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Abstract. This study characterizes the microbial community

composition over Haas Mound, one of the most prominent

cold-water coral mounds of the Logachev Mound province

(Rockall Bank, NE Atlantic). We outline patterns of distribu-

tion vertically – from the seafloor to the water column – and

laterally – across the mound – and couple these to mound to-

pography and hydrography. Samples of water, sediment and

Lophelia pertusa were collected in 2012 and 2013 from lo-

cations that were chosen based on high definition video sur-

veys. Temperature and current measurements were obtained

at two sites at the summit and foot of Haas Mound to study

near-bed hydrodynamic conditions. Overlaying water was

collected from depths of 400 m as well as 5 and 10 m above

the bottom using a CTD/Rosette system. Near-bottom water,

sediment and L. pertusa mucus and skeleton samples were

obtained with a box corer. Of all these biotopes, Roche GS-

FLX amplicon sequencing targeting both Bacteria and Ar-

chaea was carried out, augmenting our understanding of deep

sea microbial consortia. The pattern of similarities between

samples, visualized by multi-dimensional scaling (MDS), in-

dicates a strong link between the distribution of microbes

and the specific biotopes. The microbial operational taxo-

nomic unit (OTU) diversity was the highest in near-bottom

water, which was sampled in the coral framework. For the

first time, Thaumarchaeota marine group I (MGI) were found

in L. pertusa mucus; Endozoicomonas was detected in skele-

ton, mucus and near-bottom water, whereas Mycoplasma was

only detected in skeleton and near-bottom water, however not

in mucus. Analysis of similarities (ANOSIM) indicates that

overlaying water is well-mixed at 400 m depth but less so at

5 and 10 m above the bottom, where the composition of mi-

crobial communities differed significantly between summit,

slope and off-mound. At all locations, the near-bottom wa-

ter differed significantly from water at 5 m above the bottom,

illustrating that the near-bottom water in between the coral

framework represents a separate microbial habitat. Further-

more, the observed spatial heterogeneity in microbial com-

munities is discussed in relation to environmental conditions.

1 Introduction

Numerous mounds composed of mixed sediment and cold-

water coral debris line the southeast slope of Rockall Bank

between 500 and 1100 m water depth (Kenyon et al., 2003;

van Weering et al., 2003). This so-called Logachev Mound

province consists of mounds varying from tens to hundreds

of metres in height and several kilometres in length and width

(Kenyon et al., 2003). These mounds have been developing

since the middle Miocene-early Pliocene, largely as the by-

product of interacting hydrodynamic regimes, coral growth

and sedimentation (De Haas et al., 2009; Mienis et al., 2007).

Living coral colonies of Lophelia pertusa and Madrepora

oculata inhabit the mound summits and flanks, providing

habitat for a wide range of invertebrates and fish (Costello et

al., 2005; van Soest et al., 2008). Measurements of currents

and temperature around the Logachev Mound province have

provided evidence of large regional differences with respect

to current strength, temperature fluctuations and organic car-

bon supply (Mienis et al., 2007). Significant heterogeneity

Published by Copernicus Publications on behalf of the European Geosciences Union.



4484 J. D. L. van Bleijswijk et al.: Microbial assemblages on a cold-water coral mound

1000 m

12

9

11 8

24

15

25

46

72

lander

off-mound

mound slope
mound summit

2.5 km

N

600

800

1000

Depth (m)Depth (m)

A B

C D

33
10

12

41

5

11

36

15

13

video transect

Figure 1Figure 1. (a) Location of Logachev Mound province (yellow polygon). (b) Multibeam map of Logachev Mounds with Haas Mound encircled.

(c) Detail of Haas Mound with lander and CTD stations arranged along two video transects (dotted lines). (d) Detail of Haas Mound with

box corer stations indicated. Note CTD02 is not on the map and lies 8 km SE of CTD10. Red and yellow symbols indicate stations sampled

in 2012 and 2013, respectively.

in environmental conditions has also been found within in-

dividual mounds, such as between the summit and foot of

mound structures (Duineveld et al., 2007). Recent studies on

the near-bed hydrodynamic regime in the Logachev Mound

province revealed intense mixing on the mounds as a result of

internal waves interacting with the topography (Mohn et al.,

2014; van Haren et al., 2014). Such mixing provides a supply

of food particles, i.e. phytodetritus, and constant refreshment

of dissolved oxygen and nutrients (Findlay et al., 2014). The

relevance of the hydrodynamic mixing regime for the growth

of cold-water coral framework and mounds as a whole is a

subject of current studies (F. Mienis, personal communica-

tion, 2014).

Other studies have already shown that cold-water coral

reefs are hotspots of carbon mineralization (Rovelli et al.,

2015; van Oevelen et al., 2009) and metazoan biodiversity

and biomass (Biber et al., 2014; Henry and Roberts, 2007),

and as such deserve our attention and protection. Whether

these reefs are also biodiversity hotspots for microbial com-

munities was qualified as “questionable” based on low bac-

terial operational taxonomic unit (OTU) numbers in auto-

mated ribosomal intergenic spacer analysis (ARISA) profiles

(Schöttner et al., 2012). Microbes are crucial for the fitness of

tropical corals (Knowlton and Rohwer, 2003; Krediet et al.,

2013; Rosenberg et al., 2007). Shifts in the composition or

metabolism of shallow-water coral-associated microbial con-

sortia can significantly impair the health of tropical corals by

increasing stress and the incidence and prevalence of disease,

and by causing mortality (Ainsworth et al., 2010; Dinsdale

and Rohwer, 2011; Gilbert et al., 2012; Rohwer and Kelley,

2004).

