

FAO SPECIES CATALOGUE

VOL. 3. CEPHALOPODS OF THE WORLD

AN ANNOTATED AND ILLUSTRATED CATALOGUE OF SPECIES OF INTEREST TO FISHERIES

FAO SPECIES CATALOGUE

VOL. 3 CEPHALOPODS OF THE WORLD

An Annotated and Illustrated Catalogue of Species of Interest to Fisheries

prepared by

Clyde F.E. Roper Michael J. Sweeney
Department of Invertebrate Zoology
National Museum of Natural History
Smithsonian Institution
Washington, D.C. 20560, USA

and

Cornelia E. Nauen

Fishery Resources and Environment Division
Food and Agriculture Organization of the United Nations
Rome, Italy

Prepared with support from the United Nations Development Programme (UNDP)

UNITED NATIONS DEVELOPMENT PROGRAMME
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

PREPARATION OF THIS DOCUMENT

The present publication, prepared under the UNDP/FAO Project for the Survey and Identification of World-Marine Fish Resources (GLO/82/001), is the third worldwide species catalogue issued within the FAO Fisheries Synopses series.

The catalogue has been based, to a large extent, on previous FAO publications on this subject, in particular the FAO Species Identification Sheets for Fishery Purposes (Fishing Area 37, 31 and 34/47), and on field experience acquired by the first two authors in the course of a two-months long UNDP/FAO mission through the Indo-Pacific area carried out in 1979. Information on habitat, biology and fisheries was mostly gathered from literature by the third author.

The indexes of scientific and common international FAO species names and of local species names were prepared in collaboration with FAO's Fishery Information, Data and Statistics Service.

Illustrations were adapted and redrawn by a wide variety of sources, especially from Okutani (1980).

Illustrators:

P. Lastrico FAO, Rome (principal illustrator); M. Schotte, Washington, D.C.; O. Lidonnici, FAO, Rome (distribution maps).

FAO Family and Species names: French: J.-C. Quéro, Institut Scientifique et
Technique des Pêches Maritimes, La Rochelle, France; Spanish:
A. Guerra and G. Pérez-Gandaras, Instituto de Investigaciones
Pesqueras, Vigo, Spain.

Technical Editors: W. Fischer and C.E. Nauen, Fishery Resources and Environment Division, FAO.

ABSTRACT

This is the third in the FAO series of worldwide annotated and illustrated catalogues of major groups of organisms that enter marine fisheries. The present volume includes 173 cephalopod species of actual or potential fishery interest, belonging to the Nautiloidea (nautiluses), Sepioidea (cuttlefishes), Teuthoidea (squids) and Octopoda (octopuses). It provides a comprehensive and illustrated key to all the 43 cephalopod families, with a glossary of technical terms and measurements. Within each family are given individual accounts of species, which include drawings, scientific and vernacular names, information on habitat, biology and fisheries, and a distribution map; for most families there is also a key to genera. The work is fully indexed and there is ample referente to pertinent literature.

Distribution:

Authors
FAO Fisheries Department
FAO Regional Fisheries Officers
Regional Fisheries Councils
and Commissions
Selector SM

For bibliographic purposes this document should be quoted as follows:

Roper, C.F.E., M.J. Sweeney & C.E. Nauen, FAO 1984 species catalogue. Vol. 3. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO Fish. Synop., (125)Vol. 3:277p.

FOREWORD

This publication is the third in a series of worldwide species catalogues that FAO is producing with financial support from UNDP. The series was initiated in 1980 with the publication of "Shrimps and Prawns of the World", by L.B. Holthuis, and will continue periodically with similar catalogues for other groups of major interest to fisheries.

The present catalogue represents FAO's first attempt toward a worldwide annotated and illustrated inventory of the cephalopod species presently utilized or believed to be of potential interest to mankind. It is aimed primarily at individual workers and institutions concerned with cephalopod fisheries. It is a source of wide-ranging basic information by species relevant to aspects of identification, biology, fisheries, and marketing, as well as representing a coded system of scientific and standardized vernacular names.

The recent development of new cephalopod fisheries, based to a large extent on species that traditionally have not been exploited, poses new problems of species resources identification and management. At the same time, such development results in an increasing amount of new information and data, much of which are unpublished or confined to reports of restricted distribution and hence are difficult to access. Because of this, the present version of this catalogue should be viewed as a working document capable of improvement and expansion as additional information and data are accumulated from our continuing efforts, as well as from the users.

In an effort to alleviate this situation, a computer-based, subject classifier or indexed bibliography of cephalopod literature is being built at the Smithsonian Institution in collaboration with FAO and the US National Marine Fisheries Service.

Furthermore, an international group of cephalopod experts has been established for the purpose of providing information and services to fishery agencies and other organizations and groups interested in cephalopods. The Cephalopod International Advisory Council (CIAC) answers queries concerning systematics, biology, fisheries, etc., sponsors workshops and training courses and serves as a source of information exchange through a newsletter and pamphlets. For further information contact the first author of this catalogue.

As an outgrowth of this catalogue, FAO will consider the development of a computerized species data base on cephalopods to be progressively further expanded as new information becomes available.

In order to strengthen the usefulness of this information service, we strongly encourage users of this catalogue to share in keeping it up-to-date, thus rendering it more useful by providing us with new information to be used in publishing future editions. All suggestions, corrections, and additional information should be sent to the editors or the authors. Problems concerning species identifications should be addressed to the authors. Also, copies of publications of any sort that deal with cephalopod biology and fisheries will be of great value to and much appreciated by the authors.

> Aumin H. Lindquist Director

Fishery Resources and Environment Division Fisheries Department FAO, Rome

CEPHALOPODS OF THE WORLD

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
	1.1 Plan of the Catalogue	2
	1.2 General Remarks on Cephalopods	3
	1.3 Illustrated Glossary of Technical Terms and Measurements	7
	1.4 Key to Orders and Families	15
2.	CHAMBERED NAUTILUSES (Order Nautiloidea)	25
	2.1 Family Nautilidae	25
3.	CUTTLEFISHES (Order Sepioidea)	27
	3.1 Family Sepiidae	27
	3.2 Sepiadariidae	60
	3.3 Family Sepiolidae	61
4.	SQUIDS (Order Teuthoidea)	79
	4.1 Family Loliginidae	80
	4.2 Family Enoploteuthidae	120
	4.3 Family Octopoteuthidae	124
	4.4 Family Onychoteuthidae	125
	4.5 Family Gonatidae	135
	4.6 Family Psychroteuthidae	144
	4.7 Family Lepidoteuthidae	145
	4.8 Family Architeuthidae	147
	4.9 Family Histioteuthidae	148
	4.10 Family Neoteuthidae	152
	4.11 Family Bathyteuthidae	153
	4.12 Family Brachioteuthidae	154
	4.13 Family Ommastrephidae	156
	4.14 Family Thysanoteuthidae	187
	4 15 Family Cranchiidae	188

5.	OCTOPUSES (Order Octopoda)	191
	5.1 Family Octopodidae	191
	5.2 Family Argonautidae	225
6.	CLASSIFICATION OF THE GENERA OF RECENT CEPHALOPODS	227
7.	LIST OF SPECIES BY MAJOR FISHING AREAS	229
8.	BIBLIOGRAPHY	243
9.	INDEX OF SCIENTIFIC AND INTERNATIONAL FAO NAMES	259
10.	INDEX OF LOCAL NAMES	273

1. INTRODUCTION

With the stabilization of world finfish catches in general, and the depletion of a number of fish stocks that used to support industrial-scale fisheries, increasing attention is now being paid, to the so-called unconventional marine resources which include many species of cephalopods. A first general review of the world's cephalopod resources, in particular in regard to their exploitation and future potential, was prepared for FAO by G.L. Voss in 1973. Since the publication of this document, the growing number of cephalopod species entering commercial fisheries as a result of the extenson of fisheries operations to new fishing areas and to deeper waters, calls for a refinement of species identifications and for better compilation of pertinent information by species on distribution, biology and fisheries of these species. Okutani's (1980) well-illustrated book on "Useful and latent cuttlefishes and squids" was of great help to us in our attempt to make the present document as comprehensive as possible.

This catalogue includes: (i) species of cephalopods exploited commercially; (ii) species utilized at the subsistence and artisanal levels, even those which comprise only a minor percentage of the catch; (iii) species considered to have a potential value to fisheries, based on criteria such as edibility, suspected abundance, accessibility, etc. The inclusion of such a wide range of species appears justified in order to give the catalogue the character of a comprehensive inventory of species useful to mankind, regardless of their current commercial status.

The catalogue is based primarily on information available in the literature. Unpublished reports and working documents also have been used as far as possible. This, information was supplemented by field observations made by the authors in several parts of the world. Particularly informative was a two-months FAO/UNDP sponsored field trip of the first two authors through the Indo-West Pacific area which gave us the opportunity to examine fresh material at landing sites, markets and laboratories, as well as to obtain first-hand information about local cephalopod fisheries from regional fisheries workers. Furthermore, valuable information was supplied to us by colleagues knowledgeable about various aspects of cephalopod fisheries.

Sometimes it has proved very difficult to evaluate the reliability of published data. It is quite understandable that field workers far away from good library facilities have difficulties in correctly identifying the species they encounter in the field. Moreover, the discovery of new species, the more correct delimitation of known species, or even the introduction of nomenclatoral changes, may cause confusion and lead to the use of scientific names that are incorrect by modern standards or that apply to more than one species. Although great care was exercised in evaluating the published information used in the catalogue, some misjudgements and incorrect interpretations undoubtedly have occurred. Another difficulty is that in taxonomic literature information on economic importance of species is rather scarce or of a very general nature. Also we may have overlooked important information in relevant fisheries literature that is difficult to locate or available only locally

Readers who are interested in information related to cephalopods resources and biology beyond the scope of this catalogue are referred some of the more recent sources:

- Expert consultation on fisheries for squid and other cephalopods, held in Japan in September 1975 (FAO, 1976).
- The recent workshop on Biology and Resource Potential of Cephalopods, held in Melbourne, Australia, in April 1981 (Roper, Lu & Hochberg (eds), 1983).
- Accounts on the cephalopod stocks in the eastern central Atlantic (Special Working Group on Cephalopod Stocks in CECAF (FAO/UNDP, 1982) and in the Indo-Pacific (Indo-Pacific Fishery Commission, 1982) and advances in the assessment of world cephalopod resources (Caddy, ed., in press).

Acknowledgements

The authors are pleased to acknowledge the contributions of persons who supplied information or read drafts of this catalogue. Without their good efforts this work would have been a mere skeleton. W. Fischer (FAO, Rome) was the initiator of this project and without his very much appreciated support and encouragement this publication would not have been forthcoming. We thank most kindly G.L. Voss (Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida), W.F. Rathjen (National Marine Fisheries Service, Gloucester, MA), and T. Okutani (National Science Museum, Tokyo) for their critical review and helpful corrections from sources unavailable to us and from unpublished data.

Early in 1979 the first two authors travelled for FAO to 11 countries in the eastern Indian Ocean and the western central Pacific (FAO Fishing Areas 57 and 71) to gather information for the Cephalopod Identification Sheets for those areas, and we wish to thank most heartily all the FAO and UNDP personnel, as well as the biologists and administrators from laboratories and universities in each country who so generously and willingly provided specimens, data, logistical support, information and hospitality. Their assistance has been a major contribution to this catalogue.

Of course, a compilation of this nature must rely heavily on already published works. We acknowledge with gratitude T. Okutani, G.L. Voss, W. Adam, S.S. Berry, J. Wormuth, R. Toll and F. Palacio whose monographic and revisionary works have been most helpful to us (see bibliography). Most especially we acknowledge here that many illustrations from the works of these (and other) authors have been redrawn for the purposes of this catalogue.

Cephalopod workers especially will appreciate that for many species either no or very poor illustrations exist in the literature. We acknowledge with special thanks Paolo Lastrico and Marylin Schotte for the excellent job they have done in redrawing and greatly enhancing many illustrations from the literature, and Giulia Sciarappa-Demuro for her invaluable collaboration in typing and skillfully page-composing this highly technical and complex document on a word processor. Special thanks are also due to Ingrid Roper for her technical assistance during the final stages of preparing this catalogue for printing.

1.1 Plan of the Catalogue

This catalogue is arranged systematically by higher classification down to family and generic level, then alphabetically by species. Each major group and family is introduced with general descriptive remarks, illustrations of diagnostic features, highlights on the biology, and relevance to fisheries. The information pertaining to each species is arranged by categories as follows: (1) scientific name, (2) synonymy, (3) FAO species names, (4) diagnostic features with illustrations, (5) geographical distribution with map, (6) habitat and biology, (7) size, (8) interest to fisheries, (9) local species names, (10) literature, and (11) remarks.

- (1) **Scientific name:** Reference is given to the original description of each species so no confusion will arise as to precise identification.
- (2) **Synonymy:** Synonyms and different name combinations are listed (misidentifications and other nomenclatorial problems are discussed under (11) Remarks).
- (3) **FAO** species names: English, French and Spanish names for each species, to be used primarily within FAO, were selected on the basis of the following criteria: (i) each name must apply to one species only, in a worldwide context; (ii) the name must conform to FAO spelling nomenclature; (iii) the name should not lead to confusion with major groups other than cephalopods. Wherever possible, the denominations selected were based on vernacular names (or parts of names) already in existence within the areas where the species is fished. FAO species names are, of course, not intended to replace local species names, but they are considered necessary to overcome the considerable confusion caused by the use of a single name for many different species, or several names for the same species.
- (4) Diagnostic features: Distinctive characters of the species are given as an aid for identification, accompanied by pertinent illustrations. Species identifications should be attempted only after verification of the family through use of the illustrated key to families. However, caution must be exercised in using the specific key characters given here, -and it is strongly suggested that species identifications be verified, whenever possible, through primary literature or by cephalopod experts. Reference to FAO Species Identification Sheets is given wherever relevant.
- (5) **Geographical distribution:** The entire known geographic range of the species, including areas of seasonal occurrence, is given in the text and shown on a small map. In cases where only scattered records of occurrence are available, interrogation marks have been used to indicate areas of suspected or unconfirmed distribution.
- (6) **Habitat and biology:** The known depth range of the species and information on salinity and temperature of its habitat are given where known. Information on biological aspects, such as migrations, spawning seasons and areas, longevity, food, and predators, also is included.
- (7) Size: The known mantle length (or total length in some cases) of both males and females is provided where possible. Total length is measured from the posterior tip of the mantle to the anterior tip of the outstretched tentacles (squids and cuttlefishes) or arms (octopuses), but because of the elasticity of tentacles and arms total length is not a very accurate measurement. Mantle length, the standard measure of size in cephalopods, is measured along the dorsal midline from the posterior tip of the mantle ("tail") to the anterior border of the mantle (squids and cuttlefishes) or to the level of the eyes (octopuses) (see Chapter 1.3). Where both total length and mantle length are given, the respective figures do not necessarily pertain to the same specimens but may have been obtained from different sources. The available information on the size attained by some species often is very meagre, so the maximum size cited here may be well below the actual maximum size.
- (8) Interest to fisheries: This paragraph gives an account of the areas where the species is fished and of the nature of the fishery; its importance is either qualitatively estimated (minar, moderate, major or potential) or actual figures of annual landings are provided. Data on utilization (fresh, dried, cooked, frozen, canned, etc.) also are given where available. Here, too, the quality and quantity of the available information vary considerably with the species.

- (9) Local species names: These are the names used locally for the various species. The present compilation is necessarily incomplete, since only a fraction of the local names used throughout the world is actually published. In many cases, local names were available only for species supporting traditional fisheries. Apart from possible omissions due to limitations of literature available, some of the denominations included may be somewhat artificial (i.e. through transliteration of indigenous words into English). The local species denomination is preceded by the name of the country concerned (in capital letters) and, where necessary, by geographical specifications (in lower case). Whenever possible, the language of the transcribed vernacular name is added in parenthesis. When more than one name is used within a country, the official name, if available, is underlined.
- (10) **Literature:** This includes references to the most important publications relevant to the species, the emphasis being on biology and fisheries. Additional references are included in the bibliography. In the case of a few uncommon species, only systematic papers are available. Of particular importance to the present catalogue were the published works of W. Adam, T. Okutani, and G.L. Voss.
- (11) **Remarks :** Important information concerning the species but not fitting in any of the previous categories is given here. For instance, in some cases the scientific name used in the present catalogue, although nomenclaturally correct, is not the best known. Other nomenclatural problems, such as the use of subspecies, are discussed.

1.2 General Remarks on Cephalopods

The group known as cephalopods (class Cephalopoda) consists of bilaterally symmetrical molluscs with a well developed head that contains a circumoral (surrounding the mouth) crown of mobile appendages that bear suckers and/or hooks (except in Nautilus). The mouth has chitinous beak-like jaws and a chitinous tongue-like radula (band of teeth). The shell is variously modified, reduced, or absent and is enveloped by the mantle; an external shell occurs only in the primitive form Nautilus (restricted to Indo-Pacific). Cephalopods are soft-bodied animals with their primary skeletal features a cranium and, in most forms, a mantle/fin support (cuttlebone or gladius). One pair of ctenidia (gills) is present (two pairs in Nautilus only). The central nervous system is highly developed, especially the well-organized eyes. A funnel or siphon (tube) expells water from the mantle (body) cavity providing propulsion and expelling waste products. Coloration is variable depending on group and habitat; most forms have numerous chromatophores (pigment sacs) and iridocytes (shiny, reflective platelets) in the skin, to accommodate rapid changes in colour and colour patterns that are an integral part of their behaviour.

The size of adults ranges from about 2 cm to 20 m in total length; largest specimens may weigh over 1 ton (average size of commercial species is 20 to 30 cm total length and 0.1 to 1 kg). Locomotion is achieved by drawing water into the mantle cavity followed by its jet-like expulsion through the funnel, and also by crawling along the bottom on the arms (mostly octopods, occasionally sepioids). Fins on the mantle provide stability, steering, and secondary locomotion. The sexes are separate; eggs are heavily yolked and development is direct, without metamorphic stages.

Cephalopods first evolved as a separate entity, the Nautiloids, in the Upper Cambrian period, 450 million years ago. Most species of the subclass Nautiloidea became extinct during the Jurassic, between about 180 and 150 million years ago and are largely replaced today by more recent forms, i.e. cuttlefishes, squids, octopuses and vampire squids, all belonging to the subclass Coleoidea. This subclass arose in the late Paleozoic (Upper Devonian to Carboniferous periods, about 400 to 330 million years ago, but most of its forms became extinct by the end of the Mesozoic, about 150 million years ago, and the only members of the subclass existing today are the forms that developed in the Upper Triassic and Lower Jurassic, which are placed in the four surviving orders. An overview of the subclasses, orders and suborders of cephalopods is given in Fig. 1.

The total number of living species of cephalopods is fewer than 1 000 distributed in 43 families. Cephalopods occur in all marine habitats of the world: benthic, cryptic, or burrowing on coral reefs, grass flats, sand, mud and rocks; epibenthic, pelagic and epipelagic in bays, seas, and the open ocean. The range of depths extends from the surface to over 5 000 m. Abundance of cephalopods varies (depending on group, habitat, and season) from isolated territorial individuals (primarily benthic octopods) through small schools with a few dozen individuals to huge schools of neritic and oceanic species with millions of specimens.

The four groups of cephalopods, squids, cuttlefishes, octopuses, and chambered nautiluses are easily distinguished by external characteristics. The squids have an elongate, torpedo-like body with posterolateral fins, and 8 circumoral arms, not connected at bases with a web, with 2 (occasionally more) rows of stalked suckers bearing chitinous rings (and/or hooks) running the entire length, plus 2 longer tentacles with an organized cluster (tentacular club) of 2 or more rows of suckers (and/or hooks) at the distal end. The cuttlefishes have broad saclike bodies with lateral fins that either are narrow and extend the length of the mantle (Sepiidae) or are short, round and flap-like (Sepiolidae): in either case the posterior lobes of the fins are free (subterminal) and separated by the posterior end of the mantle; 10 circumoral appendages, the longest (4th) pair (= tentacles) retractile into pockets at the ventrolateral sides of head; the 8 remaining arms frequently with 4 rows of stalked suckers with chitinous rings, never hooks (otherwise 2 rows); eyes covered with a transparent membrane and eyelids present; shell thick, chalky, calcareous (cuttlebone of Sepia) or thin, chitinous (Sepiolidae). The octopuses have a short, sac-like body either with no lateral fins or with separate paddle-like fins in some deep-sea forms, and 8 circumoral arms only (no tentacles) with bases connected by a membraneous web and unstalked suckers, without chitinous rings, along the length of the arms. The chambered nautiluses are characterized by an external,

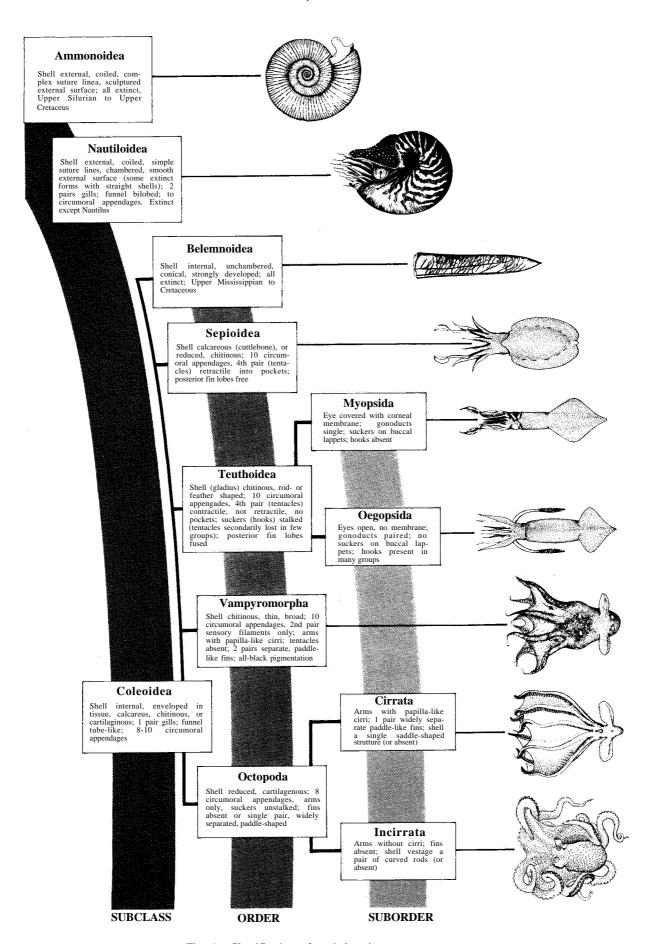


Fig. 1 Classification of cephalopods

smooth, coiled, chambered shell, 63 (males) to 94 (females) circumoral appendages without suckers, a "funnel" consisting of two flaps or lobes simple eyes without lenses, and the absence of an ink sac. More detailed descriptions of these four groups are presented in the systematic section.

All cephalopods are dioecious (separate sexes) and manythough not all, exhibit external sexual dimorphism, either in structural or size differences. Females generally are larger than males. Males of many forms possess 1 or 2 modified arms (hectocotylus) for mating. The hectocotylus may consist of modified suckers, papillae, membranes, ridges and grooves, flaps, etc., but in any case it functions to transfer the spermatophores (sperm packets) from the male's mantle cavity to a locus of implantation on the female, which may occur inside the mantle cavity, around the mantle opening on the neck, in a pocket under the eye, around the mouth, etc. Fertilization takes place in the female as the eggs are laid. Eggs of squids generally are encased in a gelatinous matrix secreted by the nidamental glands and are laid as multi-finger-like masses (sometimes called "sea mops") attached to rocks, shells or other hard substrate on the bottom in shallow waters (inshore squids), or they are extruded as large, singular, sausage-shaped masses that drift in the open sea (oceanic squids). The fingers each may contain from a few to several hundred eggs, while the sausages contain tens or even hundreds of thousands of eggs. The mode of reproduction and egg-laying is unknown for many forms, especially oceanic and deep-sea species. Cuttlefishes lay relatively few, large grape-like eggs that are attached to hard substrates and are usually coloured black by a covering of ink deposited by the, female at egg-laying. Benthic octopuses lay their eggs in great, grape-like clusters and strands in lair sunder rocks and in abandoned mollusc shells, where they brood them until they hatch. The eggs are attached to each other,but they are not encased in a gelatinous matrix. The female of the pelagic octopus <u>Argonauta</u> constructs a thin, shell-like egg case in which she resides and lays festoons of eggs, fertilization having taken place from sperm contained in the highly modified hectocotylus that was autotomized (detached) from the male and deposit

Cephalopod eggs are very yolky and hence cleavage is incomplete so that typical molluscan spiral cleavage is absent. Development is direct and the young hatch as miniatures of the adult (to a greater or lesser extent depending on the species). Thus, no discrete larval stages or metamorphoses occur. Cephalopod eggs may vary in size from about 1.7 cm long in some demersal Octopus species to 0.8 mm long in the pelagic Argonauta, both octopods. Eggs of Sepia can attain 9 or 10 mm in diameter. Time of embryonic development also varies widely, from a few weeks to several months, depending on the species and temperature conditions. Hatching may occur rapidly from a single clutch or be extended over a period of 2 or 3 weeks. At hatching, young animals often behabit different habitats than the adults. For example, the young of some species of benthic octopuses spend periods of time as planktonic organisms before settling to their bottom habitat, and the "larvae" of many deep-sea forms occur in the upper 100 m of the open ocean then exhibit an ontogenetic descent, gradually occurring at deeper depths with increasing size.

Many species of oceanic cephalopods undergo diel vertical migrations, wherein they occur at depths of about 400 to 800 m during the day, then ascend into the uppermost 200 m or so during the night. While shallow-living cephalopods are able to conceal themselves by chromatophore-produced colour patterns and chameleon-like colour changes, many deep-sea forms camouflage themselves by producing bioluminescent light from photophores (light-producing organs) which eliminates their silhouettes against the downwelling light in the dimly-lit mid-depths.

Cephalopods are active predators that prey upon shrimps, crabs, fishes, other cephalopods, and, in the case of octopuses, on bivalved molluscs. In turn, cephalopods are major food items in the diets of toothed whales, seals, pelagic birds (penguins, petrels albatrosses, etc.), and both benthic and pelagic fishes (e-g., sea basses, lancetfishes, tunas, billfishes, sharks and rays).

The role of cephalopods in the ecosystem seems to be that of subdominant predators which tend to increase in biomass when other species (particularly their predators and competitors for food) become depleted as a result of heavy fishing. This has been observed, for example, in the sparid fishery off Sahara, the gadoid fishery in the northwest Atlantic and the trawl fishery in the Gulf of Thailand.

Catches of cephalopods have been steadily increasing in most parts of the world until 1982. In fact, world catches of squids and cuttlefishes increased by 57% and 84%, respectively, in the period from 1970 to 1980, compared to only 8% increase in total catches from the sea. The more traditional octopus fisheries, however, showed only a 2% increase for the same period, with a peak in 1974. Table 1 gives figures for the world catch of cephalopods for the period between 1975 and 1981 (FAO, 1983).

Cephalopod fisheries are unevenly distributed in the world's oceans. More than half of the total catch is taken in the northwest Pacific, the northeast and northwest Atlantic and the northeast Pacific, but a number of small scale fishing activities also exist in other areas. The reported catch of cephalopods totalled 1 304 000 metric tons in 1981, of which 71.8% was accounted for by neritic and oceanic squids (i.e., <u>Todarodes, Loligo, Illex,</u> etc.), 13.6% by cuttlefish (<u>Sepia, Sepiella and allied genera</u>) and about 14.6% by octopuses (mainly, <u>Octopus and Eledone</u>). Most of this catch (around 700 000 metric tons) was taken by Japanese vessels throughout the world.

TABLE 1
World catch (in metric tons) of cephalopods by statistical categories for the period between 1975 and 1981

(Source: FAO, 1983)

	1975	1976	1977	1978	1979	1980	1981
Sepia officinalis	12 253	11 140	10 886	8 595	9 350	14 028	12 855
Other Sepioidea	137 633F	163 506F	185 083F	192 547F	198 663 F	174 729F	165 248F
g : : I	(12.7%)	(14.4%)	(15.9%)	(15.1%)	(13.7%)	(12.3%)	(13.6%)
Sepioidea	149 886	174 646	195 969	201 142	208 013	188 757	178 103
Loligo pealei	24 621	21 311	16 470	10 725	17 401	23 612	10 602
Loligo spp.	113 171	92 859	105 379	119 217	106 149	104 375F	108 457F
Illex illecebrosus	34 223	68 321	104 215	88 236	179 361	88 660	39 076F
Illex argentinus	4 620	8 266	2 348	61 847	92 252	9 827	13 723
Dosidicus gigas	365	897	658	2 709	11 144	19 069	9 695
Todarodes sagittatus	4 399	4 683	4 307	3 474	5 270	5 864	12 971
Todarodes pacificus	398 660	325 740	225 932	234 344	238 978	378 954	228 355
Nototodarus sloani	18 786	19 692	27 149	27 480	28 301	62 983	30 970
Unidentified Loliginidae and Ommastrephidae	204 052F	284 688F	358 652F	391 582F	482 974F	475 964F	482 073F
Loliginidae,	(67.9%)	(68.3%)	(68.6%)	(70.6%)	(76.3%)	(76.4%)	(71.8%)
Ommastrephidae	802 897	826 457	845 110	939 614	1 161 830	1 169 308	935 922
Octopus vulgaris	38 977	40 014	42 772	32 659	25 612	17 113	24 361
Eledone spp.	2 612	2 497	2 369	3 134	2 375	2 070	2 299
Other Octopodidae	188 144F	166 888F	145 278F	153 757F	123 803F	153 181F	163 469F
	(19.4%)	(17.3%)	(15.5%)	(14.3%)	(10.0%)	(11.3%)	(14.6%)
Octopodidae	229 733	209 399	190 419	189 550	151 790	172 364	190 129
Total Cephalopoda	1 182 516	1 210 502	1 231 498	1 330 306	1 521 633	1 530 429	1 304 154

F = FAO estimate

click for previous page

The principal types of fishing methods and gear utilized in cephalopod fisheries are the following:

Cuttlefishes are taken mainly as a bycatch in trawl fisheries for finfishes, even though more specialized small-scale fisheries operating with trawls, dredges, seines, jigs and pots, have developed for these species in certain regions (i.e., Mediterranean).

Coastal squids are caught mainly with otter trawls, pair trawls (Southeast Asia), purse seines and by night-lightfishing methods (especially in the spawning season when the squids aggregate in inshore waters); they also are taken as bycatch in fin and shrimp fisheries. Oceanic squids are captured primarily by jigs (often jigging machines); gillnets are effective on some species.

Octopuses are taken by bottom trawls, pots, dragnets, hooks and spears.

The utilization of cephalopods is manyfold, ranging from fresh consumption (eaten raw as "sashimi" in Japan) to various types of processing (dried, canned, frozen, reduced to fishmeal, etc.). Their high protein and low fat content make cephalopods an important element in the diet of human populations.

1.3 Illustrated Glossary of Technical Terms and Measurements

Measurements Used

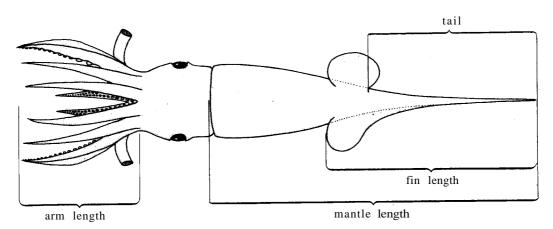


Fig. 2 Schematic illustration of a squid showing measurements for squids and cuttlefishes

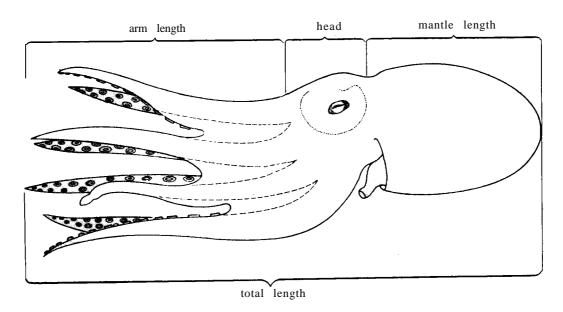
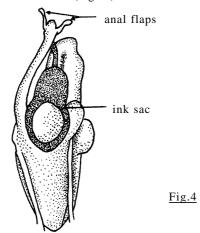



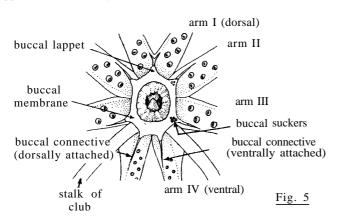
Fig. 3 Schematic illustration of an octopus

Glossary of Technical Terms

Anal flaps - A pair of fleshy papillae that arise at the sides of the anus (Fig. 4).

Anterior - Toward the head-end or toward the arm-tips of cephalopods.

Arm formula - Comparative length of the arms expressed numerically in decreasing order, e.g., 3.4.2.1 or 3.2.4.1.


Armature - Refers to the presence and arrangement of suckers and/or hooks on the arms and tentacular clubs of cephalopods.

Buccal lappet - Small, subtriangular flap at tip of muscular band that supports the buccal membrane; may bear suckers (Fig. 5).

Buccal membrane - Thin web of tissue that encircles the mouth, reinforced by 6 to 8 buccal supports Fig. 5).

Buccal membrane connectives - Muscular bands that connect the supports of the buccal membrane to the bases of the arms (Fig. 5)

Buccal suckers - Small suckers on the buccal lappets/membrane (Fig. 5)

Calcified - Chalky, calcareous by deposition of calcium salts (calcium carbonate).

Calimus - The conical papillaor projection on the hectocotylus of octopods atthe proximal terminus of the sperm groove, distal to the last sucker (Fig. 6) (see Ligula).

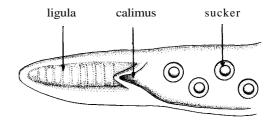
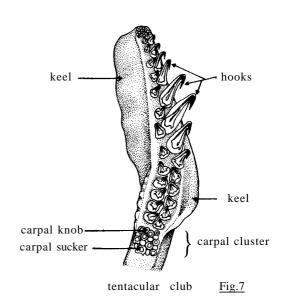
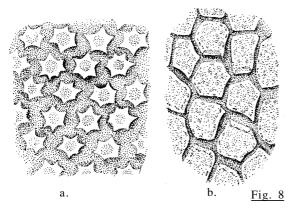



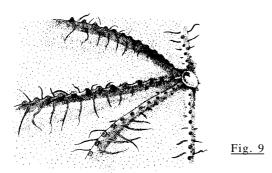
Fig.6


Carpal cluster (Carpal pad) - A usually distinct group of suckers and knobs on the carpus of the tentacular club (Fig. 7).

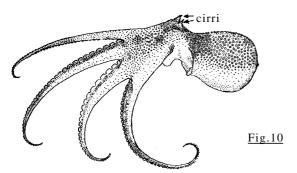
Carpal knobs - Small, rounded, hemispherical protuberances on the carpus to which carpal suckers from the opposite club adhere during the locking of the clubs (Fig. 7).

Carpal suckers - Small suckers on the carpus of the club that usually adhere to knobs on the opposite carpus during the locking of the clubs (Fig. 7).

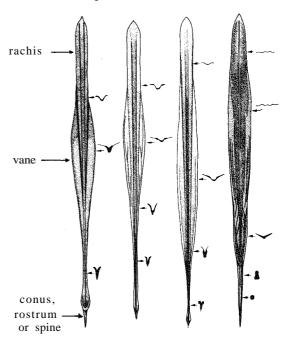
Cartilaginous scales - Cartilage-like structures in the skin of certain squids; may be overlapping and scale-like, or multifaceted knobs or papillae (Fig. 8).



Chitin(ous) - A horny polysaccharide substance (fingernail-like) that forms the sucker rings, hooks and beaks.


Chromatophores - Pigment-filled muscular sacs in the skin under individual nervous control that collectively provide the background colour, colour patterns, and colour play of cephalopods.

Circumoral appendages - The eight arms (squids, cuttlefishes and octopuses) and two tentacles (squids and cuttlefishes) or the very numerous arms (Nautilus) that arise from the head and encircle the mouth of cephalopods (Fig. 5).


Cirri - Arm: elongate, fleshy, finger-like papillae along the lateral edges of the oral surface of the arms, especially in cirrate octopods (Fig. 9).

Body: fleshy protuberances of the skin that can be erected as papillae, usually over the eyes (Fig. 10).

Cones, conus - The spoon-like or cup-like conical posterior terminus of the gladius or cuttlebone; homologous to the phragmacone of fossil teuthoids (Fig. 11).

gladiuses

Fig.11

Corneal membrane - The very thin, transparent skin that covers the eyes of myopsid and sepioid cephalopods (Fig. 12).

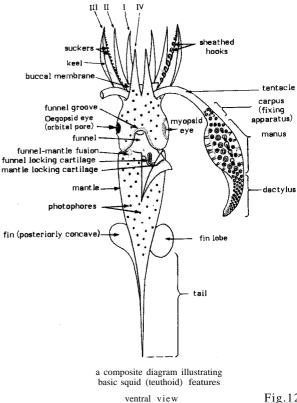
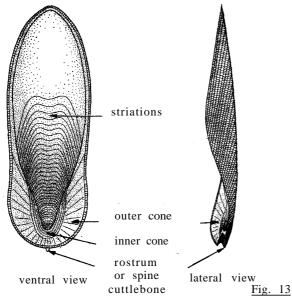
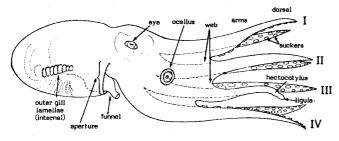



Fig.12


Cuttlebone - The calcareous (chalky) oblong, supporting plate in the dorsal part of the mantle of cuttlefishes (see Sepion) (Fig. 13).

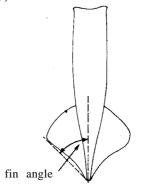
Dactylus - The distal, terminal section of the tentacular club, often characterized by suckers of reduced size (Fig. 12).

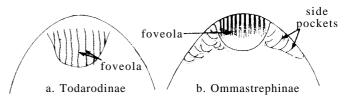
Distal - Away from the body or point of origin; toward the peripheral parts (opposite of proximal).

Dorsal - The uppermost or back surface of a cephalopod, opposite the ventral surface where the funnel is located (Fig. 14).

schematic lateral view of octopus features Fig. 14

Fin angle - The angle between the longitudinal axis of the mantle and the posterior border of one fin (Fig. 15).




Fig. 15

Fin lobe - The portion of each fin that protrudes anteriorly from the anterior point of attachment of the fin to the mantle (Fig. 12).

Fins - The pair of muscular flaps that arise along the dorsolateral surface of the mantle of sepioids, teuthoids, and cirrate octopods; used for locomotion, steering and stabilization (Fig. 12).

Fixing apparatus - The mechanism of suckers and knobs on the carpal region of the tentacular club that permits the two clubs to be locked together during capture of prey (Fig. 7) (see Carpus).

Foveola - Transverse, membranous fold of skin that forms a pocket in the funnel groove of some oegopsids (Fig. 16) (see Side pockets).

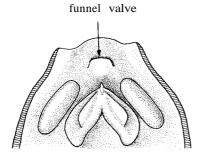
funnel groove

Fig. 16

Funnel - The ventral, subconicaltube through which water is expelled from the mantle cavity during locomotion and respiration (reproductive and waste products and the ink also pass through the funnel) (Figs 12, 14). Archaic term - siphon.

Funnel groove - The depression in the posteroventral surface of the head in which lies the anterior portion of the funnel (Fig. 16).

Funnel locking-cartilage - The cartilaginous groove, pit, pocket, on depression on each ventro-lateral side of the posterior part of the funnel that joins with the mantle component to lock the funnel and mantle together during locomotion, so water is expelled only through the funnel and not around the mantle opening (Figs 12, 17) (see Mantle locking-cartilage).



funnel locking-cartilage

Fig.17

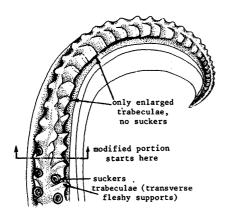
Funnel organ - The glandular structure fused to the internal surface of the funnel, generally a single W-shaped form in octopods and a dorsal inverted V-shaped component with opposed ventral oblong components in decapods (Fig. 18).

Funnel valve - The semilunar muscular flap in the dorsal surface of the distal opening of the funnel (Fig. 18).

funnel organ

Fig. 18

Gill lamellae - The leaf-like convoluted individual components of the gill through which gas exchange occurs (Figs 19, 22).



gill lamella

Fig. 19

Gladius - The feather or rod-shaped chitinous supporting structure in the dorsal midline of teuthoids and non-sepiid sepioids; the homolog of the shell of ancestral forms (Fig. 11) (= Pen)

Hectocotylus - One (or more) arm(s) of male cephalopods modified for transferring spermatophores to the female; modifications may involve suckers, sucker stalks, protective membranes, trabeculae (Figs 6, 20) (see Calimus, Ligula).

hectocotylized arm (Illex oxygonius)

Fig. 20

Hooks - Chitinous, claw-like structures ontogenetically derived from the suckers on the arms and/or clubs of some oegopsids (Fig. 7).

Ink sac - The structure that manufactures and stores the ink of cephalopods; it lies along the intestine and empties via a duct into the rectum (Fig. 4).

Keel - (1) A flattened, muscular extension along the aboral surface of some arms to render them more hydrodynamic (Fig. 12); **(2)** 1 or 2 expanded muscular membranes on the tentacular club of some groups (Fig. 7).

Lateral - Pertaining to the side(s) of an organism or structure, away from the centre or midline.

Light organ - A simple or complex structure that produces bioluminescence by intrinsic (self-generated) or extrinsic (bacterial) means (also termed **photophore**) (Figs 12, 21).

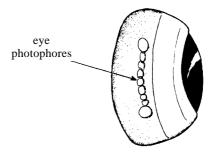
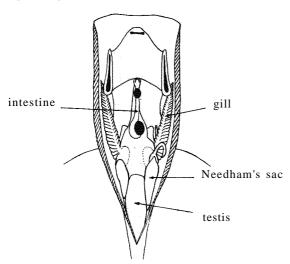


Fig.21

Lígula - The spatulate to spoon-shaped, terminal structure of the hectocotylus of octopods, that contains the calimus basally (proximally) and usually a series of transverse ridges and grooves on the oral surface (Fig. 6) (see Calimus, Hectocotylus).


Mantle - The fleshy (muscular) tubular or sac-like body of cephalopods; provides propulsion through jet-like expulsion of water; contains the viscera (Figs 12, 14).

Mantle locking-cartilage - The cartilaginous ridge, knob or swelling on each side of the ventro-lateral, internal surface of mantle that locks into the funnel component of the apparatus during locomotion (Figs 12, 18) (see Funnel locking-cartilage).

Manus - Central or "hand" portion of club between the dactylus distally and the carpus proximally (Fig. 12).

 $\boldsymbol{Medial(n)}$ - Pertaining to a structure located towards, on, or along the midline.

Needham's sac - The elongate, membraneous container at the terminus of the male reproductive tract that stores completed spermatophores (Fig. 22) (= spermatophore sac).

schematic internal view of anterior ventral mantle

Fig. 22

Ocellus - A pigmented spot or patch usually consisting of a central locus of concentrated chromatophores with one or more concentric rings of chromatophores. Ocellae occur on some octopuses, and their normally vivid pigmentation make them stand out against the background colouration (Fig. 14).

Olfactory papilla - A bump-like to finger-like protuberance on the posterolateral surface of each side of the head; of presumed olfactory function.

Orbital pore - Minute pore in the anterior part of the transparent tissue that covers the eyes of sepioids and myopsids (see Orbital sinus) (Fig. 12).

 $\mbox{\sc Orbital sinus}$ - An anteriorly directed indentation in the eyelid of oegopsids (Fig. 23) (see Orbital pore).

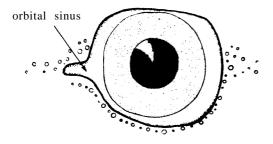
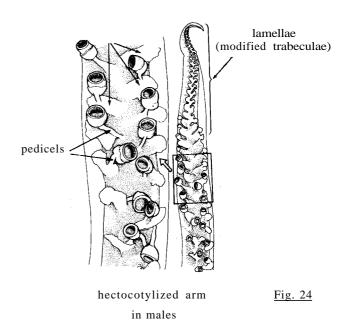
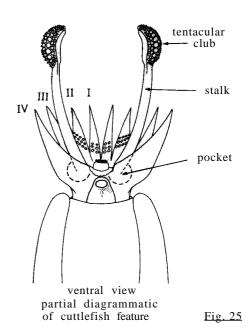
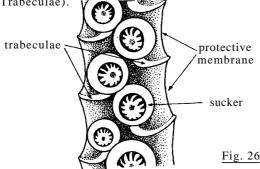



Fig. 23

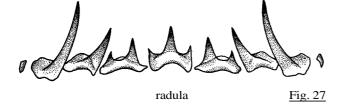

Pedicel - A short, tubular stalk that supports a sucker in sepioids and teuthoids (Fig. 24).

Pen - See gladius.


Photophore - An organ of greateror lesser complexity that produces and distributes biolumine-scence, either intrinsically through biochemical reaction or extrinsically through luminescent bacteria (Figs 12, 21) (see Light organ).

Pocket - An open depression in the anteroventral surface of the head of sepioids into which the feeding tentacles are retracted when not in use (Fig. 25).

Posterior - Toward the tail-end of cephalopods.


Protective membrane - Thin web-like integument along the lateral angles of the oral surface of the arms and clubs lateral to the suckers, supported by muscular rods called trabeculae (Fig. 26) (see Trabeculae).

Proximal - Toward the body or nearest or next to the point of origin or attachment; (opposite of distal).

Rachis - The thickened central axis that usually extends the entire length of the gladius. Free rachis is the portion that does not support vanes (Fig. 11) (see Gladius, Vane).

Radula - The chitinous, ribbon-like band in the mouth of cephalopods containing several transverse rows of teeth (Fig. 27).

Rostrum - A spike-like posterior extension of the gladius or cuttlebone, exterior to the conus (Figs 11, 13) (see Spine).

Sepion - The calcareous dorsal supporting structure in the mantle of cuttlefishes (Fig. 13) (= cuttlebone).

Side pockets - Small membranous folds of the integument that form pockets lateral to the foveola (Fig. 16) (see Foveola).

Sperm receptacle - A bulbous structure in the buccal region of some female cephalopods, e.g., loliginids, for the retention of viable sperm until they are required for fertilization.

Spermatophore - A tubular structure manufactured by male cephalopods for packaging sperm; capable of holding millions of sperm, being transferred intact, and attaching to the female until fertilization begins (Fig. 28).

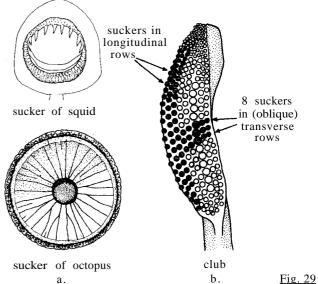
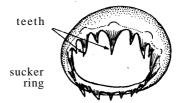


Fig. 28

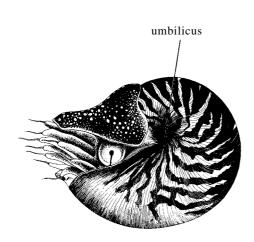

Spermatophore pad - A fleshy patch of tissue, usually in the mantle cavity of some female cephalopds (e.g. loliginids), to which spermatophores adhere after mating until fertilization occurs.

Spine - The Sharp spike-like extension on the posterior tip of the gladius or cuttlebone (Fig. 13) (see Rostrum).

Suckers - Muscular, suction-cup structures on the arms and tentacles (rarely on the buccal membrane) of cephalopods; some are stalked, placed on muscular rods that contract (squids and cuttlefishes); some are sessile, embedded without stalks on the oral surface of the arms (octopuses) (Fig. 29a). They are usually counted either in longitudinal or in transverse (oblique) rows (Fig. 29b).

Sucker ring - Chitinous, often serrated or denticulate ring that encircles the opening of suckers of squids and cuttlefishes (Fig. 31).

Swimming membrane (keel) - An elongate, muscular vane along the aboral surface of arms of cephalopods that functions to streamline and support the arms during swimming (Figs 7, 12).

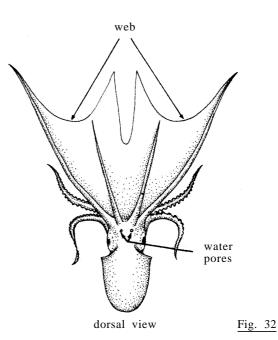

Tail - The posterior extension of the mantle, frequently elongate. Fins or tapered terminations of fins may extend posteriorly along the tail (Fig. 12).

Tentacles - Elongate, stalked circumoral appendages of cuttlefishes and squids used for preycapture; distal ends contain clubs with suckers (or hooks); stalks usually devoid of suckers. Tentacles can retract into pocketson the head of cuttlefishes, or merely contract, in squids (Figs. 12, 25).

Tentacular club - Terminal portion of a tentacle; armed with suckers (or suckers and/or hooks), used for capturing prey (Figs 7, 12, 25).

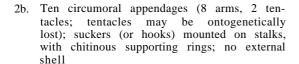
Trabeculae - Muscular rods that support the protective membranes on the arms and clubs of cephalopods; occasionally membranes are reduced and/or trabeculae are elongated, so they extend beyond the edge of the membrane, papilla-like (Fig. 26).

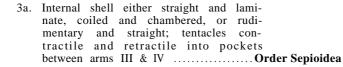
Umbilicus - The central core of the chambered <u>Nautilus</u> shell, representing the juvenile shell with its initial coils (Fig. 31).


lateral view Fig. 31

 $oldsymbol{Vane}$ - Thin lateral expansion of the gladius that arises from the rachis (Fig. 11) (see Rachis).

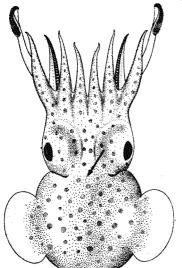
Ventral - The lowermost or belly surface of a cephalopod; the surface on which the funnel is located; opposite the dorsal surface (Figs 12, 14).

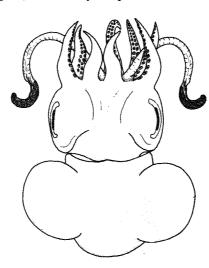

Water pores - Small orifices at base of the web of some pelagic octopuses, e.g., <u>Tremoctopus</u> (Fig. 32).


Web - A membranous sheet of greater or lesser extent that extends between the arms of many octopuses, giving an umbrella-like appearance when the arms are spread out, e.g., on cirroteuthids (Figs 14, or 32).

