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Chapter 1

Introduction

1.1 Tout à la mer

It is very clear that strategies based upon the ancient idea of “tout à la mer”,
literally meaning everything to the sea, should not be tolerated anymore. These
strategies, which consider water courses, rivers, lakes, seas and oceans as final sinks
able to absorb all of our wastes, can be disastrous, and the resulting threats for all
forms of life are simply enormous. The list of negative impacts is very long, ranging
from direct consequences on human health of poor-quality drinking water to indirect
effects resulting from the systematic poisoning of the aquatic life.
Due to the increasing importance of this issue, new fields have been established

such as environmental hydraulics and water quality modeling with one major goal:
to provide a better understanding of the fate of materials disposed in water bodies.
These materials may undergo two major processes: transformation and transport.
A lot of work has been and continues to be done on the transformation process in a
large diversity of fields, namely those of chemistry, physics and biology. Transport,
however, remains a crucial component in this kind of environmental studies.

1.2 Object of the thesis

In the present thesis, we intend to provide more insight in the transport into water
bodies. We are particularly interested in the transport of dissolved materials which
do not undergo any kind of transformation. If, in the future, transformation needs
to be incorporated into a full and more global model, this can be reasonably easily
achieved through model coupling. Here, we focus on pure transport.
The close relationship between the water flow and the transport of material is

well known. In fact, any fundamental study of water quality requires knowledge of
the pathway, volume and velocity of the water. In practical terms, the first step in
any water quality modeling study is to determine “where the water goes” and how
water movement affects the concentration of dissolved and suspended materials [28].

1



2 Introduction

As in most academic fields, modeling is the key tool to be used for prediction.
Thanks to the advances made in the field of hydrodynamics in the last decades and
the availability of modern computers, numerical simulation of transport processes is
becoming feasible. Flow and transport are in fact moving forward from the old com-
bination of measurement and description towards a new era of numerical transport
modeling [28].
The key objective of this thesis is the development of an innovative Eulerian

two-dimensional and three-dimensional transport model able to predict transport
routes in the coastal environments. This is a challenging and important research
subject, relevant to a diversity of fields such as civil and environmental engineering,
fisheries and oceanography. One main difficulty in this type of modeling resides in
the fact that coastal zones usually present complex geometries leading to complex
flows with highly varying velocities and water depths.
From a mathematical point of view, the transport of a dissolved tracer is governed

by the advection-diffusion equation. This equation incorporates the two mechanisms
through which a tracer is transported through a water body. The first is advection,
defined as the transport due to the bulk movement of water. The second is dis-
persion which is the spreading resulting from small local variation of the velocity
field. Molecular diffusion, which represents the spreading at the molecular level,
is in general much less significant than dispersion and is often considered simply
as a contributing process to the dispersive movement. Although the terminology
advection-dispersion equation can be found in the literature, here we use the term
advection-diffusion since the mathematics of diffusion is applied.
While the three-dimensional governing equation has been known since the 18th

century, only relatively recently has the introduction of computers and numerical
solutions made general solutions possible [28]. Considerable progress has been made
in this context, and nowadays, modern methods are subject to constantly increasing
requirements, namely:

• the possibility of representing spatial domains with complex geometries,
• the use of large computational time steps,
• robustness and positivity, and
• sufficient accuracy.

Among the latest advances in the domain of Eulerian tracer transport computa-
tion, we denote the works of Colombini and Stocchino [8] who proposed a 3-D finite
difference model based on the Quickest method to solve the transport equation.
Liang et al. in [24] used a collocated finite volume method to solve the coupled flow-
transport equations using a MUSCL-Hancock scheme on a structured grid. In the
field of tracer transport, unstructured grids and in particular triangular grids were
notably used in the works of Lin et al. [26], Berzins [4], Durlofsky [16, 17] and Mazzia
et al. [30]. Basically, these are developments to the early works of Venkatakrishnan
and Barth who were perhaps the firsts who extended one-dimensional schemes to
triangles in the field of airfoil calculations [48].
In this thesis, we intend to bring further new developments in the field of uncou-

pled transport computation. In particular, we solve the advection-diffusion equation
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using a second order accurate cell centered finite volume method on an unstructured
quadrilateral grid. This is a rather new type of applications that we want to investi-
gate in order to achieve the objectives mentioned above. Moreover, we aim to state
a clear definition of the conditions necessary to fulfill in order to obtain positive and
conservative results, which is a very important aspect in any transport simulation.
New techniques to improve the computational aspect of the uncoupled flow-transport
models are investigated. One of these techniques consists of using time integrated
flow data which can be an efficient tool to speed up the computations and reduce
the required storage.

The Dutch coastal region constitutes the main real-life application of the model.
In this area, the North Sea receives pollution released from rivers such as Rhine,
Meuse, Scheldt, Eems and Thames, of which the major contributor is river Rhine
[12]. A large number of studies has been conducted on pollution in this part of the
world; we only mention as examples [12], [43], [40]. By providing a tool for gaining
more insight in the transport of pollution in coastal areas, we hope to contribute to
solving the pollution problem.

In general, the model built is meant to be an efficient tool for determining the
spatial and temporal spreading of released tracers. Knowing the critical levels of
pollution, it can assist in developing and designing measures against pollution with
as much accuracy as possible in order to minimize the costs when attempting to
reduce pollution. This is very desirable since pollution reduction may involve high
financial costs, especially for large scale systems. Other possible uses are for instance
to study remediation options for polluted bays and estuaries, to predict the impact
of possible environmental incidents on fisheries and marine wild life or to model
salinity intrusion effects.

1.3 Outline of the thesis

Chapter 2 of this thesis starts by presenting the 2-D transport solver and its under-
lying governing equation and numerical solution method. Particular emphasis is put
upon measures to be taken in order to ensure positivity of the solution for real life
applications. This chapter also presents two techniques that can be used to improve
the computational aspect, namely the use of time integrated flow data and the use of
periodic continuation. These techniques can present considerable advantages when
the flow computations and transport computations are decoupled as in our case.
With the time integrated flow data, the use of different time steps in the transport
solver and in the flow solver becomes possible, which allows in particular to use
larger time steps for the transport computations. It allows also to use flow data sets
obtained from third parties without being restricted to use the same time step. For
the periodic continuation, the major advantage may consist in a large reduction of
the required data storage space for the flow parameters.

Chapter 3 presents and discusses the numerical results of the 2-D model. The
Dutch coastal area, described in this chapter, was selected for the numerical appli-
cation of the model and the major simulated scenario consists of a pollutant release
close to famous harbor of Rotterdam. The solver allows to describe the transport
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process and to determine when the fragile ecosystem of the northern Dutch coast
becomes threatened. Based on this numerical application, the proposed techniques
to improve the computational aspect are evaluated.
The approach adopted to build the 3-D version of the transport solver is presented

in chapter 4. Particular attention is given to the computation of the different fluxes
of the finite volume method adopted. Also, techniques to optimize the data structure
at different stages of the computation are presented. This issue of optimizing the
data structure is of course important because of the large amount of data present in
a 3-D computation.
Chapter 5 is dedicated to the numerical application of the 3-D solver. A hy-

pothetical as well as a real-life case are considered; the latter is also related to the
Dutch coast. For those special cases, the analysis of the obtained results allows to
investigate several aspects notably related to the importance of the vertical diffusion
coefficient or related to the question whether a 3-D model is required for an accurate
simulation or a 2-D assumption suffices.
Finally, chapter 6 contains the general conclusions of this thesis and recommen-

dations for future related implementations.



Chapter 2

An Eulerian 2-D finite volume
solver for transport processes

2.1 Introduction

The forerunner of this project was first conceived in the early nineties in response
to the constantly increasing importance of numerical modeling in the environmental
domain. The interest was particularly in building a modern and powerful solver able
to simulate the transport processes of dissolved pollutants.

There, a two-dimensional approach was adopted together with an unstructured
triangular mesh grid. The finite volume method, which was gaining in interest
mainly thanks to its robustness properties, was chosen to solve the numerical prob-
lem. Results related to this work have been published, notably in [53] and [54]. The
original work on the solver was followed by efforts to add further functionalities.
One of the objectives was the use of hybrid grids, that is, a grid mesh not limited to
triangular cells but using mixed types of cells, which is described in details in [46]
and [45].

Before starting the contributions made within the present thesis to this project,
this chapter gives an introductory description of different features of the 2-D trans-
port solver. After an introduction of the governing equations, special attention is
given to the computation of the flow, which provides the parameters required for
the transport problem. Then, the finite volume technique adopted is presented with
emphasis on the flux computation. The general computing algorithm is described
as well as some aspects related to the data structure. Then follows a section on
measures to be taken in order to ensure positivity of the computed concentrations.
In fact, for some real-life applications, it was found that negative values can still be
obtained if arbitrary hydrodynamic parameters are used. One of the main reasons
behind this problem is the lack of consistency between the flow numerical scheme
and the transport numerical scheme. Negative values can also appear when the flow
calculations are not completely conservative or also when drying and wetting takes

5
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place in some parts of the domain. This section brings about clearly defined pre-
processing steps required to preserve the conservation properties and to avoid the
appearance of negative concentrations.

The last section of this chapter presents some techniques to reduce the amount
of data to be stored. Uncoupled flow and transport computations need a lot of disk
space for which reason, techniques allowing the reduction of the storage are required.

2.2 Governing equation

In case of negligible density changes, the concentration of a single phase miscible
tracer obeys the general three-dimensional advection-diffusion equation (or transport
equation)

∂c

∂t
+
∂uc

∂x
+
∂vc

∂y
+
∂wc

∂z
=

∂

∂x
(Dh

∂c

∂x
) +

∂

∂y
(Dh

∂c

∂y
) +

∂

∂z
(Dv

∂c

∂z
) + S , (2.1)

where c(x, y, z, t) is the concentration of the tracer, (u, v, w) is the velocity vector,
and S is the external source term. We assume that the diffusion tensor reduces
to two scalar parameters, Dh and Dv, representing the diffusion coefficients in the
horizontal and vertical directions, respectively.

In case of a 2-D approach, equation (2.1) can be integrated over the total water
depth to obtain a depth averaged equation. Let c̄ be the average value of the
concentration over the depth

c̄ =
1

H

∫ η

−h

c dz , (2.2)

where h and η are the level of the water surface and that of the bed of the water
body with respect to a certain reference plane, respectively, as presented in figure 2.1.
H = h + η is the total water depth.
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Figure 2.1: Water depth parameters
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Let u represent the depth-averaged velocity vector. The depth averaged trans-
port equation can then be written under the so-called 2-DH formulation,

∂Hc̄

∂t
+∇.(H u c̄) = ∇(HDh∇c̄) +H S . (2.3)

This partial differential equation is a conservation law, the coefficients of which
are functions of the flow parameters. These are obtained a priori using a separate
model which solves the shallow water equations. The next section is related to this
issue and briefly describes presentation of the flow computation.

2.3 Flow computation

Transport and flow are often solved separately which means that the transport is
computed with an a priori known velocity field for the whole domain and the whole
simulation period. The choice for the uncoupled approach presents a number of
advantages. One major advantage resides in the possibility of using different time
steps for the flow and for the transport. In fact, these two phenomena have a
large difference in time scale between them and the coupling between the two will
hamper the use of large time step for the transport computation. Another advantage
consists in the possibility of using a single flow data set to simulate several transport
scenarios without having to repeat the same flow computation every time. Finally,
uncoupling may allow the use of flow data sets obtained from third parties but this
is not always possible, as will be concluded later in this chapter.

2.3.1 Shallow water equations

Shallow water equations are commonly used to model the oceanographic circulation
and the tidal fluctuations. These depth-averaged (or 2-DH) equations basically
describe the conservation of mass and momentum of water in movement.

∂Hu

∂t
+
∂Hu2

∂x
+
∂Huv

∂y
− fHv + gH

∂η

∂x
= τwu − τ bu

∂Hv

∂t
+
∂Huv

∂x
+
∂Hv2

∂y
+ fHu+ gH

∂η

∂y
= τwv − τ bv

∂η

∂t
+
∂Hu

∂x
+
∂Hv

∂y
= 0 , (2.4)

Here, τwv and τ
w
v are the wind stress components, τ

b
u and τ

b
v are the bottom stress

components, f is the Coriolis parameter, and g is the gravitational constant. The
unknown u and v are now the depth-averaged velocities. An extended discussion on
the shallow water equations and the mathematical modeling of flows can be found for
example in [51]. Basically, the last equation of system (2.4), the mass conservation
equation, is of interest for our transport computations since the conservation of the
transported substance is closely related to that of water.
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2.3.2 Flow solver

For this thesis, the software package WAQUA of the Rijkswaterstaat has been used
to carry out the flow computations. Rijkswaterstaat, or RWS, is the Directorate-
General for Public Works and Water Management in the Netherlands. WAQUA is
also one of the oldest and most commonly used computation models at the National
Institute for Coastal and Marine Management (RIKZ).
WAQUA is a two dimensional hydrodynamical model which computes water lev-

els and currents in open water. Physical domains are represented in WAQUA either
by rectilinear, curvilinear or spherical structured grids. The grids must be orthog-
onal or nearly orthogonal. The staggered grid which forms the basis of WAQUA
implies that a modeled system can be regarded as consisting of a large number of
linked, column-shaped volumes of water. Figure 2.2 reproduced from [19] gives an
impression of the staggered grid principle.

Water level

Depth

Figure 2.2: Water depth parameters

The corners of the volumes correspond to the grid depth points, the central
points, to the water level points. Water flows through the sides of the volumes
satisfying the conservation principle

storage = input− output .

The side of a volume is called a face. WAQUA computes the normal velocity at
the midpoints of the faces. Except for the special cases where the bottom gradient
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is too steep, the total water depth at the faces corresponds to the sum of the depth
values averaged along the face and the water level values averaged perpendicularly
to the faces.
WAQUA solves the system of shallow water equations (2.4) using an ADI stag-

gered time integration method over two half time steps. A detailed description of
this method can be found in [42]. For a cell of quadrilateral shape, the discretized
form of the continuity equation in (2.4) resulting from the ADI method reads as
follows

Hn+1
cell −Hn

cell =
τ

A
(
Hn+1

1 V n+1
1 +Hn

1 V
n
1

2
l1 +

Hn+1
2 V n+1

2 +Hn
2 V

n
2

2
l2

+ H
n+ 1

2
3 U

n+ 1
2

3 l3 +H
n+ 1

2
4 U

n+ 1
2

4 l4) .

(2.5)

In this equation, Ue and Ve, e = 1, . . . 4, are the normal velocities at the midpoint of
the face as presented in figure 2.3-a. le, e = 1, . . . 4, are the lengths of the faces and
n is the time index. He, e = 1, . . . 4, are the total water depths at the midpoint of
the faces. Referring to figure 2.3-b, He is computed in WAQUA as follows

He =
η(c1) + η(c2)

2
+
h(v1) + h(v2)

2
. (2.6)

V

U

U

V

1

2

3

4

U

V

c1 c2

v1

v2

(a) (b)

Figure 2.3: Velocities and water depths at the cell faces

Finally, we notice that the 3-D version of WAQUA is called TRIWAQ and will
be used as the flow simulation tool in chapters 4 and 5.

2.4 Solution procedure for the transport problem

In general, numerical methods used to solve the advection-diffusion equation are
classified as Eulerian, Lagrangian or mixed Eulerian-Lagrangian [33]. In the La-
grangian approach, transport is computed by tracking the movement along charac-
teristics without using a fixed grid. These methods perform reasonably well in case
of advective dominated problems by essentially eliminating numerical diffusion but
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they usually suffer from local mass balance errors due to the use of interpolated
velocities. They also may suffer from numerical instabilities and computational dif-
ficulties due to the lack of a fixed grid [55].
On the contrary to Lagrangian methods, Eulerian methods solve directly the

advection-diffusion equation at grid points, usually using numerical methods such
as finite difference or finite element. They present the advantage of being generally
mass conservative and of handling diffusion dominated problems accurately. They
are also more adapted to long term simulations which makes them better fitted to
scenarios of continuous tracer release for example. It is well known however that
they are susceptible to excessive numerical diffusion and artificial oscillations.
Mixed Eulerian-Lagrangian methods try to combine the advantages of both

methods. An interesting comparison between the different methods can be found in
[56].
A relatively more recent sub-class of the Eulerian methods consists of the higher-

order finite volume methods originally developed in the field of computational fluid
dynamics. These methods have the advantage of reducing numerical diffusion thanks
to their higher order of accuracy and, in the same time, they can prevent the ap-
pearance of artificial oscillations when flux limiters are used.
In this thesis, we are interested in this last category of methods which showed

to be a good compromise to the techniques mentioned above. The implementation
of this type of methods for unstructured grids is a challenging task especially for
regions with complex geometry which is often the case when dealing with coastal
areas.

