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Abstract

Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from
around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human
disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving
the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis
strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to
enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine
macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were
challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is
then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B.
pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection.
Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By
using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages
was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine
macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does
not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as
well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be
limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods
intracellulary.
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Introduction

Brucellosis is an infectious disease that affects a wide range
of mammalian species and is regarded as the world’s most
common bacterial zoonotic disease [1]. For decades, the genus
Brucella included six species with different preferred terrestrial
mammalian hosts, four of which are pathogenic for humans [2].
Recently four additional species have been included [3–5]. The
occurrence of human disease is dependent on animal
reservoirs, including wildlife [6].

Brucella spp. were isolated from marine mammals for the
first time in 1994 [7,8] and validly published as members of
genus Brucella with the names B. pinnipedialis (pinnipeds;

seals, sea lions and walruses) and B. ceti (cetaceans; whales,
dolphins, and porpoises) in 2007 [3]. Marine mammal brucellae
have since been serologically indicated in and isolated from
pinnipeds and cetaceans from multiple locations; however
gross pathology in association with Brucella infection in marine
mammals is exclusively found in cetaceans [9,10]. The results
from experimental infections in various animal species are
diverging and the zoonotic potential of the marine mammal
brucellae is largely unknown [7,11–13]. However, reports of
human disease exist [14–16]. Interestingly, none of the
naturally infected human cases reported contact with marine
mammals, but consumption of raw seafood was noted [15,16].
All three Brucella-isolates from the naturally acquired infections
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shared an identical genotype (sequence type 27), to date only
being found in marine mammals in Pacific waters [17]. The
infectious cycle of marine mammal brucellae is to a large
extent uncertain and unknown hosts or carriers may exist.
Brucella melitensis has been isolated from Nile catfish (Clarias
gariepinus) [18], while B. ceti and B. pinnipedialis have been
isolated from lungworms in cetaceans [19] and pinnipeds [20]
respectively, pointing at other possible reservoirs in the marine
ecosystem besides pinnipeds and cetaceans. In light of the
extensive use of marine resources, including products from
marine mammals, increased knowledge about Brucella spp. in
the marine environment and their possible implications in
human disease, is an important issue in the “One Health”
perspective.

Brucella spp. are facultative intracellular bacteria that can
survive and replicate within membrane-bound compartments in
phagocytes and epithelial cells [21–23]. Studies of the
mechanisms of bacterial invasion and intracellular
multiplication involving the marine mammal brucellae are
sparse and previously only investigated by Maquart and co-
workers (2009). They observed different infection dynamics
between the marine mammal brucellae during macrophage
infection in vitro [24]. Brucella pinnipedialis reference strain
(NCTC 12890), isolated from a common seal (Phoca vitulina),
was able to infect and multiply in human and murine
macrophage cell lines to the same extent as the virulent
terrestrial Brucella spp. In contrast, B. pinnipedialis isolated
from hooded seal (Cystophora cristata) showed absence of
invasive potential. This particular strain displayed a high
prevalence in the declined Northeast Atlantic hooded seal
stock [25] and has been isolated from various organs of young
seals; however Brucella-associated pathology has not been
identified [26]. The Northeast Atlantic stock of hooded seal is
now 10 – 15 % of the 1946 population and has been stable at
this low level since the 1980s [27]. How B. pinnipedialis hooded
seal strain (HS) may affect the population dynamics is
unknown, as we lack knowledge about the strains ability to
establish infection and cause pathology. Entering macrophages
after a transient initial bacteremia protects brucellae from
antibodies and complement during dissemination in the host
[28]. It seemed intriguing that the hooded seal strain could be
isolated from multiple organs [26] without being able to escape
an immune response by entering host cells. Recent studies
have now confirmed that B. pinnipedialis HS is able to enter
hooded seal alveolar macrophages, but is eliminated within 48
h post infection [29]. Furthermore, an age-dependent pattern of
anti-Brucella antibodies, indicating exposure early in life with a
subsequent clearance of infection, is identified in both hooded
[30] and harbor seals [31].

To increase our general knowledge about the marine
members of a bacterial genus that occurs at the animal –
human interface and to predict possible implications in human
disease, extended information about intracellular entry,
trafficking and multiplication of B. pinnipedialis in human cells
should be obtained. The hooded seal strain is in whole genome
analysis found to differ from the other marine brucellae with
respect to genome size and GC content [32]. Knowing that the
strains isolated from the human incidents also differ from the

other marine Brucella spp., we aimed to study the infection
biology of the hooded seal strain. The relationship between B.
pinnipedialis HS and human macrophages was explored by
adding an inhibitor study, as well as immunocytochemistry and
transmission electron microscopy, to the conventional
macrophage infection assays. Macrophage activation and
cellular integrity following bacterial entry and elimination were
investigated to further study the interaction of B. pinnipedialis
with phagocytes and epithelial cells.