1.4 Key to Orders and Families

- 1a. More than 8 circumoral appendages
 - 2a. More than 10 (63 to 94) circumoral appendages; suckers absent; chambered, coiled external shell (Fig. 33) Order Nautiloidea (monotypic order) Family Nautilidae




4a. Internal shell calcified

- 5a. Internal shell coiled, chambered (Fig.34) Family Spirulidae
- 5b. Internal shell straight, laminate, chalky (Fig. 35) Family Sepiidae
- 4b. Internal shell chitinous or lacking
 - 6a. Shell (gladius) present (except <u>Euprymna</u>), chitinous; one only or both dorsal arms or one dorsolateral arm hectocotylized (Fig. 36) Family Sepiolidae
 - 6b. Shell (gladius) absent; left only or both ventral arms hectocotylized

7a. Left ventral arm hecto-cotylized; dorsal border of mantle fused with head (Fig. 37) . . . Family Sepiadariidae



dorsal view Sepiadariidae (Sepiadarium) Fig. 37

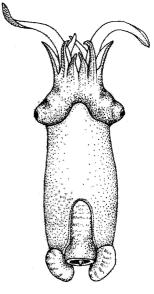

dorsal view Sepiolidae (Rossia)

Fig. 36

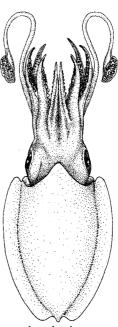

Nautilidae (Nautilus)

Fig. 33

dorsal view Spirulidae (Spirula)

Fig. 34

dorsal view Sepiidae (Sepia)

7b. Both ventral arms hectocotylized; dorsal border of mantle free (unfused) from head (Fig. 38) Family Idiosepiidae 3b. Internal shell straight, feather- or rod-shaped; tentacles contractile, not retractile, no pockets.. Order Teuthoidea 8a. Eye covered by transparent membrane (cornea) (Fig. 39a) Suborder Myopsida 9a. Four rows of suckers on manus of tentacular clubs; medial posterior border of fins concave (Fig. 40)...... Family Loliginidae 9b. Two rows of suckers on manus of tentacular clubs; medial posterior borders of fins convex (Fig. 41) .. Family Pickfordiateuthidae 8b. Eyewithout cornea and in open contact dorsal view Idiosepiidae (<u>Idiosepius</u>) <u>Fig. 38</u> with seawater (Fig. 39b) Suborder Oegopsida 10a. Funnel free from mantle; funnelmantle locking apparatus present 11a. Funnel-locking apparatus asimple, straight groove and ridge (Fig. 42a) 12a. Arms with hooks or with suckers in 4 rows on proximal half of ventral arms 13a. Armature (suckers, hooks) of arms in 2 rows oegosid myosid eye eye (open) (cornea) Fig. 39 2 rows of suckers dorsal view tentacular club Pickfordiateuthidae (Pickfordiateuthis) Fig. 41 tentacular ventral view club Loliginidae (Loligo) Fig. 40

14a. Tentacles present; fully developed clubs present (Fig. 43) Family Enoploteuthidae 14b. Tentacles and clubs absent in adults although present in larvae or occasionally in juveniles (Taningia) but always with rudimentary clubs (Fig. 44) Family Octopoteuthidae 13b. Armature of arms in 4 rows (Fig. 45) Family Gonatidae 12b. Arms without hooks and with suckers in 2 rows on proximal half of ventral arms 15a. Buccal membrane connectives attach to ventral sides of arms IV (Fig. 46a) 16a. Hooks present on tentacular clubs ventral view (Fig.47a) (tentacles and clubs un-Enoploteuthidae known in <u>Chaunoteuthis</u>) (Fig. (Pterygioteuthis) Fig. 43 47b) Family Onychoteuthidae armature elements 16b. Hooks lacking on tentacular clubs (suckers and hooks) in 4 rows arms I (dorsal) rudimentary arm II or absent arm III stalk of arm IV (ventral) tentacle buccal buccal connective connective (dorsally (ventrally attached) attached) oral view dorsal view ventral view Fig. 46 Octopoteuthidae Gonatidae (Gonatus) (<u>Taningia</u>) Fig. 45 Fig. 44 no tentacles ventral view dorsal view tentacular club a. Onychoteuthis b. Chaunotethis Onychoteuthidae

17a Cartilaginous scales present on mantle (may be minute); tentacular clubs with 4 longitudinal rows of suckers (Fig. 48) Family Lepidoteuthidae

17b. Cartilaginous scales lacking; tentacular clubs with more than 4 longitudinal rows of suckers on some areas

> 18a. Fin nearly as long as mantle, supported by strong, transverse, muscular ribs; minute suckers present on oral surface of buccal lappets (Fig. 49) Family Ctenopterygidae

18b. Fins less than half the body length and without supporting ribs; no suckers on buccal lappets

> 19a. Tentacular clubs with 6 uniform rows of suckers; a long, spike-like tail present (greater than fin lenght) (Fig. 50) Family Batoteuthidae

> 19b. Tentacular clubs with 4 rows of suckers on distal portion, numerous rows on proximal portion; no long, spike-like tail (Fig51) Family Brachioteuthidae

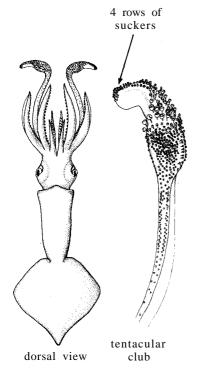
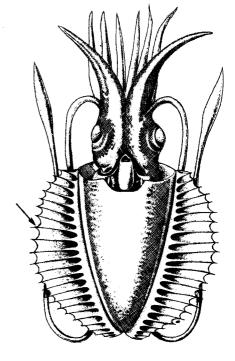

cartilaginous scales on mantle dorsal view Lepidoteuthidae (Pholidoteuthis)

Fig. 48

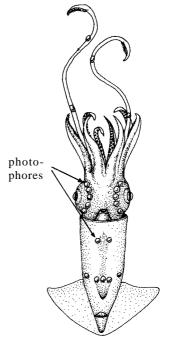
4 rows of

suckers


15b. Buccal membrane connectives attach to dorsal sides of arms IV (Fig. 46b)

Brachioteuthidae (Brachioteuthis)

ventral tentacular club view


Batoteuthidae (Batoteuthis)

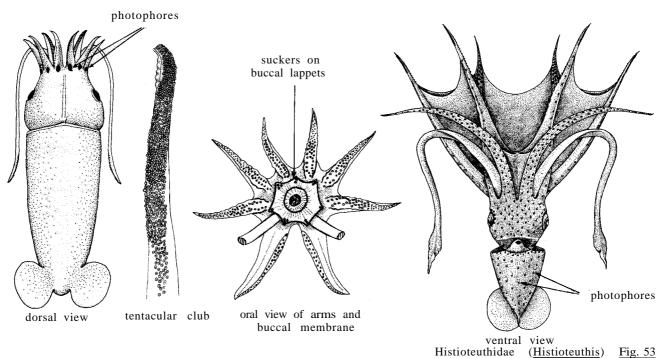

ventral view Ctenopterygidae (Ctenopteryx)

Fig. 51 Fig. 50

- 20b. No photophores on eyes; buccal membrane with 7 lappets or less
 - 21a. Surface of mantle, head and arms covered with numerous photophores (usually large and distinct) (Fig. 53) Family Histioteuthidae
 - 21b. Surface of mantle and head without photophores (arms may have a few photophores)
 - 22a. Minute suckers present on oral surface of buccal lappets (Fig. 54) Family Bathyteuthidae
 - 22b. No suckers on oral surface of buccal lappets
 - 23a. Many small to minute suckers (or suckers and knobs) at proximal end of manus (Figs 55, 56)

ventral view Lycoteuthidae (<u>Lycoteuthis</u>) <u>Fig. 52</u>

Bathyteuthidae (Bathyteuthis) Fig. 54

24a. Medial posterior borders of fins slightly convex; carpal knobs in a single dorsal row or absent; small size (Fig.

55) Family Neoteuthidae

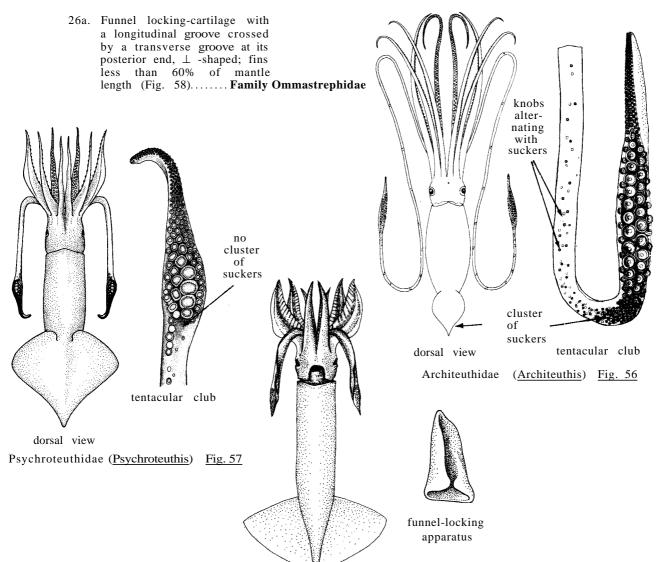
24b. Medial posterior borders of fins concave; carpal knobs in a cluster alternating with carpal suckers; attains very large size (Fig. 56) Family Architeuthidae

23b. No cluster of small suckers at proximal end of manus (Fig. Family Psychroteuthidae

11b. Funnel-locking apparatus not a simple, straight groove and ridge

> 25a. Funnel locking-cartilage with a longitudinal and a transverse groove \bot -shaped or -| -shaped (Fig. 42b,c)

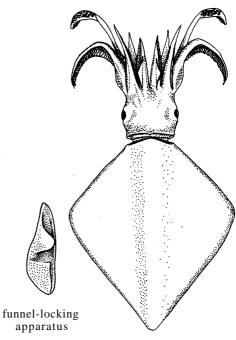
ventral view tentacular club Neoteuthidae (Alloteuthis) Fig. 55


cluster of

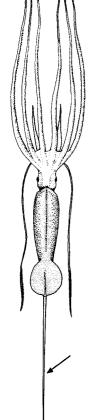
suckers

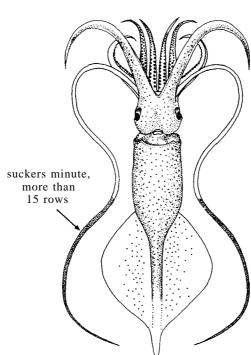
only one,

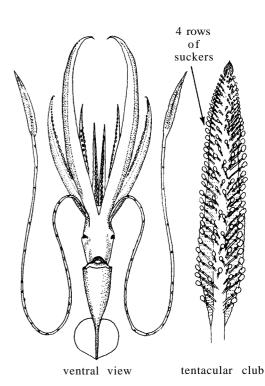
or none


row of knobs

ventral view Ommastrephidae (Ommastrephes) Fig. 58


- 26b. Funnel locking-cartilage with a longitudinal groove from which a shorter groove branches medially, -| -shaped; fins more than 80% of mantle length (Fig. 59) Family Thysanoteuthidae
- 25b. Funnel locking-cartilage oval, triangular or oval with inward projecting knobs (Figs 42d,
 - 27a. Funnel locking-cartilage oval with 1 or 2 knobs directed toward the centre of the concavity (Fig. 42d)
 - 28a. Club with only 4 rows of suckers (Fig. 60) Family Chiroteuthidae
 - 28b. Club with many (more than 15) rows of minute suckers (Fig. 61) Family Mastigoteuthidae
 - 27b. Funnel locking-cartilage oval or subtriangular, without knobs (Fig. 42e,f)
 - 29a. Suckers on arms in 4 to 6 rows; tail extremely long (greater than mantle length) (Fig. 62) Family Joubiniteuthidae


29b. Suckers on arms in 2 rows; tail short (less than half of mantle length) or absent



dorsal view Thysanoteuthidae (Thysanoteuthis)

Fig. 59

ventral view Mastigoteuthidae (Mastigoteuthis)

Fig. 61

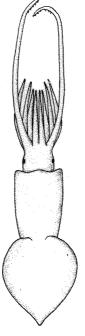
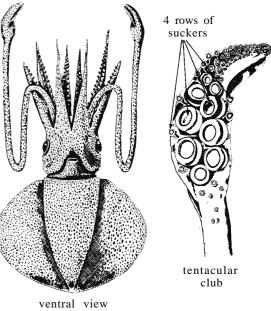
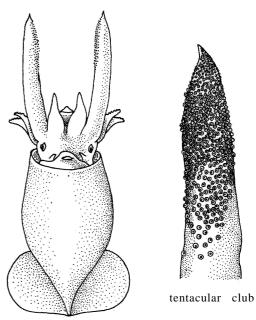
Chiroteuthidae (Chiroteuthis)

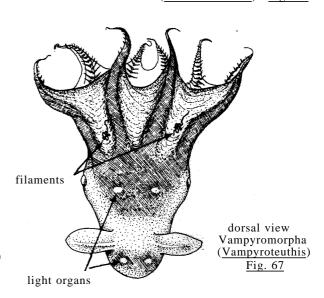
Fig.60

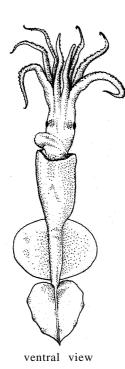
dorsal view

Joubiniteuthidae (Joubiniteuthis)

- 30a. Suckers on tentacular club in 4 longitudinal rows; mantle free dorsally (Fig. 63) Family Cycloteuthidae
- 30b. Suckers on tentacular club in 8 or more longitudinal rows; mantle fused dorsally to head (Fig. 64) Family Promachoteuthidae
- 10b. Funnel fused to mantle on each side; no funnel-mantle locking apparatus present
 - 31a. Mantle free dorsally, articulates with head by ridge and groove (Fig. 65 Family Grimalditeuthidae
 - 31b. Mantle fused dorsally with head (Fig. 66) Family Cranchiidae
- 1b. Eight circumoral appendages (arms only)

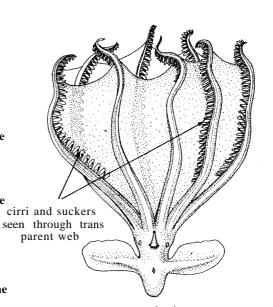

Fig. 66



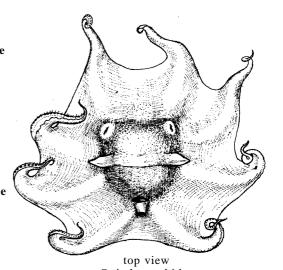
ventral view
Cycloteuthidae (<u>Discoteuthis</u>) <u>Fig. 63</u>

ventral view
Promachoteuthidae (<u>Promachoteuthis</u>) Fig. 64

Grimalditeuthidae (Grimalditeuthis)

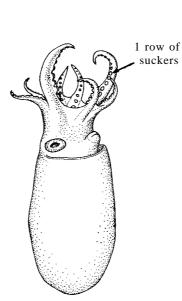

33a. Cirri present on arms

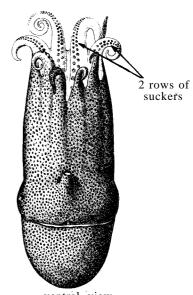
- 34a. Secondary web present; body elongate with prominent head; shell vestige saddle-like (Fig. 68) Family Cirroteuthidae
- 34b. Secondary web absent; body flat-tened along dorsoventral axis; shell vestige straight or slightly


bent (Fig. 69) Family Opisthoteuthidae

33b. Cirri absent on arms

- 35a. Body gelatinous
 - 36a. Suckers on arms biserial (Fig. 70) Family Alloposidae
 - 36b. Suckers on arms uniserial (Fig. 71)
 - 37a. Stomach posterior to "liver" (= digestive organ) (Fig. 71) Family Bolitaenidae
 - 37b. Stomach anterior to (= digestive "liver" organ)
 - 38a. Mantle opening reduced to 2 small lateral slits; eyes, elongate, tubular (Fig. 72) Family Amphitretidae


ventral view Cirroteuthidae (<u>Cirrothauma</u>) <u>Fig. 68</u>


Opisthoteuthidae (Opisthoteuthis) Fig. 69

dorso-lateral view Amphitretidae (Amphitretus)

Fig. 72

lateral view Bolitaenidae (<u>Japetella</u>)

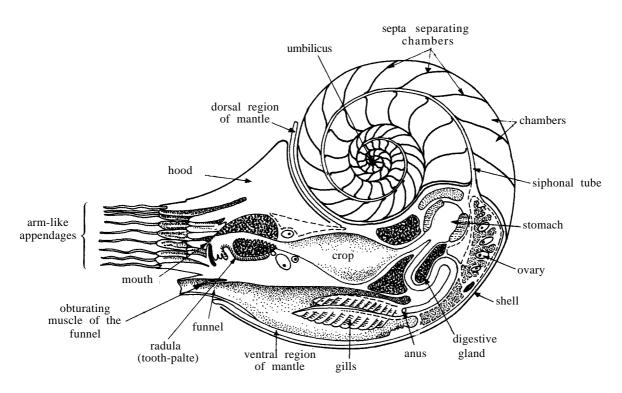

ventral view Alloposidae (Alloposus)

Fig. 71 Fig. 70

38b. Mantle opening wide; eyes small (Fig. 73) Family Vitreledonellidae 35b. Body firm 39a. Water pores present (Fig. 74) 40a. Water pores present both dorsally and ventrally web very deep; surface of mantle smooth, unsculptured (Fig. 74) Family Tremoctopodidae 40b. Water pores present ventrally only; web greatly reduced; surface of mantle heavily sculptured with tubercles in a reticulate pattern (Fig. 75) Family Ocythoidae 39b. Water pores absent; web normal, reduced or absent 41a. Males very small (smaller than females); hectocotylus (left third arm) temporarily coiled in sac below eye, with extremely long filamentous tip; females with dorsal arms I each with broad, membranous lateral view flap that secrets and holds a thin, shell-like Vitreledonellidae (Vitreledonella) egg case (Fig. 76) Family Argonautidae Fig. 73 41b. Males with left or right third arm hectocotylized (never in pocket); with spoon-shaped, non-filamentous tip; females without dorsal arm flaps; egg case always absent (Fig. 77) Family Octopodidae shell covered with membrane water of first arm pores dorsal view Tremoctopodidae (Tremoctopus) Fig. 74 lateral view Ocythoidae (<u>Ocythoe</u>) lateral view of female Argonautidae (Argonauta) Fig.75 Fig. 76

> dorsal view Octopodidae (<u>Octopus</u>) Fig. 77

2. CHAMBERED NAUTILUSES (Order Nautiloidea)

schematic cross section of a Nautilus

The living chambered nautiluses are limited to four extant species in the genus <u>Nautilus</u>, the sole survivors of a once extremely speciose subclass. They possess a coiled, pearly, external shell punctuated with chambers; the animal lives in the outermost chamber with its body attached to the septum (posterior wall of the chamber). A siphonal tube penetrates each septum and serves as a wick to remove fluid from the former living chambers, thus enabling the animal to regulate its bouyancy through control of fluid and gas in the outermost chambers. <u>Nautilus</u> has 2 pairs of gills, unique in living cephalopods, and up to 47 pairs of circumoral arm-like appendages-more in females (up to 94) than in males (up to 63); suckers are lacking; the eyes are simple, without lenses; the funnel or infundibulum, consists of 2 lobes that fold together to form a tube-like structure that serves for locomotion. Chromotophores and ink sac are lacking. Geographically limited to the tropical Indo-West Pacific, nautiluses live in association with the bottom, primarily reefs, from near the surface to about 500 m depth.

2.1 FAMILY NAUTILIDAE Blainville, 1825

NAUT

Nautilidae Blainville, 1825, Man.Malacol.Conchyl., 1825:386.

FAO Names: En - Chambered nautiluses

Fr - Nautiles Sp - Nautilos

General Remarks on the Family: The recent nautiloids are represented by only four living species of Nautilus (Saunders, 1981). All of these are found in the Indo-West Pacific region and several of these species are of commercial value as food, largely at the artisanal and subsistence levels, and in the shell curio trade, e.g., in India, Indonesia and the Philippines.

Species Currently Recognized : Code numbers are given for those species for which further information is given in this catalogue.

Nautilus belauensis Sanders, 1981; distribution Palau, western Caroline Islands

Nautilus macromphalus Sowerby, 1849

Nautilus pompilius Linnaeus, 1758

NAUT Naut 1 NAUT Naut 2

Nautilus scrobiculatus (Lightfoot, 1786); distribution Solomon Islands and New Guinea

Nautilus macromphalus Sowerby, 1849

NAUT Naut 1

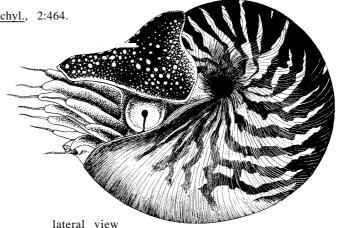
Nautilus macromphalus Sowerby, 1849, Thes. Conchyl., 2:464.

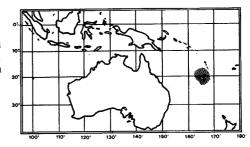
Synonymy: None

FAO Names: En - Bellybutton nautilus

Fr - Nautile bouton SP - Nautilo ombligo

Diagnostic Features: Umbilicus a deep concavity not filled with a concretion; colour markings on shell reduced.


Geographical Distribution : Western Pacific; New Caledonia and Loyalty Islands.


Habitat and Biology: Continental shelf and slope, from the surface to about 500 m (?) depth, associated with hard bottoms.

Size: Maximum shell diameter about 20 cm.

Interest to Fisheries: Consumed locally; also supports a small fishery for public aquarium and research trade. Collected alive at about 65 m depth on the outer slope of the Barrier Reef in New Caledonia; in the Coral Sea, trapped at 300 to 400 m.

NEW CALEDONIA: Chambered nautilus. Local Names:

Nautilus pompilius Linnaeus, 1758

NAUT Naut 2

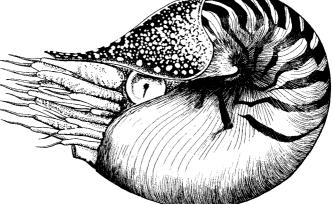
Nautilus pompilius Linnaeus, 1758, Syst. Nat., ed.10:709.

Synonymy: Nautilus ambiguus Sowerby, 1849; ? Nautilus stenomphalus Sowerby, 1849; Nautilus alumnus Iredale, 1944; ? Nautilus repertus Iredale, 1944; varieties: N. p. perforatus, Willey 1896; N. p. marginalis, Willey, 1896; N. p. moretoni, Willey 1896

FAO Names : En - Emperor nautilus Fr - Nautile flammé Sp - Nautilo común

Diagnostic Features : Umbilicus filledin with a concretion; flame-striped colour pattern, extending across nearly entire shell.

Geographical Distribution : Indo-West Pacific; Andaman Islands, Amboina, the Philippines, New Guinea to Fiji; Australia.


Habitat and Biology: Continental shelf and slope from near the surface to about 750 m depth, associated with hard bottoms, particularly coral reefs. Undergoes diel vertical migrations.

Size: Maximum shell diameter about 20 cm.

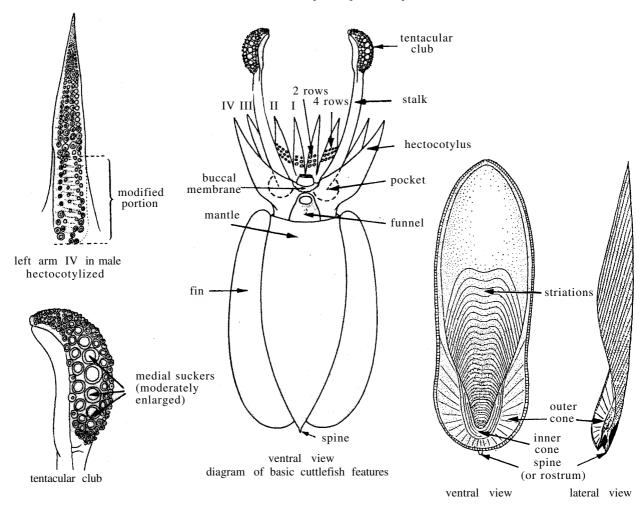
Interest to Fisheries: Supports shell trade, mostly from beach-drift specimens, and subsistence and artisanal fisheries in Negros (the Philippines). Captured in bamboo fish traps at 60 to 240 m depth. The meat is sold in local markets and the shells sent to Cebu City for the shell trade.

lateral view

Local Names: NEW CALEDONIA, PHILIPPHINES: Chambered nautilus.

3. CUTTLEFISHES (Order Sepioidea)

Cuttlefishes are characterized by the following features: shell calcarious (<u>Sepia</u>, <u>Spirula</u>) or chitinous (sepiolids); 10 circumoral appendages; tentacles retractile into pockets; suckers with chitinous rings; posterior fin lobes free, not connected at midline; eye covered with a transparent membrane, false eyelids present (except <u>Spirula</u>); 1 pair of gills, without branchial canal between afferent and efferent branchial blood vessels; liver divided or bilobed; each tooth of radula with a single projection; buccal membrane present; olfactory organ a ciliated pit.


This order comprises five families, two of which (the Idiosepiidae and Spirulidae) are considered inedible and hence are not included in this catalogue. Of the remaining three families, the Sepiidae are of significant commercial value to artisanal and industrial fisheries, and the Sepiolidae are exploited by many artisanal and subsistance fisheries; while the Sepiadariidae are not fished at present, one species might be of potential interest. The combined catch of cuttlefishes made up about 12 to 16% of total cephalopod catches in recent years, roughly fluctuating between 150 000 and 210 000 metric tons (FAO, 1983).

3.1 **FAMILY SEPIDAE** Keferstein, 1866

SEP

Sepiidae Keferstein, 1866, Bronn's Klass.Ordn.Thierreichs, 1862-66:1441.

FAO Names: En - Cuttlefishes; Fr - Seiches; Sp - Sepias, Cloquitos

Diagnostic Features : Cuttlebone (shell or sepion) internal chalky (calcareous), porous, finely laminate. Mantle broad, robust, sac-like, slightly flattened dorsoventrally; fins narrow, long (more or less equal to mantle length; posterior fin lobes free, not connected at midline; 10 circumoral appendages; arms with 2 to 4, and tentacles with 4 to 8 or more longitudinal rows of suckers; tentacles retractile into pockets on ventrolateral sides of head. Eyes covered with a corneal membrane. Colour: variable due to the great complex of chromatophores (pigment cells); browns, blacks, yellows, and reds are the dominating colours.

Geographical Distribution: Restricted to the Old World (i.e., absent from the Americas).

Habitat and Biology: Cuttlefishes are primarily demersal inhabitants of nearshore and continental shelf zones in warm and temperate waters. Although excellent swimmers, they generally are bottom dwellers. Habitats range from rocky, sandy and muddy bottoms to grassflats, seaweed beds, coral reefs, etc. Many (but not all) species are known to migrate seasonally in response to temperate changes. Spawning usually takes place with an increase in water temperature, sometimes twice a year in areas where the hydrographical regime is strongly seasonal. During mating, males use their modified arm(s) (hectocotylus) to transfer spermatophores to the females. Cuttlefishes spawn relatively few and large eggs which the female attaches in grape like clusters to plants, debris, gravel and other substrates. Sexual maturity often is attained as early as a few months after hatching and it is not uncommon to find juveniles from the spring brood participating in autumn spawning. Postspawning mortality is usually high, particularly in females.Longevity ranges between 1 and 3 years.

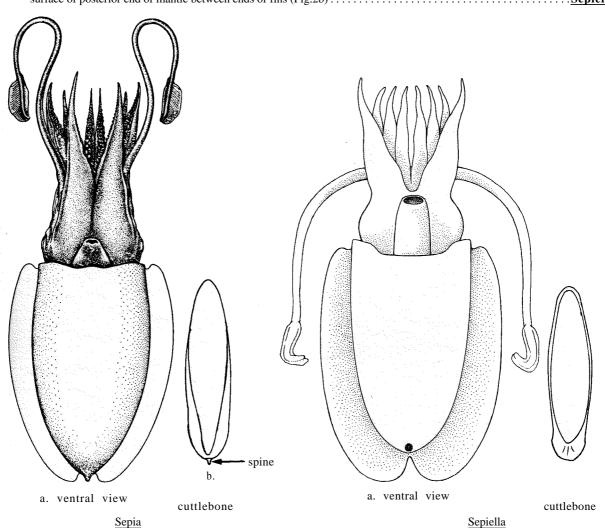
Cuttlefishes prey on crabs, shrimps and small fishes. Cannibalism seems to be rather common and has been interpreted as an efficient "strategy" to overcome temporary shortage of suitable sized food items (Caddy, 1979). They are opportunistic, subdominant predators thriving upon the depletion of their major finfish predators. This has been shown, for example in the West African demersal trawl fishery where a shift from sparids to cuttlefishes and octopuses was noticed in coincidence with heavy fishing pressure on the sparid stocks.

Interest to Fisheries : Together with the two minor families, Sepiadariidae and Sepiolidae, the Sepiidae accounted for 178 000 metric tons or 13.6% of the cephalopod world catch in 1981, the most important genus being <u>Sepia</u>.

Cuttlefish - catches by major fishing areas and countries

(Source: FAO, 1983)

Fishing Area	Country or region	% of catch in Fishing Area in 1981		atches etric tons) 1981
	region	1701	1760	1701
E. Central Atlantic (34)			30 700	29 100
	Spain	54.6	18 700	15 900
	Morocco	27.5	4 200	8 000
Mediterranean (37)			18 400	17 500
	Italy	70.9	13 600	12 400
Western Indian Ocean (51)			15 800	11 700
	Yemen, DPR	82.1	9 600	9 600
	Japan	8.5	3 700	1 000
Northwestern Pacific (61)			70 100	65 700
	Korea, Rep.	58.0	38 900	38 100
	Taiwan Island	28.8	19 000	18 900
	Japan	10.8	10 400	7 100
Western Central Pacific (71)			45 500	44 600
	Thailand	48.4	23 500	21 300
	Viet Nam	28.9	12 900	12 900
	Malaysia	10.3	3 700	4 600


The above table summarizes the catch data available for the most important world fishing areas and identifies the major cuttlefish exploiting countries, which also are the prime consumers. These are mainly the southeast Asian countries and nations bordering the Mediterranean Sea. Many of the above figures should be considered as highly conservative because of the general tendency to underestimate the artisanal component of landings, which usually are not properly recorded in national statistics. In this connection, the General Fisheries Council for the Mediterranean (GFCM) suggests, for example, that the Yugoslavian artisanal demersal catch in the early seventies was at the same order of magnitude as the bottom trawl landings.

In the industrial-type fisheries, cuttlefishes usually are taken only as bycatch to other target species in bottom trawls, even in cases where they make up a sizeable portion of the catch. They are, on the other hand, actively sought by the artisanal fisheries which utilize highly selective gear and fishing techniques based on knowledge of the biology and behaviour of the species. Such techniques include the use of aggregation devices (light, substrates for egg deposition), live or artificial lures (for example, live females are used to attract males), and a variety of fishing gear, such as harpoons, spears, trammel nets, pound nets, hoop nets, lines, jigs, baited pots, etc.

The flesh of most cuttiefishes is rather tender and excellent for human consumption. It is marketed fresh, frozen, canned and dried ("surume").

Key to Genera of Sepiidae:

- 1b. Cuttlebone entirely calcified

Sepia aculeata Orbigny, 1848

SEP Sep 5

Sepia aculeata Orbigny, 1848 (in 1834-1848), Hist.nat.Ceph.acetab., 287.

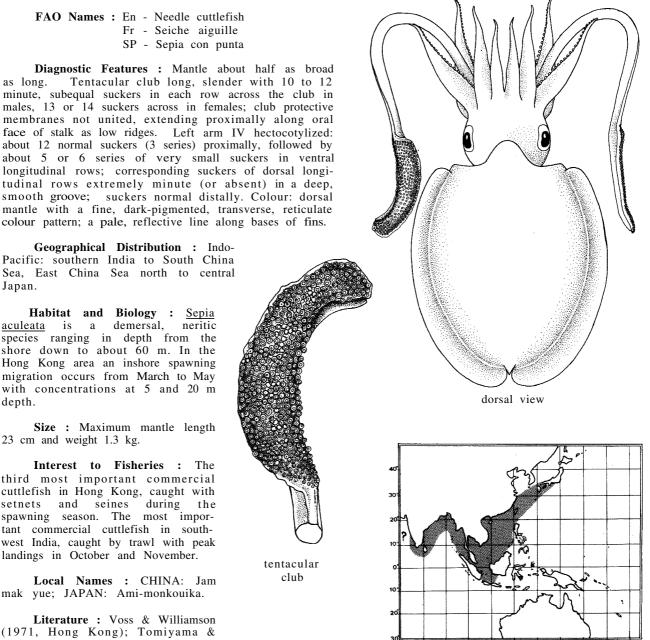
Synonymy: Sepia indica Orbigny, 1848 (in 1834-1848).

FAO Names: En - Needle cuttlefish

Fr - Seiche aiguille SP - Sepia con punta

Diagnostic Features: Mantle about half as broad Tentacular club long, slender with 10 to 12 minute, subequal suckers in each row across the club in males, 13 or 14 suckers across in females; club protective membranes not united, extending proximally along oral face of stalk as low ridges. Left arm IV hectocotylized: about 12 normal suckers (3 series) proximally, followed by about 5 or 6 series of very small suckers in ventral longitudinal rows; corresponding suckers of dorsal longitudinal rows extremely minute (or absent) in a deep, smooth groove; suckers normal distally. Colour: dorsal mantle with a fine, dark-pigmented, transverse, reticulate

Geographical Distribution: Indo-Pacific: southern India to South China Sea, East China Sea north to central Japan.


Habitat and Biology : Sepia aculeata is a demersal, neritic species ranging in depth from the shore down to about 60 m. In the Hong Kong area an inshore spawning migration occurs from March to May with concentrations at 5 and 20 m depth.

Size: Maximum mantle length 23 cm and weight 1.3 kg.

Interest to Fisheries : The third most important commercial cuttlefish in Hong Kong, caught with setnets and seines during the spawning season. The most important commercial cuttlefish in southwest India, caught by trawl with peak landings in October and November.

Local Names : CHINA: Jam mak yue; JAPAN: Ami-monkouika.

Literature: Voss & Williamson (1971, Hong Kong); Tomiyama & Hibiya (1978); Okutani (1980).

Sepia andreana Steenstrup, 1875

SEP Sep 7

Sepia andreana Steenstrup, 1875, K.danske Vidensk Nat., (5)10(7):474

Synonymy: None

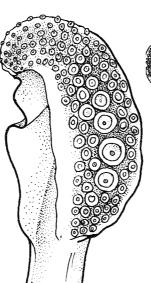
FAO Names: En - Andrea cuttlefish

Fr - Seiche andreana Sp - Sepia andreana

Diagnostic Features: Mantle length 2½ times width; fins arising posterior to mantle margin. Tentacular club with 8 suckers in transverse rows, the median 4 about 3 times the diameter of suckers on the marginal rows. Arms II in males greatly elongated, 3 times longer than the others, bluntly rounded distally, not tapered, cylindrical in cross-section; left arm IV hectocotylized, with the proximal 10 quadriserial rows of suckers normal, while the distal half bears only rudimentary suckers on swollen peduncular bases; arms II of males with quadriserial suckers in proximal third, then biserial, becoming rudimentary and sparse distally; arms I of both sexes and arms III of males with quadriserial suckers proximally, biserial distally. Shell 6 times longer than wide. Colour: the 3 dorsal pairs of arms with an orange-pigmented reflective stripe along aboral surface.

Geographical Distribution:

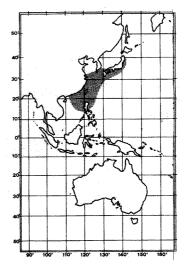
Western Pacific: from northern Philippines, along the South China coast to central Japan; <u>S.</u> andreana is the northernmost species of cuttlefish in the northwestern Pacific.


Habitat and Biology: demersal species occurring coastal waters to 50 m depth.

Size: Maximum mantle length 12 cm.


Interest to Fisheries : Separate statistics are not reported for this species which is taken as bycatch in trawl and set net fisheries in northern China.

Local Names:


Literature: Okutani (1980).

tentacular club

dorsal view

Sepia apama Gray, 1849

SEP Sep 8

Sepia apama Gray, 1849, Cat.Moll.Brit.Mus., 103.

Synonymy: ? Sepia palmata Owen, 1881; ? Amplisepia verreauni Iredale, 1926; ? Amplisepia parysatis Iredale, 1954.

FAO Names: En - Australian giant cuttlefish

Fr - Seiche géante SP - Sepia gigante

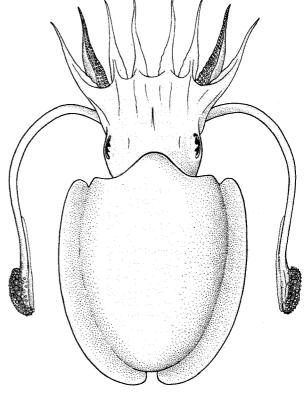
Díagnostic Features : Adults very large. Suckerbearing surface of tentacular club raised off the stalk, attached only by a thin membrane; 5 suckers in rows across the manus, median suckers enlarged; swimming keel of club extending along stalk a distance equal to the club length. Web between arms deep: equal to half of arm length between dorsal arms, two thirds of arm length between lateral arms, absent between ventral arms. Three flat, semicircular, flap-like papillae posterior to each eye. Fins broad. Colour: deep maroon.

Geographical Distribution: So far only known from Australia (except the far north) and Tasmania.

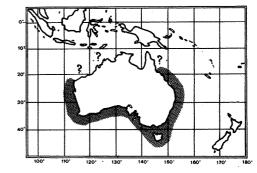
Habitat and Biology: A neritic demersal species with cryptic habits occurring in coral areas, seagrass beds and on open trawl grounds down to at least 35 m depth. Spawning extends from October to December.

Size: Maximum size up to 50 cm mantle length, and weight in excess to 5 kg; one of the largest cuttlefishes.

Interest to Fisheries :


Presently no large-scale commercial fisheries exist for the species, but it is commonly seen in fish markets along the southern coast of Australia, where it is caught by hook and line or speared by divers. It is sold for human consumption and also used as bait.

Local Names:

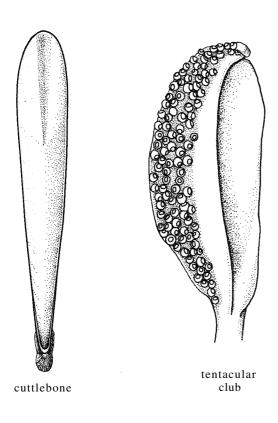

Literature: Okutani (1980).

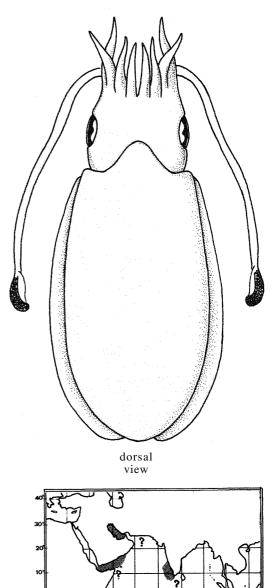
distal part of tentacle

dorsal view

Sepia arabica Massy, 1916

SEP Sep


Sepia arabica Massy, 1916, Rec.Indian Mus, 12(5):228.


Synonymy: None.

FAO Names: En - Arabian cuttlefish

Fr - Seiche d'Arabie SP - Sepia arábiga

Diagnostic Features : Body elongate, narrow, bluntly pointed posteriorly, the mantle extending dorsally to level with the eyes. Tentacles very slender; clubs crescent-shaped with 5 or 6 suckers in transverse rows across the club, subequal in size; their dorsal protective membrane as broad as sucker-bearing surface, their swimming keel well developed, slightly longer than club. Cuttlebone long, narrow; tapered, very narrow posteriorly; spine lacking.

Geographical Distribution: Northwestern Indian Ocean and southwest India.

Habitat and Biology: Unknown.

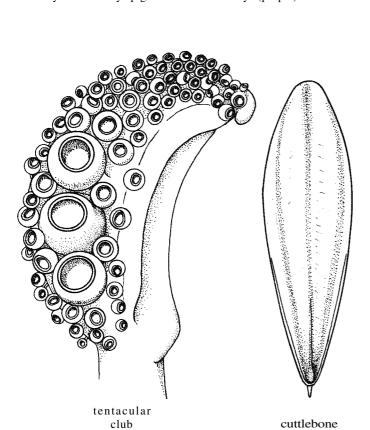
Size: Maximum mantle length 7 cm.

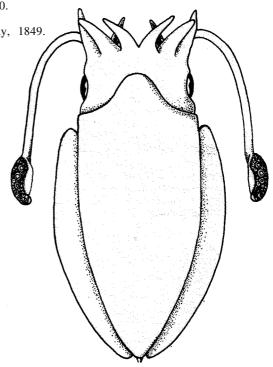
Interest to Fisheries: Presently undetermined. The species has been reported from a bottom trawl resource survey in the Gulf of Aden.

Local Names:

Sepia australis Quoy & Gaimard, 1832

SEP Sep 10


Sepia australis Quoy & Gaimard, 1832, Zool.Astrolabe, 2(1):70.


Synonymy: Sepia capensis Orbigny, 1845; Sepia sinope Gray, 1849.

FAO Names: En - Southern cuttlefish

Fr - Seiche australe Sp - Sepia austral

Diagnostic Features: Body elongate, oval, narrow and tapering anteriorly and posteriorly. Fins arising several mm posterior to anterior mantle margin. Tentacular club short, slightly recurved, with 5 suckers in transverse rows, 4 proximally; median 3 suckers greatly enlarged, 1 or 2 others less so. Colour: a narrow reddish-brown to orange band along bases of fins; body ventrally as heavily pigmented as dorsally (purple).

40°
30°
10°
20°
10°
20°
10°
20°
30°
40°
50°
60°

dorsal view

Geographical Distribution: Southeastern Atlantic (Namibia, South Africa) and western Indian Ocean (South Africa to northern Mozambique); Red Sea.

Habitat and Biology: A demersal species, abundant on the upper shelf from 50 to 100 m depth. 1ts biology is unknown.

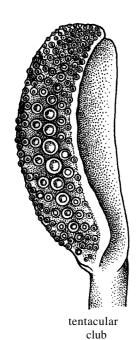
Size: Maximum mantle length 5.5 cm.

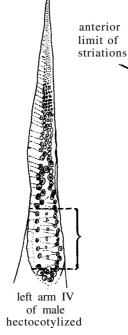
Interest to Fisheries: At present undetermined.

Local Names:

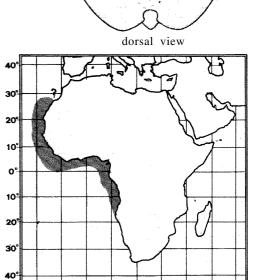
Literature: Okutani (1980).

Sepia bertheloti Orbigny, 1839


Sepia bertheloti Orbigny, 1839, Hist.Nat.Iles Canar., 2(2):21.


Synonymy: Sepia mercatoris Adam, 1937.

FAO Names: En - African cuttlefish


Fr - Seiche africaine Sp - Jibia africana

Diagnostic Features: Mantle more than 2 times longer than wide, its dorsal margin projecting strongly as a long, sharp angle. Tentacular club slender, the swimming keel not extending beyond base; protective membranes not united proximally and not extending proximally onto stalk; suckers small, not much larger than arm suckers, 8 suckers arranged in oblique, transverse rows, 3rd in series slightly enlarged. Left ventral arm (IV) (hectocotylus) with 2 to 5 normal suckers at its base and 9 to 13 rows of minute spaced suckers on its proximal third; dorsal protective membrane very broad, almost completely covering suckers. Colour: elongate tubercles along bases of fins with small, light-coloured patches laterally, males with a reddish stripe near lateral border of fins.

10

10

SEP Sep 2

Geographical Distribution : Eastern Atlantic: from $14^\circ\ S$ to the Canary Islands.

Habitat and Biology: A neritic, demersal species occurring in open bottom habitats down to 160 m depth, but most abundant between 70 and 140 m. The spawning season extends through summer and autumn; females deposit about 50 to 100 eggs. This species preys on molluscs (including other cephalopods), crustaceans and small fishes. Its lifespan is 1 to 2 years.

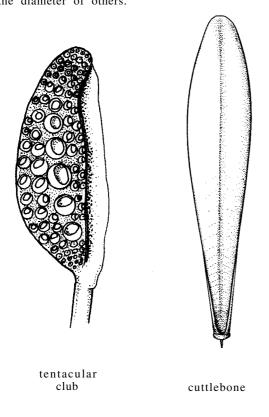
 $\mbox{\bf Size}$: Maximum mantle length 17.5 cm in males and 13 cm in females.

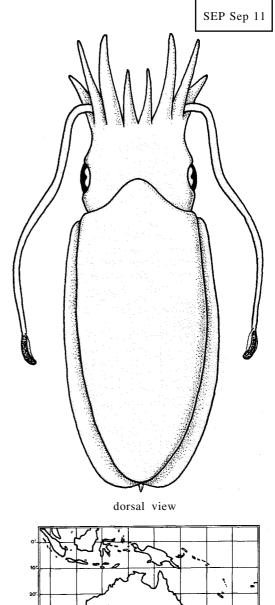
Interest to Fisheries: Taken by otter trawls in the cuttlefish fishery off the Canary Islands where greatest concentrations are encountered between 70 and 140 m depth; females predominate in the catches. Off Senegal, it is reported to represent only a minor portion (about 1%) of the total cuttlefish catch taken by trawls and from pirogues (Bakhaukho & Drammeh,1982). Marketed fresh or deep-frozen for export. Separated statistics are not reported for this species.

Local Names:

Literature: Okutani (1980); Bakhaukho & Drammeh (1982, catches, Senegal).

Sepia braggi Verco, 1907


Sepia braggi Verco, 1907, Trans.Roy.Soc.S.Austr., 31:213.


Synonymy: Arctosepia braggi is invalid generic name.

FAO Names: En - Slender cuttlefish

Fr - Seiche gracile Sp - Sepia grácil

Diagnostic Features: Mantle elongate, 2½ to 3 times longer than wide, its dorsal margin broadly acuminate and projecting anteriorly. Fins relatively broad, united posteriorly, arising posterior to mantle magin. Tentacular club short, swimming keel well developed, extending proximally beyond base; dorsal protective membrane broad, devoid of suckers, widely separated from ventral protective membrane proximally; 5 suckers in transverse rows, finely dentate, 5 or 6 median suckers 2 times the diameter of others.

20 100 110 120 130 140 150 150 170 180

Geographical Distribution: Southern Australia and Tasmania, western Australia to Cockburn Sound, 32°S.

Habitat and Biology: A demersal species, depth range unknown; so far recorded from 34 to 38 m.

Size: Maximum mantle length 6.5 cm.

Interest to Fisheries: Possibly taken with other cuttlefish in artisanal fisheries along southern Australia.

Local Names:

Remarks: Reported from a bottom-trawl resource survey in the Gulf of Aden but the species identification is doubtful because the distribution as currently understood is limited to southern Australian waters.

Sepia brevimana Steenstrup, 1875

SEP Sep 12

Sepia brevimana Steenstrup, 1875.

Synonymy: <u>Sepia rostrata</u> (pars) Ferussac & Orbigny, 1848; <u>Sepia winckworthi</u> Adam, 1939.

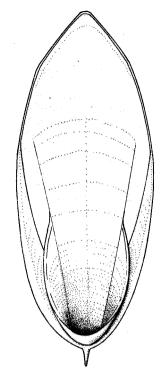
FAO Names: En - Shortclub cuttlefish

Fr - Seiche petites mains Sp - Sepia mazicorta

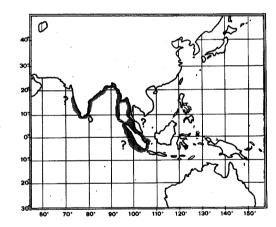
Diagnostic Features: Mantle broad, its dorsal margin acuminate, strongly projecting anteriorly; posteriorly very pointed due to the long spine. Tentacular club short, with a well developed swimming keel extending proximally beyond base; dorsal protective membrane as broad as sucker-bearing surface; suckers very small, subequal; 6 to 8 suckers in oblique transverse rows.

Geographical Distribution : Indo-Malayan region, along the northern coast of the Indian Ocean, from Singapore westwards probably to the west coast of India.

Habitat and Biology: A small, demersal species, restricted to shallow, costal waters down to 30 m depth. Spawning extends almost throughout the year; in eastern Indian waters several peaks have been observed between July and February (Silas <u>et al.</u> 1982). Hatchlings grow to adult size in 11 to 13 months, depending on environmental temperature conditions. Off Madras, they attain 2.9 to 3.4 cm within 6 months, 5.6 to 5.8 cm at the end of 12 months and about 7.5 cm after 18 months.


Size: Maximum mantle length 10 cm; maximum length in the Indian trawl fishery, 8.5 cm off Madras, and 9.5 cm off Waltair (northeast India). Common size ranges from about 4 to 7 cm. Length at first maturity for males is 5.6 cm off Madras and 6.2 cm off Waltair; for females, 5.9 cm and 6.3 cm, respectively.

Interest to Fisheries: This species appears as bycatch in the eastern Indian trawl fishery off Madras and Waltair, but separate catch data are not reported.


Local Names:

Literature: Silas et al. (1982, biology, India).

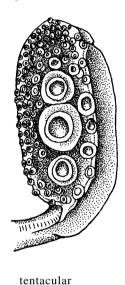
Remarks: The species identification from the west coast of India needs confirmation.

cuttlebone

Sepia elegans Blainville, 1827

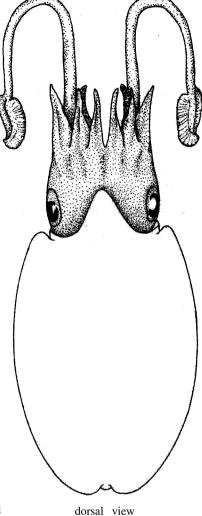
SEP Sep 3

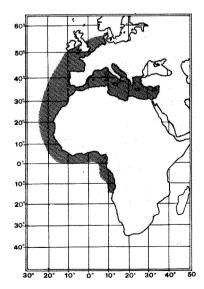
Sepia elegans Blainville, 1827, Sepia. Dict.Sci.nat., 48:284.


Synonymy: <u>Sepia biserialis</u> Blainville, 1827; <u>Sepia rupelloria</u> Ferrusac & Orbigny, 1835-48; <u>Sepia italica</u> Risso, 1854.


FAO Names: En - Elegant cuttlefish

Fr - Seiche elegante SP - Choquito sin punta


Mantle elongate, oval-shaped, Diagnostic Features : more than 2 times longer than wide, its dorsal margin projecting strongly in a Sharp angle. Tentacular club short, broad, blunt distally; swimming keel extending slightly along stalk; dorsal and ventral projective membranes united at proximal base of club, extending slightly along stalk; 6 to 8 suckers in oblique, transverse rows; a few moderately enlarged suckers dorsally; 3 greatly enlarged suckers in 2nd or 3rd series (counted from dorsal side), may exceed the size of arm suckers. Left ventral arm (IV) hectocotylized for 2/3 of its length, with a few normal basal suckers followed by 9 to 11 rows of minute, widely spaced suckers arranged in a zig-zag pattern; distal third of hectocotylus with 4 oblique rows of normal suckers.


hectocotylized

Geographical Distribution: Eastern Atlantic from 15° S to 50° N; Mediterranean Sea including the Adriatic.

club

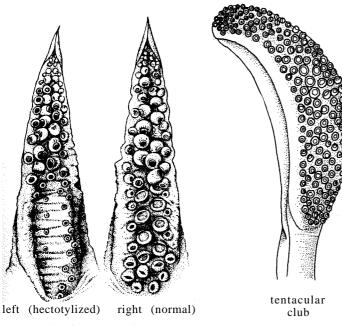
Habitat and Biology: A small demersal species with a total depth range from 30 to 430 m. In the western Mediterranean, the population begins to migrate into shallower water during the spring and by summer is concentrated on the spawning grounds in 40 to 70 m depth. In October the population begins to descend and it resides in winter at 100 to 250 m depth. Off West Africa spawning extends almost throughout the year in shallow inshore waters, with peaks in summer and autumn. Maturity is attained at about 1 year of age. Males may carry about 95 spermatophores and females about 250 eggs. Spawning occurs at temperatures of 13° to 18° C. The eggs are laid in clusters of 12 to 25 (diameter 4 mm) attached to alcyonarians (sea fans), shells, etc., on muddy bottoms. The lifespan of this species is about 1 ½ years. It preys on molluscs, small crustaceans and fishes.