2.4.1 Unstructured grid

One of the advantages of using unstructured grids is the great flexibility in discretizing
domains with complex geometries, which often occurs when the application deals
with natural systems. This was one of the arguments behind the selection of the
finite volume method for solving our advection-diffusion problem since this method
is very well adapted to the use of unstructured grids (although structured grids can
also be used). An extensive comparison between structured and unstructured grids
can be found in [14].
In the context of this thesis, the major numerical application concerns the Dutch

coast, and as mentioned in section 2.3.2, the flow parameters are computed using
the WAQUA/TRIWAQ package based on a structured grid concept. The use of the
same grid for the transport presents a number of advantages, notably:

• huge previous efforts have already been done to construct and improve this
particular grid of the Dutch coast and it is really worth to benefit from this
previous valuable work,

• the reconstruction of a new grid is an enormous task which goes out anyway
from the scope of the present thesis,

• in general, the use of different grids results in the necessity of further inter-
polations to get the parameters at the required places. This is not always
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appreciated because the flow conservation becomes difficult to ensure. As will
be detailed later in this section, the location of the velocity computational
points in WAQUA/TRIWAQ are particularly convenient to ensure some con-
servation properties for the transport computations.

Although we use exactly the same grid as in WAQUA, it is addressed by our
solver as to be unstructured with quadrilateral shaped unit volumes. In fact, the
output of the hydrodynamic computations as well as all the time-independent data
are reformatted in order to satisfy the input requirement of our unstructured grid-
based solver.
The staggered aspect of WAQUA/TRIWAQ grids presents an advantage for our

transport solver. The velocities located at the midpoints of the edges and the total
water depths at cell centers are exactly what we need to ensure conservation prop-
erties. The cell-centered finite volume method to be used in this project appears
therefore as a natural choice to ensure conservation. In fact, in this type of discretiza-
tion, concentration values are located at cell centers, coinciding therefore with the
total water depths and the fluxes of pollutant coming in and going out through the
faces where the velocities are exactly known. In this context, Perot presents in [35] a
discussion on the attractive conservation properties of unstructured staggered mesh
schemes.
Further details about unstructured grids techniques can be found in [3], [29],

[38], [47].

2.4.2 Finite volume formulation

Finite volume methods are a class of discretization schemes that have proven highly
successful in solving a large variety of conservation law systems. They are extensively
used in fluid mechanics, meteorology, electromagnetics, semi-conductor device sim-
ulation, model of biological processes and many other engineering areas governed
by conservative systems that can be written in integral control volume form [2],
[20]. References for a general introduction to this class of methods can be found for
example in [52] and [36].
The general idea of the finite volume method consists in subdividing the spatial

domain into “finite volumes”, or grid cells, and keeping track of an approximation
of the integral of the unknown over each of the volumes. The values are modified
each time step by the fluxes through the edges of the grid cells. Because they are
based on the integral formulation, finite volume methods are closer to the physics
than other methods solving the partial differential equation [20], [36]. They are
particularly effective when the solution contains discontinuities.
Then, we formulate our finite volume scheme. The physical domain is covered

with a grid formed by quadrilateral shaped elements. The area of one element is
denoted by A and the boundary ∂A is composed of four elements e of length le.
The depth-averaged concentration c̄ in (2.3) is now simply represented by c. Let
f = Hu c. and g = HDh∇c. Equation (2.3) then becomes

∂Hc

∂t
+∇. f = ∇. g+H S . (2.7)
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Integrating (2.7) over one grid cell and applying Green’s divergence theorem, we get∫
A

∂Hc

∂t
dA+

∑
e∈ ∂A

(

∫
e

f.ne dσ) =
∑
e∈ ∂A

(

∫
e

g.ne dσ) +

∫
A

H S dA , (2.8)

where ne denotes the outward unit normal vector to the cell edge e and the discrete
sum is calculated over the edges surrounding the cell. The edge integrated advective
fluxes

∫
e
f.nedσ and

∫
e
g.ne dσ are approximated by fele and gele, where fe and ge

are the advective and diffusive numerical fluxes, respectively. Now, we can write

A
∆Hc

τ
+
∑
e

(fe le) =
∑
e

(ge le) + AH S , (2.9)

where τ is the time step.

2.4.3 Approximation of the advective flux

In general, the approximation of the numerical advective flux along the edges de-
pends on the location of the flow variables. Recall that in our case, the normal
velocities at the midpoints of the edges are available from the flow solver. There-
fore, fluxes are computed at the same location on the boundaries ∂A .
Different forms for the advective numerical flux can be found in the literature.

See for example [7], [9], [26], [16], [17], [27], [34], [54], and [53]. Following the last 6
references, we use the upwind Enquist-Osher function, which reads

fe(c
L
e , c

R
e ) =

ue + |ue|
2

He c
L
e +

ue − |ue|
2

He c
R
e , (2.10)

where cLe and c
R
e are the estimated values of the concentration at the left and right

sides of edge e. He and ue are the water depth and the normal velocity at edge e,
respectively .
For the sake of second-order accuracy, we proceed with a linear reconstruction

of the concentration ce at cells’ interfaces. The molecule depicted in figure 2.4 is
used as a basis for this reconstruction. In this figure, we call cell 1 and 2 primary
cells and cell 3 to 8 secondary cells. The side of the edge at which the concentration
gradient is computed depends on the direction of the flow.
The Green-Gauss technique is used to compute the directional gradient. Let us

consider the case of figure 2.4, where the flow at edge e is directed from cell 1 to
cell 2. Let t1e be the vector pointing from the center of cell 1 to the midpoint of
edge e and A134 the area of the shadow triangle delimited by points (P1P3P4). It
holds that A134 =

1
2
|t13.n41| with n41 being the normal to vector t41. The gradient

of the concentration ∇1 in cell center 1 can be estimated as

∇1 ≈ 1

A134

∫
(134)

∇c dA = 1

A134

∫
∂(134)

c n ds . (2.11)

Approximation of the integral using the midpoint rule gives

∇1 ≈ 1

A134

∑
e∈∂(134)

ce ne =
n41(c1 − c3) + n13(c1 − c4)

2A134
. (2.12)
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Figure 2.4: Molecule used for the evaluation of the advective flux

It is well known that the use of limiters comes hand in hand with the recon-
struction of edge values in order to avoid spurious oscillations. Therefore, the final
reconstructed concentration ce has the following form

ce = c1 + ψ δe1 , (2.13)

where δe1 = ∇1 . t1e and ψ is a limiting function.
It is important here to mention the interesting result obtained by Wilders and

Fotia, who have studied a system of the form

AH
∆c

τ
= −F (c, v) . (2.14)

This system is similar to our system (2.9) but without the diffusion and source
terms and in which the water depth values were assumed to be constant or “frozen”
in time. They have found out that provided a suitable choice of the limiter together
with a grid which satisfies the so-called TVD triangulation, one can ensure positive
solution. A presentation of this result is provided in section 2.7.1 and further details
can be found in [54].
With our quadrilateral mesh grid, we would prefer to benefit from this positivity

property. This is one reason for keeping the triangular form of the shadow area
and using only two out of the three secondary cells to compute the concentration
gradient. Although it can be re-adapted so that the shadow area includes all four
points, we leave it as it is for the time being notably because now we are left with
some flexibility in choosing which two secondary cells to use. In fact, the selection
is made in such way that one of the positivity conditions to be presented later in
section 2.7.1 remains satisfied.

2.4.4 Boundary treatment of the advective flux

There are three different types of boundary treatments for the edges located at the
boundaries of the domain. A zero-flux condition is adopted for closed boundaries or
walls. In this case, the advective flux is zero and there is no need to any computation.
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For open boundaries, one of two cases may apply: if the normal velocity at the edge
is directed to the inside of the domain, a prescribed value of the concentration should
be given; otherwise, there is no boundary condition and a simple upwind procedure
is applied.

2.4.5 Approximation of the diffusive flux

The evaluation of the numerical diffusive flux reduces basically to computing the con-
centration gradient along each face of the domain. We propose to use the shadow
volume limited by points (P1PaP2Pb) in figure 2.5 in order to compute the gradient
of c along face e. In this figure, points P1 to P6 are the cell centers where the con-
centration is computed. These points constitute the basic molecule for the diffusive
flux computation. Point Pa is the midpoint of the line (P4, P5) and point Pb that of
the line (P3, P6).

b

2

63

1

4 a 5

e

n1a

na2

n2b
nb1

Figure 2.5: Molecule used for the evaluation of the diffusive flux

Green-Gauss contour integration around the shadow volume gives

∇c ≈ 1

A1a2b

∫
A

∇c dA = 1

A1a2b

∫
∂A

c n ds , (2.15)

where n represents the unit normal vector and A1a2b is the area of the shadow

volume. It holds that A1a2b =
1
2

−−→
P1P2 .

−−→
PaPb

⊥
. The integral can be approximated

using the midpoint rule, so we can write

∇c ≈ 1

A1a2b
(c1an1a + ca2na2 + c2bn2b + cb1nb1) , (2.16)

where, n1a, for example, denotes the normal vector to face (P1, Pa) with a length
equal to the that of the face. c1a is the average value of the concentrations at points
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P1 and Pa. Rearranging terms of (2.16), we can finally write

ge = Dh ∇c . ne =
(Dh nab . ne)(c2 − c1) + (Dh n12 . ne)(ca − cb)

2A1a2b
(2.17)

with ca = (c4 + c5)/2 and cb = (c3 + c6)/2.

2.4.6 Boundary treatment for the diffusive flux

When edge e is close to the boundary, the molecule may not contain the six cells
required to compute the diffusive flux. The different possible cases are treated as
follows

• Cell P3 is absent: Pb coincides with P6. A similar choice holds if P4, P5 or P6

do not exist.

• Cells P3 and P4 are both absent: the shadow volume is limited to the triangle
P1PaP2.

• Cells P2, P5 and P6 are absent, which means that edge e is located on the
boundary: we distinguish two cases:

– If the boundary is closed or a Neumann condition holds, then the viscous
flux is zero.

– Otherwise, the boundary condition is of Dirichlet type and the shadow
volume is limited by points P1P4PmP3, where Pm is the midpoint of
edge e.

• Cell P1 is located in a corner, that is, the previous case holds and in addition,
cell P3 is absent: we distinguish also two cases, depending on the type of the
boundary condition at the edge separating P1 and P3

– If it is a Neumann condition or a closed boundary, the shadow volume is
limited to P4PmP1

– If it is a Dirichlet condition, point P3 is replaced by the midpoint of the
edge separating P1 and P3, where a value of the concentration is supposed
to be prescribed.

2.4.7 Time integration

The time integration of (2.3) is achieved using the linearly implicit trapezoidal rule,
which results in the following difference equation

A
Hn+1

cell c
n+1 −Hn

cell c
n

τ
= −1

2

∑
e

Hn+1
e un+1

e le c
n+1
e − 1

2

∑
e

Hn
e u

n
e le c

n
e +

1

2

∑
e

gn+1
e le +

1

2

∑
e

gne le +
1

2
AHn+1 Sn+1 +

1

2
AHn Sn . (2.18)
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We have chosen to compute the increment of concentration (cn+1 − cn) at each
time step instead of the new concentration cn+1 itself. By slightly manipulating
(2.18), we end up with the following equation, limited here for convenience to the
advection terms

A

τ
Hn+1

cell (c
n+1 − cn) +

1

2

∑
e

Hn+1
e un+1

e (cn+1
e − cne ) le =

−AH
n+1
cell −Hn

cell

τ
cn −

∑
e

Hn+1
e un+1

e +Hn
e u

n
e

2
le c

n
e . (2.19)

Here, Hcell represents the total water depth at the cell centers. Since the flow solver
is totally decoupled from the transport solver, the hydrodynamic coefficients Hcell

and ue at time levels n and n + 1 are both available during the computation of the
solution at time level n. We propose, nevertheless, a further assumption in order to
simplify the data processing described in section 2.7.2 by changing the second term
of the rhs of (2.19). Our final scheme is therefore

A

τ
Hn+1

cell (c
n+1 − cn) +

1

2

∑
e

Hn+1
e un+1

e (cn+1
e − cne ) le =

−AH
n+1
cell −Hn

cell

τ
cn −

∑
e

Hn
e u

n
e c

n
e le .

(2.20)

2.5 General layout of the model

A general description of the structure of the transport solver is given here. As
shown in the flowchart in figure 2.6, the program starts by building a number of
time-independent arrays mainly related to the geometry of the grid. These arrays
will allow easy access to local information once the time loop starts. Array plist2
giving for each cell the numbers of the surrounding cells is one example of arrays
built at this stage.
Then, the time marching procedure starts. For each time step, the flow coef-

ficients are first read from the corresponding files. Then, a loop starts over faces
which first constructs the local support molecule for each face. It then computes
the advective and diffusive fluxes through the face function of values of variables
from the molecule. After completing this local computation, it finally affects the
corresponding entries in the global matrix and in the rhs term.
After the loop over faces, a loop over cells starts. This loops is basically limited

here to the inclusion of the first term in the rhs of (2.19). At this stage, most of the
global matrix has been built. The linear system is then solved iteratively using the
BiCGStab method with an ILU preconditioner.
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Begin

Initialisation and memory allocation

Read mesh geometry

Build working arrays

Read flow data

Build molecule

Compute advective flux

Compute diffusive flux

Compute remaining terms

Add source terms

SOLVE

Output

End

loop
over
faces

loop
over
cells

time
loop

Figure 2.6: General layout of the solver algorithm
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2.6 Data structure

In comparison to structured grids, when using a data structure related to unstruc-
tured grids, we have to deal with an extra complication in return for the extra
flexibility gained in discretizing the physical domain. Data structure is an impor-
tant issue which may affect the efficiency of the computations considerably.
The geometry of the unstructured grid contains three types of elements or grid

objects as they are called in [6], namely cells, edges and nodes. In the 2-D case, the
term “face” is also used where it corresponds exactly to the term edge. See figure 2.7.
Different variables involved in the transport problem are related to different grid

edge node

cell center

Figure 2.7: Terminology of the grid objects

objects. Table 2.1 summarizes the association of the main variables to their grid
objects.

Table 2.1: Grid objects: problem variables association

grid object problem variable

cell concentration

area

barycenter x-y coordinates

water depth

edge normal velocity

length

water depth

node x-y coordinates

The geometry of the domain is input to the solver using two main arrays. The
first one contains the x and y coordinates of each node. The second array, named
plist1, contains for each edge the numbers of the two adjacent cells and the numbers
of the two nodes connected by the edge. The order in which these data are entered
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is very important in this array as it affects the right sign to the fluxes. In the case
of edge f in figure 2.8, the line corresponding to this face should contain in the
following order

c1 c2 n1 n2

c1
c2

n1

n2

Figure 2.8: Terminology of the grid objects

There is a one-to-one correspondence between the unknown concentrations and
the grid cells. However, the building procedure of the main matrix does not always
loop over cells. In fact, for computing the flux , which is a major task in the adopted
finite volume approach, the matrix is built by looping over edges. This is clearly a
better choice since it avoids a redundant computation of the fluxes. For loops over
edges, array plist1 is straightforward to use. There are still terms in the matrix to
be built using loops over cells. For this purpose, the previously mentioned internal
array plist2 is constructed within the solver, to give for each cell the numbers of
the surrounding cells.
The final resulting matrix is a square matrix of an order equal to the number of

cells. It has a sparse aspect since the number of non-zero entries per row is limited
to the number of cells contained in the support molecule. Consequently, the matrix
needs to be stored efficiently, i.e. only non-zero entries are stored. Here, we use the
compressed sparse row (CSR) format [39]. For example, suppose cell i has a support
molecule containing 5 cells numbered j1 to j4 in addition to cell i. The entries of
the row in the full matrix corresponding to this cell therefore look like those in the
matrix below

j1 j2 i j3 j4

↓ ↓ ↓ ↓ ↓
. . . . .
. . . . .

. . . e1 . . . e2 . . . ei . . . e3 . . . e4 . . .
. . . . .
. . . . .

 i

This full matrix is now represented in an efficient way using three arrays. First, array
ia provides for each individual cell i a pointer indicating the position of the first
entry related to this cell in the two other arrays ar and ja. Then, array ar contains
the five entries ei, e1 ... e5, and finally, array ja provides the column number (which
corresponds, in fact, to the cell number) of the non-zero entries in the same order
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in which they are entered in array ar. One extra position in array ia is required to
indicate the end of array ar.

i

↓
ia =

(
. . . , ia(i) , . . .

)
ia(i)

↓
ar =

(
. . . , | ei , e3 , e4 , e1 , e2 | , . . .

)
ia(i)

↓
ja =

(
. . . , | i , j3 , j4 , j2 | , . . .

