
Available online at www.sciencedirect.com
www.elsevier.com/locate/gca

ScienceDirect

Geochimica et Cosmochimica Acta 182 (2016) 40–54
Mirabilite solubility in equilibrium sea ice brines

Benjamin Miles Butler a,⇑, Stathys Papadimitriou a, Anna Santoro b,c,
Hilary Kennedy a

aSchool of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
bSchool of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, UK

c Institute for Reference Materials and Measurements, European Commission, Retieseweg 111, 2440 Geel, Belgium

Received 8 January 2016; accepted in revised form 6 March 2016; available online 11 March 2016
Abstract

The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine.
Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in
a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition
result in supersaturation of the brine with respect to mirabilite (Na2SO4�10H2O) at temperatures below �6.38 �C, which con-
sequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived
brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and �20.6 �C,
and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below �6.38 �C mirabilite
displays particularly large changes in solubility as the temperature decreases, and by �20.6 �C its precipitation results in
12.90% and 91.97% reductions in the total dissolved Na+ and SO4

2� concentrations respectively, compared to that of conser-
vative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the
measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the
sympagic organisms that inhabit the sea ice system. At temperatures above �6.38 �C, mirabilite again displays large changes
in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excel-
lent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder
temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic
sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and
illustrate the spatial and temporal evolution of mirabilite within sea ice as it grows throughout an Arctic winter, reaching max-
imum concentrations of 2.3 g kg�1.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
1. INTRODUCTION

Sea ice is a porous medium comprised of a pure ice
framework dotted by gas pockets and permeated by chan-
nels of concentrated seawater-derived brine (Light et al.,
2003; Golden et al., 2007). The lower the temperature of
sea ice, the more concentrated the brine becomes as
more pure water freezes to maintain thermal equilibrium.
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Initially the ionic composition of the brine is conservative,
but begins to deviate from conservative behaviour upon
sufficient reduction in temperature when the brine becomes
supersaturated with respect to the hydrated polymorphs of
CaCO3, Na2SO4, CaSO4 and NaCl (Gitterman, 1937;
Nelson and Thompson, 1954; Marion et al., 1999). The pre-
cipitation of minerals in this setting is unusual in that,
rather than sinking to the ocean floor, they become encap-
sulated in the pores of the ice (Light et al., 2003) and are
therefore retained close to the ice–atmosphere interface.
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Their presence in the ice affects its structural and optical
properties (Assur, 1960; Maykut and Light, 1995; Light
et al., 2003, 2009) due to their size distribution and regula-
tory effect on brine volume. Furthermore, mineral precipi-
tation compromises the concept of practical salinity that
is reliant upon constant ionic ratios as in oceanic water,
whilst also altering the osmotic conditions of the brine
and creating further physiological challenges for sympagic
micro-organisms (Thomas and Dieckmann, 2002;
Schallenberg et al., 2003).

There is a temperature-dependent sequence of minerals
that precipitate in sea ice, with each mineral having a speci-
fic temperature for the onset of its precipitation (Table 1).
Several pathways have been proposed as paradigms of this
process (Gitterman, 1937; Nelson and Thompson, 1954;
Marion et al., 1999), each with subtle differences in the
onset-temperature and composition of the mineral assem-
blage. This study hereafter will focus on mirabilite
(Na2SO4�10H2O), which is particularly soluble in aqueous
solutions above 0 �C (Vavouraki and Koutsoukos, 2012).
The decreased temperature and physical concentration of
seawater by freezing in sea ice environments creates paired
changes to the equilibrium temperature and salinity that
can be described empirically (Assur, 1960). Estimates for
the onset of mirabilite precipitation during this process
range from �6.3 to �8.2 �C (Gitterman, 1937; Nelson
and Thompson, 1954; Marion et al., 1999). Average winter
temperatures in polar regions are consistently below this
range (Eicken, 1992a), therefore mirabilite precipitation
would be expected across large areas of sea ice that can
cover up to 13% of the Earth’s surface area (Turner, 1994).

Mirabilite crystals in sea ice have never been identified in
the field, but laboratory studies have hinted at its presence
(Gitterman, 1937; Nelson and Thompson, 1954; Light
et al., 2003; Butler and Kennedy, 2015). The dimensions
and distribution of mirabilite crystals within the ice are con-
strained by the morphology of the host brine inclusions.
Qualitative observation of mirabilite crystals in sea ice by
microphotography yielded mirabilite crystals of 1–140 lm
in diameter, which at �15 �C were present in densities of
�270 crystals per mm3 (Roedder, 1984; Light et al.,
2003). Mirabilite is understood to occupy only a fraction
of the volume of an individual brine inclusion (3% at
�15 �C), and has been observed to sink towards the bottom
Table 1
The minerals predicted to precipitate in frozen seawater, and the temp
tabulated minerals, ikaite (CaCO3�6H2O) has been shown to precipitate

Mineral FREZCHEMa

Mirabilite �6.3
Gypsum �22.2
Hydrohalite �22.9
Sylvite �34.0
MgCl2 � 12H2O �36.2*

Antarcticite N/A

a Marion et al. (1999).
b Gitterman (1937).
c Nelson and Thompson (1954).

* Eutectic temperature.
(Light et al., 2003). More recently, the first quantitative
identification of mirabilite in frozen seawater-derived brines
was confirmed by X-ray diffraction (Butler and Kennedy,
2015). Within the setting of seasonally isolated coastal lake
basins in the Canadian Arctic, the winter sea ice cover and
associated mirabilite precipitation has resulted in remark-
ably large and stable accumulations of sedimentary mirabil-
ite (Grasby et al., 2013), highlighting how mirabilite
geochemistry in sea ice can affect the surrounding
environment.

Despite the likely occurrence of mirabilite with the sea
ice system, the dynamics of the mineral in sea ice as a func-
tion of temperature have never been accurately investi-
gated. The nature of the sea ice environment creates
practical difficulties in assessing mirabilite dynamics, partic-
ularly with respect to the size distribution of the brine inclu-
sions and individual mirabilite crystals. However, by
idealising the system to an equilibrium environment, it is
possible to accurately model the conditions of sea ice brine
pockets at equilibrium (with respect to temperature and
ionic composition) on a larger, laboratory scale. Using this
approach we investigated the solubility of mirabilite
between 0.2 and �20.6 �C at 1 atm to elucidate its dynamics
in an equilibrium sea ice system with changing temperature.
By implementing our solubility measurements, along with
FREZCHEM model outputs, into the temperature and
salinity profiles described by a 1D model of first-year sea
ice, we are able to examine the spatial and temporal distri-
bution of mirabilite in the ice-pack throughout an Arctic
winter and hence produce new estimates for its presence
within the sea ice system.