Size: Maximum mantle length 9 cm. Males attain sexual maturity between 3 and 5 cm; females between 5 and 6 cm. In the western Mediterranean length at first maturity is 3.7 cm in males and 6.2 cm in females.

Interest to Fisheries: Taken as bycatch in Mediterranean and West African trawl fisheries. It is most abundant in about 150 m depth, hence deeper than S. officinalis and S. bertheloti. Separate statistics are not reported for this species. It is marketed fresh and frozen.

Local Names: ITALY: Seppia elengate; SPAIN: Castaño.

Literature: Mangold-Wirz (1963, biology, western Mediterranean); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).


Sepia elobyana Adam, 1941

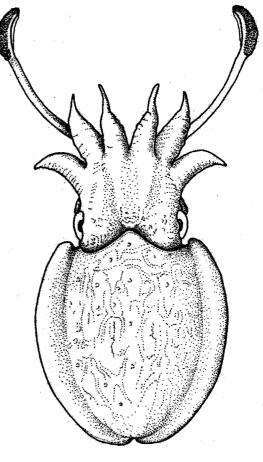
Sepia elobyana Adam, 1941, Mém.Mus.Roy.Hist.Nat. Belg., (2)21:121.

Synonymy: None.

FAO Names : En - Guinean cuttlefish Fr - Seiche de Guinée SP - Sepia guineana

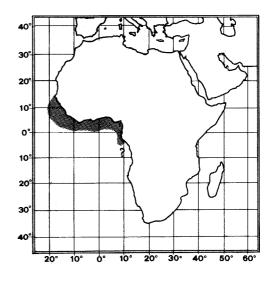
Diagnostic Features : Mantle broad, length less than 2 times width, its dorsal surface with scattered tubercles and a reticulate pattern of ridges. Fins broad. Tentacular club with about 8 subequal suckers in transverse rows. Left arm IV hectocotylized in proximal half with minute, widely separated suckers on fleshy ridges; all arms attenuate, suckers of unequal sizes.

pair of arms IV of male


Geographical Distribution: Eastern Atlantic Ocean along West African coast from Senegal to Gulf of Guinea (southern limits undetermined).

Habitat and Biology: Unknown.

Size: Maximum mantle length 6 cm.


Interest to Fisheries: Possibly taken with other cuttlefishes off West Africa, but not distinguished from similar species.

Local Names:

SEP Sep 13

dorsal view

Sepia esculenta Hoyle, 1885

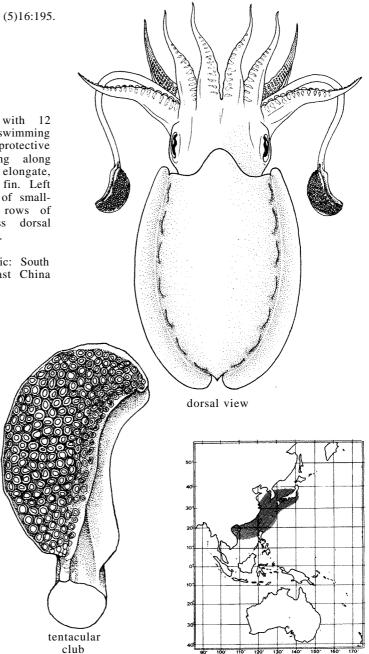
SEP Sep 14

Sepia esculenta Hoyle, 1885, Ann.Mag.Nat.Hist., (5)16:195.

Synonymy: Sepia elliptica Hoyle, 1885.

FAO Names: En - Golden cuttlefish

Fr - Seiche dorée Sp - Sepia dorada


Diagnostic Features: Tentacular club with 12 minute, subequal suckers in transverse rows; swimming keel extending on stalk proximal to club; protective membranes narrow, separate at base, extending along stalk as very low membranous ridges. Six or 7 elongate, membranous, fleshy papillae along base of each fin. Left arm IV hectocotylized by 5 or 6 transverse rows of small-sized suckers distal to the first 5 transverse rows of suckers. Colour: pale transverse stripes across dorsal surface of mantle; a white line along base of fins.

Geographical Distribution : Western Pacific: South China Sea (north of central Philippines) and East China Sea (Japan, excluding Hokkaido).

Habitat and Biology: A demersal neritic species found on sandy bottoms between 10 and 100 m depth, sometimes burrowing in the substrate. After overwintering in deeper waters, the population migrates into shallow coastal areas where it spawns when the water temperature increases. The eggs are deposited on macrophytes and other substrates.

Size : Maximum mantle length 18 cm, weight 0.6 kg.

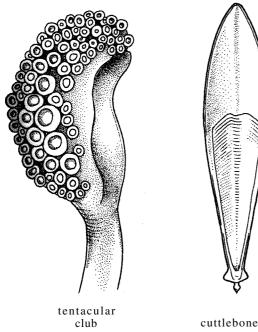
Interest to Fisheries: The most common cuttlefish in trawl catches off western Japan. It also supports localized and subsistence fisheries in the Philippines. Around Shantung and Kiangsu provinces of China it is the dominant Sepia species landed. In Hong Kong, annual landings average about 100 tons. Caught with otter trawls, pound nets, hoop nets, and on hook-and-line. The flesh is highly appreciated as food, especially in Japan and southeast Asian countries. The Japanese domestic landings of large-sized cuttlefish are consumed as sashimi, while small-sized individuals are marketed packed and frozen, ready for cooking.

Local Names: CHINA: Gam woo chak, Jam mak yue; JAPAN: Hariika, Kouika Maika, Sumiika.

Literature: Choe (1966, experimental aquaculture); Tomiyama & Hibiya (1978); Okutani (1980).

Remarks: The species has successfully been reared to market size in experiments, at growth rates well above those in natural populations (Choe, 1966).

SEP Sep 15 Sepia kobiensis Hoyle, 1885

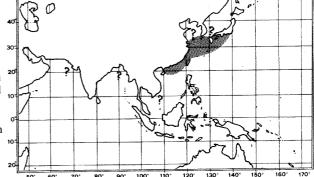

Sepia kobiensis Hoyle, 1885, Ann.Mag.Nat.Hist., (5)16:195.

Synonymy: Sepia andreanoides Hoyle, 1885; seven subspecies - Sasaki, 1920 and 1929.

FAO Names: En - Kobi cuttlefish

Fr - Seiche kobi Sp - Sepia kobi

Diagnostic Features : Mantle width less than half the length. Tentacular club short, narrow; suckers small, 8 suckers in transverse rows; 5 suckers of third longitudinal row much larger than all others; swimming keel broad, extending proximally beyond base of club; dorsal protective membrane broad, half the width of sucker-bearing surface. Arms short, attenuate, subequal; arm suckers globular quadriserial, those in median rows larger than marginal ones; left arm IV hectocotylized along distal half, with suckers greatly reduced in size and the oral surface hollowed out and transversely ridged.



Geographical Distribution: Western Pacific: South China Sea, East China Sea, Yellow Sea to southern and central Japan.

Habitat and Biology: A small demersal cuttlefish ranging to 160 m depth.

Size: Maximum mantle length 9 cm.

dorsal view

Interest to Fisheries: Taken as bycatch in small-scale fisheries off southern Japan and in the Inland Sea, mainly with fixed nets, trawls and beach seines, but also in small quantities between the 80 and 160 m contour in the Hong Kong area. No separate catch statistics are reported for this species.

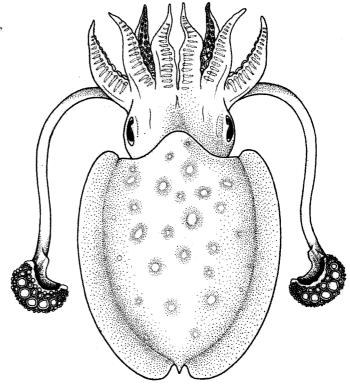
Local Names: JAPAN: Himekouika.

Literature: Okutani (1980).

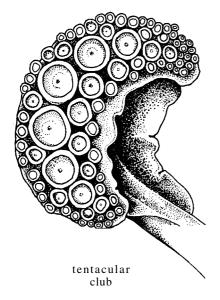
Sepia latimanus Quoy & Gaimard, 1832

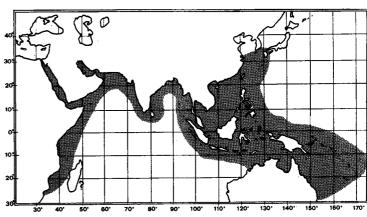
SEP Sep 16

<u>Sepia</u> <u>latimanus</u> Quoy & Gaimard, 1832, <u>Zool.Astrolabe</u>, 2(1):68.


Synonymy: <u>Sepia rappiana</u> Ferussac, 1835; <u>Sepia mozambica</u> Rochebrune, 1884; <u>Sepia hercules</u> <u>Pilsbry</u>, 1894.

FAO Names: En - Broadclub cuttlefish


Fr - Seiche grandes mains


Sp - Sepia mazuda

Diagnostic Features: Tentacular clubs half-moon-shaped, their protective membranes fused at base, completely surrounding sucker-bearing surface; a deep cleft or groove between swimming keel and dorsal protective membrane nearly separates sucker-bearing area from stalk; swimming heel extending proximally just beyond base of club; 5 or 6 suckers in transverse rows, a few median ones enlarged.

dorsal view

Geographical Distribution : Indo-Pacific: from southern Mozambique, throughout the periphery of the Indian Ocean, Coral Sea,

the periphery of the Indian Ocean, Coral Sea, Melanesian Islands, South China Sea, Philippine Sea and East China Sea to southern Japan.

Habitat and Biology: A shallow-water species inhabiting tropical coral reefs to depths of at least 30 m. Mating occurs on the west coast of Guam and off Okinawa in shallow waters (30 m depth) during January through May and the eggs hatch in 38 to 40 days.

Size: Maximum mantle length 50 cm.

Interest to Fisheries: This species supports local fisheries in western Japan and the Philippines. It is caught with jigs, handlines, setnets and spears. Common as bycatch in southeast Asian trawl fisheries. Separate statistics are not reported for this species.

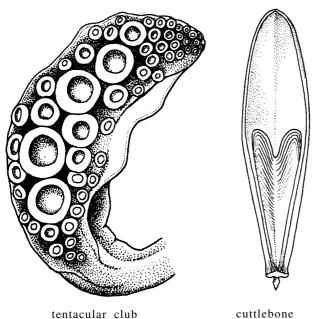
Local Names: JAPAN: Kobushime, Kubushime.

Literature: Okutani (1980); Chikuni (in press, fishery potential).

Sepia longipes Sasaki, 1914

SEP Sep 17

Sepia (Doratosepior) longipes Sasaki, 1914, Annot.Zool.Jap., 8(5):619.

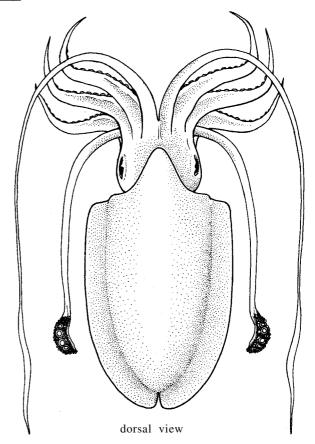

Synonymy: None.

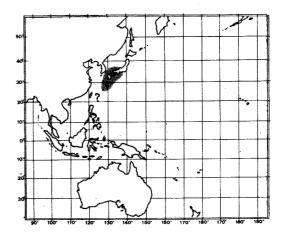
FAO Names: En - Longarm cuttlefish

Fr - Seiche pieuvre

SP - brazolargo

Diagnostic Features: Anterior dorsal mantle extending far anteriorly. Tentacular club crescent-shaped, expanded; up to 8 suckers in transverse rows, 4 medial suckers considerably enlarged. Arms I of males greatly elongate - 2 times longer than mantle, somewhat thickened distally, bordered with a broad, trabeculate protective membrane; both arms IV hectocotylized in their distal 2/5 - the left by longitudinal furrows and ridges with rudimentary quadriserial suckers, the right by slightly rudimentary suckers.




Habitat and Biology: A neritic demersal species.

Size: Maximum mantle length 20 cm.

Interest to Fisheries: Undetermined.

Local Names:

Sepia lorigera Wülker, 1910

SEP Sep 18

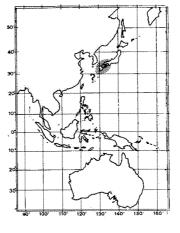
Sepia lorigera Wülker, 1910, Abh.Bayer.Akad.Wiss., 3(suppl.1):12.

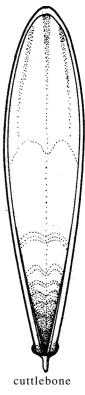
Synonymy: None.

FAO Names: En - Spider cuttlefish

Fr - Seiche araignée SP - Sepia loriga

Diagnostic Features: Dorsal part of mantle extending into a prominent anterior lobe. Tentacular club expanded, crescent-shaped, with 8 suckers of greatly unequal size in transverse rows, 4 medial suckers greatly enlarged. Arms I of males greatly elongate - 2 times longer than mantle, whip-like, attenuate, with tips flared by a broad protective membrane; left arm IV hectotylized in its distal third by rudimentary suckers on swollen bases along transverse ridges.


Geographical Distribution : Western Pacific: southwestern Japan, Inland Sea.


 $\begin{tabular}{lll} \textbf{Habitat} & \textbf{and} & \textbf{Biology} & : & A & neritic, & demersal species. \end{tabular}$

Size: Maximum mantle length 25 cm.

Interest to Fisheries: Fished in southwestern Japan, but no detailed information is available on the catch.

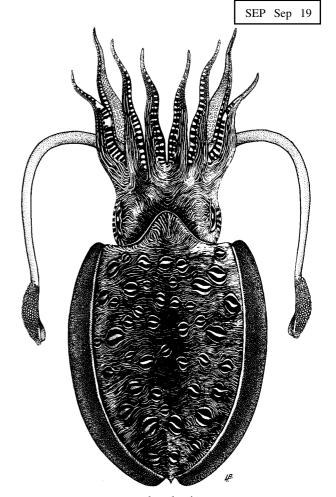
Local Names:

Sepia lycidas Gray, 1849

Sepia lycidas Gray, 1849, Cat.Moll.Brit.Mus., 103.

Synonymy: Sepia subaculeata Sasaki, 1914.

FAO Names: En - Kisslip cuttlefish


Fr - Seiche baisers Sp - Sepia labiada

Diagnostic Features :

Tentacular club with welldeveloped swimming keel extending nearly to base of club; outer keel along tentacular stalk extends along club but does not connect with swimming keel; protective membranes extending, without meeting, along entire length of stalk as membraneous ridges; 8 subequal suckers in transverse rows. Colour: dorsal part of mantle with vivid oval eye-like or lip-shaped markings; a white line along bases of fins.

tentacular club

dorsal view

Geographical Distribution: Western Pacific: South China Sea, Philippine Sea and southwestern Japan.

Habitat and Biology: A neritic demersal species ranging in depths from 15 to about 100 m. In the South China Sea, it is abundant between 60 and 100~m depth during the prespawning period (November to February), but migrates inshore to spawn in depths of 15 to 30 m from March through May.

Size: Maximum mantle length 38 cm, and weight 5 kg.

Interest to Fisheries: The second most important commercial cuttle-Japan (East China Sea) and Hong Kong. Caught as bycatch in trawls and with setnets and jigs, or using live cuttlefish as lures during the spawning season, or hook baited with live prawns or crabs in other seasons. The flesh of the mantle is thick and tasty, and therefore greatly esteemed.

Local Names: CHINA: Fa gai na, Mak gung, Yi muk woo chak; JAPAN: Gitchyoika, Kaminariika, Kobuika, Maruichi, Mongouika.

Literature: Tomiyama & Hibiya (1978).

Remarks: The species has been reared successfully in aquaculture experiments (Choe, 1966; under the name of Sepia subaculeata).

Sepia madokai Adam, 1939

SEP Sep 20

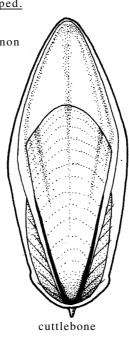
Sepia madokai Adam, 1939, Results Esped. Indes Neerl.Orient., 55c:77.

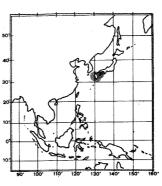
Synonymy: Sepia robsoni Sasaki, 1929 (non robsoni Massy, 1927).

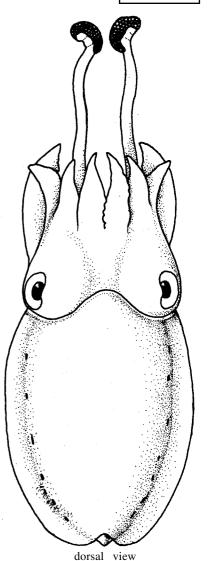
> En - Madokai's cuttlefish FAO Names:

Fr - Seiche madokai Sp - Sepia madokai

Diagnostic Features : Mantle length less than 2 times the width. Tenclub expanded, flattened tacular crescent-shaped; 16 very small, subequal suckers, in transverse rows. Left arm IV hectocotylized in middle third by rudimentary suckers, those of the dorsal 2 rows much more reduced.


Geographical Distribution: Western Pacific: southwestern Japan.


Habitat and Biology: A demersal species most common in bays. Its exact depth range unknown.


Size: Maximum mantle length 10 cm.

Interest to Fisheries: Common in Inland Sea area, where it is fished with bottom drift nets and trawls, but is of limited commercial value because of its small size.

Local Names:

Sepia mestus Gray, 1849

SEP Sep 21

Sepia mestus Gray, 1849, Cat.Moll.Brit.Mus., 108.

Synonymy: Ascarosepion verreauxi Rochebrune, 1884; Solitosepia liliana Iredale, 1926

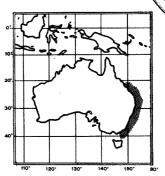
FAO Names: En - Reaper cuttlefish

Fr - Seiche moisson SP - Sepia segadora

Diagnostic Features: Tentacular clubs expanded, with a broad swimming keel extending proximally along tentacular stalk for half the length of the club; protective membranes remain separated at base of clubs; club suckers small, subequal, 8 suckers arranged in transverse rows, those in the middle of the 3rd longitudinal row slightly enlarged. Shell broad, oval.

 $\begin{tabular}{lll} \textbf{Geographical Distribution :} Southwest Pacific: eastern Australia, approximately $39^\circ S$ to $20^\circ S$. \end{tabular}$

Habitat and Biology: A neritic demersal species; depth range uncertain.


Size: Maximum mantle length 14 cm.

Interest to Fisheries: So far there are no directed fisheries for this species, but probably it enters the artisanal cuttlefish catches in southeastern Australia.

Local Names : AUSTRALIA: Common New South Wales cuttle fish.

Literature: Okutani (1977, fishery resources).

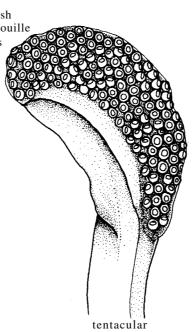
Remarks: Published records refer only to stranded cuttlebones.

cuttlebone

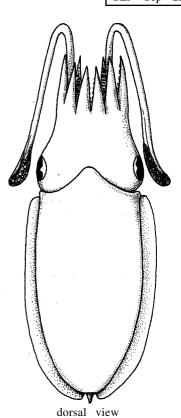
SEP Sep 22

Sepia murrayi Adam & Rees 1966

<u>Sepia murrayi</u> Adam & Rees, 1966, <u>Sci.Rep.John</u> <u>Murray Exped.</u>, 1933-34, 11(1):63.


Synonymy: None.

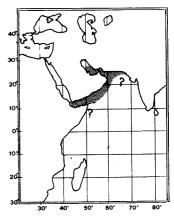
FAO Names: En - Frog cuttlefish


Fr - Seiche grenouille

SP - Sepia ranuds

Diagnostic Features : Mantle elongate, oval. Fins extending beyond posterior tip of mantle. Tentacular club short, narrow, crescent-shaped; a strong swimming keel extends slightly beyond proximal base of club; dorsal protective membrane nearly as broad as sucker-bearing surface; both protective membranes remain separate and extend along stalk as low ridges; 5-6 minute, subequal suckers in transverse rows. Arms compressed with low swimming membranes; tips bluntly pointed, protective membranes wider and folded over suckers at tips; suckers biserial on arms I and tips of all arms.

club


Geographical Distribution: Indian Ocean Gulf of Aden and western Gulf of Oman.

Habitat and Biology: A neritic demersal species; depth range undetermined (the only record is $106\ m$).

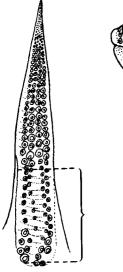
Size: Maximum mantle length 4.5 cm.

Interest to Fisheries: Reported from a bottom trawl resource survey in the Gulf of Aden; its relevance to artisanal or industrial fisheries is undetermined.

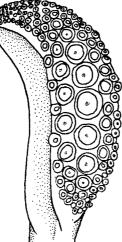
Local Names:

Sepia officinalis Linnaeus, 1758

SEP Sep 1

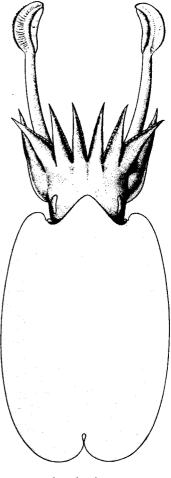

Sepia officinalis Linnaeus, 1758, Syst.Nat., ed. 10:658.

Synonymy: None.

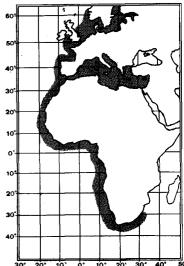

FAO Names: En - Common cuttlefish

Fr - Seiche commune SP - Sepia común

Diagnostic Features: Tentacular club with 5 or 6 suckers in each transverse row, the median ones moderately enlarged; swimming keel not extending proximally beyond base of club. Left arm IV hectocotylized by reduction in size of suckers in proximal 5 to 8 horizontal rows (S. officinalis type) or in proximal 8 to 13 rows (S. hierredda type); dorsal protective membrane of normal width (S. officinalis type) or little developed (S. hierredda type); cuttlebone anteriorly and posteriorly rounded (not acuminate), with parallel sides and a weak spine visible in juveniles, but embedded in chitin in adults, the striated zone not extending past midpoint of length (S. officinalis type), cuttlebone acuminate at both ends, with a spine also in adults and striations sometimes extending past midpoint of length (S. hierredda type).


left arm IV of male hectocotylized

tentacular club


cuttlebone

dorsal view

Geographical Distribution: Eastern Atlantic: from the Baltic and North Seas to South Africa; Mediterranean Sea.

Habitat and Biology: A demersal, neritic species occurring predominantly on sandy to muddy bottoms from the coastline to about 200 m depth, but most abundant in the upper 100 m;larger individuals are encountered in the deeper part of the range. Seasonal migrations (mainly vertical) have been shown to occur in all stocks. For the population off Senegal, Bakhaykho & Drammeh (1982) suggest a seasonal north-South, and an offshore-inshore migration pattern. In the western Mediterranean, in early spring, large individuals leave the deeper water, where they spend the winter, to migrate into shallower water (males precede females by about a week). This group is followed by a succession of smaller cuttlefish arriving in shallow waters throughout the summer. In autumn the gradual descent begins. Spawning occurs in shallow waters, throughout the year, with peaks at water temperatures from 13° to 15°C: in the western Mediterranean, between April and July, off Senegal and on the Sahara Banks between January and April (primarily big adults); there is a second minor spawning peak of medium and small-sized individuals in late summer and early autumn.

Males may carry up to 1 400 spermatophores, females between 150 and 4 000 eggs, depending on their size. Eggs measure from 8 to 10 mm in diameter and are attached in grape-like clusters to seaweeds, debris, shells and other substrates. They hatch after 30 to 90 days depending on temperature (21.5 to 15°C, respectively). The total length of hatchlings is 7 or 8 mm. Growth rate varies directly with temperature and inversely with size (Pascual, 1978). Larvae hatched in early summer from the spring brood usually participate in the autumn spawning of the following year, while those from the autumn brood spawn in spring in their second year of life. Thus, the two cycles alternate. Males predominate in the adult phase because of massive postspawning mortality among large females.

Food consists of small molluscs, crabs, shrimps, other cuttlefishes, and juvenile demersal fishes. Cannibalism is common and has been interpreted as "strategy" to overcome temporary shortage of adequately sized prey (Caddy, 1979). Daily feeding rates of 10 to 30% of body weight in juveniles do not seem unlikely in view of the high growth rate and the relatively short lifespan (up to 2 years in the fishery). Predators of common cuttlefish include sharks, sparids and other demersal fishes and cuttlefishes.

Size: Maximum mantle Iength 45 cm, weight up to 4 kg in temperate waters, but only little more than 30 cm and 2 kg in subtropical seas. Common sizes in the West Saharan fisheries range between 15 and 25 cm. In that area, length at first maturity is 13.5 cm mantle length in females, and between 12 and 14 cm in males. Off Tunisia, length at first maturity is 12 cm in females, and 10 cm in males.

Interest to Fisheries: An important commercial resource throughout its range. World catches attributed to this species varied between 8 500 and 14 000 metric tons in recent years. The catch reported for 1981 totalled 12 800 metrictons, taken almost exclusively by Italy in the Mediterranean (Fishing Area 37) (FAO 1983). Prominent catches of unidentified cuttlefishes (Sepia spp. and Sepiola spp.), most of which are believed to be S. officinalis, also are taken off West Africa (Fishing Area 34). In 1981, these catches amounted to about 29 100 metric tons showing a slight decrease against previous years. For many years Spain has taken the largest catches in this area. The finfish discarded by Spanish cuttlefish trawlers was estimated at approximately 63% in 1976 and included more than 90 species categories, primarily sparids (Pagellus erythrinus and P. acarne), jack mackerels (Trachurus spp.), flatfishes, electric rays (Torpedo spp.), and weevers (Trachinus spp.) (Bravo de Laguna, Fernandez & Santana, 1976). While the Japanese share in the West African cuttlefish catches went down drastically, Moroccan participation in this fishery, which started only in 1980, is steadily increasing. Senegalese catches remained relatively stable over the last 5 years (FAO, 1983). It is suspected, that the overall effort exceeds the optimum level and that present catch levels could be maintained or even increased with reduced effort (Caddy, 1981).

In the industrial fisheries, common cuttlefish is primarily trawled, either as a target species or as bycatch to demersal finfishes. On the other hand, the artisanal fisheries utilize a great variety of highly selective gear, such as spears, pots and traps, often combined with the use of light. One particular fishing method used in calm transparent waters consists of luring the males with a live female attached to a thin line. Once the male has grabbed the female, both are pulled up, the male is detached, and the female lowered again. The live female, may be substituted with a mirror which causes the male to mistake his own image for the female. Common cuttlefish is usually marketed fresh and frozen, and is a highly appreciated food item, particularly in Japan Republic of Korea, Italy and Spain. Aquaculture has been tried experimentally and also appears promising for large-scale ventures.

Local Names: ALGERIA: Choubai, Chouebí, Seiba, Seich, Sepia, Seppio; BULGARIA: Sepija; CYPRUS: Soupia; EGYPT: Sobbeit; FINLAND: Mustekala, Sepia; FRANCE: Casseron, Chakod, Chibia, Margade, Seiche; Corsica: Seppia; GERMANY (FR): Gemeiner Tintenfisch, Sepie; GREECE: Soupia; ISRAEL: Dyonon refui; ITALY: Pruppusiccia, Scarpetta, Scarpitta, Scarpitelle (juveniles), Secce, Seccetella, Sepa, Sepia imperiale, Seppa, Seppia, Siccia; JAPAN: Mongoika, Yoroppa kouika; LEBANON: Sabbidije; LIBYA: Shoubia. MALTA: Sicca; MONACO: Supia; MOROCCO: Chubei, Seiche; NETHERLANDS: Gewone Inktvis, Zeekat; PORTUGAL:

Chêco, Chôco; Madeira: Choco; ROMANIA: Sepia; SENEGAL: Seiche; SPAIN: Aluda, Castañuela, Choco, Chocón, Coca, Jibia, Jibión, Luda, Rellena, Rellena, Sipia, Sipionet; TUNISIA: Choubei, Chouebi, Seche, Sibia, Sipia, Soubia; TURKEY: Sübye; UK: Cuttlefish; USSR: Kora katitza; YUGOSLAVIA: Sipa.

Literature: Mangold-Wirz (1963, biology, western Mediterranean); Fischer (1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37); Pascual (1978, growth and food conversion in aquarium conditions); Hatanaka (1979a, spawning season northwest African stocks); Caddy (1981, ecological role and management consideration in northwest African fisheries); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part); Bakhaykho & Drammeh (1982, biology of Senegalese stocks); Fisheries Committee for the Eastern Central Atlantic (CECAF) (1982, stock assessment); Conseil général des peches pour la Méditerranée (CGPM) (1982, stock parameter for the Mediterranean).

Remarks: Several subspecies have been namedfor various populations throughout the very broad latitudinal range of this species, but it seems best to refer here only to the species until their systematics and distributions are better understood. The species has been successfully reared in aquaculture experiments of medium scale (Minervini, Sequi & Barbato, 1982).

Sepia omani Adam & Rees, 1966

SEP Sep 23

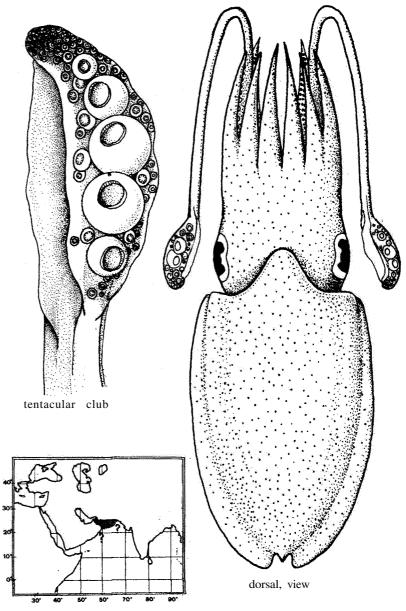
Sepia omani Adam & Rees, 1966, Sci.Rep.John Murray Exped., 1933-34, 11(1):92.

Synonymy: None.

FAO Names: En - Oman cuttlefish

Fr - Seiche d'Oman Sp - Sepia omani

Diagnostic Features: Mantle broad, extending anteriorly in a lobe beyond midpoint of eyes. Fins emerging close to mantle margin. Tentacular club short, broad; swimming keel well developed and slightly longer than club; a deep cleft or groove nearly separates sucker-bearing surface from tentacular stalk; protective membranes narrow, separated at base of club, not continuing along stalk; 8 suckers arranged in very oblique, transverse rows, 4 or 5 in middle of third longitudinal row very greatly enlarged, globular. Left arm IV hectocotylized in its middle portion with greatly crowded dorsal and ventral rows on suckers leaving the central region devoid of suckers but transversely ridged.


Geographical Distribution : Indian Ocean: western Gulf of Oman.

Habitat and Biology : A neritic demersal species; depth range undetermined (the only record is from 201 m depth).

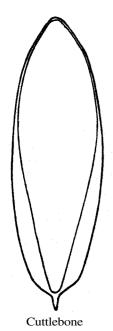
Size: Maximum mantle length 7 cm.

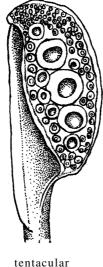
Interest to Fisheries : No information.

Local Names:

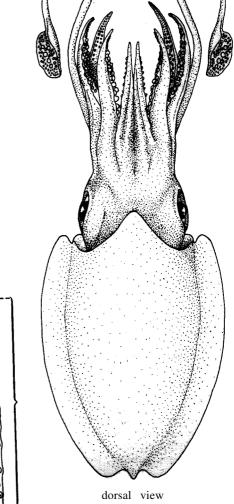
Sepia orbignyana Ferussac, 1826

Sepia orbignyana Ferussac, 1826, Ann.Sci.nat., 7:156.

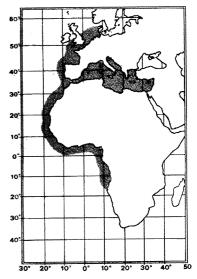

Synonymy: <u>Sepia rubens</u> Philippi, 1844; <u>Acanthosepion enoplon</u> Rochebrune, 1884.


FAO Names: En - Pink cuttlefish

Fr - Seiche rosée


Sp - Choquito con punta

Diagnostic Features: Width of cuttlebone equal to one third of its length, dorsal surface rose or orange coloured with a faint median groove. Fins extend full length of mantle, not uniting posteriorly. Tentacular clubs with 5 suckers across the club, the median longitudinal row with 3 greatly and 2 moderately enlarged suckers; swimming keel extends proximally beyond base of club. Left arm IV hectocotylized with proximal dorsal and ventral suckers forming zig-zag series for two thirds of length, followed by a dozen transverse rows of 4 minute suckers to tip of arm. Colour: mottled.


SEP Sep 4

1964 -

Geographical Distribution : Eastern Atlantic: from $17^\circ S$ to $55^\circ N$; Mediterranean Sea.

Habitat and Biology: A nektonic species occurring over muddy and detritus-rich continental shelf and slope areas in 50 to 450 m depth, but most abundant between 80 and 150 m, throughout the year. No onshore spawning migrations have been reported. Spawning occurs at temperatures of 13 to 16°C. In the western Mediterranean and off northwest Africa, the spawning period extends from early summer to autumn. Mature males, aged 6 or 7 months, carry about 100 spermatophores; females of 9 or 10 months, some 400 eggs. Egg diameter increases with the size of the females. The eggs (7 to 8.5 mm diameter) are laid in clusters of 30 to 40 and attached to sponges on muddy bottoms.

Size: Maximum mantle length 12 cm; in West African populations, males reach sexual maturity at about 4 or 5 cm mantle length, females at 7 cm; in those in the western Mediterranean length at first maturity is almost 5 cm in males and about 7.8 cm in females.

Interest to Fisheries : One of the species regularly exploited by western Mediterranean and Saharan-West African trawl fisheries. Separate statistics however, are not reported for this species.

Local Names: ITALY: Seppia pizzuta; SPAIN: Chopito.

Literature : Mangold-Wirz (1963, biology, western Mediterranean); Okutani (1980); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

tentacular club

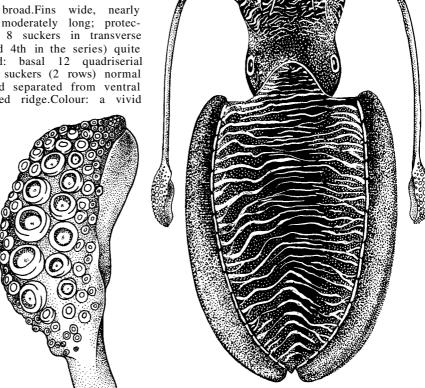
Sepia pharaonis Ehrenberg, 1831

Sepia pharaonis Ehrenberg, 1831, Symbolae Phys., Moll., unpag.

Synonymy: <u>Sepia rouxi</u> Orbigny, 1841; <u>Sepia formosana</u> Berry, 1912; <u>Sepia formosana</u> Sasaki, 1929; <u>Sepia tigris</u> Sasaki, 1929.

FAO Names: En - Pharaoh cuttlefish

Fr - Seiche pharaon Sp - Sepia faraónica


Diagnostic Features : Mantle broad.Fins wide, nearly as long as mantle. Tentacular clubs moderately long; protective membranes not meeting at base; 8 suckers in transverse rows with 5 or 6 median ones (3rd and 4th in the series) quite enlarged. Left arm IV hectocotylized: basal 12 quadriserial rows normal, next 10 rows with ventral suckers (2 rows) normal but those in dorsal 2 rows minute and separated from ventral rows by a fleshy, transversely grooved ridge.Colour: a vivid

transverse tiger-stripe pattern (especially in males) on dorsal mantle and head; a narrow, light, interrupted line along bases of fins.

Geographical Distribution: Indo-Pacific: Red Sea, Arabian Sea to South China Sea, East China Sea and northern and northwestern Australia.

Habitat and Biology: A neritic, demersal species occurring from the coastline to about 110 m depth, but more abundant in the upper 40 m, particularly during the reproductive season, when it migrates shoreward and aggregates in shallow waters. Spawning takes place at water temperatures ranging from 18 to 24°C, from March to May around Hong Kong, but extends almost throughout the

year around India, with peaks from September to December and April to June on the east coastand from October to December and March to April on the west coast (Silas et al., 1982). Peak spawning in the Red Sea extends from August through October, with the females participating as one-year olds and the males mostly as two-year olds (Sanders, 1981). Fertility increases with size. The eggs are laid in clusters and attached to plants, shells and other substrates.

dorsal view

SEP Sep 6

On the Indian east coast, hatchlings attain mantle Iengths of up to 10 cm after 6 months, almost 17 cm after 12 months, and about 20 cm after 16 months, while on the west coast they grow to 14 cm in 6 months, 21 cm in 12 months, 26 cm m 18 months and almost 30 cm in 2 years. Longevity is estimated at about 2 years on the east coast and 3 years on the west coast, with males living longer than females.

Food includes crustaceans and a variety of small demersal fishes. Cannibalism is not exceptional. The main predators of this species are demersal fishes.

Size : Maximum mantle length 43 cm for males and 33 cm for females off the People's Democratic Republic of Yemen; more southward the maximum size may not exceed 36 m and 4.2 kg in males, and 30 cm and 2.4 kg in females. Common sizes in landings range from 15 to 20 cm mantle length.

Interest to Fisheries: Pharaoh cuttlefish supports industrial or artisanal fisheries throughout its range. Separate catch statistics are not included in the FAO Yearbook of Fishery Statistics, but IPFC (1982) reports annual catches for the period from 1969 to 1980 fluctuating between 3 000 and 10 000 metric tons. These catches were taken by the Japanese long distance trawler fleet operating off the People's Democratic Republic of Yemen, following the decrease of Japanese fishing operations off West Africa. It has been suggested to increase the length at first capture through mesh regulations in the fishery off South Yemen in order to improve the catch-effort relationship (Sanders, 1981), but in 1982 the PDRY Government notified the Japanese ventures of the suspension of all operations because of the depletion of the stocks by this time. In the year before, 1981, the catch had already collapsed to 900 metric tons (Hotta, 1982). This species contributes about 90% of the cuttlefish catch off Australia by Chinese (Taiwan Province) pair trawlers amounting to some 1 000 metric tons in 1979 (Liu & Lai, 1980). It also occasionally is taken as bycatch by eastern Queensland prawn trawlers. On the Indian east and west coasts, Pharaoh cuttlefish is frequently caught with hand jigs and trolls, while off Hong Kong, spearing, lure-hooking and trawlers prevail, depending on the season. The flesh is thick, tender and excellent for human consumption.

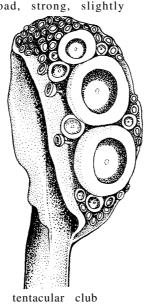
Local Names: CHINA: Mak mo, Foo baan woo chak; JAPAN: Torafukouika, Mongouika (large individuals).

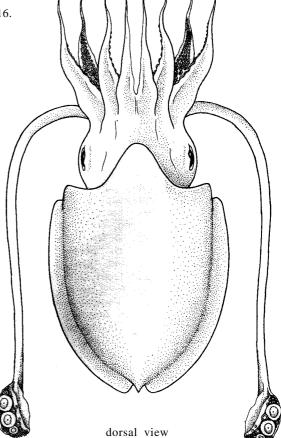
Literature: Tomiyama & Hibiya (1978, Japanese fisheries); Okutani (1980); Sanders (1981, stock assessment, length-weight relationship); Silas et al. (1982, biology, India).

Sepia prashadi Winckworth, 1936

SEP Sep 24

Sepia prashadi Winckworth,1936, Proc.Malac.Soc.Lond., 22(1):16.

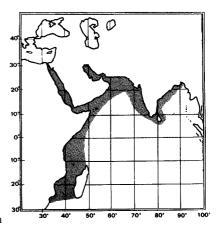

Synonymy: None.


FAO Names: En - Hooded cuttlefish

Fr - Seiche capuchon SP - Sepia caperuza

Diagnostic Features : Fins several millimetres shorter than mantle, narrow, separate. Tentacular clubs short, broad; swimming keel broad, strong, slightly

longer than the club; suckerbearing surface nearly separated from the stalk by a very deep cleft under the dorsal protective membrane; both protective membranes well developed, converging but not meeting at proximal base of club and not extending down the stalk; 8 suckers arranged in very oblique series across the club, but the arrangement is greatly distorted by the 2 or 3 enormously enlarged suckers of the 3rd longitudinal row. Left arm IV hectocotylized for most of its length after the 2nd quadriserial row; it is broad, flat, with transverse folds; suckers minute in the 2 very closely packed ventral rows, slightly larger in the dorsal rows which are separated proximally and converge distally.



Geographical Distribution : Western Indian Ocean: from southern Mozambique to the Gulf of Aden, Red Sea, Arabian Sea, Gulf of Oman, Gulf between Iran and the Arabian Peninsula, Indian west and east coasts and Sri Lanka.

Habitat and Biology: A demersal, shallow water species ranging in depth from the coastline to over 40 m.

Size: Maximum mantle length 14 cm; common between 5 and 11 cm in Indian trawl catches off Waltair.

Interest to Fisheries: Taken by trawls in the Red Sea and along the Indian east coast. Off Waltair (northeast India), it is most abundant from the beginning of the year to June and in some years, from October to December; off Madras, it is taken in small quantities in local upwelling areas as bycatch to finfishes normally occurring in deeper waters, i.e., bigeyes (<u>Priacanthus spp.</u>) and Indian driftfish (<u>Ariomma indica</u>) (Silas <u>et al.</u>, 1982). Separate catch statistics are not reported for this species.

Local Names:

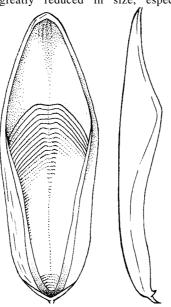
Literature: Okutani (1980); Silas et al., (1982, biology, India).

Sepia recurvirostra Steenstrup, 1875

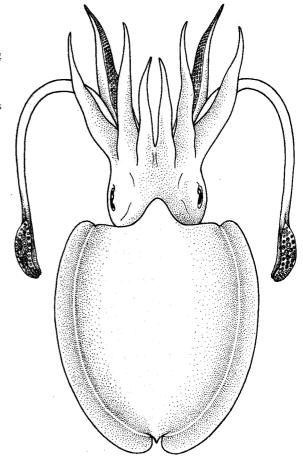
SEP Sep 25


Sepia recurvirostra Steenstrup, 1875, K.dankse Vidensk Nat., (5)10(7):475.

Synonymy: Sepia singaporensis Pfeffer, 1884.


FAO Names: En - Curvespine cuttlefish

Fr - Seiche hameçon Sp - Sepia ganchuda

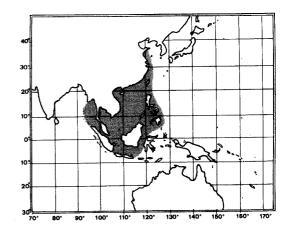

Diagnostic Features: Mantle broad. Tentacles large with relatively small clubs, their swimming keel extending proximally a short distance beyond the base of the club; dorsal protective membrane extending down the stalk for some distance; protective membranes fused at the proximal base; 5 or 6 suckers in transverse rows with 5 or 6 median suckers greatly enlarged; a deep cleft nearly separates the suckerbearing surface on the fenestrate dorsal protective membrane from the stalk. Left arm IV in males hectocotylized in its proximal third by suckers greatly reduced in size, especially those of the dorsal rows.

tentacular club

frontal view lateral view cuttlebone

dorsal view

Geographical Distribution : Western Pacific: Andaman Sea, South China Sea, the Philippines and southern East China Sea.


Habitat and Biology: A demersal species inhabiting the continental shelf; in Hong Kong it occurs in depths of 50 to 140 m.

 $\mbox{\bf Size}$: Maximum size 17 cm dorsal mantle length and 0.4 kg weight.

Interest to Fisheries: This species is of some commercial relevance in Hong Kong where it enters multispecies trawl catches. Separate statistics are not reported for this species.

Local Names : CHINA: Jam mak yue; JAPAN: Asia kouika.

Literature: Tomiyama & Hibiya (1978); Okutani (1980).

Sepia savignyi Blainville, 1827

SEP Sep 26

Sepia savignyi Blainville, 1827, Dict.Sci.Nat., 48:285.

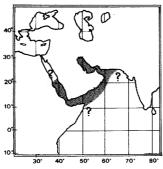
Synonymy: None.

FAO Names: En - Broadback cuttlefish

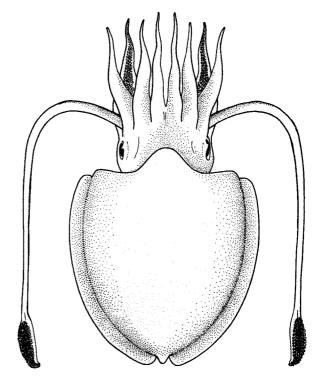
Fr - Seiche gros dos SP - Sepia robusta

Diagnostic Features: Mantle broadly oval, acuminate posteriorly. Tentacles long, slender, clubs narrow, their swimming keels narrow, barely extending beyond base of club; protective membranes narrow, separate, extending along stalk; 8 moderate-sized, subequal suckers

(median ones slightly enlarged) in oblique, transverse rows.


Geographical Distribution:
Western Indian Ocean: Red Sea,
Gulf between Iran and the Arabian
Peninsula and Gulf of Oman.

Habitat and Biology: A demersal neritic species; known depth range from about 25 to 70 m.


Size: Maximum mantle length 13 cm.

Interest to Fisheries: Undetermined.

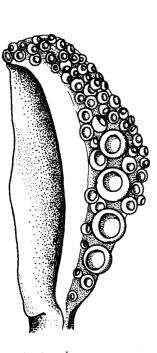
Local Names:

tentacular club

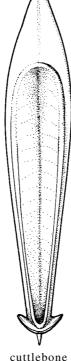
dorsal view

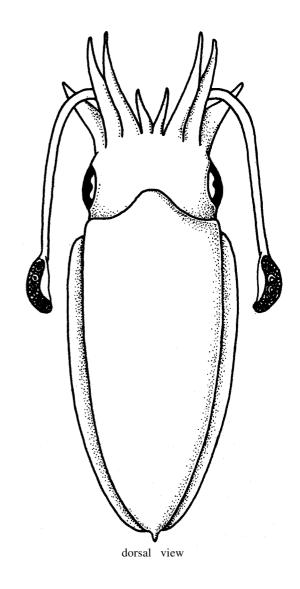
Sepia trygonina (Rochebrune, 1884)

SEP Sep 27

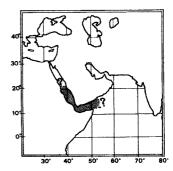

Dorasepion trygoninum Rochebrune, 1884, Bull.Soc.Philomath.Paris, (7)8:74-122.

Synonymy: Dorasepion trygoninum Rochebrune, 1884.


FAO Names: En - Trident cuttlefish


Fr - Seiche trident Sp - Sepia tridente

Diagnostic Features : Mantle elongate, narrow, bluntly tapered posteriorly. Fins narrow. Tentacular clubs short, with a well developed swimming keel extending proximally beyond the base of the club; dorsal protective membrane broad and separated at base from the ventral membrane; 8 suckers in very oblique, transverse rows; about 5 suckers in third longitudinal series greatly Left arm IV hectocotylized; proximal third enlarged. normal, followed by an area devoid of suckers, with a hollowed-out surface, covered with large, wrinkled protective membranes; distal part normal.


Geographical Distribution: Western Indian Ocean: Gulf of Aden and Red Sea (northern limits undetermined).

Habitat and Biology: A demersal species occurring over a depth range from 35 to 415 m.

Size: Maximum mantle length 5 cm.

Interest to Fisheries: Reported from a bottom-trawl resources survey in the Gulf of Aden, but its fishery potential is presently undetermined.

Local Names:

Metasepia tulfbergi Appellöf, 1886, K.Sven Vetensk Adad.Handl., 21(13):26.

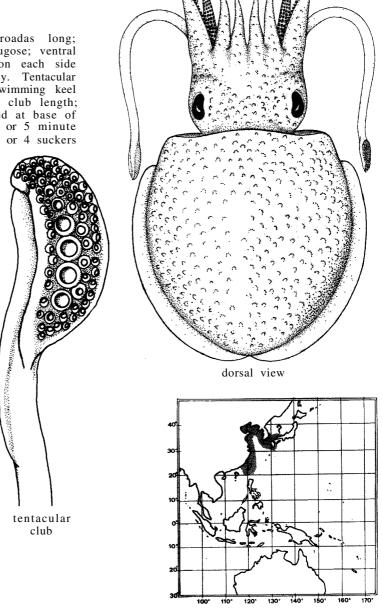
Synonymy: None.

FAO Names: En - Paintpot cuttlefish

Fr - Seiche encrier SP - Sepia tintero

Diagnostic Features: Mantle as broadas long; dorsal surface of mantle, head and arms rugose; ventral surface of mantle with 10 to 13 pores on each side anteriorly. Fins broad and fused posteriorly. Tentacular clubs short, crescent-shaped with a broad swimming keel extending proximally on stalk for half the club length; dorsal protective membrane broad, separated at base of club from ventral protective membrane; 4 or 5 minute suckers in transverse rows across the club, 3 or 4 suckers enlarged. Arm suckers biserial; left

suckers in transverse rows across the clubenlarged. Arm suckers biserial; left arm IV hectocotylized, the basal two thirds has 10 to 12 pairs of minute, widely spaced suckers, the rows separated by a transversely ridged area, distal third with 5 or 6 pairs of enlarged suckers followed by minute suckers at the tip. Shell broad, acuminate anteriorly, nearly completely chitinized anteriorly, calcareous posteriorly.


Geographical Distribution: Western Pacific: Sea of Japan, Yellow Sea to Hong Kong and Taiwan (Province of China).

Habitat and Biology: A neritic, demersal species occurring on the continental shelf between the 40 and 100 m depth contours.

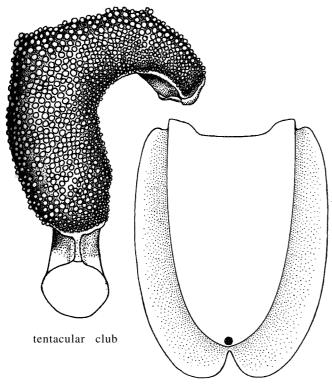
Size : Maximum mantle length 7 cm.

