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Abstract

We investigated the role of multi-species benthic diatom films (BDF) on the

settlement of Macoma balthica larvae in mesocosm still-water experiments and

flume experiments. Observations during five minutes revealed that in a still-

water environment, the larval settlement response was lower and the average

burrowing time (i.e. penetration into the BDF) was slower in older BDF as

compared to control and younger BDF. The different settlement responses to

different ages of BDF were related to the concentration of chlorophyll a and

extracellular polymeric substances of the BDF, suggesting that a higher physical

resistance during penetration into a dense matrix of diatoms and its associated

sugar and protein compounds results in a lower settlement response in dense

BDF at the very short term. In a hydrodynamic environment, M. balthica larvae

settled significantly more in BDF as compared to control sediments. Comparison

with the settlement of polystyrene mimics and freeze-killed larvae revealed thaf
active selection, active secondary dispersal and, at low flow velocities (5 cm s{),

also passive adhesion are important mechanisms that determine the settlement

success of M. balthica larvae in estuarine biofilms.
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CHAPTER 9

Our findings suggest that benthic diatoms may significantly affect M. balthica

settlement behaviour and recruitment in esfuarine tidal flats.

Kelrwords: Benthic diatom film, Laraal settlement, Hydrodynamics, Settlement

pr efer ences, Macoma b aI thic a

lntroduction

One of the most important challenges in esfuarine benthic ecology is to

understand the spatial and temporal variability in soft-sediment communities.

Recruitment is of fundamental importance to macrobenthic community structure

because it is the foundation upon which all subsequent interactions within the

community take place (Woodin et aI. 1995).

The majority of marine macrobenthic invertebrates display a life cycle with a

dispersive (i.e. pelagic) larval phase during which they distribute and settle

down into new habitats and develop to the benthic stage. Settlement of marine

benthic invertebrates is mediated by a wide set of factors, e.g. flow characteristics

(Crimaldi et al. 2002), organic content of the sediment (Grassle et al. 1992),

sediment disturbance (Woodin et al. 1998, Marinelli & Woodin 200? Marinelli &

Woodin 2004), sediment grain size (Pinedo et aI. 2000), nutrient pore water

concentrations (Engstrom & Marinelli 2005), presence of conspecific juveniles or

adults (Snelgrove et al. 2001), metabolites of sympatric organisms (Woodtn et aI.

1993, Esser et al. 2008) and the presence of bacteria (Dobretsjov & Qian 2006,

Sebesvari et al. 2006). Furthermore, during recent years, there is growing

evidence that also marine biofilms are instrumental to habitat selection and the

onset of settlement events for many benthic organisms (reviewed in Qian et al.

2007\.

Marine biofilms are highly variable in time and compositioru forming complex

aggregates composed of diatoms, bacteria, protozoa and fungi (Decho 2000), all

enmeshed in a matrix of extracellular polymeric substances (EPS). Both

facilitative and inhibitive effects of marine biofilms on larval settlement have
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been reported, which are often attributed to waterborne bacterial EPS depending

on origin, surface chemistry, micro-topography and metabolic activity of the

biofilm (reviewed in Qian et aI. 2007). The proportion of benthic diatoms in

biofilms of estuarine tidal mudflats can be significantly high (Sabbe & Vyverman

1991, Maclntyre et al. '1996). Larn et al. (2003) showed that relative space

occupation of diatoms can mediate larval settlement of the polychaete Hydroides

elegans. Hence, next to the bacterial compound of a marine biofilm, also the

specific role of diatoms in the settlement of tidal flat invertebrate larvae requires

specific interest. Moreover, postlarvae of herbivore benthic invertebrates often

feed on diatoms. Thus, recruitment success of these larvae may depend on

differences in diatom community composition because of their post-larval

dietary requirements.

Marine biofilms have intensively been investigated with respect to their role in

larval settlement of barnacles, ascidians, bryozoans, sea urchins, gastropods and

polychaetes (e.g. Keough & Raimondi 1995, Olivier et a|.2000, Harder et a\.2002,

Lam et al 2003,2005, Dahms et a\.2004, Sebesvari et al. 2006, Chiu ef a\.2006,

Dworjanlm &Pirozzi 2008) but far less is known about diatom film mediation on

bivalve settlement, especially in soft-sediments. The baltic tellin M. balthica is an

infaunal surface deposit-feeding and facultative suspension feeding bivalve

(Rossi ef al. 2004) which displays a pelagic larval stage (Caddy 1967). This species

occurs from the Gironde esfuary in Southwest France to the polar region in

Greenland and Siberia (Meehan 1985). In north-western European tidal flats, M.

balthica is one of the most common bivalves that reaches densities ranging from

tens to hundreds of individuals m-2 (Beukerna 1976, Van Colen et al. 2006, 2008)

and is an important food source for wading birds, benthic and epibenthic

organisms (Hulscher 1982, Zwarts & Blomert 1992, Hiddink et aL 2O02a, b).