In deep cold-water coral ecosystems, insight into the dis-

tribution and variability of microbial communities is now

also progressing. Research has begun to reveal patterns in the

composition of microbial communities associated with cold-

water corals (Emblem et al., 2012; Galkiewicz et al., 2011;

Hansson et al., 2009; Kellogg et al., 2009; Neulinger et al.,

2009; Neulinger et al., 2008; Penn et al., 2006; Schöttner et

al., 2009; Schöttner et al., 2012; Yakimov et al., 2006) and

the ambient environment (Jensen et al., 2012, 2014; Jensen

et al., 2008; Schöttner et al., 2012; Templer et al., 2011).

Schöttner et al. (2012) concluded that bacteria in coastal

cold-water coral reefs are structured based on habitat (coral

branch, mucus, water and sediment) and reef location (four

reefs located off Norway). Jensen et al. (2014) found bac-

terial communities to be similar in water sampled proximal

(∼ 1 m) and distal (30 m) in one reef, whereas in another reef

these communities clearly differed.

In the present study, a detailed analysis was made of

the composition and distribution of microbial communities

across Haas Mound, a deep cold-water coral mound in the

NE Atlantic. The main objective of this study is to provide

insight into diversity of microbial communities (Bacteria and

Archaea) within different biotopes at Haas Mound. Besides

the water column, these biotopes included the major surfaces

that are in contact with the water, i.e. coral framework, coral

mucus and sediment. Our hypotheses are: (1) microbial com-

munities, including Bacteria and Archaea, will be structured

based on above mentioned biotopes; (2) within the water col-

umn, we expect a reef effect on the microbial community

composition at close distance above the reef.

Biogeosciences, 12, 4483–4496, 2015 www.biogeosciences.net/12/4483/2015/



J. D. L. van Bleijswijk et al.: Microbial assemblages on a cold-water coral mound 4485

2 Materials and methods

2.1 Location and sample collection

Samples were collected during cruises 64PE360 (October

2012) and 64PE377 (October 2013) aboard the RV Pela-

gia (NIOZ) in the Logachev Mound province on SE Rock-

all Bank (Fig. 1a). The focus site for this study was Haas

Mound, one of the largest and highest carbonate mounds in

the Logachev Mound province (Mienis et al., 2006; Fig. 1b).

Two transects (Fig. 1c), from the base to the summit of Haas

Mound, were surveyed with a tethered HD video camera

towed at 2 m above the bottom (mab). Videos were annotated

on board.

Microbial community samples (Table 1) were collected

from a range of putative biotopes across Haas Mound that

were operationally defined using video information, hydro-

graphic data collected during the 2012–2013 cruises and ear-

lier (e.g. Mienis et al., 2007) and literature on coral microbe

interactions (Carlos et al., 2013; Kellogg et al., 2009; Schöt-

tner et al., 2012; Wild et al., 2008). These biotopes were: (i)

water well above the mound, i.e. at 400 m water depth; (ii)

water overlaying the coral framework at 5 and 10 mab; (iii)

near-bottom water; (iv) sediment; (v) uneroded (recently de-

ceased) and eroded L. pertusa skeleton; and (vi) L. pertusa

mucus.

Box core samples were taken with a 50 cm diameter, NIOZ

designed box corer. This box corer is equipped with a tightly

sealing top valve that prevents the leakage and/or exchange

of sea water overlaying the sample during ascent, enabling

sampling of the near-bottom water once the box corer is on

board. A total of nine box cores were collected on the two

transects (Table 2, Fig. 1d) and from these, L. pertusa skele-

ton, mucus and near-bottom water were taken when avail-

able. We differentiated between eroded and uneroded skele-

ton based on discoloration (”white” for uneroded skeleton

without biofilm, and “brown” for eroded, older skeleton with

biofilm). The water column overlaying Haas Mound was

sampled using a rosette sampler equipped with 24 Niskin

bottles of 11 L each, attached to a conductivity–temperature–

depth (CTD) meter. For each CTD drop, water was collected

from three different depths: 400 m water depth and 5 and

10 mab (Table 3, Fig. 1c). Also, a far off-mound station at

1200 m water depth, situated 10 km SE from Haas Mound,

was sampled with the CTD to determine if water mass char-

acteristics near the mound differ from those off-mound and

in deeper water.

Water sampled for microbial DNA analysis was filtered

directly on 0.2 µm polycarbonate filters (Whatman) using a

mild under-pressure of 0.2 bar. From each water depth, three

samples of 2 L were filtered from the same Niskin bottle. The

near-bottom water collected from box cores was sampled in

a similar way (three samples of 0.5 L were taken from the

same box core). Between two casts, the box corer was thor-

oughly cleaned and rinsed with seawater. All filters were im-

mediately frozen in 6 mL Pony vials at−80 ◦C. Coral mucus

as well as skeleton were sampled in at least three replicates

per box core (preferably from different colonies) and handled

as described in Schöttner et al. (2009), except for skeleton

in 2013, when we replaced the scraping technique described

by Schöttner et al. (2009) with harvesting 0.5–1 cm of coral

skeleton and directly freezing it at −80 ◦C on board. In the

lab, these samples were exposed to liquid nitrogen and ho-

mogenized with sterile mortar and pestle.