2. MATERIALS AND METHODS

2.1. Preparation of synthetic mirabilite

Mirabilite was prepared using a modification of the
method from (Vavouraki and Koutsoukos, 2012). Anhy-
drous Na2SO4 (150 g, Sigma) was added to deionised water
(500 mL) and warmed to 40 �C to dissolve the salt. The
temperature was subsequently decreased to 18 �C, which
resulted in supersaturation with respect to mirabilite, and
precipitation was initiated via the insertion of a thin steel
wire into the solution.
erature (�C) at which their precipitation initiates. Further to the
in degassed brines below �2 �C (Papadimitriou et al., 2013).

Gittermanb Ringer–Nelson–Thompsonc

�7.3 �8.2
� �12 to �15 N/A
�22.9 �22.9
�33.0 �36.0
�36.2* �36.0
N/A �53.8*
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Mirabilite dehydrates to thenardite (Na2SO4) above 4 �C
once exposed to the air (Oswald et al., 2008), therefore all
equipment and reagents were stored in the freezer at
�20 �C for at least 2 h prior to extraction of mirabilite by
vacuum filtration. Collection of the mineral (through
10 lm mesh) was carried out under gentle vacuum filtration
and dried with cold acetone. Once filtered, the mirabilite
was stored in screw capped jars at �20 �C.

2.1.1. Synchrotron X-ray powder diffraction

The purity of mirabilite seed, and the recovered seed/
precipitate from the incubations was characterised using
synchrotron X-ray powder diffraction (XRPD) on Beam-
line I11 at Diamond Light Source (Harwell Science and
Innovation Campus, Oxfordshire, UK). Samples were anal-
ysed at �30 �C by use of a cryostream in order to prevent
dehydration to thenardite. Patterns were obtained over
20 min scans using the multi-analysing-crystal detectors.
All data were processed on TOPAS v5 software using the
Fundamental Parameters Analysis method to obtain infor-
mation from Le Bail and Rietveld refinements. Published
cell parameters were used as an initial starting point for
the refinement and were allowed to refine (Brand et al.,
2008). Quantitative Rietveld refinements determined that
all batches of mirabilite used for the seeding of the incuba-
tions were >98.7% pure, and recovered seed mirabilite had
an average purity of 98.3 ± 1.13%. Deviation from 100%
purity of mirabilite is due to the presence of relatively small
amounts of thenardite that likely formed during sample
extraction and preparation (Grasby et al., 2013;
Vavouraki and Koutsoukos, 2012).

2.2. Seawater brines

Synthetic brines were used throughout the temperature
range studied. To confirm the reliability of the mirabilite–
brine equilibrium determined in synthetic brines relative
to brines derived from natural seawater, we conducted par-
allel experiments with synthetic and natural brines between
0.2 and �5.0 �C. The initial composition of all brines was
conservative with respect to the major ions relative to the
Standard Seawater composition from Millero et al. (2008)
(Table 2).
Table 2
Salinity normalised (SA ¼ 35:165 g kg�1

solution) analysis of the total concent
conservative composition of the initial brines compared to Standard Seawa
based on repeat measurements of local seawater.

Salinity normalised (SA ¼
Standard Seawater Natural brine (n ¼ 6)

m

Cl� 545.87 548.42 ± 1.49
SO2�

4 28.24 28.79 ± 0.50
Na+ 468.97 472.27 ± 4.40
Mg2+ 52.82 52.26 ± 0.31
Ca2+ 10.28 10.28 ± 0.02
K+ 10.21 10.24 ± 0.11
2.2.1. Preparation of natural seawater-derived brines

Seawater, collected from the Menai Strait (53.1806�N,
4.2333�W), was sterilised with UV light and passed through
a 0.2 lm filter before being subjected to freezing at �20 �C.
Two times per day the ice was sieved from the brine and the
brine placed back into the freezer. Although the solutions
were cooled to �20 �C, this approach produced a range
of solutions of varying salinity, characteristic of sea ice bri-
nes down to �5.0 �C (measured practical salinities of up to
86.3). Confirmation that no mineral precipitation (Table 1)
had occurred during brine preparation was obtained
through major ion analysis. Thus the natural seawater
derived brines displayed conservative concentrations with
respect to the 6 major ions in Table 2. To produce brines
of a desired salinity, dilution with MilliQ water was some-
times employed.

2.2.2. Preparation of synthetic seawater brines

The conservative composition of the major ions in sea-
water was replicated synthetically (Table 2) by dissolving
5 analytical grade salts (NaCl, Na2SO4, KCl (Sigma), and
MgCl2�6H2O and CaCl2�2H2O (VWR)) in deionised water
following the protocol given by Kester et al. (1967).

All brines were produced gravimetrically to total weights
exceeding 1 kg tominimise error. A careful sequence of addi-
tions was carried out to prevent the reaction of Na2SO4 with
CaCl2, which can occur at room temperature in concentrated
seawater brines to produce gypsum (Marion et al., 1999). At
room temperature, the required amount of deionised water
was weighed, followed by the addition of theMgCl2 solution

(� 1 mol kg�1
solution) and the NaCl, Na2SO4 and KCl pow-

dered salts. The solution was stirred until all salts dissolved
and then placed in a chiller at its estimated freezing point
according to the freezing point temperature for seawater
given by Millero and Leung (1976),

T fr ¼�0:0575SAþ1:710523�10�3S1:5
A �2:154996�10�4S2

A

ð1Þ
where T fr is the freezing point (�C) and SA is the absolute

salinity (g kg�1
solution). After 4 h, the required weight of CaCl2

solution (� 1 mol kg�1
solution, kept at 4 �C) was added to the

cooled brine and mixed.
ration of major ions in natural and synthetic brines demonstrating
ter (Millero et al., 2008), and the accuracy and precision of analyses

35:165 g kg�1
solution)