Materials and Methods

Reagents and media
Gentamicin, penicillin-streptomycin, phorbol 12-myristate 13-

acetate (PMA), β-methyl cyclodextrin, Dulbecco’s minimum
essential medium, RPMI 1640, Dulbecco’s Modified Eagle’s
Medium/Nutrient Mixture F-12 Ham (DMEM/F12), Triton X-100
and lipopolysaccharide (LPS) from Escherichia coli (O111:B4)
were all purchased from Sigma-Aldrich, St. Louis, USA. Fetal
bovine serum (FBS) was from Gibco, Life Technologies,
Paisley, UK. Tryptic soy agar (TSA) was from Merck Millipore,
Darmstadt, Germany and sheep blood agar was from Oxoid,
Oslo, Norway. Rabbit polyclonal anti-Brucella antibody was
kindly provided by Prof. J.J. Letesson, Faculté Universitaire
Notre Dame de la Paix, Namur, Belgium. Alexa Fluor 488 goat-
anti-rabbit IgG and Lysotracker Red were from Molecular
Probes, Life Technologies, Paisley, UK. Nuclear dye DRAQ5
was purchased from Cell Signaling, Danvers, USA.
Fluorescence mounting medium was from Dako, Glostrup,
Denmark. Brucella abortus antiserum was obtained from
Remel Europe Ltd., Kent, UK. The CytoTox 96 Non-
Radioactive Cytotoxicity Assay and the Griess Reagent System
were from Promega, Madison, USA.

Bacterial strains and growth conditions
The Brucella strains used were B. suis 1330 (ATCC no.

23444/NCTC 10316) (provided by Dr. B. Djønne, Norwegian
Veterinary Institute, Oslo, Norway), B. pinnipedialis reference
strain (NCTC 12890) (provided by Dr. G. Foster, Scottish
Agricultural College, Consulting Veterinary Services, a part of
Scotland’s Rural College, Inverness, UK) and a B. pinnipedialis
hooded seal isolate (animal number 17, spleen, ref [26]; from
now on entitled B17). The strains were kept at -80 °C on
Microbank™ beads (Pro-Lab Diagnostics, Round Rock, USA).
Before each assay a bead was taken from one specific
Microbank™ batch and plated on sheep blood agar at 37 °C in
a 5 % CO2 atmosphere for 2 – 4 days, the strains were
thereafter plated again on sheep blood agar and grown at 37
°C in a 5 % CO2 atmosphere for 48 h for B. suis 1330 and 96 h
for B. pinnipedialis. Dilutions of the bacteria in sterile PBS were
used to prepare the final infective solution. We verified the
expression of smooth surface antigens for the Microbank™
batches by crystal violet staining and agglutination with
antiserum to smooth B. abortus [33,34]. The identity of the
strains was verified before and after the gentamicin protection
assay by PCR and gel electrophoresis with the marine
mammal brucellae specific primers designed to amplify the
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bp26 gene [35] and the primer sets Bruce 11, 18 and 45 from
the MLVA-15 assay [36,37].

Cell cultures
THP-1 (ATCC no. TIB-202), a human monocyte/

macrophage-like cell line, was cultured in RPMI 1640 and
HeLa S3 cells (ATCC no. CCL-2.2) were kept in DMEM/F12.
The murine macrophage cell lines, RAW264.7 (ATCC no.
TIB-71) and J774A.1 (ATCC no. TIB-67), were cultured in
DMEM. To avoid prolonged exposure to trypsin treatment, a
cell scraper was used to detach the adherent macrophage cell
lines when passaged. All culture media were supplemented
with 10 % fetal bovine serum, 100 IU/ml penicillin, and 100
μg/ml streptomycin.

