρ reaches its maximum possible value
when ∆ρvar = ∆ρ. This value corresponds to the initial density difference between
the reservoirs. It is possible to define a transition point indicating the intersection
between the theoretical line of the diffusion-dominated regime and the line given by
∆ρvar/∆ρ = 1. This transition occurs at RegΓSc1/2 = 12

√
5 ≈ 26.8.

The magnitude of the exchange flow obtained from the reference 2D model shows
a clearly distinct behaviour between high and low Schmidt number values (Fig. 5.5b).
This magnitude follows the theoretical line of the diffusion-dominated regime for rel-
atively small values of RegΓ for both low and high values of the Schmidt number.
However, slightly before the transition point at RegΓSc1/2 = 12

√
5, it deviates (in

a rather subtle way) towards the theoretical prediction for the high-advection/low-
diffusion regime (high Schmidt number values). However, for low Schmidt number
values, the deviation is more pronounced since the solution tends towards the hy-
draulic limit, where the velocity becomes independent of RegΓ. Note, however, that
our simulations do not reach this limit since the simulations with Sc = 1 go up to a
value of RegΓ ≈ 102, while the hydraulic limit is reached for RegΓ ≈ 103 (Hogg et al.,
2001).

The performance of the 1D models is tested through an analysis of the magnitude
of the steady-state stratification in Fig. 5.6. A distinction is made between the
results for high Schmidt number values, Sc = 50, 300, 1000, shown in Fig. 5.6a-b,
and for low Schmidt number value, Sc = 1, shown in Fig. 5.6c-d. The different 1D
models reproduce the results from the 2D model with different levels of accuracy. The
stratification predicted by the 1D0 model grows linearly with (RegΓSc1/2)2, as given
by Eq. (5.24b), even beyond the transition point between the diffusion regime and
the high-advection regimes. This is a perfect illustration of runaway stratification.
Naturally, RegΓSc1/2 = 12

√
5 is the limit of applicability of the 1D0 model. In

contrast, the 1D1 model and the 1D2 model reproduce the trend of the 2D model for
all the values of RegΓSc1/2 that were investigated, with the data points of the 1D2
model being almost superimposed on the data points of the 2D model. The relative
errors shown in Figs. 5.6b,d quantify the performances previously observed. The
relative error of the 1D0 model grows indefinitely beyond the transition point, while
the error of the 1D1 model and the 1D2 model is maximum around this transition
point, before decreasing again. Globally, the 1D2 model performs better than the 1D1
model: their respective maximum relative errors are approximately 10% and 30% for
high Schmidt number values and approximately 10% and 20% for low Schmidt number
values.

We have also evaluated the integral of |ρvar/∆ρ| over the channel height, which is a
measure of the stratification in the channel. The dependence of this integral quantity
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Figure 5.6: The magnitude of the steady-state stratification for the different models for high
Sc values (a) and for Sc = 1 (c), and the corresponding errors between the 2D model and the
1D models for high Sc values (b) and for Sc = 1 (d). The gray solid line represents the analyt-
ical solution in the diffusion-dominated regime [i.e. the solution to Eqs. (5.24b)-(5.24a)], and
the gray dashed line represents the analytical solution for the high- advection/low-diffusion
regime [i.e. the solution to Eqs. (5.27)-(5.28)]. Both of these solutions are derived in Ap-
pendix D.2. The black vertical dashed line at RegΓSc1/2 = 12

√
5 represents the transition

at which the two analytical solutions intersect; see panels (a) and (c).

on the value of RegΓSc1/2 (not shown) is similar to that of ∆ρvar/∆ρ. In addition,
the comparisons between the 2D model and the three 1D models give similar results,
with the trends in the errors being comparable with those shown in Fig. 5.6. This
proves that not only the steady-state stratification is well predicted, but that the
entire density profile is well approximated over the channel height (around y = 0) by
the 1D1 and the 1D2 models.

The magnitude of the velocity in the exchange flow from the 1D models and the 2D
model are displayed in Fig. 5.7. For this quantity, there is a strong Schmidt number
dependence that contrasts with the weak Schmidt-number dependence of the reference
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Figure 5.7: Magnitude of the steady-state exchange flow for the different models for high Sc
in (a) and Sc = 1 in (c), and the corresponding errors between the 2D model and the 1D
models in (b) for high Sc and in (d) for Sc = 1. The gray solid and dashed lines display
the trends resulting from the analytical solutions for ∆v/Ug, based on Eqs. (5.24a) and
(5.28), and explicitly written in Appendix D.2. The black vertical dashed line represents the
transition point at RegΓSc1/2 = 12

√
5.

stratification, discussed in the previous paragraphs. This has a significant impact on
the accuracy of the 1D models in modeling the flow velocity. As expected from
the analytical derivation in Sec. 5.3.2, all 1D models agree well with the theoretical
prediction and the 2D model within the diffusion-dominated regime independently
of the Schmidt number value. Also independently of the Schmidt number values,
the relative error of the 1D0 model increases drastically as the value of RegΓSc1/2

approaches the transition value of 12
√

5 and the runaway stratification appears. The
1D1 and 1D2 models perform significantly differently for high Schmidt number values
and low Schmidt number values. For high Schmidt number values, the relative error
of the 1D2 model peaks approximately at a value of 25% around the transition point
RegΓSc1/2 = 12

√
5 and decreases for larger values of RegΓSc1/2. The relative error
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in the 1D1 model continues increasing with increasing values of RegΓSc1/2. Clearly,
the 1D2 model gives the closest results to the 2D model in terms of exchange flow
magnitude for high Schmidt numbers. For low Schmidt number values, the trend in
the magnitude of the exchange flow predicted by the 2D model is, in contrast, very
well reproduced by the 1D1 model (Fig. 5.7c) resulting in almost no relative error
(Fig. 5.7d). On the other hand, the 1D2 model strongly deviates from the results
of the 2D model as RegΓSc1/2 approaches the transition values (Fig. 5.7c,d). The
error of the 1D2 model is, in fact, comparable to the error of the 1D0 model (Fig.
5.7d). The 1D1 model outperforms the 1D2 models in predicting the exchange flow
magnitude, for the high- advection/high-diffusion regime, because the 1D2 results in
a large horizontal density gradient at the interface that is not present in that regime.

In analogy with the height-integrated density, the results for the integral over
the channel height of |v/Ug| and the associated relative error are almost identical to
the results for ∆v/Ug (not shown). The ability to reproduce the magnitude of the
exchange flow from the 2D model – or the incapability to reproduce it – extends to
the entire velocity profile.

5.3.4. Extension to flows with a no-stress top boundary condi-
tion

The previous results correspond to an exchange flow in the plane channel flow config-
uration. This configuration, with a no-slip boundary condition for the velocity at the
lower and upper walls of the channel, preserves the symmetry of the flow. Although
this symmetry was convenient for estimating steady-state conditions, it is not real-
istic for environmental exchange flows. An open-channel flow configuration, with a
no-stress boundary condition at the top wall of the channel (or a free surface), would
be a better approximation. In such a case, the non-dimensional momentum equation
for the horizontal velocity Eq. (5.20) is slightly modified yielding

∂v∗

∂t∗
= 1

Reg

∂2v∗

∂z∗2
+ τ∗w −

∫ 1
2

z∗

∂ρ∗var
∂y∗

dz̆∗ +
∫ 1

2

− 1
2

(
z̆∗ + 1

2

)
∂ρ∗var
∂y∗

dz̆∗, (5.30)

with the appearance of a new term:

τ∗w = 1
Reg

∂v∗

∂z∗

∣∣∣∣
z∗=− 1

2

, (5.31)

which represents the non-dimensional wall-shear stress.
Results for the stratification in the open-channel flow configuration are similar to

those in the plane-channel flow configuration. The magnitude of the stratification
∆ρvar/∆ρ in the 2D model follows the theoretical solution in the diffusion-dominated
regime before the stratification saturates at ∆ρvar/∆ρ = 1 (Figs. 5.8a,c). The 1D0-
model reproduces the 2D results within the diffusion-dominated regime, but the error
increases drastically towards the transition to the advection-dominated regimes (Figs.
5.8b,d). The 1D1 model and the 1D2 model reproduce the stratification very well,
with a maximum error near the transition point of around 25% and 10% for the
models 1D1 and 1D2, respectively. The results of the integral over the channel height
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Figure 5.8: Magnitude of the steady-state stratification for the different models in the open-
channel configuration for high Sc values (a) and Sc = 1 (c). The corresponding errors
between the 2D model and the 1D models are also shown for high Sc values (b) and for
Sc = 1 (d). The gray solid and dashed lines display the trends resulting from the analytical
solutions for ∆ρvar/∆ρ, based on Eqs. (D.18) and (5.27) for the diffusion dominated and
high-advection/low- diffusion flows, respectively, and explicitly written in Appendix D.3.
The black vertical dashed line represents the transition where the two analytical solutions
intersect at RegΓSc1/2 = 8

√
5.

of |ρvar/∆ρ| confirm that the trends observed in ∆ρvar/∆ρ are representative for
the entire profile. However, a major difference with respect to the plane-channel
configuration is the increase of the magnitude of stratification as a function of Re2

gΓ2Sc.
For the plane-channel configuration it increases as Re2

gΓ2Sc/720 while for the open
channel configuration it increases much faster as Re2

gΓ2Sc/320 due to the absence of
friction at the top boundary. As a result the transition RegΓSc1/2 = 8

√
5 ≈ 17.9

occurs sooner in the open-channel configuration.
Again, the results of the 2D model show a clear difference in the magnitude of the

velocities between the high Schmidt number values (Fig. 5.9a), where ∆v/Ug deviates
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Figure 5.9: Magnitude of the steady-state exchange flow velocities for the different models in
the open-channel configuration for high Sc values (a) and for Sc = 1 (c). The corresponding
errors between the 2D model and the 1D models are given for high Sc values (b) and for
Sc = 1 (d). The gray solid lines in panels (a) and (c) represent the trend resulting from
the analytical solution for ∆v/Ug, based on Eq. (D.15) for the diffusion-dominated flows
and derived in Appendix D.3. The black vertical dashed line represents the critical value
RegΓSc1/2 = 8

√
5 for transition between the diffusion and advection-dominated regimes.

only slightly from the theoretical line, and the low Schmidt number value (Fig. 5.9c),
where this deviation is much more pronounced as it tends towards the hydraulic limit.
The 1D2 reproduces the 2D results better in the high Schmidt number regime, while
the 1D1 model performs better for low Schmidt number values. The analysis of the
integral over the channel height of |v/Ug| confirms that the trend observed for ∆v/Ug
is representative for the entire profile.

5.4. Discussion
In laminar flows, the diffusion of salt is governed at a molecular level with the Schmidt
number of order 700. In turbulent flows, the diffusion of salt at large scales is governed
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by turbulent diffusion that can be represented using a turbulent Schmidt number,
which is usually of order 1. The results presented in the current paper imply then
that the choice of 1D model should be based on the regime of the flow, i.e. the 1D2
model for laminar flows and the 1D1 for turbulent flows. In addition, if 3D-HP models
are used using direct numerical simulation (DNS) or large-eddy simulation (LES)
techniques, turbulent diffusion is solved for rather than imposed or parametrized.
From a numerical point of view, such flows have high Schmidt number values, but from
a physical point of view, such flows are governed by low Schmidt number values at the
large scales. These differences in Schmidt number values can lead to inconsistencies
when a 1D model is used as a body force in 3D-HP models, such that the choice will
have to be carefully motivated.

Up to now, the results show that the new parametrization of the density gradient
leads to a significant improvement in the ability of 1D models to reproduce the den-
sity profiles obtained from numerical simulations of a 2D reference model. However,
despite this agreement, there are still discrepancies between the 1D models in their
ability to reproduce the velocity profiles. To better analyze the differences between
the 1D1 and 1D2 models, the steady-state vertical profiles of the horizontal density
gradient are displayed in Fig. 5.10 for different parameter values covering the four
distinct regimes (i.e., diffusion-dominated, transition, high-advection/high-diffusion
and high-advection/low-diffusion). Globally, the 1D models reproduce the general
evolution of the horizontal density gradient of the 2D model quite well. For example,
it is seen that for the diffusion-dominated regime (Figs. 5.10a), the nearly constant
profile of the horizontal density gradients is reproduced by all the models.

However, some features are not well reproduced by the 1D models. For all cases,
the horizontal density gradient resulting from the 1D1 model is limited to a max-
imum values of unity, while the horizontal density gradient resulting from the 2D
simulation can reach values higher than unity (see e.g. Figs.5.10a,b,d). On the other
hand, the 1D2 model tends to overestimate the value of the horizontal density gradi-
ent around mid-depth. This is mostly observed in the high-advection/high-diffusion
regime (Fig. 5.10c), which explains the large discrepancies between the 1D2 model
and the 2D model for low Sc values. Nonetheless, in the high-advection/low-diffusion
regime, where the density profile tends towards a two-layer configuration but the ve-
locity profile does not, there is a good agreement between the 2D and the 1D2 model,
as expected from the analytical solution in this limit (see Sec 5.3.2).

The results of this study have implications for the range of applicability of 1D
water-column models in environmental exchange flows with external turbulent mix-
ing. In the case of the gravitational circulation, for example, the traditional version
of the 1D model (i.e., with the constant density gradient or 1D0 model) can still
be used for well-mixed estuaries, in which the tidal turbulence is strong enough to
(partly) destroy the stratification in agreement with Hansen and Rattray Jr (1965)
and Chatwin (1976). However, with the new parametrization of the horizontal density
gradient, the estuarine circulation can also be simulated in cases of week tidal flows,
for which runaway stratification would occur (Burchard et al., 2011) or for which the
eddy-viscosity was set too high (Simpson et al., 1990). However, knowledge about
the turbulent nature of the flow is crucial to justify the choice between the 1D1 and
1D2 model. In turbulent estuaries the flow is likely to be governed by the turbulent



92
5. Analysis of one-dimensional models for exchange flows under

strong stratification

-0.5

0

0.5

0.0 1.0 3.0 6.0

z/
h

1

Γ

h

∆ρ

∂ρ̃

∂y

(a)Sc = 300,Reg = 50

-0.5

0

0.5

0.0 1.0 3.0 6.0

z/
h

1

Γ

h

∆ρ

∂ρ̃

∂y

(b)Sc = 300,Reg = 200

-0.5

0

0.5

0.0 1.0 3.0 6.0

z/
h

1

Γ

h

∆ρ

∂ρ̃

∂y

(c)Sc = 1,Reg = 5000

-0.5

0

0.5

0.0 1.0 3.0 6.0

z/
h

1

Γ

h

∆ρ

∂ρ̃

∂y

(d)Sc = 300,Reg = 1000

2D model 1D0 model 1D1 model 1D2 model

Figure 5.10: Vertical profiles of the horizontal density gradient for the four cases representative
of the four regimes. The cases correspond to the those in Fig. 5.2. (a) Diffusion-dominated
regime (Reg = 50, Sc = 300), (b) Transition regime (Reg = 200, Sc = 300), (c) high-
advection/high-diffusion regime (Reg = 5000, Sc = 1), and (d) high-advection/low-diffusion
regime (Reg = 1000, Sc = 300. Γ = 60 for all four cases.

Schmidt number rather than the molecular Schmidt number such that the use of the
1D1 model should be preferred, see Figs. 5.7c,d. On the other hand, high-resolution
numerical simulations of the mixing processes in an exchange flow subjected to insta-
bilities (e.g. Salehipour et al. (2016)) or relatively small-scale experiments of exchange
flows (e.g. Lefauve et al. (2018)) have to be performed in three-dimensional domains.
Note, however, that in earlier experimental work on exchange flows through straits
(Anati et al., 1977; Maderich et al., 1998), temperature was used to generate the den-
sity differences. In such a case, the Prandtl number (the equivalent to the Schmidt
number for heat) is approximately equal to 7, which facilitated reaching the hydraulic
limit.