Synthetic brine (n ¼ 17) Local seawater

mol kg�1
solution

548.77 ± 5.98 543.84 ± 1.53 ðn ¼ 10Þ
28.38 ± 0.59 28.14 ± 0.14 ðn ¼ 21Þ
470.09 ± 9.66 468.51 ± 6.49 ðn ¼ 24Þ
52.55 ± 1.10 52.49 ± 0.86 ðn ¼ 70Þ
10.36 ± 0.18 10.24 ± 0.27 ðn ¼ 70Þ
10.28 ± 0.10 10.11 ± 0.05 ðn ¼ 9Þ
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2.3. Closed bottle incubations

The closed-system incubation technique used here was
based on that used to measure the solubility of calcium car-
bonate polymorphs in seawater (Mucci, 1983) and
seawater-derived brines (Papadimitriou et al., 2013). Natu-
ral and synthetic brines seeded with synthetic mirabilite
were incubated in screw-capped (Teflon-lined) borosilicate
(25–500 mL, DURAN) media bottles at temperatures from
0.2 to �20.6 �C and mirabilite–brine equilibrium was
attained from both undersaturation (mirabilite dissolution)
and from supersaturation (heterogeneous mirabilite precip-
itation). All bottles were incubated in triplicate fully sub-
mersed in constant temperature circulating chillers and
shaken by hand daily to facilitate exposure of the mineral
seed to the bulk solution. The incubation temperature
was controlled by Grant RC 1400G recirculating baths
for temperatures above �5 �C, and Grant TX120/TX150
circulators twinned with Grant R2 refrigeration units for
temperatures below �5 �C, with ethylene glycol as the recir-
culating liquid.

Due to the large temperature range studied, two differ-
ent approaches were employed for the incubations. First,
for experiments between 0.2 and �6.0 �C, conservative sea-
water brines were incubated at their freezing point accord-
ing to Eq. (1).

For all incubations below �6.0 �C, use of Eq. (1) over-
estimates the freezing point by between 0.4 and 2.1 �C
(results on this aspect to be presented separately) due to
mirabilite precipitation and the associated removal of

Na+, SO2�
4 and water of hydration from the brine. There-

fore to ensure that the brines were incubated at their freez-
ing points and hence accurately reflected equilibrium sea ice
brines, the brines were cooled to at least 2 �C colder than
the freezing point predicted from Eq. (1), resulting in ice
formation and mirabilite precipitation. These brines were
incubated with both the precipitates of ice and mirabilite
retained in the incubation bottle.

2.4. Sampling and analysis

2.4.1. Salinity and temperature

The salinity of all brines (before and after incubation)
was measured as conductivity-derived practical salinity
(SP ) with a portable conductivity meter (WTW Cond
3110) with a WTW Tetracon 325 probe at laboratory tem-
perature (�20 �C). For salinities exceeding 70, the solutions
were diluted gravimetrically with distilled water in order to
fit within the dynamic range of the conductivity meter.

Chiller temperatures were monitored at 30 min intervals
using data loggers (Tinytag aquatic 2 TG4100), and once
per day manually using a type K temperature probe on a
CoMARK 9001 thermometer.

2.4.2. Sampling

Samples were taken from the incubated bottles when
required and were transferred to 25 mL screw capped poly-
ethylene bottles through disposable syringe filters (25 mm
Whatman GD/X with a 0.2 lm pore size). The samples
were immediately diluted gravimetrically to a target salinity
of �35 with deionised water to eliminate the risk of precip-
itation during refrigerated storage. The major ion composition
of the samples was determined within 4 weeks from sampling.

2.4.3. Brine composition analysis

The Ca2+ and Mg2+ concentrations were determined by
a potentiometric titration as described by Papadimitriou

et al. (2013). The SO2�
4 concentration was determined by

precipitation as BaSO4 in EDTA followed by gravimetric
titration with MgCl2 (Howarth, 1978). The Cl� concentra-
tion was determined by gravimetric Mohr titration with
0.3 M AgNO3 standardised against recrystallised NaCl.
The Na+ and K+ concentrations were determined by ion
chromatography on a Dionex Ion Exchange Chro-
matograph ICS 2100. All methods quantified total concen-
trations, i.e., the combined concentrations of paired and
unpaired ions (Pytkowicz and Hawley, 1974; He and
Morse, 1993). All reference to measured concentrations
hence represents the total ion concentration, symbolised
by ½X�T, where X ¼ ion. Measurement reproducibility of
all constituents was tested using local seawater

(SA ¼ 33:094 g kg�1
solution) as an internal standard relative to

Standard Seawater (Millero et al., 2008) (Table 2).

2.5. Determination of equilibrium

The solubility of mirabilite is quantified at solid–solu-
tion equilibrium. It was necessary to determine the time
required for attainment of solid–solution equilibrium at
the sub-zero temperatures of this work because reactions
can occur at a slower rate than at higher temperatures
due to Arrhenius kinetics (Kubicki, 2008). To monitor mir-

abilite–brine equilibrium as the change in total SO2�
4 con-

centration with time, a separate bottle was incubated at
each temperature along with the triplicate bottles used for

the solubility determinations. When the change in ½SO2�
4 �T

determined in brine from the time series bottle was within
the analytical error over 1 week, solid–solution equilibrium
was considered attained, the incubation was stopped, and
the major ion composition of the brine in the triplicate bot-
tles was determined to provide triplicate measurements of
mirabilite solubility.

Equilibrium between the mirabilite seed and brine was
attained via dissolution at temperatures P�6.0 �C and pre-
cipitation at temperatures6�6.8 �C.Between 0.2 and�6.0 �C
each experiment equilibrated for an average of 53 days and
equilibrium took up to 29 days to be established (Fig. 1, top).
Between �6.8 and �20.6 �C the average experiment time was
43 days, and equilibrium was attained at a faster rate of
<21 days (Fig. 1, bottom). The results from the time series
measurements cannot provide kinetic information because
the experimental protocol did not include precisely con-
trolled stirring rates, seed mass or consistent sampling
points.
2.6. Stoichiometric mirabilite solubility

The solubility of mirabilite was determined as the total
concentration-based stoichiometric solubility product at
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Fig. 1. The change in ½SO2�
4 �T with time during the incubation of equilibrium sea ice brines and mirabilite seed. Top plot displays dissolution

experiments (synthetic) between 0.2 and �6.0 �C. Bottom plot displays precipitation experiments between �6.8 and �20.6 �C. Connecting
lines are used for illustration only. The final time point represents the solutions used to determine equilibrium concentrations of total Na+ and
SO2�

4 . Natural and synthetic brines between 0.2 and �5.0 �C were incubated in tandem and therefore subjected to the same incubation time.
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mirabilite–solution equilibrium, K�
sp;mirabilite ¼ ½Naþ�2T;eq

½SO2�
4 �T;eq (in mol3 kg�3

solution), where the subscript ‘T,eq’

denotes total ion concentration at equilibrium. Use of total
ion concentrations was employed because it is most com-
monly the instantaneous measurable property of natural
water composition in geochemical studies. K�

sp;mirabilite was

used to determine the saturation state (Berner, 1980), of
the initial solution with respect to mirabilite, defined as

Xmirabilite ¼ ICP
K�
sp;mirabilite

, where ICP (ion concentration product)

represents the product of the initial ½Naþ�2T and ½SO2�
4 �T.
For all solutions below �6.0 �C the ICP was derived from
conservative (unreacted) total ion concentrations estimated
as a linear function of the conservative salinity SA,
itself derived from Eq. (1). The solution is undersaturated
when X < 1 and in a metastable supersaturated state when
X > 1, with solid–solution equilibrium occurring when
X ¼ 1.

2.7. FREZCHEM modelling

The FREZCHEM code is a thermodynamic model fre-
quently used to investigate geochemical reactions in the
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cryosphere and is based on the Pitzer formalism of the
specific ion interaction model of electrolyte theory for con-
centrated electrolyte solutions (Marion and Grant, 1994;
Marion and Kargel, 2008). Here, it was used as a tool to
compare our directly measured K�

sp;mirabilite with that calcu-

lated from its thermodynamic database. To this end, we
use the relationship between the total concentration-based
stoichiometric solubility product and the thermodynamic
solubility product (Ksp;mirabilite), i.e., the solubility in the
standard state of infinite dilution:

Ksp;mirabilite ¼ a2Naþ aSO2�
4

a10H2O
ð2Þ

¼ m2
T;Naþ c2T;Naþ mT;SO2�

4
cT;SO2�

4
a10H2O

ð3Þ

¼ K�
sp;mirabilite

c2
T;Naþ cT;SO2�

4

h3
a10H2O

ð4Þ

where a = ion or water activity, cT = total ion activity coef-

ficient, mT = total ion molality (mol kg�1
H2O

) and

h ¼ 1� 0:001SA=ðg kg�1
solution) = unit conversion factor from

molality to mol kg�1
solution using absolute salinity (Mucci,

1983).
In order to compute K�

sp;mirabilite from Eqs. (2)–(4),

knowledge of Ksp;mirabilite; cT;Naþ ; cT;SO2�
4

and aH2O is required.

Activity coefficients cannot be measured directly, and along
with the thermodynamic solubility product of mirabilite
and activity of water, were extracted from the FREZ-
CHEM code output of the freezing seawater simulation
from 0.2 to �20.6 �C at 1 atm total pressure and (fixed)
pCO2 of 400 latm. Mirabilite and ice were the only enabled
solid phases in the database of the code to simulate the
brine–ice–mirabilite equilibrium of our experiments as
verified by synchrotron XRPD on the extracted mineral
seed (Section 2.1.1).

When modelling total ion concentrations in complex
electrolyte solutions, both paired and unpaired species must
be accounted for (Pytkowicz and Kester, 1969; Pytkowicz
and Hawley, 1974). Of the two models of electrolyte theory,
the specific ion interaction model and the ion association
model (Pytkowicz and Kester, 1969), the Pitzer formalism
used in the FREZCHEM code is a product of the former
(Pitzer, 1973; Pitzer and Mayorga, 1973; Glassley, 2001).
The FREZCHEM code computes solution composition
and solid–solution equilibria, including the ice–water equi-
librium in the freezing mode, by computing single ion activ-
ity coefficients based on the parameterisation of all possible
ionic interactions as binary and ternary Pitzer coefficients,
which are formulated as functions of molality and ionic
strength (Marion and Farren, 1999). Thus, single ion activ-
ity coefficients in the FREZCHEM output are equivalent to
the total ion activity coefficient of the ion association
model. The FREZCHEM code does not predict by default
chemical speciation in solution as the ion association model
does. Occasionally, it requires the explicit addition of ion
pairs from the ion association model when their association
constants exceed a critical value (He and Morse, 1993). In
these instances, the single ion activity coefficient of the
FREZCHEM code is that of the unpaired ion, which must
be combined with this selective chemical speciation of the
ion association model to derive the total ion activity
coefficient, borrowing from the ion association model and
the equivalence between free (unpaired) and total ion activity,

a ¼ cfree mfree ¼ cT mT; ð5Þ
with a; c and m as before (Pytkowicz and Kester, 1969).

No ion pairs are included explicitly in the FREZCHEM
code for sodium, and so, the FREZCHEM output of our
simulated brine composition provides the equivalent of
the total molality and total activity coefficient of this ion.

Also, no ion pairs are included for SO2�
4 , but the code uses

the SO2�
4 –HSO�

4 equilibrium so both species must be con-
sidered. However, the HSO�

4 concentrations predicted by

FREZCHEM ranged from 10�6 to 10�7 mmol kg�1
solution,

which is 6–7 orders of magnitude lower than the SO2�
4 con-

centrations in this study and their analytical reproducibility

(0:59 mmol kg�1
solution). Thus, neglecting HSO�

4 for the pur-
pose of this study was inconsequential, and so, in our calcu-

lations, the unpaired SO2�
4 concentration and activity

coefficient in the FREZCHEM output can be considered
equivalent to the total values for this ion.