Gentamicin protection assay
THP-1 cells were differentiated into macrophage-like cells by

the use of PMA as previously described [38]. In brief, THP-1
cells were seeded (3.5 x 105 cells/well) in 24 well plates and
cultured for 24 h in complete RPMI containing 50 ng/ml PMA.
RAW264.7, J774A.1 and HeLa S3 cells were seeded (2 x 105

cells/well) in 24 well plates and cultured in the appropriate
complete medium for 24 h prior to infection. The cells were
maintained in their respective culture medium without penicillin/
streptomycin during the Brucella infection assays. The
macrophage cell lines were challenged with Brucella spp. with
a multiplicity of infection (MOI) of 50 and the HeLa cells with a
MOI of 500 for 1 h at 37 °C, supplemented with 5 % CO2. The
exposure was synchronized by centrifugation at 230 x g for 10
min in room temperature (RT). This stage was ended by first
rinsing the wells twice with PBS, and refilling with 1 ml of
complete culture medium containing 100 µg/ml gentamicin to
kill extracellular bacteria. After 1 h the medium was replaced
with complete culture medium containing 10 µg/ml gentamicin,
and the cells were incubated for the desired period of time (1.5,
7, 24, 48, 72, and 96 h). Before harvesting of intracellular
bacteria the cells were washed three times with PBS to remove
remaining antibiotics. The cell membranes were disrupted
using 300 µl/well of 0.1 % Triton X-100 in PBS followed by
incubation at 37 °C for 10 min. Sterile cell scrapers were used
to ensure complete detachment of all cells and the lysate was
repeatedly pipetted to aid cell membrane disruption. TSA agar
plates were inoculated in duplicate with 100 µl each of lysate in
serial dilutions and evaluated for the presence of colony
forming units (CFU)/well. Supernatants were also plated to
control the efficiency of extracellular bacterial killing by
gentamicin. The MOI applied was verified for each assay.

Immunocytochemistry
THP-1 and HeLa cells were seeded on glass coverslips in 12

well plates (2.0 – 2.5 x 105 cells/well). The THP-1 cells were
PMA-treated for differentiation. After 24 h the cells were
challenged with B17 at a MOI of 50 (THP-1) or 500 (HeLa) as
described in the gentamicin protection assay. Infected cells
were incubated with 75 nM LysoTracker Red for 1 h prior to
fixation. The cells were fixed for 15 min at RT using 4 %
paraformaldehyde, 0.02 M sucrose, in PBS, pH 7.2 at desired
time points following bacterial exposure and washed once in

PBS before permabilization in 0.1 % Triton X-100 for 4 min.
Immune labeling was done using rabbit polyclonal anti-Brucella
spp. antibody, diluted at 1:100. Secondary antibody was Alexa
Fluor 488 goat-anti-rabbit IgG, diluted at 1:500. The fluorescent
DNA dye DRAQ5, diluted at 1:1000, was used for visualization
of cell nuclei. Confocal microscopy was performed using a
Zeiss LSM510 META system (Carl Zeiss, Obercochen,
Germany) equipped with a 40X 1.2NA water immersion lens.
Three sequential channels were recorded using the following
excitation and emission parameters: Alexa 488 was excited at
488 nm and fluorescence collected through a 500 – 550 nm BP
filter; LysoTracker Red was excited at 543 nm and
fluorescence collected through a 565 – 615 nm BP filter;
DRAQ5 was excited at 633 nm and fluorescence collected in
the META detector from 644 – 700 nm.

Immune transmission electron microscopy
THP-1 and HeLa S3 cells were seeded in 6 well plates at 3.5

x 105 and 1.5 x 105 cells/well, respectively, and allowed to grow
for 48 h. The cells were challenged with B17 as described for
the gentamicin protection assay and fixed at 1.5, 7 and 24 h
post infection using 4 % formaldehyde, 0.1 % glutaraldehyde in
100 mM sodium phosphate buffer, pH 7.2. Samples were
processed for cryoimmune electron microscopy as previously
described [39]. Cryosections were labeled using rabbit
polyclonal anti-Brucella antibody, diluted at 1:80. Positive
labeling was detected by 10 nm protein A-gold complexes. The
dried sections were examined in a JEOL JEM 1010
transmission electron microscope (JEOL, Tokyo, Japan)
operating at 80 kV. Control experiments were routinely
included in parallel by omission of the primary antibodies.
Sections of fixed B17 functioned as positive control.

Inhibitor assays
Monolayers of PMA-treated THP-1 cells (3.5 x 105 cells/well)

were cultured in 24 well plates and pre-incubated for 45 min at
37 °C in complete culture medium containing increasing
concentrations of the cholesterol-scavenging drug β-methyl
cyclodextrin, as previously described [40]. After inhibitor
treatment, macrophages were washed once with complete
culture medium and infected with Brucella spp. (MOI = 50).
Bacterial uptake was determined using the gentamicin
protection assay.