Considering the turbulent viscosity and diffusivity as constant and homogeneous
is only a first approximation for the exchange flows in estuaries. However, spatial
and temporal variability of the eddy viscosity can give rise to more complex dynam-
ics, for example, in the case of the eddy viscosity-shear covariance circulation (ESCO
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circulation) that produces a more complex vertical structure in strongly stratified
situations (Cheng, De Swart, & Valle-Levinson, 2013; Dijkstra, Schuttelaars, & Bur-
chard, 2017). However, these dynamics should emerge naturally when an appropriate
one-dimensional model for the horizontal density gradient is used to force the flow.

5.5. Conclusion
In the present study, we introduce two new parametrizations for the horizontal den-
sity gradient driving environmental exchange flows that can be incorporated in 1DV
models. These 1DV models incorporate a feedback of the stratification on the driv-
ing horizontal density gradient to limit the effect of runaway stratification. The
parametrizations have been extensively tested by comparing their results of the 1DV
models with the results of 2D numerical simulations of laminar exchange flows, and
with those of previous parametrizations. Depending on the parameter values, four
different regimes are identified: (i) diffusion dominated, (ii) transition, (iii) high-
advection/high-diffusion, and (iv) high-advection/low-diffusion. The classical model,
which considers a constant horizontal density gradient, only performs well in the
diffusion dominated regime, where the stratification is weak. The new 1D models
outperform the classical model in all other regimes, but they perform differently de-
pending on the Schmidt number. For low Schmidt number values the so-called 1D1
model should be preferred, for example for models of turbulent gravitational flows in
estuaries. For high Schmidt number values, the so-called 1D2 model should be pre-
ferred, for example for the simulation of laminar exchange flows at laboratory scale.
Both the 1D1 model and the 1D2 model predict the steady-state stratification very
well. The new parametrizations were able to reproduce the density profiles obtained
with the 2D model within 10% of accuracy, resolving the problem of runaway strati-
fication. They are also able to predict a reduction of the magnitude of the exchange
flow velocities observed in strongly stratified situations.

The improvements in 1D models of exchange flow can have a significant impact in
the future research of these type of flows. For example, it unlocks the possibility to
explore regions of the estuarine-circulation parameter space characterized by strong
stratification. Additionally, the formulation of the model, which is independent of the
horizontal coordinates, also opens the traditional direct numerical simulation set-ups
with horizontally periodic domains to the simulation of density-driven exchange flows.
The simulation of turbulent flows with lateral induced stratification are now possible.
This option is investigated in the next chapter.
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Regime transitions in

stratified shear flows: the link
between horizontal and

inclined ducts

6.1. Introduction
The analytical velocity profiles derived in the previous chapter can help to under-
stand the pre-eminent experimental set-up for stationary exchange flows: the strat-
ified inclined duct (SID) experiment (Macagno & Rouse, 1961; Meyer & Linden,
2014; Lefauve et al., 2019a; Lefauve & Linden, 2020a). In the SID experiment, two
large tanks with fluid with different densities are linked by an inclined, long duct
(see Fig. 6.1). In recent years, there has been vast progress in the understanding of
the flow in SID experiments driven by improved measurement capabilities that allow
for simultaneous detailed measurements of the three-dimensional density and velocity
fields (Partridge, Lefauve, & Dalziel, 2019). A key question that has been addressed
is the transitions between flow regimes: from laminar to the emergence of interfacial
waves, to intermittently turbulent, and to fully turbulent (Macagno & Rouse, 1961;
Meyer & Linden, 2014; Lefauve et al., 2019a; Lefauve & Linden, 2020a). Although
these different regimes have been observed for 60 years, explaining them over a wide
range of parameter values remains a challenge. In fact, one of the unanswered ques-
tions is “How to explain flow regime transitions in horizontal ducts or ducts inclined
at a slightly negative angle?” (Lefauve et al., 2019a).

Lefauve et al. (2019a) distinguished between two situations: lazy and forced flows.
To explain this distinction, it is necessary to define the internal angle of the duct
α = arctan(h/L), where h is the height of the duct and L its length. Lazy flows are
defined as those occurring when the inclination angle θ of the duct satisfies α� θ >
−α, and forced flows as those occurring when θ > α. The term forced refers to the

95
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Figure 6.1: Schematic representation of the side view of a stratified inclined duct (SID) experimental
setup. In the center: the duct of length L and height h inclined an angle θ with respect to the
horizontal. The duct connects two large tanks: one with water with density ρ = ρref + ∆ρ/2 and
the other with density ρ = ρref − ∆ρ/2. The internal angle of the duct is α = arctan(h/L). The
along-duct coordinate is yθ and the coordinate perpendicular to the bottom and the top of the duct
is zθ. The origin O of the coordinate system is located at the center of the duct. Note that this
set-up is mirrored with respect to Chapter 5 and Chapter 7, but in agreement with the Rhine ROFI
of Chapter 1.

increased importance of the gravitational forcing due to the tilt. Meyer and Linden
(2014) and Lefauve et al. (2019a) have proposed two different conditions for the regime
transitions in forced flows showing good agreement with experimental data. However,
these conditions are unreliable for lazy flows in general, and unsuitable for flows in
horizontal ducts (θ = 0) and ducts with slightly negative angles (θ < 0).

The current chapter proposes an explanation for the regime transitions in SID
experiments with large Schmidt number values that spans both lazy and forced flows,
i.e. encompassing slightly negative inclinations, horizontal ducts, and positive in-
clinations. This explanation is based on the numerical and analytical study of the
previous chapter, particularly the high-advection/low-diffusion regime. In this regime,
advection can be neglected from the momentum equation but not from the density
transport equation. The one-dimensional (1D) model and the associated analytical
solution in the limit of zero mass diffusion, are extended to inclined ducts; we discuss
the implications for the regime transitions, and we make a comparison with experi-
mental results. The proposed link between horizontal and inclined ducts should allow
to further exploit the results of SID experiments for the understanding of large scale
environmental exchange flows.

6.2. Description of the system and background
The SID setup, mentioned earlier and sketched in Fig. 6.1, consists of two tanks with
fluid at densities ρref ± ∆ρ/2 (due to differences in, for example, salt concentration
or temperature), joined by a duct. The duct with length L and height h is inclined
at an angle θ with respect to the horizontal. In fact, there are only two differences
with respect to the two-dimensional set-up of Chapter 5, the inclination angle and the
initial condition (i.e. constant horizontal density gradient in Chapter 5 versus sharp
interface in the SID setup). As a result, the same assumptions apply. The fluid is
considered to have uniform and constant viscosity ν. It is still convenient to define
the typical velocity scale Ug ≡

√
g′h, where g′ ≡ g∆ρ/ρref with g the gravitational

acceleration. Besides the angle of the duct θ, the system can be described by three
non-dimensional parameters: the aspect ratio of the duct Γ ≡ h/L, the gravitational
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Reynolds number and the Schmidt number Sc ≡ ν/κ with κ the diffusivity of salt (or
heat, in which case the Schmidt number is referred to as the Prandtl number). How-
ever, for comparison purposes, it is more convenient to adopt the Reynolds number
formulation from Lefauve and Linden (2020a),

Re ≡ hUg
2ν = h

√
g′h

2ν , (6.1)

which differs with a factor 1/2 with respect to Reg. This difference is due to the typical
length scale, which is here chosen to be h/2 instead of h in the previous chapter. We
consider long ducts: Γ � 1. For ducts with different widths W , we must introduce
an additional parameter B = W/h.

Meyer and Linden (2014) proposed an empirical condition for the transition be-
tween different regimes by defining the Grashof number Gr = 2 sin θRe2/Γ which
quantifies the ratio of the buoyancy force to the viscous force. They proposed the
critical value Gr = 4×107 for the transition between the intermittently turbulent and
the turbulent regimes showing good agreement with experimental results. Lefauve et
al. (2019a) proposed that the transitions between different regimes for a SID setup
with a given Γ-value occur at constant θRe-values. Lefauve and Linden (2020a) com-
pared their proposed transitions against several experimental data sets including those
of Meyer and Linden (2014). They remarked particularly good agreement with ex-
periments for forced flows (i.e. θ > α) when, in addition, ΓRe . 50. However, the
comparison was inconclusive when considering the full parameter space explored. In-
dependently of this, the conditions proposed by both Meyer and Linden (2014) and
Lefauve et al. (2019a) are clearly not valid for θ ≤ 0. Furthermore, the definition of
Gr proposed by Meyer and Linden (2014) is not consistent with its common definition
for horizontal systems: Gr = Re2 (Härtel et al., 2000; Hogg et al., 2001).

In horizontal ducts, the flow is dominated by diffusion for ReΓ� (180/Sc)1/2, as
found in the previous chapter (this limit is equivalent to ReΓ� 12(5/Sc)1/2 using their
definitions). This regime is known as the viscous advective-diffusive (VAD) solution
(Cormack et al., 1974; Hogg et al., 2001), the hydrostatic-viscous balance (Lefauve &
Linden, 2020a) or the diffusion-dominated regime (previous chapter). In this regime,
the flow is characterized by the linear growth of the magnitude of the streamwise
velocity (made dimensionless with Ug) with ReΓSc1/2. For ReΓ � (180/Sc)1/2, two
distinct flow regimes arise depending on the Sc-value. For Sc ∼ 1, the flow tends
to the hydraulic limit, in which the velocity reaches the maximum peak value Ug
and becomes independent of Re (Hogg et al., 2001). However, for large Sc-values, the
velocity keeps increasing linearly with ReΓ, like in the VAD solution, in what we called
the high-advection/low-diffusion regime in the previous chapter. This continuous
growth is, most probably, only possible because a transition to a turbulent flow is
not considered. This suggests that the high-advection/low-diffusion regime resides
between the VAD regime and the emergence of waves, and eventually, turbulence.
In other words, the upper bound for the high-advection/low-diffusion regime should
be determined by the regime transition from laminar to the emergence of interfacial
waves.
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6.3. Analytical model
6.3.1. Horizontal ducts
Since a different length scale is used in this chapter with respect to Chap. 5, it adds
clarity to repeat the governing equations and the analytical solution with regards to
the present scaling. If the governing equations are made dimensionless by scaling the
spatial coordinates with h/2, time with h/(2Ug), the velocity with Ug, the pressure
with ρrefU

2
g , and the density with ∆ρ, the non-dimensional equations are

0 = 1
2

∫ z∗

0

∂ρ′∗

∂y∗
dẑ∗ + 1

Re
∂2v∗

∂z∗2
, (6.2)

v∗
∂ρ′∗

∂y∗
= 1

ReSc
∂2ρ′∗

∂z∗2
(6.3)

with the asterisk denoting a non-dimensional variable. For simplicity, the asterisk is
omitted from here on. For consistency with Lefauve and Linden (2020a), there are
two differences in the definition of the problem with respect to Chapter 5. The typical
length scale of the problem is h/2 instead of h, and the tank with the higher density
is on the y < 0 side.

As a reminder, advection of momentum is neglected with respect to viscous diffu-
sion, but advection in the density transport equation is not, in the high-advection/low-
diffusion regime. This is substantiated by considering the relative magnitude of
along-channel derivatives of the density and the velocity. The magnitude (denoted by
[· · · ]) of ∂ρ′/∂y is imposed by the density difference between the two tanks so that
[∂ρ′/∂y] ∼ Γ/2. However, [∂v/∂y] depends on the flow dynamics. It can be easily
shown using mass conservation that the local value of [∂v/∂y] is proportional to the
local slope of the pycnocline with respect to the channel. Thus neglecting advection
of momentum compared to diffusion means that the slope of the pycnocline must be
small. In addition, we make use of the fact that the duct is long to neglect diffusion
in the y-direction and advection in the z-direction.

In the VAD solution (Re → 0), advection in the transport equation (6.3) is ne-
glected, and the slope of the pycnoclyne and ∂v/∂y are equal to zero. As the value
of Re increases, the slope and [∂v/∂y] increase. However, the simplifications leading to
(6.2)–(6.3) mean that we consider the possibility that [v∂ρ′/∂y] & [(Re,Sc)−1∂2ρ′/∂z2]
while still [Re−1∂2v/∂z2]� [v∂v/∂y] at least in some region of the parameter space.
This region was shown to exist for horizontal ducts using 2D numerical simulations
(see Chapter 5), and we show, in the current paper, that it is also observed experi-
mentally in inclined ducts.

A limitation of the transformation to a 1D problem is that the horizontal density
gradient ∂ρ′/∂y needs to be parametrized. For large Sc-values, the parametrization

∂ρ′

∂y
= Γ

(
−1

2 + |ρ′|
)
− Γ

3

∣∣∣∣∂ρ′∂z
∣∣∣∣ . (6.4)

was proposed in Chapter 5.
This parametrization has the advantage that every term has a simple physical

interpretation. The first term represents the large-scale density gradient due to the
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density difference between the two tanks. The second term represents the reduction
of the horizontal density gradient for a given height z due to vertical stratification.
In the limit of a two-layer stratification, |ρ′| = 1/2 everywhere except at z = 0 where
ρ′ = 0. In this limit, the first two terms cancel each other.

The last term in (6.4) accounts for having a sharp pycnocline inclined with a slope
related to Γ (for a detailed discussion on the shape of the pycnocline, see Gu and
Lawrence (2005)). It could be tempting to neglect this term since Γ � 1, but when
a two-layer stratification develops, |∂ρ′/∂z| at z = 0 can become large enough so
that this term cannot be neglected. The factor 1/3 is obtained by assuming that
the shear at the interface is the same as in the VAD solution independently of the
value of ReΓ. This assumption was shown to be valid for large Sc-values using 2D
simulations (see Chapter 5). Furthermore, notice that, if stratification is weak (i.e.
|ρ′|, |∂ρ′/∂z| � 1), the parametrization (6.4) simplifies to ∂ρ′/∂y = −Γ/2, and the
VAD solution is recovered.

In the limit where the Péclet number Pe = ReSc → ∞, while Re remains finite,
diffusion can be neglected in the transport equation (6.3). In this case, the density
gets organized into two layers with an infinitely sharp interface such that

ρ′(z) = 1
2 −H(z). (6.5)

where H(z) is the Heavyside function defined as: H(z > 0) = 1, H(z < 0) = 0, and
H(z = 0) = 1/2 (see Chapter 5). Notice that, by substituting (6.5) into (6.4), the
transport equation (6.3) is satisfied in the limit of zero mass diffusion. In addition,
only the last term in (6.4) remains, and (6.2) can be written as

∂2v

∂z2 = −ReΓ
6 ρ′. (6.6)

Finally, the velocity profile is

v(z) = ReΓ
24 z(|z| − 1). (6.7)

The mass flux per unit width Qm is commonly used to characterize the flow with
Qm = 1/2 in the hydraulic limit (Hogg et al., 2001; Lefauve et al., 2019a). In the
limit Pe→∞,

Qm =
∫ 1

−1
|ρ′(z)v(z)|dz = ReΓ

144 . (6.8)

This suggests that the hydraulic limit is reached when ReΓ = 72 if Pe is sufficiently
large. Furthermore, it advocates for the use of the parameter

Ψ = ReΓ
144 . (6.9)

to characterize the flow.
The flow in the high-advection/low-diffusion regime is described by (6.5), (6.7),

and (6.8). In this regime, the density is not affected by diffusion and is arranged into
two layers. On the other hand, flow velocity is affected by friction with the upper
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and lower channel boundaries, and equation (6.7) indicates that momentum diffusion
is also not negligible in the interior. In other words, this flow is not hydraulically
controlled. Values for the mass flux Qm smaller than 1/2 have been measured in
experiments (see e.g. Fig. 6 by (Lefauve & Linden, 2020a)) implying that those flows
are also not hydraulically controlled. Hence, we hypothesize that some of the laminar
experiments fall within the the high-advection/low-diffusion regime.