Further, this species influences the geochemistry of the sediment, and thus tidal

flat energy cycling in general, by their bio-engineering impact due to burrowing

and feeding actions (e.9. Marinelli & Williams 2003). Hence, successful

recruitment of M. balthica. and bivalves in general, is of crucial importance to

maintain tidal flat ecosystem functioning.
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In general, the final recruitment success is determined by two major classes of

processes: (1) primary dispersal and initial settlement and (2) post-settlement

processes (i.e. mortality and secondary dispersal and settlement) (Armonies

1992).In this paper, we report and discuss the results of larval response tests of

the bivalve Macoma balthica to multi-species benthic diatom films (BDF), using

still-water assays and flume experiments. Multiple choice flume experiments

enable the determination of settlement preferences because bivalve larvae can

select a preferred settlement site in a hydrodynamic environment (e.9. Grassle et

al 1992, Snelgrove et aL 1998, Engstrom & Marinelli, 2005). In addition,

observations from still-water assays provide valuable information on some

specific conditions which inlluence successful establishment within a given

habitat (Marinelli & Woodin 2004).

Specifically, the following null hypotheses conceming M. balthica larval

settlement in response to BDF were tested:

Hor: Settlement response (i.e. rejection/acceptance) does not differ between

different ages of BDF in a still-water environment (Experiment 1).

Hoz: Settlement choice is not influenced by BDF in a hydrodlmamic environment

(Experiment 2).

Hoz: Settlement choice is not influenced by flow velocity.

Hozr: Settlement choice does not differ from deposition of dead larvae and

polystyrene mimics, thus settlement is a passive, depositional, process.

Ho.r: In a hydrodynamic environment, the settlement response after primary

settlement is not determined by BDF (Experiment 3).
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Materials & methods

BALTHICA IN RESPONSE TO BENTHIC DIATOI4 FILI,IS

Collection, production and cultivation of larvae

Collection

Adult M. balthica were repeatedly collected from Paulinaschor (The Netherlands,

51"27'24" N,3o42'51," W) during low tide in February-March 2008 and stored at 5
oC in aerated basins (40x33x14 cm), prefilled with sieved sediment (1 mm) and 2

pm filtered seawater (FSW) with a salinity of 27 t 1 practical salinity units (PSU).

Each basin contained - 150 individuals which were fed 3 times wk-' with a

mixture of concentrated algae (Isochrysis galbana and, Tetraselmls sp.; Reed

Mariculture).

Laroal production

Individual M. balthica were induced to spawn, following the procedure of

Honkoop et aI. (1999) and Bos (2005). Therefore, the adults were exposed to the

selective serotonin re-uptake inhibitor (SSRI) fluoxetine, preceded by a A 10 "C

temperature shock. SSRI's prevent the deterioration of neurotransmitters, so

nerves are stimulated longer and more intensely than usual (Honkoop ef al.

1999). On average/ 35 7" of the adults could be induced to spawn. Fertilisation

was carried out by pipetting eggs of several females into a beaker and adding 1

to 3 ml of sperm suspension derived from at least 5 males. The resultant mixture

was left undisturbed for 4 hours at 15 'C. Fertilised eggs (o -100 pm) were then

separated from all other matter by rinsing them over stacked sieves of 125 and 32

pm. Subsequently, they were transferred into 2 L glass bottles (further referred to

as batches), containing 15" C UV-irradiated filtered 27 ! 1PSU seawater (UV

FSW) dosed with 1.5 " 10-s I l-1 Penicillin G potassium salt and 2.5 x 10-5 g l-l

streptomycin sulphate. The bottles were placed on a roller-table (3 rpm) to avoid

sinking of larvae.
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CuIt io ation €t m aint enan ce

At day 4, all larvae had reached the D-stage, named after its resemblance to the

letter D, and from this moment ory live lsochrysis galbana (10s cells ml-l) was

added to the UV FSW which was refreshed every other day. Subsamples were

taken to measure larval mortality. During the cultivatiory we observed a

mortality of on average 36 "/" of the brood stock at day 20, which is a mortality

rate of about 0.02 di. 21 to 24 days after fertilization, the larvae metamorphosed

to the benthic stage as indicated by the development of a foot (i.e. pediveliger

stage). 25 day old larvae (270 Srrn t 4 SE ;rm), actively moving their feet, were

used in all experiments and are further referred to as M. balthica larvae or alive

larvae (experiment 2).