Cellular integrity and macrophage activation
Potential toxic cell damage due to inhibitor treatment or

Brucella spp. infection was measured by quantitatively
determining the release of lactate dehydrogenase using the
CytoTox 96 Non-Radioactive Cytotoxicity Assay. Production of
nitric oxide (NO) following infection, indicating macrophage
activation, was assessed using the Griess Reagent System.
Both assays were performed according to the manufacturer’s
instructions. Absorbances were read using an Epoch
Microplate Spectrophotometer (BioTek, Winooski, USA). LPS
from Escherichia coli (O111:B4) at 0.5, 1, and 10 µg/ml was
used as a positive control for NO measurements.
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Statistical analysis
Group data were compared using Student’s t test for

independent samples. Differences were considered significant
for p values of < 0.05.

Results

Verification of the identity of the strains
PCR and gel electrophoresis showed bands of the expected

size for all strains used in the study [35–37] (data not shown).
All strains expressed smooth surface antigens before and after
execution of the gentamicin protection assay.

Brucella pinnipedialis HS enters macrophages and
epithelial cells in vitro

The results from the gentamicin protection assay revealed
that both B. pinnipedialis strains (12890 and B17) were able to
enter human macrophage-like cells in culture (THP-1) (Figure
1A). Challenging the cells with a MOI of 50 lead to the retrieval
of 3.92 log CFU for B17 after 1.5 h, compared to 4.08 log CFU
retrieval for the reference strain 12890. B17 were also taken up
in two murine macrophage cell lines (RAW264.7 and J774A.1)
with the retrieval of 4.28 log CFU and 3.50 log CFU at the 1.5 h
time interval respectively (Figures S1 and S2). A known
pathogenic strain; B. suis 1330, was included as a control for
the ability of the macrophage cell types to support
internalization as well as intracellular multiplication. While being
challenged with the same MOI of 50, the amount of protected
bacteria retrieved for B. suis 1330 after 1.5 h pi was 3.35 log
CFU and 3.24 log CFU for THP-1 cells (Figure 1A) and
RAW264.7 (Figure S1) respectively. Additionally, both 12890
and B17 entered HeLa cells. Challenging the cells with a MOI
of 500 lead to a retrieval of 4.60 and 4.65 log CFU at 1.5 h pi
respectively (Figure 1B). No bacterial growth was observed
from the plated supernatant controls. The intracellular
localization of B17 in THP-1 and HeLa cells was confirmed
using confocal microscopy (Figure 2A and B, video S1).
Immune labeling with a rabbit anti-Brucella antibody and
Lysotracker Red revealed colocalization of intracellular bacteria
with lysosomes at both 1.5 and 24 h pi. Brucella bacteria were
observed in 37 % of the THP-1 cells at 1.5 h pi; 67 % of the
infected cells had one bacteria, 15 % two bacteria, while 18 %
had more than two bacteria (total THP-1 cells, n = 498). The
corresponding numbers in HeLa cells were 61 % infected cells;
40 % had one bacteria, 21 % two bacteria, while 39 % had
more than two bacteria (total HeLa cells, n = 151). Immune
electron microscopy further verified intracellular presence of
B17 in THP-1 and HeLa cells (Figure 3).

Brucella pinnipedialis HS is gradually eliminated from
cultured macrophages and epithelial cells

Following cellular entry during infection in THP-1 cells, B17
showed a large drop in intracellular bacterial numbers with one
logarithmic decrease at 7 h (3.09 log CFU) and additionally one
logarithmic reduction at 24 h (1.92 log CFU) pi (Figure 1A). At
72 and 96 h pi bacteria were still present intracellulary in some
wells, but were completely eliminated in others, dividing the

results in two groups. At 72 h pi, three of total nine wells
displayed elevated bacterial numbers with mean 2.98 log CFU
in the elevated group versus mean 1.48 log CFU in the low
group. At 96 h pi, three of total nine well were elevated with
mean 3.12 log CFU versus mean 0.57 log CFU. Although the
total mean log CFU decreased from 24 to 96 h pi, this effect
caused a high standard deviation for the 72 and 96 h time