2.2 DNA extraction and 16S rRNA amplicon

sequencing

DNA was extracted with Power Soil DNA Extraction

Kits (MoBio) according to manufacturer’s protocol and

extracts were kept frozen at −20 ◦C. The concentra-

tion of the DNA in the extracts was measured with a

F-2500 Fluorescence Spectrofluorometer (Hitachi, Tokyo,

Japan) using QUANT-iT™ PicoGreen® dsDNA kit (Life

Technologies, USA). The quality was checked inciden-

tally on 1 % agarose gel. To amplify the V4 region

of the 16 S rDNA, the universal prokaryotic primer

sets S-D-Arch-0519-a-S-15 (5-CAGCMGCCGCGGTAA-

3; Wang et al., 2007) and S-D-Bact-0785-b-A-18 (5-

TACNVGGGTATCTAATCC-3; Claesson et al., 2009) were

used as recommended in Klindworth et al. (2013). The for-

ward primer was extended with a ten-base molecular identi-

fier (MID) barcode to distinguish the samples. Additionally

the reverse primer also included a ten-base barcode to dis-

tinguish the triplicates. To avoid PCR bias, per DNA extract,

two separate 50 µL PCR reactions were performed, using one

unit of Phusion Taq each (Thermo Scientific) in 1x High-

Fidelity Phusion polymerase buffer. The volume of template

material was adjusted according to the respective DNA con-

centration to aim for approximately 10 ng genomic DNA per

reaction. The PCR was run on an iCycler™ Thermo Cy-

cler (BioRad, USA). Cycle conditions were as follows: 30 s

at 98 ◦C, then 30 cycles (10 s at 98 ◦C, 20 s at 53 ◦C, 30 s

at 72 ◦C), followed by 7 min at 72 ◦C. PCR products were

loaded entirely on a 2 % agarose gel pre-stained with Sybr-

Safe and run at 80 V for 50 min. Blue-light excitation was

used when excising the PCR products to avoid UV damage.

Duplo PCR products were pooled and purified using the Qi-

aquick Gel Extraction kit. After fluorimetric quantification as

described above, equal amounts (70 ng) of the purified PCR

products were pooled (18 samples with their unique forward

MID and reverse MID combinations per set). Using a MinE-

lute kit (Qiagen), the volume was adjusted to 25 µL with a

final concentration of > 50 ng µL−1 pooled PCR product per

set. In total, seven sets of samples were sent to Macrogen

(Seoul, South Korea), each set sequenced using Roche GS-

FLX instruments and Titanium chemistry on a one-eighth re-

gion gasket.
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Table 1. Number of unique samples taken from different biotopes at Haas Mound summit, slope and off mound. Number between brackets

is total number of samples analysed, including replicates.

Biotope Sample type Summit Slope Off mound Total

Overlaying water 400 m 4 (12) 2 (6) 2 (6) 8 (24)

10 mab 4 (11) 2 (6) 2 (6) 8 (23)

5 mab 3 (9) 2 (6) 2 (6) 7 (21)

Near-bottom water w_bc 4 (11) 1 (3) 5 (14)

Skeleton uneroded 2 (6) 2 (6) 4 (12)

eroded 1 (3) 1 (6) 2 (9)

Mucus mucus 1 (3) 1 (3) 2 (6)

Sediment sediment 2 (6) 2 (6) 4 (12)

2.3 Sequence processing, taxonomic assignment and

diversity analyses

The sequence library of each sample set was filtered by

length and quality, and sorted based on the forward MID

using the Ribosomal Database Project (RDP) pipeline ini-

tial process (Cole et al., 2014). Only sequences longer than

250 bases with average Q scores above 25 were kept. These

sequences were sorted according to the reverse MID tags

into the three replicates. In both procedures a maximum of

two mismatches in both primers and tags was accepted. At

the end of the procedure, each of the seven libraries were

split into 18 samples, 6 unique samples each with three

replicates. All reads had a similar length of 251 bp. Reads

were aligned with PyNAST and checked for chimeras using

ChimeraSlayer in Qiime. The read files were classified using

the SILVAngs web interface (Yilmaz et al., 2014) with de-

fault settings (> 98 % similarity of OTUs and > 93 % classifi-

cation similarity to closest relative in SILVA database 119).

OTU tables were imported in PRIMERv6 (Clarke and

Gorley, 2006). The number of reads per taxonomic unit was

normalized per sample to avoid biases caused by differences

in sample size. Methodological replicates were pooled. Rar-

efaction curves and diversity indices were calculated using

PRIMERv6 and plotted in R. For a total of 40 samples

(pooled from 121 independent methodological replicates: 38

triplos and 2 duplos, namely water of 400 m at station 36 and

near-bottom water at station 72), the average number of reads

per sample was 16220 (with standard error 1090). Rarefac-

tion curves of OTUs plotted against reads per sample almost

reached a plateau at 14000 reads per sample (Fig. S1 in the

Supplement).

Differences in the microbial OTU composition were iden-

tified in PRIMERv6 (Clarke and PRIMER, 2006; Clarke,

1993) by analysing Bray–Curtis distance for all pooled

samples (n= 40) and also for all methodological repli-

cates (n= 121). Results were visualized with MDS plots.

Distance-based Redundancy Analysis (DBRDA) was done

in PRIMERv6 on the samples taken at 5 and 10 mab with

seven variables (temperature, salinity, transmission, fluores-

cence, oxygen, photosynthetically available radiation (PAR),

surficial PAR (SPAR)) to explain the variability in microbial

community composition within this sample group.

The OTU classification files were processed in Excel and

class and genus data were selected for representation to allow

easy comparison with other cold-water coral studies (refer-

ences mentioned in text).

The percentages of reads that were assigned to specific

taxonomic units were 99 % to class, 58 % to family and 29 %

to genus level. Indicator OTUs, with significant non-random

association (p < 0.0001, 9999 permutations) with one of the

five biotopes, were identified with Indicator Species Analysis

in R using the indicspecies package 1.6.7. (De Caceres and

Legendre, 2009) with display of both Indicator Values “A”

and “B” (Dufrene and Legendre, 1997).

SSU rRNA gene amplicon pyrosequences are available

from the European Nucleotide Archive (ENA) via http:

//www.ebi.ac.uk/ena/data/view/PRJEB9766. Sample acces-

sion numbers are listed in Tables 2 and 3.