On the other hand, Qm does tend to 1/2 for turbulent experimental flows, sug-
gesting that they are hydraulically controlled (Lefauve & Linden, 2020a). In such
flows, momentum and mass diffusion are due to turbulence, and the ratio between
momentum and mass diffusion is characterized by a turbulent Schmidt number value
of order unity (Hogg et al., 2001).

In the previous chapter, we have shown that, for small Sc-values (Sc ∼ 1), it is
better to parameterize the horizontal density gradient as

∂ρ′

∂y
= Γ

(
−1

2 + |ρ′|
)

(6.10)

because the interface is thick, and hence, the last term in (6.4) can be neglected.
In this case, the first term in the r.h.s. of (6.2) is equal to zero, meaning that
diffusive transport of momentum can be neglected (except in the boundary layers
close to the bottom and top). In this case, the hydraulic limit is easier to reach
like in the experiments by Anati et al. (1977) and Maderich et al. (1998), where
temperature is used to generate the density differences. This suggests that, when
Sc � 1, the hydraulic limit might be reached once the flow becomes turbulent and
the ratio between momentum and mass diffusion is characterized by the turbulent
Schmidt number value of order unity.

6.3.2. Extension to inclined ducts
To extend the previous analysis to inclined ducts, we must consider the two distinct
situations of lazy and forced flows in the parametrization of the horizontal density
gradient (6.4). In other words, the parametrization must account for the inclined
interface only in the case of lazy flows since the interface becomes parallel to the top
and bottom walls of the duct in the case of forced flows (Lefauve & Linden, 2020a).
Hence, for a tilted duct, the horizontal density gradient is parametrized as

∂ρ′

∂y
= Γ

(
−1

2 + |ρ′|
)
− 1

3H(α− θ) tan(α− θ)
∣∣∣∣∂ρ′∂z

∣∣∣∣ . (6.11)

Since α = arctan Γ, we recover the parametrization for horizontal ducts (6.4) when
θ = 0. In the border between lazy and forced flows (when α = θ), the interface
becomes parallel to the bottom, and the last term in (6.11) is equal to zero. For
θ > α, the last term remains equal to zero since the angle of the interface cannot be
inverted (Lefauve et al., 2019a).

In an inclined duct, (5.2) has an additional gravity term ρ′g sin θ/ρref, and the
gravity term in (5.3) becomes −ρ′g cos θ/ρref (Macagno & Rouse, 1961). When the
density tends to get organized in a two-layer configuration for Sc � 1 and large-
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enough Re-values, and the equation for the velocity (6.2) becomes

∂2v

∂z2 = −Γ
6

[
1
ΓH(α− θ) tan(α− θ) cos θ + 3

Γ sin θ
]

Reρ′. (6.12)

Equations (6.6) and (6.12) become identical if we define the generalized Reynolds
number for an inclined duct:

Reθ =
[

1
ΓH(α− θ) tan(α− θ) cos θ + 3

Γ sin θ
]

Re, (6.13)

which can be further simplified in the case θ � 1 and α� 1 to

Reθ =
[
H(α− θ)

(
1− θ

α

)
+ 3 θ

α

]
Re. (6.14)

It can be seen that for θ = 0, Reθ = Re, and for θ ≥ α, Reθ = 3θRe/α. It is also
possible to define a generalized Grashof number Grθ = Re2

θ, which is consistent with
the Grashof number for horizontal gravity currents: Grθ = Re2 for θ = 0, but not
with the one proposed by Meyer and Linden (2014).

The solution to (6.12) is similar to that for the horizontal duct (6.7) where only
the Reynolds number Re has to be replaced by Reθ. Consequently, the mass flux is
Qm = ReθΓ/144 so that we define the governing parameter for tilted ducts

Ψθ = ReθΓ
144 . (6.15)

Notice that Reθ < 0 for θ < −α/2. However, this theory does not account for this
possibility since it is only valid for ReθΓ� (180/Sc)1/2. For negative angles, the flow
is slowed down (i.e. Reθ → 0 ) as θ → −α/2 so that it is eventually described by the
VAD solution (Cormack et al., 1974; Hogg et al., 2001).

6.4. Experimental data
To validate our theory, we use the experimental data sets by Meyer and Linden (2014),
Lefauve et al. (2019a) and Lefauve and Linden (2020a). These data sets have been
jointly discussed and made available online (https://doi.org/10.17863/CAM.48821)
by Lefauve and Linden (2020a, 2020b). Four experimental setups, differing in their
dimensions, were used. We will refer to them as mSID, tSID, LSID and HSID in ac-
cordance with Lefauve and Linden (2020a). Table 6.1 summarizes the characteristics
of all the setups. For each setup, the inclination angle of the duct θ and Re were
varied independently. The fluid used was a salt (NaCl) solution (Sc = 700), and the
value of Re was varied by changing the salt concentration in each of the tanks. In
total, we use 738 data points.

Meyer and Linden (2014) distinguished four different regimes: laminar (L), Holm-
boe waves (H), intermittently turbulent (I), and turbulent (T). Lefauve and Linden
(2020a) introduced a ‘waves’ (W) regime where waves other than Holmboe waves were
observed. The different regimes were mostly identified by shadowgraph observations
over a subsection of the duct, following the qualitative description of each regime by
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name h (mm) Cross-section Γ−1 B Sc θ (deg.) Re
mSID 45 30 1 700 [-1,6] [300, 6 000]

tSID 90 15 1/4 700 [-1,3] [3 000, 15 000]

LSID 100 30 1 700 [-1,4] [2 000, 20 000]

HSID 100 15 1 700 [0,4] [1 000, 20 000]

Table 6.1: Characteristics of the experiments used in this paper. Four duct geometries [abbreviated
mSID (m for mini), tSID (t for tall), LSID (L for large), HSID (H for half)] are used (Lefauve &
Linden, 2020a). We list the values of the dimensionless numbers describing each duct geometry (Γ
and B), the value of Sc for salt in water, and the ranges of θ and Re explored.

Meyer and Linden (2014). A schematic of the shadowgraph set-up was presented by
Lefauve et al. (2018). A complication for the comparison with the experimental data
is that, as pointed out by Lefauve and Linden (2020a), there is a surprising difference
between the results from the LSID and the mSID setups: the regions in the (θ,Re)-
plane where the different regimes occur do not coincide even if the values of all the
dimensionless parameters are the same.

6.5. Comparison with experiments
Figure 6.2 shows the location of the different regimes in the parameter space (θ,Re)
for all experimental setups together with curves of constant Ψθ. It can be clearly
seen that curves of constant Ψθ correspond with the transitions between the different
regimes through all values of θ.

For the mSID setup the emergence of waves is given by Ψθ ≈ 1/2. This is an
intuitive transition since the laminar analytical solution presented Section 6.3 becomes
invalid, and hence, the flow must adapt to remain statistically steady by maintaining
the balance between increased forcing and momentum diffusion. For the tSID setup,
waves also emerge when Ψθ ≈ 1/2 if the Reynolds number is re-scaled by a factor
B = 1/4. This might be because the relevant length scale for viscous diffusion is the
width of the channel since B < 1. No sufficient data (LSID) and no data (HSID) are
available to test if the emergence of waves also occurs at Ψθ ≈ 1/2 for these setups.

Although curves of constant Ψθ match the transitions for all setups, the particular
values of Ψθ associated with the transitions differ. For the mSID and tSID setups,
they coincide if the Reynolds number for the tSID setup is scaled. The value Ψθ ∼ 1
marks the transition to the intermittently turbulent regime and Ψθ ∼ 2 to the fully
turbulent regime. For the LSID and HSID setups, it would seem that the Re-values
have to be divided by a factor 2 and a factor 3, respectively, to match the values for
the mSID setup. This difference between the experimental data sets and the factor 2
between the LSID and mSID setups was already pointed out by Lefauve and Linden
(2020a). The reason for this cannot be explained using the laminar model derived in
this paper. However, the observation by Lefauve and Linden (2020a) that the flow
is hydraulically controlled (Qm ≈ 1/2) only when it is turbulent suggests that the
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Figure 6.2: Location of the different regimes in the (Re-θ) plane for the four different setups: mSID,
tSID, LSID, and HSID. The different symbols represent the different regimes laminar (L), Holmboe
waves (H), other waves (W), intermittently turbulent (I) and turbulent (T). The solid lines represent
curves of constant Ψθ with the value indicated along the line. The dashed line represents θ = α.
The dotted line represents the continuation of the transition between the intermittently turbulent
and fully turbulent regimes for forced flows given by θRe equal to a constant as proposed by Lefauve
et al. (2019a). For the tSID setup Re is multiplied by the aspect ratio B = 1/4 to account for the
increased momentum diffusion in the across-channel direction.

transition to turbulence is due to the flow and the geometry at the ends of the channel
where differences between the setups might play a role.

In the case of forced flows (i.e. 1 � θ ≥ α), Ψθ = sin θRe/48 ≈ θRe/48. This
means that the transitions given by a constant value of Ψθ are equivalent to a constant
value of θRe for a given setup. This is in agreement with the transitions proposed by
Lefauve et al. (2019a) and that Lefauve and Linden (2020b) derived using a two-layer
frictional hydraulics model. However, curves of constant Ψθ-value without simplifica-
tion show a much better agreement for lazy flows (θ < α), as can be seen in Figure
6.2 when comparing the solid and dotted lines.

6.6. Conclusions
In the current paper, we propose an analytical model that provides the transition
curves between different regimes of stratified shear flows with a large Sc-value in
both horizontal and inclined ducts. This explanation is made possible by extending
to inclined ducts the analytical solution for the high-advection/low-diffusion regime
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introduced in the previous chapter in the limit of Pe = ReSc → ∞. In this regime,
advection is negligible in the momentum equations but dominates in the transport
equation. The self-consistent explanation spanning from small negative duct inclina-
tion angles to small positive inclination angles provides the definition of a generalized
Reynolds number for inclined ducts: Reθ. Furthermore, the critical value ReθΓ = 72
for the emergence of waves is obtained from physical principles. In general, curves
with constant values of Ψθ ∝ ReθΓ correspond to all regime transitions observed ex-
perimentally. Nonetheless, it is still an open question why the results from laminar
flow theory extend to the transitions of turbulent flows.



7
Turbulent flow driven by a
horizontal density gradient

7.1. Introduction
The two-dimensional set-up of Chapter 5 allowed to gain insight into steady, laminar
density driven exchange flows. However, the exchange flows in the Rhine ROFI are
turbulent and therefore highly three-dimensional. As a result, a model set-up for
simulating these type of flows in three dimensions with high resolution is imperative
to catch the turbulent structures.

A significant challenge in expanding the entire two-dimensional domain of Chap-
ter 5 into three dimensions is that it is computationally too expensive. A three-
dimensional computational set-up with horizontal periodic boundary conditions (since
Chapter 5 referred to as 3D-HP) would significantly reduce the computational costs
by drastically diminishing the domain size. Up to now, simulations using the 3D-HP
type of set-up have been limited to very weak horizontal density gradients in Li et
al. (2008, 2010). A reason for this limitation was that the stratification would grow
without bounds for large horizontal density gradients, a phenomenon called ’runaway-
stratification’ (Blaise & Deleersnijder, 2008).

The problem of runaway-stratification was circumvented by Salehipour et al.
(2016, 2015, 2018) by directly imposing the steady state velocity and density pro-
files instead of the horizontal density gradient, and only solving for the deviations
of the density. However, this method removed the feedback between stratification,
velocity and horizontal density gradient. As a result, while this approach is suitable
for studying specific physical phenomena such as Kelvin-Helmholtz instabilities or
Holmboe waves (Salehipour et al., 2016, 2015, 2018), it is not appropriate for the
simulation of transient or intermittent processes.

In this regard, simulating strongly stratified exchange flows with a 3D-HP model
using a driving force rather than imposed velocity and density profiles would be a
significant step forward in this field of research. It would enable the possibility of re-
laminarisation under stratification, and subsequently the possbility of periodic strat-

105
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Figure 7.1: Sketch of the-two dimensional numerical simulation set-up used in Chapter 5 (not to
scale). Two reservoirs containing water at a different salinity are connected by a horizontal channel
of length L. A section of the channel with length Ly that could be simulated with a direct numerical
simulation set-up is depicted by a dashed square. Note that this configuration is mirrored with respect
to the ROFI configuration of Chapter 1 and the configuration of Chapter 6. It is in agreement with
the configuration of Chapter 5.

ification. Furthermore, it would allow to directly compare the results of numerical
simulations with the results from laboratory experiments such as those in stratified
inclined ducts (Lefauve et al., 2018, 2019a; Lefauve & Linden, 2020a). Additionally,
it would allow to analyze very specifically certain turbulence characteristics such as
turbulent kinetic energy budgets and eddy viscosity profiles, something which exper-
imental set-ups cannot achieve with the same level of detail. Finally, it would bridge
the gap between experiments and earlier numerical investigations of Salehipour et al.
(2016, 2015, 2018).

As proven in Chapter 5, the new one-dimensional models help overcome the issue
of runaway stratification. However, if these models are directly implemented in the
three dimensional domain, compatibility issues occur between the horizontal density
gradient and the horizontal periodicity. As a result this implementation requires some
mathematical effort to adapt the one-dimensional models to higher dimensions. This
mathematical formulation is extensively presented in the next section. The subsequent
mathematical model is then applied to a strongly stratified, turbulent exchange flow,
as an illustration of its capabilities. Finally, the obtained results are analyzed and
compared to the state-of-the-art literature on laboratory experiments Lefauve et al.
(2018, 2019a); Lefauve and Linden (2020a) and numerical simulations (Salehipour et
al., 2015, 2016, 2018).

7.2. Numerical model
7.2.1. Computational domain
The expansion of the one-dimensional models of Chapter 5 into three dimensions first
requires a specific definition of the three-dimensional computational domain. The one-
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dimensional models were validated by comparing them to a two-dimensional model
displayed in Fig. 7.1, by specifically defining them at the center of the channel. The
objective of the three-dimensional set-up is also to reproduce the flow in the central
region of the channel. Accordingly, the computational domain should be located
far enough from the edges, such that their influence on the mean velocity profile
in the computational domain is reduced as much as possible, thus end effects can be
considered negligible. Simultaneously, its horizontal, streamwise dimension Ly should
be small with respect to the length of the duct L, such that the average, large scale
horizontal density gradient in the domain can be considered constant along y at any
time. A domain satisfying these conditions is displayed with dashed lines in Fig. 7.1.
To make the domain three-dimensional, a spanwise dimension x, pointing towards the
reader, added (see Fig. 7.2).

Ly
x

y

z

density
gradient

z = 0
no slip

z = h
no slip

Figure 7.2: Computational domain, and coordinate system. The horizontal density gradient is in
the y direction, and the z direction represents the vertical coordinate.

7.2.2. Modification of the governing equations
The derivation of the equations governing a flow driven by a horizontal density gra-
dient in a periodic domain is an exercise that needs to be undertaken with caution.
It requires the definition of several intermediate variables as well as some specific
variable decompositions. The full process is described below.

The starting point is the continuity equation, the full Navier-Stokes equations and
the equation of transport for the density:

∂uj
∂xj

= 0, (7.1a)

ρ
∂ui
∂t

+ ρ
∂uiuj
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂x2

j

− ρgδi3, (7.1b)

∂ρ

∂t
+ ∂ρuj

∂xj
= κ

∂2ρ

∂x2
j

. (7.1c)
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As a reminder, ui is the velocity in the xi direction, t is time, ρ is the density, p the
pressure, µ the dynamic viscosity, ρ the density, g the gravitational acceleration, δij
(with (i, j) ∈ [1 : 3]2) the Kronecker delta, and κ the diffusivity. Implicit summation
is applied for a repeating j index.