Figure 1.  Infection dynamics of Brucella spp. in human
macrophages and HeLa cells.  THP-1 cells (A) and HeLa S3
cells (B) were challenged with B. pinnipedialis HS (B17), B.
pinnipedialis reference strain (12890; harbor seal) and B. suis
1330 (only THP-1 cells) in a gentamicin protection assay. Both
B. pinnipedialis strains tested entered in similar numbers in the
respective cell types. None of the marine mammal Brucella
strains were able to multiply within 48 h pi, as observed for B.
suis 1330. At 72 and 96 h pi, slightly higher numbers of
bacteria could be retrieved from certain wells, most
pronounced with the reference strain (12890) in HeLa cells, but
none reached the initial numbers at 1.5 h pi. Error bars
correspond to the standard error. Each indicator represents the
mean of four (B. suis 1330), six (12890) or nine (B17) replicate
wells from 2 or 3 separate assays in A, and six replicate wells
from 2 separate assays (B17 and 12890) in B. * (different from
12890, p < 0.05).
doi: 10.1371/journal.pone.0084861.g001
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Figure 2.  Intracellular localization of B. pinnipedialis HS.  THP-1 (panel A) and HeLa cells (panel B) were cultured on glass
coverslips and challenged with B. pinnipedialis HS (B17) as described in the gentamicin protection assay. Cells were incubated with
LysoTracker Red (red) for 1 h before fixed at 1.5 and 24 h after exposure and immune labeled with anti-Brucella antibody 1:100,
and Alexa 488 goat-anti-rabbit 1:500 (green). DRAQ5 was used for visualization of the cell nuclei (blue). Confocal microscopy
revealed colocalization (arrows) of B17 and lysosomal compartments in both cell lines at 1.5 h (weakly in the HeLa cells) and 24 h.
Bacterial debris scattered throughout the cytoplasm was observed at 24 h pi (asterisks). Scale bars: 20 µm.
doi: 10.1371/journal.pone.0084861.g002
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points. In murine macrophages, intracellular B17 was
completely eliminated by 48 h (J774A.1) and 72 h (RAW264.7)
pi (Figures S2 and S1). The variability between wells at later
stages of the infection was not observed in these latter cell
lines. Contrary to published data [24], strain 12890 did not
multiply intracellulary in THP-1 cells and displayed the same
pattern as B17 but with less variability between wells at 72 h pi
(Figure 1A).

In HeLa cells, the intracellular bacterial numbers retrieved at
24 h pi were lowered with almost two logarithmic decreases for
B17 (2.87 log CFU) and more than two logarithmic decreases
for 12890 (1.93 log CFU) compared to the initial numbers at 1.5
h pi (Figure 1B). From 48 h pi the total mean log CFU retrieved
slowly decreased for B17, however some wells had higher
retrievable bacterial counts at 72 h (three of total nine; mean
2.65 log CFU versus mean 1.4 log CFU) and 96 h (one of total
nine; 3.28 log CFU versus mean 0.8 log CFU) pi compared to

others. For 12890, the total mean intracellular bacterial counts
were similar from 24 h to 96 h pi, but due to inter well
differences the standard deviations are large. At 72 h pi, six of
total nine wells still displayed elevated bacterial numbers with
mean 3.12 log CFU in the elevated group versus mean 0.06
log CFU in the low group. At 96 h pi, still five of total nine wells
were elevated with mean 3.41 log CFU versus mean 0.09 log
CFU.

Although B17 was statistically different from 12890 at various
time points during infection (7, 24, and 48 h pi in the THP-1 cell
line and 24 h pi in HeLa cells), the outcome of infection was
similar. Brucella suis 1330, serving as a positive control,
showed the classical infection pattern with a slight drop in CFU
at 7 h, followed by high intracellular multiplication from 24 h
reaching 6.1 log CFU after 72 h in the THP-1 cell line (Figure
1A). Intracellular multiplication of B. suis 1330 was also
confirmed in murine macrophages (RAW264.7) (Figure S1).

Figure 3.  Cryoimmune electron microscopy of B. pinnipedialis HS in THP-1 and HeLa cells.  Transmission electron
micrographs showing uptake of B. pinnipedialis HS (B17) in THP-1 (A) and HeLa (B) cells. The cells were challenged for 1 h with
bacteria as described in the materials and method section and fixed at indicated time points post infection. Bacteria or bacterial
debris were labeled with a rabbit anti-Brucella antibody, and 10 nm protein-A conjugated gold particles (arrows). A) Shows intact
bacteria in THP-1 cells after chase periods of 1.5 h and 24 h, respectively. B) Shows intact bacteria in a HeLa cell after a 7 h chase.
At 24 h post infection the bacterial structure was to a great extent destroyed and debris labeled with anti-Brucella antibody was
detected in vacuolar structures (arrows in B, 24 h chase). Scale bars: A, 1.5 h: 2 µm; A, 24 h: 500 nm; B, 7 h: 200 nm; B, 24 h: 500
nm.
doi: 10.1371/journal.pone.0084861.g003
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Intracellular B. pinnipedialis do not cause macrophage
NO-production or increased cell death

Nitrite, as an indicator of NO-production, was not detected to
be released from murine macrophages (RAW264.7) challenged
with B. pinnipedialis reference strain (12890) or HS (B17) at
1.5, 24 or 48 h pi. Measurements of nitrite were not found
applicable in the THP-1 cell line, this in line with previous
reports [41]. No release of lactate dehydrogenase was
detected following infection with either 12890 or B17,
suggesting minimal cytotoxicity induced by intracellular
bacterial localization and degradation (results not shown).