)
2.7 Positivity of the 2-D transport solver in real-

life applications

Positivity is an essential objective of the researchers especially when approximating
conservation laws. In the field of transport computations, it is important that the
computed variable, which is often a concentration, is non-negative. Hundsdorfer et
al. presented in [22] a method based upon flux limiting to ensure the positivity of
a finite difference advection scheme. They showed that the demand of positivity is
essentially equivalent to the demand of avoiding numerical under- and overshoots in
regions of strong variation. Berzins, who dealt with a finite volume method to solve
hyperbolic equations on triangular meshes, came up with modifications to standard
flux limiters and possible constraints on the meshes in order to ensure positivity [4].
In the earliest works of Wilders and Fotia which form the starting point of the

present work, a proof of positivity of the adopted method was presented. However,
runs of real-life applications showed that negative concentrations may still occur.
For this reason, we investigate and analyze the causes of the negative concentrations
and propose alternatives for remediation. Also, special attention is paid to the con-
servative properties of the model and its input data in order to avoid the occurrence
of unrealistic source and sink terms.
The investigations carried on the positivity problem are based upon runs of

the main application case of this thesis; a simulation of the propagation along the
Dutch coast of a dissolved pollutant originating from river Rhine. The corresponding
numerical results are shown in the next chapter.

2.7.1 Positive advection

The original work by Wilders and Fotia was directed towards two main issues: pre-
senting a positive advective scheme for tracer transport with a proof of positivity
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and generalizing the type of meshes from triangular to hybrid type of meshes. The
proof of positivity proposed in [54] and [45] applies for a purely advective transport
equation. It is based on the main idea of building a final linear system which can
be represented by a K matrix. This means that in their final discrete system (2.14),
there exist a matrix function Q̃ = (q̃jk) such that the rhs of (2.14) can be written as

Fj(c, v) =
∑
k

q̃jk ck for every cell j in the interior, (2.21)

with q̃jk = q̃jk(c, v) which satisfies

q̃jk � 0 for j 	= k and
∑
k

q̃jk = 0 for all c. (2.22)

They state that relations (2.21) and (2.22) are strong demands implying signifi-
cant properties such as: a steady state is monotonic if the input is monotonic, local
minima are nondecreasing and local maxima are nonincreasing and a nonnegative
input implies a nonnegative solution. Their proof can be summarized as follows.
Opting for (2.10) as the advective numerical flux function, a sufficient condition for
an advective K-approximation is that for each cell face e there holds

cRe − c1
c2 − c1

� 0 , (2.23)

and

cLe − c1 = 0 or
cLe − c1
c1 − ck

� 0 for at least one k ∈ {2, 3, 4} . (2.24)

The cells’ numbering is based on figure 2.9. The proof of this statement has in

e1 2

3

4 5

6

Figure 2.9: Cells’ numbering for the triangular grid by Wilders and Fotia.

essence been given in [26]. Assuming a divergence free velocity field, one can write∑
e

fe(c
L
e , c

R
e ) =

∑
e

{
fe(c

L
e , c1)− fe(c1, c1)

}
+
∑
e

{
fe(c

L
e , c

R)− fe(c
L, c1)

}
. (2.25)
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It follows that∑
e

fe(c
L
e , c

R
e ) =

∑
e

αL
e +

∑
e

αR
e (2.26)

where

αL
e =

{
ue (c1 − ck) if ue � 0, k ∈ {2, 3, 4}
0 elsewhere

, (2.27)

and

αR
e =

{
−ue c

R
e − c1
c2 − c1

(c1 − c2) if ue < 0,

0 elsewhere
. (2.28)

From (2.26), (2.27) and (2.28), it follows that (2.21) and (2.22) are implied by (2.23)
and (2.24). Note that (2.22) is equivalent to

cLe − c1
c2 − c1

� 1 . (2.29)

Considering a limiting function of the form

ψ = ψ(r) , with r =
δ21
δe1
, (2.30)

it follows easily from (2.13) that

cLe − c1
c2 − c1

=
ψ

r
. (2.31)

The following geometrical requirement on the grid (called TVD triangulation in
[26]) is assumed to hold

n13 . t1e � 0 and n41 . t1e � 0 , (2.32)

which basically means that the cell centers of the two secondary cells have to be
located at different sides of the line through t1e in figure 2.4.
From (2.24), (2.29), (2.12), (2.13) and (2.31) together with the assumption (2.32)

on the grid, it follows that

0 � ψ � r , (2.33)

is a sufficient condition for an advective K-approximation. There exist a number of
limiters which satisfy (2.33) such as the modified Van Leer limiter used in [4]. A
differentiable limiter is preferred such as the R− 1 limiter proposed by Zijlema [57]

ψ = 2
(r + |r|)r
(1 + r)2

if r � 0, ψ = 0 if r < 0. (2.34)

According to [57], condition (2.33) can be less restrictive for regular meshes and for
regular meshes, the limiter (2.34) does not present an optimal compromise. Whether
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or not this condition can be relaxed for unstructured meshes remains an open ques-
tion.

When using a hybrid type of grid, i.e. grids with cells of mixed forms, condition
(2.32) can become more flexible provided that the shadow volume for the advective
flux estimation keeps its triangular shape. In this case, a selection procedure is
needed to choose three out of the available number of surrounding cells to make the
reconstruction. For the particular case of a quadrilateral grid, there exist always
a choice which satisfies (2.32) and one has simply to take care to make the right
choice.

Comment on the practical computation of the directional gra-
dient r

For the practical computation of r, the directional gradient defined in (2.33), one
should take care of the case where δ21 = 0. In our solver, r is computed as follows

r =


0 if δe1 < ε,

0 if δe1 � ε and δ21 < ε,
δ21
δe1

else.

(2.35)

where ε is a small number. This means that the scheme reduces to first-order
accuracy if the gradient of concentration is less than a given threshold. In our
numerical application, we take ε equal to 10−8.

2.7.2 Constancy condition and data preprocessing

When solving our advection-diffusion equation, it is important not to end up with
numerical ’wiggles’ in the concentration profile. If monotonicity is ensured, the nu-
merical scheme produces no artificial extrema as time progresses [52]. A minimal
monotonicity requirement is that an initially uniform scalar field remains uniform
in the absence of source and sinks in the equation. This condition is called the
constancy condition by a number of authors. In [11], a scheme which satisfies the
constancy condition is said to be zeroth-order accurate. The violation of this con-
dition expresses the fact that some purely artificial sources and sinks are generated
by the discretization, and in such cases, instabilities can arise [21].

In order to satisfy the constancy condition, consistency must hold between the
discretization of the flow computations and the discretization of the transport com-
putation [32]. The following definition is given in [21] and the references therein: A
discretization of the advection equation is consistent with continuity if, given a spa-
tially uniform scalar field as an initial datum, and a general flow field, the discretized
scalar advection equation reduces to the discretized continuity equation.

Therefore, we need to analyze the flow and transport computations in order to
fulfill this mutual consistency condition.
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2.7.3 Conservative flow computations

In section 2.3.2, we mentioned that flow coefficients are computed using the package
WAQUA which solves the system of shallow water equations using an ADI scheme.
These computed coefficients are supposed to satisfy (2.5) up to a given accuracy.

However, a check of some actual computations shows that, for a number of cells
in the domain, this is not always the case. This is generally due to the fact that
the maximum number of iterations of some iterative procedures is reached without
obtaining the required accuracy of the solution, usually when the geometry of the
bottom is highly distorted [19].
As will be described in detail in section 2.7.4, it is very important for the flow

coefficients to satisfy the discrete continuity equation up to the desired accuracy.
In fact, this directly effects the transport conservative properties. Since the im-
provement of the flow package is outside the scope of the present work, a simple
correction procedure is proposed instead. It consists of computing a new total water
depth denoted by H̃k

cell (with the superscript k indicating the time level), as follows
H̃0

cell = H0
cell

H̃n+1
cell = H̃

n
cell +

τ
A(
Hn+1

1 V n+1
1 +Hn

1 V
n
1

2 l1 +
Hn+1

2 V n+1
2 +Hn

2 V
n
2

2 l2

+ H
n+ 1

2
3 U

n+ 1
2

3 l3 +H
n+ 1

2
4 U

n+ 1
2

4 l4) .

(2.36)

It can be easily verified that (2.5) is indeed exactly verified. This correction in fact

affects a limited number of locations and H̃cell is not expected to differ much from
Hcell. This is verified in the numerical application section in this chapter. In the
remaining part of this chapter, Hcell will denote the conservative H̃cell.

2.7.4 Consistency

The issue of consistency between flow and transport computations was addressed
by a number of authors. For example, Lin et al. working on the modeling of tracer
transport in the atmosphere realized that the inconsistency between the tracer con-
tinuity equation and the underlying equation of continuity of the air can be dele-
terious especially for long integrations [25]. Leveque [23] formulated a condition to
be satisfied by the flow parameters. This condition which fits with his numerical
transport scheme is a flow continuity equation under a given required discrete form.
He mentioned a number numerical flow schemes for which consistency is automati-
cally obtained. If different schemes were to be used, further velocity projections are
needed to make the velocity field divergence free. Taking care that the flow solver
is consistent with the transport solver is also a technique proposed by Bonaventura
et al. in [5]. Dawson in [10] proposed to add extra correction term to the discrete
transport equation to overcome the non conservative velocity field and ensure local
conservation. Deleersnijder also proposed in [15] to apply a velocity correction to
enforce the continuity equation.
It can be concluded that two methods are generally used to overcome the prob-

lem of inconsistency: either selecting the flow numerical scheme and the transport
numerical scheme in such way that they are consistent with each other, e.g. [23] and
[5], or applying corrections, e.g. [10] and [15].
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In our case, different approaches and numerical schemes are used to solve flow
and transport problems. We propose a new simple method to ensure consistency
between the two. The idea is to compute new flow parameters to be used by the
transport solver in such way that consistency is ensured. In fact, we have the
advantage that our original velocity field is not arbitrary and we know exactly how
it was computed. According to the definition in the beginning of section 2.7.2, our
scheme (2.20) has to reduce to (2.5) in case of a uniform scalar field. Taking for
example a concentration c = 1 in (2.20), we obtain for a quadrilateral cell

Hn+1
cell −Hn

cell = − τ

A

∑
e

Hn
es u

n
es le

= − τ

A
(Hn

s1u
n
s1l1 +H

n
s2u

n
s2l2 +H

n
s3u

n
s3l3 +H

n
s4u

n
s4l4) .

(2.37)

We use the index s in the rhs to distinguish between the coefficients of WAQUA and
the coefficients to be used by our solver.
We need to choose the proper water depths and velocities in such a way that

(2.37) remains satisfied. In analogy (2.5) and (2.37), one can satisfy the consistency
with the continuity equation if the following system of equations holds

Hn
1su

n
1sl1 =

Hn+1
1 V n+1

1 +Hn
1 V

n
1

2
l1

Hn
2su

n
2sl2 =

Hn+1
2 V n+1

2 +Hn
2 V

n
2

2
l1

Hn
3su

n
3sl3 = H

n+ 1
2

3 U
n+ 1

2
3 l3

Hn
4su

n
4sl4 = H

n+ 1
2

4 U
n+ 1

2
4 l4

. (2.38)

One possible choice which satisfies (2.38) is the following

Hn
1s = H

n
1 ; un1s =

Hn+1
1 V n+1

1 +Hn
1 V

n
1

2Hn
1

Hn
2s = H

n
2 ; un2s =

Hn+1
2 V n+1

2 +Hn
2 V

n
2

2Hn
2

Hn
3s = H

n
3 ; un3s =

H
n+ 1

2
3 U

n+ 1
2

3

2Hn
3

Hn
4s = H

n
4 ; un4s =

H
n+ 1

2
4 U

n+ 1
2

4

2Hn
4

. (2.39)

System (2.39) is the kind of correction we need to apply to the original velocities
and water depths obtained from WAQUA in a preprocessing step before proceeding
with the transport computation. Efficient MATLAB scripts have written for this
purpose.

2.7.5 Dry-wet procedure

Since we are dealing with transport in coastal regions, some parts of the domain
change from wet to dry and vice versa following the tidal movements. From a
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computational point of view, this may cause violation of the constancy condition if
not considered carefully. Since the flow and transport computations are decoupled
from each other, we have to make sure that the definition of the wet or dry status
of a given cell is consistent between the two solvers.
The following description is reported from the user’s guide of WAQUA: The

simulation accounts for tidal flats by considering grid points to be dry at depths
less than a given marginal depth, DEPTHCRIT. When a velocity point becomes
dry, it is taken out of the computation. When a water level point becomes dry,
the water level point and the four surrounding velocity points are taken out of the
computation. . . (Figure 2.10 shows the relative locations of these points in a typical
staggered grid element). In other words, the velocity at a given velocity point is set
equal to zero as soon as:

1. the total water depth at this face is lower than the threshold

2. the total water depth at the center of one of the neighboring cells is lower than
the threshold.

WL

WL

WL
WL

WL

WL

WL

WL

WL

(i,j)

D

D
D

D

U

U(i,j)

(i,j)

i

j

V
(i,j)

V

Figure 2.10: Staggered grid in WAQUA. WL: water level point; D: depth point;
U, V: velocity points.

Notice that WAQUA defines dry ”grid points”, which may be velocity points or
water level points, whereas our transport solver uses the concept of dry ”cells”. In
order to cope with this definition, we consider in our transport solver a given cell to
be dry if one of the following conditions is satisfied:
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1. if the total water depth at the center of a given cell is less than a threshold
equal to 0.03 m.

2. if a face separating two cells has a depth of less than 0.03 m, then the status
of at least one of these two cells is changed to dry.

In order to ensure full consistency between the two definitions, we have to take
care of the following additional points. First, if we apply (2.20) to a dry cell, it
writes

Hn+1
cell c

n+1 −Hn
cellc

n = 0 , (2.40)

since the velocities at the four faces of the cells are equal to zero. Thus no special
problem occurs if the cell is considered dry because its total water depth is lower
than 0.03 m. However, following the second point of the above definition, the cell
may be considered dry although its total water depth is higher than the threshold.
In this case, Hn

cell is not set equal to the threshold and is therefore very likely different
from Hn+1

cell . Equation (2.40) then gives

cn+1 =
Hn

cell

Hn+1
cell

cn , (2.41)

which implies a new concentration different from cn.
The proposed correction consists in simply setting for each dry cell

Hn
cell = Hn+1

cell , (2.42)

and therefore the concentration will remain unchanged. We expect that this artificial
correction will not introduce any significant error in the overall computation since we
are dealing with very low water depths, generally of the order of a few centimeters.
The second point requiring special treatment is related to cells which are imme-

diate neighbors to dry cells. The problem also occurs when a cell is dry because only
one of its faces is dry. Let’s consider the case shown in figure 2.11. The arrows in
this figure represent the exchanged fluxes. We assume that the cell on the left is dry
because the total water depth at face e is lower than the threshold. The fluxes at
the other faces of this dry cell can be different than zero which is not desirable since
the fluxes coming in or going out from a dry cell should normally be equal to zero.
Simply putting these fluxes equal to zero will violate the continuity equation for
the neighboring cells. Therefore, the following correction is proposed. If we rewrite
(2.20) for the wet cell shown in figure 2.11 in terms of fluxes, it gives

Hn+1
cell c

n+1 −Hn
cellc

n

τ
=
1

A
(f1 + f2 + f3 + f4) , (2.43)

where the fi indicate the fluxes according to figure 2.11. This is equivalent to

cn+1 =
1

Hn+1
cell

{
Hn

cellc
n +

τ

A
(f1 + f2 + f3 + f4)

}
, (2.44)
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Figure 2.11: Dry-wet neighbors

or again to

cn+1 =
1

Hn+1
cell

{(
Hn

cell +
τ.f1

A.cn

)
cn +

τ

A
(f2 + f3 + f4)

}
. (2.45)

Equation (2.45) must always hold in order to preserve the constancy condition.
Therefore, we propose the following correction steps

1. compute the flux f1

2. replace Hn
cell by H

n
cell +

τ.f1

A.cn

3. set f1 = 0

4. repeat this procedure for the rest of the non-zero fluxes of the dry cell

Again here, the error introduced following this correction is not expected to have
a significant effect on the accuracy of the overall computation.

2.8 Improvement of the computational efficiency

in the 2-D case

The previous sections of the present chapter described various aspects of our finite
volume transport solver and mentioned that the transport computation is decoupled
from the flow computation. The adopted flow solver was also briefly described.
Decoupling transport and flow has the advantage that the flow computations does

not need to be repeated, for example when simulating different scenarios of pollutant
propagation under the same flow conditions. The disadvantage is, however, the large
amount of data to be computed and stored beforehand. The coefficients needed are
the velocities and the water depths at the faces of the cells and the total water
depths at their centers. These are time-dependent variables and therefore have to
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be available for every computational time step and for the whole simulation period.
This may result in a huge disk space to store the data files.