Boussinesq approximation
We also define pref and ρref, the reference pressure and density for a fluid at rest, i.e.
ui = 0. The Navier-Stokes equations then become

∂pref

∂x
= ∂pref

∂y
= 0, (7.2a)

−∂pref

∂z
= ρrefg, (7.2b)

in which Eq. (7.2b) is the hydrostatic equation. Accordingly, the reference pressure
pref is independent on x and y, but still depends on the vertical z. The reference
density ρref could also depend on the vertical, in case of stratification. However, for
convenience, we chose an unstratified reference situation, such that ρref is constant in
both time and space.

It is possible to assume that the density and pressure variables can be decomposed
into the sum of a ’static’ reference fraction and a dynamic fraction according to:

ρ(x, y, z, t) = ρref + ρdyn(x, y, z, t), (7.3a)
p(x, y, z, t) = pref(z) + pdyn(x, y, z, t), (7.3b)

with

ρref � ρdyn, (7.4a)
pref � pdyn. (7.4b)

As a result, subtracting Eq. (7.2b) from Eq. (7.1b), dividing the result by ρref and
applying Eqs (7.4) yields the Navier-Stokes equations under the Boussinesq approxi-
mation. Applying decomposition (7.3a) to Eq. (7.1c) transforms the latter equation
from a transport equation for ρ to a transport equation for ρdyn. The new equations
are

∂ui
∂t

+ ∂uiuj
∂xj

= − 1
ρref

∂pdyn

∂xi
+ ν

∂2ui
∂x2

j

− ρdyn

ρref
gδi3, (7.5a)

∂ρdyn

∂t
+ ∂ρdynuj

∂xj
= κ

∂2ρdyn

∂x2
j

, (7.5b)

with the continuity equation not shown again for conciseness. In these equations, the
kinematic viscosity ν = µ/ρref was introduced. In the new equation set, the dynamic
pressure and density variables have replaced the total pressure and density variables.
Additionally, the equations are simplified since the density now only appears in the
gravitational term. It is possible, to return to a set of equations for the original
variables, while keeping the simplification. It only requires to sum Eqs (7.5a) and
(7.2b), and to remark that Eqs (7.5b) and (7.1c) are equivalent (since ρref is constant
in time and space). Nevertheless, it is convenient for the following steps, to maintain
pdyn and ρdyn as the variables of the equations.
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Decomposition of the density
The new density variable ρdyn is still incompatible with horizontal periodic boundary
conditions. Therefore, we assume an additional decomposition:

ρdyn = A(z, t)
(
y − Ly

2

)
+ ρdyn

p + ρ′, (7.6)

where A(z, t) is the horizontal density gradient, Ly is the size of the computational
domain in the y direction, ρdyn

p is the plane averaged density fraction, and ρ′ is the
density fraction fluctuating due to turbulence. The plane averaging operator applied
to ρdyn is defined as

ρdyn
p = 1

LxLy

∫ Lx

0

∫ Ly

0
ρdyndydx, (7.7)

where Lx is the size of the computational domain in the lateral x direction. This
definition is a Reynolds operator since, for two quantities φ and ψ, and a constant λ,
it verifies
i) φ+ ψ

p = φ
p + ψ

p,

ii) λφp = λφ
p,

iii) ∂φ

∂s

p

= ∂φ
p

∂s
,

iv) φpψ
p

= φ
p
ψ
p.

The verification of assertions i) and ii) is trivial due to the linearity of the integral.
The verification of assertion iii) can be obtained by applying Leibniz integral rule
and using the fact that the borders of the computational domain are fixed in time
and space. For the particular cases of s = x or s = y, one can remark that x and
y should be directions of homogeneity. In fact, obtaining this homogeneity is the
main purpose of the variable modifications proposed and discussed in this section.
As a result, average gradients in the x and y direction should be zero. Assertion
iv) is usually the assertion upon which integral-based averages fail to be regarded
as Reynolds operators. However, most often these type of averages assume that the
volume over which the integral is performed does not span the entire domain, and
is local. Subsequently, the averages still depend on x and y. In our case, due to
the conditions of homogeneity, we can average over the entire computational domain
and the resulting average is independent of x and y. Additionally, taking the plane
average of Eq. (7.6) satisfies the definition, i.e. Eq. (7.7).

Modification of the momentum equations
Inserting the decomposition of the density, Eq. (7.6), into the momentum equation
gives

∂ui
∂t

+ ∂uiuj
∂xj

=− 1
ρref

∂pdyn

∂xi
+ ν

∂2ui
∂x2

j

− 1
ρref

[
A(z, t)

(
y − Ly

2

)
+ ρdyn

p + ρ′
]
gδi3.

(7.8)
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This formulation clearly highlights a y dependency of the flow, incompatible with
horizontal periodic boundary condition. To circumvent this issue, we first assume
that the pressure pdyn is the sum of an ensemble averaged 〈pdyn〉e and a fluctuating
quantity p′′, verifying 〈p′′〉e = 0. The choice for a decomposition using an ensemble
average instead of a plane average is deliberate. We will see below that the math-
ematical formulation below requires that averages of pdyn explicitly depend on y,
which would by definition not be the case for a plane average. Additionally, none
of the ensemble averaged variables survives until the final equations; they are only
intermediate variables used for the construction of these equations. As a result of
this average, the fluctuating quantity pdyn

′′ is also different form the quantity pdyn
′.

Additionally, we define a new plane-averaged pressure variable 〈p∗〉e, as

〈p∗〉e(x, y, z, t) = 〈pdyn〉e(x, y, z, t)− 〈pdyn〉e(x, y, h, t)−
(
y − Ly

2

)∫ h

z

gA(z̃, t)dz̃.

(7.9)
This formulation is inspired by the expression for the pressure in a laminar flow, which
can be obtained by integration of the momentum equation along z. Subsequently, this
formulation leads to the expression of the pressure gradients in each direction

∂〈p∗〉e
∂x

= ∂〈pdyn〉e
∂x

− ∂〈ph〉e
∂x

, (7.10a)

∂〈p∗〉e
∂y

= ∂〈pdyn〉e
∂y

− ∂〈ph〉e
∂y

−
∫ h

z

gA(z̃, t)dz̃, (7.10b)

∂〈p∗〉e
∂z

= ∂〈pdyn〉e
∂z

+
(
y − Ly

2

)
gA(z̃, t). (7.10c)

In the formulation above, we have introduced 〈ph〉e(x, y, t) = 〈pdyn〉e(x, y, z, t) for
simplicity. We will assume that there is no mean pressure gradient at the surface
in the x direction. However, we still allow the possibility of having a mean pressure
gradient at the surface in the y direction, to reproduce the effect of a gently sloping
surface in that direction. Inserting Eqs. (7.10) into Eq. (7.8) leads to

∂ui
∂t

+ ∂uiuj
∂xj

=− 1
ρref

∂〈p∗〉e
∂xi

− 1
ρref

∂pdyn
′′

∂xi
+ ν

∂2ui
∂x2

j

− 1
ρref

(
∂〈ph〉e
∂y

+
∫ h

z

A(z̃, t)gdz̃
)
δi2

− 1
ρref

(ρdyn
p + ρ′) gδi3

(7.11)

In these equations, ∂〈ph〉e/∂y is still unknown but can be resolved by assuming that
the depth average of the ensemble averaged velocity is zero. i.e.∫ z

0
〈v〉edz = 0 (7.12)
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Performing ensemble-averaging of Eq. (7.11) and the continuity equation, i.e. Eq.
(7.1a) yields

∂〈ui〉e
∂xi

= 0, (7.13)

∂〈ui〉e
∂t

+ ∂〈ui〉e〈uj〉e
∂xj

= − 1
ρref

∂〈p∗〉e
∂xi

+ ν
∂2〈ui〉e
∂x2

j

−
∂〈u′′i u′′j 〉e
∂xj

− 1
ρref

(
∂〈ph〉e
∂y

+
∫ h

z

A(z, t)gdz
)
δi2

− 1
ρref

(〈ρdyn
p〉e + 〈ρ′〉e) gδi3.

(7.14)

We assume a homogeneous flow in the x and y direction, Eq. (7.13) implies 〈w〉e is
independent of z. Since the channel has rigid and impermeable walls,

〈w〉e = 0. (7.15)

As a result, Eq. (7.14) along y can be simplified to

∂〈v〉e
∂t

= ν
∂2〈v〉e
∂z2 − 1

ρref

(
∂〈ph〉e
∂y

+
∫ h

z

A(z̃, t)gdz̃
)
− ∂〈v′′w′′〉e

∂z
(7.16)

by assuming that there is no large scale pressure gradient in the y direction other
than the one at the surface. Integrating Eq. (7.16) over the depth and using Eq.
(7.12) yields

0 = ν

(
∂〈v〉e
∂z

∣∣∣∣
z=h
− ∂〈v〉e

∂z

∣∣∣∣
z=0

)
− 1
ρref

(
∂〈ph〉e
∂y

h+
∫ h

0

∫ h

z

A(z̃, t)gdz̃dz
)
. (7.17)

In a symmetric configuration, for example a channel with a no-slip boundary condition
at both the bottom and the top wall, the wall shear-stress at the top wall equal the
wall shear stress at the bottom wall, such that

∂〈ph〉e
∂y

= − 1
h

∫ h

0

∫ h

z

A(z̃, t)gdz̃dz (7.18)

Inserting Eq. (7.18) into Eq. (7.11), and applying an integration by parts gives

∂ui
∂t

+ ∂uiuj
∂xj

=− 1
ρref

∂

∂xi
(〈p∗〉e + pdyn

′′) + ν
∂2ui
∂x2

j

− g
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(∫ h

z

A(z̃, t)dz̃ − 1
h

∫ h

0
zA(z, t)dz

)
δi2

− 1
ρref

(ρdyn
p + ρ′) gδi3

(7.19)
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Modification of the transport equation

The density decomposition [Eq. (7.6)] is inserted into the transport equation [Eq.
(7.5b)]. Using the continuity equation (7.1a), this gives

∂

∂t

(
ρdyn

p + ρ′ +A(z, t)
(
y − Ly

2

))
= ∂

∂xj

((
ρdyn

p + ρ′ +A(z, t)
(
y − Ly

2

))
uj

)
+ ∂2

∂x2
i

(
ρdyn

p + ρ′ +A(z, t)
(
y − Ly

2

)) (7.20)

To make, the equations compatible with periodic boundary conditions, while main-
taining the forcing term, a scaling argument is imperative. First, we can assume that
the density fluctuations scale with ∆ρ. Additionally, |y| ≤ Ly, with Ly the size of the
computational domain. The scaling of A(z, t) is more delicate. Nevertheless, when
simulating an exchange flow with periodic boundary conditions, the average interface
between to two currents has to be flat, since a sloping interface would introduce a
discontinuity at the horizontal boundaries, due to the periodicity. Such a flat interface
was observed for ’forced flows’ by Lefauve and Linden (2020a). In this case, we can
assume that A(z, t) scales with ∆ρ/L. As a result,

(
y − Ly

2

)
A(z, t) ∼ Ly

L
∆ρ. (7.21)

Since Ly/L is small (see Sec. 7.2.1), the horizontal density gradient fraction can be
neglected in front of the turbulent fluctuation fraction.

Subsequently, the velocity variable components are manipulated to demonstrate
that the scaling argument allows to neglect specific terms only. First, the velocity is
decomposed according to ui = upi+u′i. Second, the mean velocity component are made
explicit, according to upi = (up, vp, wp). Note that, in contrast with the modification
of the momentum equations, a plane-averaging decomposition is chosen here. This
choice is inevitable, since the average v component of the velocity remains in the final
equations, in contrast to the ensemble averaged components in the momentum, which
disappear once the modification of the equation is finalized. Therefore, the average
of v has to be computed during the simulation, and plane averaging seems to be the
most natural method for it. After decomposing the velocity variables and pulling
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apart the velocity components, Eq. 7.20 becomes
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, (7.22)

where the striped terms can be neglected according to Eq. 7.21. By summing the
mean and fluctuating fractions of the velocity components, the transport equation
finally becomes:

∂

∂t
(ρdyn

p + ρ′) + uj
∂

∂xj
(ρdyn

p + ρ′) = κ
∂2

∂x2
j

(ρdyn
p + ρ′)−A(z, t)vp. (7.23)

Resolved equations
After the variable transformations in the previous sections, two new sums of variables
appear ρdyn

p + ρ′ and p∗p + p′dyn. Accordingly, by defining the ’resolved’ variables as

ρr = ρdyn
p + ρ′ (7.24)

p∗ = 〈p∗〉e + pdyn
′′, (7.25)

the transformed equations of the associated variables are obtained
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=0 (7.26a)
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(7.26b)

∂ρr
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+ uj
∂ρr
∂xj

=κ∂
2ρr
∂x2

j

−A(z, t)vp (7.26c)

7.2.3. Parametrization of the horizontal density gradient
In the previous section, the equations governing a density current were made com-
patible with the use of the flow configuration shown in Fig. 7.2. Nevertheless, the
equations are not ready for use yet. The mean horizontal density gradient, A(z, t), is
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unknown and needs to be parametrized. The parametrization of the horizontal den-
sity gradient as a constant is common practice in many oceanography studies in which
the effect of a river outflow is incorporated (e.g. Li et al. (2008, 2010); Simpson et al.
(1990)). It is well known that this parametrization performs well for weakly stratified
conditions but fails for strongly stratified conditions (Blaise & Deleersnijder, 2008).

In Chapter 5, two different parametrizations for the horizontal density gradient
were proposed (Kaptein et al., 2020). In the first parametrization, A(z, t) only de-
pends on the resolved density ρr

A(z, t) = ∆ρ
L
− 2
L
|ρr| . (7.27)

In the second parametrization, A(z, t) also depended on the vertical gradient ∂ρr/∂z,

A(z, t) = ∆ρ
L
− 2
L
|ρr|+

1
3
h

L

∣∣∣∣∂ρr∂z
∣∣∣∣ . (7.28)

Since these parametrizations were for one-dimensional models, the density ρ only
depended on the vertical coordinate z, and not on the horizontal coordinates x and
y. Both parametrizations gave very good results even in the strongly stratified case.

Nevertheless, there were also some differences between the two models . The
incorporation of the vertical density gradient in the parametrization was beneficial in
case of low vertical diffusion, but disadvantageous in case of high vertical diffusion
(Kaptein et al., 2020). The parametrizations offered by Eqs (7.27) and (7.28) can
potentially be used in a three-dimensional model. However, we decided to only analyze
results of a simulation in which the parametrization given by Eq. (7.28) was used.
The motivation is twofold. First, the main aim is to study a turbulent density driven
flow, which implies that the effective viscosity of the flow after transition to turbulence
is the eddy-viscosity. The eddy-viscosity is much larger than the kinematic viscosity,
making the parametrization given by Eq. (7.28) more appropriate. Additionally,
to derive Eq. (7.21), A(z, t) was scaled with ∆ρ/L, a scaling that does not hold
if the A(z, t) is given by Eq. (7.28). By extension to two-dimensional flows, the
parametrization was slightly adjusted to

A(z, t) = ∆ρ
L
− 2
L
|ρr|

p
. (7.29)

7.2.4. Non-dimensionalisation
Equations (7.26a-7.26c), can be written in non-dimensional form, by scaling the ve-
locity with the buoyancy velocity scale Ug, the spatial coordinates with h, the time
with tg = h/Ug, the pressure with ρrefU

2
g , the density with ∆ρ. In these equations,

the buoyancy velocity scale is defined as

Ug =

√
∆ρ
ρref

gh. (7.30)
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The non-dimensional equations are
∂ui
∂xi

= 0 (7.31a)
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∂ρ

∂y
= Γ

(
1− 2|ρr|

p
)
. (7.31d)

Three non-dimensional parameters appear: the gravitational Reynolds number Reg,
the Schmidt number Sc and the aspect ratio Γ. They are defined as

Reg =Ugh

ν
, (7.32a)

Sc =ν

κ
, (7.32b)

Γ =h

L
. (7.32c)

7.3. Application: illustration the stage transitions in
a density driven flow initially at rest.

We consider sustained turbulent, stratified shear flows forced by a horizontal density
gradient. Our simulation is based on the models derived in the previous section with
the horizontal density gradient as given by Eq. (7.31d). We qualitatively explore the
different stages of the flow from a fluid initially at rest towards the statistically quasi-
steady turbulent state. Our emphasis is on the reproduction of the most relevant
flow features as already reported in the literature without going into an in-depth
analysis of the (turbulent) flow which we consider at the moment beyond the scope of
the present study. Throughout the evolution of the flow, observation of its behavior
indicates that the flow undergoes several transitions starting from an initial state at
which the flow is at rest.