Internalization of B. pinnipedialis HS depends on lipid
raft-associated mechanisms

Marine mammal brucellae express a smooth type
lipopolysaccharide (LPS) [42,43]. To evaluate if entry of B17
into human macrophages was associated with lipid raft
components as reported for virulent terrestrial smooth Brucella
spp. [44–47], THP-1 cells were pretreated with a cholesterol-
scavenging drug (β-methyl cyclodextrin) before carrying out the
gentamicin protection assay. Brucella suis 1330 was
incorporated as a positive control showing more than 90 %
reduction in retrieved CFU in the two highest concentrations of
inhibitor (10 and 5 mM), and a 87 % reduction in the 2.5 mM
concentration compared to untreated exposed cells measured
after 1.5 h (Figure 4). Entrance of B17 was reduced with 85,
73, and 60 % respectively (Figure 4). No release of lactate
dehydrogenase was detected following inhibitor treatment of
the cells, suggesting minimal cytotoxicity induced by this
procedure.

Discussion

This work reports on the ability of B. pinnipedialis HS (B17)
to enter human and murine macrophages, as well as an
epithelial cell line in vitro. As these findings contrast the
previous report regarding the behavior of hooded seal strains in
human macrophages [24], our results from the gentamicin
protection assays were verified by confocal and transmission
immune electron microscopy. In line with the preceding report
[24], B. pinnipedialis reference strain (12890) also entered
human macrophages and HeLa cells, however, divergent to the
prior report [24], the strain did not multiply intracellulary. When
further exploring the interaction of B. pinnipedialis with
phagocytes and epithelial cells, we revealed that although this
marine mammal brucellae behave dissimilarly to pathogen
terrestrial brucellae (lack of intracellular multiplication), it
cannot be compared to engineered rough mutants with respect
to macrophage entry and activation, or induction of cell death.

Virulent smooth Brucella spp. as well as the naturally rough
species internalize into macrophages via cholesterol-rich lipid
rafts, including the raft-associated class A scavenger receptor
(SR-A) [40,44–46]. This stealthy entry allows pathogenic
Brucella spp. to limit early fusion with the endosome-lysosome
pathway. Although internalized in low numbers, this enables
the bacteria to activate their specific virulence genes involved
in building a definite replication niche [48]. In order to gain
more information regarding the possible pathogenicity of B17, a

property that seems to be influenced by the mode of entry
along with other bacterial traits, we explored if this marine
brucellae has the capacity of stealthy entry. To this end we
investigated the mode of B17 cellular entry mechanism by
blocking lipid rafts. The number of bacteria entering inhibitor-
treated cells was reduced with 85 % at the most. This was
significantly different from untreated cells, but not as
pronounced as for B. suis 1330 (more than 90 % reduction of
bacterial cell entry). These results suggest that B17 can enter
human macrophage-like cells via lipid raft- as well as non-lipid
raft-associated mechanisms. Entering via lipid raft-associated
mechanisms would give B17 an opportunity to activate possible
virulence genes; however, the lack of such genes and/or
cellular activation caused by other entry mechanisms may
disrupt reaching or initiation of the replicative niche [49].

Although probably not the only determinant, bacterial
mechanisms of cellular entry have been linked to the particular
composition of LPS as different internalization mechanisms are
observed for virulent smooth Brucella spp. and engineered
rough mutants [48,50]. Recently, LPS from the smooth B. suis
biovar 2 has been shown to lack some O-antigen epitopes
previously thought to be present in all smooth brucellae [51,52].
The marine mammal Brucella spp. express a smooth-type LPS