In the present section, new techniques aimed at improving the computational
efficiency of the decoupled flow-transport modeling is presented. Allowing the use
of different time steps for the flow and for the transport computations, reducing
the necessary amount of storage and providing less expensive computations are the
main objectives of these techniques.

2.8.1 Time integrated flow data

Section 2.7.4 emphasized the need for consistency between the flow and transport
solvers and presented a method to produce proper flow coefficients. This method
requires adoption of the same time step as used for the flow computation. We have
indicated that running our solver with a time step of 1 minute for a duration of two
months requires a storage capacity of more than 165 Gb.

Although it is possible nowadays to use devices capable of handling such an
amount of data, it would be much preferable to reduce the required storage space.
This can be achieved for example by using larger time steps are used for the transport
computations. In fact, the idea presented in this section consists of computing, out
of the available small time step data, some new flow coefficients at larger time steps
while ensuring at the same time the consistency condition and the conservation
property (2.37). The new set is in fact a time integrated flow data.

We can write (2.36) for p successive time steps of the flow model

Hn+1
cell −Hn

cell = τ/A{ Hn+1
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.

.

.
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2
(Hn+p

1 V n+p
1 +Hn+p−1

1 V n+p−1
1 )l1 +

1

2
(Hn+p

2 V n+p
2 +Hn+1

2 V n+p−1
2 )l2 +

H
n+p− 1

2
3 U

n+p− 1
2

3 l3 +H
n+p− 1

2
4 U

n+p− 1
2

4 l4 } . (2.47)
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Summing these equations together, we get
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where N is the new counter of the transport time step. Obviously, the new transport
time step T has to be a multiple of the flow time step; here, T = pτ . In analogy to
(2.37), we can make the following choices in order to ensure consistency
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Coefficients computed in this manner satisfy the following new continuity equation
written for the new time step T

HN+1
cell −HN

cell = −T
A
(HS1US1l1 +HS2US2l2 +HS3US3l3 +HS4US4l4) . (2.50)

The storage space required for the new coefficients is only 1/p times the original
space, a considerable reduction. The overall performance of this method is assessed
in the numerical application section.

2.8.2 Periodic continuation

We propose in this section a second technique which may lead to less expensive com-
putations and to further reduction of flow data storage. Water flows in coastal re-
gions are basically dominated by the tidal effects well known by their quasi-periodical
aspect. This fact may be useful in the sense that data representing a limited period
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of time can be used repeatedly for the simulation of longer periods. We call this
procedure “periodic continuation” [31].
The choice of the length of the period is the most sensitive one since it may

considerably affect the residual velocities. These velocities are obviously of great
importance in the advection process. Furthermore, the length of the tidal period
may differ according to the location in the domain, making the choice more difficult.
Figure 2.12 shows the variation of the total water depth at a certain location of

the domain of the Kuststrookmodel during a period of two months. This domain will
be used as the major application case for the transport solver and will be described
in detail in the next chapter. This figure puts into evidence the one-lunar-month
periodicity. For the same domain, the half moon cycle, which corresponds to some
28 or 29 tidal periods, is proposed in [45] and this, too, looks like a rather reasonable
choice. However, since such long periods of time do not present a real advantage with
respect to reduction of the volume of data, we are more interested to the half-day
periodicity, which we are going to investigate in this section.
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Figure 2.12: Total water depth at cell 10000

We need to know the precise duration of one period, this value being highly
important for the outcome of the computations. We propose to determine it by
examining the water height at a few sample locations. Figure 2.13-a shows the
water elevation between two successive peaks at the sample locations. A close-up of
the last portions of these curves (figure 2.13-b) shows that the duration of the periods
varies for different locations roughly between 12 h 25 min and 13 h. Therefore, we
assume for the moment a period length of 12h 45min, after which all the flow data
files are “rewound”. In all cases, different values of the period length will be tested
in the numerical application in the next chapter.

2.9 Conclusions

The present chapter is dedicated to a general description of the 2-D transport solver.
The governing equation and the numerical solution procedure adopted are described
in detail and a short overview is given of aspects related to the computing algorithm.
In particular, section 2.4.3 mentioned the method adopted in order to ensure

the positivity of the resulting concentrations. For some practical applications, we
noticed that although the conditions for positivity had been met, negative concen-
trations still occurred. What is more, problems in mass conservation were detected.
Consequently, it was decided that further research in this direction was needed and
improvements in the conservation of mass and the positivity of the solution for the
transport solver were needed. These are important issues for accurate transport
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Figure 2.13: Water level elevation at some randomly chosen cells.

simulation. The main idea is to avoid the appearance of artificial source and sink
terms by ensuring consistency between the flow and transport solvers. In our case,
the velocity field is not arbitrary, that is, we know how it was computed. Based on
this, we proposed the following preprocessing steps:

• Computed flow data have to satisfy exactly the discrete flow continuity equa-
tion up to machine accuracy. A posteriori verification whether these data do
really satisfy the continuity equation is necessary as real-life applications show
that this is not always the case. A correction procedure is proposed to obtain
precise conservative coefficients.

• New flow coefficients are computed based on the data from the previous step.
The idea is that we have a set of data which are conservative in the sense of
the flow ADI scheme and from these, we create another set which satisfy our
discrete continuity equation. In fact, conservation does not have an absolute
meaning but is always related to a certain scheme. A method to compute the
new coefficients is proposed in (2.39).

• A further step related to the dry-wet implementation may also be needed. Spe-
cial attention must be paid to the way of implementing the dry-wet procedure
for the constancy condition. Here again, matching of the transport and the
flow computations is required.

Another important factor dealt with in this chapter concerns data storage. When
the transport computations are decoupled from flow computations, as in our case, the
storage of a very large amount of data is required. In order to minimize this amount,
we show that it is possible to use larger time steps by combining the data computed
with a smaller time step. It is also possible to assume periodic continuation of the
flow data.
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In the next chapter, the different issues mentioned above are tested and evaluated
in the context of a numerical application of the 2-D solver.
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Chapter 3

Numerical Results of the 2-D
solver

3.1 Introduction

After the presentation in chapter 2 of our 2-D transport solver and the related issues
of positivity and data storage reduction, we proceed in the present chapter with the
numerical application. The selected real life application deals with one of the critical
problems of the Dutch coastal zone: the pollution of the rich ecological area in the
northern part of the Netherlands, called the Dutch Shallows, also known as the
Waddenzee. Part of the pollution in this area originates from the Nieuwe Waterweg,
the inlet of the major harbor of Rotterdam. In fact, the river Rhine, which crosses
a large part of Europe, is a potential source of pollutants towards the North Sea.
Due to the large ocean streams, the continuous release of pollution from the Rhine
waters is transported northward in the direction of the inlets of the Waddenzee [13].
There is also a need to simulate possible environmental accidents which may

result in heavy impacts on this fragile area. In this context, our model can be a
valuable tool to determine the extent of the resulting contaminated area as well as
the time scale of the pollution propagation.

3.2 Real-life application

The proposed numerical application considers the domain known as the Kuststrook-
model, representing a strip of about 400 × 60 km of the north sea along the Dutch
coast. Figure 3.1 shows the 20175 cells grid used to represent the domain. This grid
also originates from the National Institute for Coastal and Marine Management
(RIKZ).
In order to apply our transport solver to this domain, first we need to make

available the required flow coefficients using the flow solver WAQUA. Starting the
WAQUA run using some arbitrary constant initial conditions, we assume that a

35
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Nieuwe Waterweg

Figure 3.1: Grid of Kuststrookmodel
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simulation over a period of one month is long enough in order to start producing
realistic data afterwards. The boundary conditions at the open boundaries of the
domain are computed based on a harmonic analysis of the tides at these boundaries.
The time step in the flow computation is equal to 1 min.
WAQUA produces so-called SDS files containing the output under binary format.

Special related programs can be used to extract the data from an SDS file and convert
it to the required formats, notably the MATLAB .mat format. MATLAB is in fact
used to process and prepare the data according to (2.39). For each time step, we
need the following data files:

• file containing the values of the velocities and the total water depths at the
edges of the cells. Our grid contains 41439 edges, and the size of one file is
1.4 Mb.

• file containing the values of the total water depths at the centers of the cells.
The size of the file is 0.5 Mb.

• file defining the type and the values of the boundary conditions. The size of
the file is 0.05 Mb.

First of all, we verify the correction on the total water depth proposed in (2.36).

Our computation shows that H̃cell is only very slightly different fromHcell. Figure 3.2
shows the maximum and minimum absolute difference throughout the domain be-
tween Hcell and H̃cell for each time step and during one tidal period. The same
pattern is basically repeated for the subsequent periods. We can see that this dif-
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Figure 3.2: Difference between H̃cell and Hcell

ference remains very limited and, therefore H̃cell can be used as a fully conservative
water depth.
Running our solver with a time step of 1 minute (the same as for the flow

computation) for a duration of, say, two months, would require a storage capacity
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of around 165 Gb for the input files. Extra space is also needed for the transient
SDS and MATLAB files.
We proceed first with the verification of the constancy condition. We set the

initial concentration equal to 1 for the whole domain as well as for the inflows to
the domain through the open boundaries. No source term is added to the system.
Figure 3.3 shows that the constancy condition is satisfied which ensures that no
sources or sinks are introduced.

Figure 3.3: Constant solution

Then, we simulate a continuous release of a dissolved pollutant at the upstream
boundary of the Nieuwe Waterweg (x = 101200, y = 416500). Based on the same
time step of 1 min, figure 3.4 shows the propagation of the pollutant after 30000,
60000 and 90000 time steps (62.5 days). We can see that the contaminated area
extends along the coastline towards the north and reaches the Waddenzee around
2 months after the beginning of the release. In the following, we consider the result
of this full simulation as our reference solution.
Checking for negative values of concentrations, figure 3.5 shows the lowest com-

puted concentration throughout the domain for all time steps. This figure shows
that except for some fluctuations between some extremely small negative values, the
lowest concentration is not below zero.
The result of the simulation is compared to the result obtained from the transport

module of WAQUA. The situation after 90000 time steps is shown in figure 3.6. It
is clear from the two figures that the pollutant propagation is very similar in both
simulations. The result of WAQUA, however, shows negative concentrations in more
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(a) (b)

(c)

Figure 3.4: Spreading of the tracer after 30000 (a), 60000 (b) and 90000 (c) time steps.
(τ = 1min)
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Figure 3.5: Lowest concentration (τ = 1 min)

than 2000 locations, the lowest being of the order of−10−4. Table 3.1 presents a more
detailed comparison between the two. We can read in this table the minimum and
maximum concentration at a given time step, the number of cells having a negative
concentration, the total mass of pollutant, the square root of the sum through the
domain of the squared differences of the concentrations, and the sum of the absolute
differences.

Table 3.1: Comparison between the results of WAQUA and the reference solution at time
step 90000.

Reference solution WAQUA

Minimum concentration 0 -0.00043

Cells with negative concentration 0 2100

Maximum concentration 0.561 0.606

Total mass of pollutant 3.63 109 3.66 109√∑
(Cref − CWAQUA)2 - 1.085∑ |Cref − CWAQUA| - 50.073

* Cref : concentration from the reference solution, τ=1 min

3.3 Time integrated flow data

Here, we evaluate the efficiency of the technique of using time integrated flow data
presented in section 2.8.1 through its application to the Kuststrookmodel.
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Figure 3.6: Situation after 62.5 days (WAQUA simulation, τ=1 min)

First, we process the available 1 minute data set from WAQUA according to
(2.49) to produce a new set with time intervals of 15 minutes. Thus, the required
storage space is reduced to 11 Gb. Next, we check for the constancy condition for
this new time step, which proves to be satisfactory. Finally, the same experiment of
pollutant release in the river Rhine is simulated. A comparison between figure 3.7,
showing the displacement of the pollutant after 62.5 days, and figure 3.4, showing
the same displacement obtained however with the original 1 minute time step data,
we can see that the extent of the contaminated region is very similar for both time
steps. Table 3.2 also shows very similar figures, comparing the results obtained in
both cases. We can therefore conclude that the use of integrated time steps is an
efficient way to render the computations faster and less cumbersome.
Figure 3.8 shows the average Courant number (averaged over the whole domain)

and the maximum Courant number resulting from the computations with time steps
of 1 minute and 15 minutes. There is a clear similarity between the two plots if we
disregard the difference in the order of magnitude (in fact the difference in order
of magnitude is a factor 15). When using the 15 minute time step, we notice that
occasionally the Courant number reaches some high values. This fact is observed
only during the first 1000 time steps of the simulation, which counts in total 6000
time steps.
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Figure 3.7: Situation after 62.5 days (continuous simulation τ = 15 min)

Table 3.2: Comparison of the results of the time integrated flow data.

τ = 1 min τ = 15 min

(Reference solution)

Minimum concentration 0 -1.910−8

Cells with negative concentration 0 1

Maximum concentration 0.5612 0.5612

Total mass of pollutant 3.63 109 3.62 109√∑
(Cref − Cτ=15)2 - 0.589∑ |Cref − Cτ=15| - 21.63

* Cref : concentration from the reference solution, τ=1 min



3.3 Time integrated flow data 43

1 2 3 4 5 6 7 8 9

x 10
4

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time step

A
ve

ra
ge

 C
ou

ra
nt

 n
um

be
r

1 2 3 4 5 6 7 8 9

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

time step

M
ax

im
um

 C
ou

ra
nt

 n
um

be
r

τ = 1 min τ = 1 min

1000 2000 3000 4000 5000 6000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time step

A
ve

ra
ge

 C
ou

ra
nt

 n
um

be
r

1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

time step

M
ax

im
um

 C
ou

ra
nt

 n
um

be
r

τ = 15 min τ = 15 min
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3.4 Periodic continuation

Assuming that our data has certain periodical aspects, we study whether the pe-
riodical use of a “representative” set of data can lead to acceptable results. If so,
considerable reduction of stored data could be achieved.
Using a time step of 1 minute, we proceed with our model to the check of the

constancy condition. The data from WAQUA is preprocessed and stored according
to (2.39) for one tidal period. The computations show that the concentration profile
in the domain remains unchanged until the end of the first tidal period. As soon as
the second tidal period is started, this property is lost. This is due to the violation of
the conservation property between the last and the first set of data while proceeding
to the periodic continuation.
We proceed nevertheless with the simulation of the continuous release of a dis-

solved pollutant at the same location as previously. Based on the time step of 1 min
and a tidal period length of 12h 45min, figure 3.9 shows the propagation of the
pollutant after 62.5 days. Compared to figure 3.4, we notice that the polluted area
extends further towards the north-east. However, the concentration distribution
along the western coast is quite similar.

Figure 3.9: Situation after 62.5 days (τ = 1 min)

Examining the solution at this date shows that some cells have a negative con-
centration. The largest negative values in the absolute sense are of the order of 10−4.
Figure 3.10 shows that starting from around the time step 33700, there is a regular
decrease in the lowest value of the concentration. We can notice in figure 3.10-a
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that this decrease takes place in a stepwise way in which the duration between the
jumps corresponds exactly to the adopted tidal period of 765 time steps. This may
indicate that the unique non-conservative computational step taking place at the
end of each tidal period is the underlying cause of these negative values.
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Figure 3.10: Lowest concentration (τ = 1 min)

3.5 Combination of periodic continuation and time

integrated flow data

In these section, we apply both techniques of time integrated flow data and periodic
continuation. The same period duration is used, that of 12h 45min, i.e. 51 time steps
of 15 min. The computation shows that the constancy condition is also satisfied for
the entire first tidal period but this property is again lost as soon as the second tidal
period is started.
The same experiment of pollutant release in the river Rhine is repeated using the

15 minute time step and the result is shown in figure 3.11. There is a clear similarity
between figure 3.9 and figure 3.11, confirmed by table 3.3. This proves once again
the efficiency of using the time integrated flow data.

Table 3.3: Results using periodic continuation and time integrated flow data

Time step 1 min 15 min

Minimum concentration -0.00047 -0.00041

Cells with negative concentration 48 51

Maximum concentration 0.59106 0.59111

Total mass of pollutant 3.538 109 3.539 109√∑
(Cdt=1 − Cdt=15)2 - 0.214∑ |Cdt=1 − Cdt=15| - 6.0
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Figure 3.11: Situation after 62.5 days (τ = 15 min)

Trying to investigate whether we can obtain results closer to the reference so-
lution presented in section 3.2, we propose to compare the results obtained using
different tidal period durations. All these computations are achieved using the 15
min time step. Based upon durations of 12h, 12h 15min, 12h 30min, 12h 45min, 13h
and 13h 15min, figure 3.5 shows that the shore line is affected by higher concentra-
tions if we consider longer tidal periods, whereas with shorter periods, the pollutant
has a tendency to move away from the Waddenzee toward the west.
Although the period of 13h 15min seems to give a plot most resembling to the

reference solution, table 3.4 shows that this is not really the case. In fact, the sum
of the squared differences as well as the sum of the absolute differences are the
smallest for a period length of 12h 45min. This is also the period whose total mass
of pollutant at the end of the simulation is nearest to the continuous solution.
Although no clear answer can be given as to which is the best period length, the

results obtained are still of interest to evaluate how close these results are to the
reference solution. In fact, any further judgment fully depends upon the accuracy
required.