The FREZCHEM code was also run for the scenario of
Standard Seawater freezing to �36.2 �C. Here, the FREZ-
CHEM computation employed equilibrium crystallisation
similar to that predicted by the Gitterman Pathway
(Table 1), whereby the interaction of mirabilite with hydro-
halite through changes in brine composition results in mir-
abilite dissolution below �22.9 �C (Gitterman, 1937;
Marion et al., 1999). This process can result in gypsum pre-

cipitation due to the liberation of dissolved SO2�
4 (Marion

et al., 1999), but such interaction does not occur in the
Ringer–Nelson–Thompson Pathway (Table 1) because their
experiments below �23.25 �C used a sequential freezing
process that removed mirabilite from the brine prior to
the onset of hydrohalite precipitation, hence encouraging
fractional crystallisation. Out of the two available para-
digms, an equilibrium crystallisation pathway was chosen
based on recent observations of mirabilite–hydrohalite
interaction in frozen seawater brines by Butler and
Kennedy (2015). The weights of mirabilite precipitate esti-
mated by FREZCHEM at 0.1 �C temperature steps were
extracted from the code output and incorporated into a
1D model of first-year sea ice to evaluate the spatial and
temporal distribution of mirabilite in this complex system.

Validity of our model runs in comparison to published
outputs was checked by freezing Standard Seawater

(SA ¼ 35:165 g kg�1
solution, Table 2) to �10 �C, with all solid

phases enabled, yielding cNaþ ¼ 0:5693; cSO2�
4

¼ 0:0272

and aH2O ¼ 0:90761, which are almost identical to the
values given by Marion et al. (2010) of
cNaþ ¼ 0:5698; cSO2�

4
¼ 0:0272 and aH2O ¼ 0:90762.

2.8. First-year sea ice modelling

Growth of snow-free, first-year sea ice was modelled
using a surface energy balance equation (Maykut, 1978;
Cox and Weeks, 1988) with input variables of temperature,
short-wave incoming radiation, longwave incoming radia-
tion and humidity for the Arctic Basin taken from
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Maykut (1978). For a given ice thickness, the surface tem-
perature T 0 is the only unknown required to set the energy
balance to 0. T 0 was solved using a solver routine macro in
Microsoft Excel to minimise the energy balance by changing
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Fig. 2. Measured pK�
sp;mirabilite in equilibrium sea ice brines plotted alongsid

marks the point of which the solubility product begins to become affec
freezing.

Table 3
The practical salinity (SP ) of the initial and incubated brines, tempera
incubations at equilibrium, and the resulting measured and modelled pK

Exp. # Reaction SP T ½N
Initial Final �C

N-0 D 34.9 47.8 ± 0.1 0.2 83
S-0 D 35.1 47.8 ± 0.1 0.2 83
N-1 D 35.1 46.4 ± 0.2 �1.1 7
S-1 D 35.1 47.0 ± 0.0 �1.1 80
N-2 D 35.9 46.1 ± 0.1 �1.8 76
S-2 D 36.2 45.5 ± 0.4 �1.8 76
N-3 D 53.0 59.3 ± 0.2 �2.9 89
S-3 D 53.0 59.4 ± 0.1 �2.9 89
N-4 D 70.0 73.8 ± 0.5 �3.9 104
S-4 D 70.2 73.9 ± 0.1 �3.9 104
N-5 D 84.8 86.3 ± 0.0 �5.0 119
S-5 D 84.8 86.0 ± 0.3 �5.0 118
S-6 D 92.9 100.5 ± 0.3 �6.0 134
S-7 P 92.9 109.5 ± 0.1 �6.8 149
S-8 P 124.0 122.0 ± 0.0 �7.9 162
S-9 P 110.8 134.3 ± 0.2 �8.9 176
S-10 P 124.0 144.4 ± 0.0 �10.1 188
S-11 P 136.1 154.3 ± 0.1 �11.1 197
S-12 P 146.8 163.4 ± 0.1 �11.8 210
S-13 P 158.0 173.1 ± 0.1 �12.8 220
S-14 P 169.1 180.4 ± 0.3 �14.3 232
S-15 P 179.5 188.5 ± 0.1 �15.1 242
S-16 P 188.0 196.8 ± 0.2 �15.9 251
S-18 P 197.6 210.0 ± 0.1 �17.5 270
S-21 P 225.9 231.3 ± 0.3 �20.6 288
T 0. Ice growth was initiated on the 1st October and the
model calculated the time taken for the ice pack to grow
incrementally in 0.5 cm layers using Stefan’s equation (Cox
and Weeks, 1988; Leppäranta, 1993). The temperature
-21-20-19-18-17-16-15-14-13-12-110

rature (°C)

Synthetic brine
Natural brine
Fitted
FREZCHEM

e output from the FREZCHEMmodel. The vertical line at �1.8 �C
ted by coupled changes in salinity and temperature as a result of

ture of incubation, ½Naþ�T and ½SO2�
4 �T from each of the bottle

�
sp;mirabilite. D = dissolution, P = precipitation.

aþ�T ½SO2�
4 �T pK�

sp;mirabilite

mmol kg�1
solution Observed FREZCHEM

6 ± 2 231.53 ± 3.54 0.791 ± 0.007 0.791
2 ± 0 229.29 ± 3.54 0.800 ± 0.005 0.789
99 ± 11 212.86 ± 2.68 0.867 ± 0.005 0.886
3 ± 4 210.67 ± 1.11 0.867 ± 0.005 0.883
2 ± 4 187.67 ± 4.54 0.962 ± 0.012 0.952
0 ± 2 186.41 ± 4.25 0.968 ± 0.008 0.955
3 ± 1 154.70 ± 2.53 0.908 ± 0.007 0.905
6 ± 1 156.46 ± 1.31 0.901 ± 0.004 0.912
7 ± 19 122.26 ± 2.97 0.873 ± 0.008 0.868
0 ± 6 124.70 ± 0.48 0.870 ± 0.003 0.868
3 ± 5 104.44 ± 2.55 0.828 ± 0.011 0.841
5 ± 1 103.84 ± 1.30 0.837 ± 0.006 0.847
2 ± 2 87.61 ± 0.90 0.802 ± 0.003 0.815
5 ± 7 73.71 ± 0.37 0.783 ± 0.006 0.803
5 ± 4 65.56 ± 0.15 0.762 ± 0.002 0.784
0 ± 11 57.86 ± 0.44 0.747 ± 0.005 0.772
3 ± 5 51.32 ± 0.67 0.740 ± 0.004 0.763
9 ± 6 45.89 ± 0.36 0.745 ± 0.002 0.760
2 ± 7 41.53 ± 0.53 0.737 ± 0.004 0.759
2 ± 7 36.90 ± 0.17 0.747 ± 0.003 0.761
8 ± 12 31.14 ± 0.33 0.773 ± 0.001 0.768
0 ± 9 28.34 ± 0.41 0.780 ± 0.009 0.773
1 ± 5 25.50 ± 0.40 0.794 ± 0.006 0.779
2 ± 4 20.71 ± 0.42 0.821 ± 0.009 0.796
8 ± 9 16.06 ± 0.16 0.873 ± 0.004 0.835
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profile of the ice was assumed to be linear (Maykut, 1978)
between T 0 at the surface and �1.8 �C at the ice–ocean
interface. The rejection of brine during ice growth was
quantified using the model given in Cox and Weeks
(1988) which has been shown to accurately model observed
profiles of first year sea ice within environmental variability
(Eicken, 1992a) and was recently implemented in a study of
hypersaline coastal basins (Dugan and Lamoureux, 2011).