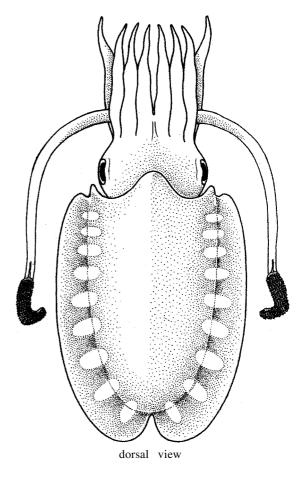
Interest to Fisheries: Currently there is no industrial fishery for this species. It's relevance in artisanal fisheries is undetermined.

Local Names: CHINA: Mak dau.

Sepiella inermis Orbigny, 1848

SEP Sepie 2

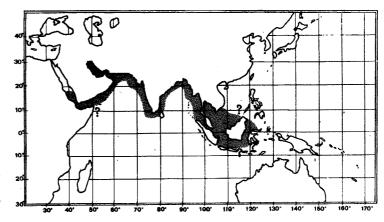

Sepiella inermis Orbigny, 1848 (in 1834-1848), Hist.nat.Ceph.acetab.:286.


Synonymy : <u>Sepia</u> (<u>Sepiella</u>) <u>microcheirus</u> Gray, 1849; <u>Sepia</u> <u>affinis</u> Eydoux & Souleyet, 1852; <u>Sepiella</u> maindroni Rochebrune, 1884.

FAO Names: En - Spineless cuttlefish

Fr - Sépia inerme SP - Sepia inerme

Diagnostic Features: Mantle elongate, oval; a pigmented gland and pore at posterior tip of mantle on ventral side. Tentacular clubs with 16 to 24 equal-sized minute suckers in transverse rows; swimming keel shorter than club; protective membranes narrow, extending proximally on stalk as low ridges. Shell spineless, its width 40% of length. Colour: greyish brown, with a series of reddish patches along bases of fins.



ventral view

Geographical Distribution: Indo-Pacific: Indian Oceansouthern Red Sea, Gulf of Aden to Andaman Sea and southern South China Sea.

Habitat and Biology: A demersal shallow-water species occurring to depths of about 40 m.

Spawning extends almost throughout the year with seasonal peaks in correlation with environmental conditions; off Kakinada and Waltair (northeast India) from June to September and from November to December; off Madras, in September, December and March; off Portonovo from March to October; off Cochin (southwest coast) in April and from

September through October. The majority of spawning cuttlefish are aged 9 to 12 months on the east coast and about 18 months on the west coast. Capsules containing several eggs are attached to various substrates in very shallow waters. Growth varies according to environmental conditions. Hatchlings may attain 2.9 to 3.5 cm mantle length after 6 months. At the end of one year, they can grow to sizes ranging. from 5.3 cm (Kakinada), to 6.1 cm (Cochin), while after 18 months they reach 7.4 cm (Waltair and Kakinada) to 8.2 cm (Madras). Longevity on the east coast is estimated at 1½ to 2 years, while on the west coast it is believed to be over 2 years (Silas et al., 1982).

Food of spineless cuttlefish consists primarily of small demersal fishes and crustaceans; cephalopods are a minor component of its diet.

Size: Maximum mantle length about 12.5 cm; maximum lengths in the Indian trawl catches are 11.2 cm on the east coast and 12.4 cm on the west coast off Cochin. Length at first maturity varies with stocks: off Waltair it is about 5.3 cm for males and 5.2 cm for females; off Madras, about 5.6 cm and 6.0 cm; and off Cochin 8.1 cm and 8.3 cm, respectively. Females grow larger than males (Silas et al., 1982).

Interest to Fisheries: One of the main commercial species in India and Sri Lanka, but separate statistics are not reported. Caught by trawls and a variety of artisanal gears, such as beach seines, fixed bag nets ("dol nets"), etc. In the Andaman Sea it is caught by push nets.

Local Names:

Literature: Okutani (1980); Silas et al. (1982, biological information on Indian stocks).

Sepiella japonica Sasaki, 1929

SEP Sepie 3

Sepiella japonica Sasaki, 1929, J.Coll.Agri., Hokk, 20:219.

Synonymy: Sepiella heylei Sasaki, 1929.

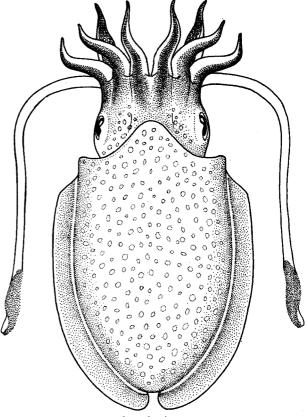
FAO Names: En - Japanese spineless cuttlefish

Fr - Sépia inerme japonaise SP - Sepia inerme japonesa

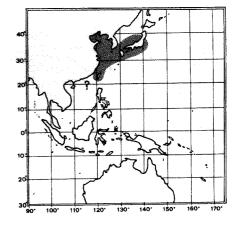
Diagnostic Features: Mantle broadly oval; pore of caudal gland at posterior tip ventral to fins. Tentacular clubs elongate, with 20 minute subequal suckers in transverse rows. Arm suckers quadriserial; left arm IV hectocotylized in proximal third with the basal part modified by great reduction in size of suckers placed on a transversely ridged surface; ventral 2 rows of suckers close together, dorsal 2 rows separated. Shell spineless, its width 30 to 35% of length. Colour: upper surface of mantle dark brown, covered with white spots.

Geographical Distribution: Western Pacific: East China Sea, Taiwan (Province of China) to southern Japan.

Habitat and Biology: A coastal demersal species ranging in depth from the surface to about 50 m. The spawning season varies with temperature and usually peaks during February and March off Hong Kong and in May off Japan.


Size : Maximum size 20 cm mantle length and 0.8 kg weight.

Interest to Fisheries: The dominant cuttlefish caught in the Chekiang and Kiangsu provinces of China. It supports local trawl fisheries in southwestern Japan and is, in some years, very abundant in Hong Kong waters. In Japan most of the catch is dried and marketed as "surume".


Local Names : CHINA: Mo jam woo chak, Ngor huet mak, JAPAN: Harinashikouika, Shirikusari, <u>Shiriyakeika</u>, Tsubekusari.

Literature : Voss & Williamson (1971, Hong Kong); Tomiyama & Hibiya (1978, Japanese fisheries); Okutani (1980).

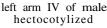
Remarks: The species has been reared successfully in aquaculture experiments (Choe, 1966; under the name Sepiella maindroni).

dorsal view

Sepiella ornata (Rang, 1837)

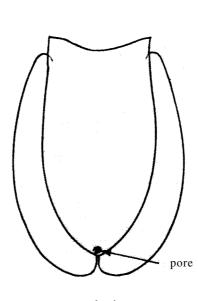
SEP Sepie 1

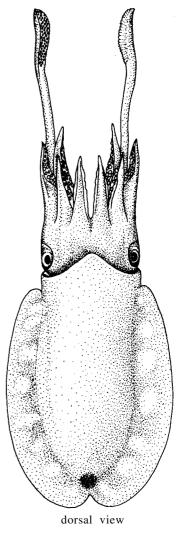
Sepia ornata Rang, 1837, Mag.Zool., 7(CL.V):76.


Synonymy: Sepia ornata Rang, 1837.

FAO Names: En - Ornate cuttlefish

Fr - Sépia ornée SP - Sepia orlada

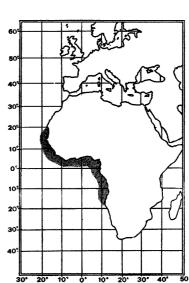

Diagnostic Features: Mantle elongate, ovoid; a round gland and pore visible ventrally between fins at posterior end. Tentacular clubs narrow, with 10 to 14 minute, equally sized suckers in transverse rows. Left arm IV hectocotylized on proximal half with 4 rows of minute suckers, the 2 dorsal rows widely separated, the 2 ventral rows close-set in a zig-zag pattern. Cuttlebone with broad, wing-like outer cone, spine absent, width 24 to 30% of length. Colour: reddish patches along dorsal bases of fins.



cuttlebone

ventral view of mantle and fins

Geographical Distribution : Eastern Atlantic: from Angola to Mauritania.


Habitat and Biology : A demersal species ranging from about 20 to 150 m depth but most abundant in waters deeper than 50 m.

Size: Maximum mantle length 10 cm.

Interest to Fisheries: It is taken mostly as bycatch in bottom trawls mixed with \underline{Sepia} species, the highest yields coming from waters deeper than 50 m.

Local Names:

Literature : Tomiyama & Hibiya (1978, Japanese fisheries); Okutani (1980); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

3.2 FAMILY SEPIADARIIDAE Naef, 1912

SEPI

FAO Names: En - Bottletail squids

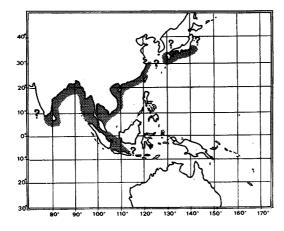
Fr - Sépiolettes Sp - Sepiolillas

Diagnostic Features: Mantle margin fused to head dorsally; ventral margin of mantle permanently fused with base of funnel on both sides, therefore no locking apparatus; tentacle stalk held in a deep sheath or web between bases of arms III and IV; restricted to the Indo-Malayan region. Left ventral arm (IV) of male hectocotylized; arm suckers in 2 rows proximally, 4 rows on distal third. Gladius absent.

Sepiadarium kochii Steenstrup, 1881

SEPI Sepiad 1

<u>Sepiadarium kochii</u> Steenstrup, 1881, <u>K.danska Vidensk.Seisk.</u> Skrifter, 1881:218.


Synonymy: Sepiadarium malayense Robson, 1932.

FAO Names: En - Bottletail squid

Fr - Sépiolette Sp - Sepiolilla

Diagnostic Features: Mantle nearly round in outline, fused to head dorsally and to base of funnel on both sides ventrally. Fins lobate, widely separated. Tentacular clubs broad with 8 minute suckers in transverse rows; tentacular stalk slender, sheathed in pocket between arms III and IV. Left arm IV hectocotylized by a single series of folds or laminae across the oral surface of its distal half; its ventral side bordered with a broad, crenulate membrane; some suckers on arms of males enlarged. Colour: entire dorsal surface with irregular orange spots.

 $\begin{tabular}{lll} \textbf{Geographical Distribution} & \textbf{:} & From & Japan & through & the & Indo-Malayan & region & to & India. \end{tabular}$

dorsal view

Habitat and Biology: Found in coastal waters to 60 m depth.

Size: Maximum mantle length 2 cm.

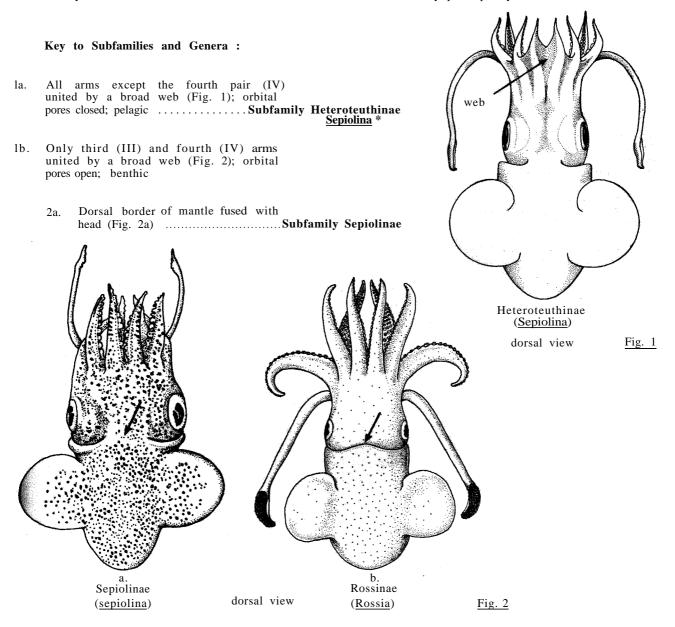
Interest to Fisheries: Undetermined.

Local Names:

Literature: Voss & Williamson (1971, Hong Kong).

FAMILY SEPIOLIDAE Leach, 1817

SEPIOL


Sepiolidae Leach, 1817, Zool.Misc., 3(30):137.

En - Bobtail squids, Mickey mouse squids Fr - Sépioles FAO Names:

Sp - Globitos, Rondeletiolas, Sepietas, Sepiolas

Diagnostic Features: Mantle short, broad, sac-like, with large, rounded fins inserted at mid-length. Eyes covered with "corneal" membranes. One or both dorsal arms, or one dorsolateral arm, hectocotylized; no protective membranes on arms. Gladius (inner shell) greatly reduced, non-calcified. Colour: generally pinkish to maroon, darkest dorsally.

General Remarks on the Family: Small-sized (up to 10 cm mantle length), compact squid-like cephalopods of such heterogeneity that 3 subfamilies and 13 genera are known. This is the most divergent and speciose family of sepioids with representatives in all oceans and seas ranging from intertidal to deep-sea benthic and even mesopelagic hatitats; very little is known about their biology. Most species are unsuitable for a directed largescale fishery because of their small size, scattered distribution, or relatively poor quality of flesh.

Plus four other genera lacking interest to fisheries and therefore not included here

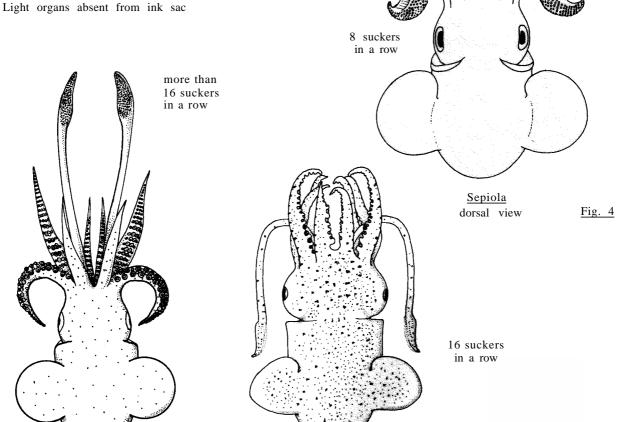
- Light organs present on ink sac 3a.
 - Gladius rudimentary; up to 16 ten-4a. tacular club suckers in transverse series across the club; usually 2 suckers in transverse rows on arms (Fig. 3a); light organs not saddleshaped
 - Suckers at tip of arm IV occasionally 4 in a row; 8 5a. tentacular club suckers in

middle part of arm with 2 suckers in the transverse rows

Suckers at tip of arm IV always 2 in a row; 16 tenta-5b. cular club suckers in transverse rows; light organs not

Rondeletiola

a. Sepiola


b. Euprymna Fig. 3

4b. Gladius absent; tentacular club with more than 16 suckers in a row, but in 2 rows at bases and tips (Figs 6, 3b); light organ saddle-shaped Euprymna

3b.

Euprymna dorsal view

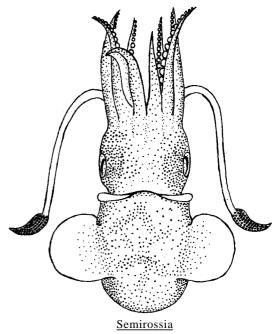
Fig. 6

Rondeletiola

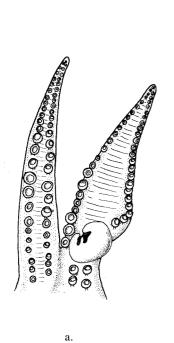
dorsal view

Fig. 5

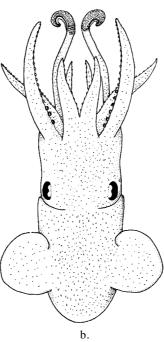
Left dorsal arm (I) hectocotylized 6a. by a broad, suckerless, concave zone between sucker rows; arms III in males slightly S-shaped (Fig. 7a,b) Sepietta

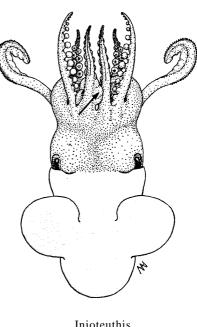

Left dorsal arm (I) hectocotylized with a large, fleshy protrusion at 6b. base; arms III in males strongly S-shaped, curved towards mouth (Fig. 8) Inioteuthis

Dorsal border of mantle not fused with

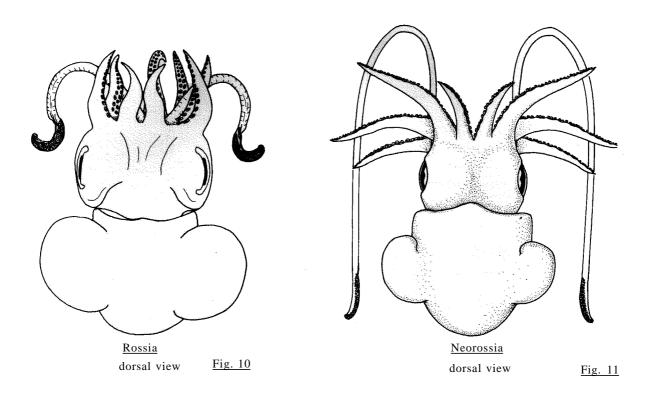

> 7a. Light organs present on ink sac; right dorsal arm (I) of male hectocotylized (Fig.9).....

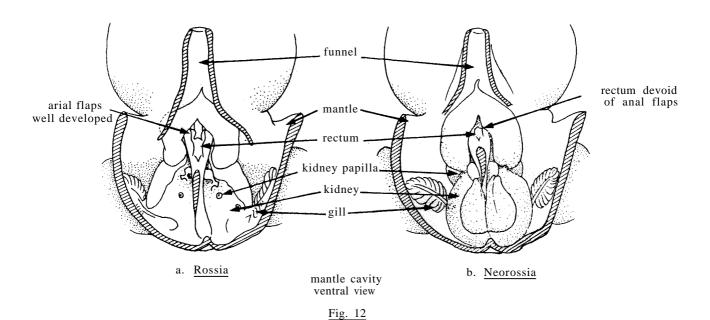
. Semirossia


7b. Light organs absent from ink sac; both dorsal arms (I) of males hectocotylized (Figs 10, 11)


dorsal view Fig. 9

left arm I hectocotyiized


Sepietta dorsal view



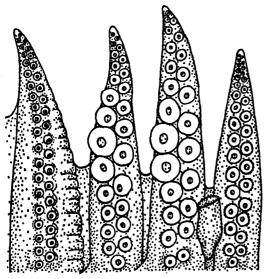
Inioteuthis dorsal view

Fig. 7

Fig. 8

Sepiolina nipponensis (Berry, 1911)

SEPIOL Sepioli 1


Stoloteuthis nipponensis Berry, 1911, Zool.Anz., 37(2):39.

Synonymy: Stoloteuthis nipponensis Berry, 1911.

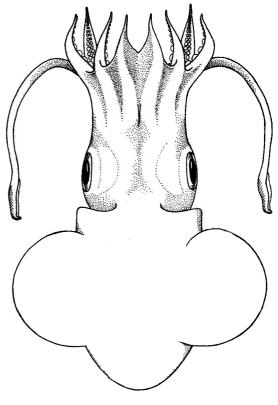
FAO Names: En - Japanese bobtail

Fr - Sépiole gros yeux Sp - Sepiolina

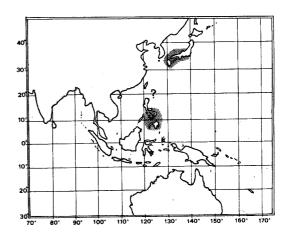
Diagnostic Features : Mantle purse-shaped, fused to head, 3/4 as wide as long. Fins large, deeply lobed anteriorly. Head broad. Tentacular clubs with 16 minute, subequal, subglobular suckers in transverse rows; swimming keel narrow, extending for a short distance along stalk. Arms short; all of them, except arms IV fused by a broad web; arm suckers biserial; in females numerous, small thoughout, in males fewer and enlarged on arms II to IV, especially II and III; both dorsal arms (I) hectocotylized by minute, widely separated suckers on very short stalks.

arms of left side of male (oral view)

Geographical Distribution : Western Pacific Ocean: recorded from southern Japan and the Philippines.


Habitat and Biology: A neritic species occurring on the continental shelf down to 200 m depth.

Size: Maximum mantle length 4 cm.


Interest to Fisheries: Undetermined.

Local Names:

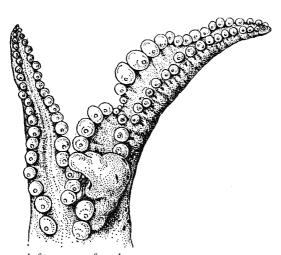
Literature: Okutani (1980).

dorsal view

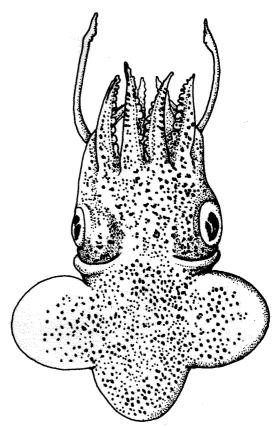
Sepiola atlantica Orbigny, 1840

SEPIOL Sepiol 2

Sepiola atlantica Orbigny, 1840 (in 1834-1848), Hist.Nat.Ceph.Acet.Viv.Foss., 235.


Synonymy: None.

FAO Names: En - Atlantic bobtail

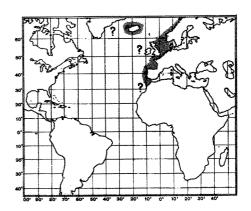

Fr - Sépiole grandes oreilles

SP - Sepiola atlántica

Diagnostic Features: Tentacular clubs with 8 suckers in transverse rows. Left arm I hectocotylized by a large swollen bulb, with secondary lobes basally; suckers of dorsal row swollen basally, followed by 3 or 4 greatly reduced suckers, then by 4 or 5 greatly swollen suckers in midportion.

left arm of male hectocotylized

dorsal view


Geographical Distribution : Northeast Atlantic Ocean: from Iceland and Norway to northwest Africa.

Habitat and Biology: No information available.

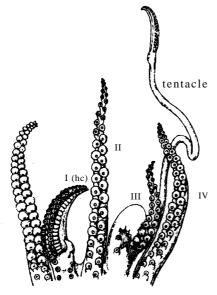
Size: Maximum mantle length 1.5 cm.

Interest to Fisheries : Undetermined.

Local Names:

Sepiola birostrata Sasaki, 1918

SEPIOL Sepiol 3


Sepiola birostrata Sasaki, 1918, Zool.Mag.Tokyo, 30:235-6.

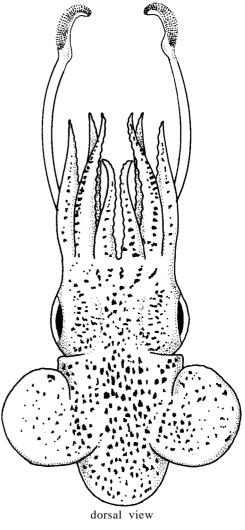
Synonymy: None

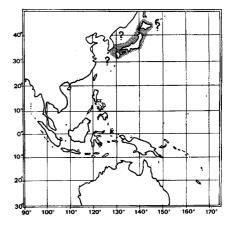
En - Butterfly bobtail Fr - Sépiole papillon **FAO Names:**

Sp - Sepiola mariposa

Diagnostic Features: Mantle relatively elongate. Tentacles slender, 2 times longer than arms, their clubs about 1/4 of tentacle length, slightly expanded; swimming keel very narrow distally, with a broad, thick, semilunar flap proximally, opposite the carpus; club suckers minute, subequal, largest and numbering 4 in a series across the club proximally, diminishing in size and increasing to 16 in each transverse row more distally. Left arm I hectocotylized, 1/2 to 4/5 of the length of right arm I, much thickened; 4 or 5 minute suckers basally, followed by a large swelling of 2 recurved, rostrae; remaining suckers much reduced, pointed attached to closely packed, prism-like stalks.

arms of male


Geographical Distribution: Western Pacific Ocean: Japan and Cape Clonard, Republic of Korea.


Habitat and Biology: Depth range undetermined.

Size: Maximum mantle length undetermined.

Interest to Fisheries: Reported to be locally consumed in China, but its actual and potential interest to fisheries has not been assessed.

Local Names:

Sepiola rondeleti Leach, 1817

SEPIOL Sepiol 1

Sepiola rondeleti Leach, 1817, Zool.Misc., 3(30):140.

Synonymy: None.

FAO Names: En - Dwarf bobtail

Fr - Sépiole naine

Sp - Globito

Diagnostic Features : Ventral margin of mantle markedly produced anteriorly. Tentacular clubs well developed, 8 suckers in the transverse rows, well developed, markedly enlarged in proximal part of dorsal longitudinal rows. Left dorsal arm (l) hectocotylized, blunt, laterally compressed, strongly curved laterally into a loop; 3 slightly enlarged suckers at base followed by a large, swollen, eyelet-

like bulb; suckers of dorsal row much larger than those of ventral row. Light organs earshaped, attached laterally to ink sac. Gladius rudimentary. Colour: ventral margin of mantle with a dense border of chromatophores; outer surface of tentacular clubs heavily pigmented with chromatophores.

Geographical Distribution : Throughout the Mediterranean; in the eastern Atlantic, it extends from the North Sea to Senegal.

Habitat and Biology: An epibenthic species occurring from very shallow waters down to about 450 m depth over sandy and muddy bottoms. It is common in Posidonia seaweed beds (down to about 35 m). In the western Mediterranean, the spawning season extends from March through November. Longevity is estimated at 1½ years.

It feeds on crustaceans and small fishes.

Size: Maximum mantle length 6 cm; common to 4 or 5 cm. All females above 3 cm mantle length are mature.

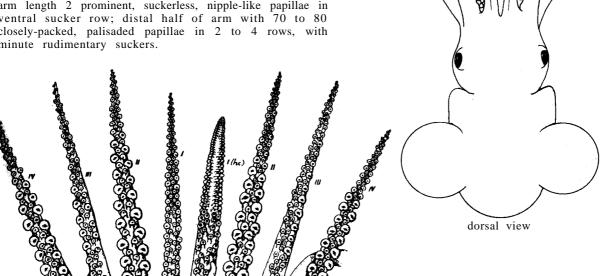
Interest to Fisheries: Caught with purse seines, drift nets and occasionally with bottom trawls. The flesh is very tasty though difficult to preserve. Separate statistics are not reported for this species.

Local Names: ALGERIA: Poulpe sèche, Sepietta, Sépiole, Seppiolo; FRANCE: Anchou souchot, Bougie, Glaouchau, Sepieta, Sépiole, Sepion, Sepiou, Sepioun, Supieta, Tantena; GERMANY (FR): Kleiner Tintenfisch; GREECE: Soupitza; ITALY: Babuccia,

dorsal view left arm I of male hectocotylized

Babbucciedda, Beccaficu, Calamaretto, Cape'e chiuove, Malnascui, Porpo-seppia, Scarpetta, Scartoccio, Seccetella, Sepietta, Sepiola, Sepiolina, Seppetta, Sponce currienti, Totanino, Tutariedde, Zotoleto, Zotolo; MALTA: Dakkra; MONACO: Süpiola; MOROCCO: Sépiole; NETHERLANDS: Dwerginktvis; PORTUGAL: Pota, Zula; ROMANIA: Sepiola; SPAIN: Choco, Fotesa, Frenética, Globito, Morralet; TURKEY: Derinsu sübyesi; YUGOSLAVIA: Bobic.

Literature: Mangold-Wirz (1963, biology, western Mediterranean); Fischer (ed., 1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37).

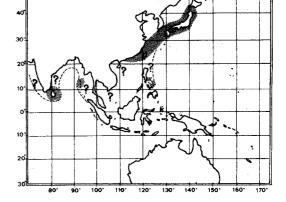

Euprymna berryi Sasaki, 1929, J.Coll.Agri., Hokk., 20:143.

Synonymy: None.

FAO Names : En - Double-ear bobtail Fr - Sépiole colibri

SP - Sepiola colibrí

Diagnostic Features: Tentacular clubs with swimming keel extending proximally along stalk; suckers extremely numerous, minute, elongated, goblet-shaped. Arm suckers in 4 longitudinal rows, those on lateral (dorsal and ventral) rows of arms II and IV greatly enlarged, globular. Left arm I hectocotylized, much thicker, shorter and more blunt than right arm I; suckers normal on proximal half, in 2 to 4 oblique rows; at 1/4 arm length 2 prominent, suckerless, nipple-like papillae in ventral sucker row; distal half of arm with 70 to 80 closely-packed, palisaded papillae in 2 to 4 rows, with minute rudimentary suckers.



arms of male (oral view)

Geographical Distribution: Along the coasts of China (South to Hong Kong and Japan), Andaman Islands and Sri Lanka.

Habitat and Biology: A pelagic coastal species occurring down to 60 m depth. Females grow much larger than males.

Size: Maximum mantle length 3 cm in males, 5 cm in females.

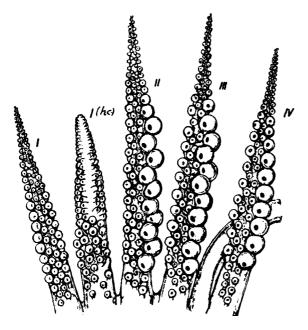
Interest to Fisheries: Currently not exploited commercially in Hong Kong, but reported to be consumed locally in China.

Local Names: CHINA: Leung yee jai.

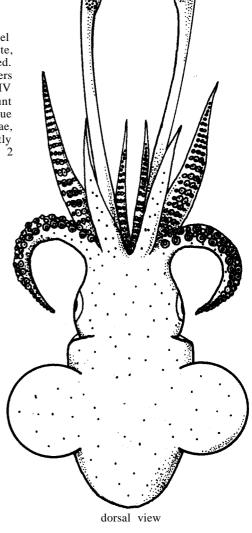
Remarks: The species has been reared successfully in aquaculture experiments (Choe, 1966).

Euprymna morsei (Verrill, 1881)

SEPIOL Eup 2


Inioteuthis morsei Verrill, 1881, Trans.Conn.Acad.Sci., 5(6):417.

Synonymy: Inioteuthis morsei Verrill, 1881; Euprymna similis Sasaki, 1913.

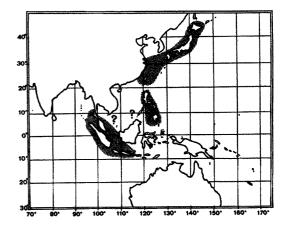

FAO Names:

En - Mimika bobtail Fr - Sépiole mimika Sp - Sepiola mimika

Diagnostic Features: Tentacular clubs with swimming keel extending along stalk; suckers extremely numerous, minute, crowded, shallow, globular and on very long stalks; dactylus naked. Arms with 4 rows of suckers, 2 rows proximally and distally; suckers uniformly small in females, enlarged in ventral row of arms II, III, IV in males. Left arm I hectocotylized, shorter, thicker, more blunt than right arm I; suckers in proximal third normal, in 2 to 4 oblique rows; in ventral row near base are 1 or 2 small nipple-like papillae, occasionally with a minute sucker; distal 2/3 of arm with tightly packed, palisaded, compressed papillae (modified sucker stalks) in 2 to 4 rows, ending in minute toothed suckers with elongate apertures.

arms of male (oral view)

Geographical Distribution : Western Pacific: Malaysia, Indonesia, the Philippines and China; northward through the East China Sea and throughout Japan.


Habitat and Biology: A small benthopelagic species, found in coastal waters over sandy bottoms on which it spawns; the eggs are small.

Size: Maximum mantle length 4 cm.

Interest to Fisheries: Currently of low commercial value, but sometimes utilized locally as food.

Local Names: JAPAN: Dangoika, Hidokoika, Jikoika, Mimiika.

Literature: Tomiyama & Hibiya (1978).

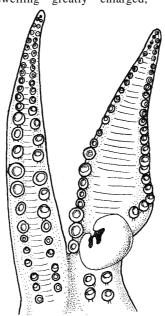
Sepietta oweniana (Orbigny, 1840) SEPIOL Sepiet 1

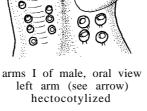
Sepiola oweniana Orbigny, 1840 (in 1834-1848), Hist.Nat.Ceph,Viv.Foss., 229.

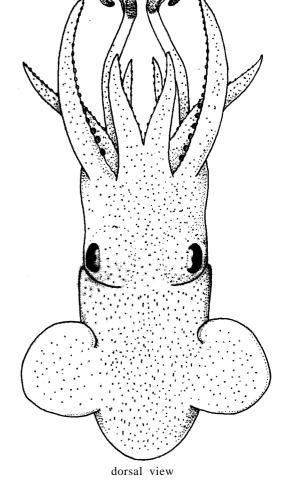
Synonymy: Sepiola oweniana Orbigny, 1840.

En - Common bobtail Fr - Sepiole commune **FAO Names:**

Sp - Sepieta común

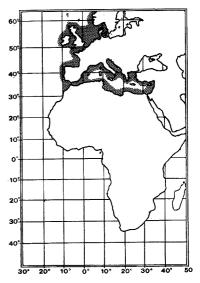

Diagnostic Features: Mantle blunt, bullet-shaped. Fins with a slight lateral angle and pronounced anterior lobes. Tentacular clubs with about 32 very minute, subequal suckers in transverse rows (giving a velvety appearance). Left arm I hectocotylized by 4 small, normal suckers at base, followed by a fleshy transverse swelling with a long, hook-like, inward-curved lateral papilla, a deep cleft medial to papilla, a flasklike rugose bulb, and a swelling at the dorsal edge; first 2 suckers in dorsal row distal to swelling greatly enlarged, followed by 3 smaller suckers, then


2 enlarged, then gradually decreasing suckers to tip; ventral rows with moderately enlarged suckers; a broad scoop-like depressed area lies between the sucker rows.


Geographical Distribution:

Norway Northeast Atlantic: (northern limit undetermined) to Morroco and the Mediterranean

Habitat and Biology: A benthopelagic species found over muddy bottoms over the shelf and the upper slope, ranging in depth from about 50 to over 600 m. In the North Atlantic most common from 50 to 100 m depth and in the Mediterranean from 100 to 400 m. In the Mediterranean, onshore migrations of large individuals have been observed in late winter, when deep water temperatures are higher than those at the surface. These spawn in spring and early summer in relatively shallow, coas-


Smaller sized tal waters, induced by an increase in water temperatures. bobtail squids ascend later in the year and do not spawn before autumn. The entire spawning period thus extends from, March to November. The eggs are deposited on ascidians ($\underline{\text{Microcosmus}}$) and other substrates. At 20° C they take about 30 days to hatch.

Size: Maximum mantle length 4 cm in females, about 3.5 cm in males.

Interest to Fisheries: Undetermined.

Local Names:

Literature: Mangold-Wirz (1963, biology, western Mediterranean).

Rondeletiola minor (Naef, 1912)

SEPIOL Rond 1

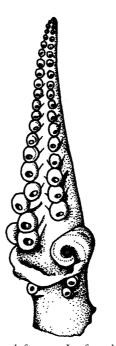
Sepietta minor Naef, 1912, Zool.Anz., 39(7):267.

Synonymy: Sepietta minor Naef, 1912.

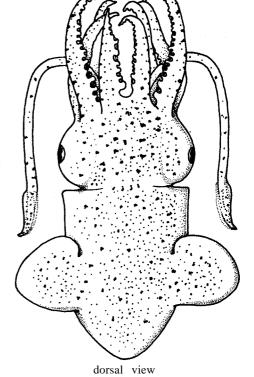
FAO Names: En - Lentil bobtail

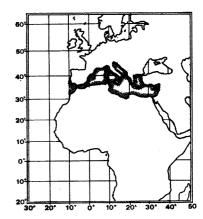
Fr - Sépiole bobie Sp - Rondeletiola

Diagnostic Features : Mantle blunt, bullet-shaped. Fins small, round, with blunt lateral angles. Tentacular clubs with about 16 small, uniform suckers in each transverse row. Ventral arms with normal biserial suckers to apex; left arm I hectocotylized, with 3 small suckers at base, and a large, swollen, transverse, hood-shaped papilla with small accessory lateral papilla; suckers distal to the


papilla greatly enlarged in the dorsal row to the tip, in the ventral row only about the proximal half of the suckers are enlarged; the two rows not widely separated.

Geographical Distribution : Mediterranean Sea and Eastern Atlantic (Portugal, southern limit undetermined).


Habitat and Biology : A demersal species inhahiting mud bottoms between 80 and 400 m depth.


Interest to Fisheries: Undetermined.

Local Names:

left arm I of male hectocotylized

Rossia antillensis Voss, 1955

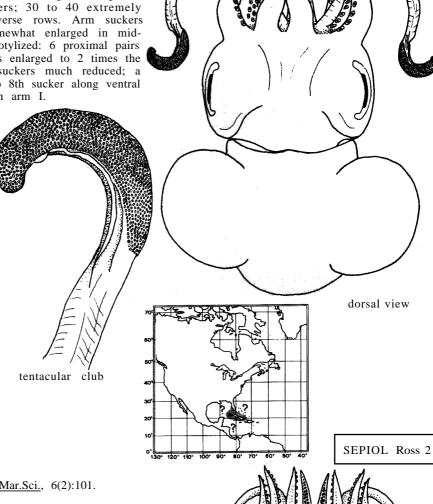
SEPIOL Ross 2

Rossia antillensis Voss, 1955, Bull.Mar.Sci., 5(2):86.

Synonymy: None.

FAO Names: En - Antilles bobtail

Fr - Sépiole mignonne SP - Globito antillano **Diagnostic Features:** The largest western Atlantic Rossia. Mantle sac-like, flabby. Fins 80 to 90% of mantle length, 1 2/3 to 2 times wider than mantle length. Head wider than mantle. Tentacles short, stout; clubs not expanded but with a well-developed swimming keel extending the length of the club to just proximal of suckers; 30 to 40 extremely minute, numerous suckers in transverse rows. Arm suckers in 2 rows, smaller in females, somewhat enlarged in midsection in males; both arms I hectocotylized: 6 proximal pairs of suckers small, followed by 6 pairs enlarged to 2 times the diameter of the basal pair; distal suckers much reduced; a thick, fleshy pad extends from 3rd to 8th sucker along ventral margin (protective membrane) of each arm I.


Geographical Distribution: Caríbbean Sea: Cuba, Dry Tortugas and western Florida.

Habitat and Biology : A deep-living demersal species; depth range undetermined (only records: 540 to 700 m).

 $\begin{array}{ccc} \textbf{Size} & \textbf{:} & \text{Maximum} & \text{mantle} \\ \text{length} & 7.5 & \text{cm}. \end{array}$

Interest to Fisheries : Undetermined.

Local Names:

Rossia bullisi Voss, 1956

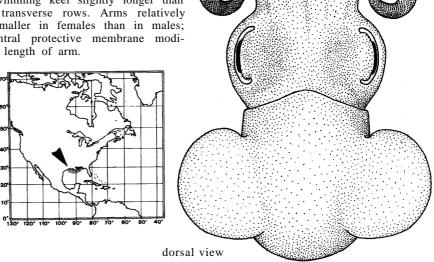
Rossia bullisi Voss, 1956, Bull.Mar.Sci., 6(2):101.

Synonymy: None.

FAO Names: En - Bully bobtail

Fr - Sépiole bouledogue SP - Globito cabezudo

Diagnostic Features: Mantle stout, saccular. Fins 65 to 75% of mantle length, 1½ times wider than mantle length. Tentacular clubs long, slightly expanded, with swimming keel slightly longer than club; 10 to 12 minute suckers in transverse rows. Arms relatively long, subequal, suckers in 2 rows, smaller in females than in males; both arms I hectocotylized, the ventral protective membrane modified, expanded and running along full length of arm.


Geographical Distribution: Northern Gulf of Mexico.

Habitat and Biology: A deep-living demersal species; depth range undetermined (only record is about 400 m).

Size : Maximum mantle length 4.5 cm.

Interest to Fisheries: Undetermined.

Local Names:

Sepiola macrosoma Delle Chiaje, 1829, Mem.Animali Vert.Napoli, 1:ll.

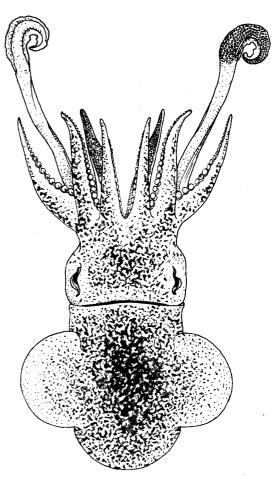
Synonymy: Sepiola macrosoma Delle Chiaje, 1829.

FAO Names: En - Stout bobtail

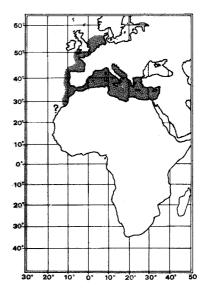
Fr - Sépiole melon SP - Globito robusto

Díagnostic Features: Dorsal mantle border not fused to head. Orbital pores open. Tentacular clubs with more than 8 subequal suckers, all much smaller than arm suckers, in transverse rows. Arms III and IV united by a broad web; both arms I (dorsal) hectocotylized by decrease in size of large basal suckers (in 2 rows) to smaller suckers (arranged in 4 rows in a rounded zig-zag pattern) and by the presence of a deep ridge and groove between horizontal sucker rows.

Geographical Distribution : Eastern Atlantic: North Sea, Mediterranean Sea, West Africa, Morocco.


Habitat and Biology: A demersal species in shallow to medium depths (between 30 and 600 m) over sandy to muddy bottoms. It carries out seasonal migrations between deeper offshore waters (winter) and shallowers coastal zones (for the rest of the year), but partitioned by size in such a way that largest individuals arrive first in spring, followed by smaller bobtail squids in summer). Maturing males (aged 7 or 8 months) carry 85 to 100 spermatophores, females (8 to 11 months) have about 120 to 150 eggs in the ovary. The spawning season extends from spring through autumn with peaks in spring and autumn corresponding to the major size classes. The eggs are deposited in clusters of 30 to 40 (egg diameter 7 or 8 mm) on shells, i.e., of Pinna sp. They hatch after 45 days (temperature 16°C). Females grow larger than males. Longevity is about 1 year.

Size: Maximum mantle length 8.5 cm; common between 2 and 6 cm. Length at first maturity is about 3.7 cm in males, and 6.2 cm in females.


Interest to Fisheries: A species of minor commercial importance, taken as bycatch in bottom trawls, mostly between 100 and 250 m. Its commercial value varies from one Mediterranean country to another. The flesh is tasty, but difficult to preserve. Separate statistics are not reported for this species.

Local Names: FRANCE: Sépiole; ITALY: Babbunedda, Cape e chiuove, Capo di chiodo, Pignatta, Pugnatta, Purpessa de funna, Purpo seccia, Seppiola grossa, Vurpascele; MOROCCO: Sépiole; SPAIN: Choco, Chopito, Globito.

Literature : Mangold-Wirz (1963, biology, western Mediterranean); Okutani (1980); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

dorsal view

Rossia pacifica Berry, 1911, Proc.U.S.Nat.Mus., 40:591.

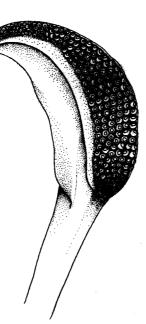
Synonymy: None.

FAO Names: En - North Pacific bobtail

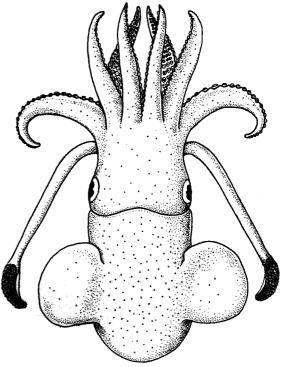
Fr - Sépiole du Pacifique boreal SP - Globito del Pacífico boreal

Diagnostic Features: Tentacular clubs expanded, the sucker-bearing surface surrounded with protective membranes; 8 suckers in oblique rows, appearing as 5 or 6 suckers proximally, subequal in size, largest in the dorsal longitudinal rows. Arms stout, web between arms rudimentary; both arms I hectocotylized, with narrow dorsal and broad ventral protective membranes and a deep longitudinal groove and membranous fold along 2/3 of arm length; suckers reduced to 1/3 of size of those on lateral arms, in 4 rows basally, in 2 rows distally.

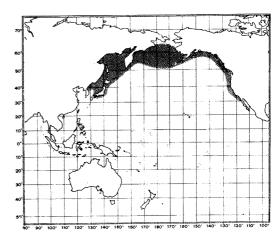
Geographical Distribution: Northern Pacific: Japan northward, Sea of Okhotsk, Aleutian Islands, Gulf of Alaska southward to 32°N.


Habitat and Biology: A demersal species, Rossia pacifica occurs in depths between 100 and 600 m in the western Pacific; and in the eastern Pacific from 10 m downward (lower depth limit undetermined).

Interest to Fisheries:


Trawled in large quantities off the Sanriku coast and Hokkaido, Japan. It is believed to have inferior meat quality and therefore it has low economic value even though the resource is considered to be large. The species is only locally utilized in Japan. Separatestatistics are not reported for this species.

Local Names : JAPAN: Bouzuika.


Literature : Tomiyama & Hibiya (1978, Japanese fisheries); Okutani (1980).

tentacular club

dorsal view

Rossia tortugaensis Berry, 1911

SEPIOL Ross 5

Rossia tortugaensis Voss, 1956, Bull.Mar.Sci., 6(2):103.

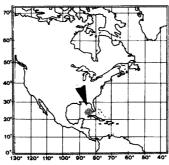
Synonymy: None.

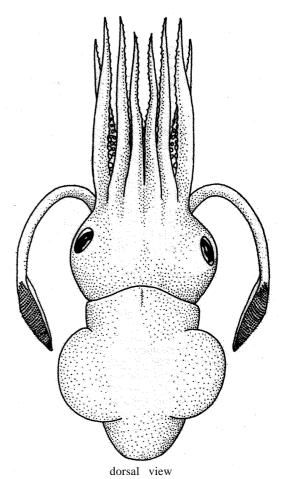
FAO Names: En - Tortuga bobtail

Fr - Sépiole tortuette SP - Globito de Tortugas

Diagnostic Features : Tentacular clubs large; swimming keel extending from just proximal to basal suckers to the distal tip; 10 small, finely toothed suckers in oblique rows across the club. Arms relatively long; suckers in 2 rows, elongated, barrel-shaped, with narrow oval apertures without dentition.

Geographical Distribution : Gulf of Mexico: apparently restricted to the southern Dry Tortugas Islands.


Habitat and Biology : The depth distribution of \underline{Rossia} tortugaensis is still undetermined (only records are from 520 and 680 m).

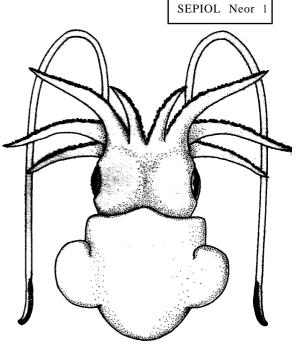

Size : Maximum mantle length 4.5 cm.

Interest to Fisheries: Undetermined.

Local Names:

Literature: Voss (1956).

<u>Neorossia</u> <u>caroli</u> (Joubin, 1902)


Rossia caroli Joubin, 1902, Bull.Soc.Zool.France, 27:143.

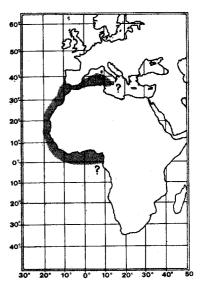
Synonymy: Rossia caroli Joubin, 1902.

FAO Names: En - Carol bobtail

Fr - Sépiole carolette Sp - Globito carolino

Diagnostic Features: Mantle short, very broad. Fins relatively short, moderately broad, rounded. Head wide; eyes very large. Tentacular clubs not expanded, protective membrane surrounding club; swimming keel extending the length of club; 7 or 8 suckers in oblique rows across the club. Arms long, robust; suckers spherical, in 2 rows; apertures very small, rings without teeth; both dorsal arms (I) hectocotylized by reduction in size of the proximal 4 pairs of suckers and minute suckers at tips; a low crease along the ventral border of each arm; ink sac and anal flaps greatly reduced and nonfunctional.

dorsal view


Geographical Distribution : Eastern Atlantic Ocean: western Mediterranean Sea South to Gulf of Guinea.

Habitat and Biology : A demersal species; known depth range from about 300 to 1 000 m, mostly around 400 m.

Size: Maximum mantle length 5.5 cm.

Interest to Fisheries : A species of minor commercial importance, taken only as bycatch in trawls. Separate statistics are not reported for this species.

Local Names:

Semirossia equalis Voss, 1950

SEPIOL Semir 1

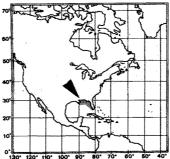
Rossia (Semirossia) equalis Voss, 1950, Rev.Soc.Malacol., 7(2):73.

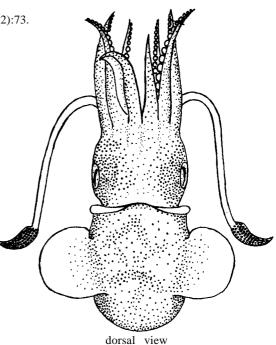
Synonymy: None.

FAO Names: En - Greater shining bobtail

Fr - Sépiole cracheuse SP - Globito reluciente

Diagnostic Features: Fins large, broad; lobes prominent. Tentacular clubs moderately expanded, with dorsal swimming keel extending along entire length; 7 or 8 suckers in transverse rows, those of the 2 dorsal-most longitudinal rows, only slightly larger than those of ventral rows. Arms long, slender; arm suckers in 2 rows, widely spaced enlarged in middle sections, globular, barrel-shaped, with untoothed rings. Left arm I hectocotylized; proximal 10 pairs of suckers normal-sized, followed by 4 rows of reduced-sized suckers to the tip; ventral protective membrane very broad from 3rd pair of suckers for 3/4 of arm length; sucker bases along membrane forming palisaded effect.


Geographical Distribution: Eastern Gulf of Mexico.


Habitat and Biology: Occurs over muddy bottoms in deeper waters from 130 to 260 m.

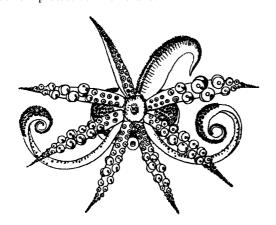
Size: Maximum mantle length 4 cm.

Interest to Fisheries: Undetermined.

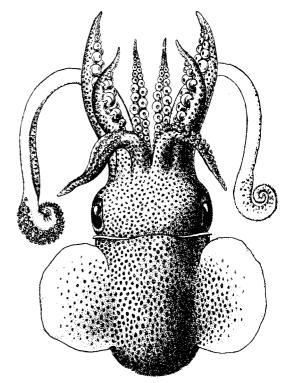
Local Names:

Semirossia tenera (Verrill, 1880)

SEPIOL Semir 2


Heteroteuthis tenera Verrill, 1880, Amer.J.Sci., 20(41):392.

Synonymy: Rossia tenera (Verrill, 1880); Heteroteuthis tenera Verrill, 1880.