3.6 Conclusions

For the numerical application of our 2-D solver, we chose the scenario of the prop-
agation of pollution, originating from the river Rhine along the Dutch coast. Using
the preprocessed output of WAQUA, it was first checked that our model satisfies the
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Table 3.4: Comparative table of different tidal period lengths

12:00’ 12:15’ 12:30’ 12:45’ 13:00’ 13:15’

Total mass 3.24 109 3.48 109 3.31 109 3.53 109 3.43 109 3.38 109

Highest C 0.529 0.560 0.552 0.591 0.678 0.678

Lowest C -2.9 10−6 -7.3 10−6 -6.2 10−5 -4.2 10−4 -4.7 10−3 -1.5 10−2

Negative C 29 43 55 51 52 59√∑
(C − Cref )2* 3.8 2.9 2.1 1.6 2.3 3.7∑ |C − Cref |∗ 229.1 176.1 142.1 110.4 129.8 191.0

* Cref : concentration from the reference solution

constancy condition. Next, a full simulation of a tracer release from the Nieuwe Wa-
terweg was carried out with a time step of 1 minute and a duration of two months.
The results were compared to those from the transport solver of WAQUA, showing
good correspondence. The result of this long term simulation was adopted as our
reference solution.
The numerical experiments show that the use of time integrated flow data is a

very efficient way to reduce the amount of input data. Using periodic continuation,
the constancy condition is satisfied only during the first tidal period. However, the
unique non-conservative computational step at the beginning of the second period
affects this property. A comparative study was conducted in order to evaluate the
results obtained using different tidal period lengths. We noticed that this parameter
is an important factor that may affect the solution considerably.
Up to this stage, we have assumed the overall phenomena of the transport process

to be two-dimensional and have adopted a depth-averaged approach. Although there
are a number of factors which support this hypothesis, it is still sometimes claimed
that three-dimensional aspect should be considered. For these reason, the next two
chapters of this thesis are dedicated to building and testing a 3-D version of the
transport solver in order to provide arguments to answer this open question.
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(a) tidal period length = 12h 00min (b) tidal period length = 12h 15min

(c) tidal period length = 12h 30min (d) tidal period length = 12h 45min

(e) tidal period length = 13h 00min (f) tidal period length = 13h 15min

Figure 3.12: Simulations using different tidal period lengths.



Chapter 4

Development of a 3-D transport
solver

4.1 Introduction

Predicting the concentration of a particular contaminant in a water body is a major
objective of many environmental studies. It is an important step which allows for
the evaluation and design of any protection plans. Numerical models are by far the
most powerful tools that can be used for this purpose. Especially convenient for large
scale systems, numerical models help in reducing the use of water quality control
techniques such as setting up monitoring programs, which can be very laborious. At
least, these can be limited to acquiring data for testing and validating the numerical
models.

Previous chapters of this thesis dealt with the 2-D depth-averaged transport
solver. The governing equations and the implementation details of the finite volume
solver were presented and the constructed model was used to simulate the propa-
gation of contaminants along the Dutch coast. In general, depth-averaged models
resolve differences in the horizontal directions only and are commonly used for rela-
tively shallow water bodies. Although they remain adequate for many applications,
there are still situations where the vertical distribution of the concentration becomes
significant and the use of 3-D models becomes necessary. The limits of applicabil-
ity of the 2-D and the 3-D models cannot be clearly defined, and there will always
remain a significant area of uncertainty about the applicability of each model.

In this chapter, we intend to build a new 3-D transport solver based upon the
experience gained with the 2-D solver. The same combination of finite volume
method, semi-implicit time stepping and horizontal unstructured grid is adopted.
In the vertical direction, the grid is structured and consists of the desired number of
layers. The numerical application of the 3-D version is presented in the next chapter.

49
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4.2 Governing equation

For convenience, we start by recalling the governing equation of the movement of
a tracer in three dimensions. This equation is expressed by the advection-diffusion
equation which, for negligible density changes in the ambient conditions, has the
form

∂c

∂t
+
∂uc

∂x
+
∂vc

∂y
+
∂wc

∂z
=

∂
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(Dh

∂c

∂x
) +

∂

∂y
(Dh

∂c

∂y
) +

∂

∂z
(Dv

∂c

∂z
) + S (4.1)

With this formulation, we assume that the diffusion tensor reduces to two scalar
values, Dh and Dv, which are the diffusion coefficients in the horizontal and vertical
directions respectively.

4.3 3-D grid

The choice of the type of grids to be used is an important step in the modeling
process. For a three-dimensional grid, we need to make choices for the horizontal
direction and for the vertical direction. In the horizontal direction, the use of un-
structured grids presents, as for the 2-D model, the advantage of a great flexibility in
the discretization of domains with complex geometries and consequently this choice
is adopted also for the 3-D case. For the discretization of the vertical direction, a
structured type is preferred. The physical domain is divided into a fixed number of
layers. This same technique is also used in TRIWAQ which presents the advantage
of allowing the use of TRIWAQ output flow parameters in our numerical application
with a minimum of interpolations. The geometry in the vertical direction is therefore
straightforward and the use of unstructured grids can not be justified. Thus, the
horizontal geometry of the grid remains unchanged whereas the layer interfaces are
allowed to move in the vertical direction. This type of discretization is convenient
to extend any 2-D grid to the third dimension.

Consequently, a given cell has the same x and y vertex coordinates as the cells
located in the same column, as shown in figure 4.1. This makes it possible to identify
the cells in the computational domain by extending the 2-D numbering; any cell is
fully identified by giving the 2-D identifier together with the layer number. The
numbering of layers is such that layer 1 is the topmost layer and layer K is the
lowest for a vertical discretization consisting of K layers. See figure 4.2. In the
vertical direction, a layer with index k is located between layer interfaces k and
k − 1, the interface k − 1 being the top one.
Similarly to the 2-D case, the unit element or volume of the discrete system is

called a cell. However, in the 3-D case, a distinction needs to be made between faces
and edges. The term face now designates the vertical interface area separating two
cells, whereas the term edge designates the line connecting two nodes as represented
by figure 4.3. In a quadrilateral 3-D grid, an edge can be shared between up to four
cells.
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Figure 4.1: 3-D grid
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Figure 4.2: Layer depth and layer elevation

4.4 Layer-averaged transport equation

The transport equation (4.1) applies for every unit element or cell of the adopted
spatial discretization. In order to derive the discrete formulation, we first make the
assumption that the vertical distribution within one cell in not significant anymore
and therefore the transport equation can be integrated in the vertical direction. For
this purpose, we define the layer averaged concentration of a given cell from layer k
to be

ck =
1

hk

∫ zk−1

zk

c dz , (4.2)
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Node

Fa
ce

Edge

Figure 4.3: Definition of grid elements

where hk is the thickness of the cell defined as the difference between the elevations
of the central points of the top and bottom faces (corresponding to the water level
point)

hk = zk−1(wl)− zk(wl) . (4.3)

For the finite volume approach, we assume that ck is constant within each cell and
is represented by the value at the cell center.
Then, we go through the terms of (4.1) one by one and compute the average over

the layer depth.

Time derivative term

Let us consider again a cell from layer k. The Leibniz rule is used to rewrite the
integral of the time derivative between the bottom and top interfaces of the cell.∫ zk−1

zk

∂c

∂t
dz =

∂

∂t

∫ zk−1

zk

c dz −
[
c
∂z

∂t

]zk−1

zk

=
∂hk ck
∂t

−
[
c
∂z

∂t

]zk−1

zk

. (4.4)

Horizontal advection term

Similarly, the Leibniz rule applied to the horizontal advection term in the x direction
gives ∫ zk−1

zk

∂u c

∂x
dz =

∂

∂x

∫ zk−1

zk

u c dz −
[
u c

∂z

∂x

]zk−1

zk

.

One can easily check that the first term of the rhs can be rewritten as

∂

∂x

∫ zk−1

zk

u c dz =
∂hk uk ck

∂x
+

∂

∂x

∫ zk−1

zk

(u− uk)(c− ck) dz .
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A similar expression will hold for the horizontal advection term in the y direction if
u and v are interchanged. Therefore, we can write∫ zk−1

zk

(
∂uc

∂x
+
∂vc

∂y
) dz = ∇ . (hk uk ck) − [u . ∇z c]zk−1

zk
+Disp , (4.5)

where the term Disp represents the quantity

∇.
[∫ zk−1

zk
(u− uk)(c− ck) dz∫ zk−1

zk
(v − vk)(c− ck) dz

]zk−1

zk

,

which may be regarded as a dispersion term. u =

(
u
v

)
is the velocity vector and

uk =

(
uk
vk

)
is the layer averaged velocity vector.

Vertical advection term

This term is integrated in a straightforward manner to give∫ zk−1

zk

∂wc

∂z
dz = [w c]zk−1

zk
. (4.6)

Horizontal diffusion term

In order to compute the integral of this term, the Leibniz rule is applied twice. The
x direction is considered first∫ zk−1

zk

∂

∂x
(Dh

∂c

∂x
) dz =

∂

∂x

∫ zk−1

zk

Dh
∂c

∂x
dz −

[
Dh

∂c

∂x

∂z

∂x

]zk−1

zk

=
∂

∂x
(Dh

∂

∂x
(

∫ zk−1

zk

c dz)−
[
Dh c

∂z

∂x

]zk−1

zk

)−
[
Dh

∂c

∂x

∂z

∂x

]zk−1

zk

=
∂

∂x
(Dh

∂hk ck
∂x

)−
[
∂

∂x
(Dh c

∂z

∂x
)

]zk−1

zk

−
[
Dh

∂c

∂x

∂z

∂x

]zk−1

zk

. (4.7)

A similar equation can be written for the y direction to end up with the following
expression for the horizontal diffusion term

∫ zk−1

zk

(
∂

∂x
(Dh

∂c

∂x
) +

∂

∂y
(Dh

∂c

∂y
)) dz =

∇ . (Dh ∇(hk ck))− [∇ . (Dh c ∇z)]zk−1

zk
+ [Dh ∇ c . ∇z]zk−1

zk
. (4.8)
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Vertical diffusion term∫ zk−1

zk

∂

∂z
(Dv

∂c

∂z
) dz =

[
Dv

∂c

∂z

]zk−1

zk

. (4.9)

Source term∫ zk−1

zk

S dz = Sk hk . (4.10)

Putting all the terms back together again, the layer integrated transport equation
can now be written as follows

∂hkck
∂t

+∇ . (hk uk ck) +

[
(w − u . ∇z − ∂z

∂t
) c

]zk−1

zk

+Disp =

∇ . (Dh∇(hkck)) +∇ . [Dhc∇z]zk−1

zk
+ [Dh ∇c . ∇z]zk−1

zk
+

[
Dv

∂c

∂z

]zk−1

zk

.

(4.11)

One can define ω as the vertical velocity of the flow with respect to the moving
interface. ω and w are then related by the following expression

ω = w − u .∇z − ∂z

∂t
. (4.12)

Adopting a similar notation as in the 2-D case, i.e. fk = hkukck and gk = Dh∇(hkck),
and substituting in (4.11), this latter equation can be rewritten as follows

∂hkck
∂t

+∇ . fk + [ω c]
zk−1

zk
+Disp =

∇ . gk +∇. [Dh c ∇z]zk−1

zk
+ [Dh∇c.∇z]zk−1

zk
+

[
Dv

∂c

∂z

]zk−1

zk

+ Sk hk . (4.13)

This is the differential form of the three-dimensional advection-diffusion equation
that we propose to solve.

4.5 3-D finite volume formulation

The next step towards the finite volume implementation consists in writing the
area integral form of (4.13) and defining the numerical approximation of each term.
Similarly to the previous section, we go through all the terms of the equation one
by one. When applicable, Green’s formula is applied to transform the area integral
of divergence terms to integrals along the boundaries.
The terminology used here for the different terms of the layer averaged equa-

tion may not correspond exactly to terminology of the previous section since some
reshuffling has taken place.
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Time derivative term∫
A

∂hk ck
∂t

dA = A
∂hk ck
∂t

≈ A
dhc

dt
(4.14)

Horizontal advection term∫
A

∇ . fk dA =
∑
e

∫
σe

fk . ne dσe =
∑
e

(fe,k le) (4.15)

Index e indicates that the value of the variable is to be evaluated at the faces. The
approximation of the numerical advective flux fe,k is dealt with in the next section.

Vertical advection term∫
A

[ω c]zk−1

zk
dA = A [ω c]zk−1

zk
(4.16)

Horizontal diffusion term∫
A

∇ . gk dA =
∑
e

∫
σe

gk . ne dσe =
∑
e

(ge,k le) (4.17)

Vertical diffusion term

∫
A

[
Dv

∂c

∂z

]zk−1

zk

dA = A Dv

(
∂c

∂z

∣∣∣∣
zk−1

− ∂c

∂z

∣∣∣∣
zk

)
(4.18)

Source term∫
A

Sk hk dA = A Sk hk (4.19)

Remaining terms∫
A

∇. [Dh c∇z]zk−1

zk
dA =

∑
e

∫
σe

[Dh c∇z]zk−1

zk
. ne dσe (4.20)

∫
A

[Dh∇c.∇z]zk−1

zk
dA ≈ A [Dh∇c.∇z]zk−1

zk
(4.21)

For the time being, the area integral of the term Disp in (4.13) will simply be
assumed to be part of the diffusion represented by the coefficients Dh and Dv.
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4.6 Flux approximation

The approximation of fluxes is a major step in a finite volume method and therefore
needs to be implemented efficiently. In the 3-D case, we need to distinguish between
fluxes at vertical interfaces and at horizontal interfaces. The objective is to avoid
redundancy in the computations. Therefore, fluxes through vertical interfaces are
computed using loops over faces and horizontal ones using loops over cells.

On the other hand, a better approximation of fluxes can be obtained by first
examining the locations of different flow variables and using expressions which min-
imize the use of interpolated values. As mentioned previously, in our case flow data
are obtained using the software package TRIWAQ. More details about these data
are given in the next section.

4.6.1 Available data from TRIWAQ

TRIWAQ, the 3-D version of WAQUA presented earlier in chapter 2, solves the shal-
low water equations in three dimensions. It is therefore generally used to calculate
the vertical distribution of the flow parameters, notably for accuracy constraints. It
has a similar input structure as WAQUA except for the description of the layers .
The mathematical details of TRIWAQ can be found in [18].

Modeled systems are represented in TRIWAQ by quadrilateral unit elements
forming rectilinear, curvilinear or spherical grids. We are interested in curvilinear
grids which have the advantage of giving a better geometrical fit to domains with
complex shapes than rectilinear grids. Spherical grids are adapted only to very large
systems where the effect of the quasi-spherical shape of the earth becomes important.

Grids used by TRIWAQ are staggered, that is, different variables are located in
different locations. The velocity vectors are computed at the center of the (vertical)
faces and only the magnitude of the velocity vectors is given, the direction being
always normal to the faces. Layer elevations are very important to ensure a mass
conservative computation. In TRIWAQ, these are defined at every layer interface at
five locations: the central point of the layer interface and the midpoints of the edges
as shown in figure 4.4. Water depths at cell centers and at faces are computed by
subtracting the corresponding elevations.

Finally, for comparison purposes, we also use the transport solver of TRIWAQ
later on. Similar to our solver, concentrations are located at the centroids of cells in
TRIWAQ.

4.6.2 Horizontal advection flux

Upwind methods have the advantage of adequately accounting for the direction of
information in the domain. Here, the Enquist-Osher function is used to approximate
the numerical advective flux fe. For a given face e from layer k, this equation writes

fe(c
L
e,k, c

R
e,k) =

ue,k + |ue,k|
2

he,k c
L
e,k +

ue,k − |ue,k|
2

he,k c
R
e,k . (4.22)
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Figure 4.4: Location of the calculation points of different variables in a 3-D grid volume.

In this equation, cLe,k and c
R
e,k are the values of the concentration at the central point

of face e. ue,k is the velocity magnitude, and he,k is the depth or thickness of layer k,
both at the same point.
Higher-order accuracy of the scheme is obtained through reconstruction of the

values of the concentration at the center of the faces. For a given face, this value is
computed based upon the concentration at the cells forming the support molecule
around the face. The support molecule is similar to the one in figure 2.4 and is
formed by the two cells sharing the face concerned (primary cells), and also the cells
sharing faces with these two primary cells (secondary cells). All the cells forming
the molecule belong to the same layer as the face.
With the adoption of this formulation, the computation of the advective flux in

three dimensions is equivalent to repeating the 2-D procedure as many times as the
number of layers. The corresponding programming task is therefore made easier; a
do-loop is built over the main routine computing the 2-D flux to repeat the same
instructions for each layer without having to modify the lower level routines.