2.4 Near-bed temperature and current measurements

During the 2012 cruise, temperature and currents were

measured on the summit (st5 at 556 m, 55◦29.677′ N,

15◦48.222′W ) and at the foot of Haas Mound (st 41 at

861 m, 55◦28.94′ N, 15◦48.28′W) with an FSI™ 3DACM

acoustic current meter (Falmouth instruments) with tem-

perature probe, which was attached to a benthic lander at

0.75 mab (Fig. 1c). The duration of each deployment was ap-

proximately 48 h.

3 Results

3.1 Haas Mound physical environment and coral cover

The S slope of Haas Mound is subject to strong daily varia-

tions in water mass properties due to internal tidal wave ac-

tion causing deep, cold water to move up and down the slope

Biogeosciences, 12, 4483–4496, 2015 www.biogeosciences.net/12/4483/2015/
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Table 2. List of box core sampling stations.

Year Site Station Latitude Longitude Depth Framework Biotope Accession

no. (m) height (cm) nos. ERS78...

2012 Mound slope 15 N 55◦29.45′ W 15◦48.41′ 528 > 30 Mucus 3984-86

Skeleton-uneroded 3987-89

Summit 24 N 55◦29.77′ W 15◦48.05′ 549 0–10 Near-bottom water 3990-92

Mound slope 25 N 55◦29.57′ W 15◦47.81′ 568 > 30 Mucus 3993-95

Skeleton-uneroded 3996-98

Mound slope 46 N 55◦29.45′ W 15◦47.64′ 745 10–30 Near-bottom water 3999-4001

Summit 72 N 55◦29.51′ W 15◦48.40′ 562 0–10 Near-bottom water 4002-03

2013 Mound slope 8 N 55◦29.45′ W 15◦47.64′ 647 > 30 Sediment 4004-06

Summit 9 N 55◦29.77′ W 15◦48.03′ 547 0–10 Near-bottom water 4007-09

Sediment 4010-12

Skeleton-uneroded 4013-15

Skeleton-eroded 4016-18

Summit 11 N 55◦29.50′ W 15◦48.39′ 564 10–30 Near-bottom water 4019-21

Sediment 4022-24

Mound slope 12 N 55◦29.26′ W 15◦48.45′ 635 > 30 Sediment 4025-27

Skeleton-uneroded 4028-30

Skeleton-eroded 4031-36

Table 3. List of sampling stations of the overlaying water column. mab stands for metres above bottom.

Year Site Station Latitude Longitude Sample Sample Temperature Accession

no. depth (m) type (◦C) nos. ERS78...

2012 Off mound 11 N 55◦28.92′ W 15◦48.33′ 400 w_400 m 9.7 4037-39

895 w_10 mab 6.7 4040-42

907 w_5 mab 6.6 4043-45

Mound summit 12 N 55◦29.50′ W 15◦48.50′ 400 w_400 m 9.6 4046-48

553 w_10 mab 9 4049-51

562 w_5 mab 8.9 4052-54

Mound slope 33 N 55◦29.57′ W 15◦47.83′ 390 w_400 m 10 4055-57

573 w_10 mab 8.7 4058-60

578 w_5 mab 8.6 4061-63

Mound slope 36 N 55◦29.94′ W 15◦48.29′ 400 w_400 m 10 4064-65

596 w_5 mab 8.7 4066-68

2013 Off mound 2 N 55◦25.95′ W 15◦43.83′ 400 w_400 m 9.9 4069-71

1192 w_10 mab 5.7 4072-74

1200 w_5 mab 5.4 4075-77

Mound summit 10 N 55◦29.76′ W 15◦48.04′ 400 w_400 m 9.8 4078-80

522 w_10 mab 8.8 4081-83

530 w_5 mab 8.5 4084-86

Mound slope 13 N 55◦29.25′ W 15◦48.44′ 400 w_400 m 9.7 4087-89

709 w_10 mab 9.1 4090-92

718 w_5 mab 9.2 4093-95

Mound summit 15 N 55◦29.50′ W 15◦48.39′ 400 w_400 m 9.8 4096-98

550 w_10 mab 9 4099-101

555 w_5 mab 8.9 4102-104

www.biogeosciences.net/12/4483/2015/ Biogeosciences, 12, 4483–4496, 2015
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(see details in van Haren et al., 2014). This results in a daily

temperature fluctuation at the foot of the mound of 2.5 ◦C

as measured by the benthic lander. A much smaller tempera-

ture fluctuation, i.e. less than 1 ◦C, was recorded on the sum-

mit (Fig. 2a). Temperature, salinity and oxygen profiles mea-

sured in 2012 and 2013 are shown for the water column at

the off-mound (st2 and 11), mound S slope (st33) and mound

summit (st12) sites of Haas Mound (Fig. 2b-d). The tempera-

ture of the water column overlaying Haas Mound was around

10 ◦C at 400 m depth and decreased by 1 ◦C with every ad-

ditional 156 m depth. Salinity was 35.4 at 400 m depth and

decreased slightly with depth. These temperature and salinity

values are characteristic of eastern North Atlantic Water. At

the deeper off-mound st11 temperatures decreased to 6.6 ◦C

at 1000 m water depth (Fig. 2b), while salinity dropped to

35.2 (Fig. 2c). Both values are indicative of the presence of

the Subarctic Intermediate Water (McGrath et al., 2012). The

oxygen saturation was around 80 % at 400 m depth. In the

cold water at the far off-mound station (st2) oxygen satura-

tion decreased at 1000 m to less than 70 % after which an

increase was observed at 1200 m to around 80 % (Fig. 2d).