FAO Names: En - Lesser shining bobtail

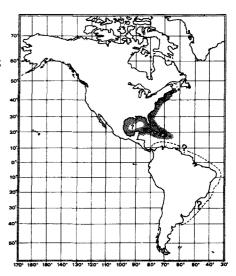
Fr - Sépiole calamarette SP - Globito tierno

Diagnostic Features: Mantle nearly as wide as long. Tentacular clubs slightly expanded; swimming keel extending from base to tip; 6 or 7 small suckers in the transverse rows, the dorsal ones about 2 times larger than the ventral ones; sucker rings toothed around entire margin. Arms moderately long; arm suckers much enlarged in midsection, globose, decreasing in size very abruptly near arm tip. Left arm I hectocotylized: 7 pairs of normal suckers proximally, giving way to 4 rows of suckers much reduced in size; arm attenuate near tip with suckers in 2 rows; ventral protective membrane very broad from 3rd basal pair of suckers for about 3/4 of arm length; stalks of suckers on ventral row forming a palisade, with small ridges that extend pleat-like onto oral surface of protective membrane.

oral view

dorsal view

Geographical Distribution: Western North Atlantic: from the northern Gulf of Maine to the Gulf of Mexico and to the Caribbean Sea; possibly also present in the southwestern Atlantic, along the coasts of Brazil and Uruguay.

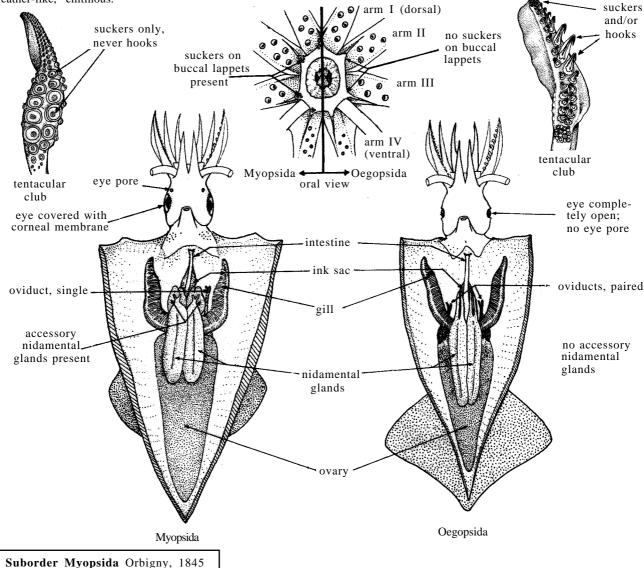

Habitat and Biology: Occurs demersally in deeper waters on muddy and sandy bottoms (85 to 135 m in the New England ares).

Size: Maximum mantle length 5 cm.

Interest to Fisheries: Reported to be fished in the Gulf of San Matías and some localities on the south coast of Argentina (species identification needs to be verified in this area).

Local Names: ARGENTINA: Calamarcito.

Remarks: Massay (1916) lists S. tenera from Rio de Janeiro.



4. SQUIDS (Order Teuthoidea)

Teuthoidea Naef, 1916, Pubbl.Staz.Z.Napoli, 1:14.

The origin of the Order Teuthoidea, or true squids, can be traced tothe early Mesozoic (Permian/Triassic) with steady proliferation from the Jurassic through the Recent. The two Suborders, Myopsida, "covered-eyed", near shore (neritic) squids, and Oegopsida, "open-eyed" oceanic (pelagic) squids, occur in the oceans and seas of the world and form the basis of the major fisheries production. Some are demersal or epibenthic at some period of their life cycle, but most occur in the water column.

Diagnostic Features: Ten circumoral appendages, the fourth pair, the tentacles, contractile, but not retractile into pockets (occasionally tentacles secondarily lost); sucker ornamentation with chitinous rings and/or hooks. Radula teeth commonly with primary projectionand a secondary cusp(s), especially on the median (rachidian) and the first lateral teeth; buccal membrane present. Olfactory organ consists of 2 projecting papillae; eye without lids (1) covered with a transparent membrane, with a minute pore (Myopsida) or (2) completely open to the sea, without a pore (Oegopsida). Gills with branchial canal between afferent and efferent branchial blood vessels. Liver consisting of a single structure. Shell (pen or gladius) internal, simple, rod- or feather-like, chitinous.

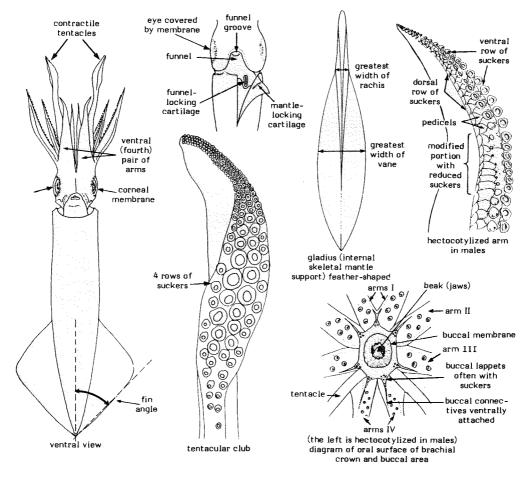
Myopsida Orbigny, 1845, Moll.Viv.Foss., 1:237.

The suborder Myopsida comprises only two families, the small, non-commercial, Pickfordiateuthidae, not included in this catalogue, and the very speciose Loliginidae which includes 8 genera and is an important item in many industrial and small-scale fisheries. FAO's fishery yearbook reports about 120 000 metric tons in 1981 for the genus Loligo (about 9% of the world catch of cephalopods), and another 480 000 metric tons for unidentified loliginids and ommastrephids (FAO, 1983), most of which are, however, believed to be ommastrephids. All

myopsids are demersal, predominantly near-shore or shelf species, frequently feeding near or on the bottom. Some species tolerate reduced salinities and estuarine situations. Many species show characteristic onshore-offshore migrations in spring and late fall respectively, overwintering in deeper waters. The spawning season often is extended with peaks in early summer and autumn. Many small eggs are encapsuled in gelatinous strings attached to shells and other substrates.

Diagnostic Features : Corneal membrane covering the eye, with a minute pore anteriorly. Arms and clubs with suckers, never with hooks. Suckers present on the buccal lappets. Females with a single gonoduct, not paired; with accessory nidamental glands.

4.1 FAMILY LOLIGINIDAE Orbigny, 1848


LOLIG

Loliginidae Orbigny, 1848, in 1834-1848, Hist.Nat.Ceph.Acet.Viv.Foss., 297.

FAO Names: En - Inshore squids

Fr - Calmars, Calmars cotiers, Casserons, Encornets

SP - Calamares, Calamarines, Calamaretes

Diagnostic Features : Shape variable from short and stout to long and slender. Fins terminal or marginal, but always united posteriorly; funnel-locking apparatus a simple, straight grooveEyes covered with transparent skin (corneal membrane); buccal connectives attached to ventral borders of fourth arms; 7 buccal lappets supplied with small suckers (except in Lolliguncula and Alloteuthis); 8 arms and 2 tentacles around mouth; 2 rows of suckers on arms and 4 rows on tentacular clubs, hooks never present. Usually the left arm of the IV (ventral) pair is hectocotylized in males (used to transfer sperm packets from the male to the female); the structure of the modified portion (hectocotylus) of the arm is useful in most species as a diagnostic character (often, the suckers on the hectocotylus are reduced in size or number, or modified into fleshy papillae or flaps (lamellae), or they disappear altogether. Colour: usually reddish-brown, darker dorsally, but quite variable depending on the behavioural situation.

Geographical Distribution: Representatives of this family inhabitat literally all shelf and upper slope areas of the world's oceans except the polar seas.

Habitat and Biology : Inshore squids are demersal or semipelagic inhabitants of coastal and continental shelf areas to a maximum depth of about 400 m. Several species are restricted to extremely shallow waters and some of these penetrate into brackish waters. Typically, they carry out diel movements, aggregating near the bottom during the day, but dispersing into the water column at night. Many species are positively phototactic, and hence often are captured with fishing techniques using light.

Many, but not all species are known to carry out seasonal migrations in response to temperate changes. They usually overwinter in deeper offshore waters. They migrate onshore, aggregated by size, with the largest individuals starting in spring and the smaller ones following in summer, then retreating again towards deeper waters in late autumn. Most species, except those inhabiting cold-temperate waters, have an extended spawning season with peaks in spring or early summer and in fall, corresponding to the two major size groups of spawners. Some species are known to be portion-spawners. The small eggs are encapsuled in gelatinous, fingerlike strings ("seamops") and attached to various substrates. Hatchlings resemble the adults. Those from spring and summer broods usually mature and spawn in autumn of the following year, while the offspring of autumn-spawning will tend to participate in the spring spawning in their second year of life, so that the two cycles alternate. The life span of these short-lived animals ranges between 1 and 3 years. Inshore squids are predators on crustaceans, and small and juveniles fishes.

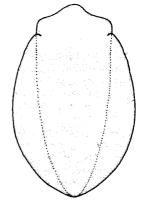
Size: Mantle length from 2 to 90 cm.

Interest to Fisheries: Loliginids account for approximately 9% of the world cephalopod catch, and are predominantly fished by southeast Asian and Mediterranean countries which also traditionally are the major consumers. There are a few industrial fisheries directed at these species, but they also are taken as bycatch in many nearshore trawl fisheries for shrimps and demersal finfish. Numerous artisanal and subsistance fisheries take inshore squids either in multispecies catches or as prime target species. Gears used include purse seines, dip nets, cast nets, encircling nets, hook-and-line, often rendered more efficient by prior light attraction with torches and lamps.

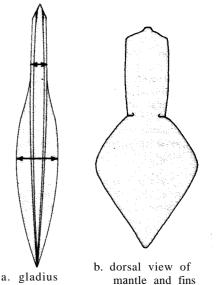
The flesh of loliginids is highly appreciated and marketed either fresh, frozen or processed into canned or dried products. Squids also are used as bait, i.e., in scombrid hook-and-line fisheries and the traditional Grand Banks troll fishery for cod conducted by the Portuguese.

Inshore squid catches by major fishing areas and countries (Source: FAO, 1983)

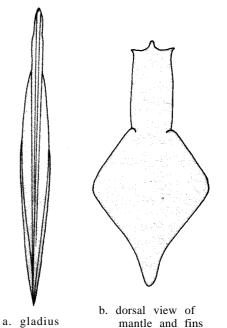
Fishing Area	Country or region	% of 1981 catch in the area	catches ('000 metric tons) 1980 1981	
Loligo pealei				
Northwestern Atlantic	Italy Japan Mexico Spain USA	37.0 41.1 21.6	2 956 6 015 3 188 7 569 3 852	3 920 4 354 - - 2 287
<u>Loligo</u> species				
Northeastern Atlantic (27)	France Spain	45.1 47.8	2 563 1 202	2 037 2 162
Eastern central Atlantic	Spain	86.0	7 606	13 680
Mediterranean and Black Sea (37)	Italy Spain	47.5 37.6	4 558 1 835	4 170 3 300
Eastern Indian Ocean (57)	Indonesia Thaialnd	22.5 72.3	915 3 624	1 059 3 402
Western central Pacific (71)	Indonesia Philippines Thailand	13.7 39.3 46.1	10 227 27 011 36 203	9 755 27 980 32 829
Total, all <u>Loligo</u>			127 987	119 059


Key to Genera:

- la. Mantle elongate or short, robust, posteriorly pointed or rounded, but never produced into an elongate, pointed tail; posterior border of fins straight, or only slightly concave, or rounded
 - Fins very long, over 90% of mantle length, broad, Sepia-like, but much wider and more muscular; mantle very robust (Fig. 1)
 - Sepioteuthis
 - 2b. Fins short to moderately long, less than 90% of mantle length; mantle elongate and narrow to short and stocky
 - 3a. Fins lateral, rhombic in outline, with posterior borders straight or slightly concave; relatively long, usually over 60% of mantle length; mantle elongate, bluntly to sharply pointed (Figs 2, 3); left ventral arm (IV) hectocotylized in males Loligo


Vane of gladius broad, with 4a. thin, curved edges (Fig. 2a); posterior end of mantle moderately blunt (Fig. 2b); mantle not very narrow in males; fins usually less than 70% of mantle length Subgenus Loligo **

4b. Vane of gladius narrow, with thickened straight edges (Fig. 3a); posterior end of mantle relatively sharply pointed (Fig. 3b); mantle very narrow in males; fins usually longer than about 70% of mantle length Subgenus Doryteuthis **

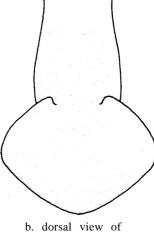

- Fins terminal, rounded (borders 3b. convex), short (less than 60% of mantle length): one or both ventral arms (IV) hectocotylized in males
 - 5a. One ventral arm (left IV) hectocotylized in males; mantle stout, rounded posteriorly; fins 50% or more of mantle length

dorsal view of mantle and fins <u>Fig. 1</u> Sepioteuthis

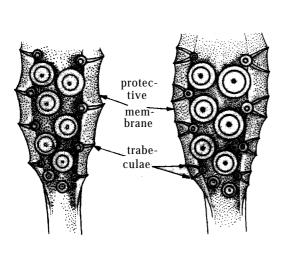
Loligo, subgenus Loligo Fig. 2

Loligo, subgenus Doryteuthis Fig. 3

^{*} Key refers to adults or subadult stages only

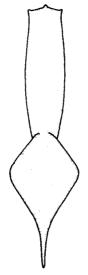

^{**} The subgenera Loligo and Doryteuthis are considered as valid genera by some authors. Further research is required to clarify their status

- ба 50% or less of ventral left arm (IV) hectocotylized by modification of suckers (Fig. 4a); fins round to elliptical; mantle very); robust, muscular, bluntly rounded posteriorly; animals relatively large (Fig. 4b) Lolliguncula
- Nearly entire length of left ventral arm (IV) hectocotylized by drastic modification of suckers, membranes and trabeculae (Fig. 5a); fins elliptical to broadly heart-shaped; mantle delicate, very stout, very broadly rounded posteriorly; animals small (Fig. 5b) Loliolus
- Both ventral arms (IV) conspicuously 5b. hectocotylized in males (Fig. 6a); mantle elongate, narrow, bluntly pointed posteriorly; fins 30 to 35% of mantle length, elliptical to heart-shaped (Fig. 6b) Loliolopsis
- Mantle very long, narrow, its posterior end drawn out into a long, pointed tail, especially in males posterior border or fins strongly concave, extending along tail as narrow membranes (Fig. 7)
 - Buccal membrane with suckers; 7a. trabeculae on protective membranes of tentacular clubs equal in number to adjacent suckers (Fig. 8a) * <u>Uroteuthis</u>
 - Buccal membrane without suckers; trabeculae on protective membranes of tentacular clubs twice as numerous as adjacent suckers (Fig. 8b) <u>Alloteuthis</u>


a. hectocotylized arm IV of male Lolliguncula

mantle and fins

Fig.4



base of tentacular club

Fig. 8

b. Alloteuthis

dorsal view of mantle and fins

Uroteuthis

a. both arms IV of male hectocotylized b. dorsal view of mantle and fins

Loliolopsis

Fig. 7

Fig. 6

Loligo beka Sasaki, 1929

Loligo beka Sasaki, 1929, J.Coll.Agri., Hokk., 20:121

Synonymy: Loligo sumatrensis Appellöf, 1886

FAO Names: En - Beka squid

Fr - Calmar cracheur SP - Calamar beka

Diagnostic Features: A relatively small species up to 7 cm mantle length; fins rhomboidal, angles rounded, length greater than 1/2 of mantle length. Tentacular clubs small, narrow; suckers small, quadriserial, those of median 2 rows on manus slightly less than 2 times the diameter of the marginal suckers; rings of suckers on manus with about 20 small, sharp, conical teeth. Arm sucker rings with 3 to 5 (usually 4) very broad, squared, plate-like teeth in distal 3/5, a single flat "tooth" in proximal 2/5; left arm IV hectocotylized

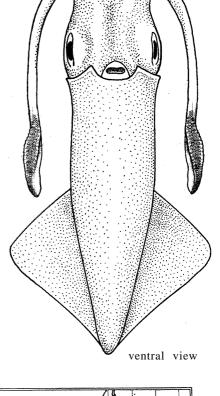
in distal 2/3, with about 50 interconnected fleshy papillae (modified sucker stalks) in two longitudinal rows; those of ventral row more thickened, especially proximally; papillae on dorsal row and a few on ventral row distally bearing minute, rudimentary suckers.

Geographical Distribution: Western Pacific; southern Japan, Taiwan (Province of China), and Hainan Island; mainland distribution unreported.

Habitat and Biology : A neritic, semipelagic species; its depth distribution is undetermined.

Size: Maximum mantle length 7 cm.

Interest to Fisheries : One of the four loliginid species reported in the Chinese squid catch.


Local Names: JAPAN: Beka.

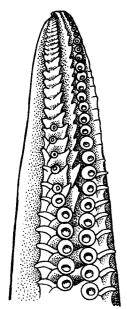
tentacular club sucker ring

sucker ring

LOLIG Lolig 7

Loligo (Doryteuthis) bleekeri Keferstein, 1866

LOLIG Lolig 8

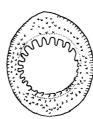

Loligo bleekeri Keferstein, 1866, Bronn's Klass.Ordn.Tier-reichs, 1862-1866:1402.

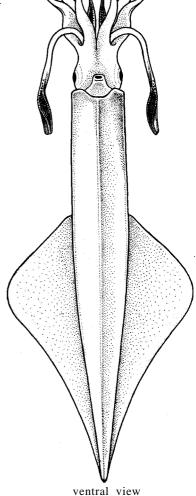
Synonymy: Doryteuthis bleekeri (Keferstein, 1866).

FAO Names: En - Spear squid

Fr - Calmar lancette SP - Calamar lanceolado

Diagnostic Features: Mantle very elongate, narrow, a fleshy ridge along ventral midline, indistinct in females. Fins large, thick, length 2/3 of mantle length. Tentacles short; tentacular clubs narrow, suckers small, nearly uniform in size, those of medial 2 rows of manus only slightly larger than marginal rows; manal sucker rings with about 30 long blunt, separate teeth, the 10 to 14 distal ones the largest. Arms very short and small in relation to body size; left arm IV hectocotylized in distal 1/3 to 1/4 where arm tip is thickened and blunt; modified sucker stalks become longer with thicker bases towards tip; suckers become very minute and rudimentary in the modified section, especially in the dorsal row, with very thickened basal papillae; dorsal basal papillae very greatly thickened, then transformed into tightly arranged, bicuspid, lamelliform flaps; a narrow, serrated membrane separates the two rows of modified sucker papillae at the tip.




tentacular club

sucker ring

largest tentacular club sucker ring

ventral view

Geographical Distribution: Japan, excluding northern half of Hokkaido; southern Korea.

Habitat and Biology: A neritic species occurring from surface waters to depths of approximately 100 m. From the offshore overwintering areas the squids migrate onshore in early spring and spawn in shallow waters. Eggs are laid in clusters attached to various substrates, rocks, seaweeds, shells, etc.

Size: Maximum mantle length 40 cm.

Interest to Fisheries: The most extensively utilized loliginid squid in Japan. The fishery is located in the Sea of Japan and the Pacific coast northward to mid-Honshu during February to July

(peak April and May); it is caught with set nets, trap nets, trawl nets and blanket nets. The feasibility of aquaculture is presently under intensive study, e.g., artificial spawning beds have been built, but the results are not yet available.

Local Names: JAPAN: Chiyoki, Sasaika, Sayanaga, Shakuhachiika, Tenashi, Teppo, Tsutsuika, Yariika.

Literature: Araya & Ishi (1974, fishery and biology, Japan; under the name Doryteuthis bleekeri); Tomiyama & Hibiya (1978).

Remarks: Some authors consider <u>Doryteuthis</u> a subgenus while others give it generic standing.

Loligo chinensis Gray, 1849, Cat.Moll.Brit.Mus., 74.

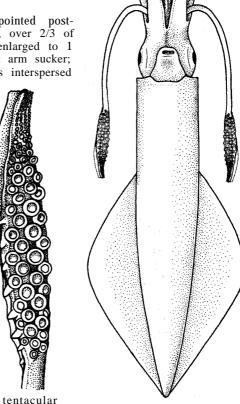
Synonymy: Loligo formosana Sasaki, 1929; Loligo etheridgei Berry, 1918.

FAO Names: En - Mitre squid

Fr - Calmar mitre SP - Calamar mitrado

Diagnostic Features: Mantle elongate, slender, bluntly pointed posteriorly, no longitudinal ridge on ventral midline. Fins rhombic, long, over 2/3 of mantle length. About 12 medial manal suckers of tentacular clubs enlarged to 1 1/2 times the diameter of the lateral suckers and 2 times the largest arm sucker; large rings with 20 to 30 sharp, separate teeth, 6 to 12 larger ones interspersed

with 1 to 4 smaller ones. Larger sucker rings of arms II and III with 10 to 15 sharp teeth distally, with degenerate teeth or smooth proximally; left arm IV hectocotylized at distal 1/3 by modification of more than 30 suckers and stalks in each row into slender, conical papillae that remain larger in the ventral row.


Geographical Distribution: Western Pacific: South and East China Seas to Japan; Arafuru Sea, northeastern Australia to New South Wales.

Habitat and Biology: A neritic species ranging from approximately 15 to 170 m depth. Like many other squid, it is positively phototactic and forms large aggregations at certain periods of the year. Some spawning may occur throughout the years, but peaks are observed in spring and in fall (February to May and August to November).

tentacular club sucker ring

club ventral view

Size: Maximum mantle length 30 cm.

Interest to Fisheries: Loligo chinensis is a target species or a welcome bycatch of numerous commercial and small-scale fisheries throughout its range. During summer, from July to September, it is heavily exploited off Hong Kong and reported to make up about half (2000 to 3000 tons) of the entire squid catch. It also supports seasonal fisheries in several parts of China, where it accounts for up to 90% of the loliginid catch. It is also one of the major squid species in the Gulf of Thailand, where it is taken in waters between 15 and 30 m depth and amounts to between 15 and 40% of the trawl catch. Concurrently with the decrease of finfish catches in that area, squids have become an increasingly important resource since the mid-sixties and early seventies

(Sakurai, 1972). Exploratory light-lure fishing has been tried successfully on the Thai west coast. Catches in other countries boardering the Bay of Bengal are presently of minor importance. The species is also taken by Taiwanese trawlers in north Australian waters and is believed to occur in minor quantities in Indonesian, Malaysian and Philippine catches.

<u>Loligo chinensis</u> is taken with a variety of gears, including different kinds of bottom trawls, purse seines, dip-, and cast nets, hook-and-lines, scoop nets, and bamboo stake nets, sometimes involving light attraction with torches and lamps. It is usually marketed dried, but also fresh and frozen.

Local Names: CHINA: Tor yau yue; JAPAN: Hirakensakiika.

Literature: Tomiyama & Hibaya (1978); Okutani (1980); Chikuni (in press, resources in the Indo-Pacific Region; and references therein).

Remarks: Probably this is a wide-ranging species throughout the Indo-West Pacific region, but identification must be made of specimens from the entire suspected geographical range.

Loligo duvauceli Orbigny, 1848 LOLIG Lolig 10

Loligo duvauceli Orbigny, 1848, in 1834-1848, Hist.Nat.Ceph.acetab., 318.

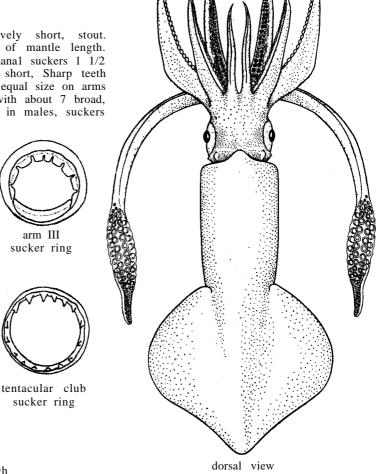
Synonymy: Loligo oshimai Sasaki, 1929; Loligo indica Pfeffer, 1884.

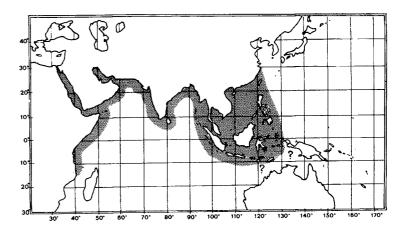
FAO Names:

En - Indian squid Fr - Calmar indien Sp - Calamar índico

Diagnostic Features : Mantle relatively short, stout. Fins rhombic, broad, short, just over 50% of mantle length. Tentacular clubs expanded; large median manal suckers 1 1/2 times larger than marginals, with 14 to 17 short, Sharp teeth around ring. Arm suckers of female of about equal size on arms II and III, rings smooth proximally, toothed with about 7 broad, blunt teeth distally (the central one pointed); in males, suckers

of arm II and III greatly enlarged, with 9 to ll broad, squared to rounded, truncate teeth in the distal 2/3 of ring, proximal 1/3 smooth; left arm IV of male hectocotylized for more than 1/2 its length, with 2 rows of large papillae, some with minute suckers on tip; ventral rows larger, turned outward, comblike; an oval photophore on each side of rectum and ink sac.


Geographical Distribution: Indo-Pacific: Indian Ocean periphery, including the Red Sea and the Arabian Sea, extending eastwards from Mozambique to the South China Sea and the Philippines Sea, northward to Taiwan (Province of China).


Habitat and Biology : A neritic, shallow-water species occurring in depths between 30 and 170 m, forming large aggregations during the spawning season. Spawning occurs throughout the year, but usually peaks when water temperatures increase, i.e. in February and from June to September off Madras; from February to March, from May through

July, and from September to October off Cochin.The smallest sexually mature individuals are one year old; longevity is estimated at 3 years.

This species feeds on crustaceans (such as mysids, euphausids and ostracods), fishes and squids. Cannibalism is common.

Size: Maximum mantle length 29 cm; maximum weight 1.5 kg. The size in Indian catches ranges from 6 to 28 cm; it grows larger off the Indian west coast than off the east coastLength at first maturity is about 11 cm in males and 12 cm in females on the west coast; 7.6 cm in males and 8.6 cm in females on the east coast (Silas et al., 1982).

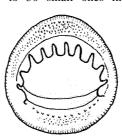
Interest to Fisheries: Loligo duvauceli is exploited throughout its distributional range, mainly by artisanal subsistance fisheries. Off Hong Kong it is taken by purse seiners using light in waters not deeper than 40 m, usually between May and September; in the Gulf of Thailand it is one of the target species of the trawl fishery; all along the coasts of India it regularly occurs in trawl and seine catches; and in the Gulf of Aden it is the second most important species in commercial trawl catches.

Local Names: CHINA: Chin sui yau yue, Yau jai.

Loligo edulis Hoyle, 1885

LOLIG Lolig 11

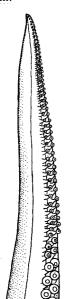
Loligo edulis Hoyle, 1885, Ann.Mag.Nat.Hist., (5)16:186.


Synonymy: Doryteuthis kensaki used by some Japanese authors.

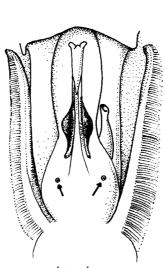
FAO Names: En - Swordtip squid

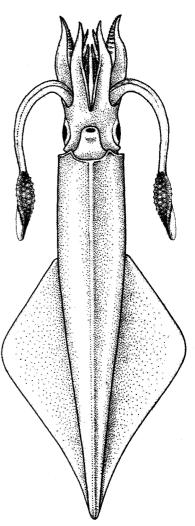
Fr - Calmar épée Sp - Calamar espada

Diagnostic Features : Mantle moderately stout to elongate, slender in mature males, which have a ridge along ventral midline. Fins rhombic, attaining 70% of mantle length in adults, their posterior margin slightly concave. Tentacular clubs expanded, lanceolate; about 16 medial manal suckers $1\frac{1}{2}$ times larger than the marginals (= to largest arm suckers), with 30 to 40 sharp conical teeth, 20 to 30 small ones interspersed between 10


larger ones. Arm sucker rings with 8 to 11 distinct, squared, truncate teeth in distal 2/3, smooth or with rudimentary denticles proximally; slightly more than 1/2 of left arm IV hectocotylized by enlargement of about 50 pairs of sucker stalks into swollen papillae, each with a minute rudimentary sucker on the tip; papillae slightly larger in ventral row; a fusiform photophore on each side of rectum.

arm III sucker ring


tentacular club sucker ring


left arm IV of male hectocotylized

tentacular club

photophores on ink sac

ventral view

Geographical Distribution : Western Pacific: Northern Australia, Philippine Islands, northern South China Sea to central Japan.

Habitat and Biology: A neritic species occurring in 30 to ³ 170 m depth. It overwinters in deeper waters, migrating inshore in spring and summer forming large aggregations and spawning places ² on sandy bottoms in 30 to 40 m depth.

Size: Maximum mantle length $30\ \text{cm}$ and weight $0.5\ \text{kg}$ in Hong Kong; in other areas up to $40\ \text{cm}$; common size in commercial catches between $15\ \text{and}\ 25\ \text{cm}$.

Interest to Fisheries: In Hong Kong, swordtip squid is the major commercial squid taken by pair trawlers from July to September. Annual landings of this species increased over the last years, amounting to 6 100 metric tons in 1979. The species also reprove the local fisheries in western Japan, the Philippines and problem.

supports local fisheries in western Japan, the Philippines, and probably in Alas Straits, Indonesia. It is also reported to be taken by Chinese trawlers from Taiwan (Province of China) in Australian waters. Other gears include jigs and set nets.

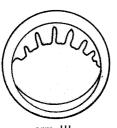
The flesh of this species is of good quality and brings high pricesIt is processed into a dried product (Gotosurume) and also used for sashimi (raw).

Local Names: CHINA: Tor yau yue; JAPAN: Gotouika, Kensakiika, Mawashikko (juveniles), Mehikariika.

Literature: Tomiyama & Hibiya (1978); Okutani (1980); Dunning (1982).

Remarks: Specimens of 10 to 20 cm mantle length taken in set nets South of the Aomori Prefecture in Japan, have been classified as Mehikariika (believed to be a different species) on account of the difference in both mantle and fin length. Recent studies, however, have proved that both these forms belong to the same species and that the differences are attributable to growth stages (Tomiyama & Hibiya, 1978).

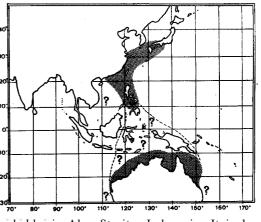
Loligo edulis budo Wakiya & Ishikawa, 1921

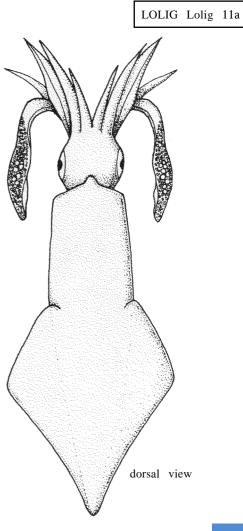

Loligo budo Wakiya & Ishikawa, 1921, Zool.Mag.Tokyo, 33:285.

Synomymy: Loligo edulis grandipes Sasaki, 1929.

FAO Names: En - Budo squid

Fr - Calmar budo SP - Calamar budo

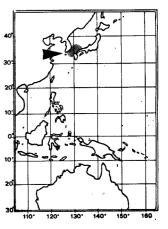

Diagnostic Features: Mantle moderately stout with a reduced ventral ridge. Fins about 60 to 65% of mantle length; rhomboidal. Head, arms and especially tentacles very much enlarged. Medial manal suckers of tentacular clubs very large, 2 times the diameter of largest suckers on arm III. Arm sucker rings with 7 to 8 large, truncate teeth graded to a smooth plate proximally.



arm III sucker ring

tentacular club sucker ring

Geographical Distribution: Western Pacific in southwestern Japan Sea.


Habitat and Biology: Neritic in shallow waters, known to perform seasonal migrations. In spring, immature squids migrate inshore; mating occurs throughout summer and in early fall, while spawning takes place shortly afterwards in deeper waters. Thousands of oval-shaped eggs embedded in gelatinous tubes are attached in clusters to various substrates.

Size: Maximum mantle length 25 cm.

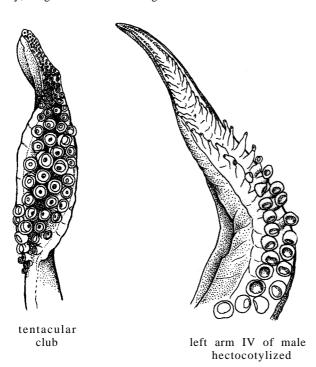
Interest to Fisheries : It is the object of local fisheries in the western Japan Sea, using trawl or set nets. Separate statistics are not reported. The flesh is of excellent quality and processed into Shiro-Surume.

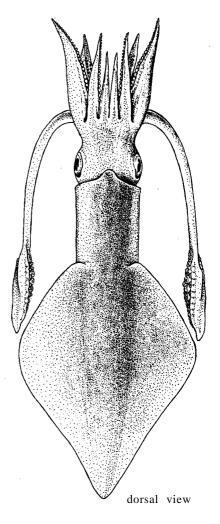
Local Names: JAPAN: Budouika, Shiroika.

Literature: Tomiyama & Hibiya (1978); Okutani (1980).

<u>Loligo</u> <u>forbesi</u> Steenstrup, 1856

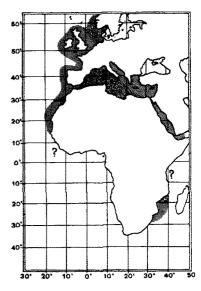
LOLIG Lolig 2


<u>Loligo forbesi</u> Steenstrup,1856, <u>OanskeVidensk.Selsk.Skrift.</u>, (5)4:189.


Synonymy: None.

FAO Names: En - Veined squid

Fr - Encornet veiné SP - Calamar veteado


Diagnostic Features : Mantle long, moderately slender, cylindrical; fins rhomboid, their length three quarters that of mantle, their posterior borders slightly concave. Suckers on manus of tentacular club subequal in size; sucker rings with 13 to 18 sharp, conical teeth; left ventral arm (IV) hectocotylized in its distal third by modification of suckers into long papillae which gradually decrease in size distally; largest arm sucker rings with 7 or 8 teeth.

Geographical Distribution : Eastern Atlantic: 20°N to 60°N (excluding the Baltic Sea), on the Azores Islands, and along west African coast South to the Canary Islands; its southern boundary is unknown; Mediterranean Sea and Red Sea; East Africa?

Habitat and Biology: A species of subtropical and temperate waters (it avoids temperatures below 8.5°C) occurring over the shelf in the temperate part of its distributional range, but found in deeper waters in subtropical areas; the entire depth range extending from about 100 to 400 m. The population in the northeastern Atlantic is known to carry out seasonal migrations, spending the summer in the North Sea and the eastern part of the English Channel and overwintering in the western part of the Channel. In daytime squids aggregate near the bottom, dispersing at night throughout the water column. Spawning occurs almost throughout the year in the English Channel, showing a peak in winter (December and January, at temperature of 9 to 11 °C) and another one in summer. The eggs are attached to hard objects on sandy or muddy bottoms; hatching occurs after 30 to 40 days. Juveniles hatched in January and February attain sizes of approximately II.5 cm in June; by August, the females measure about 14 cm, the males about 15 cm mantle length, and in November about 25 to 30 cm respectively. Both sexes are then mature (the males since October). Males outnumber females in the adult stage. Postspawning mortality is very high and the life-span does not exceed 1½ years.

 \underline{L} . $\underline{forbesi}$ feed on small and juvenile fishes, and to a minor extent on other cephalopods, crustaceans, and polychaetes; cannibalism is common. Off the Azores, the most important fish species in their diet is blue jack mackerel ($\underline{Trachurus}$ picturatus). Other fishes preyed upon include bogue (\underline{Boops} boops), and silver scabbardfish ($\underline{Lepidopus}$ caudatus).

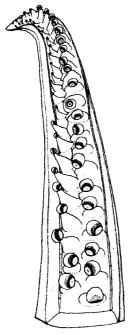
Size: Maximum mantle length 90 cm in males and 41 cm in females. Off the Azores, length at first maturity is 56.5 cm in males and 33.5 cm in females (Martins, 1982). In the English Channel, the size of summerspawning females is 20.2 cm and 28.6 cm in winter spawning females.

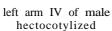
Interest to Fisheries: Taken as bycatch in deeper-water trawl-fisheries throughout its range, in winter and fall in northern waters, and in winter off Madeira and the Azores. The English Channel trawl-fishery operates at daytime in depths between 10 and 110 cm. The Azores artisanal fishery captures <u>L. forbesi</u> on locally manufactured jigs in periods of great abundance in depths ranging from 200 to 270 m in the central islands but from 130 to 200 m in the eastern groups. In 1979, an exceptionally good year, 146.5 metric tons of this species were reported from the Azores. This squid is highly appreciated for human consumption and as bait. It is marketed fresh, frozen and canned (small quantities in the Azores).

Local Names: PORTUGAL: Azores: Lula.

Literature : Holme (1974, biology, English Channel); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part); Martins (1982, biology, length-weight relationship, Azores).

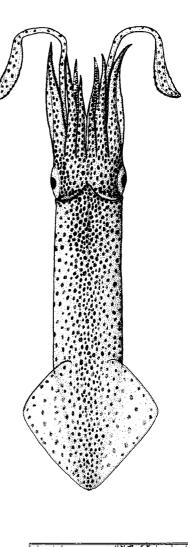
Loligo gahi Orbigny, 1835


LOLIG Lolig 4


Loligo gahi Orbigny, 1835, in 1834-1846, Voy.Amer.Merid., 5(3):60.

FAO Names: En - Patagonian squid

Fr - Calmar patagon SP - Calamar patagónico.


Diagnostic Features: Mantle moderately elongate. Fins rhomboidal, short, their length about 40 to 45% of mantle length. Tentacles long, slender: tentacular clubs narrow, unexpanded, with relatively small suckers on manus, the median ones about 2 times the diameter of the marginal ones; teeth on club sucker rings pointed, very numerous: 25 to 35 (possibly 45). Arms elongate, especially III and IV; arm sucker rings with 6 or 7 broad, flat teeth in distal half, proximal half smooth; left arm IV hectocotylized in distal 1/3: suckers on dorsal row greatly reduced in size and set on elongated, triangular, swollen pedicles that grade smaller distally; ventral row unmodified.

Geographical Distribution: Eastern Pacific Ocean from southern Peru to southern Chile; reported in the South Atlantic from the Gulf of San Matias, Argentina to Tierra del Fuego. The northern limits on both coasts are unknown.

Habitat and Biology: A neritic species occurring from the surface to 350 m depth but usually only to 285 m. Its biology is little-known.

Size: Maximum mantle length 28 cm.

Interest to Fisheries: Widely distributed along the Pacific coast of South America where it is caught in trawls incidental to other species. Peru landed 200 tons in 1969. Taken off Argentina as bycatch in trawl fisheries.

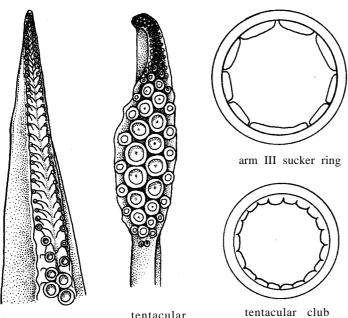
The squid fishery on the Patagonian shelf off Argentina started only recently as an exploratory operation, but soon developed into a directed fishery operated mostly by Polish vessels with annual yields of 4 to 5 000 metric tons of 10 to 16 cm squid. A small part of this catch is exported to Spain.

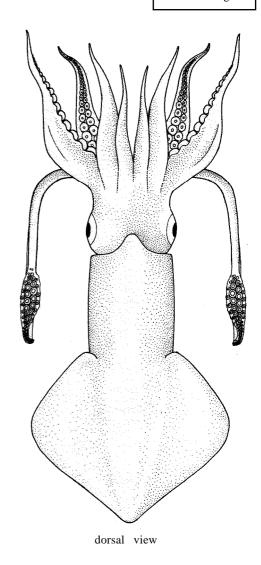
Local Names: ARGENTINA, CHILE, PERU: Calamar.

Remarks: The systematics, biology and fisheries of this species are poorly known. Much information is needed.

Loligo japonica Hoyle, 1885

LOLIG Lolig 12


Loligo japonica Hoyle, 1885, Ann.Mag.Nat.Hist., (5)16:187.


Synonymy: None.

FAO Names: En - Japanese squid

Fr - Calmar japonais SP - Calamar japonés

Diagnostic Features: Mantle relatively small, stout. Fins rhomboidal, about 50% of mantle length. Tentacular clubs expanded, lanceolate, the 12 enlarged medial manal suckers 2 or 3 times the diameter of marginal ones, with 20 to 25 closely set, low, rounded teeth. Arms II and III enlarged, thickened, largest sucker rings large with 10 to 13 low, broad, blunt teeth; left arm IV hectocotylized in distal 1/2 to 2/3 by sucker stalks modified into papillae, most with minute, rudimentary suckers on tips; papillae of ventral row especially swollen, somewhat flattened, particularly the proximal 7 or 8; papillae of dorsal row more elongate, separate, conical.

Geographical Distribution : Western Pacific: East China Sea and around Japan, excluding northern Hokkaido.

club

Habitat and Biology : A neritic, semipelagic species most abundant in shallow coastal waters. Spawning takes place during summer and fall in depths between 1 and 10 m. In this period the squid form large aggregations.

Size: Maximum mantle length 12 cm.

left arm IV of male

hectocotylized

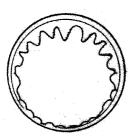
Interest to Fisheries: Loligo japonica supports local fisheries during spring and summer north of mid-Honshu, and is one of the 4 loliginid species entering Chinese catches reported to amount to several thousand tons per year (Dong, 1981). It is taken with set nets and small trawls, but it is uncertain whether small individuals can be attracted with light and jigged. The squid is marketed fresh and frozen. The flesh is of excellent quality and often eaten raw.

Local Names: JAPAN: Bouzuika, Hiika, Jhindouika, Koika.

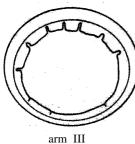
Literature: Tomiyama & Hibiya (1978); Okutani (1980); Dong (1981, cephalopod resources western Pacific).

sucker ring

Loligo kobiensis Hoyle, 1885

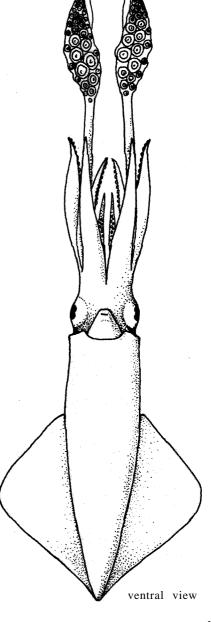

Loligo kobiensis Hoyle, 1885, Ann.Mag.Nat.Hist., (5)16:184.

Synonymy: None.


FAO Names: En - Kobi squid

Fr - Calmar kobi Sp - Calamar kobí

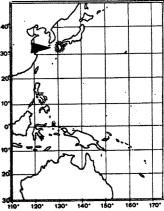
Diagnostic Features: Mantle short, slender. Fins rhomboidal with round lateral angles, their length about 65% of mantle length. Tentacular clubs expanded, lanceolate; protective membranes very broad; club suckers in 4 rows; 6 to 8 medial manal suckers enormously enlarged - 4 or 5 times the diameter of lateral suckers with entirely smooth rings; other rings with 6 to 15 triangular or quadrangular teeth. Suckers on arms II and III especially enlarged; sucker rings with about 9 (5 to 10) very low, broad, squared, teeth.


tentacular club sucker ring

arm III sucker ring

tentacular club

Geographical Distribution: Western Pacific: Southwestern Japan.


Habitat and Biology: A neritic species commonly found in coastal waters, most abundant in the upper 10 m of the water column during spring.

Size: Maximum mantle length 10 cm.

Interest to Fisheries: Taken as bycatch in fisheries for other squids in southwestern Japan.

Local Names: JAPAN: Queen squid.

Literature: Okutani (1977).

Loligo ocula Cohen, 1976

LOLIG Lolig 14

Loligo ocula Cohen, 1976, Malacologia, 15(2):330.

Synonymy: None.

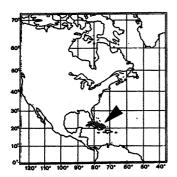
FAO Names: En - Bigeye inshore squid

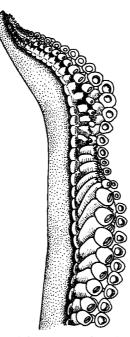
Fr - Calmar à gros yeux Sp - Calamar ojigrande

Diagnostic Features: Mantle bluntly pointed posteriorly. Fins subrhomboidal, their lateral angles rounded, length about 45 to 55% of mantle length. Eyes very large, visible part 15 to 21% of mantle length; left arm IV

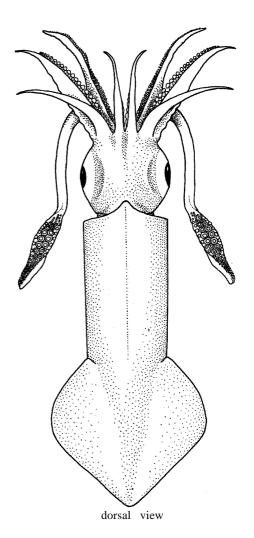
hectocotylized, modified in distal 1/3 to 1/4 but not to tip; 10 to 12 suckers in dorsal row less than 1/2 the diameter of ventral partners; the 2 to 5 suckers proximal to these are enlarged; all modified suckers are set on swollen, triangular bases (stalks).

Geographical Distribution :Western Atlantic: Caribbean Sea around Cuba.


Habitat and Biology: A demersal to semipelagic species taken close to the bottom in depths from 250 to 360 m. Its biology is unknown.


Size: Maximum mantle length 13 cm.

Interest to Fisheries: Fisheries potential undetermined.


Local Names:

Literature: Cohen (1976).

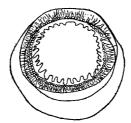
left arm IV of male hectocotylized

Loligo opalescens Berry, 1911

LOLIG Lolig 5

Loligo opalescens Berry, 1911, Proc.U.S.Nat.Mus., 40:591.

Synonymy: Loligo stearnsi Hemphill, 1892.

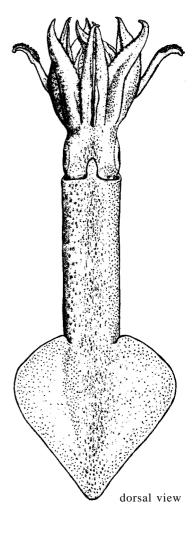

FAO Names: En - Opalescent inshore squid

Fr - Calmar opale SP - Calamar opalescente

Diagnostic Features : Mantle slender, head and arms compact, arms short. Tentacular clubs narrow, unexpanded; sucker rings with about 30 blunt teeth. Arm sucker rings with 9 to 12 blunt teeth. Left arm IV hectocotylized along distal 1/3 by great reduction in sucker size and enlargement of stalks into papillae.

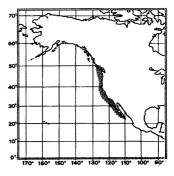
Geographical Distribution: Eastern Pacific: 25°N to 50°N, particularly in the waters of the California Current.

Habitat and Biology: This species schools by sizes and occurs primarily in water temperatures from 10 to 16°C, but is most abundant (and vulnerable to the fishery) after the end of the upwelling season in correlation with the increase in water temperatures when spawning aggre-



tentacular club sucker ring

gations are formed in 25 to 35 m depths off the Channel Islands and in 20 to 55 m depth in the Monterey Bay; mass spawning in Monterey Bay usually occurs between April and December with peaks in May or June and in November, but takes place progressively later northwards.


The egg masses are deposited on the bottom in big patches of several meters in diameter, usually in relatively shallow water, but in some cases down to 180 m depth; larvae hatch after 21 to 28 days at water temperatures of 16°C and in 30 to 35 days at 13.6°C. Growth is strongly seasonal: squid hatched in early summer will grow rapidly and reach adult size in about 1 year, while late broods subjected initially to low winter temperatures (and hence having low initial grow rates) will take 1 1/2 to 2 years (Spratt, 1978). Post-spawning mortality is high in both sexes.

Market squid of all sizes feed predominantly on euphausids, except on the spawning grounds where they prefer crab larvae (megalopa). Futhermore, their diet includes other crustaceans (such as copepods, mysidacea and cumaceans), molluscs (particularly cephalopods and gastropods) and fish (Karpov & Caillet, 1978). Cannibalism is common. The daily feeding rate is estimated at 14% of the biomass. On the other hand, the species is an important food item in the diet of numerous finfishes (salmon, flatfishes and others), sharks, marine mammals and sea birds.

Size: Maximum size 19 cm dorsal mantle length and 130 g weight in males, 17 cm and 90 g respectively in females; average total length about 30 cm. Minimum size at spawning ranges between 8 and 12 cm in females, and between 7 and 11 cm in males. Males grow larger than females.

Interest to Fisheries: Initially, market squid was fished in only two areas, Channel Island and Monterey Bay, but recently the stocks are exploited all along the Californian coast and northward into Oregon and Washington, particularly in nearshore waters. Annual catches fluctuate around 10 000 metric tons. Most of the catch is taken by US vessels, but small quantities are also landed in Mexico. There is growing interest in the USA in further developing this fishery.

Spawning aggregations of market squid are fished with brails and night lights, pumps and night lights or purse seines from December to April in the Channel Island area, and with lampara nets, between April and September in and around Monterey Bay.

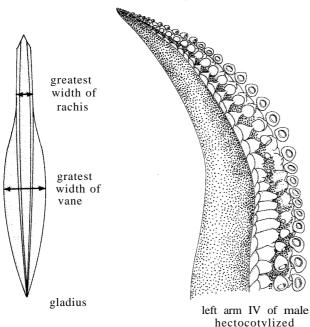
The squids are marketed fresh, frozen or canned for human consumption. The production is aimed primarily at the US and other consumer markets, but the species is used also for bait.

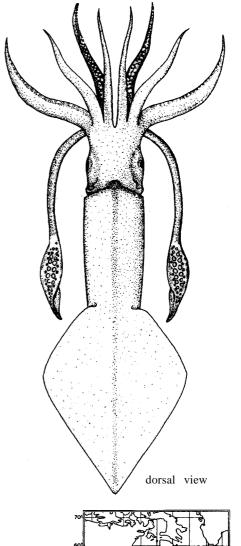
Local Names: JAPAN: Kariforunia yariika; USA: Market squid, Opalescent inshore squid.

Literature : Fields (1950, 1965, biology and life history, fishery); Hurley (1976, food and feeding, growth and respiration; 1977, school structure); Okutani (1977); Recksiek & Frey (eds, 1978, collection of papers on the biology); Tomiyama & Hibiya (1978).

<u>Loligo</u> <u>pealei</u> LeSueur, 1821

LOLIG Lolig 6


Loligo pealei LeSueur, 1821, J.Acad.Nat.Sci.Phila, 2(1):92.


Synonymy: Loligo pallida Verrill, 1873.

FAO Names: En - Longfin inshore squid (= Common squid SIS

Area 31)
Fr - Calmar totam
Sp - Calamar pálido

Diagnostic Features: Mantle long, moderately slender, cylindrical, the posterior end bluntly pointed. Eyes not unusually large, diameter of externally visible eyeball 8 to 18% of mantle length, and diameter of dissected lens 2 to 6% of mantle length. Fins rhomboidal, their sides nearly straight. Left ventral arm IV hectocotylized in mature males by modification of the distal third to fourth of arm, but the modification does not extend to arm tip; fewer than 12 of the suckers in dorsal row usually smaller than half the size of their counterparts in the ventral row; bases or pedicels of some of the modified suckers rounded, narrowly triangular. Gladius long, rather wide, feather-shaped, ratio of greatest width of vane of gladius to greatest width of rachis 2.7 to 3.7 in females, 2.4 to 2.9 in males; edge of vane curved (sometimes straight in males), thin, rarely ribbed.