4.6.3 Vertical advection term

The vertical advection term involves values of the concentration at the center of the
horizontal interfaces between cells

A [ω c]zk−1

zk
= A (ωk−1 c(zk−1)− ωk c(zk)) . (4.23)

These values are not readily available since the concentration values are located at
the centroids of the unit volumes. A second-order approximation of this value can
be obtained by averaging the concentration of the top and bottom cells sharing the
interface.

c(zk−1) =
hk ck−1 + hk−1 ck

hk−1 + hk
and c(zk) =

hk+1 ck + hk ck+1

hk + hk+1
. (4.24)

Vertical velocities, however, are computed and thus available precisely at the re-
quested location. This discretization results in the final following expression
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A [ω c]zk−1

zk
= A { ωk−1

hk
hk−1 + hk

ck−1+

(ωk−1
hk−1

hk−1 + hk+1

− ωk
hk+1

hk + hk+1

) ck − ωk
hk

hk + hk+1

ck+1 } (4.25)

The vertical velocity at the top-most horizontal interface is equal to zero. The
same applies to the bottom one. Therefore, the corresponding discrete forms for the
vertical advection term are adjusted and have the following forms

A [ω c]z0z1 = − A ω1

h1 + h2

{ h2 c1 + h1 c2 } (4.26)

and

A [ω c]zK−1

zK
=

A ωK−1

hK−1 + hK
{ hK cK−1 + hK−1cK} (4.27)

4.6.4 Horizontal diffusion flux

For the discretization of the diffusive flux, the gradient∇(hkck) needs to be evaluated
along vertical cell interfaces. Of the available methods suitable for unstructured
grids, we use the one based on the divergence theorem.
First, there is a need to define an area around the face in which the diver-

gence theorem will be applied. We propose to use the shadow volume presented in
figure 2.5, again similarly to the 2-D case. The numerical horizontal diffusive flux
through a given face in layer k is approximated by

ge,k = Dh∇ck .ne =
(Dh nab . ne)(c2,k − c1,k) + (Dh n12 . ne)(ca,k − cb,k)

2A1a2b
. (4.28)

In this equation, only the values of the concentration are layer dependent. All normal
vectors n∗ as well as the area A1a2b depend only on the grid horizontal geometry,
which is the same for all layers.

4.6.5 Vertical diffusive flux

The vertical diffusive term in (4.18) requires computation of the gradient of the
concentration in the vertical direction at the center of the horizontal cell interfaces.
Considering the notation in figure 4.5, this gradient is approximated using Taylor
series expansion. We can write that

ck−1 = c(zk−1) +
1

2
hk−1

∂c

∂z

∣∣∣∣
zk−1

+
1

3!
h2
k−1

∂2c

∂z2

∣∣∣∣
zk−1

+O(h3) (4.29)

ck = c(zk−1)− 1
2
hk

∂c

∂z

∣∣∣∣
zk−1

+
1

3!
h2
k

∂2c

∂z2

∣∣∣∣
zk−1

+O(h3) , (4.30)

where ck represents the concentration at the center of the cell forming the layer k,
and c(zk−1) is the concentration at the center of interface k − 1.
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Figure 4.5: Variables used for the computation of the vertical diffusive flux

Provided that there are no abrupt changes in the vertical spacing, subtracting
these two equations provides a second-order approximation of the required partial
derivative

∂c

∂z

∣∣∣∣
zk−1

≈ 2 ck−1 − ck
hk−1 + hk

. (4.31)

Writing a similar expression for the partial derivative at interface k, we can now
write the approximation of the vertical diffusive flux as

A Dv

(
∂c

∂z

∣∣∣∣
zk−1

− ∂c

∂z

∣∣∣∣
zk

)
= 2 A Dv (

ck−1 − ck
hk−1 + hk

− ck − ck+1

hk + hk+1
) . (4.32)

All the terms present in this expression are available at the required locations;
both the concentrations and the layer thickness are found at the cell centers.

4.6.6 Remaining terms

First, we start with the term in (4.20). The integral in this term is approximated
using the mid-point rule∑

e

∫
σe

[Dh c∇z]zk−1

zk
. ne dσe =

∑
e

[Dh ce ∇ze]zk−1

zk
. ne (4.33)

Recall that ne is the normal vector to face e with a magnitude equal to the length
of the face. Adopting the notation presented in figure 4.6, we can develop the flux
through face e as

Dh {ce(zk−1)∇ze,k−1 − ce(zk)∇ze,k} . ne , (4.34)

where ze,k is the elevation of the midpoint of the bottom edge of face e. The concen-
tration ce(zk) can be taken as an average of ce,k and ce,k+1, leading to the following
expression

Dh {ce,k−1 + ce,k
2

∇ze,k−1 − ce,k + ce,k+1

2
∇ze,k} . ne . (4.35)
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Figure 4.6: Convention for the notation of the concentration at different locations

If we consider the primary cells 1 and 2 sharing face e (as shown for example in
figure 2.5), the concentration ce,k can again be computed as an average of the two
known neighboring concentrations ck(1) and ck(2). Therefore, (4.35) becomes

Dh { ∇ze,k−1

2

ck−1(1) + ck−1(2)

2
+

∇ze,k−1 −∇ze,k
2

ck(1) + ck(2)

2
−

∇ze,k
2

ck+1(1) + ck+1(2)

2
} . ne . (4.36)

In this expression, all the required concentrations are located at known computa-
tional points. What remains, then, is to estimate the gradient terms at the top and
bottom edges of face e. We again use the Green-Gauss technique over the shadow
area (P1PaP2Pb) presented in figure 2.5. For the gradient ∇ze,k, we can write

∇ze,k = 1

A1a2b

∫
A1a2b

∇ze,k dA = 1

A1a2b

∫
∂A1a2b

ze,k n d∂A

≈ 1

A1a2b
(z1a,k n1a + za2,k na2 + zb1,k nb1 + z2b,k n2b) ,

where n.. are the normal vectors to the boundaries of area (P1PaP2Pb) defined in a
similar way as in equation (2.16). z values are interpolated as follows

z1a,k =
z1,k + za,k

2
; za2,k =

za,k + z2,k
2

; zb1,k =
zb,k + z1,k

2
; z2b,k =

z2,k + zb,k
2
(4.37)

z1,k and z2,k are readily available from the TRIWAQ output. However, za,k and zb,k
need to be interpolated from neighboring values

za,k =
z4,k + z5,k

2
; zb,k =

z3,k + z6,k
2

. (4.38)

∇ze,k can now be written as follows

∇ze,k = 1

2 A1a2b

{ (z2,k − z1,k) nab + (za,k − zb,k) n12 } . (4.39)
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A similar expression can be written for ∇ze,k−1, which makes it possible to com-
pute all the terms in (4.36). The final remark with respect to this term is that it is
face-related and therefore its computation will be conducted by looping over faces.
Term (4.21) is the last term in the discrete transport equation which needs to

be approximated. This term involves the gradient of the concentration c and that
of the elevation z at the horizontal cell interfaces. The Green-Gauss technique is
used for their approximation based upon the shadow volume shown in figure 4.7.
The concentrations at the horizontal interface (at points 1, 2, 3, 4 and 5 in figure

2

3

4

5
1

Figure 4.7: Shadow volume for the computation of [∇c ∇z]zk−1
zk

4.7) are interpolated from the known values on top and underneath each point. The
computation of this flux is achieved by looping over cells.

4.7 The semi discrete system

All the fluxes through vertical and horizontal faces involved in our discrete trans-
port equation are now expressed under a discrete formulation. For a given cell,
figure 4.8 shows the 3-D support molecule or stencil resulting from the adopted dis-
cretization of the different terms. The cell itself is shown in gray and the different
signs in this figure indicate the term through which the cells of the molecule are
involved in the final equation.
Taking together the equations of the whole grid, we end up with the semi-discrete

system of the form

L
dhc

dt
= Pc . (4.40)

The matrix L is a diagonal matrix which contains the values of the areas of the cells.
Matrix P is a sparse matrix whose entries are independent of the concentration c
except for the entries resulting from the horizontal advection. This dependency on
c results from the limiting function ψ used during the reconstruction procedure.
Looking again at the 3-D molecule of the given cell in figure 4.8, to each cell

in this figure containing at least one sign, there corresponds a non-zero element in
the row of the matrix of that cell. This means that each row of P has at most 23
elements per row, which confirms the highly sparse character of this matrix.
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Figure 4.8: 3-D support molecule

4.8 Time integration

Implicit methods have the advantage of overcoming the stability constraint of the
explicit schemes and allowing adjustment of the computational time step to the
underlying physics. The trapezoidal rule is used here in the increment or delta
formulation for the time integration of the semi-discrete system (4.40). First, the
rhs term is approximated as

L
dhc

dt
= L

hn+1 cn+1 − hn cn

τ

= L hn+1 δ
n

τ
+
hn+1 − hn

τ
cn with δn = cn+1 − cn .

Then, we set

J =
∂Pc

∂c
, (4.41)

the Jacobian of the matrix (Pc), and

M = A hn+1 , (4.42)
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the diagonal matrix containing the cell areas multiplied with the total water depths
at cell centers at time step n+ 1, and

∆H = hn+1 − hn , (4.43)

the diagonal matrix containing the change in water depth between time steps n and
n+ 1. The linearly implicit trapezoidal rule then gives(

1

τ
M − 1

2
Jn

)
δn = (Pc)n +

1

τ
∆H cn . (4.44)

Both matrix M and matrix ∆H depend on time through the water depth terms.
Within each separate time step, all these terms (including the ones at time step n+ 1)
are known beforehand from the flow computation and are therefore considered as
constant. As for matrix P , its entries also depend on time (but through the concen-
tration terms), as mentioned previously. We assume these terms to be independent
by freezing them to the previous time step as the time marching procedure advances.

4.9 General layout of the model

The flowchart shown in figure 4.9 summarizes the general layout of the 3-D model.
The model first constructs a number of time-independent arrays mainly related to
geometry and object indexing. The time loop starts with reading the flow data from
files. The flux computation starts with a loop over faces: the support molecule is
constructed for each face and the real flux computation is then done at the local
level of the support molecule; this procedure finishes by affecting the coefficients of
the local molecule in their proper position in the global matrix. The loop over layers
is nested within the loop over faces.
The second part of the time loop consists of looping over cells and layers to

compute the vertical advection and diffusion terms as well as the remaining terms
of (4.13).
The last step consists of adding the source terms and solving the resulting system.

4.10 Data structure

Data structure in the 3-D solver is even more important (in comparison with the 2-D
case) because of the large amount of data/arrays involved and the added complexity
of the 3-D problem. In the 2-D case, we have spent much effort on implementing
an efficient data structure and here we use the optimization results and experience
gained. The starting point for the implementation of the 3-D solver is the 2-D
version itself. Thus we benefit not only from the existing data structure but also
from several other practical aspects of the pre-built model.
The extension from 2-D to 3-D is made possible especially by the type of 3-

D grid we are using. In fact, the structured character of the grid in the vertical
direction implies that all the layers have the same geometry in an x − y plane;
looked at from top, all the nodes are exactly superimposed. This means that the
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horizontal geometry is layer independent, and therefore it is not necessary to add a
third dimension too many arrays involved in the computation.

4.10.1 Numbering of grid objects

Assume we have a 2-D grid with the corresponding numbering of cells, faces, bound-
ary faces and nodes. For the 3-D case, the same 2-D numbering is adopted for
the cells and faces in every individual layer. A second index, the layer number, is
required in order to fully identify each cell and face in the domain.
For the nodes, however, there is no need for a layer index. Nodes are basically

used only for computing the length of faces, which is a layer-independent quantity.

4.10.2 Array indexing in 3-D

Arrays used in the model are related to different variables or objects and have
therefore different lengths. Thus, each type of arrays needs adequate treatment
in order to extend it to the third dimension. On the other hand, for efficient use
of computer memory, the same variable array may appear in different dimensional
form depending on the subroutine using this array. Generally, work arrays are used
in the high level subroutines, that is, all the integer arrays being used are stored
in one unique one-dimensional work array and similarly for the real arrays. This
allows for easy memory allocation and deallocation, leading to more efficient use
of computer memory. In lower-level subroutines, two-dimensional arrays are used.
The correspondence between the two indexing methods can be done automatically
through an adequate declaration of array sizes at the beginning of the subroutines.
Figure 4.10 gives the correspondence between the indices of a given cell i in both
cases. In this figure, ncell is the total number of cells in the domain.
One of the other advantages of the structured aspect of the grid in the vertical

direction is that the connectivity lists defining the relative positions of different grid
objects are basically not affected. This means that this list is built only once for one
layer and used repeatedly for the other layers.

4.10.3 Matrix storage

As mentioned in section 4.7, the final matrix to be constructed has a highly sparse
aspect. The CSR format presented in chapter 2 is also used here to ensure an efficient
use of the computer memory during the matrix storage.
In the 3-D case, the support molecule of a given cell involves cells from three

layers, except for the top and bottom layers, where only two layers are involved.
See figure 4.8. This leads to a new definition of arrays ia, ja and ar, the three
one-dimensional arrays representing the sparse matrix. Array ia is defined in a
straightforward manner and now contains (ncell ∗ K + 1) elements, with K being
the number of layers. Elements are ordered in such way that the first ncell positions
are reserved for layer 1 followed by ncell positions of layer 2, etc. Arrays ja and ar
need more work for extension to 3-D, however. To give some details, let us consider
cell number (i, k) presented in figure 4.10. In a one-dimensional array, this cell has
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a unique index j = (k−1) ∗ncell+ i. The part of array ar and ja reserved for cell j
are divided in three sub-arrays of exactly same length, each corresponding each to a
different layer: first, we get entries from cells in the same layer as cell j, then those
from the layer on top, and finally those from the layer underneath that element,
see figure 4.11. Entries in the three sub-arrays are arranged in such way that they
correspond to superimposed elements, for example the mth element in the second
sub-array corresponds to the cell located on top of the one in the mth position in
the first sub-array, and the mth element in the third array is located underneath
that same element. For the top-most and bottom layers, only two sub arrays are
reserved. Although in the present discretization schemes of the different flux terms
some of the entries are known to be zeros, arranging data in this way presents at least
two advantages: first, it allows for future testing of different discretizations without
having to introduce major changes in the code, and second, it is more convenient for
debugging purposes. The length of arrays ar and ja is therefore almost 3K times
larger than their original length in the 2-D case.

4.11 Boundary conditions

Some aspects related to boundary treatment were already presented in section 4.6
dealing with flux computation. A general summary is given in the present section.

Per individual layer, horizontal fluxes are dealt with, as in the 2-D case. For ad-
vective fluxes, a zero-flux condition applies for closed boundaries. For open bound-
aries, either a Dirichlet or a simple upwind condition is adopted, depending on
the velocity direction. For the diffusive fluxes, the boundary treatment consists in
building the shadow volume using the only surrounding cells available . Details
on construction of this shadow volume for different possible situations are given in
section 2.4.6.

In the vertical direction, advection fluxes as well as diffusive fluxes are equal to
zero at the topmost and bottom horizontal interfaces. In the present version of the
code, terms (4.20) and (4.21) are set to zero in the top and bottom layers.

4.12 Conclusions

In this chapter, the main building steps of the new 3-D transport solver are described.
To summarize, the model solves the layer averaged advection-diffusion equation over
an unstructured grid in the horizontal direction and a structured grid in the vertical
direction. The shape of the unit volumes is such that the vertices of the volumes
which belong to a same column have the same time-independent x− y coordinates
whereas the vertical coordinates change in time. In order to proceed with the finite
volume formulation, the transport equation is first averaged over each layer. The
Leibniz rule is the basic tool used to average the different terms of the equation. The
unknown concentration, computed at the center of each volume, represents therefore
the average value over the volume.