The density of the water was 27.30 kg m−3 at 400 m depth

and gradually increased to 27.44 kg m−3 at 750 m, which is

the depth of the slope of Haas Mound. Below 750 m, den-

sity increased to 27.60 kg m−3 where deep cold water was

encountered. Bottom water temperature at the far off-mound

station (st2) was 5.3 ◦C, while salinity was 35.0 and density

27.7 kg m−3.

Video recordings along transects crossing Haas Mound

showed large heterogeneity in coral framework distribution.

The mound S slope was characterized by dense framework

while the mound summit showed reduced framework alter-

nating with mud patches. At parts of the summit, the coral

framework was replaced by a dense cover of large erect

sponges (Rosella nodastrella). The foot of the mound S slope

(∼ 645 m depth) was sampled by box cores (st46), which re-

vealed a thick layer of coral framework (Fig. 3). Extensive

coral framework was also sampled higher up the S slope

near the edge of the summit between 500 and 600 m depth

(Fig. 3a). The density of the coral framework in box core

samples taken beyond the edge towards the central part of

the summit contained reduced amounts of coral framework,

which was in line with video recordings (Fig. 3c, d). One box

core station (st24) yielded only mud and small fragments of

coral skeleton (Fig. 3c).

3.2 Microbial communities and diversity in Haas

Mound samples

The number of observed microbial OTUs excluding over-

all singletons (Table S1 in the Supplement) was the highest

in near-bottom water (2415) followed by sediment (2234),

skeleton (1878), mucus (1761) and overlaying water (1193).

Chao1 indices showed the same trend, decreasing from 3089

in near-bottom water to 1845 in overlaying water (Table S1).
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Figure 2. (a) Temperature recorded in situ at the summit and foot

of Haas Mound by a current meter on a benthic lander. (b–d) salin-

ity, temperature (◦C) and oxygen (% saturation), respectively, as

recorded with the CTD on the slopes and summit of Haas Mound in

October 2012 and 2013.

The initial MDS plot of the similarities in OTU compo-

sition of the samples immediately showed that the sam-

ples of the overlaying water taken at 5 and 10 mab did

not differ. This was confirmed by analysis of similarities

(ANOSIM) (p > 0.1; 999 permutations). Hence, these sam-

ples were pooled in one category, indicated hereafter as 5

and 10 mab. Subsequent MDS plots were made of the OTU

composition in the sample set and these revealed a consistent

pattern, i.e. five different clusters which correspond with the

biotopes of the samples (Fig. 4, S2). Similar clusters were

apparent in plots of microbial classes and genera. Overlay-

ing water at 400 m was grouped together with water at 5

and 10 mab and formed a tight cluster (Fig. 4). Unexpect-

edly, near-bottom water, which is in close contact with both

reef and sediment, clustered distinctly from overlaying wa-

ter, sediment, L. pertusa skeleton and L. pertusa mucus. The

following is an account of the composition of the bacterial

communities encountered in the samples with emphasis on

variation between and within clusters (biotopes) across the

mound.

Biogeosciences, 12, 4483–4496, 2015 www.biogeosciences.net/12/4483/2015/
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A B

C D

Figure 3Figure 3. Photographs of box cores taken at the S slope (a, st25

and b, st46) and summit (c, st24 and d, st72) of Haas Mound. A

clear difference in the amount and height of coral framework was

observed.

3.2.1 Variation between biotopes

When plotting the microbial community composition of

the samples according to class (Fig. 5a), differences be-

come apparent between the biotopes. In near-bottom water,

Gammaproteobacteria (22 %) and Thaumarchaeota marine

group I (MGI; 22 %) were the most abundant classes fol-

lowed by Deltaproteobacteria (11 %) and Alphaproteobac-

teria (9 %). Other biotopes shared these four groups, how-

ever with different relative abundances (Fig. 5a). Near-

bottom water contained relatively high amounts of Halobac-

teria (1.2 %), while other biotopes constituted < 0.7 %. Sed-

iment and overlaying water both contained relatively less

Gammaproteobacteria (14 % in sediment; 18 % in overlaying

water) and more Thaumarchaeota MGI (24 % in sediment;

31 % in overlaying water) than near-bottom water. The sedi-

ment was characterized by a high percentage of Acidobacte-

ria (6.0 %) relative to < 4.2 % in other biotopes. In overlaying

water we found relatively high amounts of Deferribacteres

(5.9 %) and Thermoplasmata (6.1 %), while these were found

< 2 % in the other biotopes. L. pertusa skeleton and mucus

contained lower relative amounts of Thaumarchaeota MGI

(9 and 11 % respectively) than near-bottom water but still a

substantial percentage of their total microbial communities.

The mucus was very rich in Gammaproteobacteria (49 %)

and also Flavobacteria (4.1 %); levels of Betaproteobacteria

(2.9 %) were relatively high compared to other biotopes. The

skeleton was relatively rich in Acidimicrobiia (5.4 %) and

Planctomycetia (5.6 %) compared to other biotopes where

these bars were below 2.9 and 3.5 %, respectively.

Plotting the composition of the samples using a higher

taxonomic resolution, i.e. genera, on the basis of their rela-

tive abundance (each > 0.5 % of all reads) confirmed the dis-

Transform: Square root

Resemblance: S17 Bray Curtis similarity

Biotope

w_400

w_5 and 10 mab

w_bc

sediment

skeleton

mucus

2D Stress: 0.04

Figure 4. Microbial OTU composition of 40 samples shows clus-

tering according to biotope: overlaying water (w_400 m; w_5 and

10 mab), near-bottom water (w_bc), sediment, skeleton and mucus.