Settlement response in still-water (Experiment 1)

Sediment processing

Sediment was collected from Paulinaschor at low tide. Collection was confined to

the top 2 cm and sieved over a 1 mm mesh sized sieve in the laboratory to

remove macrobenthic organisms and larger debris. Subsequently the sieved

sediment was heated at 180o C during 4 hours. This sediment has a median grain

size of 89.6 x L.07 SE pm and the mud content is 30.8 1 0.52 SE % (Malvern

Mastersizer 2000 laser diffraction) and is further referred to as control sediment.

This sediment was preferred above muffled sediment as a control since pilot tests

revealed an inhibitory impact of muffling on settlement responses which was not

related to changes in organic content and or grain size. The inhibitory influence

of muffled sediment therefore presumably relates to the dissolution of material

from the muffled sediment into the water column.

For the assays, 2.5 g of control sediment was transferred into each well of a sterile

12-well microplate (3.8 cm2 well surface area, TPP, Switzerland) resulting in a 7

mm sediment layer. To develop a benthic diatom film (BDF), the control
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sediments were inoculated with 3 ml of axenic diatom cultures and incubated at

1,8" C, 1411,0 hours daylnight light regime (145 pmol photons m-2 s-1). The diatoms

used in this experiment were Naaicula phyllepta, N. gregaria, N. arenaria and

Cylindrotheca closterium. These species were isolated from the tidal mudflat at

Paulinaschor and were dominant components of the microphytobenthos at that

site (Sabbe & Vyverman 1991, Forster et al. 2006). Cells for inoculations were

harvested from monoclonal, exponentially growing cultures at 19oC + 1"C and

illuminated at a rate of 90 pmol photons m-2 si with a light/dark cycle of 14110

hours. The experimental microcosms were inoculated with a fixed total

biovolume of 1 108 ;.rm3 (biovolume of N. phyllepta, N. gregaria, N. arenaria:3107

;.rm3; biovolume of C. closterium = 1 107 pm3). To obtain different BDF, sediments

were incubated for 0, 4, 11 and 2l days respectively for the control, "low",

"medium" and "high" treatment. Every day, 1.2 ml of theFl2 medium (Guillard

1975\ of all treatments was refreshed in a flow bench without disturbing the

sediment. Control sediments were maintained under the same incubation

conditions. This resulted in an averaged C. closterium - N. phyllepta - N. arenaria -
N. gregaria relative biovolume of 14% - 26% - 32% - 31,%, 22% - 17% - 34% - 26%

and 27o/o - 16% - 31% - 25Y", for the "low", "medium" and "high" treatment

respectively. Experimental sediments were further characterized by their Chla

and EPS concentration. Chla concentration was determined by HPLC analysis of

the supematant, extracted from the lyophilized sediment by adding 10 ml 90%

acetone. The EPS concentration was measured spectrophotometrically using the

phenol-sulphuric acid assay (Dubois et al. 1956) on the colloidal carbohydrate

fraction of the supernatant extracted after lyophilization (De Brouwer & Stal

2001).

Experimental protocol

In order to observe settlement responses (i.e. acceptance/rejection) to different

ages of BDF, M. balthica larvae were labelled with fluorescent microparticles

(Radglo, Radiant Color, N.V., Houthalen, Belgium) to obtain a contrast with the

bioassay sediment. These microparticles are non-toxic and have a spherical
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diameter of 2 to 10 pm. Feeding larvae ingest these particles resulting in a gut

region filled with fluorescent pigment (Lindegarth & |onsson '1991,lonsson et al.

1991), which become visible by illumination of the larvae with UV-light (365 nm).