The estimation of different horizontal and vertical fluxes of the finite volume
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method is explained in detail. In the vertical direction, second-order central differ-
encing, rather than upwind, is applied for most terms.
The model uses a linearly implicit method for the time integration and the re-

sulting overall linear system is solved using a BICGStab method with an ILU pre-
conditioning.
For the 3-D model, the data structure is even more important than in the 2-D

case because of the very large amount of interfering parameters. In particular, details
are given describing the way array indexing and matrix storage are implemented.
The numerical application of the 3-D solver follows in the next chapter. A

hypothetical test case as well as a three-dimensional simulation of the Dutch coastal
model are used to test and evaluate the performance of the new model.
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Figure 4.9: General layout of the solver algorithm
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layer 1 : i, 1 ↔ i

layer 2 : i, 2 ↔ ncell+i

layer k : i, k ↔ (k-1)*ncell+i

layer K : i, K ↔ (K-1)*ncell+i

Figure 4.10: Correspondence between one- and two-dimensional array indexing
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Figure 4.11: Structure of arrays ja and ar in the 3-D case



Chapter 5

Numerical results of the 3-D solver

5.1 Introduction

This chapter is devoted to the application of the constructed 3-D transport solver
to practical cases. A preliminary step to the transport computation consists of
obtaining the required flow parameters by solving the flow problem using the three-
dimensional version of WAQUA named TRIWAQ. The raw output data from TRI-
WAQ needs then to be preprocessed in order to provide conservative data for the
transport computation. Preprocessing detail are presented in the next section. Two
numerical applications are carried out: first a hypothetical test case consisting of
simulation of transport scenarios for a stretch of river and second, again the Dutch
coast problem is considered but now in its 3-D version. The performance of the
newly built model is evaluated based on these two cases.

5.2 Flow data preprocessing

Before starting with the numerical results of the 3-D solver, it is necessary to mention
the intermediate step of data preprocessing. It is clear that the use of raw flow data
will inevitably lead to the occurrence of unrealistic source and sink terms. The
constancy condition defined in section 2.7.2 therefore needs to be satisfied, and for
this purpose, a preprocessing step is required. The data preprocessing technique
used for the 2-D case needs to be reconsidered to make it suitable for the 3-D case.
If we set a uniform concentration in the transport equation, we need to retrieve

exactly the flow continuity equation in order to ensure that the constancy condi-
tion is met. Doing so, horizontal and vertical diffusion terms as well as term (4.21)
disappear immediately since they are a function of the gradient of concentration.
Term (4.20) does not cancel, and for now, we propose to leave out this term from
the discrete transport equation before proceeding with data preprocessing. All cal-
culations made including this term and presented later in this chapter showed that
it has a very limited impact on the results.

69
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Now, writing the transport equation for a uniform concentration gives the con-
dition which needs to be satisfied by the flow coefficients:

A

τ
(Hn+1

cell −Hn
cell) = −

∑
e

Hn
e U

n
e le − A [ ωn ]zk−1

zk
. (5.1)

We need to compute coefficients which satisfy equation (5.1) but prefer to have
them at a larger time step than the one used for the flow computations, i.e.:

A

T
(HN+1

cell −HN
cell) = −

∑
e

HN
e UN

e le −A [ ωN ]zk−1
zk

, (5.2)

where N is a multiple of n.
We can use the same technique of time integrated flow data described in section

2.8.1 and which consists in combining data at small time steps to generate new data
at larger time steps. The procedure can be made easier using some special out-
put variables from TRIWAQ called “time integrals”. These are WPINT , DISUNT ,
DISVNT , UPINT , and VPINT , defined as follows:

DISUNT t+T
k =

∫ t+T

t

Uk Hk dt DISVNT t+T
k =

∫ t+T

t

Vk Hk dt

UPINT t+T
k =

∫ t+T

t

Uk dt VPINT t+T
k =

∫ t+T

t

Vk dt

WPINT t+T
k =

∫ t+T

t

ωk dt , (5.3)

where T is such that the time level N + 1 in (5.4) corresponds to t+ T .
For a given element, these variables satisfy the following mass conservation equa-

tion:

A

T
(HN+1

cell −HN
cell) =

∑
e

DISUNT

T

N+1

le +
∑

top,bottom

A
WPINT

T

N+1

. (5.4)

In this equation, DISUNT may also be DISVNT depending on the direction of the
face. By making a correspondence between (5.2) and (5.4), the following choice for
the flow parameters appears to ensure the required conservation property:

HN
e =

DISUNT

UPINT

N+1

; UN
e =

UPINT

T

N+1

; ωN =
WPINT

T

N+1

; (5.5)

For the particular case where UPINT is equal to zero, the value of HN
e is simply

taken equal to the elevation difference zk−1 − zk.
Computations using these coefficients led to satisfactory results, as will be shown

later in this chapter. Occasionally, however, the discrete mass conservation (5.4) is
not accurately satisfied, especially near regions where the bathymetry presents a
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highly distorted geometry. To overcome this, we propose to apply a correction on
HN+1

cell but using a slightly different method than in the 2-D case described by (2.36).
Here, for the computation of the solution at time level N +1, the model reads from
input data the required velocities and elevations at time step N and uses these values
to compute HN+1

cell according to (5.2) instead of reading H
N+1
cell from the input. In the

next time level N + 2, HN+1
cell does not have the value previously computed but it is

read again from the input files and it is with respect to this latter point that the
procedure differs from the two 2-D case. This method ensures that (5.2) is satisfied
up to machine accuracy everywhere in the domain. However, this also means that
the water depth Hcell may occasionally have a discontinuous profile in time. Our
computations showed that this has basically no effect on the accuracy of the results.

5.3 Test case

The 3-D solver was first applied to a test case in order to facilitate the implementa-
tion of the model. The physical domain of the chosen test case consisted of a stretch
of river 500 m long and 100 m wide with a bed presenting some deformations and
irregularities as shown in figure 5.1. The idea is to generate the 3-D motion of the
flow and subsequently of the tracer.

Figure 5.1: Grid of the test case

5.3.1 Grid

The domain of the test case was covered with a rectilinear grid of 100 points in
the x-direction and 20 points in the y-direction. The space step was 5 m in both
directions. In the vertical direction, the domain was subdivided in 10 layers of equal
thickness.
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5.3.2 Hydrodynamic coefficients

The flow simulation using TRIWAQ was carried out for a duration of 3 hours
20 minutes with a time step of 0.01 minute. The initial conditions consisted of a
uniform water level equal to 1 m (water level above an imaginary plane of reference)
and a uniform velocity equal to 0.2 m/s in the main flow direction. The boundary
conditions consisted of imposing a constant discharge of 5.9 m3/s at the upstream
boundary and a periodical water level at the downstream boundary according to
the function shown in figure 5.2. The bottom friction was estimated using Chezy
formula with a coefficient equal to 70.
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Figure 5.2: Water level at the downstream boundary

Figure 5.3 shows a snapshot of the resulting velocity field for the topmost 5 layers
after 30 minutes from the start of the flow computation.
The following coefficients had to be stored at the required time steps in order to

be used by the transport solver:

• horizontal and vertical velocities
• layer elevation at the velocity points and water level points. (See figure 4.4)
• type and value of the boundary conditions

5.3.3 Numerical results for the test case

The numerical experiments started with a check for the constancy condition. Using
a computational time step of 5 s, the run for the constancy condition was performed
successfully. The concentration remained perfectly equal to the chosen constant
value, in our case c = 1, up to machine accuracy. This is mainly because the
correction applied on HN+1

cell is computed within the solver.
Before continuing with further simulations, we carried out a check related to

term (4.20). It consists in running the constant solution problem while including
this term. Figures 5.4 and 5.5 show the result and the analysis of the simulation
of the constant solution in this case. Figure 5.4 corresponds to a time of 40 min
and shows the concentration distribution. Figure 5.5 shows some statistics of these
results: (a) shows the maximum and minimum values through the whole domain as
a function of time, (b), (c) and (d) show the mean value, the number of cells where
the error exceeds 1% and the standard deviation, respectively, all functions of time.
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The main conclusion is that the concentration remained almost unchanged and that
therefore the adopted approximation of omitting term (4.20) is legitimate.
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Figure 5.3: Velocity field at the topmost 5 layers at time 30 minutes
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Figure 5.4: Constant solution after 40 min
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Figure 5.5: Layer depth and layer elevation
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A continuous release of a miscible pollutant was then simulated. The release
point was located at the upstream boundary of the stretch, halfway between the
right and left banks and was assumed to take place at the water surface (layer 1).
The computation started with a concentration equal to zero throughout the domain.
The diffusion coefficients were estimated at 0.01 m2/s for the horizontal direction
and 0.001 m2/s for the vertical direction. The computational time step was 5 s.
Figure 5.6 shows for each of the 10 layers a top view of the horizontal concen-

tration profile. Three contour lines represent concentration 0.05, 0.5 and 1 (when
applied). Figure 5.7 shows a 3-D representation of the iso-value c=0.25 viewed from
different angles. Both figures show a 3-D aspect of the tracer transport. The result
of the 2-D simulation of the same problem is presented in figure 5.9 for comparison.
Figure 5.8 shows the total mass of tracer present in the domain, computed based

on the concentration profile obtained. The dashed straight line represents the total
mass released, which, in our case, is linear in time corresponding to a constant
release. This figure shows a very good conservation of mass during the first 15
minutes of the simulation. After that, the solute starts leaving the domain from the
right boundary and of course the two curves start deviating from each other. In this
computation, no negative concentrations were registered.
For comparison purposes, figure 5.10 shows the results of the simulation of the

same scenario using TRIWAQ transport solver. Compared to figure 5.6, TRIWAQ
produces a slightly less diffusive pattern in the horizontal direction. However, it has
the disadvantage of producing large negative concentrations in many locations.
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Figure 5.6: Top view of the concentration at different layers after 16 min
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Figure 5.7: 3-D representation of the iso-value 0.25 after 16 min viewed from different
angles
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Figure 5.9: 2-D simulation of the test case. Situation after 16 min.
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Figure 5.10: TRIWAQ simulation of the concentration at the different layers
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The sensitivity analysis carried out for this test case revealed that the value of the
vertical diffusion coefficient plays an important role in the final vertical distribution
of the concentration. Figure 5.11, obtained using Dv =0.01 m

2/s instead of the
value 0.001 used previously, shows a result differing widely from that in in figure
5.6. These two values of Dv were also used to produce time history plots at cell
number 170. The location of this cell is marked in figure 5.12-c. In figures 5.12-a
and 5.12-b, the topmost curve corresponds to the concentration in layer 1, the next
to layer 2, etc, which was of course to be expected since the release takes place in
the top layer. The vertical mixing is clearly larger for the higher Dv value whereas
in the other case, the low mixing results in a concentration which remains high at
the top layer. For some environmental applications, this fact might be important
and it is therefore highly recommended to use a good estimation of this coefficient.

Figures 5.13, 5.14 and 5.15 show time history plots of the averages of the con-
centrations over the 10 layers for both values of vertical diffusion and Dh=0.01 m

2/s
together with the corresponding result of a 2-D run using Dh=0.01 m

2/s as well.
These figures correspond to three partial cross-sections of the canal depicted in fig-
ure 5.12-c. Two general conclusions can be drawn from these plots: first, there is
a good match between the 3-D results, which means that the quantity of pollutant
located in a given column of cells is almost equal in both cases. Only the vertical
distribution may differ. Second, the 2-D concentrations are in most cases somewhat
higher than the 3-D values in the area located around the middle of the canal. Closer
to the banks, the situation is reversed which indicates that the tracer transport was
less diffusive in the 2-D case. This led us to believe that for the simulation of a same
scenario using the 2-D and 3-D model, different values for the horizontal diffusion
coefficient have to be chosen. Just for a first impression of this issue for the present
test case, we carried out three runs of the 2-D model using different values of Dh,
namely, 0.1, 0.05 and the original 0.01 m2/s value. A comparison of the time history
plots obtained with the plots of the 3-D runs (using Dh=0.01 m

2/s) shows that for
a large number of cells, a value of Dh such that 0.05 < Dh < 0.1 gave a result closer
to the 3-D case.

Here, it is important to mention that basically the variation of the horizontal
diffusion in the flow solver does not affect the velocity field produced. Previous
runs using values 0.001, 0.01 and 0.1 m2/s (chosen deliberately of different orders of
magnitude) only led to a maximum relative variation of velocities and water levels
of the order of 10−4. This means that the same flow data set can indeed be used for
several transport simulations in which only horizontal diffusion varies.

Going back to the analysis of the vertical diffusion, we need to mention that
up to here, only constant profiles have been taken for the vertical diffusion. We
repeated the same experiment but with the two parabolic profiles depicted in figure
5.17. This kind of profile is preferred by some authors, such those of [43], for some
practical applications. These two profiles were chosen in such way that areas under
the curves correspond to those same areas for the constant vertical diffusion 0.01
and 0.001 m2/s. Figure 5.18 and 5.19 show respectively for these two values the
resulting spreading for both parabolic profiles. Compared to figures 5.6 and 5.11,
we notice that the shape of the diffusion profile does not have much effect on the
final distribution and that the order of magnitude of Dv is rather the predominant
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factor.
A third different type of models often used in practical applications is the alge-

braic model described in appendix A. In this type of models, the vertical diffusion
has a spatial varying parabolic profile. The result obtained in this case is depicted
in figure 5.20. The spreading is rather similar to the previous experiments with the
constant and parabolic profiles and with Dv of the order of 0.01 m

2/s.
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Figure 5.16: Spreading of the pollutant resulting from a 2-D simulation
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Figure 5.17: Parabolic vertical diffusion profiles.
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Figure 5.18: Top view of the concentration at different layers after 16 min using parabolic
vertical diffusion (profile I).
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5.4 Application to the Dutch coast

As mentioned, we applied our 3-D transport solver to the Dutch coastline and simu-
lated a transport scenario in this area. As in chapter 3, we also use the Kuststrook-
model, but now with 10 layers forming the vertical dimension.
Compared to hypothetical exercises, real-life applications pose extra difficulties

due to all kinds of peculiarities. With regard to the type of problems we are dealing
with, these peculiarities can be for example a highly distorted bathymetry or the
drying and wetting of some parts of the domain during the simulation period.

5.4.1 The grid

The projection of the grid used here on a horizontal plane corresponds exactly to the
grid of figure 3.1. Recall that this this grid represent a 400×60 km domain with an
average size of one single element of 1000×400 m. The total vertical depth, which
varies according to the location from 0 to around 50 m, is divided in 10 layers of
equal thickness.

5.4.2 Hydrodynamic coefficients

TRIWAQ was used to provide the necessary flow data. The flow computational
time step was 1 minute. The time integrated values of velocities and water depths
presented in section 5.2 were computed and stored under the required format into
files for every layer and for every time step of the transport simulation taken equal
to 10 minutes. The total necessary disk space for the storage was large: around 300
Gb contained in more than 400,000 files for the simulation of a duration of 2 months.
We should mention here that the handling and management of such a large number
of files is made reasonably feasible thanks to the use of dedicated bash scripts of our
Linux-based operating system.

5.4.3 Check for the constancy condition

Using a time step of 10 minutes, the check for the constancy condition was performed
successfully. The adopted correction procedure presented in section 5.2 proved to
be very convenient for this real-life application especially because flow data do not
always satisfy the conservation property up to machine accuracy.
Here also, a check related to term (4.20) was performed. The run of the constant

solution problem including this term led to the same conclusion as for the test case:
the concentrations remained almost unchanged and the decision to neglect this term
is acceptable.

5.4.4 Real-life simulation

Subsequently, we simulated a release in the North Sea is carried out. The point of
release was the outlet of the Nieuwe Waterweg in Hoek van Holland (shown by an
arrow in figure 5.21). The computational time step was also 10 minutes.
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Figure 5.21 shows the spreading of the tracer after one month of the start of the
release for both layer 1 and layer 10. Figure 5.22 shows the situation after a period of
two months for both layers. These two figures together with figure 5.23, presenting
the results in further intermediate layers, show that the distribution of the tracer
is not very different from one layer to another. By examining the concentration
time history plots in figure 5.24, we see that the vertical distribution is significant
only close to the release point (cell 14489). In general, in these plots, the topmost
curve corresponds to the top layer. The selected locations for time history plots are
depicted in figure 5.25.
These results were obtained using a uniform vertical diffusion Dv= 0.01 m

2/s.
A further experiment is carried out with the space-varying algebraic model used
earlier for the test case and described in appendix A. Since the coastal model
presents very non uniform flow parameters, the resulting vertical diffusion varies
also considerably between different locations. Nevertheless, the resulting spreading
shown in figure 5.26 was very similar to the one obtained with the uniform Dv.
This led to the conclusion that the 3-D coastal model is not really sensitive to the
vertical distribution of the vertical diffusion. It is even less sensitive to the order of
magnitude of Dv than in the test case.
The oscillations observed in these time history plots are realistic and are due to

the tidal effects. Notice that the vertical scale is not the same for all the plots.
The result of the check for the tracer mass conservation is shown in figure 5.27.