The MDS plot of all 121 samples analysed, including replicates,

shows a similar pattern (Fig. S2). The same pattern is apparent for

microbial classes and genera (not shown).

tinct signatures of the biotopes. Near-bottom water (Fig. 5b)

was distinct from other biotopes due to the relative dom-

inance of Nitrosopumilus (3.2 %), uncultured Xanthomon-

adales (1,6 %), Defluviicoccus (1.3 %), Marinicella (1.2 %),

Brocadiaceae W4 lineage (1.1 %), Nitrosococcus (0.8 %),

Colwellia (0.6 %) and OM60 clade (0.6 %). Overlaying wa-

ter was relatively rich in Salinisphaeraceae ZD0417 marine

group (1.9 %) and Rhodospirillaceae AEGEAN-169 marine

group (2.0 %) compared to other biotopes where propor-

tions were < 0.4 % and < 0.3 %, respectively. Pseudospiril-

lum, Nitrosopumilus, Nitrospina and the Flavobacteriaceae

NS5 group each contributed between 0.5 and 1.1 % to the

microbial community of the overlaying water. A compari-

son of the relative abundance of the class Thaumarchaeota

MGI with the abundance of the genus Nitrosopumilus in-

dicates that the latter contributed ∼ 2.5 % to this class in

overlaying water (∼ 17 % in near-bottom water and sed-

iment and ∼ 35 % in skeleton and mucus), meaning that

other, unknown genera contributed 97 % to the Thaumar-

chaeota class in overlaying water. The sediment was rela-

tively rich in uncultured Xanthomonadales (2.9 %) and Ni-

trosococcus (1.5 %) in comparison to other biotopes where

percentages were < 1.7 % and < 0.8 %, respectively. Skele-

ton samples contained relatively high percentages (> 1 %)

of Nitrosomonas, Nitrospira, Entotheonella, Granulosicoc-

cus, Rhodobium, Blastopirellula and Pseudahrensia, while

the proportions from other biotopes were < 0.5 %. Mucus

samples contained large amounts of Alteromonadaceae BD1-

7 clade (22 %, SE 9 %) and Acinetobacter (9 %, SE 9 %),

with high variability between the samples. Aquabacterium

(1.9 %), Endozoicomonas (1.5 %), Polaribacter (1.3 %) and

Pseudomonas (1.0 %) were the most apparent genera in mu-

cus. Mycoplasma was not found in mucus but this genus was

www.biogeosciences.net/12/4483/2015/ Biogeosciences, 12, 4483–4496, 2015
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Figure 5. Microbial community composition of five biotopes sampled at Haas Mound. N is the number of unique samples per biotope where

the letter a shows the total number of samples, including replicates. (a) The most abundant (> 1 % of total reads) classes for water at 5 and

10 mab (n= 15, a45), near-bottom water w_bc (n= 5, a14), sediment (n= 4, a12), skeleton (n= 6, a21) and mucus (n= 2, a6). (b) The

most abundant (> 0.5 % of total reads) genera for water at 5 and 10 mab, near-bottom water w_bc, sediment, skeleton and mucus. Values are

plotted as percentage, with standard error.

present in low percentages in skeleton (0.03 %) and near-

bottom water (0.01 %).

Specific indicators, i.e. taxa that showed a significant non-

random association to a specific biotope, were found for all

biotopes (Table S1). The number of strong indicators (i.e.

given the indicator is present, the probability that the sample

belongs to a certain biotope > 0.85) was the highest in near-

bottom water and mucus (8 and 12 strong indicators, respec-

tively) and low in overlaying water, sediment and skeleton (4,

0, and 0 strong indicators, respectively). Brocadiaceae W4

and Dehalococcoidia were the most abundant strong indica-

tors in near-bottom water whereas SAR11 clade Deep 1 and

Oceanospirillales ZD0405 were typical for overlaying water.

The mucus was characterized by Alteromonadaceae BD1-7

and Acinetobacter.

3.2.2 Variation within biotopes

Within clusters belonging to two of the five main biotopes,

patterns were present that could be related to additional fac-

tors (Fig. 7 and 8). Within the overlaying water cluster, depth

category (400 m versus 5 and 10 mab) and year (2012 ver-

sus 2013) were discriminating factors as illustrated in the

MDS plot (Fig. 7) and determined by ANOSIM (p < 0.01

and p < 0.0001, respectively, 9999 permutations). Within the

group of samples taken at 5 and 10 mab, three clusters were

recognized according to their geographic position. Samples

taken on Haas Mound summit clearly differed (p < 0.001,

9999 permutations) from samples taken at deeper locations

on Haas Mound slope and from samples taken off-mound.

Deeper samples contained relatively more Thaumarchaeota

Marine Group I (Fig. 6a). Opposite trends (decreasing with
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depth) were detected in the classes Gammaproteobacteria,

Alphaproteobacteria and Acidimicrobiia (Fig. 6a) and in the

genera Pseudospirillum, Nitrospina and NS5 marine group

(Fig. 6b). A small but significant interannual effect was

present in the water samples taken at 400 m and at 5 and

10 mab on Haas Mound, however the year effect was not

shown in off-mound samples taken at 5 and 10 mab (Fig. 7).

Distance-based redundancy analyses indicated that depth-

correlated variables, i.e. temperature, salinity and density,

only explained 17 % of the total variation in microbial com-

munity composition of overlaying water at 5 and 10 mab.

Turbidity of the water explained an additional 14 % and was

correlated with year (r =−0.97).

Within the cluster of skeleton samples, uneroded dead

coral skeleton hosted a distinct microbial community from

eroded dead skeleton (Fig. 8). Uneroded dead skeleton con-

tained more of the classes Gammaproteobacteria and Sph-

ingobacteria (Fig. 6c) whereas eroded skeleton communities

contained relatively more Acidobacteria and Planctomycetia

(Fig. 6c). On the genus level, uneroded dead skeleton con-

tained more Nitrosopumilus, uncultured Xanthomonadales,

Blastopirellula and Pseudahrensia among others, whereas

eroded skeleton contained more Rhodopirellula, Pir 4 lineage

and Rhodobium (Fig. 6d). No patterns were found within the

clusters of near-bottom water, sediment and L. pertusa mu-

cus samples.