Habitat and Biology: A neritic species occurring over the continental shelf and upper slope from the surface down to about 400 m depth, but rare or absent around islands. Optimum water temperatures for this species fluctuate between 10 and 14°C. Adults are demersal in daytime but disperse into the water column and many appear at the surface (in summer or in warm waters) at night. Longfin squid are known to effect seasonal migrations. They overwinter in dense concentrations in offshore areas at depths between 100 and 200 m, and move thereafter to the near shore feeding and spawning areas where they are found from late spring through fall. Mature squids are encountered almost throughout the year, but two peak spawning periods generally are observed: the first and more important in spring, and the second, less intense, in late summer and fall this leading to the differentiation of multiple cohorts each year. Eggs are laid in gelatinous, finger-like strands, many of which are attached together in large masses ('sea mops') to solid

substrates (i.e. rocks, shells, shipwrecks) in depths between 10 and 250 m. The eggs hatch after approximately 27 days (at temperatures at 12 to 18°C) or after 11 days (at 21.5 to 23°C) (McMahon & Summers, 1971). Planktonic larvae and juveniles are abundant in surface waters and resemble adults in appearance (no metamorphosis). Squid originating from the spring spawn reach maturity in summer of the following year (after about 14 months, while individuals hatched in early autumn will spawn only in spring of the second successive year, at about 20 months of age. This overcrossing of the life-cycles of two life successive groups of hatchlings is a phenomenon also observed in other squid and cuttlefish species. Postspawning mortality is very high, particularly in females, a fact that is reflected in the smaller maximum size of females.

Longfin squid prey on euphausids, fishes and other squids. Cannibalism is common. The species is in turn preyed upon by yellowfin tuna (<u>Thunnus albacares</u>), toothed whales and other pelagic predators.

Size: Maximum mantle length 50 cm in males, approximately 40 cm in females off the southern New England States of the USA; common length in catches ranges between 10 and 20 cm. Maturity is attained at about 15 cm in males and 13 or 14 cm in females.

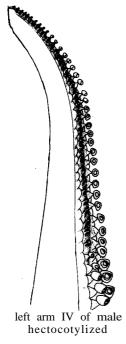
Interest to Fisheries: Longfin squid was formerly taken only as bycatch to the shrimp and scale-fish trawl fishery, but in recent years an international fishery was developed, specifically for this species. The world catch of longfin squid fluctuated irregularly between about 10 700 metric tons in 1978 and 23 600 metric tons in 1980. In 1981 catches were back on the 1978 level. This can be explained by the absence of Spanish and Mexican vessels from Fishing Area 21 (northwestern Atlantic) where almost the entire catch is taken. The major exploiting countries are Japan, Italy and USA (FAO, 1983). Fishing operations are most intensive from November to March along the outer continental shelf of the New England and mid-Atlantic states where the overwintering stock is exploited. The identified longfin squid catch from the Gulf of Mexico and the Caribbean in 1981 was reported as only 40 metric tons but it is suspected that this species accounts for part of the catch identified as Loligo spp. which amounted to almost 1 600 metric tons in the same year (FAO, 1983). The flesh of longfin squid is of excellent quality and marketed fresh and frozen.

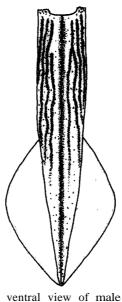
Local Names : JAPAN: Amerika kensakiika; USA: Bone squid, Common squid, <u>Long-finned squid</u>, Winter squid.

Literature : Summers (1968, 1971, growth and size distribution); McMahon & Summers (1971, temperature effect on development rate); Serchuk & Rathjen (1974, abundance in relation to temperature); Cohen (1976, systematics); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Tibbets (1977, fishery); Tomiyama & Hibiya (1978); Rathjen, Hixon & Hanlon (1979, fishery).

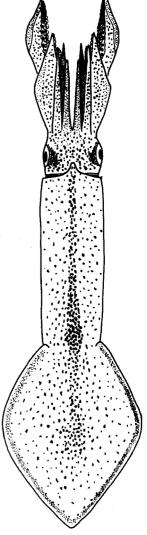
Remarks: Medical research, primarily in neurophysiology is conducted on the giant nerve fibres.

<u>Loligo</u> (<u>Doryteuthis</u>) <u>plei</u> Blainville, 1823


LOLIG Lolig 3


Loligo plei Blainville, 1823, J.Phys.Chim.Hist.Nat., 96:132.

Synonymy: Loligo brasiliensis Blainville, 1823; Doryteuthis plei (Blainville, 1823).


FAO Names: En - Slender inshore squid

Fr - Calmar fleche SP - Calamar flecha **Diagnostic Features:** Mantle long, slender, cylindrical, the posterior end acutely pointed. Fins rhomboid, their sides fairly straight. Eye not unusually large, diameter of externally visible eyeball 14 to 19% of mantle length, diameter of dissected lens 2 to 7% of mantle length. Tentacular clubs with marginal suckers on manus of tentacular club relatively small. Left ventral arm IV hectocotylized in mature males by a modification of distal 1/2 to fourth of arm that extends to arm tip; one half to 3/4 (42 to 82) of the suckers in dorsal row much smaller than half the size of their ventral counterparts; modified (small) suckers on small, narrow triangular pedicels. Gladius long, slender, feather-shaped; ratio of greatest width of vane of gladius to greatest width of rachis 1.5 to 2.4; edge of vane straight (often curved in females), thick and ribbed or rod-like (mature males especially).

ventral view of male showing midline ridge and colour pattern

dorsal view

Geographical Distribution : Western Atlantic: Southern Brazil, northern Argentina (southern limit unconfirmed) to 35°N, including Caribbean Sea, Gulf of Mexico and Bermuda.

Habitat and Biology: A neritic, semipelagic species most abundant over the shelf but with a lower depth range of 370 m. The squids concentrate near the bottom during the day but disperse into the water column at night.

Some spawning may occur almost throughout the year with two peaks: March and September through October in the Caribbean Sea, between June and August and from December to March off Brazil. Mass spawning takes place in shallow waters. There is some exchange between the spring and autumn spawning groups even though squids of different site may be morphometrically diverse. Males grow larger than females.

Size: Maximum mantle length 35 cm males, 22 cm in females.

Interest to Fisheries: Taken as bycatch to shrimp trawling and other directed fisheries throughout its range. Small trawl or light and dip-net fisheries for this species exist in Progreso, Yucatan. Also taken as bycatch (identified as Loligo brasiliensis) in shrimp fisheries between Buenos Aires and Mar del Plata (Argentina). The main fishing period

extends from February through August, the catches drop sharply thereafter. Best catches are obtained between 20 and about 75 m depth. Gears used include the "raùo" or beam trawl and the "red de portones" or otter trawl. Arrow squid is used for food and bait.

Local Names: USA: Arrow squid, Slender inshore squid.

Literature : Okutani (1977, 1980); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Rathjen, Hixon & Hanlon (1979, fishery resources).

Loligo reynaudi Orbigny, 1845

LOLIG Lolig 15

Loligo reynaudi Orbigny, 1845, in 1845-1847, Moll.Viv.Foss., 346.

Synonymy: None.

FAO Names: En - Cape Hope squid

Fr - Calmar du Cap

SP - Calamar del Cabo

Diagnostic Features: Mantle narrow, elongate. Fins long, 65% of more of mantle length. Tentacles long; clubs expanded; club suckers on the manus (medial rows) greatly enlarged. Arms short (in comparison with L. vulgaris).

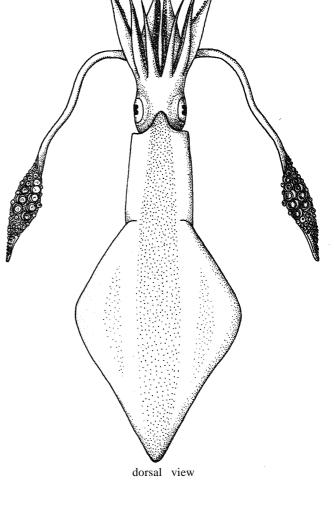
Geographical Distribution: Eastern central Atlantic: From South Africa at least to Angola, but actual limits of geographical range unknown.

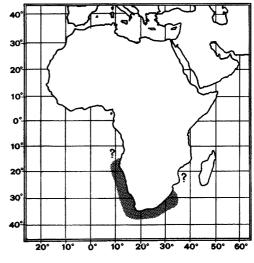
Habitat and Biology: A neritic, semipelagic species occurring over the continental shelf; the upper and lower limits of the depth range are undeter-

Size : Maximum mantle length 40 cm, weight more than

Interest to Fisheries: Japanese and South African multispecies trawl fisheries are each catching around 3 000 tons of this squid per year, between Cape Town and Durban on the Agulhas Bank at depths of less than 200 m. Currently marketed in France and Italy.

Local Names:

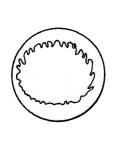

Literature: Cooper (1979, length-weight relationship).

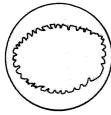

Remarks: May be synonymous with L. vulgaris or a subspecies of L. vulgaris. This is a very poorly known species and specimens are needed to verify its systematic position.

club

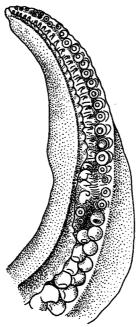
Loligo roperi Cohen, 1976

LOLIG Lolig 16

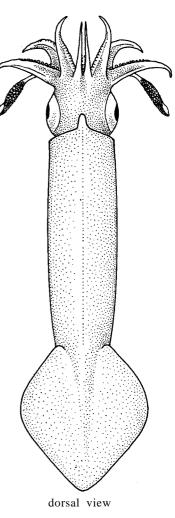

Loligo roperi Cohen, 1976, Malacologia, 15(2):347.


Synonymy: None.

FAO Names: En - Island inshore squid

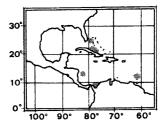

Fr - Calmar créole SP - Calamar insular

Diagnostic Features: Mantle long, slender (a small species). Fins ovoid, short, 33 to 39% of mantle length. Tentacles short, 14 to 21% of mantle length; clubs with fewer than 25 transverse rows of suckers (19 to 24). Left arm IV hectocotylized for more than 50% of arm length (57 to 62%) to tip; 80% of suckers of dorsal row modified into minute suckers set on broadly triangular pedicels; 3 to 5 suckers of ventral row at origin of hectocotylus very reduced in size, remaining suckers normal.


tentacular club sucker rings

tentacular club

Geographical Distribution: Western Atlantic Ocean: Caribbean Sea.


Habitat and Biology: A neritic species ranging in depth from 48 to 304 m (taken at surface at night with night-light attraction). Apparently associated with islands.

Size: Maximum mantle length 7.2 cm; maturity is attained at 4.3 cm.

Interest to Fisheries: Fisheries potential undetermined.

Local Names:

Literature: Cohen (1976, detailed description, distribution).

Loligo sanpaulensis Brakoniecki, 1984

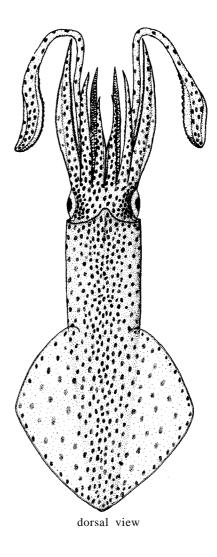
LOLIG Lolig 17


Loligo sanpaulensis Brakoniecki, 1984, Bull.Mar.Sci., 34(2).

Synonymy: Loligo brasiliensis Blainville, 1823 (in part:by Castellanos, 1967; 1967a, Castellanos & Menni, 1968; Castellanos & Cazzaniga, 1979). Doryteuthis plei Blainville, 1823 (in part: by Palacio, 1977); Loligo <u>brasiliensis</u> Blainville, 1823 = <u>nomen</u> <u>dubium</u> fide Brakoniecki, in press.

En - Sao Paulo squid FAO Names:

Fr - Calmar de Sao Paulo SP - Calamar de Sao Paulo


Diagnostic Features: Mantle moderately long. Fins rhombic, relatively long, 55 to 60 exceptionally to 65% of mantle length. Tentacles long; clubs expanded, marginal suckers relatively large median manal suckers only about 1/3 larger than marginal ones; rings with about 25 pointed, separated teeth, smaller and more widely spaced proximally. Arms moderately long, sucker rings with 5 to 7 broad truncate teeth distally, smooth proximally; left arm IV hectocotylized in distal 1/2 (45% of arm length) by great reduction in size of suckers in dorsal row that are set on conical to elongate thickened pedicels; suckers on ventral row normal but pedicels are slightly elongate and thickened.

tentacular club

Geographical Distribution: Southwestern Atlantic: from central Argentina to central Brazil but limits unknown, especially the northern (records to date from 20° to 42°S latitude).

Habitat and Biology: A neritic species in coastal waters ranging in depth from 0 to 60 m (probably somewhat deeper). Occurs in central Argentina in summer, therefore probably does not extend southward into cold waters.

Size: Maximum mantle length 16 cm.

Interest to Físheries: Taken as bycatch in trawl fisheries; some directed fisheries are now developing in Uruguay, Argentina and Brazil.

Local Names: ARGENTINA, BRAZIL, URUGUAY: Calamar.

Remarks: This species has been called Loligo brasiliensis by some authors and Doryteuthis plei by others, but the name Loligo brasiliensis cannot be clearly tied to any known species. The confused names and taxonomy have made designations of species utilized in the fishery equally confusing. The species is being redescribed under a new name by Brakoniecki (Bull.Mar.Sci., 1984). The use of the other names should thereafter be avoided.

Loligo (Doryteuthis) sibogae (Adam, 1954)

LOLIG Lolig 18

Doryteuthis sibogae Adam, 1954, Results Exped.India Neerl.Orient., 55c:146.

Synonymy: Doryteuthis sibogae Adam, 1954.

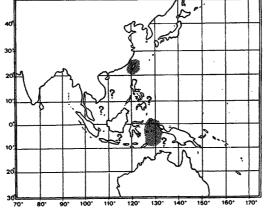
FAO Names: En - Siboga squid

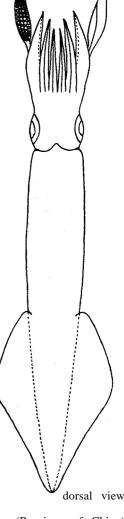
Fr - Calmar siboga Sp - Calamar siboga

Diagnostic Features : Mantle very long and slender; width 1/5 to 1/7 of length. Fins narrow, relatively short, their length about 45% of mantle length. Tentacles short, slender, clubs short; medial suckers on manus slightly enlarged,

the largest ones with 15 to 20 conical, sharp, incurved, widely spaced teeth around entire ring; the largest suckers from the club and arm III are about equal in size. Arms relatively very short; arm sucker rings smooth proximally but with 7 to 9 plate-like, truncate (squared) teeth distally, the central 1 or 2 narrowest; left arm IV hectocotylized for 30 to 45% of its length by the distal suckers and stalks being modified into cone-shaped fleshy papillae, those on the ventral row the longest; the 15 to 20 pairs of suckers proximally remain modified throughout growth. A paired, bean-shaped light organ present around the ink sac.

largest arm III sucker ring




largest tentacular club sucker ring

Geographical Distribution:
Western Pacific: Eastern Indonesia and China (Pescadores
Islands).

Habitat and Biology: A 2 semipelagic, neritic species; its depth range is undetermined; sexually mature squids occur during August off Pescadores Islands. The biology of this species is very poorly known.

Size : Maximum mantle length 16 cm.

Interest to Fisheries: Taken as bycatch in the fisheries for larger squids in Taiwan (Province of China).

Local Names:

Literature: Okutani (1980).

Remarks : The generic status of this species needs to be clarified, as it is referred to both <u>Loligo</u> and <u>Doryteuthis</u> by different authors.

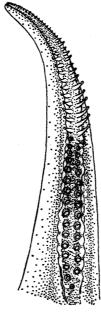
Loligo (Doryteuthis) singhalensis Ortmann, 1891

LOLIG Lolig 19

Loligo singhalensis Ortmann, 1891, Zool.Jahr.Abt.Syst., 5:676.

Synonymy: None.

FAO Names: En - Long barrel squid Fr - Calmar baril Sp - Calamar buril


 $\begin{array}{c} \textbf{Diagnostic Features:} \ \ \text{Mantle very long and slender, attains a} \\ \text{large size for loliginids.} \ \ \text{Fins very long, up to 70\% of mantle length;} \\ \end{array}$ a ridge along ventral midline of mantle of males. Tentacular clubs short, slightly expanded; suckers in medial rows of manus only about 25% larger than those on lateral rows with 20 to 22 sharply pointed, curved teeth, some of which are quite reduced in size. Arms relatively short; sucker rings with 7 to 9 long, slender bluntly pointed to truncate teeth distally, smooth proximally. Left arm IV hectocotylized in distal half with slender papillae, each bearing a minute sucker. A paired, bean-shaped light organ present around ink sac.

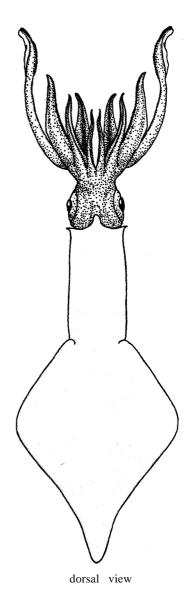
arm III sucker ring

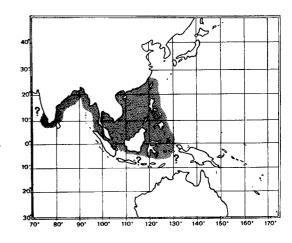
tentacular club sucker ring

left arm IV of male hectocotylized

Geographical Distribution : Indo-Pacific: Arabian Sea, Bay of Bengal to South China Sea and Philippines Sea.

Habitat and Biology: A neritic, semipelagic species occurring at depths from 30 to 120 m. It is positively phototactic, a feature that is utilized in the fishery by attracting it by light prior to capture. It aggregates in large schools in summer, probably for mating and spawning. Males grow larger than females.

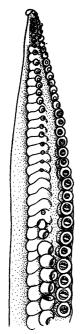

Size: Maximum mantle length 50 cm in males, 31 cm in females; weight about 1 kg in males, 800 g in females.

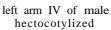

Interest to Fisheries: The third most important squid trawled in Hong Kong waters after <u>Loligo</u> edulis and L. <u>chinensis</u>. In the Philippines it supports localized and subsistence fisheries and is taken by purse seines and dip-nets after attraction with torches and lamps.

Local Names: CHINA: Cheung woo chak, Cheung yau tung.

Literature: Okutani (1977, 1980).

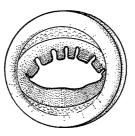
Remarks: The generic status of this species needs to be clarified.

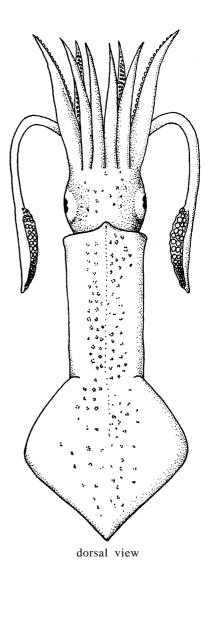

Loligo surinamensis Voss, 1974, Zool.Meded., 48(6):43.


Synonymy: None.

FAO Names: En - Surinam squid

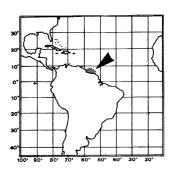
Fr - Calmar du Surinam Sp - Calamar surinamés


Diagnostic Features: Mantle moderately broad, about 25% of mantle length. Fins about 50% of mantle length, rhomboidal. Tentacular clubs expanded, with 38 to 40 transverse rows of suckers; manal suckers enlarged; medial ones 1/3 larger than marginal ones; largest manal sucker rings with about 48 alternating large and small, sharply pointed, curved teeth. Arms relatively long, about 45% of mantle length; arm sucker rings with 5 to 8 truncated teeth in distal half, central ones narrowest, proximal 1/2 smooth; left arm IV of male hectocotylized in distal portion beginning at the 22nd to 24th pair of suckers: sucker bases (stalks) in dorsal row enlarged and flattened transversly, suckers descreased in size; ventral row with a few reduced suckers opposite modified part in dorsal row; tip unmodified.


tentacular club

arm III sucker ring

tentacular club sucker ring


Geographical Distribution: Southern Caribbean Sea: currently only known from around the mouth of the Suriname River, Surinam.

Habitat and Biology: A neritic species, known depth range: 27 to 37 m.

Size: Maximum mantle length 12 cm.

Interest to Fisheries: At present undetermined.

Local Names:

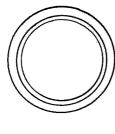
Loligo uyii Wakiya & Ishikawa, 1921

LOLIG Lolig 21

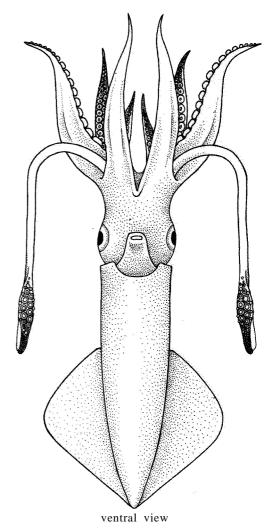
Loligo uyii Wakiya & Ishikawa, 1921, Zool.Mag.Tokyo, 33:286.

Synonymy: Loligo tagoi - Sasaki, 1929; Loligo gotoi Sasaki, 1929.

FAO Names: En - Little squid


Fr - Calmar mignon Sp - Calamar balilla

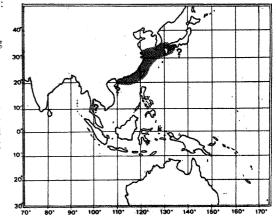
Diagnostic Features: Mantle short, moderately stout, its width about 25% of the mantle length. Fins rhomboidal, their angles rounded, length about 60% of mantle length. Tentacular clubs slightly expanded, lanceolate, about 8 suckers in 2 median manal rows-greatly enlarged with smooth rings; medial and distal rings with very low broad plate-like or semilunar teeth (7 to 10). Arm sucker rings with 3 to 6 (mostly 4 or 5) very broad, short, rounded-rectangular to semilunar teeth in distal half, proximal half smooth; left arm IV hectocotylized along distal 2/3 with about 75 suckerless papillae, those on dorsal row small, rounded, separate, but the ones on ventral row greatly swollen and connected into a ridge.



arm III sucker ring

tentacular club sucker ring

Geographical Distribution : Indo-West Pacific Ocean: Southern Japan, Yellow Sea to Hong Kong.


Habitat and Biology: A neritic, coastal species occurring to about 50 m depth.

Size: Maximum mantle length 10 cm.

Interest to Fisheries: This species was reported to contribute less than 1% to the 1979 catch of squids taken by commercial otter-board trawlers and pair trawlers in the Gulf of Thailand (species identification is unconfirmed). It is also reported among the 5 major species fished in Malaysian waters (Latif, 1982).

Local Names: CHINA: Yau jai.

Literature: Okutani (1980).

Remarks : Distribution of this species in Gulf of Thailand needs to be confirmed with positive identification of specimens.

Loligo vulgaris Lamarck, 1798

LOLIG Lolig 1

Loligo vulgaris Lamarck, 1798, Bull.Soc.Philom.Paris, 2:130.

Synonymy: None.

FAO Names: En - European squid

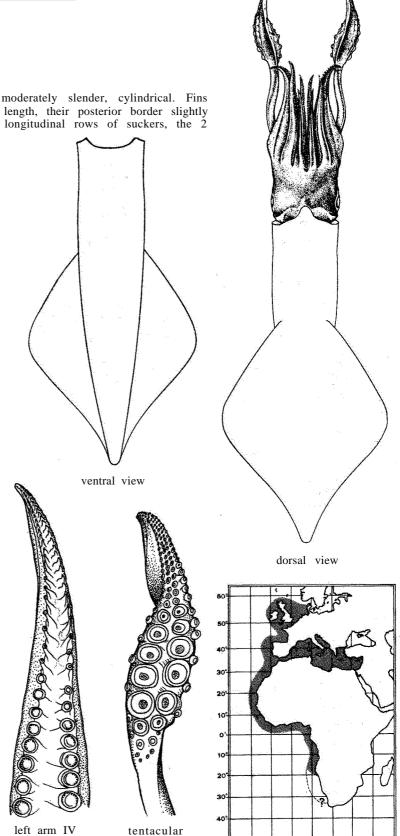
Fr - Encornet SP - Calamar

Diagnostic Features: Mantle long, moderately slender, cylindrical. Fins rhomboid, their length two thirds of mantle length, their posterior border slightly concave. Manus of tentacular clubs with 4 longitudinal rows of suckers, the 2 median rows with 6 enlarged suckers each; sucker rings of median rows on manus with approximately 30 irregularly-sized teeth; dactylus with about 20 transverse rows of minute suckers. Left ventral arm IV hectocotylized along its distal third to fourth by modification of suckers into papillae that decrease in size distally; arm sucker rings with 20 teeth, distal ones large and pointed, pro-

Geographical Distribution: Eastern Atlantic: From approximately 20° S to 55°N; around the British Isles, North Sea; Mediterranean Sea.

ximal ones minute or absent.

Habitat and Biology: A neritic, semi-pelagic species; ranging in depth from the surface to approximately 500 m, and most abundant between 20 and 250 m, deepest in winter.


European squid is known to migrate vertically and horizontally in response to changes in environmental conditions. The stock in the northeastern Atlantic overwinters in deeper waters off Portugal, approaches the French coast in spring, and migrates from May through June further north into the North Sea where spawning takes place in depths from 20 to 80 m. A southward migration takes place in fall.

The stock on the west Saharan fishing grounds, likewise overwinters in deeper offshore waters and migrates onshore for spawning in spring and fall. Accordingly, juveniles appear to recruit into the fishery in February and March and between July and September.

In the western Mediterranean, European squid migrate into deeper water in late fall; the largest individuals begin their onshore migration as early as in January and February, followed in summer by the smaller ones. Gradual spawning extends for most part of the year with peaks in early summer and early fall.

hectocotylized

club

Females produce up to 20~000 small eggs (diameter about 2~mm) which are deposited in gelatinous tubes containing tens of eggs and attached to debris and other hard objects on sandy to muddy bottoms. The larvae hatch after an incubation period fluctuating between 25~days (at 22° C) and 45~days (at 12~to 14° C).

The number (up to 800) and size of spermatophores is directly related to the size of the male. Males reproducing for the second time usually carry more than those reproducing for the first time.

Growth is faster in summer than in winter in both sexes; the rate is greater in males as compared with females.

In the Atlantic, June hatchlings attain approximately 12 cm mantle length in December and 13 or 14 cm in the following April. By August, males reach about 17.5 cm and in April of their second year 21 cm, compared to 17 cm in females.

In the western Mediterranean, juvenile females and males migrating onshore in July measure about 7 and 8 cm respectively (ranges 6.6 to 8 cm, and 7 to 8.3 cm) and grow to about 15 and 16 cm in December (ranges 14 to 16 cm and 15 to 17 cm). On the other hand, juveniles approaching the coast in October are approximately 5.7 cm long (range 5 to 6.3 cm) growing to 8.3 cm (range 7.8 to 8.9 cm) towards the end of December when they leave the shallow waters. By March they have attained a length of 13 cm. After May they mix with the other group in a new onshore migration where spawning occurs. Longevity is 2 years in females and about 3 years in males.

European squid feeds on fishes and crustaceans. Cannibalism is common.

Size: Maximum mantle length 42 cm in males, 32 cm in females; maximum weight 1.5 kg. Length at first maturity is about 13 cm in males and 16 cm in females.

Interest to Fisheries: The major fishing grounds for European squid are located off Portugal on the west African Banks and in the western Mediterranean, where the species is taken in the international f!lsheries with otter trawls and purse seines in daytime. It is occasionally caught at night with light attraction. Throughout its range, this squid is also the object of local artisanal fishery deploying a variety of gears, particularly jigs.

The species is marketed fresh and frozen. Separate statistics are not reported.

Local Names: ALGERIA: Kalmar; BULGARIA: kalmar CYPRUS: Kalamari; EGYPT: Sobbeit FRANCE: Encornet; GREECE: Kalamari; ITALY: Calamaro; LIBYA: Habbar; MALTA: Klamar; MONACO: Totanu; MOROCCO: Calamar; SPAIN: Calamar; TUNISIA: Mettik; TURKEY: Kalmar; USSR: Kalmar; YUGOSLAVIA: Lignja.

Literature : Mangold-Wirz (1963, biology); Fischer (ed., 1973, Species Identification Sheets Mediterranean and Black Sea, fishing area 37); Cort Basilio & Pérez-Gandaras Pedrosa (1973, fisheries on West; Sahara Banks); Roper (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part); Fisheries Committee for the Eastern Central Atlantic (1982, status of stocks, fisheries).

Remarks: In the southern end of the range, the species known as $\underline{\text{Loligo}}$ $\underline{\text{reynaudi}}$ may be synonymous with $\underline{\text{L.}}$ $\underline{\text{vulgaris}}$ or a subspecies.

Sepioteuthis australis Quoy & Gaimard, 1832

LOLIG Sepio 2

Sepioteuthis australis Quoy & Gaimard, 1832, Zool. Astrolabe, 2(1):77.

Synonymy: Sepioteuthis bilineata Quoy & Gaimard, 1832.

FAO Names: En - Southern reef squid

Fr - Calmar de roche austral Sp - Calamar roquero austral

Diagnostic Features: Mantle robust. Fins very long, exceeding 90% of mantle length, but fin width less than 50% of fin length; greatest width of fins at about midpoint. Tentacular clubs long, not greatly-expanded;

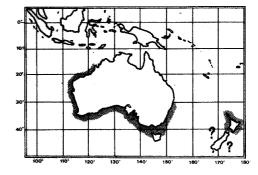
suckers moderate-sized with 22 to 27 sharp teeth around the rings of the largest. Arm III sucker rings with 25 to 30 sharp teeth. A narrow white to blue line occurs along the base of the fins where they attach to the body.

Geographical Distribution: Western Pacific: Australia and New Zealand.

Habitat and Biology: A neritic, demersal species commonly found in depths from the surface to 10 m.

Size: Maximum mantle length 38 cm; maximum weight

Interest to Fisheries: In Australia, this squid is taken in local fisheries by set nets, hook-(lure) -and-line, trolls, and tentacular club jigging; a larger-scale directed fishery is developing, but published information is meagre. In



dorsal view

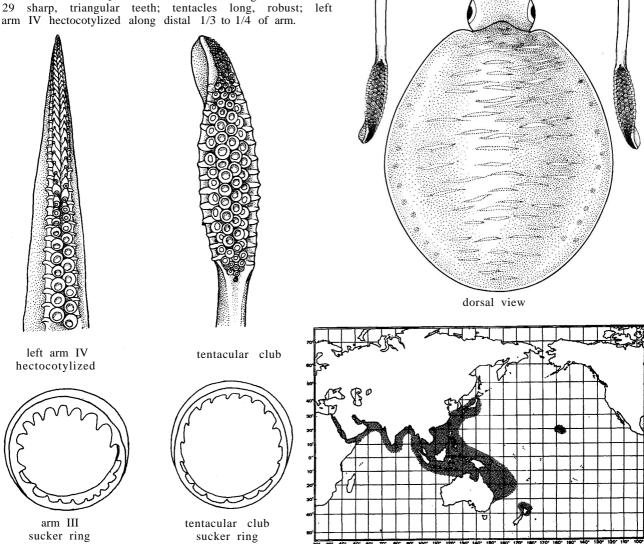
New Zealand, relatively low quantities are caught by trawl.

Local Names:

Literature: Okutani (1980); Dunning (1982, resources around Australia).

Sepioteuthis lessoniana Lesson, 1830

LOLIG Sepio 3


Sepioteuthis lessoniana Lesson, 1830, Voy. Coquille, 2(1):244.

Synonymy: Sepioteuthis guinensis Quoy & Gaimard, 1832; Sepioteuthis lunulata Quoy & Gaimard, 1832; Sepioteuthis mauritania Quoy & Gaimard, 1832; Sepioteuthis sinensis Orbigny 1835-1848; Sepioteuthis arctipinnis Gould, 1852; Sepioteuthis brevis Owen, 1881; Sepioteuthis neoguinaica Pfeffer, 1884; Sepioteuthis indica Goodrich, 1896; Sepioteuthis sieboldi Joubin, 1898; Sepioteuthis malayana Wülker, 1913; Sepioteuthis krempfi Robson, 1928.

FAO Names: En - Bigfin reef squid

Fr - Calmar tonnelet SP - Calamar manopla

Diagnostic Features: Mantle long, robust, its width about 40% of length. Fins very large, their length over 90% up to nearly 100% of mantle length, their width up to 75% of mantle length; tne grearest width occurs posterior to the midpoint of the fins. Tentacular clubs long, expanded; median manal suckers enlarged; rings with 14 to 23 sharp teeth. Arm sucker rings with 18 to 29 sharp, triangular teeth; tentacles long, robust; left arm IV hectocotylized along distal 1/3 to 1/4 of arm.

Geographical Distribution: Indo-Pacific: Red Sea, Arabian Sea east to 160°E, northern Australia and north to central Japan, eastward to the Hawaiian Islands.

Habitat and Biology: Sepioteuthis lessoniana is a neritic species occurring from the surface down to at least 100 m depth. The spawning season depends on the hydrographical conditions and can be quite extended. Egg capsules containing 3 to 7 eggs are finger-shaped and attached in clusters to seaweeds, twigs, stones and corals in coastal waters. Males attain sexual maturity at an age of 10 to 14 months, females at 12 to 17 months. Longevity is 2½ years. Males often outnumber females in the upper size classes.

Bigfin reef squid preys primarily on prawns and fishes, occasionally on stomatopods and crabs. Cannibalism is not very common.

Size: Maximum dorsal mantle length 36 cm, corresponding to a weight of about 1.8 kg. Off southern India, the maximum length is 33 cm. Length at first maturity is reported as 10 cm in males in Indian waters. Females mature within a length range from 8 to 20 cm (Silas, et al., 1982).

Interest to Fisheries: The species is of commercial value all over southeast Asia where it is captured throughout the year, with lure-hooks, seines or purse seines in inshore waters and by trawlers on the continental shelf. In western Japan and the Philippines, local fisheries utilize set nets, spears and jigs; the seasonal fisheries from May to September around Hong Kong use purse seines. It is also reported as one of the 4 loliginid species of the Chinese squid catch. It is commonly found in southern India, where the major fisheries concentrate around Palk Bay and the Gulf of Mannar in March through June using trawls and purse seines. It is also reported to be the most common cephalopod species in Sri Lanka where it is caught with scoop-nets and beach seines (Ma-dels). It is marketed all along the coast, mostly fresh, some sun-dried.

Local Names : CHINA: Daai mei yau yue; JAPAN: Aoriika, Bashouika, Izuika, Kutsuika, Mizuika, Moika, Shiroika.

Literature: Tomiyama & Hibiya (1978); Silas et al. (1982, biology, India).

Remarks: This species has successfully been reared in aquaculture experiments (Choe, 1966).

Sepioteuthis sepioidea (Blainville, 1823)

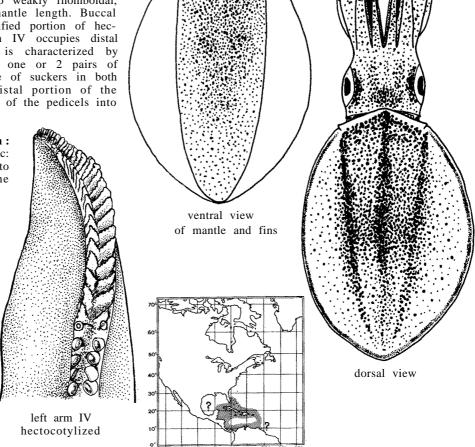
LOLIG Sepio 1

Loligo sepioidea Blainville, 1823, J.Phys.Chim.Hist.Nat., 96:133.

Synonymy: Loligo sepioidea Blainville, 1823; Sepioteuthis biangutata Rang, 1837; Sepioteuthis sepioidea Orbigny, 1839; Sepioteuthis sloani Leach, 1849; Sepioteuthis ovata Gabb, 1868; Sepioteuthis ehrhardti Pfeffer, 1884; Sepioteuthis accidentalis Robson, 1926.

FAO Names: En - Caribbean reef squid

Fr - Calmar ris


Sp - Calamar de arrecife

Diagnostic Features: Mantle broad, relatively stout, tapered to a blunt posterior end, widest at anterior opening. Fins occupy nearly the entire length of mantle (90% in adults, 75% in juveniles) and are elliptical to weakly rhomboidal, their width about 65% of mantle length. Buccal lappets without suckers. Modified portion of hectocotylized (left ventral) arm IV occupies distal fourth of arm length and is characterized by sudden reduction in size of one or 2 pairs of suckers, the complete absence of suckers in both rows from the remaining distal portion of the arm, and the increase in size of the pedicels into large, fleshy papillae.

Geographical Distribution:
Tropical western north Atlantic:
Cape Canaveral, Florida to
Venezuela, throughout the
Caribbean Sea.

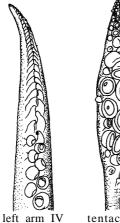
Habitat and Biology: A tropical shallow-water species ranging from the surface and about 20 m depth, most abundant between 3 and 7 m. It occurs exclusively associated with coral reefs and Thalassia grass flats.

Reef squids form small schools of 4 to 50 equally-sized individuals cruising around the reefs and over the flats. Spawning takes place throughout the year. The eggs are very yolky and large, 5 or 6 mm long. Only

3 or 4 eggs are encased in each gelatinous capsule and several capsules are attached together at their bases and deposited in clusters under rocks or in conch shells (Strombus gigas). The diet of this species includes shrimps and small fishes.

Size: Maximum mantle length 20 cm. Maturity is attained at approximately 9 cm, but the smallest males (immature) with a hectocotylized arm measure only 3 cm mantle length.

Interest to Fisheries: Taken only in subsistence fisheries throughout its range, using spears, night light and dip nets or lift nets. Separate statistics are not reported for this species. Consumed fresh.


Local Names:

Literature: Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31).

Alloteuthis africana Adam, 1950 Alloteuthis africana Adam 1950, Bull.Inst.Sci.Nat.Belg.,26(45):1. Synonymy: None. FAO Names: En - African squid Fr - Casseron africain SP - Calamarin africano

Diagnostic Features : Mantle long and narrow, mantle width index (mantle width as percentage of dorsal mantle length) 20 to 25% in juveniles, 15% in adult females, 5% in adult males; anterior ventral mantle margin squarish in outline. Tail (fins and posterior mantle projection) very long and pointed in females (37% of dorsal mantle length in juveniles and 58% in adults) and extremely long and spike-like in males (35% in juveniles, 73% in adults). Fins oval in outline, fin width index (width of both fins as a percentage of dorsal mantle length) 23% in adult females and 10% in adult males; posterior border of fins concave; arms very short; buccal lappets without suckers. Diameters of club suckers of median 2 rows 3 times greater than lateral ones. sucker rings with 20 to

30 blunt teeth. Left ventral arm hectocotylized by modification of dista1 2/5 of length; 8 to 11 pairs of normal suckers proximally followed by longitudinal rows of more or less elongate papilla that gradually decrease in size distally; arm suckers with 6 to 10 square teeth on distal half. smooth on proxihectocotylized mal half.

male

ventral view

dorsal

view

female dorsal view ventral view 20 10 oʻ 10 20 80

LOLIG Allot 1

Geographical Distribution: Eastern Atlantic: from 20°S to 25°N.

Habitat and Biology: A neritic demersal species, spawning on the bottom. It feeds on small fishes. Males grow considerably larger than females.

Size: Maximum mantle length 19 cm in males; 9 cm in females.

Interest to Fisheries: Bycatch in local trawl fisheries. Separate statistics are not reported for this species.

Local Names:

Literature: Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

Alloteuthis media (Linnaeus, 1758)

Sepia media Linnaeus, 1758, Syst.Nat., 659.

Synonymy: Sepia media Linnaeus, 1758; Loligo marmorae Verany, 1877.

FAO Names: En - Midsize squid

Fr - Casseron bambou SP - Calamarín menor

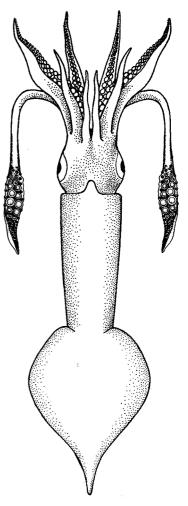
Diagnostic Features: Mantle long, relatively narrow, its posterior end drawn out into a narrow, pointed tail, up to 6 cm long in adults. Fins heart-shaped, their lateral angles rounded, posterior borders concave, extending posteriorly along tail. Buccal suckers absent.

Tentacles long, robust; clubs large, expanded, with large suckers in the 2 median manal rows. Left arm IV hectocotylized: 10 to 12 (usually 11) normal suckers in median row followed by coarse papillae.

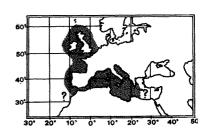
Geographical Distribution: Eastern Atlantic: Irish Sea, English Channel (very rare in North Sea) South into Mediterranean Sea.

Habitat and Biology : A neritic, demersal species on sandy and muddy grounds occurring over a depth range from the surface to 350 m, usually between 20 and 200 m.

Like other neritic squids, it performs seasonal migrations between offshore and inshore areas. In the Mediterranean, spawning extends throughout the year, but two groups of spawners can usually be distinguished by size and time of peak spawning, even though mixing occurs. Large individuals are encountered in February at depths between 150 and 200 m; from March to April, they start migrating into shallower waters, where spawning takes place on sandy grounds and to a minor extent, in Posidonia grass beds. The second group, composed of smaller individuals, migrates onshore in June and July and spawn later in the year. By late fall, depending on environmental temperatures, they start returning to deeper waters.


tentacular club

Large males may carry up to 170 spermatophores, large females 8 to 30 eggs. The eggs are shed in several batches and are encapsuled in rather short gelatinous strings (each containing up to $1\ 400$ eggs) which are attached in batches of up to 12 to hard objects on the substrate (shells, corals, stones).


This squid feeds on crustaceans, molluscs and small fishes. Longevity is about 1 year in males, $1\frac{1}{2}$ years in females.

Size: Maximum mantle length 12 cm; females grow bigger than males. Length at first maturity is about 9.5 cm in females, and 5.5 cm in males.

dorsal view

Interest to Fisheries: An active trawl fishery exists for this species in the western Mediterranean, where it is taken between 150 and 200 m depth in winter, and in shallower waters (50 to 150 m) in spring, summer and fall. Some landings of this species may be registered as <u>Loligo</u> <u>vulgaris</u>.

Local Names : FRANCE:. Petit encornet; ITALY: Totariello; MONACO: Totanitu; SPAIN: Luria; UK: Little squid.

Literature: Mangold-Wirz (1963, biology, Mediterranean).

Alloteuthis subulata (Lamarck, 1798)

<u>Loligo</u> <u>subulata</u> Lamarck, 1798, <u>Bull.Soc.Philom.Paris</u>, 2:130.

Synonymy: Loligo subulata Lamarck, 1798.

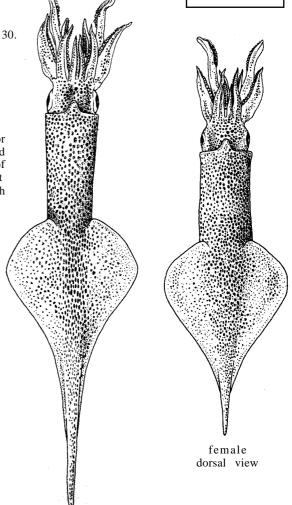
FAO Names: En - European common squid

Fr - Casseron commun SP - Calamarin picudo

Diagnostic Features : Mantle long and narrow, anterior ventral mantle margin shallowly curved; tail long and pointed in adult females (length of posterior extension plus fins 66% of dorsal mantle length) and very long and spike-like in adult males (72% of dorsal mantle length). Fins rhombic, with

pointed lateral angles, their posterior borders concave and extending along tail; buccal lappets without suckers; tentacles short, delicate; clubs small, narrow, median manal suckers small. Arms are medium to short; left ventral arm IV hectocotylyzed, with 6 to 8 pairs of normal suckers proximally, followed distally by 2 longitudinal rows of fine papillae.

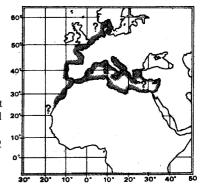
Geographical Distribution: Eastern Atlantic: North Sea and western Baltic Sea south to the Sahara Banks, extending into the Mediterranean Sea.


Habitat and Biology: A neritic, demersal species, usually associated with sandy and hard bottoms, occurring in depths down to 200 m. In the North Sea, males and females arrive together in inshore waters in early summer. The sole spawning season is restricted to June and July. Eggs are encapsuled in gelatinous strings which are attached to various hard objects on the substrate. Juveniles of 2 mm length hatch after a few

weeks; they first occur in plankton samples towards the end of July; after about 15 to 30 days they shift to the demersal life habits of the adults; by November, at an age of 3 months (size about 3 cm), they leave the North Sea to return only in the following spring (size about 5 cm). Longevity is between 1 and 2 years. The species feeds on small and juvenile fishes.

Size: Maximum mantle length 20 cm in males, 12 cm in females.

Interest to Fisheries: Taken as bycatch in trawl fisheries throughout its range. In the Mediterranean Sea, the species is caught between 20 and 120 m depth over sandy-muddy bottoms. Marketed fresh and frozen. Separate statistics are not reported, but catches are probably reported as Loligo vulgaris.


Local Names: ITALY: Calamaretto.

LOLIG Allot 2

male dorsal view

tentacular club

Literature: Mangold-Wirz (1963, biology, western Mediterranean); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

Remarks: Often misidentified as juvenile Loligo forbesi and L. vulgaris.

<u>Uroteuthis</u> <u>bartschi</u> Rehder, 1945

LOLIG Uro 1

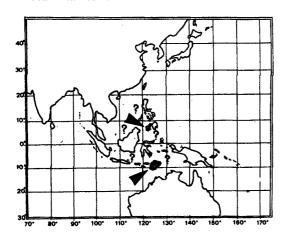
Uroteuthis bartschi Rehder, 1945, Proc.Biol.Soc.Wash., 58:22.

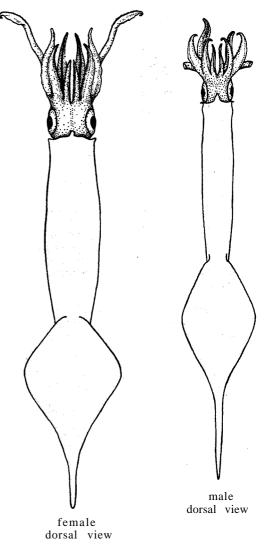
Synonymy: None.

FAO Names: En - Bartsch's squid

Fr - Calmar tépo SP - Calamarete

Diagnostic Features: Mantle very narrow, elongate, with very long, pointed tail. Fins rhomboidal, their lateral angles rounded, posterior borders concave, extending the entire length of tail. Head relatively small, narrow. Left arm IV hectocotylized in distal half by abrupt transformation of suckers into long, stout papillae (pedicels), the first few (1 or 2) each set with a minute, fleshy sucker.


Geographical Distribution : Western Pacific Ocean: in Philippine and Indonesian waters.


Habitat and Biology: A neritic species; upper and lower limit of depth distribution undetermined.

Size: Maximum mantle length 20 cm.

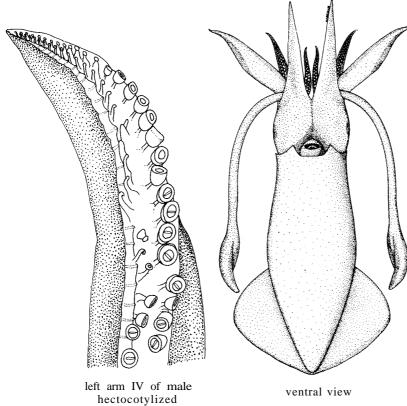
Interest to Fisheries : Taken as bycatch in local trawl fisheries. Utilized mostly fresh.

Local Names :

Lolliguncula brevis (Blainville, 1823)

LOLIG Lolligun 1

Loligo brevis Blainville, 1823, J.Phy.Chim.Hist.Nat., 96:133.


Synonymy: Loligo brevis Blainville, 1823; Loligo brevipinna Lesueur, 1824; Loligo hemiptera Howell, 1868.

FAO Names: En - Western Atlantic brief squid

Fr - Calmar doigtier commun

SP - Calamar dedal

Diagnostic Features: Mantle stout, bluntly rounded posteriorly, widest in mid-portion. Fins broad, wider than long (fin with 75% of mantle length), very rounded, short (50 to 55% of mantle length). Modified portion of hectocotylized (left ventral) arm IV occupies distal third of arm and extends to arm tip; about 24 suckers of dorsal row modified, the proximal 1 to 3 being greatly reduced in diameter, the remaining pedicels distally are greatly enlarged with long, slightly flattened papillae that gradually diminish in size distally; no large, puffy, glandular enlargement of basal area of arm between sucker rows.

dorsal view

3°S):

Geographical Distribution : Western Atlantic (40°N to 23°S): mid-Atlantic states, Gulf of Mexico, Caribbean Sea, northeastern South America, occasionally as far South as Argentina.

Habitat and Biology: A neritic, coastal species restricted to very shallow water of at most 20 m depth and to waters within a

temperature range between 15 and $32^{\circ}C$. It tolerates salinities as low as $8.5^{\circ}0/00$ for brief periods and is particularly abundant in shallow bays and estuaries. Spring migration into estuaries is largely influenced by temperature and salinity, while fall emigration is closely associated with a decline in water temperature. Monthly variations in abundance are related with seasonal fluctuations in estuarine zooplankton abundance, and not with environmental variables (T,S).

The small eggs are laid in elongate, terminally rounded, gelatinous capsules attached to the bottomin shallow waters. Food consists of zooplankton, small crustaceans and fishes.

Size: Maximum mantle length 12 cm in females, 8 cm in males.

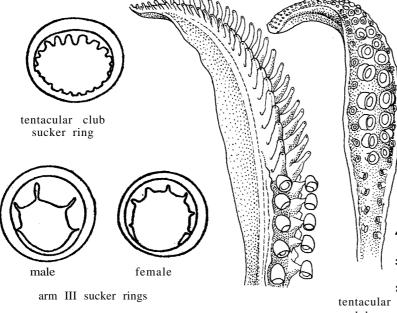
Interest to Fisheries: Taken as bycatch in otter trawl fisheries for shrimp and fin-fish. Locally very abundant. Utilized as food and bait (fresh and frozen); a very meaty species, considered ideal for canning.

Local Names: USA: Brief squid, Thumbstall squid, Western Atlantic brief squid.

Literature : Barragan (1969, food, Colombia); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Laughlin & Livingston (1982, distribution off north Florida, USA).

Lolliguncula mercatoris Adam, 1941

LOLIG Lolligun 2


Lolliguncula mercatoris Adam, 1941, Mem.Mus.Roy.Hist.Nat.Belg., (2)21:125.