To assure uptake by the larvae, fluorescent pigment particles were supplied to

feeding larvae (10s particles mF) 24 hours prior to the experiments. Since the

particles are insoluble in water, one droplet of detergent was added to facilitate

suspension of these particles. Preliminary test showed that mortality rate was not

affected as a result of fluorescent labelling. Prior to the still-water bioassays, 2 ml

F/2 medium of each well was pipetted out and 2 ml of 27 PSU sterile UV FSW

was added to the wells without disturbing the sediment. Macoma balthica larvae

were picked out from two independent batches, using a stereomicroscope and

UV-light to check their viability and dyeing. For each bioassay (n : 6 batchi),

fifteen larvae were gently added to a well with a glass pipette and timing started

when the pipette was empty. All pipettes were checked for remaining larvae, i.e.

larvae that were not added to the well. During 5 minutes the burrowing larvae

were counted and their disappearance in the sediment was timed. After this time

period, larvae that were still on the sediment surface were interpreted as not

settled.

To quantify bacterial contamination of the BDF due to experimental handling

procedures, bacteria were extracted from the biofilm, stained with Acridine

Orange and bacterial cell densities were enumerated on 0.2 pm black

polycarbonate filters under blue-green light excitation (480 - 195 nm). Recorded

bacterial densities were marginal, varying between 160 - 630 cells mm-2 and did

not differ significantly between treatments (t-test; p > 0.05).

Statistical analysis

Burrowing time and percentage of larval settlement (n' of settled larvae/n" of

total added larvae) after 60, L20, L80, 240 and 300 seconds were used as response

variables to identify settlement responses of M. balthica larvae to the different

biofilms. Burrowing time data were root transformed and percentage of larval

settlement data were arcsine transformed to gain normality (Shapiro-Wilks'tests)
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and homogeneity of variances (Cochran & Bartlett tests). The effect on burrowing

time was investigated using two-factor analysis of variance with Batch as

random factor and Treatment as fixed factor, followed by Tukey's multiple

comparison post-hoc tests. Larval settlement data were analyzed using a

repeated measures design with Batch as random factor and Treatment and Time

as fixed factors. Tukey's multiple comparison tests were performed to investigate

significant differences between treatments, whenever the Treatment within Batch

factor was significant. Since the sphericity assumption for repeated

measurements was violated by our data, adjusted F tests using the Greenhouse-

Geiser correction were calculated, resulting in more conservative p-levels (Quinn

and Keough 2002). Further, regression analysis was performed to investigate

relationships between the percentage of larval settlement, averaged burrowing

time and the BDF characteristics (Chl a and EPS).

Annular flume experiments (Experiment 2 & 3)

Annular flume char acteristics

According to the Plymouth Marine Laboratory annular flume (Widdows et al.

1998), a flume was constructed of polystyrene material, forming a circular

channel 10 cm wide (inner o 44 cm, outer o & cot),35 cm deep and with a

maximum volume of 60 L. The channel flow was driven by contact on the water

surface with 4 pvc paddles (9x14 cm), which were attached to a rigid support

system driven by a variable speed DC motor. On the bottom of the tank, pvc pots

(inner o 5 cm) can be attached, flush with the flume bottom and O-rings sealed

the pots to prevent water loss. The annular flume is a good compromise in terms

of portability and the spatial coverage (0.17 m'z) and allowed simultaneous

testing of treatments in a realistic fully developed benthic boundary layer where

larvae and sediment treatments could easily be removed and recovered after

each trial. The disadvantage of annular flumes in general is the effect of

secondary circulation. However, secondary flows are kept to an acceptable

185



CHAPTER 9

minimum (- 3"h of tangential flow) with the 10 cm channel width of the flume in

the current study (J. Widdows, pers. comments). To characterize the fluid

dynamic environment, velocity profiles were measured at 8 cm above the bottom

with a SonTek Micro ADV (Acoustic Doppler Velocimeter), mounted through

the bottom of the flume. A linear relation between free stream velocity and

rounds per minute was found (free stream velocity : 1.7785 x RPM - O.5672 (rz =

0.ee8)).

Sediment processing

The same control sediment as for the still-water bioassays was used. To yield the

BDFs, the pvc-pots, prefilled with control sediment, were inoculated with a

mixture of diatoms (total biovolume = 4.68 L08 um3; relative biovolume:30-30-

30-1,0 "/", respectively for N. phyllepta, N. gregaria, N. arenaria and C. closterium).

Control and BDF sediments were incubated for 11 days at 18" C, 14110 hours

daylnight light regime (145 pmol photons m-2 s-') and 10 ml of the F/2 medium

was refreshed every day. Chla and EPS concentrations of the upper 5 mm were

determined according to the abovementioned methods (Experiment 1).