4 Discussion

4.1 Microbial communities and hydrography

The temperature measurements made during this study on

Haas Mound support previous observations and models,

showing that the S slope of Haas Mound is subject to intensi-

fied mixing caused by internal waves (Mohn et al., 2014; van

Haren et al., 2014). By contrast, conditions on the summit of

the mound are less dynamic because the internal wave height

is less than the mound height and the deep cold water does

not reach the summit, but flushes around the slopes of the

mound (van Haren et al., 2014). The distribution of dense,

live coral framework on the slope seems to match with the

degree of mixing, as framework was found to be less abun-

dant on the summit (Fig. 3). This pattern suggests that mixing

is important, for supplying food particles, i.e. phytodetritus

(Duineveld et al., 2007), to the living corals, as well as trans-

porting dissolved nutrients, organic carbon, CO2 and O2, as

is observed near tropical shallow water reefs (Genin et al.,

2002; Reidenbach et al., 2006).

The distribution of microbial communities across Haas

Mound, in some aspects, also reflects local hydrodynamic

patterns, though small interannual effects are apparent. Mi-

crobial communities in the overlaying water at 400 m depth

within a given year were very similar to each other. This

result is explicable since this depth is well above the di-

rect influence of the mound and absolute distances between

successive CTD samples were small (< 1 km). Samples on

and off mound showed similar microbial compositions at

400 m. In contrast, samples at 5 and 10 mab differed between

mound summit, mound slope and (deeper) off-mound loca-

tions (Fig. 7). To explain this differentiation of the microbial

communities according to mound site we infer that a gradient

in environmental conditions exists on the mound. This hypo-

thetical gradient is caused by internal waves coming from the

deep and causing cold water to wash up the slope, exposing

the lower part to more intense mixing, lower temperatures

and different water chemistry for longer periods than the up-

per slope while the summit is not reached by the wave (van

Haren et al., 2014).

Microbial OTU diversity was the highest in near-bottom

water and decreased subsequently in sediment, skeleton, mu-

cus and overlaying water. The enhanced microbial diver-

sity of near-bottom water we encountered possibly reflects

the enhanced biodiversity of metazoans living on the coral

framework (Bongiorni et al., 2010). Similarly, Schöttner et

al. (2009) found the highest microbial OTU diversity in sedi-

ments followed by overlaying seawater, and lower diversities

in mucus and skeleton in a Norwegian cold-water coral reef.

Due to our method of collecting near-bottom water within

the coral framework with a box corer, a certain amount of

suspended sediment could be expected in the near-bottom

water sample and indeed in the MDS plot (Fig. 4) the cluster

of near-bottom water is situated in between the clusters of

overlaying water and sediment. However, from the inventory

of microbial classes present in the biotopes, it is apparent that

near-bottom water supports a microbial community clearly

different from a mixture of overlaying water and sediment.

Moreover, near-bottom water contained a number of strong

indicator taxa that were highly specific (high A values in in-

dicspecies analyses) for this biotope, confirming its distinct

signature (Table S2).

The large difference between near-bottom water and over-

laying water at 5 and 10 mab was not anticipated given the

strong turbulent mixing in places. We hypothesize that this

difference is due to the effect of the dense 3-D coral frame-

work constraining the exchange between the near-bottom

water in between the coral branches and the water overlaying

the reef. As a consequence of prolonged residence time and

close contact with the dense epifauna (e.g. sponges, bivalves,

foraminifera, crinoids) living in the framework and sediment,

a biologically and chemically unique and sheltered environ-

ment is created for the development of a typical local micro-

bial community with a high diversity (this study). Jensen et

al. (2014) found differences between proximal and distal wa-

ter samples, comparable to the differences we found between

near-bottom water and overlaying water at 5 and 10 mab:

i.e. less Alphaproteobacteria and more Gammaproteobacte-

ria and Planctomycetia in near-bottom water compared to

overlaying water. However, in contrast to these findings, at

a nearby reef, Jensen et al. (2014) found very similar bacte-
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Figure 6. Differences in microbial community composition within biotopes. N is the number of unique samples per biotope where the letter

a shows the total number of samples, including replicates. (a) Microbial classes for overlaying water at 400 m depth (n= 8, a23), and at

5 and 10 mab on mound summit (n= 7, a21), mound slope (n= 4, a12) and off-mound (n= 4, a12). (b) Genera for overlaying water at

400 m depth, and at 5 and 10 mab on mound summit, mound slope and off-mound. (c) Microbial classes for uneroded (n= 2, a9) and eroded

skeleton (n= 4, a12). (d) Genera for uneroded and eroded skeleton. Values plotted as percentage with standard error.

rial OTU compositions in water collected proximal (∼ 1 m)

and distal (30 m) to the reef. We anticipate that samples taken

at 1 m above the reef will not always reflect the typical mi-

crobial community living in the coral framework depending

on the hydrodynamic conditions.

4.2 Microbial communities associated with Lophelia

pertusa skeleton and mucus

Distinct communities were identified on dead coral skele-

ton and in freshly produced mucus of living coral. Skele-

ton and mucus contained a substantial amount of Thaumar-

chaeota Marine Group 1 (9 and 11 %, respectively) of which

the majority was unclassified, and the genus Nitrosopumilus

made up 3 % in both sample types and Cenarchaeum 0.4 %

in skeleton and 0.1 % in mucus. In addition, small amounts

of the Euryarchaeota class Halobacteria in skeleton (0.1 %)

and in mucus (0.3 %), and Thermoplasmata in mucus (0.2 %)

were found. It is for the first time that Archaea are detected in

coral mucus. Archaea has already been reported in samples

of L. pertusa tissue with crushed corallites (Emblem et al.,

2012), and with Archaea affiliated with three species promi-

nently present in the top 10 of prokaryotic species based on

454 read data: Nitrosopumilus maritimus, Cenarchaeum sym-

biosum and Candidatus Nitrosoarchaeum sp.