Synonymy: None.

FAO Names: En - Guinean thumbstall squid

Fr - Calmar doigtier de Guinée SP - Calamar dedal de Guinea

Diagnostic Features : Mantle broad (its width about 35% of dorsal mantle length), and bluntly rounded posteriorly. Fins rounded, short (their length 40 to 45% of dorsal mantle length), broad (width of both fins about 55 to 65% of dorsal mantle length) with convex posterior margins. Head short; buccal lappets without suckers. Tentacular clubs narrow, small, with suckers arranged in 4 longitudinal rows, 4 or 5 pairs of medial suckers on manus much larger than the laterals; club sucker rings with 15 to 25 more or less sharp teeth, larger, more pointed distally. Dorsal arms (I) extremely short in comparison to the others; left ventral arm (IV) of males hectocotylized, its proximal half with 6 to 12 pairs of normal suckers, its distal half with elongate papillae replacing the suckers, those of the dorsal row more strongly developed. Spermatophore pad of females located in mantle cavity, near gill.

left arm IV of male hectocotylized

Geographical Distribution : Eastern central Atlantic: limited to the west coast of Africa from Rio de Oro (Mauritania) to Lüderitz Bay (Namibia).

Habitat and Biology: A neritic, near-shore, shallow water species taken at depths of less than 50 m on mud and sandy mud bottoms.

Size: Maximum mantle length 5 cm in females, 3.5 cm in males.

dorsal view

dorsal view

dorsal view

as bycatch. However, should abundance, the western central Atlantic a fishery could

Interest to Fisheries: Currently not exploited, incidentally taken as bycatch. However, should abundance, habitat, and distribution prove to be similar to those of \underline{L} . \underline{brevis} in the western central Atlantic, a fishery could develop.

Local Names:

Literature : Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

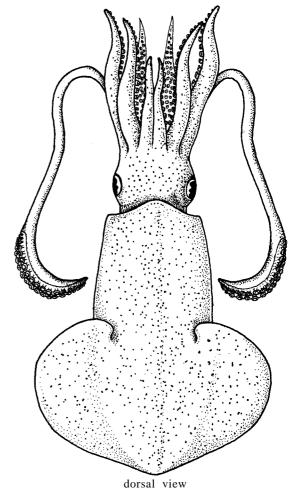
Lolliguncula panamensis Berry, 1911, Proc.Acad.Nat.Sci., Phila., 63(1):100.

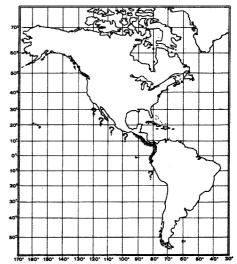
Synonymy: None.

FAO Names: En - Panama brief squid

Fr - Calamar doigtier panaméen SP - Calamar dedal panameño

Diagnostic Features: Mantle stout, robust, bluntly rounded posteriorly. Fins broad, round, their length 55 to 60% of mantle length, width 85 to 90% of mantle length. Tentacles long, robust; clubs large, expanded, with enlarged suckers in manus, especially the median rows with 23 to 27 small, sharp, triangular teeth around the ring (smaller proximally); arm suckers with 11 to 15 short, broad, truncate teeth that are prominent distally and obscure proximally. Left arm IV hectocotylized, but undescribed.


arm III sucker ring



tentacular club sucker ring

tentacular club

Geographical Distribution : Eastern Pacific: Reported from Baja California to northern Peru, but limits unconfirmed.

Habitat and Biology: A neritic, coastal species occurring over a depth range of 1 to 70 m, usually between 5 and 30 m at temperatures from 21 to 27°C , and salinities between 15 and $23^{-0}/_{00}$. Spawning seems to take place throughout the year, apparently in several batches. The diet consists of fishes (80%) and crustaceans (>15%).

Size : Maximum mantle length 11 cm in females, 8 cm in males. Females mature at 8 cm, males at 4 cm.

Interest to Fisheries: Taken as bycatch in shrimp fisheries off Panama, Colombia and Ecuador, but not separately reported in catch statistics. The largest individuals are picked out of the catch, packed and frozen to be exported to Europe.

Local Names:

LOLIG Lolio 1 Loliolopsis diomedeae (Hoyle, 1904) Loligo diomedeae Hoyle, 1904, Bull.Mus.Comp.Zool., 43(1):29. Synonymy: <u>Loligo</u> <u>diomedeae</u> Hoyle, 1904; <u>Loliolopsis</u> <u>chiroctes</u> Berry, 1929. **FAO Names:** En - Dart squid Fr - Calmar fléchette SP - Calamar dardo Diagnostic Features: Mantle long, bluntly pointed posteriorly. Fins hear-shaped to rounded (subrhombic), short, their length approximately one third of mantle length. Sexes dimorphic: female with larger body, relatively shorter arms and larger fins than males; both arms IV hectocotylized in males: left arm IV greatly elongate into a whip-like appendage with suckers minute at the base and absent along the rest of the arm; sucker stalks modified to papillae; right arm IV with suckers of reduced size and a broad, membranous flap on the ventral keel. both arms IV hectocotylized female dorsal view male dorsal view male female tentacular club Geographical Distribution: Eastern central Pacific: From Baja

Size: Maximum mantle length 11.5 cm; males remain smaller than females.

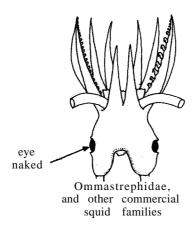
Habitat and Biology: A neritic species frequently forming large aggregations in the Gulf of Panama. Females appear to outnumber

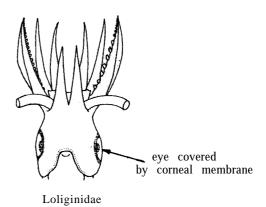
Interest to Fisheries: Taken as bycatch in the Panamanian shrimp fishery, but usually discarded; small quantities reach the local market.

Local Names:

California to Peru.

males 2:1.


Literature: Brakoniecki (1980, systematics, separation from Lolliguncula).


Suborder Oegopsida Orbigny, 1845

Oegopsida - Orbigny, 1845, Moll. Viv. Foss., 1:367.

Twenty three families compose the suborder Oegopsida or oceanic squids, several of which support the major cephalopod fisheries of the world. The suborders Oegopsida and Myopsida apparently diverged from the basic teuthoid stock in the Lower Jurassic.

Díagnostic Features : Oegopsid squids are distinguished from myopsid squids by their lack of a corneal membrane, thus exposing the eyes directly to the sea; suckers are absent on the buccal lappets (except in Bathyteuthidae and Ctenopterygidae); sucker ornamentation consists of chitinous rings and/or hooks; female gonoducts are paired; accessory nidamental glands are absent.

4.2 FAMILY ENOPLOTEUTHIDAE Pfeffer, 1900

ENOP

Enoploteuthidae Pfeffer, 1900, Mitt.Nat.Mus., 17:163.

FAO Names: En - Enope squids

Fr - Encornets SP - Enoplolurias

General Remarks on the Family: This family contains 2 commercially exploited species taken in Japan and Australia. A third species is known to be used in Singapore, but no data are available. The Enoploteuthidae are divided into three long-established subfamilies: Enoploteuthinae (Enoploteuthis, Abralia, Abraliopsis, Watasenia), Pyroteuthinae (Pyroteuthis, Pterygioteuthis), and Ancistrochirinae (Thelidioteuthis, Ancistrocheirus).

Diagnostic Features: All members of this large family possess a straight locking apparatus; biserial armature (except occasionally at the arm tips) with at least some hooks on the arms; tetraserial armature on the clubs (marginal suckers of the manus may be lost with growth in some species); photophores; 8 buccal lappets and buccal connectives that attach dorsally to the ventral arms (Enoploteuthis dubia Adam, 1960, is unique in having connectives that attached dorsally to all arms). All species, except those of the genus Pterygioteuthis, possess hooks on the tentacular clubs.

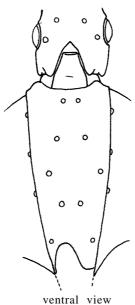
Geographical Distribution : Enoploteuthids primarily are mesopelagic inhabitants of the tropical and subtropical oceans of the world. Some species of the genera <u>Pterygioteuthis</u>, <u>Abraliopsis</u>, and <u>Watasenia</u>, however, inhabit temperate waters as well.

Ancistrocheirus lesueuri (Orbigny, 1839)

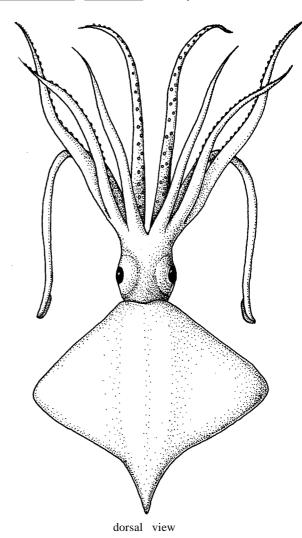
ENOP Anci 1

Onychoteuthis lesueurii Orbigny, 1839, in 1834-1848, Hist.Nat.Ceph.Acet.Viv.Foss., Atlas, Onychoteuthis, pl. 11.

Synonymy: Onychoteuthis lesueurii Orbigny, 1839; Theliodioteuthis alessandrini (Verany, 1851).

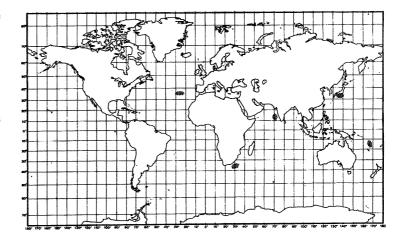

FAO Names: En - Sharpear enope squid

Fr - Encornet cachalot Sp - Enoploluria rómbica


Diagnostic Features: Mantle long, broad, conical, thick-walled. Fins thick, rhomboidal, long (70 to 80% of mantle length), broad (80% of mantle length). Tentacles robust with 12 photophores along the aboral side of the stalk; clubs narrow, unexpanded, with a distinct carpal cluster; manus with 2 rows of sharp hooks, the 7 or 8 of the ventral row being larger than the 8 of the dorsal row. Arms robust, relatively short, with 2 rows of hooks instead of suckers. Ventral surface of mantle studded with 20 to 22 relatively large, separated photophores arranged in transverse rows.

showing photophores posterior end damaged

Geographical Distribution : Worldwide in tropical and temperate open ocean waters.


Habitat and Biology: An oceanic species.

Size: Maximum mantle length 39 cm.

Interest to Fisheries: This species is believed to have some fishery potential because of its size.

Local Names:

Remarks: It is suspected that <u>Thelidioteuthis</u> <u>alessandrini</u> (Verany, 1851) which very abundant in warm waters is the juvenile form of this species.

Pterygioteuthis giardi Fischer, 1895

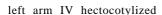
ENOP Ptery 1

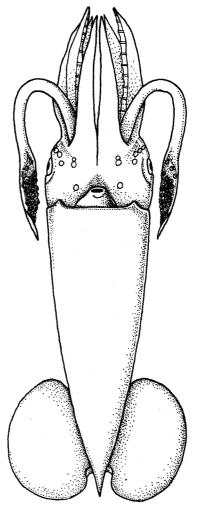
Pterygioteuthis giardi Fischer, 1895, J.Conch., 43(4):211.

Synonymy: None.

FAO Names: En - Roundear enope squid Fr - Encornet boubou

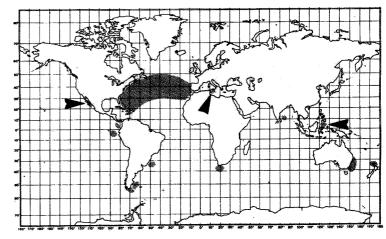
Fr - Encornet boubou Sp - Enoploluria orejuda


Diagnostic Features: Mantle small, tapered to a short sharp tail. Fins rounded with large lobes; fins do not meet posteriorly. Ventral surface of each eye studded with 15 irridescent photophores. Tentacular clubs with suckers only, no hooks. Arms I to III with 2 rows of hooks; arms IV with a few hooks, but no suckers; left arm IV hectocotylized.



side view

ventral view


Geographical Distribution: Worldwide in warm oceanic waters.

Habitat and Biology: A predominantly oceanic species with a depth distribution ranging from just below the surface to about 500 m; known to undertake diel vertical migrations: off Bermuda is it found in 250 to 500 m by day and in 50 to 250 m at night. The species is preyed upon by large dolphins (Tursiops truncatus), and pelagic fishes.

Size: Maximum mantle length 4 cm.

Interest to Fisheries: None at present.

Local Names:

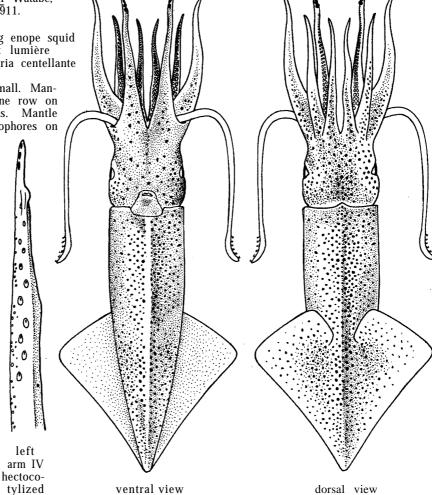
Watasenia scintillans (Berry, 1911)

ENOP Wata 1

Abraliopsis scintillans Berry, 1911, Nautilus, 25(8):93.

Synonymy : Abraliopsis joubini Watabé, 1905; Abraliopsis s<u>cintillans</u> Berry, 1911.

FAO Names: En - Sparkling enope squid

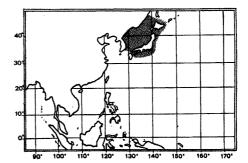

Fr - Encornet lumière Sp - Enoploluria centellante

Diagnostic Features : Size small. Mantle stocky. A few large hooks in one row on tentacular club. Arms with hooks. Mantle covered with numerous, minute photophores on

ventral and lateral surface, but with ventral midline devoid of photophores. Fins rhomboidal, about 60% of mantle length. Minute photophores also present on ventral surface of head; 5 on ventral surface of eyeball; 3 bulbous, black photophores on tips of arms IV.

Geographical Distribution:Western Pacific: Japan and Korea.

Habitat and Biology: A primarily Oceanie luminescent species, usually encountered in depths between 200 and 600 m, spawning in waters closer to the shore, e.g. Toyama Bay, Japan. Postspawning mortality is high and the life span is believed not to exceed 1 year. It is preyed upon by baleen whales, other marine mammals, Alaska pollack, Teragra chalcogramma, and constitutes 8% by volume of the diet of northern Pacific fur seal.


Size: Maximum mantle length 7 cm in females and 6 cm in males.

Interest to Fisheries: The annual catch fluctuated between 800 and 3 700 metric tons in the last few years, without any clear trend. The species is regularly taken with set nets in Toyama Bay, Japan, between February and early July (peak April to May). During this period it aggregates near the surface, particularly at night.

Local Names: JAPAN: Hotaruika, Matsuika.

Literature: Osako & Murata (in press, biology and fishery).

Remarks: Used also in research work on bioluminescence.

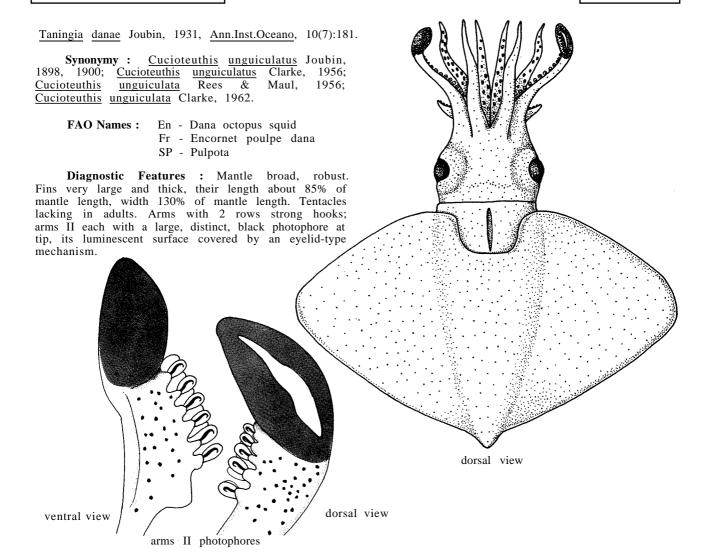
4.3 FAMILY OCTOPOTEUTHIOAE Berry, 1912

осто

Octopoteuthidae Berry, 1912, Proc.Acad.Nat.Sci.Phila., 64(2):432.

FAO Names: En - Octopus squids

Fr - Encornets poulpes

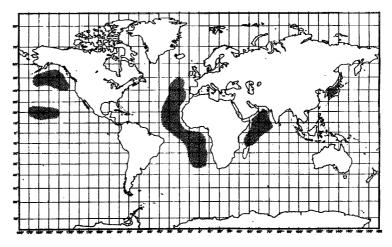

Sp - Pulpotas

General Remarks on the Family: The family comprises only two genera, Octopoteuthis (not included in this catalogue) and Taningia. It is characterized by biserial hooks on the arms (usually replaced by small biserial suckers near the arm tips); a lack of tentacles (in adults), buccal connectives that attach to the ventral borders of arms IV; a simple, straight, slightly broad funnel locking-cartilage; very large fins; light organs at the tips of at least some of the arms. Tentacles are present in larval forms of all species but are lost very early in development in Octopoteuthis, while they remain for some time in Taningia as small rudimentary filaments that bear a few distal club suckers; they eventually drop off in the juvenile stage.

Key to Genera:

Taningia danae Joubin, 1931

OCTO Tanin 1


Geographical Distribution: Complete distributional range unknown; reported from western Japan, the northeastern Pacific; southern and central east Atlantic up to about 45°N; Hawaii; and western Indian Ocean.

Habitat and Biology : A primarily oceanic midwater species, believed to spawn on the bottom. It is heavily preyed upon by sperm whales.

Size: Maximum mantle length 1.4 m.

Interest to Fisheries: This species is believed to have some fishery potential.

Local Names:

4.4 FAMILY ONYCHOTEUTHIDAE Gray, 1849

ONYCHO

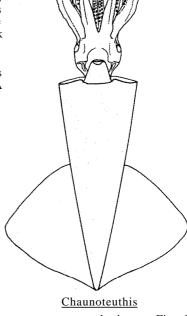
Onychoteuthidae Grey, 1849, Cat.Moll.Brit.Mus., 206.

FAO Names: En - Hooked squids

Fr - Cornets

SP - Lurias, Luriones

General Remarks on the Family: Six generacurrently are recognized: Onychoteuthis, Onykia, Moroteuthis, Ancistroteuthis, Chaunoteuthis, and Kondakovia. The generic boundaries, however, are not well defined and the family is in need of revision.


Onychoteuthis, the most widely distributed genus, is cosmopolitan and the only genus of the onychoteuthids presently known to possess photophores. The genus Onykia contains the smallest forms in the family and has a number of poorly defined species in tropical seas. The genus Moroteuthis includes the giants of the family; the largest recorded specimen had a total length greater than 4 m (Verrill, 1876). Chaunoteuthis differs from the other genera by having a gelatinous consistency. Kondakovia is an Antarctic form about which so little is known that it is not considered further here.

Diagnostic Features : Body muscular, tail pointed. Fins with sharp lateral angles; buccal connectives attached to ventral borders of ventral arms (IV); funnel-locking apparatus simple, straight; tentacular clubs with 2 rows of hooks and 2 marginal rows of suckers, or suckers absent; 8 arms and 2 contractile tentacles around mouth; 2 rows of suckers on arms. Colour: maroon to brick red, darker dorsally.

Interest to Fisheries: From the five genera in this family, several species are currently commercially exploited or have good potential for fisheries. A potential increase in fisheries for this group certainly exists (Okutani, 1977).

Key to Genera:

- 1 b. Mantle firm, muscular; tentacles present

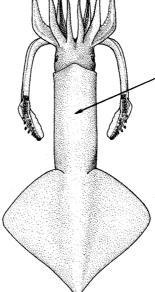
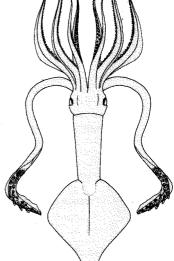

ventral view Fi

Fig. 1

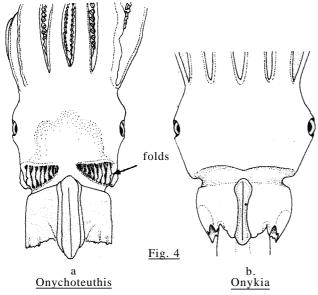
2 a. Nuchal folds present (Fig. 4a)


4 b. Nuchal folds absent (Fig. 4b)

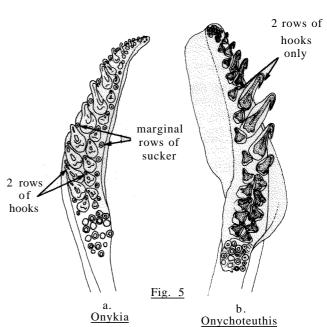
4 b. Manus of tentacular club with 2 median rows of hooks, but no marginal rows of suckers or hooks (Fig. 5b) . . Moroteuthis

Onychoteuthis dorsal view

Fig. 2



rachis of gladius visible


as a longitudinal ridge

Ancistroteuthis dorsal view

Fig. 3

dorsal view of head

tentacular club

Onychoteuthis Iichtensteini Orbigny, 1839, in 1834-1848, Hist.Nat.Ceph.Acet.Viv.Foss., Atlas, Onychoteuthis, pl. 11 and 14.

Synonymy: Onychoteuthis lichtensteini Orbigny, 1839.

FAO Names:

En - Angel squid Fr - Cornet archange Sp - Luria paloma

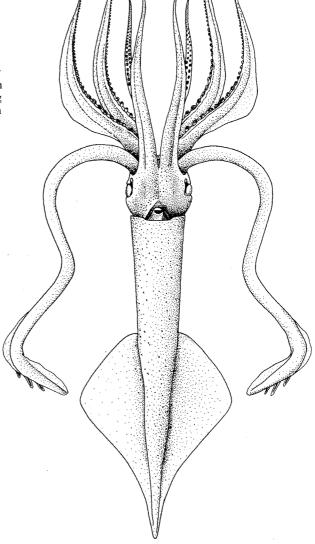
Diagnostic Features : Mantle slender, very muscular. Fins strong, lanceolate. Tentacular clubs in adults with 2 median rows of hooks (28), but lacking lateral rows of suckers; carpal pad of club elliptical with

8 to 12 suckers and 8 to 12 pads; 2 flap-like folds in neck area. Rhachis of gladius not visible along dorsal midline of mantle in subadults, visible anteriorly in adults. Light organs lacking on intestinal tract.

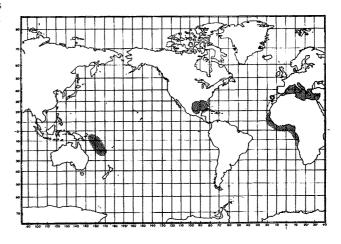
Geographical Distribution: Poorly known. Eastern Atlantic: From the Straits of Gibraltar to Angola, in the Mediterranean Sea; Gulf of Mexico; Melanesia. Distribution appears very disjunct because so few specimens have been reported in the scien-

tific literature.

and pelagic fishes.


Habitat and Biology: A pelagic species occurring in open warm-temperate waters from the surface to about 250 m depth. In the western Mediterranean it is associated with gravel bottoms during spring and summer. Spawning occurs in the summer. It feeds on epipelagic and upper mesopelagic finfishes and crustaceans, and is in turn preyed upon by marine mammals

tentacular club


Size: Maximum mantle length 30 cm.

Interest to Fisheries: Currently, no directed fishery exists for this species, it is only taken as bycatch in pelagic trawls. However, size and firm consistency of the flesh make it a potential target for a fishery.

Local Names:

ventral view

Onychoteuthis banksi (Leach, 1817)

ONYCHO Ony 1

Loligo banksi Leach, 1817, Zool.Misc., 3(30):141.

Synonymy: Loligo banksi Leach, 1817.

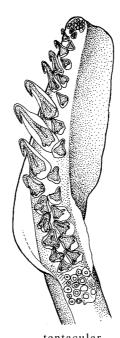
SP - Luria ganchuda

Diagnostic Features : Mantle very robust, muscular; several (9 or 10) elongate, flap-like folds around the dorso-lateral surface of the neck; a large, patch-like photophore on ventral surface of each

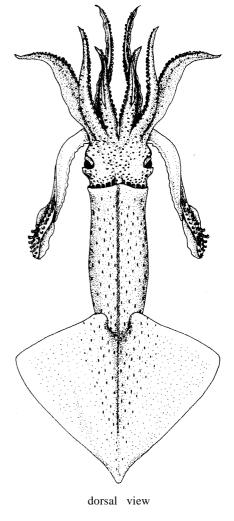
eye. Fins muscular, with sharp lateral angles, tail pointed, length of fins about 50 to 60% of mantle length. Tentacular clubs with 19 to 23 large, claw-like hooks in 2 rows, no marginal rows of suckers. Gladius visible as a dark line through the skin along midline of mantle. Two large, round, bulbous light organs along ventral midline on intestinal tract.

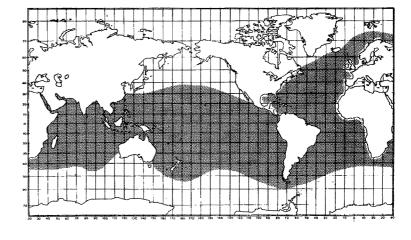
Geographical Distribution: Worldwide in warm and temperate oceanic waters.

Habitat and Biology: An oceanic species occurring from the surface to 150 m depth, but may be found as deep as 800 m; its biology is unknown; high respiration rates suggest it is fast-growing; larvae are abundant in the eastern Atlantic, paricularly from January to March.


Size: Maximum mantle length 30 cm.

Interest to Fisheries: Currently there are no fisheries directed at this species, but it is frequently dip netted at night. The quality of the flesh as human food is judged to be good; it is occasionally dried and sold for human consumption.


Local Names:


Literature : Abolmasova (1978, respiratory rates).

Remarks: The bite of this squid may be toxic and resembles a wasp sting in its effect.

Onychoteuthis borealijaponicus Okada, 1927, Bull.Inst.Oceano, 494:7.

Synonymy: Onychoteuthis banksi Okada, 1927.

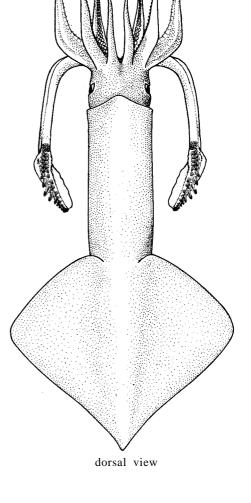
FAO Names: En - Boreal clubhook squid

Fr - Cornet boreal SP - Luria boreal

Diagnostic Features : Mantle long, slender, muscular (less robust than <u>O. banksi</u>). Fins broad, strong, muscular, their length 55

to 60% of mantle length. A large number of hooks on tentacular clubs (25 to 27). Small, oval photophores on intestinal

Geographical Distribution: North Pacific: Japan to USA


(replaces Onychoteuthis banksi colder, northern Pacific

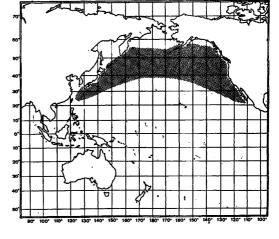
waters).

Habitat and Biology: An oceanic. pelagic species occurring from the surface down to undetermined depths, most abundant in the northwestern Pacific in surface waters of 9 to 13°C. East of Hokkaido, Japan, adults concentrate along the 10°C isotherm.

The population around the Japanese Islands appears to carry out north-south migrations. Juveniles are exclusively encountered in the warm-water area off southwestern Japan (Kuroshio and the countercurrent area), while adults are exploited in the cold-water zones off Hokkaido, further north. In June

photophores on intestinal tract ventral view

tentacular club


they arrive on these fishing grounds and remain there until fall. They migrate back southwards, and spawn in medium depths from late autumn through the winter southwest of Japan.

The species preys on small fishes; cannibalism is common.

Size: Maximum mantle length 37 cm in females, 30 cm in males; maximum weight 1.1 kg.

Interest to Fisheries: Following the decline of the yields of Todarodes pacificus this species is being increasingly fished commercially off northwestern Honshu, eastern Hokkaido, and in the northwestern USA, off Washington. It is primarily taken with jigs and drift gillnets. Jigging is particularly successful at night. The photophores make it appear as a dark shadow irradiating pale blue light near the surface. Sometimes it jumps aboard the vessel at night. It has been suggested that it might support commercial fishing operations in the northwestern Pacific north of the subarctic boundary, particularly during late summer and autumn.

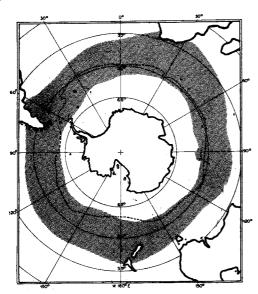
Local Names: JAPAN: Tsumeika.

Literature: Murata & Ishi (1977, biology, northwest Pacific); Roberts (1978, resources of New Zealand); Tomiyama & Hibiya (1978); Okutani (1980); Fiscus & Mercer (1982, North Pacific bycatch in surface gillnets); Okutani & Murata (in press); Osako & Murata (in press, fishery).

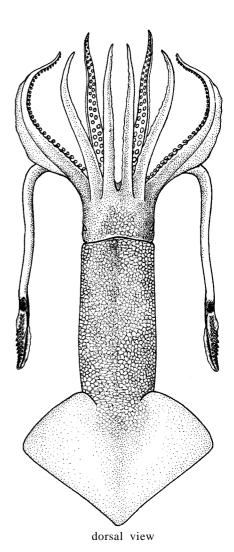
Moroteuthis ingens (Smith, 1881)

ONYCHO Moro 1

Onychoteuthis ingens Smith, 1881, Proc.Zool.Soc.Lond., 1881:25.


Synonymy: Onychoteuthis ingens Smith, 1881.

FAO Names: En - Greater hooked squid


Fr - Cornet commun SP - Lurión común

Diagnostic Features: Mantle robust, broad, thick, heavily muscled, not drawn out into a sharp tail, covered with fleshy warts. Fins large, broad, with broad angles of 50 to 55% each, length about 45% of mantle length.

Tentacular clubs unexpanded, with 28 hooks in 2 rows. Longest arms (II and III) about 70% of mantle length.

Habitat and Biology: An oceanic epipelagic species; probably occurring in less than 200 m, but the exact depth range is unknown. Its biology is barely known. It is a major item in the diet of sperm whales and also preyed upon by seals.

Size: Maximum mantle length 94 cm.

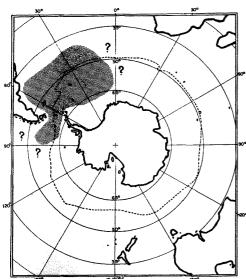
Interest to Fisheries: Abundant species in subantarctic waters and believed to have some fishery potential.

Local Names:

Moroteuthis knipovitchi Filippova, 1972

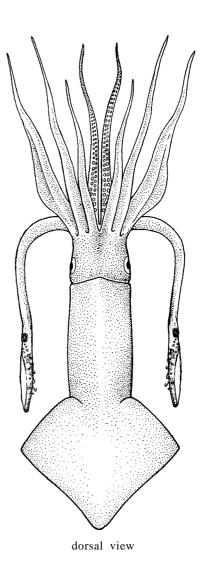
ONYCHO Moro 2

Moroteuthis knipovitchi Filippova, 1972, Malacologia, ll(2):392


Synonymy: None.

FAO Names: En - Smooth hooked squid

Fr - Cornet lisse SP - Lurión liso


mantle length. Tentacular clubs with 20 to 30 hooks in 2 rows, the 2nd to 4th on the dorsal row and 6th to 8th on ventral row the largest. Longest arms (II) 90% of mantle length.

Geographical Distribution: Scotia
Sea and Argentine Basin ranging into the
Southern Ocean and through Drake
Passage to the West; possibly circumpolar.

Habitat and Biology: An oceanic species; one of the most heavily preyed upon by sperm whales in the Southern Ocean.

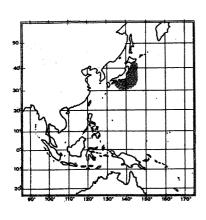
Size: Maximum mantle length 35 cm.

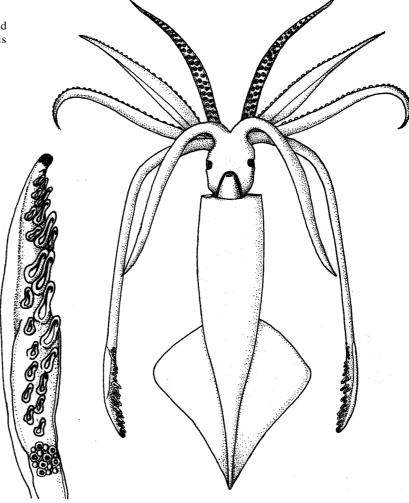
Interest to Fisheries: Its size and consistency make it a potential target for a fishery.

Local Names:

Moroteuthis lönnbergii Ishikawa & Wakiya, 1914, Jour.Coll.Agric., Imper.Univ.Tokyo, 4(7):445.

Synonymy: None.


FAO Names: En - Japanese hooked


Fr - Cornet japonais SP - Lurión japonés

Diagnostic Features : Mantle robust, muscular, covered with fleshy ridges or warts, tip drawn out to a moderately lengthened, pointed Fins broad, powerful. their width about 67% of mantle length, length about 55% of mantle length; fin angles about 35° to 40° each. Tentacular clubs long, unexpanded, with about 25 hooks in 2 rows. Longest arms (IV) 60% of mantle

length.

Geographical Distribution: Western Pacific off eastern Japan.

tentacular club

dorsal view

Habitat and Biology: An oceanic species from temperate waters. Its exact depth distribution is unknown, but it has been caught in open nets in depths between 730 and 920 m; however, it is believed that it also occurs in depths less than 200 m, because it is preyed upon by fur seals as well as sperm whales.

Size: Maximum mantle length 30 cm.

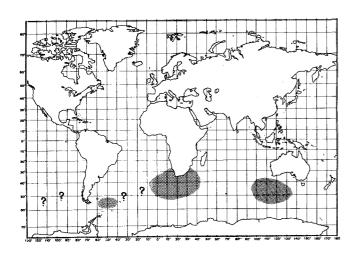
Interest to Fisheries: Undetermined.

Local Names:

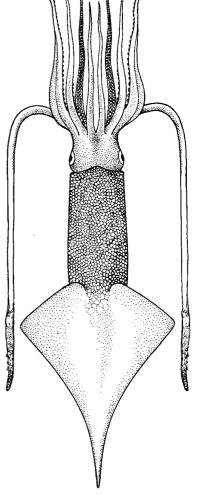
Moroteuthis robsoni Adam, 1962

ONYCHO Moro 4

Moroteuthis robsoni Adam, 1962, Mem.Junta Invest.Ultramar, (2)33:24.


Synonymy: None.

FAO Names: En - Rugose hooked squid


Fr - Cornet rugueux Sp - Lurión rugoso

Díagnostic Features : Mantle long, slender, covered with fleshy warts, reddish coloration, tip drawn out to a long, sharp tail. Fins relatively narrow, 45% of mantle length, their length 58 to 60% of mantle length, forming a very sharply pointed lanceolate tail, fin angle 30° to 40° each. Tentacular clubs very narrow, unexpanded, about 24 hooks in 2 rows. Arms attenuate, longest (IV) about 57 to 68% of mantle length.

Geographical Distribution: Scotia Sea; southern tip of Africa; off southwestern Australia. Apparently not known from central subantarctic oceanic waters away from land masses.

tentacular club

dorsal view

Habitat and Biology: An oceanic species, taken with open nets lowered to between 250 and 550 m depth; its exact depth distribution is unknown. One of the squid species heavily preyed upon by sperm whales.

Size: Maximum mantle length 75 cm.

Interest to Fisheries: Caught by bottom trawls; believed to have some fishery potential.

Local Names:

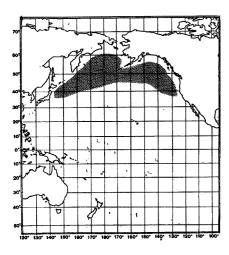
Moroteuthis robustus (Verrill, 1876)

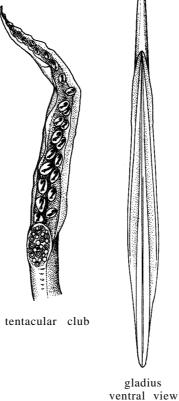
ONYCHO Moro 5

Ommastrephes robusta Verrill, 1876, Amer.Jour.Sci.Arts, 12:237.

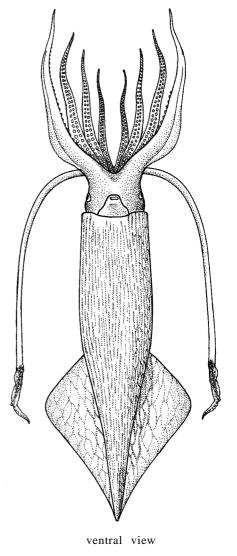
Synonymy: Ommastrephes robusta Verrill, 1876; Lestoteuthis robusta Verrill, 1880; Ancistroteuthis robusta Steenstrup, 1882.

FAO Names: En - Robust clubhook squid


Fr - Cornet mange-piquants


SP - Lurion maximo

Diagnostic Features : Mantle robust, relatively broad, covered with raised fleshy longitudinal ridges, posterior tip drawn out to a moderately pointed tail. Fins large, longer than broad, their length about 50% of mantle length, width about 45% of mantle length. Tentacular clubs narrow, each with 36 hooks in 2


rows. Longest arms (IV) 45 to 50% of mantle length.

Geographical Distribution: Eastern and westem far North Pacific in offshore waters from Japan to Alaska, throughout Aleutian Islands and into the Bering Sea.

Habitat and Biology : An oceanic species, heavily preyed upon by sperm whales; reported to feed on benthic heart urchins such as <u>Brisaster townsendi</u>, as well as on epipelagic species such as <u>Velella</u> <u>velella</u>.

Size: Maximum mantle length 2 m, weight to 50 kg.

Interest to Fisheries: Believed to have some fishery potential, even though attempts to prepare them for food in California have failed.

Local Names:

FAMILY GONATIDAE Hoyle, 1886 4.5

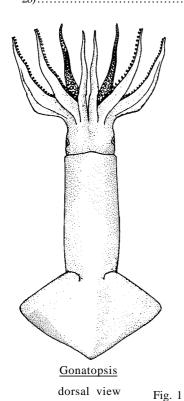
GONA

Gonatidae Hoyle, 1886, Rep.Sci.Results CHALLENGER, 16(44):173.

FAO Names: En - Gonate squids

Fr - Encornets SP - Gonaluras

General Remarks on the Family: Species in this family belong to 3 genera, Berryteuthis, Gonatopsis and Gonatus. They are cold water forms and are among the most abundant squids in higher latitudes.


Diagnostic Features: This family is characterized by a tetraserial armature on the arms. Arm tips, however, in one species, <u>Gonatopsis</u> octopedatus, are modified and have up to 12 rows of minute suckers. The two medial rows on arms I to III consist of hooks in all species, except <u>Berryteuthis anonychus</u> which has only suckers, except at the bases of some arms in females. All members of the family have a simple straight funnel locking-cartilage which may flare slightly at the posterior end; buccal connectives that attach to the ventral borders of arms IV; numerous irregular rows of suckers on the clubs with additional hooks in some forms (i.e., Gonatus species). Only one species in the family has photophores (Gonatus, new species): oval patches located on the ventral surface of the eyes.

Key to Genera:

1b. Tentacles present at all life stages

> At least one large hook in the centre of the tentacular club; radula with 5 2a.

No hooks on the tentacular club; radula with 7 longitudinal rows of teeth (Fig. 2b. 2b)......Berryteuthis

a. Gonatus

b. Berryteuthis

tentacular club

Fig. 2

Gonatus fabricii (Lichtenstein, 1818)

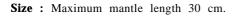
GONA Gonat 1

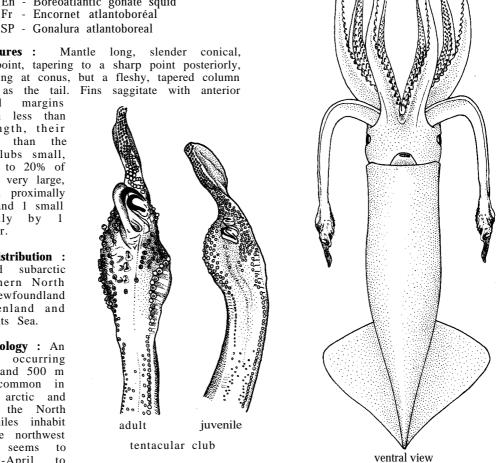
Onychoteuthis fabricii Lichtenstein, 1818, Abhand.Phys.Kl.Kon.-Preus.Akad.Wiss., 1819:223.

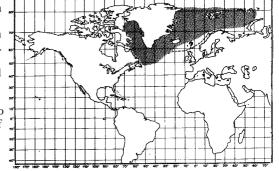
Synonymy: Onychoteuthis fabricii Lichtenstein, 1818.

FAO Names: En - Boreoatlantic gonate squid

SP - Gonalura atlantoboreal


Diagnostic Features : Mantle long, slender conical, slightly wider at midpoint, tapering to a sharp point posteriorly, its muscular part ending at conus, but a fleshy, tapered column extending posteriorly as the tail. Fins saggitate with anterior


free, lateral margins rounded, their length less than 50% of mantle length, their width slightly less than the length. Tentacular clubs small, their length about 10 to 20% of mantle length, with 1 very large, central hook followed proximally with 3 small hooks and 1 small sucker, and distally by 1 moderate-sized sucker.


Geographical Distribution: Offshore arctic and subarctic waters of the northern North Atlantic from the Newfoundland Basin, around Greenland and eastward to the Barents Sea.

Habitat and Biology : An oceanic species occurring between the surface and 500 m depth. Adults are common in midwater layers in arctic and subarctic waters of the North Atlantic, while juveniles inhabit surface waters in the northwest Atlantic. Spawning seems to extend from mid-April to December with a peak period in

late May and June. It is speculated that in the Norwegian Sea spawning occurs from winter to summer and hatching subsequently from late March to June or July. Juveniles feed on copepods, euphausids, amphipods, pteropods, and chaetognaths. Once the hooks have developed (at a mantle length of 2.5 cm), an important part of the diet is made up of fish; and adults can feed on prey larger than themselves. It is preyed upon by the bottlenose whale and hooded seals in the Norwegian Sea and by sperm whales off Iceland and in the North Atlantic. It is also frequently found in stomachs of other marine mammals, of coalfish, various gadoids, the redfish <u>Sebastes</u> marinus and others.

Interest to Fisheries: This species is believed to have some fishery potential. Greenland Eskimos use it as bait in the cod and shellfish (paltus) industry and for human food, Taken as bycatch in shrimp trawls.

Local Names:

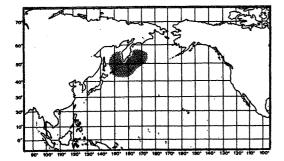
Literature: Wiborg (1979, fishery potential Norwegian Sea, biological observations); Okutani (1980).

Gonatus madokai Kubodera & Okutani, 1977

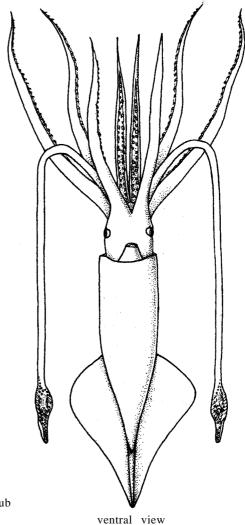
GONA Gonat 2

Gonatus madokai Kubodera & Okutani, 1977, Venus, 36(3):124.

Synonymy: None.


FAO Names: En - Madokai gonate squid

Fr - Encornet madokai Sp - Gonalura madokai


Diagnostic Features : Mantle moderately broad, soft-fleshed, extending posteriorly into a long, pointed tail, the posterior part non-muscular posterior to conus. Fins saggitate, their length 60 to 65% of mantle length,

their width 50% of mantle length. Tentacular clubs with 1 very large central hook, 1 moderate-sized hook distally, and 5 very small hooks proximally. Arms very long, the longest (III) equal to mantle length.

Geographical Distribution: Northern northwest Pacific: around the Kamchatka peninsula and the Kurile and Aleutian islands; especially in the Okhotsk Sea.

Habitat and Biology : An epipelagic species. The larvae are abundant in the Okhotsk Sea. Adults are heavily preyed upon by toothed whales.

Size: Maximum mantle length 33 cm.

Interest to Fisheries: Very abundant; believed to have potential for development of a fishery.

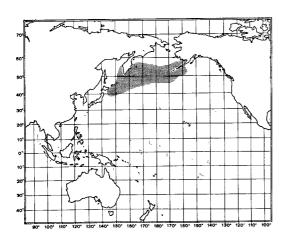
Local Names:

Gonatus middendorffi Kubodera & Okutani, 1981

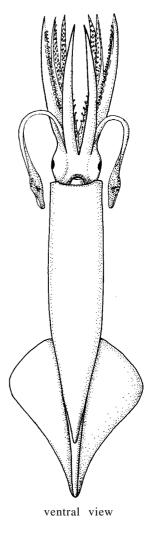
GONA Gonat 3

Gonatus middendorffi Kubodera & Okutani, 1981, Bull.Natl.Sci.Mus.Tokyo, 7(1):8.

Synonymy: None.


FAO Names: En - Shortarm gonate squid

Fr - Encornet bras courts SP - Gonalura bracicorta


Diagnostic Features: Mantle long, muscular, very slender, its width 18% of mantle length, tapering posteriorly to a sharp, choroidal tail. Fins muscular, relatively long (47 to 52% of mantle length) and narrow (their width 40% of mantle length), sharply pointed; fin angle

25° (50° both fins). Tentacular stalks very small, weakly developed; tentacular clubs very small, their length less than 13% of mantle length; manus with a large central hook, a medium-sized distal hook and 5 small proximal suckers, 2 or 3 of which are sometimes modified into small, immature hooks.

Geographical Distribution: Far North Pacific Ocean, Bering Sea, along the Aleutian and Kurile islands chains.

Habitat and Biology : An oceanic species; the larvae are encountered near the surface at night; it is an important food item in the diet of sperm whales and salmon (especially <u>Oncorhynchus</u> <u>nerka</u> and <u>O.</u> <u>kisutch</u>).

Size: Maximum mantle length 30 cm.

Interest to Fisheries: Believed to have a fisheries potential.

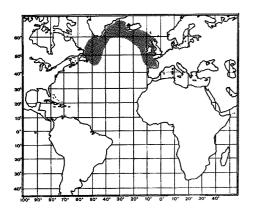
Local Names:

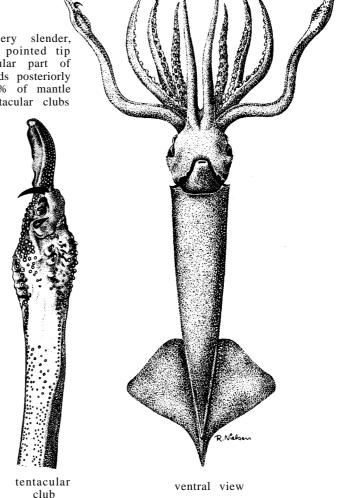
Gonatus steenstrupi Kristensen, 1981

GONA Gonat 4

Gonatus steenstrupi Kristensen, 1981, Steenstrupia, 7(4):78.

Synonymy: Gonatus fabricii Lichtenstein, 1818, in part.


FAO Names: En - Atlantic gonate squid


Fr - Encornet atlantique Sp - Gonalura atlántica

Diagnostic Features: Mantle long, very slender, thick-walled, tapering evenly to the posterior pointed tip (short tail), widest at anterior margin; muscular part of mantle ends at conus, but a fleshy column extends posteriorly as a tail. Fins saggitate, their length about 45% of mantle length, their width 52% of mantle length. Tentacular clubs

large, expanded, their length about 25% of mantle length; 1 very large central hook with 1 moderate-sized hook just distal to it and 4 to 5 progressively smaller hooks proximal to it (5th hook sometimes a sucker).

Geographical Distribution: Widely distributed in the temperate (Bay of Biscay) to boreal (Irminger Sea-East Greenland) waters, North Atlantic and east of the Grand Banks of Newfoundland; not entering arctic waters.

Habitat and Biology : Oceanic, occurring possibly to 1 000 m depth. It is an important food item in the diet of toothed whales.

Size: Maximum mantle length 15 cm.

Interest to Fisheries : Currently there are no fisheries directed at this species, but its large size and the consistency of its flesh make it a good potential resource.

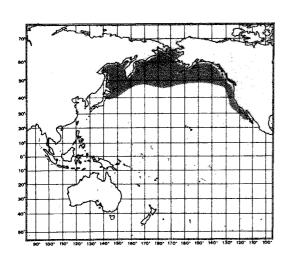
Local Names:

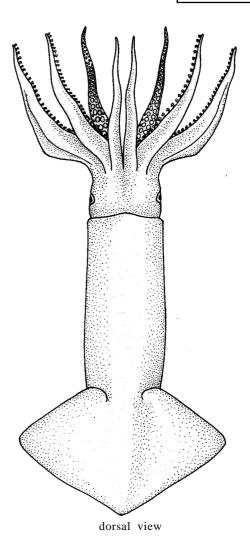
Remarks: This species was confused with <u>G. fabricii</u> until it was recognized and separated by Kristensen in 1981. It is more boreal/high temperate in distribution, whereas <u>G. fabricii</u> is more arctic/subarctic.

Gonatopsis borealis Sasaki, 1923

GONA Gona 1

Gonatopsis borealis Sasaki, 1923, Annot.Zool.Japan, 10:202.


Synonymy: None.


FAO Names: En - Boreopacific gonate squid

Fr - Encornet boréopacifique Sp - Gonalura pacificoboreal

Diagnostic Features: Mantle stout, thick, muscular. Fins muscular, relatively short (40 to 45% of mantle length) and broad (65 to 70% of mantle length). Tentacles absent (present only in larvae). Arms robust, muscular, 40 to 50% of mantle length; arms I to III with medium rows of hooks and 2 marginal rows of suckers; arm IV with 4 rows of suckers, no hooks.

Geographical Distribution : Northern Pacific: Northern Japan through the Bering Sea, from the Aleutian Islands to California.

Habitat and Biology: An oceanic species in cold temperate waters, encountered in midwaters to about 700 m depth. It is known to undertake diel vertical migrations and to form increasingly large aggregations between April and early autumn, particularly in the eastern and western parts of the north Pacific. It is heavily preyed upon by sperm whales.

Size: Maximum mantle length 30 cm.

Interest to Fisheries: Incidentally taken with jigs and drift gillnets and believed lo have some fishery potential because of its abundance.

Local Names: JAPAN: Takoika.

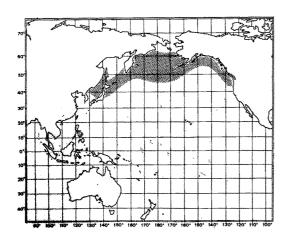
Literature: Okutani (1980); Tomiyama & Hibiya (1978); Nesis & Shevtsov (1977).