Settlement choice in a hydroilynamic environment (Experiment 2): protocol

The proportional distribution of alive larvae, freeze-killed larvae (further

referred to as dead Macoma) and spherical polystyrene (PS) mimics (a 250-400

prm) between BDF and control sediments was tested in a first set of experiments

to examine processes affecting settlement of M. balthica larvae (i.e. active habitat

selection vs. passive deposition). Therefore two BDF and two control sediments

were screwed into the bottom of the flume (flume bottom surface occupied : 4.5

%; intersect between pots = 37.4 crn) for each experimental trial (n = 4) and the

flume was filled with 50 L of FSW (15" C,27 PSU). Subsequentlp 500 juvenile

Macoma and - 5000 PS mimics were randomly added to the flume and flow was

initiated and maintained for 3 hours at 5 cm si or 15 cm sr. ln addition, two
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trials at 5 cm.sr and two trials at 15 cm s-rwere conducted with 500 dead larvae.

Sinking velocities of the three types of 'settlers' in 15" C, 27 PSU still FSW were

2.8 t 0.5 SE mm s-1,2.6 + 0.2 SE mm sr and 1.6 x0.2 mm sr, respectively for alive

larvae, dead larvae and PS mimics. Furthermore, no resuspension of the

sediment was observed at 5 cm si and L5 cm sr during pilot tests performed with

neutral red dyed sediment. Hence, secondary dispersal after primary settlement

is expected due to active choice, rather than occurring passively by sediment

resuspension. After 3 hours, the experimental sediments were closed with inox

plates, the flume was drained and the top 2 cm of the sediments was preserved

tn a 4oh buffered formalin - tap water solutiory stained with Rose Bengal and the

settled juveniles were sorted out under a stereomicroscope.

Settlement response after yimary settlement (Experiment 3): protocol

Thirty M. balthica larvae were added to the control and BDF sediments and left to

settle for 30 minutes. Subsequently the above standing F/2 medium was removed

from each pvc pot and checked for unsettled juveniles. For each experimental

trial, two control and two BDF sediments were screwed into the flume, flush

with the flume bottom. Thery the flume was filled with 50 L of FSW ('l5o C,27

PSU) and the flow was initiated at 5 cm s-1. After 10 minutes, the flow was

stopped and the experimental sediments were closed with inox plates, the flume

was drained and the top 2 cm of the sediments was preserved in a 4 7" buffered

formalin - tap water solutiory stained with Rose Bengal and the settled juveniles

were sorted out under a stereomicroscope.

Statistical analysis

For Experiment 2, replicated G-tests for goodness of fit (Sokal & Rohlf 1995) were

conducted to determine significant deviations from the UI (i.e. even)

distribution, the averaged distribution of the PS mimics, dead larvae and the

averaged distribution of alive larvae, dead larvae and PS mimics at 15 cm s-r. The

two BDF and the two control sediments per experimental trial were pooled and
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only the juvenile % inside sampling pots was retained for statistical analysis. All
results have been expressed as relative % recovered from BDF and control

sediments and the percentages were adjusted to give compositiory i.e. their

cumulative abundance equals 100%. As sudu the weight of all replicates in a

replicated statistical test is equal (Moens et al. 1999). Measurement of the pooled

G statistic (Gp) enabled interpretation of the significance of the overall deviation

from the tested distribution over all replicates. Gp was calculated at a critical

probability of a'= aR, with k equal to the number of multiple pairwise tests (i.e.

Bonferroni approach). As such, G-tests for PS mimics and alive larvae were

performed at a = 0.008 (i.e. 0.05/6). Experiment 3 was analyzed using a mixed

model analysis of variance with Batch and Trial as random effects and Treatment

as fixed effect. The proportion remaining to the sediments was arcsine-square

root transformed to meet assumptions of normality (Shapiro-Wilks' tests) and

homogeneity of variances (Cochran & Bartlett tests).

Results

Benthic Diatom Film characteristics

Manipulation of the incubation time successfully resulted in different BDFs.