Although not detected by Yakimov (2006), two bacterial

genera were previously reported to be part of the L. per-

tusa biome, Mycoplasma and TM7 (Kellogg et al., 2009;

Neulinger et al., 2009; Neulinger et al., 2008). In this study,

using 454 sequencing, we detected these genera in rela-

tively low amounts: Mycoplasma was detected in skeleton

(0.028 %), near-bottom water (0.013 %) and overlaying wa-

ter (0.001 %), however not in mucus and sediment. Candidate

division TM7 was found in all biotopes, with the highest rel-
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Figure 7. Zoom-in of microbial OTU composition of overlaying

water (w_400 m and w_5 and 10 mab). Roman numeral I is 2012

and II is 2013.

ative amounts in skeleton (0.115 %) and mucus (0.071 %).

With high densities of microorganisms, these small relative

percentages of Mycoplasma and TM7 may still translate into

significant numbers. Moreover, the percentages we report for

TM7 may be severe underestimations because the primers

we used have a low coverage for candidate divisions WS6,

TM7 and OP11 (Klindworth et al., 2013). In our samples

of freshly collected mucus, the genera Alteromonadaceae

BD1-7 clade (22 %) and Acinetobacter (9 %) were highly

represented, and also Endozoicomonas, Polaribacter, Pseu-

domonas, Aquabacterium and Thalassospira stood out in

mucus. Representatives of Acinetobacter have been reported

from cold-water coral (Hansson et al., 2009) and from both

healthy and diseased tropical corals (Koren and Rosenberg,

2008; Luna et al., 2010; Rohwer et al., 2002). Members of

this genus are well known for their resistance to numerous

antibiotics (Devi et al., 2011) and may play a role in the de-

fensive tactics of corals (Shnit-Orland and Kushmaro, 2009).

Pseudomonas strains are also known for their antibacterial

activity (Ye and Karn, 2015) and this genus has been found

before in L. pertusa (Emblem et al., 2012) and in soft corals

(Salasia and Lämmler, 2008).

Endozoicomonas contains aerobic and halophilic mem-

bers reported to be associated with corals (Alsheikh-Hussain,

2011; Bayer et al., 2013; Hansson et al., 2009; Kellogg et

al., 2009; Pike et al., 2013; Yang et al., 2010) and other ma-

rine invertebrates. (Kurahashi and Yokota, 2007; Nishijima

et al., 2013). Recent results of Ainsworth et al. (2015) in-

dicate that Endozoicimonaceae are likely localized to either

the outer coral surface mucus layer or the coral skeleton, as

they were found exclusively in the whole organism micro-

biome and not in isolated coral tissues. Our results confirm

that both the mucus (1.5 %) and uneroded (recently deceased

coral) skeleton (0.9 %) are habitats for Endozoicomonas. The

Endozoicomonas found in near-bottom water (0.2 %) is prob-

ably also related to the presence of mucus. L. pertusa is able

Transform: Square root

Resemblance: S17 Bray Curtis similarity
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Figure 8. Zoom of microbial OTU composition of coral skeleton

(eroded and uneroded). Roman capital I= 2012, II= 2013.

to produce large amounts of mucus that partly dissolve in the

water and stimulated oxygen consumption and microbial ac-

tivity in near-bottom water up to 10 times that of in overlay-

ing water (Wild et al., 2008). In this sense Endozoicomonas

may be an indicator for reef or framework water: the genus

was not found in sediment, nor in overlaying water at 5 and

10 mab.

Different microbial communities were associated with

uneroded skeleton compared to eroded skeleton. The micro-

bial community apparently undergoes a major shift upon the

death of the coral host, and continues to change as the skele-

ton degrades over time. This is congruent with reports on

microbial succession in shallow-water tropical scleractinians

that compared live tissue to recently denuded coral skeleton

(Le Campion-Alsumard et al., 1995). Schöttner et al. (2009)

identified distinct microbial communities on different areas

along a single branch of L. pertusa, pointing to a cold-water

coral framework forming a highly heterogeneous environ-

ment.

The variations between the different biotopes and within

the biotopes that were sampled during this study empha-

size that increasing understanding in the role of microbes

in cold-water coral ecosystems requires both improved taxo-

nomic resolution and actual knowledge of local biotopes, hy-

drography and chemical oceanography. Although our study

of this single carbonate mound is among few that integrate

information on hydrography with microbiology, it has for

practical and logistic reasons by no means been exhaustive,

and numerous pathways of future research are still open.

These include further exploration of the diversity of micro-

bial communities associated with living coral tissue, and the

potential reliance of cold-water corals on their microbial as-
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sociates for chemically produced energy (Ainsworth et al.,

2010; Dinsdale and Rohwer, 2011; Kellogg et al., 2009; Ro-

hwer and Kelley, 2004). Also, interactions with chemical

oceanography (e.g. nutrients, oxygen gradients) need to be

explored similarly as with specific epifaunal organisms, es-

pecially sponges. Furthermore, comparisons on a somewhat

larger scale between the prominent Haas Mound and nearby

mounds of smaller dimensions may shed light on the specific

roles of microbes in mound development.

The Supplement related to this article is available online

at doi:10.5194/bg-12-4483-2015-supplement.
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