It shows a good match between the released amount of pollutant - chosen to be
constant in time - and the total mass resulting from the computed concentrations.
We noticed, however, that by the end of simulation, a slight difference occurred.
In terms of positivity, the results are also very satisfactory. Figure 5.28 shows

a plot of the overall maximum and minimum values detected through the whole
domain as a function of time. The maximum values are usually registered at the
point of release. The periodic pattern clearly follows the tidal movement. Also by
the end of the simulation, there are some relatively large negative values. The check
made after these large values shows that their number is very limited, usually one
single negative value. They also take place in regions likely to undergo drying and
wetting. This is confirmed by the moment these errors appear when the tracer starts
reaching the northern Waddenzee area, well known by the strong tidal effect which
dries out a large parts of this region.
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Figure 5.23: Result of a tracer release simulation (after 63 days)
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Figure 5.26: Result of a tracer release simulation (after 63 days) using an algebraic model
for the vertical diffusion
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5.5 Conclusions

The newly constructed 3-D model is applied for two cases: a hypothetical test case,
specially created for the implementation phase, and a real life case to test for the
performance and the capabilities of the model to deal with all sort of difficulties
related to real life cases. For both applications, the constancy condition is satisfied
up to the machine accuracy thanks notably to the proposed preprocessing technique.
For the tracer release experiment, the results obtained for the test case are com-

pared to the results of the transport package of TRIWAQ. The profile of the tracer
spreading is very similar in both experiments. Our solver presents a very good mass
conservation property and furthermore it has the advantage of not producing nega-
tive concentrations. With respect to the vertical distribution of the concentration,
it is found out that the value of the vertical diffusion coefficient is the key parameter
which controls this distribution. Three different profiles are tested for the vertical
diffusion, namely a constant profile, a parabolic profile and a third profile using an
algebraic model which computes the vertical diffusion based notably on the flow
parameters. The main conclusion was that the order of magnitude of the vertical
diffusion is the most important factor rather than the shape of the profile.
The 3-D solver also performs well when used with the Dutch coastal model. A

similar experiment to the one carried on with the 2-D model shows that no significant
vertical distribution of the concentration takes place. The spreading in the 10 layers
looks very much the same and appears not to be really sensitive to the vertical
profile of the vertical diffusion. It is also similar to the spreading of the 2-D case
and also to the spreading obtained with the 2-D transport package of WAQUA. The
check for the total mass present in the domain confirms the good mass conservation
properties of the 3-D solver.



Chapter 6

General conclusions and
recommendations

6.1 General conclusion

The main goal of this thesis was to improve the 2-D tracer transport solver developed
and to extend it to a three-dimensional model. This work was in fact an extension
to the earlier works of P. Wilders and G. Fotia [53, 54] who first applied the finite
volume technique on triangular unstructured grids to simulate the transport pro-
cesses. The solver is second order accurate and uses the Enquist-Osher function for
the estimation of the numerical advective fluxes. The trapezoidal rule is used for
the time integration. The improvements brought in this thesis to the original model
consisted in solving problems related to the mass conservation and to the positivity
of the solution. It happened in fact that for some practical applications and de-
spite of the fulfillment of the previously developed conditions for positivity, negative
concentrations might still occur and problems in mass conservation were detected.
Positivity and mass conservation are important issues necessary to ensure an accu-
rate transport simulation. The main idea of the new improvement was to avoid the
appearance of artificial source and sink terms by ensuring the so-called constancy
condition which basically states that in absence of external sources, a system with
a uniform concentration should keep his concentration uniform as times runs. The
following preprocessing steps were then proposed to ensure this constancy condition.
These steps constitute at the same time a main conclusion of the first part of this
thesis as well as a recommendation to be considered in any future work of the same
context.

• The transport solver is uncoupled from the flow computations. Nevertheless, a
vigorous check on the quality of the flow output was required. Essentially, the
computed flow parameters have to satisfy the discrete flow continuity equa-
tion up to machine accuracy. A posteriori check on whether these data do
really satisfy the continuity equation is very recommended. If this is not the
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case, a correction procedure might be needed to provide exactly conservative
coefficients.

• Based on the flow parameters obtained from the flow solver and checked in
the previous step, new flow coefficients were computed. We do know the
numerical scheme used to compute them and consequently the discrete form
of the continuity equation used to compute the flow is also known. Based on
that, we proposed a new method to generate another set which satisfy the
discrete transport continuity equation.

• This step is rather related to real-life cases where drying and wetting of some
regions of the domain can occur. A special attention is then necessary to match
the way drying and wetting is conceived between the flow and the transport
solvers. This an important and delicate point which may even corrupt the
whole computation if not dealt with properly.

The improved 2-D transport solver was applied to the Dutch coast to simulate
the propagation of the pollution originating from the river Rhine. After ensuring
the steps mentioned above, the output of WAQUA, the flow solver used to provide
the flow parameters, was successfully preprocessed and consequently the constancy
condition could be satisfied. The results of the simulation of a tracer release were
compared to the results from the transport solver of WAQUA and a good corre-
spondence was obtained. The mass conservation was also satisfied during the whole
computation.
The choice of uncoupled computation of the flow and transport can lead to a

demand of a large disk space exceeding the available possibilities. On the other
hand, a constraint on the time step for the transport solver to be the same as the
one of the flow might also be imposed. In this thesis, we developed a technique to
overcome these disadvantages. It consisted in creating new set of data at relatively
large time steps by combining the data computed with smaller time step. This
technique led to remarkable results with the valuable advantages of reduced storage
and faster computations.
A second investigated technique to reduce the disk space required and to allow

for a cheaper flow computation was the so-called periodic continuation. It is based
on the assumption of the periodic character of the flow parameters in relation with
the tidal changes. This technique showed a high sensitivity to the chosen length of
the unit period and furthermore it led to the appearance of negative concentrations.
The conclusion with this respect was that the usage of this technique should be
limited.
The second part of this thesis was dedicated to the development of a new three

dimensional version of the transport solver. The model solves a layer averaged
advection-diffusion equation over an unstructured grid with fixed number of layers.
The finite volume technique used in the 2-D solver is extended to cope with the
multi layered problem.
In order to test and to evaluate the performance of the 3-D model, we did apply

it in two different experiments: a hypothetical test case, and a real-life case, the
Dutch coastal model.
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The test case consisted in simulating the transport of a tracer in a stretch of river
with irregular bed forms. The grid contained 10 layers in the vertical direction. The
constancy condition was satisfied thanks to the new approach used in the data pre-
processing. The result of a tracer release experiment showed a good similarity with
the result obtained with the transport module in the TRIWAQ package although
the latter produced very slightly less diffusive spreading in the horizontal direction.
No negative concentrations were produced and the check for the total mass was
satisfactory. The sensitivity analysis carried out for this test case revealed that the
magnitude of the vertical diffusion coefficient plays the dominant role in the shape
of the vertical profile of the concentration. It was therefore recommended to have
a good estimation of this coefficient. Three different models were used to estimate
the vertical diffusion: a uniform vertical profile, a parabolic profile and an algebraic
model used for common applications. For the first uniform profile, two different val-
ues, 0.01 and 0.001 m2/s were tested. For the parabolic profile, two different profile
corresponding to two different orders of magnitude were used. The algebraic model
had the advantage of computing the vertical advection out of the space varying flow
parameters and using empirical variables recommended for practical use. Two main
conclusions were drawn from these different experiments. First, the shape of the
diffusion profile does not have much effect on the final distribution and that the or-
der of magnitude of Dv is rather the predominant factor. Second, the results of the
algebraic model were very similar to ones obtained with the constant and parabolic
profiles when Dv is of the order of 0.01 m

2/s.

The second application of the 3-D solver was devoted to the Dutch coastline
to simulate a transport scenario in this area. In general, compared to test cases,
real life applications usually present extra difficulties notably due to the drying and
wetting of some parts of the domain during the simulation period.

The same Kuststrookmodel was used here but now with 10 layers forming the
vertical dimension. Using a time step of 10 minutes, the check for the constancy
condition was successfully performed. With the same time step, a tracer release
at the outlet of the Nieuwe Waterweg in Hoek van Holland was simulated. Using
a uniform vertical diffusion Dv= 0.01 m

2/s, the obtained results showed that the
distribution of the tracer is not very different from one layer to another. Only in
the area close to the release point, the vertical distribution can be significant.

Further experiments were carried out using the space varying algebraic model.
Although this model produced a vertical diffusion which varies considerably between
different locations, the resulting spreading is very similar to the one obtained with
the uniform Dv. The conclusion drawn was that the 3-D coastal model is not really
sensitive to the vertical distribution of the vertical diffusion. It was found out also
that it is even less sensitive to the order of magnitude of Dv than in the test case.

Further checks of the results with respect to the tracer mass conservation and
to the positivity of the concentrations were performed. In general, there was a very
good match between total mass released and the total mass computed out of the
concentrations during the simulation period. We noticed, however, that by the end
of simulation, the occurrence of a slight difference. At the same time, now and then,
some negative values appear and usually limited to one single value through out
the domain. It is very likely that the drying and wetting treatment is behind the
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appearance of these negative values mainly because this fact occurs when the tracer
reaches the northern part of the Dutch coast and where the drying and wetting is
a dominant characteristic of the the region. Anyway, we believe that this does not
alter the overall result which remains very satisfactory and that future minor fixing
can eliminate this problem.

6.2 Recommendations

The results obtained in this thesis showed that the developed transport solver has
notably the advantage of being mass conservative and producing positive output.
There is however room for further improvements to the solver:

• The modeling of the drying and wetting into the transport solver using correc-
tion techniques as we did in this thesis might not be completely satisfactory
for coastal regions where this phenomenon is highly preponderant. Errors in
the mass conservation may then accumulate quickly. More rigorous methods
should therefore be considered.

• In its new three dimensional version, the transport solver requires more than
40 hours of CPU time on a single processor computer (AMD Athlon 1700) to
achieve the run of the Dutch coastal model for a period of two months. It is
therefore good time to think about investigating the parallelization of the code
to speed up the simulations.
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Appendix A

An algebraic turbulence model for
the vertical diffusion

The vertical diffusivity Dv is assumed to be proportional to the eddy viscosity νv:

Dv =
νv
σc

(1.1)

where σc is the turbulent Prandtl or Schmidt number assumed in most cases to be
constant and for the transport of a tracer, it is set to 0.7.

The so-called zero-equation or algebraic model determine the eddy viscosity
through empirical formulae for k and L, which are suitable for shallow flow ap-
plications.

The so-called algebraic models are the simplest of all turbulence models. The
model used in chapter 5 is based on the Kolmogorov-Prandtl relation:

νv = c′µ
√
k L (1.2)

where L is a specific length scale and c′µ is an empirical constant. Details may be
found in [37]. According to Uittenbogaard et al. [44], c′µ = 0.58. The length scale L,
which depends on the flow geometry, needs to be prescribed. According to [1], the
following algebraic expression for L suitable for hydraulic applications can be used:

L = κ (z + d)

√
(1− z + d

H
) (1.3)

with κ the Von Kármán constant (≈ 0.41). It follows from this equation that at the
bottom and free surface the length scale equals zero. If we neglect the wind stress,
we can use the following expression for k proposed by Uittenbogaard et al. in [44]:

k =
1√
cµ
(1− z + d

H
) (ub∗)

2 (1.4)

113



114 An algebraic turbulence model for the vertical diffusion

where ub∗ =

√
(
|τb|
ρ ) is the friction velocity at the bottom and τb is the bottom stress.

cµ is a closure constant taken equal to 0.09.
Substituting (1.2), (1.3) and (1.4) into (1.1) leads to a parabolic vertical diffusion

profile across the total water depth with a maximum located at half the depth depth.
For the estimation of the friction velocity, we can use the logarithmic wall-law for
rough beds expressed as:

(ub∗) = κ
u(
∆z

2
)

ln(

∆z

2
+ zo

zo
)

(1.5)

where u(∆z2 ) corresponds to the norm of the velocity vector at the center of the cell
of the bottom layer. zo is a roughness coefficient (≈ 0.0025m). This leads therefore
to a space varying vertical diffusion.
With respect to our quadrilateral unstructured grid, we only have normal ve-

locities at cell faces and therefore we need to estimate the velocity at cell centers.
We propose a simple method to obtain this estimation. Illustrated in figure A.1, it
consists in adding all the velocity vectors at faces and taking half of the norm of the
resulting sum vector.

u(
∆z

2
) =

1

2
‖
∑
e

−→u e‖ (1.6)

Figure A.1: Reconstruction of the velocity vector at the cell center.

This is a very simple procedure to approximate the velocity vector at the cell
center. In our case, in fact, there is no real need for more elaborate methods.
However, references [49, 50, 41] are recommended to the reader in case there is
necessity for more accurate methods.



Summary

The simulation of the tracer transport process is an increasingly important tool
to predict the distribution of pollution released in coastal waters. The equation
that governs the tracer transport is the advection-diffusion equation. Thanks to the
tremendous developments in computer resources and in computing techniques, it
has become possible to solve this equation for multi-dimensional problems and in
complex domains.
This thesis, devoted to this subject of tracer transport, consists of two main

parts. The first deals with the existing 2-D transport solver and emphasizes notably
on the improvements brought to this solver. Based on the finite volume method,
the solver uses input data obtained from a separate flow solver. It was shown that a
preprocessing step of the flow parameters according to newly developed techniques
is required in order to ensure the positivity of the computed concentrations and the
mass conservation of the overall solution. In order to be able to adopt a different
time step in the transport solver than used for the flow computation, the usage of
time integrated flow data has proven to be an efficient technique. The improvements
brought to the 2-D solver were tested through the numerical application to a real-
life case. The Dutch coastline case was chosen because of its importance from the
environmental point of view.
In the second part of the thesis, a 3-D version of the transport solver is devel-

oped. In the vertical direction, the physical domain is subdivided in a fixed number
of layers, while in the horizontal direction, the domain is represented using an un-
structured grid. The numerical estimation of the different fluxes of the adopted
finite volume method are described in detail. The 3-D version requires also the pre-
processing of the input flow data prior to their use in order to avoid the occurrence
of unrealistic sources and sinks.
The testing of the newly developed 3-D solver is achieved using two numerical

applications. The first is a hypothetical test case consisting of simulating a tracer
release in a river stretch and the second is a real-life application concerning the
Dutch coastline. Different vertical profiles for the vertical diffusion coefficient were
tested since this term plays an important role in the vertical mixing.
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Samenvatting

Een belangrijke methode om de verspreiding van vervuilingen in water te voorspellen
is het simuleren van het transport van passieve opgeloste stoffen (tracer transport).
De vergelijking die de het tracer transport beschrijft is de zogenoemde advectie-
diffusie vergelijking en simulatie vindt plaats op basis van een numerieke solver die
benaderingen van oplossingen van deze vergelijking genereert. Mede door computer
technische ontwikkelingen is het tegenwoordig mogelijk om deze vergelijking op te
lossen op complexe domeinen en ook voor multi-dimensionale problemen. Dit proef-
schrift behandelt tracer transport in de Nederlandse kustzone.
Dit proefschrift valt uiteen in twee delen. Het eerste deel gaat uit van de reeds

bestaande 2-D transport solver en behandelt met name de aangebrachte verbeterin-
gen. De transport solver gebruikt data die extern verkregen zijn, in ons geval met
het pakket TRIWAQ, een pakket dat stromingen uitrekent. Aangetoond wordt
dat voorbewerking van de stromingsgegevens nodig is om positieve waarden van de
berekende concentraties te garanderen en om verzekerd te zijn van massabehoud van
de oplossing. Hiertoe worden technieken ontwikkeld. Daarnaast wordt aangetoond
dat stromingsgegevens samengenomen kunnen worden (time integrated flow data) en
dat dit aanleiding geeft tot een doeltreffende techniek om de tijdstap in de transport
solver verschillend te kunnen kiezen van de tijdstap in de stromingsberekening. De
verbeteringen van de 2-D transport solver zijn getest door middel van een numerieke
toepassing op een probleem rond de Nederlandse zeekust. Er is voor de Nederlandse
kust gekozen omdat milieuvervuilingen hier van groot belang zijn.
In het tweede deel van dit proefschrift wordt een 3-D variant van de trans-

port solver ontwikkeld. In verticale richting is het domein verdeeld in een eindig
aantal lagen. In horizontale richting daarentegen is de verdeling ongestructureerd.
Toepassing van de eindige volume methode vraagt om evaluatie van verschillende
fluxen. De gekozen numerieke benaderingen worden gedetailleerd beschreven. De
3-D versie vereist ook een voorbewerking van de stromingsgegevens om het optreden
van onrealistische bronnen en putten te vermijden.
Gebruikmakende van twee numerieke toepassingen is de nieuwe 3-D solver getest.

In de eerste toepassing is een hypothetisch rivier segment genomen met een continue
lozing. In het tweede geval is de solver toegepast op een probleem met betrekking tot
de Nederlandse zeekust. Verschillende profielen voor de verticale diffusie coefficiënt
zijn getest, omdat de verticale diffusie term de primaire aandrijving vormt van de
verticale menging.
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work, he followed a DEA (Diplôme d’Etudes Approfondie) course in applied mechan-
ics, transfer of heat and mass in the “Faculté des Sciences de Tunis” and graduated
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