7.3.1. Temporal, evolution of the density distribution and mean
velocity profiles

The stage transitions of the flow are described below for one set of parameters, mainly
using visual representations of the density field as shown in Fig. 7.3. The value of the
Reynolds number has to be sufficiently large such that the flow becomes turbulent. For
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this analysis, the values of the non-dimensional numbers were set to Reg = 400, 000,
Γ = 1/60 and Sc = 50. The value of the Reynolds number is much larger than
the values used in the laminar simulations discussed in 5, but comparable to the
experimental values describec by (Simpson & Linden, 1989).

After the start of the simulation, the fluid initially at rest is set in motion due to
the horizontal density gradient. This horizontal density gradient generates a pressure
gradient that drives a typical exchange flow in which dense water is flowing at the
bottom in the negative y-direction (i.e. towards the left in the different figures) and
less dense water flows at the top in the positive y-direction (i.e. towards the right
in the different figures). Under the action of the induced velocity field driven by the
horizontal density gradient, the water-column slowly stratifies.

In Fig. 7.3a-d, snapshots from the density field are displayed for four different
moments. The mean velocity profiles (Fig. 7.3e) and the mean density profiles (Fig.
7.3f) corresponding to these snapshots are also shown. The profiles are accompa-
nied by the analytical solutions for a laminar, two-layered exchange flow, derived in
Chapter 5. The analytical velocity profile is given by

vp

Ug
=


RegΓ

3

(
1
8
z

h
+ 1

4

( z
h

)2
)

if z < 0

RegΓ
3

(
1
8
z

h
− 1

4

( z
h

)2
)

if z > 0,
(7.33)

and is anti-symmetric with respect to the channel half-depth (z = h/2) but symmetric
with respect to the ‘layer’ half depth (z = {h/4; 3h/4}). The minimum of analytical
solution of the velocity profile naturally occurs at z = h/4 while the maximum of the
velocity profile naturally occurs at z = 3h/4. The analytical density profile is given
by

ρp

∆ρ = 1
2 −H(z) (7.34)

with H(z) the Heavyside function, defined according to: H(z > 0) = 1, H(z < 0) = 0,
and H(z = 0) = 1/2.

In Fig. 7.3a, at t/tg = 75.0 (with tg = h/Ug), the density seems to be homoge-
neously distributed in the horizontal direction except near the top boundary where
patches of heavier fluid (ρr ∼ 0) coexist at the same height with patches of lighter
fluid (ρr < 0). The mean velocity profile is linear over a significant portion of the
water depth but two boundary layers have formed next to each wall (Fig. 7.3e). The
mean density profile is mirrored with respect to the velocity profile (Fig. 7.3f). This
feature implies that the water column is unstably stratified near the top and bottom
boundaries.

In Fig. 7.3b, at t/tg = 200.0, the density is now homogeneously distributed in
the horizontal over the entire water column, even near the boundaries. The mean
velocity profile exhibits a typical exchange flow, although its shape is different from
the shape of the analytical solution (Fig. 7.3e). The profile is still anti-symmetric
with respect to the channel half depth, but not symmetric with respect to the layer
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Figure 7.3: (a-d): Density field at different stages of the transient regime (respectively convective
overturning and undisturbed interface, wavy interface, turbulent interface). (e): Corresponding
velocity profiles and (f) corresponding density profiles. The analytical solutions, given by Eqs (7.33),
(7.34) are also displayed. The analytical velocity profile was rescaled in order to fit on the graph.

half-depth. This lack in symmetry is related to a much thinner boundary layer in
the simulations compared to the theoretical profile. The mean density profile shows
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the water-column is fully stably stratified (Fig. 7.3f). The profile clearly highlights
the presence of an interface between light and heavy fluid, but the density difference
between the top and the bottom of the channel is not yet equal to ∆ρ.

In Fig. 7.3c, at t/tg = 280.0, waves are now visible at channel half-depth. The
density gradient at z = h/2 has further sharpened and a pycnocline has now formed.
The mean velocity profile at t/tg = 280.0 does not differ much from the velocity profile
at t/tg = 200.0 (Fig. 7.3e), which suggests the mean velocity has reached its final
shape. The magnitude of this velocity profile is much smaller than the magnitude of
the theoretical laminar profile. Note, that this difference in amplitude between the
two profiles is much larger than explicitly appears on Fig. 7.3e, because the former
profile was divided by 30 in order to fit the graph. In general, the magnitude of a
velocity profile results from an equilibrium between the horizontal density gradient
forcing and dissipation. Since the forcing is the same between the theoretical profile
and the simulation profile, the differences in these profiles suggest that there is much
more dissipation in the simulation. The mean density difference between the top and
the bottom is now ∆ρ (Fig. 7.3f).

In Fig. 7.3d, at t/tg = 375.0, large structures are now visible at the interface
between the light and the heavy fluid. As a result, the interface is much thicker. The
shape of velocity profile is still relatively similar to the shape of the velocity profile
at t/tg = 280.0 (Fig. 7.3e) but the gradient steapness in the mean density profile at
z = h/2 is now lower than at t/tg = 280.0 and at t/tg = 200.0 (Fig. 7.3f).

7.3.2. The path to turbulence
It is possible to reconstruct the different stages that the flow undergoes based on the
observations in the previous sections, and backed by contour plots of the density in
a (y, z) slice of the computational domain (see Fig. 7.4). As already discussed, the
flow and density fields are anti-symmetric with respect to the channel axis. For the
description and discussion, we consider the flow behavior near the top boundary (as
the flow dynamics near the bottom wall can easily be inferred from this discussion).

Immediately after the start of the simulation, the fluid is set in motion and the
water-column stratifies. We refer to the very first stage of the flow as the laminar
stage (L). Shortly after this stage is established, the first instability appears. This
instability is a consequence of an important feature at these early stages of the flow
evolution. Close to the top boundary, a mean velocity profile vp(y) develops which
matches the no-slip condition at the top wall (with vp(y = h) = 0) and a high
velocity amplitude below the wall at z ≈ 0.8h (before becoming zero at the channel
axis). This means that lighter fluid is advected faster from left to right at a certain
distance below the top wall underneath heavier fluid close to the top wall. This
generates an unstable density stratification just beneath the top boundary. A similar
phenomenon occurs near the bottom boundary of the channel. Depending on the
flow characteristics one can expect two different processes to occur to counteract
the unstable stratification nearby the top and bottom walls. When the flow remains
laminar, diffusion processes are dominant to counteract unstable density gradients and
the density field will quickly adapt while satisfying the no-flux boundary condition
for the density field at the horizontal walls during this process. Basically, diffusive
time scales are much smaller than the relevant advective time scales and emerging
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Figure 7.4: Contours of the density in a (y, z) slice of the computational domain at four different
times.

instabilities are suppressed. It is, of course, also possible that these diffusive time
scales are large compared to advection time scales, thus at higher Reynolds number
flows. Instabilities can then grow and suddenly the unstable stratification is destroyed
due to vigorous convective overturning (CO).

For the present set of parameters, the unstable stratification is destroyed by con-
vective overturning. The phenomenon was the subject of the observations in Fig.
7.3a in which fluid patches of different density coexisted at the same vertical position.
This coexistence is explained by the fact that not all the patches sink or rise at the
same moment, but form plumes. Figure 7.4a displays, in two dimensions, a plume of
heavier fluid detaching from the region close to the upper wall and sinking into an
otherwise stably stratified and undisturbed fluid. The process, which is ongoing at
t/tg = 75.0 but already started earlier, is referred to as the convective overturning
stage.

After the event of convective overturning, the water column is completely stably
stratified. At t/tg = 200.0, the pycnocline is still mostly flat, with the planes of equal
density being strictly horizontal. However, significant disturbances in the isolines
ρr/∆ρ = ± − 0.450 are visible (Fig. 7.4b). We can claim that these disturbances
are due to wall turbulence rather than internal waves based on three arguments.
First, the water-column is almost non-stratified at that location. Second, the velocity
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profile showed in Fig. 7.3e displays a very thin boundary layer characteristic of wall
turbulence. Third, the magnitude of the velocity profile is much smaller than its
laminar theoretical counterpart, which suggest strong dissipation. We refer to this
stage as flat-interface turbulent (FIT) stage.

The flow continues to evolve and, at t/tg = 280.0, characteristic cusped waves
appear (see Fig. 7.3c). These waves are the result of an inviscid instability and oc-
cur with strong stratification. As a result, these waves are likely to be Holmboe, as
elaborated in the discussion section of this chapter, Sec. 7.4. These waves have been
extensively described in literature (Salehipour et al., 2016; Lefauve et al., 2018). In
contrast, another typical instability of stratified flows, the Kelvin Helmholtz instabil-
ity is limited to stratified flows with a relative small density gradient with respect to
the velocity gradient. On both sides of the pycnocline, structures are distinguishable
(see Fig. 7.4c), with an ejection, departing from the crests of the wavy interface in
the lower layer. We call this stage the Holmboe wave stage.

The magnitude of the Holmboe waves increases and the waves start to interact,
maybe fed by the turbulent kinetic energy of the layers above and below the pycno-
cline. This speculation is further clarified below. Eventually the Holmboe waves break
which leads to turbulence and a subsequent mixing layer seen in Fig. 7.3d). This phe-
nomenon is in agreement with previous studies (Salehipour et al., 2016; Lefauve et
al., 2018). The much thicker interface resulting from the mixing is clearly visible in
Fig. 7.4d.

Further evolution of the flow generates alternated periods of more mixing and less
mixing in the interface (not shown), in agreement with the intermittent stage observed
in (Meyer & Linden, 2014; Lefauve et al., 2018). The analyses of the density field
and the velocity profiles indicate that for Reg = 400, 000, the flow undergoes different
stages going from a flow initially at rest, to a turbulent flow in which an apparent
competition between stratification and turbulence leading to intermittent levels of
mixing of the interface. During this transition, the flow is subjected to convective
overturning and Holmboe wave with signs of stratified turbulence.

After having identified visually the different phases undergone by the modeled
exchange flow, it is useful to determine the signatures of these phases. Indeed, these
signatures can highlight stage transitions so that the flow stage can be identified
quickly and robustly without having to proceed to visual techniques. To do so, several
different physical quantities are analyzed. We start by investigating the temporal
evolution of three different quantities: the volume averaged fluctuating kinetic energy,
the thickness of the density interface or pycnocline, and the spatial distribution of the
gradient Richardson number.

First, the depth-integrated, horizontally-averaged kinetic energy of the fluctuating
part of the velocity field is defined as

FKE = 1
h

∫ h

0

1
2
∑
i

(ui − upi )
2
dz. (7.35)

Accordingly, it comprises contributions from wave-like behavior of the flow field as
well as from turbulent velocity fluctuations. Significant variation in FKE can indicate
the onset of turbulence, the presence of waves, the breaking of these waves, or the
damping of turbulence due to (re)stratification.
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Second, the interface thickness dint, can be defined in two different ways. Based
on the plane-averaged density, we can define the non-dimensional interface thickness
of the horizontally averaged density, ∆zρr

, as

∆zρr
= 1
h

(
z|ρp

r(z)=−0.25 − z|ρp
r(z)=+0.25

)
. (7.36)

Based on the contour lines of the local density shown in Fig. 7.4, we can define the
average thickness of the local density interface, ∆zρr

, as

∆zρr
= 1
h

(
zp|ρr(x,y,z)=−0.25 − zp|ρr(x,y,z)=+0.25

)
. (7.37)

The accuracy of this method naturally depends on the number of points used for the
averaging procedure. In the case of ∆zρr

, the number of points used for averaging is
equal to the number of points in a horizontal plane. In the case of ∆zρr

, the number
of points for averaging is equal to the number of points used to define the contour
lines, and can, therefore, vary slightly from line to line. As long as the flow is laminar,
the quantities ∆zρr

en ∆zρr
should give the same result. With the onset of waves,

the local fluctuations of the interface position will lead to an artificial smoothing of
the vertical density gradients and subsequent thickening of the interface as defined by
∆zρr

, which would be further pronounced with the breaking of the waves. In contrast,
the thickness of the interface defined by ∆zρr would still decrease with the onset of
waves, and only start to increase with mixing across the interface due to the breaking
of these waves. Accordingly the difference between ∆zρr

and ∆zρr
highlights the

onset of interfacial waves.
Finally, the gradient Richardson number is defined as

Ri = − g

ρref

∂ρpr
∂z(
∂up

∂z

)2 . (7.38)

This gradient Richardson number provides useful information about the linear insta-
bility of a two-dimensional exchange flow, and therefore, its ability to mix. Indeed
Ri < 0.25 is a necessary condition for linear instability of a two-dimensional inviscid
and stably stratified non-turbulent shear flow.

The three quantities, FKE, ∆zρr
− ∆zρr

and Ri, are displayed in Fig. 7.5. The
event of convective overturning is marked by a small bump in the FKE at t/tg = 75.0
(see Fig. 7.5a) and some small differences between ∆zρr and ∆zρr

. These differences
are marked by a short peak in relative difference between the two quantities (see 7.5b).
Interestingly, the FKE starts to increase with the convective overturning event, and
continues to increase relatively steadily afterwards. Since the interface is undisturbed
before and after the event, the increase in FKE cannot be related to waves. As a
result, the steady increase suggests that turbulence develops in each layer. At the
beginning of the simulation, only a region in the vicinity of the wall satisfies Ri < 0.25
and is potentially subject to turbulent mixing (see 7.5c). As the flow progresses, two
new regions appear where Ri < 0.25, roughly around z ≈ h/4 and z ≈ 3h/4. The
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Figure 7.5: Temporal evolution of (a) the fluctuating kinetic energy, (b) the interface thickness,
(c) the interface thickness with focus on the thin-interface stage, and (d) the gradient Richardson
number. The different stages: laminar (L), convective overturning (CO), flat-interface turbulent
(FIT), Holmboe (H), and intermittent turbulence (IT) are indicated on the graph, as well as the
moments in time displayed in the previous figures.
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vertical extent of these regions grows over time, but they are separated from each
other and from the wall by regions where Ri > 0.25. These regions correspond to the
region of the strong pycnocline (half channel depth) and to the regions of no shear
(below the walls).

Some waves are already perceptible in the three-dimensional density field and the
density contours (not shown) before the sudden increase of FKE. However, this event
could mark the growth in magnitude of the Holmboe waves at the interface due to
the contribution of vertical fluctuation to the FKE. This is further confirmed by the
relative difference between ∆zρr and ∆zρr

. The instant that the relative difference
between ∆zρr

and ∆zρr
is maximum coincides with the Richardson number dropping

below Ri < 0.25, marking the breaking of the waves and a period of mixing.
The time-span after the breaking of the Holmboe waves is marked by a period of

relaxation, during which the FKE decreases, the thickness of the interface increases
(and the difference between ∆zρr

and ∆zρr
decreases), and the value of Ri rises beyond

0.25 again. Again a little later, the whole process starts again, with the onset, growing
and breaking of interface waves or other instabilities, followed by turbulent mixing
and a relaxation of the interface.