The temperature and salinity data for the ice pack were
used to estimate the concentration of mirabilite within the
ice after gravity drainage by

MiðT Þ ¼ MðT Þ Si

Ssw
ð6Þ

where MiðT Þ is the mirabilite concentration (g kg�1 sea ice)
at temperature T; MðT Þ is the weight of mirabilite at tem-
perature T that would precipitate from 1 kg of standard

seawater (SA ¼ 35:165 g kg�1
solution) based on mirabilite solu-

bility measurements and FREZCHEM model output; Si

is the bulk salinity of the ice; and Ssw is the absolute salinity

of standard seawater, 35:165 g kg�1
solution.

3. RESULTS

The pK�
sp;mirabilite ¼ �logK�

sp;mirabilite from our experiments

between 0.2 and �20.6 �C can be separated into two tem-
perature regions (Fig. 2 and Table 3). The first region
occurs between 0.2 and �1.8 �C, within which the changes
in mirabilite solubility are purely the result of changing
temperature at constant salinity and stoichiometric ion
ratios (seawater). The second region of pK�

sp;mirabilite is

related to the coupled changes of decreasing temperature
and increasing ionic strength in sea ice at brine-ice thermal
equilibrium between �1.8 and �20 �C. These relationships
were fitted as functions of temperature by non-linear regres-
sions of the form

pK�
sp;mirabiliteðT Þ ¼ Aþ BT þ CT 2 þ DT 3 þ ET 4 ð7Þ

where T is temperature (Kelvin), and coefficients A–E are
given in Table 4. Between 0.2 and �1.8 �C the pK�

sp;mirabilite

increases from 0.80 to 0.96 described by a second order
polynomial of temperature (Table 4, row 1), which repre-
sents a reduction in the solubility of mirabilite with decreas-
ing temperature in seawater. Between �1.8 and �11.8 �C
the pK�

sp;mirabilite decreases from 0.96 to 0.74 before rising

to 0.87 at �20.6 �C. This second region between �1.8 and
�20.6 �C is described by a third order polynomial of tem-
perature (Table 4, row 2).

The pK�
sp;mirabilite between 0.2 and �5.0 �C displays no

detectable difference between use of natural or synthetic bri-
nes as the experimental medium (Fig. 2). This consistency
indicates that mirabilite solubility is unaffected by differ-
ences such as pH, carbonate and borate alkalinity, and
trace metals within the error of the measurements. For this
reason we infer that using synthetic brines for all tempera-
tures below �5 �C was representative of the true mirabilite
solubility in naturally derived seawater brines.

The Xmirabilite displays large changes in equilibrium sea
ice brines between 0.2 and �20.6 �C (Fig. 3). At 0.2 �C
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the experimental solution was strongly undersaturated,
with Xmirabilite ¼ 0:04. By �20.6 �C a conservative seawater
brine would be strongly supersaturated, with
Xmirabilite ¼ 18:13. Between 0.2 and �20.6 �C the change in
Xmirabilite in conservative seawater brines is described by a
third order polynomial that takes the same form as Eq.
(7) (Table 4, row 3). This relationship was used to estimate
the temperature at which Xmirabilite ¼ 1, which equates to
�6.38 ± 0.07 �C.

4. DISCUSSION

4.1. Mirabilite solubility

The changes observed in the pK�
sp;mirabilite (Section 3) can

be better understood by considering the equilibrium con-

centrations of ½Naþ�T and ½SO2�
4 �T separately (Fig. 4). These

ions have different concentrations in standard seawater

(Table 2), with 16.6 times more ½Naþ�T than ½SO2�
4 �T, such

that the precipitation or dissolution of mirabilite has a

greater relative effect on ½SO2�
4 �T than ½Naþ�T in the brine.

Between the onset of mirabilite precipitation (�6.38 �C)
and �20.6 �C, 91.97% of ½SO2�

4 �T is removed from the brine

relative to conservative concentration. In comparison,
within the same temperature range the removal of Na+ is

12.90%. The extent of SO2�
4 removal is greater than the

increase caused by concentration of the brine as ice forms,

therefore a net decrease in ½SO2�
4 �T with decreasing temper-

ature is observed whereas ½Naþ�T continues to increase, but
at a slower rate. Overall, the associated effect on the osmo-
tic conditions in the ice would add to the environmental
stress exhibited on microscopic extremophile species that
inhabit sea ice, such as viruses, bacteria, microalgae, and
protists (Thomas and Dieckmann, 2002; Eicken, 1992b).
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Fig. 3. Xmirabilite in equilibrium sea ice brine
Furthermore we propose that the particularly large changes

in ½SO2�
4 �T could impact upon the pH of seawater brines

measured on the total (pHT) and seawater (pHSWS) proton
scales, where

pHT ¼ � logð½Hþ� þ ½HSO�
4 �Þ ð8Þ

pHSWS ¼ � logð½Hþ� þ ½HSO�
4 � þ ½HF��Þ ð9Þ

The substantial removal of ½SO2�
4 �T resulting from mirabil-

ite precipitation could affect the equilibria of the

HSO�
4 �Hþ þ SO2�

4 reaction, and therefore have implica-
tions for the measurement of pH in such brines. The FREZ-
CHEM model runs of mirabilite precipitation showed a
92.5% reduction in [HSO�

4 ] between �6.8 and �20.6 �C.
In addition to this effect on pH, the non-conservative
changes in the ionic composition of the brine due to mir-
abilite precipitation compromises the concept of practical
salinity, which could have consequences for accurate salin-
ity measurement by solution conductivity in polar settings,
especially during brine exchange with the surface ocean via
convection.