Chlorophyl a and EPS concentration of these BDFs (Table 1) were significantly

different between treatments for each experiment (t-test, p < 0.05). Initiation of

the flow slightly reduced the Chla content of the BDF (-14 y", -12"h and -29 "/";

respectively for 10 min at 5 cm s{, 3 hours at 5 cm s{ and 3 hours at 15 cm s{) due

to biofilm erosion during the first minute after initiation of the flow. However,

differences between control and BDF sediments remained large and significant

(t-tes! p < 0.05).
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Chla

(ug.g'1 dry sediment)

EPS

(g glucose.g'' dry sediment)

Gontrol sediment

Experiment 1

4 day old

11 day old

21 day old

Experiment 2 & 3

11 day old

0.01 + 2.0 10{

3.13 + 0.81

8.46 r 0.59

15.35 + 3.6

7.04 *.'l .17

1.1 10-a t 7.9 10-6

1 .6 10-a + 5.5 10-s

1 .8 10{ + 5.9 | 0-s

23 1O'4 r 7.8 10-5

1.7 10'a +2.9 1O'7

Table 7. ChIa and EPS concentration + SE of the benthic diatom film and control sediments in
all experiments. Determination of BDF characteristics is based on the upper 7 mm of the

sediment for Experiment 1 and the upper 5 mm of the sediment for Experiment 2 and 3.

Settlement response in still-water (Experiment 1)

All Macoma larvae started to burrow within the first minute after their addition

to the wells. The percentage of larval settlement significantly differed between

treatments and times. Consequently, Hot was rejected, i.e. the settlement response

differed between different ages of BDF in a still-water environment. No

significant differences between the two batches were found and the interaction

between Time and Treatment nested in Batch was not significant (Table 2). In

general, the settlement response to controls and 4 day old BDF was higher than

in 11 day old and 21, day old BDF. The percentage of larval settlement increased

with time for all treatments and, in Batch 1, significant differences remained

between 11 day old BDF and control sediments, even after 300 seconds (Tukey's

test, p < 0.05) (Fig 1a). Consistently, the average burrowing time was significantly

different between treatments with highest burrowing times in 11 day old and 21

day old BDF for both batches (Table 3, Figlb). The percentage of larval

settlement was significantly negatively related to the Chla concentration and the
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colloidal EPS fraction of the BDFs (rz : 0.68 and 12 = 0.52; respectively). No

significant relations were found between the averaged burrowing time per

treatment and BDF characteristics.

Settlement choice (Experiment 2)

Mean recovery rate of alive and dead larvae was 98% at both flow velocities,

indicating that loss of larvae due to stickiness to the walls and paddles is

marginal. On average, 5.8 t 1.5 SE % of the live larvae and 6.0 t 1.5 SE % of the

dead larvae were recovered in the control and BDF sediments at 5 cm sr. At 15

cm sr, the total percentages of settlement in control and BDF sediments were 4.6

t 1.5 SE % and 4.4 t 1,.4 SE %, respectively for alive larvae and dead larvae.

Significantly more live larvae settled in BDF than in control sediments at 5 cm s-r

(Gp = 36.6, p < 0.001) and L5 cm sj (Gp :59.2, p < 0.001) and the distribution of

alive larvae did not differ between both flow velocities (Gp = 2.9, p = 0.087).

Consequentlf , Hoz is rejected while Hm, cannot be rejected, i.e. settlement is

influenced by BDF but the settlement preference for BDF is independent of flow

velocity.

The distribution of PS mimics did not differ significantly from the even

distribution at both flow velocities (Gp : 6.8, p : 0.009; Gp : 0.3, p = O.56,

respectively for 5 cm sr and 15 cm sr). Consistently, the distribution of alive

larvae significantly differed from the passive deposition of PS mimics at both

flow velocities (Gp :71.3, p < 0.001; Gp = 72.0, p < 0.001, respectively for 5 cm si

and 15 cm sr). Hence, Hozr, is rejected, i.e. habitat selection for BDF is not a

passive, depositional process. However, deposition of dead larvae was

significantly higher in BDF at 5 cm s'l (66 "/"; Gp = 20.8, p < 0.001), whereas the

distribution of dead larvae did not differ significantly from the even distribution

at 15 cm s-l (Gp = 1.0, p = 0.32). Hence, based on comparison between distribution

of dead and alive larvae, Hoza could only be rejected at a flow velocity of 15 cm s-1.
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Effect ss MSDf G-G
adiusted

p

Batch
Treatment(batch)
Time
Batch.Time
Treatment(Batch).Time
Residual

Random O.13r'.32
Random 4.02861
Fixed 4.01 163
Random 0.02899
Random 0.16657

2.51526

0.134i,2 0.2012
0.67144 96.7442
1.00291 138.3899
0.00725 1.0377
0.00694 0.4967
0.01397

0.669487
<1.001
<0.001 <0.001

0.407856 0.99304
0.977122 0.91774

1

6
4
4
24
180

Table 2. Experiment L. Mixed model ANOVA table for the effect of Treatment, Batch and Time

on the percantage of laraal settlement. Adjusted p-lnels are calculateil for Time effects based on

the Greenhouse-Geiser ( GG) correction.