So far, the results demonstrate an intermittent character of the turbulence in the
flow, a stage also identified as a regime by (Meyer & Linden, 2014; Lefauve et al.,
2019a) in the experiments. However, based on the deformation of the contour lines,
there are suggestions that wall turbulence is already present much earlier in the flow.
In order to identify the regions of larger fluctuating activity, the root mean square
(rms) velocities urms

i =
√
ui′2

p are displayed in Fig. 7.6. In this figure, the rms
velocities are non-dimensionalised with the wall friction velocity uτ =

√
τw/ρref =√

ν ∂vp/∂z|z=0.
During the period of convective overturning (Fig. 7.6a), the fluctuating activity is

confined to the regions very close to the wall. The fluctuations of the vertical velocity
are one order of magnitude smaller than the fluctuations in the streamwise direction.
This result indicates that an important part of the FKE is generated by wall bounded
turbulence and not by the convective overturning. Once the fluid column is fully
stably stratified (7.6b), the region of significant values of vrms is broader and not
anymore strictly confined to the wall region. The streamwise fluctuations are also
much larger than the vertical and spanwise fluctuations, in analogy with the results
from the turbulent plane channel flow simulated in (Kim et al., 1987). During the
Holmboe wave event, significant fluctuating activity is present over the entire fluid
column. Three local minima in vrms (streamwise) and urms (spanwise) are discernible,
the middle one corresponding to the pycnocline, and the other two to the regions of
minimum shear. The vertical fluctuations (wrms ) are now also significant, but the
profile is almost flat, in contrast with the profiles for the other two components. These
results picture a flow with considerable wave activity in the pycnocline and strong
turbulent activity on both sides of the pycnocline and in the wall regions. After the
breaking of the waves, the local minimum of the rms profiles in the pycnocline has
almost disappeared. In fact, vrms still has a smaller values in this region, while urms

and wrms are clearly maximum in what is now a mixing region. These result confirm
the presence of a region of vigorous mixing and strong turbulent activity.
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Figure 7.6: Root mean square velocities during (a) the event of convective overturning; (b) undis-
turbed interface; (c) Holmboe waves; (d) turbulent interface.

7.4. Discussion
7.4.1. Results in perspective of previous results
A question that emerged from the results is why wall turbulence is not reported in
previous studies, particularly in the study of Lefauve et al. (Lefauve et al., 2019a).
The answer might lie in the parameter values, and it is therefore necessary to compare
these values. In Chapter 6, it is shown that it is possible to define a unique Reynolds
number for inclined and horizontal ducts. This Reynolds number depends on the
inclination angle of the duct and is equal to Reg for a horizontal duct. Based on this
definition, the highest value of the Reynolds number in the inclined duct experiment
is 21,355 (Lefauve & Linden, 2020a), which is more than an order of magnitude less
than the value used in this simulation: Reg = 400, 000.

Overall, it is difficult to compare directly the present numerical set-up with the
inclined duct experimental set-up of (Lefauve & Linden, 2020a) when it comes to
regime transitions. Coarse grid simulations with lower Reynolds number values (not
shown) suggest that transition to a wavy regime or to turbulence occurs at much
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higher Reynolds number values than in the SID experiment. This reinforces the
previously mentioned intuition that the geometry of the experiment, and particularly
the edges of the duct might play a crucial role in regime transitions. The absence of
these edges, as well as the absence of side walls are the main difference between the
SID experiment and the present simulation.

To put the present results further into perspective, it can be helpful to compare our
simulation results to the results by Salehipour et al. (2016). They used a similar set-up
to the one used in this study. However, they imposed the mean velocity profile and the
mean density profile instead of imposing a horizontal gradient and letting the velocity
and density evolve freely. This choice was motivated by the purpose of the study: the
investigation of Holmboe waves, their generation mechanisms and their ability to
generate sustained turbulence. If we adjust to our problem formulation the functions
used in their imposed velocity and density profiles, we find that they evolve as vp(z) =
1
2∆vp tanh(z/d), and, ρrp(z) = − 1

2∆ρ tanh(z/δ). In this formulation, d and δ are
parameters that are determined by requiring the vertical derivatives of vp and ρr, to
be equal between the simulation profile and the analytical profile. Additionally, in our
case, ∆vp is the difference between the maximum and the minimum of the velocity
profile. The output profiles of the present simulation are compared with the imposed
profiles by (Salehipour et al., 2016) in Fig. 7.7, at t/tg = 200.00, which is before the
unset of Holmboe waves.

Figure 7.7: Simulation and analytical profiles of (a): the velocity and (b): the density.

It is evident that the agreement for the density profiles is very good over the
entire depth, while the agreement for the velocity profiles is good except near the
top and bottom boundaries. This result implies that the conditions at the interface
are potentially similar between the two simulation set-ups. As discussed previously,
there are no boundary layers in Salehipour’s set-up, due to the choice for the velocity
profile. This choice has no influence regarding the objective to simulate Holmboe
waves, provided that a mechanisms triggering the waves is present in the set-up. The
generation of Holmboe waves rather than Kelvin-Helmholtz instabilities is (partly)
controlled by the parameter Rρ = d/δ.

Based on previous studies, Rρ = d/δ close to unity is the identified condition
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Figure 7.8: Ratio between the vertical density gradient and the velocity shear at the center of the
channel and over time. The black dotted lines represent critical values of Rρ = 1 and Rρ =

√
8

for the exchange flow to be primarily susceptible to the Kelvin-Helmholtz instability,
while for Rρ � 1 is the condition for the flow to be primarily susceptible to Holmboe
wave instability. In their simulations, Rρ is scaled according to Rρ =

√
Pr, with

Pr = 8 the Prantl number, base upon (Smyth, Klaassen, & Peltier, 1988). In our
simulation, we clearly observed Holmboe waves. However, the velocity and density
profiles are not imposed here and Rρ is an output parameter of the model and not an
input parameter. In this regard, it is interesting to evaluate Rρ to see if it matches
the above mentioned condition for appearance of Holmboe waves. To do so, it is
necessary to estimate the value of the ratio

−∆vp
∆ρp

∂ρr
p

∂z

∣∣∣∣
z=1/2

∂vp

∂z

∣∣∣∣
z=1/2

.

Indeed, this quantity is equal d/δ to a first order approximation. This statement can
be proven by applying a Taylor series development to the functions describing the
imposed velocity and density profile.

The evolution of Rρ over time is displayed in Fig. 7.8, together with the lines
Rρ = 1 and Rρ =

√
8. Three features of this evolution deserve a specific mention.

First, the value of Rρ is indeed much larger than 1 and of the order of
√

8 just before
the onset of the Holmboe waves. Second, the value of Rρ varies quite significantly
in time. It does not seem to reach again the magnitude it attained just before the
onset of the Holmboe waves, after they have broken for the first time. However, it
has to be mentioned that the simulation has not been ran for a sufficient long time to
completely rule out the possibility that Rρ reaches this high values again. Third, Rρ

is not equal to
√

Pr in our simulation. Indeed, in our model it is the Schmidt number
that plays the role of Pr, and accordingly, Rρ is expected to be of order

√
50 = 5

√
2.

Several factors can explain this difference. It is possible that, due to the coarseness of



7.5. Conclusion 127

the grid, the effective Prantl number is much lower. It also might that the instability
and turbulence kick in way before Rρ can reach its maximum value. Nevertheless,
Fig. 7.3e and 7.3f showed that the velocity and density profiles did not evolve much
between the flat-interface turbulent stage and the turbulent interface stage. As a
result, it might be more probable that the turbulent Prandtl number (or in our case
the turbulent Schmidt number) should be used as a measure for Rρ, rather than the
molecular Prandtl number. It would be meaningful to compute this number from the
flow, but higher resolution is required to come up with a reliable result.

7.5. Conclusion
In this study, we simulated a strongly stratified shear flow driven by a horizontal
density gradient, with three dimensional coarse direct numerical simulations. We use
a new parametrization for the horizontal density gradient, that is inspired by the one
dimensional models presented by 5. This parametrization permits to simulate density
driven exchange flows with periodic boundary conditions without being troubled by
the phenomenon known as runaway stratification, in which the stratification grows
without bounds. The only input parameters are (i) a measure for the strength of the
initial density gradient (an aspect ratio Γ), (ii) a measure for the viscous processes (a
Reynolds number Reg), and (iii) a measure for the diffusive processes Sc. Therefore,
the mean velocity and mean density profiles were not prescribed but evolved freely
depending on these input parameters. As a result, it is now possible to simulate
with DNS/LES an exchange flow in which the mixing affects the mean profiles. This
feature unlocks possibilities of further research in which the exchange flow that are
modulated by oscillatory flows, such as in estuaries.

The results show a flow that undergoes several stage transitions from an fluid
initially at rest towards quasi-steady turbulent flows. During this transition, several
phenomena are observed such as convective overturning, Holmboe waves and mixing
of the interface due to turbulence. Particularly these last two phenomena are in
agreement with previous experiments and numerical simulations. The present set-up
stands out from previous numerical set-ups by its ability to reproduce time-periodic
stratification. Overall the study shows that the new parametrization produces reliable
results and opens the path for a whole new series of studies of turbulent exchange
flow that were unfeasible with the already existing techniques.





8
Conclusion

During this thesis a DNS/LES model was built to investigate specific physical pro-
cesses occurring in regions of freshwater influence. More specifically, two physical
processes were isolated and studied separately: the influence of the water-depth on
the structure of the turbulent oscillating boundary layer, and strongly stratified tur-
bulent exchange flows. The first physical process is used as a model for the tidal
boundary layer in shallow seas, whereas the second physical process is used as a
model for the exchange flows occurring in estuaries or river plumes.

8.1. Summary of results
The results of the simulation of the oscillating flow first identified the thickness of the
turbulent boundary layer in a sufficiently deep computational domain. Subsequently,
the height of the computational domain was reduced to be smaller than the previously
defined boundary layer thickness. This configuration acted as model for the tidal
flow in the Rhine region, where the boundary layer spans the entire water-depth. It
was found that in such a configuration, the structure of the boundary layer changes
significantly in three ways: (i) an increase of the phase lead of the surface velocity
and the wall shear stress on the free-stream velocity, (ii) a change in the amplitude
of the surface velocity (iii) a possible relaminarisation if the depth is decreased too
much.

In shallow seas, the Reynolds number values are larger than the ones used for
the simulations discussed in this thesis. As a result, the changes in phase lead and
amplitude are likely to be reinforced and could impact the modeling of shallow seas
using Reynolds-Averaged Navier-Stokes equations. In this type of numerical simula-
tions, the grid is too coarse to fully resolve the wall layer, such that a wall model
is used. These wall models generally assume the presence of a logarithmic layer and
that the first grid point is located within this layer. The results of Chapter 4 show
that, although a logarithmic layer is present in oscillatory flows, it is never present
throughout the entire oscillation cycle at the Reynolds values considered. Particularly
for shallow flows (i.e. the Rhine ROFI configuration), the intermittent turbulence also
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leads to an intermittent presence of the logarithmic layer. Nevertheless, the Reynolds
number cases reported in the present thesis are lower than the typical Reynolds num-
ber value of the tidal flow in the Rhine ROFI. As a result, more research is required
to investigate the accuracy of a logarithmic layer model for the Rhine ROFI.

The objective of simulating a strongly stratified exchange flow using a classical
DNS/LES domain could not be accomplished without the development of the new
one-dimensional models for exchange flow presented in Chapter 5. These new models
play a crucial role in (i) extending the state of the art theory of one-dimensional mod-
els to strongly stratified flows and (ii) unlocking the possibility to simulate strongly
stratified, turbulent exchange flows with the classical horizontally periodic compu-
tational domains used in fundamental DNS or LES simulations. Besides these two
direct applications, the one-dimensional models also bridge the gap between large
scale oceanography and fundamental fluid mechanics, since physical processes char-
acteristic of river plumes can now be simulated with DNS or LES.

As an additional result, the one-dimensional models for strongly stratified ex-
change flows also permitted to derive a generalized Reynolds number for the inclined
duct experiment. The analysis of this classical experimental set-up suffered from the
lack of continuity and uniqueness between the theories developed for inclined ducts
and horizontal ducts. The newly derived Reynolds number for inclined ducts has the
advantage of converging to the velocity scale for horizontal ducts when the inclination
angle of the duct tends to zero.

Finally, the one-dimensional model was used as a forcing mechanism in a three-
dimensional numerical set-up with periodic boundary conditions. This approach al-
lowed, for the first time to simulate strongly stratified exchange flows in such a set-up.
The simulation results are in agreement with other reference studies on the same topic,
including experiments and numerical simulations in a slightly different set-up. The
model was able to reproduce the Holmboe waves and turbulence observed in the pre-
vious studies. Most importantly, it allows for interactions of the mean flow and the
density profile.

8.2. Implications for the Rhine
The oscillatory boundary layer in shallow flows and the turbulent density driven
stratified exchange flow are two processes occurring in the Rhine ROFI. However, they
were studied in a more fundamental way in this thesis. Therefore, it is interesting
to estimate which impact the present results have on the understanding of the Rhine
ROFI.

8.2.1. Oscillatory boundary layer
As extensively discussed in Chapter 3, the Rhine ROFI is clearly shallow. This fact
implies that the Rhine is certainly affected by the phase shift and surface amplitude
changes reported in Chapter 3. The values of the ratio between the water-depth and
the theoretical turbulent boundary layer are similar in the simulations and in the
Rhine ROFI (see Tables 3.1). However, the flow is also governed by two other param-
eters, Reδ and Reh, with Reh = U0h/ν = Reδh/δs. In Chapter 3, it was suggested that
relaminarization observed in flows with a reduced water-depth would take place for
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Table 8.1: Tide related parameters for the Rhine ROFI and the relevant simulations

h/δ Reδ Reh
Rhine ROFI (neap) 0.51 7.82 · 104 1.23 · 107

Rhine ROFI (spring) 0.80 1.23 · 105 1.93 · 107

simulation 0.64 9.90 · 102 4.95 · 103

simulation 0.79 1.79 · 103 1.79 · 104

simulation 0.57 3.46 · 103 3.46 · 104

smaller time-intervals with increasing Reynolds number value. In Chapter 4, it was
found that the log layer was present for longer time intervals with increasing Reynolds
number value.

The free-stream Reynolds number of the Rhine ROFI, Refs was estimated based
on the kinematic viscosity, the oscillation period and the free-stream velocity. This
Reynolds number is related to Reδ via Refs = Re2

δ/2. For a Rhine ROFI depth of
h = 20m, the estimated parameter values for the Rhine ROFI and the simulations
are summarized in Table 8.1. The parameter values indicate that the values of the
Reynolds number are still several orders of magnitude higher in the Rhine ROFI than
in the simulation. Concretely, this fact probably implies that relaminarization effects
are significantly reduced if not absent in the Rhine ROFI, and that the log layer is
present for significantly larger time intervals. Nevertheless, the evolution of the phase
shift and amplitude certainly remains similar to the simulations. The simulation with
parameter values closer to the ones of the Rhine ROFI requires a significant increase
in resolution, and accordingly, computation time.