Comparing the observed equilibrium ½Naþ�T and

½SO2�
4 �T with the output of the FREZCHEM model runs

of our bottle incubations (Fig. 4) yields a very strong corre-
lation throughout the temperature range studied. The aver-

age difference between the measured and modelled ½Naþ�T
and ½SO2�

4 �T is �7:80 � 23:20 mmol kg�1
solution and

�1:12 � 2:15 mmol kg�1
solution respectively, close to the

experimental uncertainty of 17 mmol kg�1
solution for ½Naþ�T,

and 0:56 mmol kg�1
solution for ½SO2�

4 �T. The agreement

between measured and modelled equilibrium concentra-

tions of Na+ and SO2�
4 is consequently reflected in the

pK�
sp;mirabilite (Fig. 2). Between 0.2 and �3.9 �C the modelled

and measured solubilities show excellent agreement.
-21-20-19-18-17-16-15-14-13-12-110

erature (°C)

Ω = 1 at -6.38±0.07°C

s between between 0.2 and �20.6 �C.
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Between �3.9 and �14.3 �C the model output sits higher
than our measurements caused by lower modelled concen-

trations of ½Naþ�T and ½SO2�
4 �T (16 and 1:1 mmol kg�1

solution

respectively). The reverse occurs between �14.3 and
�20.6 �C where the modelled pK�

sp;mirabilite sits below our

measurements, and here the difference is dominated by

FREZCHEM overestimating the ½SO2�
4 �T by up to

2:32 mmol kg�1
solution. The comparable values of modelled

and measured pK�
sp;mirabilite (within 0.00–0.04 pK unit), cou-

pled with the excellent agreement with respect to the onset
of mirabilite precipitation occurring at 6.38 �C (FREZ-
CHEM predicts �6.3 �C (Marion et al., 1999)) indicate that
FREZCHEM must adequately compute the total ion
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Fig. 4. The observed equilibrium concentrations of ½Naþ�T (top) and ½S
model and the composition of conservative seawater relative to the freez
activity coefficients, the activity of water, and the
thermodynamic solubility product of mirabilite in cold
aqueous solutions. Our evidence hence demonstrates that
the FREZCHEM model can be a valuable tool in enriching
the study of sodium sulphate minerals in inaccessible
aqueous environments.

The two pathways for seawater freezing that dominate
scientific literature, the Gitterman and Ringer–Nelson–
Thompson (RNT) pathways (Table 1), predict the onset
of mirabilite precipitation to occur in frozen seawater at
�7.3 and �8.2 �C respectively (Gitterman, 1937; Nelson
and Thompson, 1954), considerably different to our mea-
sured temperature at which Xmirabilite ¼ 1. This difference
could be accounted for by the length of equilibration time
-21-20-19-18-17-16-15-14-13-12-1110

erature ( C)

Synthetic brine
Natural brine
Conservative
FREZCHEM

O2�
4 �T (bottom) plotted alongside the output of the FREZCHEM

ing point salinity calculated from Eq. (1).
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that the Gitterman and RNT studies allowed. Some, but
not all, of the Gitterman experiments were equilibrated
for up to 4 weeks, whilst (Nelson and Thompson, 1954)
only allowed for the brines to reach thermal equilibrium.
Our time series experiments (Fig. 1) highlight the impor-
tance of allowing sufficient time for mirabilite to reach equi-
librium in sub-zero temperatures. Further, during our
experiments it was observed that metastable supersaturated
solutions with respect to mirabilite are particularly persis-
tent in the absence of seed. Solutions with Xmirabilite < 3
often required seed crystals to initiate precipitation, while
unseeded supersaturated brines at �7 and �8 �C were
stable for up to 4 months before seeding. This stability is

due to the large unit cell of mirabilite (volume = 1460 �A3

(Levy and Lisensky, 1978)), which, combined with the effect
of activation entropy from the complexity of assembling 40
water molecules in this unit cell means that solutions may
need to become heavily supersaturated with respect to mir-
abilite before precipitation of the mineral occurs homoge-
neously (Genkinger and Putnis, 2007). Whether the walls
of the brine pockets in the sea ice microstructure provide
a suitable site for the nucleation of mirabilite at low super-
saturations close to �6.38 �C remains to be tested but
seems likely given the presence of a surrounding ice matrix,
insoluble impurities, and the biogenic exudates that are
understood to facilitate heterogeneous ice nucleation in
polar environments (Wilson et al., 2015).

The Xmirabilite in equilibrium sea ice brines can be related
to changes within the sea ice system as the temperature
increases or decreases. At temperatures higher than
�6.38 �C when the brine is undersaturated, mirabilite dis-
plays rapid changes in solubility. At �6.0 �C Xmirabilite is
near equilibrium at 0.874. By �1.8 �C, the brine is heavily
undersaturated, with Xmirabilite ¼ 0:064. The current
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Fig. 5. The measured and modelled concentration of mirabilite (g kg�1) th
frozen between �6.3 and �36.2�C.
technique for separating sea ice minerals in field samples
involves careful melting (Dieckmann et al., 2008; Geilfus
et al., 2013), and such large changes in solubility above
�6.38 �C would result in dissolution of mirabilite upon
increasing temperature, which considering the size of indi-
vidual crystals being �1–140 lm in diameter (Roedder,
1984; Light et al., 2003), may occur rapidly. This could
explain why mirabilite, although likely present in sea ice
below �6.38 �C, has never been observed in the field.

In the supersaturated region investigated here between
�6.8 and �20.6 �C, our measurements, supplemented with
FREZCHEM model output, were used to estimate the
amount of mirabilite that would precipitate in a 1 kg parcel

of frozen seawater (SA ¼ 35:165 g kg�1
solution) with varying

temperature (Fig. 5). Results were fitted to a stepwise poly-
nomial function of temperature (K) of the same form as Eq.
(7), with coefficients given in Table 4. The mirabilite con-
centration in the ice increases from 1.62 g kg�1 at �6.8 �C
to 7.50 g kg�1 at �20.6 �C. The increase over this tempera-
ture range begins rapidly until ��11 �C, before beginning

to plateau at colder temperatures as the SO2�
4 pool of the

brine is gradually depleted. Between �22.9 and �36.2 �C,
the dissolution of mirabilite, caused by hydrohalite precip-
itation (Section 2.7), reduces mirabilite concentration in the
frozen seawater by approximately 2.5 g kg�1. To determine
the mirabilite concentration in sea ice while accounting for
the drainage of brine during sea ice formation, a model for
the temperature and salinity distribution of sea ice was
used.