Effect ss Df MS
Batch Random 0.33
Treatment Fixed 544.40
Residual 3282.39

1

3
350

0.33
181.47
9.38

0.04 0.85081 1

19.35 <).001

Table 3. Experiment 1. Tuo-factor ANOVA table for the effect of Treatment and Batch on

burrowing time.

r C liw Macoma

E BDF li!€ Macoma

I C Dead Macoma

o BDF Dead Macoma

I C PS mimic

tr BDF PS MiMiC

515
flow veloclty (cm.s-t)

Fig. 2. Experiment 2. Proportional distribution x SE of the recruiteil alioe Macoma, dead

Macoma anil PS mimics and dead pedioeliger mimics in control (c) and benthic diatom flm (bdfl

sedimants at 5 an s'l and 15 cm sa.
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Settlement response after primary settlement (Experiment 3)

Analysis of the above standing medium showed a larval addition efficiency of

100 % in both control and BDF sediments. Retention rates of M. balthica lawae

were significantly higher in BDF (58 %) as compared to controls @O%)(Fig.3,

Table 4). Despite the lower larval retention rate to BDF in Trial B of Batch 2, no

Batch nor a Trial effect was found indicating that, overall, the strength of

response did not significantly vary over replicates. Consequently, Hos was

rejected, i.e. secondary dispersal after primary settlement is influenced by BDF.

Treatment
Batch
Trial (Batch)
Residual

Fixed
Random
Random

0.034331
0.002726
0.005279
0.01 5895

0.034331

0.002726
0.001320
0.003179

F
'| 0.799
2.066
0.415

o.224013
0.792597

DI
r
I

I

4
5

Table 4. Experiment 3. Mixed model ANOVA table for the ffict of Treatment and Trial on the

percentage of remaining laruae.

Discussion & conclusions

In this study we investigated the role of multi-species benthic diatom films on

the settlement of Macoma balthica larvae. Successful settlement is a crucial

element in the recruitment of invertebrate larvae and thus in determining

macrobenthic community structure. Settlement of invertebrate larvae is known to

be mediated by marine biofilms and both biofilm induced facilitative and

inhibitive effects on settlement have been demonstrated (reviewed in Pawlik

1992, Wieczorek et al. 1995). Our results show that the settlement of M. balthica

larvae is also influenced by benthic diatoms and the outcome of the different

experiments allows the suggestion of the underlying mechanisms.

1.93
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n Control t BDF

9O"/"
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ooz"
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i 10%

V/.
Batch 2 Batch 2 Batch 2
Trial A Trial B Trial C

Fig. 3. Experiment 3. Retention percentages x SE of primary settled laroae in response to BDF
(black bars) and control sediments (uhite bars).

In a still-water environment, the average burrowing time depends on the age of

BDF. During the first five minutes after inoculation, the settlement response was

higher and the average burrowing time was faster in controls and younger BDF

than in older BDF. Although the role of diatom-derived chemical cues cannot be

ruled out, our results suggest that a physically mediated process is probably

responsible for this difference in settlement response. First, in all treatments,

larvae started to burrow directly after their inoculation and no "rejection

behavior" was observed. Second, no significant differences were found between

controls and 4 day old BDF, neither for "/" of settlement, nor for burrowing time.

Third, complete settlement in dense BDF sediments was observed in still water

after 30 minuteg preceding addition to the flume in Experiment 3. A higher

resistance during penetration into a dense matrix of diatoms and their associated

sugar and protein compounds therefore probably resulted in a reduced

settlement in old, dense BDF at the short-term. This hypothesis is supported by

the negative relationship between the % of larval settlement and the Chl a and

colloidal EPS concentration. At the very short-term, settling M. balthica larvae in

dense BDF are therefore, more susceptible to epibenthic predation in comparison

with larvae that burrow in less dense BDF. However, at the medium and longer
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term, a beneficial effect may be expected in dense BDF due to better growing

conditions as a result of the high food supply, making the bivalves also less

susceptible to epibenthic predation (Hiddink et a\.2002, Hiddink 2003).