Figure 4.  Effect of β-methyl cyclodextrin on human
macrophage infection with B. suis 1330 and B.
pinnipedialis HS.  THP-1 cells (3.5 x 105/well) were seeded in
24 well plates and treated with 50 ng/ml PMA for 24 h.
Adherent cells were pre-incubated for 45 min in complete
medium containing increasing concentrations of β-methyl
cyclodextrin. After treatment, the cells were challenged with B.
suis 1330 or B. pinnipedialis HS (B17) at a MOI of 50 and the
number of viable intracellular bacteria at 1.5 h after exposure
was determined using the gentamicin protection assay. The
results are depicted as present surviving bacteria in inhibitor
treated cells compared to infected non-inhibitor treated cells.
Error bars correspond to the standard error. Each indicator
represents the mean of three replicate wells from one assay (B.
suis 1330) or six (B17) replicate wells from two separate
assays. * (different from infected non-inhibitor treated cells, p <
0.05).
doi: 10.1371/journal.pone.0084861.g004
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that show heterogeneity with regard to their O-polysaccharide
common epitope content and average size [42,43]. B17 was
previously shown to differ from the other marine mammal
brucellae in whole genome analysis [32]. If structural
differences in smooth strain LPS affect entry mechanisms, this
could be a possible explanation for the variances observed
between B. suis 1330 and B17 in the inhibitor assay.

Compared to the pathogenic strains known to be the cause
of human brucellosis (B. melitensis/B. abortus/B. suis), both
B17 and 12890 entered the cell lines in higher numbers (range
log CFU 3.92 – 4.65) than observed for B. suis (log CFU 3.35)
in THP-1 cells. The number of intracellular bacteria is
influenced by their mode of entry. In murine macrophages, B.
abortus engineered rough mutants are showing a higher rate of
infection compared to wild type B. abortus, both regarding the
number of cells infected as well as the number of bacteria
detected/cell [50]. This may be due to a more unspecific entry
mechanism, as rough mutants are shown to enter via non-lipid
raft associated mechanisms [48,50]. These rough mutants
induce a strong degree of macrophage activation following
infection, such as activation of NF-κB, increased expression
and production of cytokines and inducible nitric oxide synthase
(iNOS); an event that may lead to elimination of intracellular
bacteria [47,49,53]. Additionally, multiplication of engineered
rough mutants is attenuated due to their cytopathic effect on
the macrophages, leading to cellular lysis and release of the
bacteria, and not only due to intracellular killing as previously
interpreted [50,54]. Confocal microscopy of THP-1 cells
infected with B17 revealed a moderate rate of infected cells (37
%) at 1.5 h pi. Although certain individual cells were heavily
loaded (> 10 bacteria/cell), only 18 % of the infected cells
harbored more than 2 bacteria. This pattern resembles what is
previously shown for wild type B. abortus [50], with a slightly
higher rate of total infected cells. Along with the results from
the inhibitor study, this supports the hypothesis of B17 entering
the cells in similar manners as pathogenic terrestrial brucellae.
The observed reduction of intracellular bacteria in the later
stages after exposure for B. pinnipedialis HS is believed to be
due to cellular activation and subsequent bacterial elimination,
and not cell death. Morphological changes in the cell culture
following exposure were not observed microscopically and
release of lactate dehydrogenase was not detected following
infection of the cells, suggesting minimal cytotoxicity induced
by intracellular entry and degradation of bacteria. On the other
hand, production of NO as a consequence of cell activation
following infection with B. pinnipedialis HS in murine
macrophages could not be detected. This in line with previous
reports of B. suis shown not to induce expression of iNOS nor
release of NO from murine macrophages [49]. The cellular
response triggered by B. pinnipedialis is still unidentified, and
future investigations including a broader panel of cytokines are
suggested.

In vitro, virulent Brucella spp. ensure their survival by
overriding the intracellular response following bacterial
infection. By forming the Brucella-containing vacuole they are
able to circumvent normal lysosomal destruction and facilitate
intracellular proliferation [55–57]. This is demonstrated in B.
suis infected THP-1 cells where the initial log value at 1.5 h

(3.35 log CFU) was doubled by 48 h of infection (6.01 log
CFU). Both B17 and 12890 were reduced quite rapidly the first
24 h after exposure in both macrophages and epithelial cells.
Colocalization of B17 with lysosomal compartments was
observed at both 1.5 and 24 h pi in THP-1 cells, weakly at 1.5 h
and more pronounced at 24 h pi in HeLa cells. Additionally, at
24 h pi bacterial debris appears scattered throughout the
infected cells indicating degradation of bacteria, as previously
reported for an attenuated B. abortus strain [22,58]. Both
findings support the observed reduction of intracellular bacteria
retrieved at the later stages after infection.