4.2. First year sea ice modelling

The coefficients used to describe mirabilite mass in fro-
zen seawater as a function of temperature (Table 4) have
-37-35-33-31-29-27-25-23

ture (°C)

Measured
FREZCHEM

at precipitates in 1 kg of standard seawater (SA ¼ 35:165 g kg�1
solution)
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been integrated into a 1D model (via Eq. (6)) describing the
temperature and salinity profiles (Fig. 6) of first year sea ice
in the Arctic Basin as it grows over winter months and the
distribution of mirabilite within it (Fig. 7).

The model results illustrate the distribution of mirabilite
in the ice pack as it develops, and reveal the settings in
which the chemical properties of sea ice brines are affected
by its precipitation. Mirabilite would have precipitated in
the modelled ice pack after 23 h once a thickness of 5 cm
was reached. Initially the mirabilite distribution with depth
in the ice displays a near linear decrease with highest con-
centrations at the surface. As ice thickness increases
between 15 and 60 cm, the mirabilite distribution in the
upper part of the ice develops towards an ‘S’ shaped curve,
with mirabilite present in the upper three quarters of the ice
before the temperature becomes too high to reach mirabilite
supersaturation near the ice–ocean interface. After nearly
5 weeks the ice thickness reaches 75 cm, and the tempera-
ture in the upper region of the ice falls below the saturation
point of hydrohalite (�22.9 �C (Marion et al., 1999)). Pre-
cipitation of hydrohalite leads to a large reduction in Na+

concentration in the brine leading to mirabilite undersatu-
ration and dissolution (Marion et al., 1999; Butler and
Kennedy, 2015). The result of this process is that when
0
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Fig. 6. Modelled temperature and salinity profi
the ice temperature drops below �22.9 �C, the distribution
of mirabilite develops a reversed ‘C’ shape towards the sur-
face where mirabilite dissolves and reduces in concentra-
tion. After 20 weeks the ice pack is over 2 m thick, and
mirabilite is present in the upper 183 cm. Mirabilite concen-
trations peak in the top 0.5 cm at �2.3 g kg�1 after 4 weeks
when the ice is 60 cm thick, however, the concentration
continues to increase with depth over the winter. As a
weight percentage of the entire sea ice pack, mirabilite rep-
resents 0.05–0.10%, which equates to average areal mirabil-
ite concentrations of between 69 and 1571 g m�2 (with
varying ice thickness used to calculate ice volume m�2).

Though sea ice is a highly dynamic environment that is
difficult to describe empirically, the idealised snow-free, first
year sea ice model results presented here highlight the pres-
ence of mirabilite throughout the growth of first year sea
ice, and also aids in explaining the lack of mirabilite identi-
fication in field samples. The maximum modelled mirabilite
concentration in bulk sea ice of 2.3 g kg�1 (0.23%) would be
below the detection limit for mirabilite crystals by labora-
tory or synchrotron crystallography. Butler and Kennedy
(2015) were able to detect mirabilite in frozen seawater-
derived brines by synchrotron X-ray powder diffraction,
however the mirabilite concentrations in their samples
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would have been over 10 times greater (concentrated brines
were used with salinities of 100 and 125) than those mod-
elled to exist in bulk sea ice. The near undetectable concen-
tration of mirabilite in bulk sea ice, combined with its small
crystal size and rapid change in solubility upon increasing
temperature, must contribute to the highly elusive nature
of this mineral within the sea ice environment despite the
likelihood of its near ubiquitous distribution. Integration
of mineral solubility data into thermodynamic (Griewank
and Notz, 2013; Turner et al., 2013; Rees Jones and
Worster, 2014) or global sea ice models (Gent et al., 2011;
Hunke et al., 2015) will help in the determination of the
structural and optical properties of the ice, to which the
dynamics of mineral precipitates contribute (Assur, 1960;
Light et al., 2004), therefore creating a more accurate rep-
resentation of the energy balance and climate forcings in
polar regions.

5. CONCLUSIONS

Determination and discussion of mirabilite solubility in
equilibrium sea ice brines has revealed the potential role
that this mineral has within the sea ice system. Mirabilite
solubility displays large changes throughout the polar tem-
perature spectrum from �1.8 to �20.6 �C due to the cou-
pled effects of changing temperature and ionic
composition of the brines trapped within the sea ice
microstructure. Once mirabilite saturation is attained at
�6.38 �C in sea ice, the effect of its precipitation from the
brine with further cooling results in a 91.97% depletion of

brine ½SO2�
4 �T by �20.6 �C. This ½SO2�

4 �T depletion not only

has consequences on the pH system in sea ice brines, but

also when combined with the reduced ½Naþ�T, creates impli-
cations for the measurement of practical salinity whilst
changing the osmotic conditions within the brine compared
to that of conservatively concentrated seawater. By supple-
menting our dataset with model outputs from FREZ-
CHEM and incorporating the results into a 1D empirical
sea ice model, the spatial and temporal evolution of mir-
abilite in snow-free, first year Arctic sea ice has been esti-
mated for the first time. Based on these results, it is
shown that mirabilite could precipitate in the ice as soon
as 1 day after initiation of congelation ice formation.
Mirabilite precipitates in concentrations of up to
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�2.3 g kg�1 of sea ice in the early stages of sea ice forma-
tion, before the ambient temperatures drop below that of
hydrohalite precipitation at �22.9 �C, displaying an ‘S’
shaped depth distribution. At colder environmental condi-
tions later in the winter season, when hydrohalite supersat-
uration is reached in the coldest upper sea ice layers,
mirabilite exhibits a reverse ‘C’ shaped depth distribution
towards the ice surface where mirabilite dissolves by the
hydrohalite-driven [Na+] depletion in the brines in this
region. The rapid changes in mirabilite solubility with
temperature and its relatively low percent weight in bulk
sea ice (<0.10%) are likely reasons for the absence of field
evidence for its occurrence. The results ultimately highlight
the likelihood that mirabilite is a near ubiquitous mineral in
sea ice, while it is demonstrated how solubility data can be
incorporated into sea ice models to facilitate a more
accurate representation of the polar environment.
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