Macoma balthica larvae settled significantly more in BDF as compared to the

controls and this distribution was not significantly different between flow

velocities of 5 cm s-r and 15 cm si. Flowever, the underlying mechanism of

habitat selection seems to differ behveen both flow velocities. At 15 cm sr,

significantly higher proportions of M. balthica larvae settled in BDF as compared

to PS mimics and dead larvae, which both displayed a not significantly different

recruitment pattem from the even distribution (i.e. no preference). At 5 cm s{,

however, dead larvae performed a similar preference for BDF as alive M. balthica

larvae, suggesting passive deposition of larvae to the BDF as a settlement

mechanism at this flow velocity. The difference between inert, spherical PS

mimics and dead, flatter larvae suggests that flow-dependent adhesion to the

biofilm is an important settlement mechanism at lower flow velocities. Adhesion

to biofilms is a complex process which remains poorly understood, but

biochemical (e.g. production of viscoelastic substances, wettability of the

surface), behavioral or physical (e.g. surface energy of the substrafum)

mechanisms may all be involved (Zardus et al. 2008). At higher flow velocities,

substratum shear stress may be too high, inhibiting passive adhesion of dead

larvae to the biofilm and the enhanced settlement of M. balthica larvae in BDF is

due to active selection. Furthermore, the results obtained from experiment 3

highlight the importance of post-settlement dispersal in the final habitat

selection. Thus, next to passive adhesion to the biofilm, also active behavior (i.e.

rejection of the initial settlement site) plays a role at low flow velocities.

Whenever no suitable settlement site is encountered, M. balthica larvae can

actively re-enter the water column after initial settlement by migration to the

surface and secreting a byssus thread, which allows resuspension along with

currents (i.e. byssus drifting, Beukema & de Mas 1989).

Higher recruitment success into dense biofilms has been noticed in the field for

Macoma balthica (Van Colen et aI. 20081 and for benthic invertebrates in general

(e.g. Keough & Raimundi 1995). Furthermore/ within the whole distribution area
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of M. balthica, pirnary settlement of postlarvae occurs predominantly on high

tidal flats and offshore secondary dispersal occurs from late summer on towards

the lower tidal flats (Reading 1979,Martrni & Morrison 1982 Beukema & de Vlas

1989, Van der Meer et al. 2003). Beukema & de Vlas (1989) and Hiddink (2003)

attribute this preference for primary settlement at high tidal flats to the lower

predation pressure of epifaunal organisms and the lower disfurbance by wave

action at these sites. Furthermore, as a result of lower sediment resuspension,

biofilms tend to develop more stable and are more productive in the more

sheltered, upshore tidal flats (de jong & de Jonge 1995). Hence, taken our results

into account, enhanced primary settlement of M. balthica pediveligers in the

upper tidal flats may, next to the above mentioned theories, also result from

habitat selection for biofilms. However, the nature of the diatom-derived

settlement cue for M. balthica larvae remains unknown. Such settlement cues

have extensively been sfudied in relation to the bacterial compound of the

biofilm (e.g. Bao et aL 2007), whereas the specific cues derived from diatoms have

been investigated to a much lesser extent. Based on manipulation of the different

components of biofilm+ Lam et al. (2003) reported that the settlement of the

serpulid polychaete Hydroides elegans is induced due to the presence of capsular

surface EP$ produced by specific diatoms. Such diatom-derived sugar

compounds have also been identified as settlement and metamorphosis cues for

bamacles, limpets and bryozoans (Dahms et a\.2004, Patil & Anil 2005, Jouuchi ef

al. 2007). Further experiments, in which the chemical compounds derived from

the different diatom species (e.g. EPS) are manipulated, are needed to elucidate

these diatom-derived cues regarding the settlement of M. balthica larvae.

Acknowledgments

This research is supported by the Institute for the Promotion of Innovation

through Science and Technology in Flandert Belgium (IWT Vlaanderen). We

would like to thank ]ohn Widdows and Peter Herman for their comments on the

flume and experimental design, Tjeerd Bouma for his help with the ADV

measurements, jurgen Verstraeten and Yves Isradl for the construcfion of the

196



SETTLEIIEilT oF ilAco.tA BALTHTGA rN REspol{sE To BEt{THrc DrATot FrLtr6

annular flume and Annick Verween, Annick Van Kenhove, Danielle Schram,

Annelien Rigaux and Dirk Van Gansbeke for their assistance during processing

of the samples and maintenance of the larval crrltivation. This paper contributes

to the Ghent University BBSea Ptoiect (GOA 01600705) and the EU Network of
Excellence Marbef (COCE-CT-2ffi3-50544,5).

797