8.2.2. Exchange flows
To estimate if the flow regimes observed for the turbulent exchange flow have appli-
cations to the Rhine ROFI, it is interesting to estimate if the simulated parameter
values are realistic. The estimation of the physical parameters is based on numbers
found in literature, e.g. scientific articles or technical reports. In their article about
the Rhine Region of Freshwater Influence, de Boer and co-authors (de Boer et al.,
2009) show through sea surface temperature images, that 15 ◦C is a good estimation
for the seawater temperature around the Rhine river mouth. Along a transect near
Hoek van Holland (slightly north of the Rhine mouth) the salinity increases from 26
to 34 over a distance of roughly 50 km (Suijlen & Duin, 2002). For these values of the
temperature and salinity, the Schmidt number for salinity Sc varies between 679 and
697 (Ramsing & Gundersen, 2011). The average depth of the North Sea close to the
River Rhine mouth is assumed to be 20 m, in agreement with the idealized model by
de Boer et al. (2006).

The reference experiment of a density current generated by a horizontal density
gradient is described by Simpson and Linden (1989). They used a reservoir measur-
ing L =3.6 m long and h =150 mm deep. In their experiment, they do not provide
directly the used salinity gradient. However, they define the initial salinity distri-
bution as (neglecting the stratification) ρ = ρref (1− αx), where α varies between
6.5× 10−3 m−1 and 30.0× 10−3 m−1, and x varies between −L/2 and +L/2. Ac-
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cordingly, ∆ρ = ρrefαL and Ug =
√
αLgh. It is not clear if the definition of ρref in

Simpson and Linden (1989) is the same as in the current manuscript. However, in the
former paper ρref is expressed as averaged value, implicitly over the duct. This defini-
tion implies that the formulation ρref = ρ0 [1 + βsav] is consistent with both Simpson
and Linden (1989) and Chapter 5. Additionally, the salinity can be reconstructed
by recombining the relationships between the different density definitions leading to
∆s = (1 + βsav)αL/β. Assuming the minimum salinity in the experiments was 0,
sav = ∆s/2, we have ∆s = 2αL/(β(2 − αL)). Assuming the experiments took place
at 20 ◦C gives a Schmidt number larger than 531 (Ramsing & Gundersen, 2011).

The values of the parameters for the different situations are summarized in Table
8.2, together with estimates of the dimensionless numbers characterizing the flows.
In Chapter 5, it is shown that the magnitude of the exchange flow scales with ΓReg
so that this quantity can be considered as a good measure for eventual transitions to
turbulence. Clearly, the value of ΓReg occurring in the Rhine ROFI is higher than the
maximum value of the experiments by Lefauve et al. (2019a). It is in fact of the same
order of magnitude as in our simulations (ΓReg = 6666). Therefore, we can claim with
a quite high level of confidence that geophysical density driven flows are susceptible
to be subjected to Holmboe waves and a mixing of the interface. Nevertheless, the
Schmidt number in the Rhine ROFI is still one order of magnitude higher than the
Schmidt number in the simulation. Additionally, in Chapter 7 it is mentioned that the
grid used in the simulation is too coarse. As a result, simulating ROFI physics with
sufficient resolution requires significant grid refinements and, therefore, computation
time.

Table 8.2: Overview of the estimation of parameter values and non-dimensional umbers for dif-
ferent exchange flows, for g = 9.91 m s−2, β = 7.7× 10−4 (Geyer & MacCready, 2014) and ν =
1× 10−6 m2 s−1.

Parameter values
h (m) L (m) ∆s Ug (m s−1)

Rhine ROFI 20 5× 104 8 1.08

Non-dimensional numbers
Reg Sc Γ ΓReg

Rhine ROFI 2.17× 107 679-697 4.00× 10−4 8.69× 103

Simulation 4× 105 50 1.66× 10−2 6.66× 103

8.3. Outlook
Based on the previous paragraph, it is tempting to pursue the investigation by simu-
lating parameter values that are closer to the Rhine ROFI. With a better scaling of
the code (i.e. full parallelisation in the second and third direction), as well as sufficient
computation time, significant progress could be made in this direction. The progress
could be further emphasized by the expected increase in algorithm speed since the
start of this research project.
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However, what makes the Rhine ROFI interesting and unique is the combination
and interplay of the different physical actors. Accordingly, the focus should not be on
trying to match the same parameter values, but to increase step by step the complexity
of the model. This approach, could also lay the foundation of more specific estuarine
research, in which physical phenomena are not studied while isolated individually,
but are studied in combination. Proceeding this way would further bridge the gap
between fundamental research of classical fluid mechanics problems motivated by
estuarine physics on one side, and the research of river plumes using approaches and
techniques novel to the field on the other side. Several steps for including additional
processes in the model are proposed below.

8.3.1. Estuarine circulation
In Chapter 7, a turbulent stratified exchange flow was simulated using a plane chan-
nel configuration. For simplicity purposes, this symmetric set-up was chosen. The
symmetry simplified the verification of certain requirements, in particular that the
integral of the velocity over the vertical should be zero. However, a more realistic
set-up for a ROFI, and a set-up compatible with the oscillatory flow set-up, would
require a no-stress surface boundary condition. This change in boundary condition
would probably not affect the results and findings of Chapter 7, but it would make the
one-dimensional forcing more complex since the set-up would no longer be symmetric.

8.3.2. Tidal Straining
As mentioned in the introduction, tidal straining is an important component of the
Rhine ROFI hydrodynamics. However, tidal straining in the Rhine ROFI is a complex
mechanism that mainly results from a redistribution of the main tidal current (along-
shore) into the direction of the main horizontal density gradient (cross-shore) via the
Coriolis force. Therefore, an accurate reproduction of the tidal straining mechanism
would require the activation of the Coriolis force. Nevertheless, a simpler approach
would be to simulate a configuration in which the tidal flow is strictly aligned with
the horizontal density gradient, without activating the Coriolis force. This configura-
tion allows for example to study convective overturning. It certainly also requires an
adjustment of the one-dimensional forcing mechanism of Chapter 5 to cope with the
addition of the oscillating forcing. Accordingly, a preliminary study with a laminar
two-dimensional model is recommended, while taking care that the two-dimensional
model does not enter in the convective overturning regime (i.e. tidal straining and
de-straining only takes place via differential advection).

8.3.3. Tidal mixing and spring-neap tidal cycle
A key feature of the Rhine ROFI physics is the changes in average mixing rate of
the water column over the the spring neap tidal cycle. In the laminar regime, an
oscillatory flow and a perpendicular density driven flow are decoupled. However, in
the turbulent regime, momentum is redistributed in the three directions and the two
flows are expected to be strongly coupled. On the one hand, turbulence generated by
the oscillatory boundary layer can (i) modulate the mean velocity in the density driven
flow by a change in eddy viscosity and (ii) (partly) destroy eventual stratification.
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On the other hand, the stratification induced by the density driven flow can damp
turbulence generated by the oscillatory flow. To estimate to which level the density
driven and the oscillatory flow are influencing each other, a combined simulation
of an oscillatory flow and a perpendicular density driven flow can be undertaken.
It is recommended to carry out first a simulation without density. The turbulence
generated by the oscillatory flow alone could already modulate the magnitude of
the density driven flow due to changes in eddy viscosity. Once the latter process
is understood well, density can be turned on. In a later stage, the influence of the
spring-neap tidal cycle could be investigated by (i) changing the Reynolds number
values for the oscillatory flow or (ii) adding a second periodicity in the oscillatory flow
forcing.

8.3.4. Free surface
A significant short-coming of the present DNS/LES set-up as Rhine ROFI model is the
absence of a free-surface. In the Rhine ROFI, changes in the surface elevation related
to the propagation of the tidal wave can lead to relative changes in the water-depth of
about 10%. These changes impact the mean velocity profile, can modulate turbulence
and generate residual flows such as the Stokes return flow or the flow generated by the
velocity-depth asymmetry. However, a challenge while implementing a free-surface in
a periodic domain is that the domain size should be a multiple of the tidal wave
length applied at its surface. This factor severely constrains the possible domain size
and/or the tidal wave lengths that can be simulated. A different strategy could be
to assume a flat surface (implying the domain size is small with respect to the tidal
wave length) that moves homogeneously up and down according to the tidal forcing.
However, even such a simple free-surface model would require significant changes in
the algorithm upon which the code is built. For example, it may require a dynamic
adaptation of the grid to the varying vertical domain size.

8.3.5. Tidal ellipses
A last possibility of building a more realistic Rhine ROFI model is to attempt to
reproduce the typical tidal ellipses observed in the Rhine ROFI. Tidal ellipses were
reproduced by Salon et al. (2009), but in a case without a coast, without stratification
and in a much larger water-column. Their configuration was very close to the Prandle
(1982a) configuration. However, as discussed in the introduction, the proximity of the
coast induces a zero net flow condition in the cross-shore direction. The coupling be-
tween the top and the bottom layer (via the eddy viscosity) then determines if the
tidal currents are elliptic (weak coupling) or rectilinear (strong coupling). To repro-
duce this physical phenomenon, an oscillatory flow in shallow depth configuration is
required. Additionally, a vertical side wall should be included to approximate the
presence of a coast. The Coriolis force should be activated to enable the possibility of
having tidal ellipses. Finally, stratification should be switched on and off to change
the coupling between the top and the bottom layer in the computational domain. It is
crucial to mention that the stratification does not need to come from a lateral source
and it could be enforced directly as an imposed scalar field.
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Analytical solution for the

tidal ellipses
Prandle (1982a) derived an analytical expression for the tidal ellipses. Starting point
are the two-dimensional Shallow-water equations for the velocity components (u, v)
expressed in the horizontal plane (x, y):
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In these equations, f is the Coriolis parameter, g the gravitational acceleration, ζs
the surface elevation and νT the eddy-viscosity. Summing Eqs (A.1a) + i(A.1b), and
defining the complex velocity vector and the complex surface elevation gradient

R = u+ iv (A.2a)
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We can assume that the water motion is purely oscillatory, function of the tidal
frequency ω. As a result, the solutions for u and v are of the form

u(z, t) = a(z) cos(ωt) + b(z) sin(ωt), (A.4a)
v(z, t) = c(z) cos(ωt) + d(z) sin(ωt), (A.4b)
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where a, b, c and d are amplitude function associated to the velocity. It is possible to
notice that cos(ωt) =

(
eiωt + e−iωt) /2 and sin(ωt) =

(
eiωt − e−iωt) /2i. Subsequently,

it is possible to put R and G under the form

R = ‖R1‖ (z) exp (iωt) + ‖R2‖ (z) exp (−iωt) (A.5a)
G = ‖G1‖ exp (iωt) + ‖G2‖ exp (−iωt) (A.5b)

where ‖R1‖ and ‖G1‖ can be interpreted as the magnitude of a counterclockwise
motion, while ‖R2‖ and ‖G2‖ can be interpreted as the magnitude of a clockwise
motion. Inserting Eqs (A.5a), (A.5b) into Eq. (A.3) leads to an equation for the
counterclockwise motion, and an equation for the clockwise motion
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If the eddy-viscosity is assumed constant, it is possible to integrated these differential
equations. The solutions are then
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where R11, R12, R21 and R22 are integration constants that can be determined using
the boundary conditions. In the above equations, two boundary layer thicknesses
appear, δ+ related to the anti-clockwise motion and δ- related to the clockwise motion.
Theses boundary layer thicknesses are expressed as

δ+ =
√

2νT
f + ω

, (A.8a)

δ- =
√

2νT
f − ω

. (A.8b)



B
Analytical solution for the

finite depth Stokes boundary
layer

Depending on the top boundary condition used, two different analytical solutions are
possible for Eq. (3.3). If an infinite depth is assumed,

u∞(z; t) = −U0 exp
(
− z

δs

)
sin
(
ωt− z

δs

)
+ U0 sin (ωt) , (B.1)

where the subscript ∞ refers to the infinite-depth case. In the case of a finite-depth,
a no-stress boundary condition is applied at y = h. In this case, the solution is given
by

uf(z; t) =U0

(
A11 exp

(
z

δs

)
sin
(
ωt+ z

δs

)
+A12 exp

(
z

δs

)
cos
(
ωt+ z

δs

)
+A21 exp

(
− z

δs

)
sin
(
ωt− z

δs

)
+A22 exp

(
− z

δs

)
cos
(
ωt− z

δs

))
+U0 sin (ωt) ,

(B.2)
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and the subscript f refers to the finite-depth solution. The real constants A11, A12,
A21 and A22 are given by

A11 =−1
2

exp(−2h/δs) + cos(2h/δs)
cosh(2h/δs) + cos(2h/δs)

, (B.3a)

A12 = 1
2

sin(2h/δs)
cosh(2h/δs) + cos(2h/δs)

, (B.3b)

A21 =−1
2

exp(2h/δs) + cos(2h/δs)
cosh(2h/δs) + cos(2h/δs)

, (B.3c)

A22 =−A12. (B.3d)

The two velocities u∞ and uf, and the wall-shear stress associated to the latter, τw,f,
can be put under the form

u∞(z; t) = A∞(z/δs) sin (ωt+ Φ∞ (z/δs)) (B.4a)
uf(z = h; t) = Ah,f(h/δs) sin (ωt+ Φh,f (h/δs)) (B.4b)
τw,f(h; t) = Aτ (h/δs) sin (ωt+ Φτ (h/δs)) , (B.4c)

where the amplitudes A∞, Ah,f and Aτ read

A∞ (z/δs) = U0
√

exp (−2z/δs)− 2 exp (−z/δs) cos (z/δs) + 1 (B.5a)

Ah,f (h/δs) =
√

2U0
cosh(h/δs)− cos(h/δs)√
cosh(2h/δs) + cos(2h/δs)

(B.5b)

Aτ (h/δs) =
√

2ρ0νU0

δs

√
cosh(2h/δs)− cos(2h/δs)
cosh(2h/δs) + cos(2h/δs)

, (B.5c)

and the phases Φ∞, Φh,f and Φτ read

Φ∞ (z/δs) = arctan
(

exp (−z/δs) sin (z/δs)
1− exp(−z/δs) cos(z/δs)

)
(B.6a)

Φh,f (h/δs) = arctan
(

2 sin(h/δs) sinh(h/δs)
cos(2h/δs)− 2 cosh(h/δs) cos(h/δs) + cosh(2h/δs)

)
(B.6b)

Φτ (h/δs) = arctan
(

sinh(2h/δs) + sin(2h/δs)
sinh(2h/δs)− sin(2h/δs)

)
. (B.6c)
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Figure C.1: Reproduction of the profiles of Fig. 4.3. (a) logarithmic layer and (b) their associated
log-layer diagnostic Ξ function in normal scaling for Reδ = 990, h/δs = 10 and ωt = π/2.
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D
One-dimensional models

D.1. Determination of the barotropic pressure gradi-
ent

The equations of motion for a 1D water-column model located at y = 0 are obtained by
assuming w(z) = 0. Substitution of this assumption in Eq. (5.1) for mass conservation
immediately implies ∂v/∂y = 0. Using both expressions to simplify Eqs. (5.2) and
(5.3) results in

∂v

∂t
= − 1

ρref

∂p̃

∂x
+ ν

∂2v

∂z2 , (D.1)

0 = −∂p̃
∂z
− ρvarg . (D.2)

To determine the barotropic pressure gradient, Eq. (D.2) is integrated between z
and 1

2h, which gives

p̃(z) = g

∫ 1
2h

z

ρvardz̆ + P̃h
2
, (D.3)

where P̃h
2
is the pressure at z = 1

2h. Then, Eq. (D.3) is substituted into in Eq. (D.1)
which results in

∂v

∂t
= ν

∂2v

∂z2 −
g

ρref

∫ 1
2h

z

∂ρvar

∂y
dz̆ − 1

ρref

∂P̃h
2

∂y
. (D.4)

The unknown quantity ∂P̃h
2
/∂y can be evaluated by imposing the no net-flow condi-

tion over the vertical: ∫ 1
2h

− 1
2h

v(z; t)dz = 0, (D.5)

such that integrating Eq. (D.4) over z between − 1
2h and 1

2h gives

h
∂P̃h

2

∂x
= ρrefν

(
∂v

∂z

∣∣∣∣
1
2h

− ∂v

∂z

∣∣∣∣
− 1

2h

)
− g

∫ 1
2h

− 1
2h

∫ 1
2h

z

∂ρvar

∂y
dz̆dz. (D.6)
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The pressure gradient ∂P̃h
2
/∂y then depends on the boundary conditions for the

velocity. If a no-slip boundary condition is used both at the bottom wall and at the
top wall, the solution for the horizontal velocity v(z) is antisymmetric with respect to
z = 0, and one can easily show that ∂v/∂z|−h/2 = ∂v/∂z|+h/2. By partial integration
and employing the fact that ∂ρvar/∂y is an even function of z (at y = 0), see Fig. 5.3b,
we finally obtain

h
∂P̃h

2

∂y
= −g

∫ 1
2h

− 1
2h

∫ 1
2h

z

∂ρvar

∂y
dz̆dz = −gh

∫ 1
2h

0

∂ρvar

∂y
dz̆. (D.7)

Substitution of this expression in Eq. (D.4) gives

∂v

∂t
= ν

∂2v

∂z2 + g

ρref

∫ z

0

∂ρvar

∂y
dz̆, (D.8)

which is the expression for the momentum equation (5.15).