Although the infection dynamics of both B17 and 12890
displays a declining mean CFU, in some wells a higher number
of intracellular bacteria were retrieved at 72 and 96 h than the
corresponding numbers at 24 and 48 h pi. This shows that not
all bacteria were eliminated equally efficiently, suggesting that
in heavily bacterial-loaded cells a fraction of the intracellular
bacteria may escape the lysosomal degradation process in
order to proliferate intracellulary, as pointed out by others [59].
The observed divergence between wells was only noted in the
THP-1 and HeLa cell lines, and not in the murine
macrophages. This could reflect the bactericidal efficiency of
the cell type, as HeLa cells are not professional phagocytes
and PMA-induced THP-1 cells show increased macrophage
maturation 5 days post treatment [60]. In this work, the
gentamicin protection assay was initiated 24 h after PMA-
treatment. Furthermore, activation of macrophages by either
phorbol ester or 1.25-dihydroxyvitamin D3 is different [60,61]
and caution should prevail when comparing results.

A relationship between MOI and a possible bacterial
overload was not observed, as MOI 300, which was tested in
the THP-1 cell line (results not shown), did not increase inter
well differences compared to MOI 50, which was used for
THP-1 cells throughout this study.

In conclusion, this work shows that B. pinnipedialis HS is
able to enter macrophages and HeLa cells in vitro. The entry
mechanism in macrophages involves, but seems not to be
limited to, membrane lipid rafts. Although able to survive for up
to 96 h intracellulary, none of the strains were able to multiply
at levels comparable to B. suis 1330 in the cell lines tested. A
lack of/or low capacity to replicate and survive for prolonged
periods within host cells, particularly macrophages, abolishes
the ability to produce chronic infections as reported for
terrestrial pathogenic brucellae [28]. The observed elevated
bacterial numbers in some wells, most pronounced in HeLa
cells, could imply that B. pinnipedialis may cause acute,
transient infections in some cell types. An increased rate of
survival in cell lines with reduced bactericidal competence
gives room to speculate if changes in the cellular immune
competence might support different infection dynamics.

In the Arctic region seal meat and other raw nutriments from
marine mammals are consumed and for indigenous people it
constitutes a large part of the diet. Consumption of raw bone
marrow from reindeer has been documented to be a source of
B. suis biovar 4 contamination in Alaska [62]. Reports of
brucellosis in this area are sparse [63], however there may be
an underreporting due to the unspecific symptoms of human
brucellosis and non-diagnosed incidents could possibly occur
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[64]. In light of the close relationship to the marine environment
and exposure to marine species/products, either occupational,
or by lifestyle, further understanding of the pathogenesis of
marine mammal brucellae in target species, as well as
humans, is warranted. Although the results presented here
indicate a low zoonotic potential of the strains tested, variations
between strains as well as host immunity may influence the
outcome of infection. Future research should aim to identify
potential virulent traits in marine mammal brucellae that may
have implications in the establishment of disease in marine
mammals and humans.

Supporting Information

Figure S1.  Infection dynamics of Brucella spp. in murine
macrophages. RAW264.7 cells were challenged with B. suis
1330 and B. pinnipedialis HS (B17) in a gentamicin protection
assay as described in materials and methods. B17 entered
murine macrophages but was not able to multiply. Intracellular
bacteria were eliminated within 72 h pi. Brucella suis 1330
showed the classical infection pattern with intracellular entry, a
slight drop in intracellular bacterial numbers at 7 h pi and
multiplication from 24 h pi. Error bars correspond to the
standard error. Each indicator represents the mean of four
replicate wells from one assay (B. suis 1330) or six replicate
wells from two separate assays (B17).
(TIF)

Figure S2.  Infection dynamics of B. pinnipedialis HS in
murine macrophages. J774A.1 cells were challenged with B.
pinnipedialis HS (B17) in a gentamicin protection assay as
described in materials and methods. B17 entered murine
macrophages but was not able to multiply. Intracellular bacteria
were eliminated within 48 h pi. Error bars correspond to the
standard error. Each indicator represents the mean of three
replicate wells from one representative assay.
(TIF)

Video S1.  Brucella pinnipedialis HS in human
macrophages. THP-1 cells were cultured on glass coverslips
and challenged with B. pinnipedialis HS (B17) in a gentamicin
protection assay as described in the materials and method
section. Cells were incubated with LysoTracker Red (red) for 1
h before fixed at 24 h after exposure and immune labeled with
anti-Brucella antibody 1:100, and Alexa 488 goat-anti-rabbit
1:500 (green). DRAQ5 was used for visualization of the cell

nuclei (blue). Three-dimensional animation of a confocal z-
stack spanning the central volume of an infected macrophage,
showing colocalization between bacteria and lysosomes at 24
h pi. Bacterial cells are situated at different levels intracellulary,
many near the THP-1 nucleus. The animation was created in
Volocity ver. 6.2.1 (Perkin-Elmer).
(MOV)
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