D.2. Maximum velocities and density differences
In the diffusion-dominated regime,

∣∣vd,∞/Ug∣∣ is maximum at z
h = ± 1

6
√

3 and

(∆vd,∞)max

Ug
=
√

3
108RegΓ , (D.9a)

(∆ρd,∞var )max

∆ρ = 1
720Re2

gΓ2Sc, (D.9b)∫ 1
2

− 1
2

∣∣∣∣∆vd,∞Ug

∣∣∣∣ dz∗ = RegΓ
192 , (D.9c)

∫ 1
2

− 1
2

∣∣∣∣∆ρd,∞var
∆ρ

∣∣∣∣ dz∗ = 11
23040Re2

gΓ2Sc. (D.9d)

In the high-advection/low-diffusion regime, |va,∞/Ug| is maximum for z
h = ± 1

4 , and
the magnitude of the velocity and density profiles is then

(∆va,∞)max

Ug
= 1

96RegΓ, (D.10a)

(∆ρd,∞var )max

∆ρ = 1 , (D.10b)∫ 1
2

− 1
2

∣∣∣∣∆va,∞Ug

∣∣∣∣ dz∗ = RegΓ
288 , (D.10c)

∫ 1
2

− 1
2

∣∣∣∣∆ρd,∞var
∆ρ

∣∣∣∣ dz∗ = 1
2 . (D.10d)
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D.3. Open-channel flow in the diffusion-dominated
regime

In environmental flows, the pressure at the upper boundary is obviously constant and
equal to the atmospheric pressure. In addition, one key assumption for the exchange
flow is that the there is no net flow over the vertical. In other words, the integral of
the velocity is zero over the vertical. However, the pressure induced by the horizontal
density gradient varies linearly with distance from the surface, but does not change
sign over the depth. Therefore, a small slope in the water surface is required, in order
to generate a constant pressure gradient with opposite sign to the baroclinic pressure
gradient. The sum of the two pressure gradients leads to a pressure gradient that
depends linearly on the depth and changes sign, driving the typical exchange flow.

In our numerical set-up, this slope in the surface is not possible, since we have
a rigid lid and just apply a no-stress condition. However, conservation of mass still
implies and the integral of the velocity over the channel height should be zero. The
only way to realize this is to have a non-constant pressure at the top boundary:

∂P̃ 1
2h

∂y
6= 0 . (D.11)

The derivation of Eq. (5.30) is similar as outlined in Appendix A but with a stress-
free boundary condition for the flow at the top of the channel. Additionally, we need
to take into account that for the open-channel flow ∂ρvar/∂y is not an even function
with respect to z = 0, in contrast to the derivation in Appendix A.

In the diffusion-dominated regime, Eq. (5.30) reduces to

∂v∗

∂t∗
= 1

Reg

∂2v∗

∂z∗2
+ Γ z + τ∗w. (D.12)

After integration, using a no-slip boundary condition at z∗ = − 1
2 and a no-stress

condition at z∗ = 1
2 , the steady-state solution vd,∞ is

vd,∞(z)
Ug

= RegΓ
24

[
3 z
h
− 4

( z
h

)3
+ 1
]

+ Regτ
∗
w

24

[
12 z
h
− 12

( z
h

)2
+ 9
]
. (D.13)

By setting the integral over the depth of Eq. (D.13) equal to zero, the unknown τ∗w
can be determined and is found to be equal to − 1

8Γ. Thus, finally

vd,∞(z)
Ug

= RegΓ
192

[
12 z
h

+ 12
( z
h

)2
− 32

( z
h

)3
− 1
]
. (D.14)

In the diffusion-dominated regime, vd,∞/Ug is maximum at z/h = 1
2 and minimum

z/h = − 1
4 , thus (

∆vd,∞
)

max
Ug

= 27
768RegΓ. (D.15)

In the diffusion-dominated regime, vd,∞/Ug is negative for −1/2 ≤ z∗ ≤ (7−
√

33)/16,
and positive for (7 −

√
33)/16 ≤ z∗ ≤ 1/2 (with (7 −

√
33)/16 ≈ 0.078). As a result
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the magnitude of the exchange flow is∫ 1
2

− 1
2

∣∣∣∣∆vd,∞Ug

∣∣∣∣ dz∗ = 39 + 55
√

33
32768 RegΓ ≈ 0.011RegΓ . (D.16)

The evolution of the density in the diffusion-dominated regime still satisfies

∂ρ∗var
∂t

= 1
RegSc

∂2ρ∗var
∂z∗2

− Γ u∗. (D.17)

The steady-state solution of this equation, using to no-flux conditions at z = ± 1
2h,

∆ρvar

∆ρ =
Re2

gΓ2Sc
1920

[
−10 z

h
− 5

( z
h

)2
+ 20

( z
h

)3
+ 10

( z
h

)4
− 16

( z
h

)5
+A1

]
.

(D.18)
If one of the two no-flux boundary conditions is satisfied, the polynomial given by
Eq. (D.18) automatically satisfies the other no-flux boundary condition, such that
one integration constant, A1, remains undetermined. This constant can be found by
integrating Eq. (D.17) between z = − 1

2h and z = 1
2h and using

∂

∂t

∫ 1
2

− 1
2

ρvardz
∗ = 0. (D.19)

Since initially ρvar = 0, it follows that A1 = 7/24. The steady-state stratification will
become

(∆ρd,∞var )max

∆ρ = 1
320Re2

gΓ2Sc. (D.20)

Since the solution ∆ρvar/∆ρ is a fifth-order polynomial, there is no general solution to
find its roots analytically. Numerically, it is found that the only root, ∆ρvar/∆ρ = 0,
for −0.5 ≤ z ≤ 0.5 is z = 2.88× 10−2, such that∫ 1

2

− 1
2

∣∣∣∣∆ρd,∞var
∆ρ

∣∣∣∣ dz∗ ≈ 1.02× 10−3Re2
gΓ2Sc. (D.21)
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Summary
Summary

Reproducing estuarine processes
with direct numerical simulations
in horizontally periodic domains

Turbulence plays a crucial role in estuarine flows, in general, and in region of fresh-
water influence (ROFI) hydrodynamics in particular, due to its contribution in mixing
processes and dispersion of particles. A method to study the role of turbulence is to
isolate specific ROFI processes and to analyze them with direct numerical simulation
(DNS) or large-eddy simulation (LES). In this thesis, two characteristic processes of
the Rhine ROFI were chosen: the hydrodynamics of the oscillatory boundary layer,
as a model for the tidal boundary layer, and the exchange flow driven by a horizontal
density gradient, as a model for the estuarine density-driven flows.

The oscillatory flow was simulated in a shallow water configuration, in which the
oscillatory boundary layer spans the entire water depth similar to the Rhine ROFI
(Chap. 3). The structure of the boundary layer experiences an increase of the phase
lead of the surface velocity and the wall-shear stress, and a change in amplitude of
the surface velocity, both with respect to the free-stream velocity. In addition, a
possible relaminarisation of the flow during part of the oscillatory cycle can occur.
Subsequently, the existence of the logarithmic layer in the velocity profile of the
oscillatory boundary layer was investigated (Chap. 4). For the simulated parameter
values, the logarithmic layer is never present throughout the entire oscillation cycle,
but its presence interval increases with the Reynolds number values and decreases with
the water depth. Additionally, the results show that the value of the von Kármán
constant and the intercept of the logarithmic layer are phase and Reynolds number
dependent.

The simulation of density driven flows in domains with periodic horizontal bound-
ary conditions required the development of improved one-dimensional (1D) models to
account for strong stratification (Chap. 5). Additionally, these 1D models overcome
several other challenges related to the simulation of density-driven flows. They are
able to tackle runaway stratification and predict an accurate evolution of the velocity
and density profiles when compared to two-dimensional simulations of such problems.
Subsequently, the existing theoretical framework for 1D vertical models used for den-
sity and velocity profiles in estuaries can be extended to strongly stratified estuaries.
Until now, this theory was limited to estuaries with weak stratification due to the
’well-mixed’ assumption. The new 1D models also lead to the derivation of a new
velocity scale for density currents over slopes (Chap. 6). This new velocity scale
outperforms previous velocity scales since it has the advantage of converging properly
to the velocity scale of density currents over horizontal bottoms in the limit of a very
weak slope.

When used in horizontal periodic domains, the 1D models enable to simulate
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sustained density currents using DNS and LES (Chap. 7). The 1D models were
applied as forcing mechanisms and the flow behavior showed qualitative agreement
with results from the existing literature. In particular, characteristic features of the
flow, such as Holmboe waves and interface turbulence where successfully reproduced.

The results presented and methods developed in this thesis form a solid base
for further research in environmental fluid mechanics, particularly in estuaries, and
in several fundamental (and often classical) fluid mechanics problems. For estuarine
research, the present models can be combined, or expanded with other physical mech-
anisms (e.g. the Coriolis force) to analyze the interaction and the competition of the
different physical mechanisms in estuaries. For classical flows, the models can be used
to further study turbulence processes in shallow oscillating flows or in stratified shear
flows.
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Samenvatting
Samenvatting

Het reproduceren van estuariene processen
met directe numerieke simulaties

in horizontaal periodieke rekendomeinen

Turbulentie speelt een cruciale rol in estuariene stromingen in het algemeen, en
in ROFI (Region of Freschwater Influence, ofwel regio van zoetwater invloed) hydro-
dynamica in het bijzonder. Turbulentie draagt namelijk bij aan de menging en de
dispersie van deeltjes. Eén van de methodes om ROFI-turbulentie te bestuderen is
om specifieke ROFI-processen te isoleren en ze vervolgens te reproduceren met di-
recte numerieke simulaties (DNS), of large-eddy simulaties (LES). In dit proefschrift
zijn twee kenmerkende ROFI processen uitgekozen die optreden in de Rijnmonding:
de hydrodynamica van de oscillerende grenslaag, en de stroming gedreven door een
horizontale dichtheidsgradient. Hierbij dient de eerste stroming als een model voor de
getijstroming en de tweede stroming als een model voor de de horizontale dichtheids-
effecten die optreden in riviermondingen.

De oscillerende stroming werd bestudeerd aan de hand van simulaties waarbij
de waterdiepte bewust klein is genomen, zodat de turbulente grenslaag de volledige
waterdiepte in beslag neemt, vergelijkbaar met de situatie in de Rijn ROFI (Hfdst.
3). De resultaten tonen aan dat er een toename optreedt van de mate waarin de
fase van de oppervlakte-snelheid en de fase van de wandschuifspanning voorlopen op
de fase van de snelheid van de vrije stroom. Tevens vindt er een toename plaats
van de amplitude van de oppervlakte-snelheid ten opzichte van de amplitude van
de snelheid van de vrije stroom. Bovendien is het ook mogelijk dat de stroming
weer laminariseert gedurende een deel van de oscillatie-cyclus. Als volgt van deze
bevindingen werd de aanwezigheid van de logarithmische laag in het snelheidsprofiel
van de oscillerende grenslaag onderzocht (Hfdst. 4). Voor de parameter-waardes die
in de simulatie gebruikt werden, is de logarithmische laag nooit aanwezig gedurende
de hele oscillatie-cyclus, maar groeit de aanwezigheidsinterval met het reynoldsgetal,
terwijl het krimpt met de waterdiepte. In aanvulling hierop, tonen de resultaten dat
de waardes van de von Kármán -constante en van het nulpunt van de logarithmische
laag veranderen met zowel de fase als de waarde van het reynoldsgetal.

De simulatie van dichtheidsgedreven stromingen in typische DNS en LES domeinen
vereiste het ontwikkelen van verbeterde één-dimensionale (1D) modellen. De horizon-
tale randvoorwaardes in typische DNS en LES domeinen zijn namelijk periodiek, en
daardoor moeilijk verenigbaar met de horizontale dichtheidsgradiënten. De bestaande
modellen waren al in staat om dit probleem voor zeer zwakke stratificatie op te
lossen, maar de nieuwe modellen breiden de oplossing uit voor zeer sterke stratifi-
catie (Hfdst.Chap. 5). Verder bieden deze nieuwe 1D modellen ook oplossingen voor
een aantal andere uitdagingen die gerelateerd zijn aan dichtheidsgedreven stromin-
gen. Ten eerste zijn ze in staan om het probleem van ’runaway stratification’ aan
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te pakken, één quasi oneindige toename van de stratificatie. Ten tweede, zijn de
modellen ook in staat om de ontwikkeling van snelheidsprofielen en dichtheidsprofie-
len accuraat te voorspellen, waarbij de resultaten van twee-dimensionale simulaties
van dezelfde stromingen als referentie dienden. Door deze eigenschappen kan het
theoretische kader van 1D verticale modellen voor estuaria opgerekt worden naar
sterk gestratifiticeerde toestanden, terwijl dit kader tot nu toe beperkt was tot estu-
aria met zwakke stratificatie (de aanname van een goed gemengde waterkolom). De
nieuwe 1D modellen hebben ook geleid tot het afleiden van een nieuwe snelheidsschaal
voor dichtheidsstromingen over een helling (Hfdst. 6). Deze nieuwe snelheidsschaal
overtreft de vorige snelheidsschalen aangezien deze netjes convergeert naar de snel-
heidsschaal voor dichtheidsstromingen over horizontale bodems zodra de helling naar
nul gaat.

Als de 1D modellen gebruikt worden als forcering in DNS/LES simulaties met
periodieke horizontale randvoorwaardes, leiden ze tot een realistische weergave van
gestage dichtheidsstromingen (Hfdst. 7). Het gedrag van de stromingen toonde
namelijk kwalitatieve overeenkomsten met resultaten uit de literatuur. In het bij-
zonder werden kenmerkende eigenschappen van de de stroming met succes gerepro-
duceerd, zoals Holmboe-golven, inwendige golven langs de overgangslaag tussen zout
en zoet water, en turbulentie rond de overgangslaag.

De getoonde resultaten en ontwikkelde methodes uit dit proefschrift vormen een
stevig fundament voor verder onderzoek in de stromingsleer toegepast op estuaria,
alsmede verschillende fundamentele (en vaak klassieke) vloeistof mechanica onder-
werpen. Voor verder onderzoek naar estuaria kunnen de huidige twee modellen
gecombineerd worden, of doorontwikkeld worden met behulp van andere physische
processen (bv. de Coriolis kracht) om de interactie en de competitie tussen de ver-
schillende fysische mechanismes in estuaria te bestuderen. Voor klassieke stromingen
kunnen de modellen gebruikt worden om turbulentie processen in ondiepe stromingen
en gestratificeerde schuifspanning stromingen te bestuderen.
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