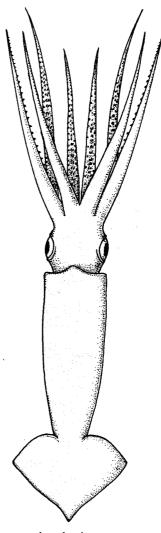
Remarks: A closely related species, <u>Gonatopsis</u> <u>octopodatus</u>, occurs in Japanese waters (northwestern Pacific) and it is distinguished by having 8 to 12 rows of minute suckers on the distal 1/3 to 1/4 of the arms.

Gonatopis makko Okutani & Nemoto, 1964

GONA Gona 2

Gonatopsis borealis makko Okutani & Nemoto, 1964, Sci.Rep.Whales Res.Inst., 18:113.


Synonymy: None.


FAO Names:

En - Mako gonate squid Fr - Encornet mako Sp - Gonalura mako

Diagnostic Features: Mantle long, slender. Fins very small, short (about 33% of mantle length), narrow (their width from 45 to 50% of mantle length). Tentacles absent in adults. Arms very long, attenuate, up to 80% of mantle length.

Geographical Distribution : North Pacific: From Japanese waters to the Bering Sea, but excluding the Sea of Okhotsk, eastwards to the northwestern coast of North America.

dorsal view

Habitat and Biology: An oceanic species; occurring rather frequently in midwater layers in the Japan Sea the northern North Pacific; usually in lower temperatures than Todarodes pacificus and Ommastrephes bartrami. Two subpopulations are believed to exist showing different growth patterns. It is most abundant between May and July; occasionally preyed upon by sperm whales.

Size: Maximum mantle length 25 cm.

Interest to Fisheries: Taken as bycatch in the bottom trawl fisheries, but at present of no great commercial interest. Separate statistics are not reported for this species.

Local Names: JAPAN: Takoika.

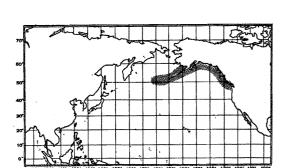
Literature: Okutani (1980); Osako & Murata (in press, biology, distribution).

Remarks: Some authors consider G. makko a subspecies of G. borealis.

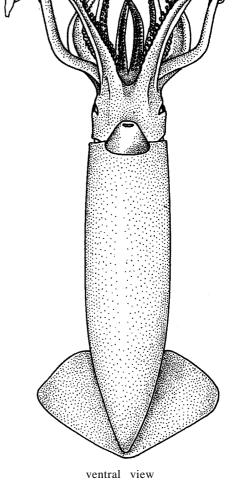
Elerryteuthis anonychus (Pearcey & Voss, 1963)

GONA Berry 1

Gonatus anonychus Pearcey & Voss, 1963, Proc.Biol.Soc.Wash., 76:105


Synonymy: Gonatus anonychus Pearcey & Voss, 1963.

FAO Names: En - Smallfin gonate squid


Fr - Encornet ailes courtes

SP - Gonalura alicorta

Geographical Distribution : Northeastern Pacific: Oregon to the Aleutian Islands; no records from the Bering Sea.

Habitat and Biology: An oceanic species occurring from surface (at night) to about 1 500 m depth in offshore waters. The exact distribution pattern is unknown. Mature specimens have a mantle length of 6 cm (females) and 7 cm (males) respectively.

 $\textbf{Size:} \quad \text{Maximum mantle length 15 cm.}$

Interest to Fisheries: Undetermined.

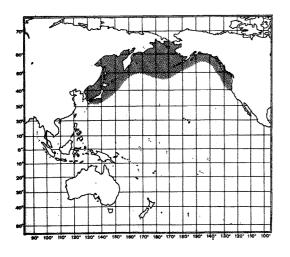
Local Names:

Literature: Okutani (1980).

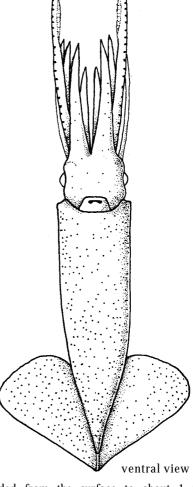
Berryteuthis magister (Berry, 1913)

GONA Berry 2

Gonatus magister Berry, 1913, Prov. Acad. Nat. Sci. Phila., 1913:76.


Synonymy: Gonatus magister Berry, 1913; Gonatus septemdentatus Sasaki, 1915.

FAO Names: En - Schoolmaster gonate squid


Fr - Encornet suçoir Sp - Gonalura magister

(their width 70% of mantle length). Tentacles long; clubs expanded, with no hooks but very numerous minute suckers numbering 20 in the transverse rows.

Geographical Distribution: North Pacific: southern Japan, Kurile Islands, Aleutian Islands to northwestern USA.

Habitat and Biology: A neritic to oceanic pelagic species; recorded from the surface to about 1 000 m depth; adults are probably associated with the bottom. In Japan, spawning occurs from June to October in depths betwen 200 and 800 m. Particularly abundant in the southern part of the Bering Sea; other concentrations are reported from the Sea of Japan and the Gulf of Alaska. It is preyed upon by sperm whales, northern fur seals and albatrosses (Albatrossia pectoralis); salmonids prey on the larval and juvenile stages.

Size: Maximum mantle length 25 cm.

Interest to Fisheries: Taken seasonally as by catch in the trawl fishery off the northwestern USA; Japanese fisheries have caught 5 000 to 9 000 tons annually since 1977, but it is possible that these catches include negligible quantities of other cephalopod species. The Japanese intend to increase fishing effort on Berryteuthis magister in the near future. This species also is believed to be taken as bycatch in the Soviet redfish fishery operating in the Bering Sea. The value of this resource could be increased through the development of improved processing technique.

Local Names: JAPAN: Dosuika.

Literature : Kasahara <u>et al.</u> (1978, fisheries development in Japan Inland Sea); Okutani (1980); Osako & Murata (in press, fishery).

4.6 FAMILY PSYCHROTEUTHIDAE Thiele, 1921

PSYCHRO

FAO Names: En - Glacial squids

Fr - Encornets
Sp - Lurias glaciales

General Remarks on the Family : This monotypic family is based on <u>Psychroteuthis glacialis</u>, described from incomplete specimens from the stomachs of penguins and seals. Because of the inadequate description, the status of the family has been considered doubtful. Recently additional material has become available that confirms the validity of the Psychroteuthidae.

Diagnostic Features : The family is characterized by buccal connectives that attach to the dorsal borders of arms IV, a straight, simple funnel locking-cartilage, absence of photophores on the mantle and head, a tentacular club with 4 to 7 suckers in transverse rows on the manus and dactylus, and biserial suckers on the arms.

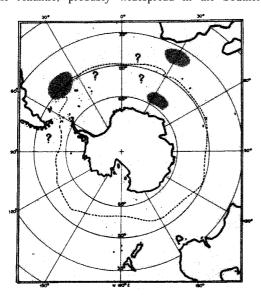
Geographical Distribution: Two species, one undescribed, are known at present from Antarctic waters.

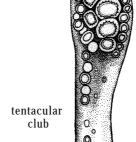
Psychroteuthis glacialis Thiele, 1921

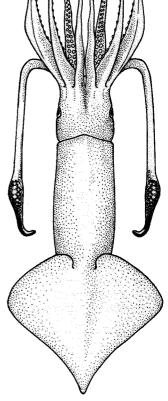
PSYCHRO Psy 1

Psychroteuthis glacialis Thiele, 1921, Deut.Südpolar Exped.Zool., 8:440.

Synonymy: None.


FAO Names: En - Glacial squid


Fr - Encornet austral Sp - Luria glacial


Diagnostic Features : Mantle elongate, muscular, tapering to a pointed tail. Fins sagittate, muscular, their length 55% of mantle length; carpal suckers and knobs of tentacular clubs extending proximally along the

tentacular stalk; manus with 4 to 7 transverse rows of suckers those of the ventromedian row considerably enlarged.

Geographical Distribution: Antarctic and subantarctic sectors of the Atlantic; probably widespread in the Southern Ocean.

dorsal view

 $\textbf{Habitat and Biology:} \ \, \text{An oceanic (and neritic ?) species reported from less than 200 to about 700 m depth.} \\ \text{It is heavily preyed upon by sperm whales, penguins and Weddel seals.}$

Size: Maximum mantle length 44 cm.

Interest to Fisheries : Currently no fishery exists, but the size and the consistency of the flesh of this species makes it a potentially valuable resource.

Local Names:

FAMILY LEPIDOTEUTHIDAE Pfeffer, 1912

LEPIDO

FAO Names: En - Scaled squids

4.7

Fr - Loutènes

Sp - Lurias escamudas

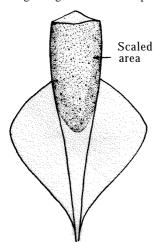
General Remarks on the Family: Formerly only a single species, Lepidoteuthis grimaldii, was included in this family. Now, two additional genera are included, Pholidoteuthis and Tetronychoteuthis. A detailed analysis of the three genera is necessary to confirm their relationships, but the lack of sufficient material leads to the uncertain position of these genera. Pholidoteuthis was previously placed in its own family, the Pholidoteuthidae; Tetronychoteuthis has been included in the Onychoteuthidae, although its placement there is clearly unwarranted. Species of Lepidoteuthis and Pholidoteuthis are known to attain large sizes: 97 cm mantle length in Lepidoteuthis and 78 cm mantle length in Pholidoteuthis.

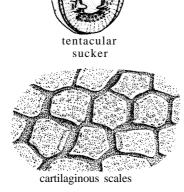
Diagnostic Features: The family Lepidoteuthidae is characterized by the presence of distinct cartilaginous "scales" on the mantle, buccal connectives that attach to the ventral borders of arms IV; a straight, simple funnel locking-cartilage, biserial suckers on the arms, and tetraserial suckers on the tentacular clubs, except in Lepidoteuthis, which lacks tentacles in the adults. Photophores are absent.

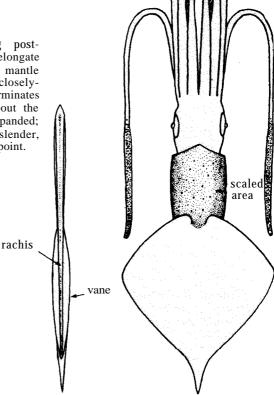
The "scales" occur only on the surfaces of the mantle. The posterior end of the mantle, however, is devoid of "scales". The scaleless area on the dorsal side extends nearly to the anterior margin of the fins, but on the ventral side it occurs only on the posterior half or two-thirds of the area covered by the fins.

Pholidoteuthis adami Voss, 1956

LEPIDO Pholi 1


<u>Pholidoteuthis</u> <u>adami</u> Voss, 1956, <u>Bull.Mar.Sci.Gulf & Caribbean</u>, 6(2):132.

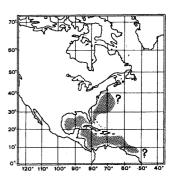

Synonymy: None.


FAO Names: En - Scaled squid

Fr - Loutène commune Sp - Luria escamuda

Diagnostic Features: Mantle thick, choroidal, tapering posteriorly to a sharply pointed tail. Fins broad, laterally angled, elongate posteriorly to help form the tail; fins occupy about 70% of the mantle length; anterior half of mantle covered with many small, closely-packed, rounded to polygonal, cartilaginous scales; scalation terminates abruptly dorsally at insertion of fins and ventrally in an arc at about the midpoint of fins. Tentacular clubs very long and only a little expanded; tentacular suckers compressed, oblong. Gladius long and slender, straight-edged with an expanded vane ending in a sharp, conical point.

dorsal view


gladius

ventral view of mantle and fins

Habitat and Biology: An oceanic (or epibenthic?) species occurring in offshore waters between 80 and about 935 m depth (greatest abundance between 625 and 750 m), aggregating particularly during the day, while it seems to disperse at night; however, large schools occasionally are observed at night at the surface. Particularly abundant in the Gulf of Mexico.

Size: Maximum mantle length 78 cm.

Interest to Fisheries: Presently there are no fisheries directed at this species, but it is believed to have some potential.

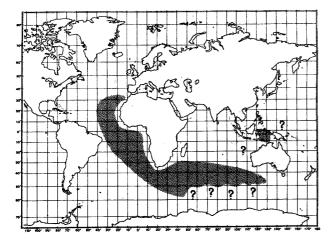
Local Names:

Literature: Okutani (1980).

Pholidoteuthis boschmai Adam, 1950

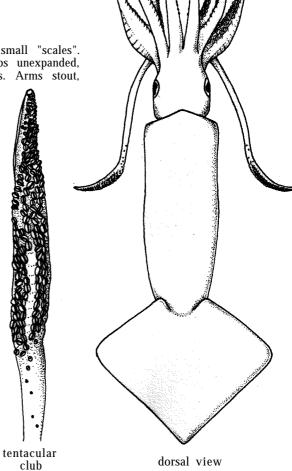
LEPIDO Pholi

 $\underline{Pholidoteuthis} \ \underline{boschmai} \ Adam, \ 1950, \ \underline{Konin.Neder.Akad.Wetersch.}, \ 53(10):2.$


Synonymy: None.

FAO Names: En - Coffeebean scaled squid

Fr - Loutène battoir Sp - Luria escamuda cafetal


sucker rings with about 18 sharp teeth.

Geographical Distribution : Central and southeastern Atlantic; southern Indian Ocean; Banda and eastern Java seas.

Habitat and Biology : An oceanic species; reported to occur between the surface and 2 000 m depth. Heavily preyed upon by sperm whales in the Southern Ocean.

Size: Maximum mantle length 60 cm.

Interest to Fisheries: This species is believed to have some fishery potential because of its large size and muscular consistency.

Local Names:

FAMILY ARCHITEUTHIDAE Pfeffer, 1900

ARCHI

FAO Names: En - Giant squids

Fr - Encornets monstres SP - Megalurias

General Remarks on the Family: This family includes the largest of all cephalopods. Specimens occasionally are found moribund at the surface of the ocean, but most records are from strandings or whale stomachs. Apparently world-wide in distribution.

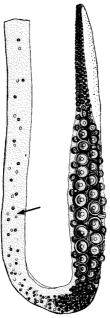
Many species have been named in the solegenus of the family, Architeuthis, but they are so inadequately described and poorly understood that the systematics of the group is thoroughly confused. Total lengths of nearly 20 m and mantle lengths of nearly 6 m (not a complete specimen) have been recorded.

Juveniles of species have been reported from both the Atlantic and Pacific Oceans.

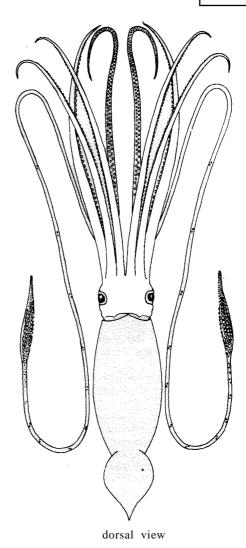
Diagnostic Features : The Architeuthidae is characterized by a tetraserial armature on the tentacular clubs with large suckers in the medial rows of the manus and small suckers in the marginal rows; a distinct cluster of numerous small suckers and knobs at the proximal end of the manus; two longitudinal rows of alternating suckers and pads on the tentacular stalks; a straight simple funnel locking-cartilage; buccal connectives that attach to the dorsal border of arms IV; absence of photophores.

Architeuthis species

ARCHI Archi

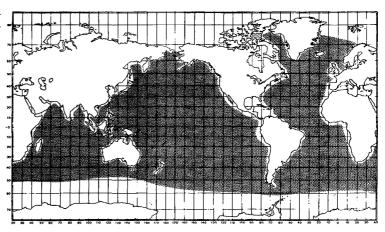

Synonymy: None.

En - Giant squid **FAO Names:**


Fr - Encornet monstre

Sp - Megaluria

Díagnostic Features: Animals huge, up to 20 m total length. Tentacular clubs with 4 rows of suckers on manus, a large cluster of very numerous small suckers on carpus with small suckers and knobs extending in pairs proximally along the stalk. Both arms (IV) hectocotylized in males.


tentacular club

Geographical Distribution: A world-wide genus most abundant in the North Atlantic (Newfoundland, Norway), the Southern Ocean, New Zealand and in the North Pacific.

Habitat and Biology: An oceanic genus, believed to occur between about 200 and 400 m depth, perhaps to 500 m or more, but a significant number of specimens has been observed at the surface of the sea. The juveniles and adults are heavily preyed upon by sperm whales, while the juveniles are subjected to predation by mesopelagic fishes such as Aphanopus carbo and Alepisaurus ferox.

Size: Maximum total length 20 m; maximum mantle length 6 m; weight 500 to 1 000(?) kg.

Interest to Fisheries: The species has no commercial value at present. The flesh contains ammonium ions, so it must be soaked prior to consumption to remove the bitter taste.

Local Names:

Literature: Clarke (1966, brief synthesis of known records, photo); Roper & Boss (1982, biology).

4.9 FAMILY HISTIOTEUTHIDAE Verrill, 1881

HISTIO

FAO Names: En - Jewell squids, Umbrella squids

Fr - Loutènes SP - Joyelurias

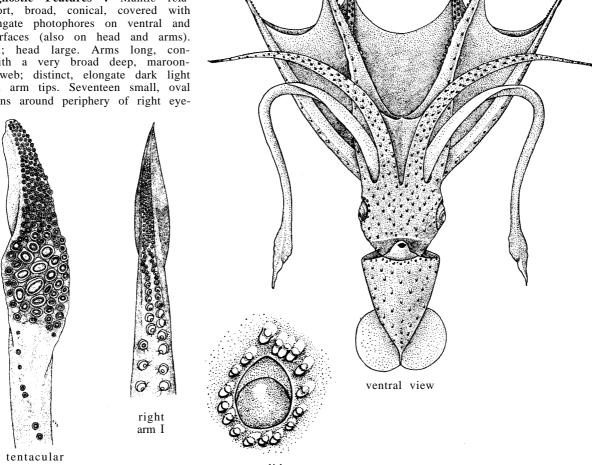
General Remarks on the Family: The family has been monographed by N. Voss (1969); 15 species of the genus $\underline{\text{Histioteuthis}}$ inhabit the world oceans.

Some species are extremely abundant, and some are quite large most are major items in the diets of sperm whales. Some potential for a specialized market might exist.

Diagnostic Features: This monotypic family is easily distinguished by large, anteriorly directed photophores over the surface of the mantle, head and arms; a large head with the left eye considerably larger than the right; six or seven buccal lappets; buccal connectives that attached to the dorsal border of arms IV; a straight or slightly curved and slightly broad, simple, funnel locking-cartilage; suckers on the tentacular clubs arranged in four, or more commonly, more than four irregular rows; suckers on the arms biserial.

Histioteuthis bonnellii (Ferussac, 1835)

HISTIO Histio 1

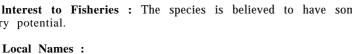

Cranchia bonnellii Ferussac, 1835, Mag.Zool., 5, pl. 66.

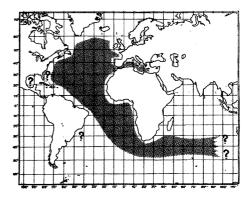
Synonymy: Cranchia bonnellii Ferussac, 1835; Cranchia bonelliana Ferussac, 1835; Histioteuthis bonelliana Orbigny, 1835-1848; Histioteuthis rüppelli Verany, 1851; Histioteuthis collinsi Verrill, 1879; Histiopsis atlantica Hoyle, 1885.

FAO Names: En - Umbrella squid

Fr - Loutène bonnet SP - Joyeluria membranosa

Diagnostic Features : Mantle relatively short, broad, conical, covered with dark, elongate photophores on ventral and lateral surfaces (also on head and arms). Fins oval; head large. Arms long, connected with a very broad deep, maroon-coloured web; distinct, elongate dark light organs on arm tips. Seventeen small, oval light organs around periphery of right eye-

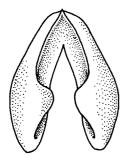



Geographical Distribution: Eastern and western central Atlantic and western Mediterranean; southeastern Atlantic and South Indian Otean (limits undetermined).

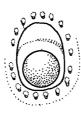
with the bottom. Growth seems to be isometric and even minute specimens have the proportions of adults. Although they are usually taken singly or in pairs in nets, it is suspected, from evidence in sperm whale stomachs, that it is a schooling species. Apart from sperm whales it is preyed upon by Alepisaurus ferox, Aphanopus carbo and Thunnus alalunga.

Size: Maximum mantle length 33 cm (the largest Histioteuthis species).

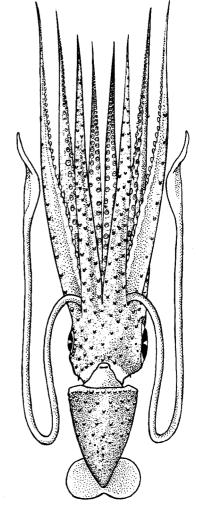
Interest to Fisheries: The species is believed to have some fishery potential.



<u>Stigmatoteuthis</u> <u>dofleini</u> Pfeffer, 1912, <u>Ergebn.Atlant.</u> <u>Ozean Planktonexped.Humboldt-Stift.</u>, 2:288.


FAO Names: En - Flowervase jewell squid

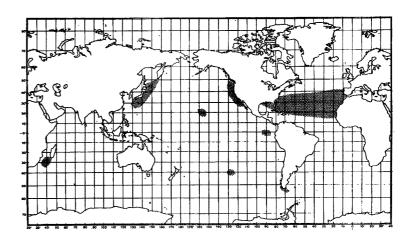
Fr - Loutène vase SP - Joyeluria floral


Diagnostic Features : Mantle conical, relatively thickwalled; skin of whole body covered with thickly spaced, low, fleshy papillae; ventral and lateral surfaces covered with elongate photophores; fin round. Head large. Arms very long, without distinct photophores on tips; web between arms very low, indistinct. Seventeen small photophores around right eyelid.

funnel organ

ventral view

Geographical Distribution: wide in northern and southern warmtemperate waters; southeast Africa, Madagascar; west of the Galapagos Islands, off California, Hawaii and Japan; South Pacific.


Habitat and Biology : An oceanic species, abundant in midwater layers; frequently found in predators' stomachs.

Size: Maximum mantle length 12 cm.

Interest to Fisheries: Undetermined.

Local Names: JAPAN: Kuragedako.

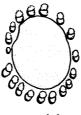
Literature: Voss (1969)

Histioteuthis elongata (Voss & Voss, 1962)

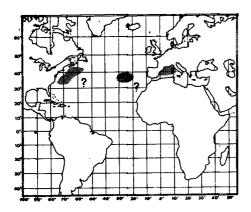
HISTIO Histio 3

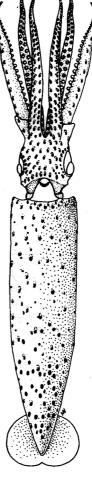
<u>Carib., 12(2):184.</u> <u>elongata</u> Voss & Voss, 1962, <u>Bull.Mar.Sci.Gulf</u> &

Synonimy: Calliteuthis elongata Voss & Voss, 1962.


En - Elongate jewell squid Fr - Loutène longue **FAO Names:**

Sp - Joyeluria alargada


Diagnostic Features : Mantle very long and slender, covered (especially on ventral and lateral surfaces) with scattered light organs especially large and dark on posterior end. Fins very short, rounded; head small. Arms robust, no


distinct photophores on tips; web between arms undeveloped. around right eyelid. Eighteen photophores

Geographical Distribution : North Atlantic and Mediterranean; largely undetermined.

ventral view

Habitat Biology: An oceanic species, taken between 500 and 1 000 m depth with closing nets. The largest specimens were found dead at the surface; these probably were spent females.

Size: Maximum mantle length 20 cm.

Interest to Fisheries: Currently none.

Local Names:

Literature: Lu & Roper (1979).

4.10 FAMILY NEOTEUTHIDAE Naef, 1921

NEO

FAO Names: En - Neosquids

Fr - Loutènes SP - Neolurias

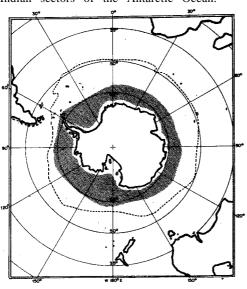
General Remarks on the Family: Two genera, Alluroteuthis Odhner, 1923, and Neoteuthis Naef, 1921, are known. Odhner (1923) suggested that Parateuthis tunicata Thiele, 1921, might be the large form of the monotypic Alluroteuthis antarcticus.

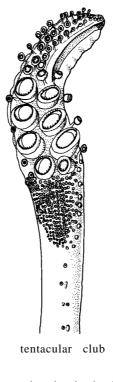
Diagnostic Features: The family is characterized by biserial suckers on the arms, 4 rows of suckers on the distal part of the manus and dactylus, and numerous small suckers on the proximal end of the manus, buccal connectives that attach to the dorsal borders of arms IV, a straight, simple funnel locking-cartilage, anterior fin lobes absent and posterior fin lobes free, and absence of photophores.

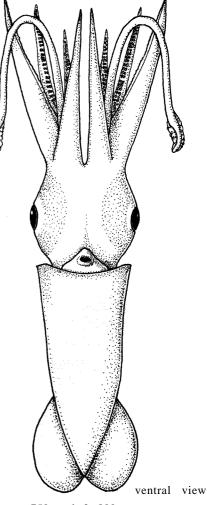
Alluroteuthis antarcticus Odhner, 1923

NEO Allu 1

Alluroteuthis antarcticus Odhner, 1923, Zool.Results Swed.Ant.Exp., 1(4):2.


Synonymy: Parateuthis tunicata Thiele, 1921.


FAO Names: En - Antarctic neosquid


Fr - Loutène australe SP - Neoluria antártica

rows of very small, extremely numerous suckers on carpus, with a few pairs of suckers/knobs extending proximally along the stalk. Arms robust; suckers on arms IV reduced in size.

Geographical Distribution : Atlantic and Indian sectors of the Antarctic Ocean.

Habitat and Biology: An oceanic species, occurring in depths between 750 and 2 800 m.

Size: Maximum mantle length 10 cm.

Interest to Fisheries: Currently none.

Local Names:

4.11 FAMILY BATHYTEUTHIDAE Pfeffer, 1900

BATHY

FAO Names: En - Deepsea squids

Fr - Loutènes abyssales

SP - Batilurias

The family is distinguished by the presence of a straight funnel locking-cartilage, buccal connectives that attach to the dorsal borders of arms IV, suckers on the buccal lappets, small clubs with many rows of minute suckers, round or paddle-like subterminal fins (i.e., posterior margins convex), suckers on the arms arranged in irregular rows (2 rows proximally increasing to 4 distally), and a deep maroon colour. A single photophore is embedded at the base of each arm I to III (this is easily apparent in young specimens but may be obscure in adults).

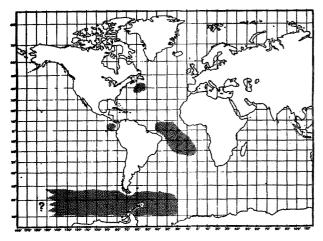
The family contains a single genus, <u>Bathyteuthis</u>, with three species. The most common species, <u>B. abyssicola</u>, is a deep sea form that has been recorded from all major oceans and is most abundant between 1 000 and 2 500 m; <u>B. abyssicola</u> is one of the most numerous cephalopods in the Antarctic waters.

Bathyteuthis abyssicola Hoyle, 1885

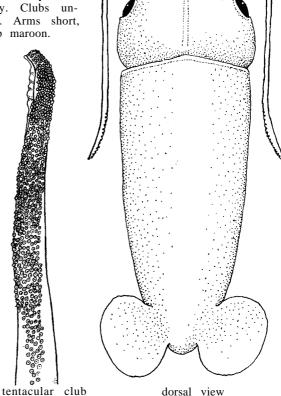
BATHY Bathy 1

Bathyteuthis abyssicola Hoyle, 1885, Proc.Roy.Soc.Edinburg, 13(120):272.

Synonymy: <u>Benthoteuthis</u> <u>megalops</u> Verrill, 1885.


FAO Names: En - Deepsea squid

Fr - Loutène abyssale


SP - Batiluria

Diagnostic Features: Mantle robust, bluntly rounded posteriorly. Fins round, small, separate, short; eyes orient slightly anteriorly. Clubs unexpanded, short, with relatively few, small, coequal suckers. Arms short, with few small suckers and no enlarged trabeculae; colour deep maroon.

Geographical Distribution: Worldwide in the Southern Ocean and productive waters of the eastern Pacific, Atlantic, and Indian Oceans.

Habitat and Biology: An oceanic species occurring between about 100 m and 4 200 m depth, but normally encountered between 700 and 2 000 m. Believed to carry out diel vertical migrations between lesser depths (up to 100 m at night) and greater depths during the day.

Size: Maximum mantle length 7 cm; mantle length at first maturity is about 4 or 5 cm in females and 3.5 cm in males.

Interest to Fisheries: Although the species is abundant in the Southern Ocean, it presently has no commercial value.

Local Names:

Literature: Roper (1969, monograph, distribution, biology).

4.12 FAMILY BRACHIOTEUTHIDAE Pfeffer, 1908

BRACHIO

FAO Names: En - Arm squids

Fr - Encornets bras courts

SP - Braquilurias

This family is monotypic and characterized primarily by the presence of numerous rows of small suckers on the proximal portion of the tentacular clubs; straight, simple funnel locking cartilage; ventral attachment of the buccal connectives to arms IV; two rows of suckers on the arms; long slender bodies with relatively short terminal fins. Some species of <u>Brachioteuthis</u> have peculiar larvae with characteristic, long, slender necks. The family is greatly in need of a revision.

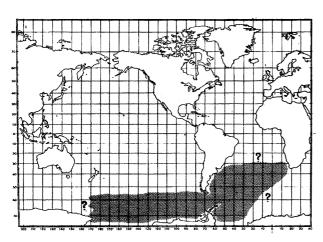
Brachioteuthis picta

Chun, 1910

BRACHIO Brachio 1

Brachioteuthis picta Chun, 1910, Sci.Res. Exped. Valdivia, 18:207.

Synonymy: None.

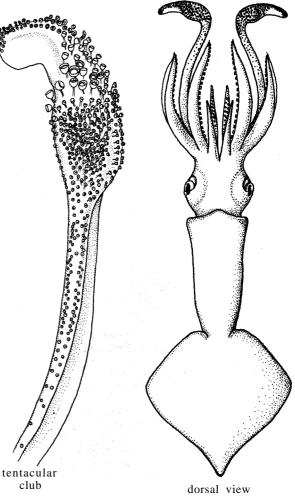

FAO Names: En - Ornate arm squid

Fr - Encornet bras courts orné

Sp - Braquiluria moteada

Diagnostic Features: Mantle long, slender, produced posteriorly into a tail. Fins saggitate, their length about 50% of mantle length. Tentacular clubs expanded, covered with numerous minute suckers in the carpal region that extend proximally along the club.

Geographical Distribution : Southern Ocean, Atlantic and Pacific sectors: distribution limits undetermined due to uncertain identification in the literature.



Habitat and Biology: An oceanic species primarily occurring in the upper 500 m of the water column, but its depth range may extend to 1 000 m.

Size: Maximum mantle length 9 cm.

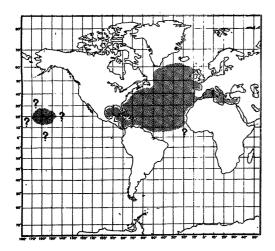
Interest to Fisheries: Undetermined.

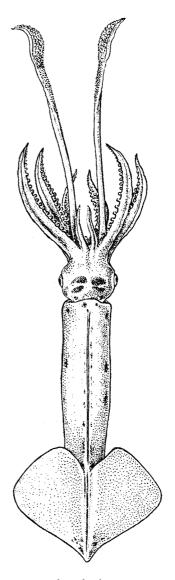
Local Names:

Brachioteuthis riisei (Steenstrup, 1882)

BRACHIO Brachio 2

<u>Tracheloteuthis</u> <u>riisei</u> Steenstrup, 1882, <u>Vid.Medd.</u> <u>Nat.Foren.Kjobenk</u>, 4(3):294.


FAO Names: En - Common arm squid


Fr - Encornet bras courts commun

SP - Braquiluria común

Diagnostic Features: Mantle very elongate, muscular. Fins less than 50% of mantle length, saggitate. Tentacular clubs narrow with very numerous minute suckers in the proximal portion.

Geographical Distribution : North Atlantic and central Pacific Oceans, limits undetermined due to uncertain identification in the literature.

dorsal view

Habitat and Biology: An oceanic species, occurring from the surface to 3 000 m depth. The spawning season appears to be very extended, hence recently hatched juveniles are found throughout the year. In the North Atlantic, these are particularly abundant from May to August and in February; in the Mediterranean and in upwelling areas off northwest Africa, between 10 and 30° N, from April to July, in September and from December to February.

Size: Maximum mantle length 3.5 cm.

Interest to Fisheries: Undetermined.

Local Names:

Literature: Kluchnik (1978, distribution of hatchlings).

4 13

FAMILY OMMASTREPHIDAE Steenstrup, 1857

OMMAS

Ommastrephidae Steenstrup, 1857, Overs. Vidensk. Selsk. Forh., 1857:12.

FAO Names: En - Flying squids

Fr - Encornets, Calmars

Sp - Jibias, Potas

Diagnostic Features: The family is characterized by an inverted T-shaped funnel locking cartilage, biserial suckers on the arms, tetraserial suckers on the tentacular clubs (except <u>Illex</u> which has 8 rows of suckers on the dactylus), buccal connectives that attach to the dorsal borders of arms IV, photophores in some genera, and a muscular bridge anterior to the funnel locking cartilage which passes from the funnel to the ventral surface of the head.

The inverted T-shaped funnel locking cartilage easily distinguishes this family from all others, even in the youngest stages. One genus, Symplectoteuthis, has the funnel and mantle cartilages fused at a single point, but they are otherwise typical.

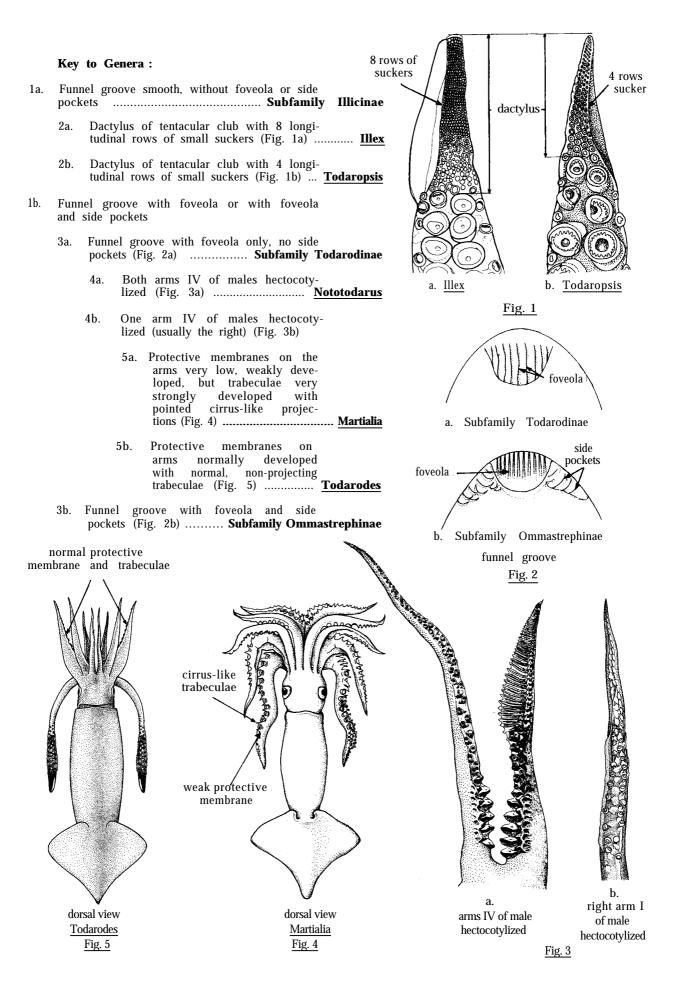
Three subfamilies are currently recognized: Ommastrephinae, Todarodinae, and Illicinae.

The Ommastrephinae is distinguished by the presence of a central pocket (foveola) and several side pockets in the funnel groove, and by the presence of photophores which are often deeply buried in the tissue of the mantle, head and arms. It comprises five genera: Ommastrephes, Symplectoteuthis, Dosidicus, Ornithoteuthis and Hyaloteuthis.

The Todarodinae has a foveola, but lacks side pockets in the funnel groove, and lacks photophores. Three genera are known: <u>Todarodes</u>, <u>Nototodarus</u> and <u>Martialia</u>. <u>Nototodarus</u> is known only from the Pacific Ocean, and <u>Martialia</u> only from far southern waters of the Southern Hemisphere.

The Illicinae lacks both central and side pockets in the funnel groove as well as photophores. Two genera are known Illex from the Atlantic Ocean and Todaropsis from the Atlantic and eastern Indian Ocean.

All species of the family in which the developmental stages are known, pass through the "rhynchoteuthis" larval stage recognized by the fusion of the tentacles to form a trunk-like proboscis.

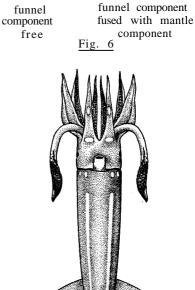

Habitat and Biology: All representatives of this oceanic and neritic family, but particularly the species in the subfamily Ommastrephinae, are very strong, powerful swimmers; most of them undertake diurnal vertical movements between the surface layer at night and deeper layers during the day. Several species school by size and migrate seasonally in response to changes of temperature conditions. Two spawning peaks are often distinguished. Large numbers of small eggs are produced, encapsuled in gelatinous masses that either float on or near the surface or settle on the bottom. Hatching of the "rhynchoteuthis" larvae occurs after a few days to a few weeks. Postspawning mortality is high. Growth is very rapid; in many species the lifespan does not exceed 1 year. Flying squids are active predators on fishes, pelagic crustaceans and other squids. Cannibalism is common. Ommastrephids in turn are preyed upon by sea 'birds, marine mammals and large predacious fishes, such as tunas, billfishes, etc.

Size : <u>Dosidicus</u>, the giant of the family, inhabiting the cold Humboldt Current, reaches a total length of about 4 m; common mantle lengths range between 20 and 40 cm.

Interest to Fisheries: Six of the 10 genera of this family currently support a fishery, and although much of the catch is not broken down between inshore squids and flying squids, it can reasonably be assumed that this family alone accounts for more than half of the world cephalopod catch. Todarodes pacificus supports the largest single fishery with catches fluctuating between 230 000 and 400 000 metric tons in recent years (FAO, 1983). Other important international fisheries are those for Illex illecebrosus in the northwestern Atlantic; Illex argentinus on the Patagonian shelf and upper slope; Todarodes sagittatus off Norway and in the Mediterranean; Ommastrephes bartrami in the western Pacific; Dosidicus gigas in the temperate and cold eastern boundary currents of the eastern Pacific; and Nototodarus in New Zealand and most recently in Australian waters. Japan predominates in most ommastrephid fisheries.

Trawling and jigging are by far the most common fishing methods, results of the latter being greatly improved by light attraction, taking advantage of the positive phototaxis of most species.

Squids are marketed fresh (i.e. sashimi), frozen, or processed in various ways, such as, dried (surume), salted, salted-fermented. Jigged squids fetch the highest prices because the product is usually fresher and undamaged.



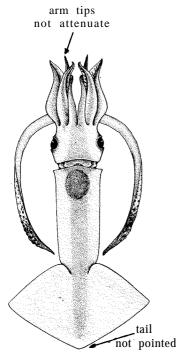
- Funnel and mantle components of the locking 6a. apparatus are fused together (Figs 6a, 7) Symplectoteuthis
- Funnel and mantle components of the locking apparatus are free, not fused (Fig. 6b)
 - Tips of arms very attenuate with numerous minute, closely packed suckers (Fig.

- Tips of arms normal, not attenuate (Fig. 11); suckers not unusually numerous, small or crowded
 - Nineteen discrete, round light organs in a distinctive pattern on ventral surface of mantle (Fig. 9) Hyaloteuthis

- No discrete, round light organs on ventral surface of mantle
 - Mantle elongate, slender, 9a. posteriorly drawn out into a pointed tail (Fig. 10); a stripe of luminous tissue (often pinkish) along ventral midline of viscera; side pockets often obscure Ornithoteuthis

Mantle robust, not drawn out 9b. posteriorly in a tail (Fig. 11); no (pinkish) stripe of luminous tissue along ventral midline of viscera (1 or 2 small, round, discrete light organs in region of ink sac in some forms); side pockets distinct . . . Ommastrephes

funnel


component

mantle

component

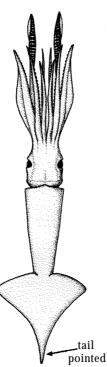

ventral view Symplectoteuthis

Fig. 7

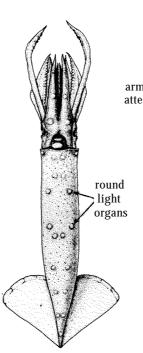

dorsal view Ommastrephes

Fig. 11

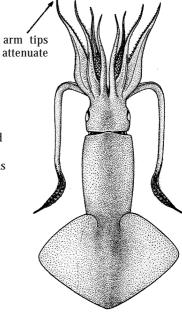

dorsal view Ornithoteuthis

Fig. 10

ventral view **Hyaloteuthis**

Fig. 9

dorsal view <u>Dosidicus</u> Fig. 8

Illex argentinus (Castellanos, 1960)

OMMAS III 4

Ommastrephes argentinus Castellanos, 1960, Neotropica, 6(20):55.

Synonymy: Ommastrephes argentinus Castellanos, 1960.

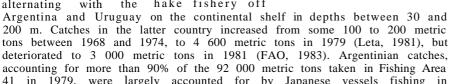
FAO Names: En - Argentine shortfin squid

Fr - Encornet rouge argentin

SP - Pota argentina

Diagnostic Features: Mantle long, muscular, widest at midpoint. Fins muscular, relatively short (length 42% of mantle length) and broad (width 57% of mantle length); fin angle broad, 45 to 55° (90 to 110° both fins). Arms very long for the genus, averaging up to

72% of mantle length for arms III in males; all arms of males significantly longer than in females; right (or left) arm IV hectocotylized along more than 50% of its length with suckers and stalks modified into suckerless knobs, truncate lamellae, and narrow lamellae to the tip.


Geographical Distribution: Western South Atlantic: Approximately 30°S to 50°S.

Habitat and Biology: An oceanic and neritic species occurring from the surface to about 800 m depth. In autumn and winter (April to September) it is abundant on the lower shelf (50 to 200 m depth).

The spawning season extends through the summer from December to March. Growth is very fast with total length averaging about 40 cm in the following summer. Longevity is between 1 and 2 years. Argentine shortfin squid prey on fishes (juvenile hakes), pelagic crabs and shrimps. They are in turn preyed upon by finfishes such as adult hake (Merluccius hubbsi).

Size: Maximum mantle length 33 cm; sexual maturity is reached at a total length of about 24 cm.

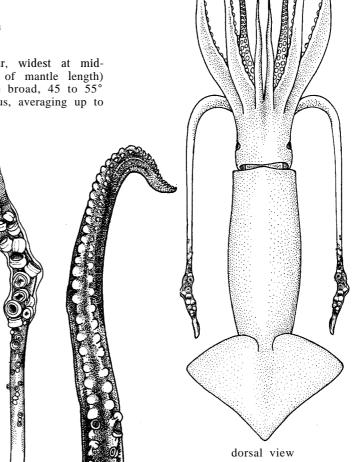
Interest to Fisheries: Taken as bycatch to the otter trawl fishery for hake or alternating with the hake fishery off

tentacular

club

arm IV of male

hectocotylized


tons between 1968 and 1974, to 4 600 metric tons in 1979 (Leta, 1981), but deteriorated to 3 000 metric tons in 1981 (FAO, 1983). Argentinian catches, accounting for more than 90% of the 92 000 metric tons taken in Fishing Area 41 in 1979, were largely accounted for by Japanese vessels fishing in Argentinian waters under joint venture arrangements, and most of the catch was frozen and exported to Japan and Spain. Due to the strengthening of restrictions on foreign fisheries, Japanese vessels have started directing their effort to squids outside the 200 mile limit. Subsequently Argentine catches decreased to about 9 000 and 10 600 metric tons in 1980 and 1981 respectively (FAO, 1983). It is also suspected that the sustainable yield of the species may

be lower than suggested by previous estimate which did not account for the fact that there was no "virgin stock" when fishing started, because the squids were already heavily "exploited" through predation by hake.

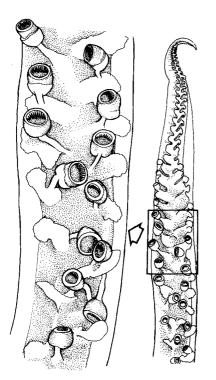
The flesh of Illex argentinus is lower in water content than that of I. illecebrosus, but its taste is not highly appreciated in Japan. It commands an intermediate price between I. illecebrosus and Ommastrephes bartrami.

Local Names: ARGENTINA: Calmar; JAPAN: Argentina matsuika; URUGUAY: Calmar.

Literature: Okutani (1980); Leto (1981, fishery, Uruguay); Sato & Hatanaka (in press, stock assessment).

<u>Illex</u> <u>coindetii</u> (Verany, 1839)

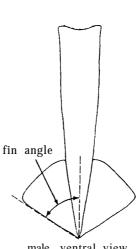
OMMAS Ill 1

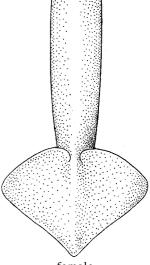

Loligo coindetii Verany, 1839, Mem.Reale Accad.Sci.Torino, (2):94.

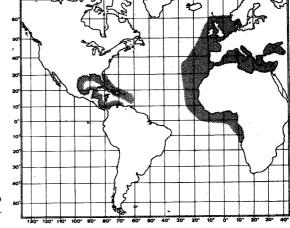
Synonymy : Loligo brogniartii Blainville, 1823; Loligo coindetii Verany, 1839; Loligo pillae Verany, 1851; Loligo sagittata Verany, 1851; Todaropsis veranyi Jatta, 1896; Illex illecebrosus coindeti Pfeffer, 1912.

FAO Names: En - Broadtail shortfin squid

Fr - Encornet rouge Sp - Pota voladora


Diagnostic Features: Mantle widest at anterior end (except in fully ripe females), moderately long and narrow; tail pointed, moderately drawn out. Fin angle broad, exceeding 50° (100° in both fins), fin width greater than fin length. Head large and robust, especially in males, length about equal to width; funnel groove without foveola or side pockets. Dactylus of tentacular club with 8 longitudinal rows of small suckers. Arms very long, especially in males where second and third also are very robust; hectocotylized arm (in males) longer than the opposite ventral (IV) arm, its modified portion about 25% of arm length, distal trabeculae modified to papillose, fringed flaps; 1 or 2 knobs on dorsal row of lamellae of modified arm tip.




tentacular club

male, ventral view of mantle and fins

female dorsal view

Geographical Distribution : Eastern Atlantic: 15°S to 60°N, Mediterranean and Black Sea. Western Atlantic: Caribbean Sea, Gulf of Mexico and southeast Florida; 10°N to 27°N.

Habitat and Biology: A semidemersal, oceanic and neritic species occurring from the surface to about 1 000 m depth, common in the Caribbean between 180 and 450 m, in the western Atlantic between 200 and 600 m, in the eastern Atlantic between about 150 and 300 m, and in the Mediterranean between 60 and 400 m depth.

The squids are known to carry out diel vertical movements: they are associated with the bottom (usually muddy to silty grounds) during the day and disperse into the water column at night. They also migrate seasonally between deeper waters in winter and shallower waters in the summer. In the western Mediterranean, large mature or maturing individuals migrate towards the coast (from their overwintering areas in 200 to 400 m depth) where, at that time, temperatures tend to be cooler than in greater depths offshore. At an interval of several weeks, they are followed by smaller-sized squids that spend most of spring and summer in shallow waters, while migrating back to offshore areas in autumn. Two peaks can be distinguished during the extended spawning season, one in spring corresponding to the group of large sized individuals and one in autumn corresponding to the smaller sized group. Large females carry up to 12 000 eggs (diameter 1 to 2 mm), the number of eggs being a function of the size of spawners. Individuals hatching in summer usually participate in the autumn spawning in the following year while fall hatchlings tend to spawn in spring of their second year of life, this resulting in an alternation between the two major groups. Post-spawning mortality is high and the lifespan consequently ranges between 1 1/2 and 2 years. The species feeds on euphausid crustaceans and fishes; it is in turn preyed upon by tunas, rays, toothed whales and other larger carnivores.

Size: Maximum mantle length 37 cm in the northern part of its distributional range; 26 cm in females, and 22 cm in males off West Africa. Females grow larger than males. In the Gulf of Guinea, all females larger than 17 cm and males larger than 11.5 cm are mature. In the western Mediterranean, length at first maturity is 18.5 cm in females, and 11 cm in males.

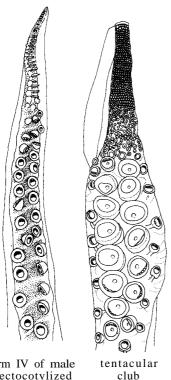
Interest to Fisheries: Taken throughout the year in depths between 100 and 400 m in international bottom trawl fisheries in the western Mediterranean, off West Africa and Spain. Separate statistics are not reported, but it is believed that a sizeable portion of the 1981 catches reported in the FAO Yearbook of Fisheries (FAO, 1983) for Fishing Areas 34 and 37 (23 700 and 39 000 metric tons respectively) under the category "unidentified loliginids and ommastrephids" are attributable to this species.

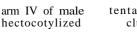
Local Names : FRANCE: Faux encornet; ITALY: Totano volatore; JAPAN: Taiseiyoitekkususurume, Taiseiyosurume, Yoroppairekkusu; MALTA: Totlu hammari; MOROCCO: Passamas; SPAIN: Volador; USSR: Kalmas.

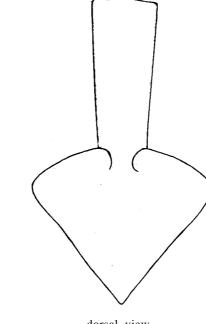
Literature: Mangold-Wirz (1963, biology, growth, western Mediterranean); Clarke (1966, biology); Fischer (ed., 1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37); Zuzuki (1976, bycatch, Gulf of Guinea); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Tomiyama & Hibiya (1978); Okutani (1980); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

Illex illecebrosus (LeSueur, 1821)

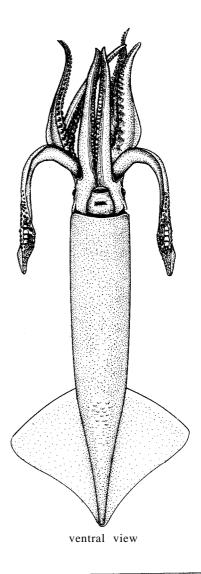
OMMAS Ill 2

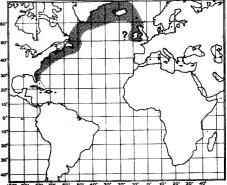

Loligo illecebrosus LeSueur, 1821, J.Acad.Nat.Sci.Phila, 2(1):95.


Synonymy : <u>Illex illecebrosus illecebrosus</u> (LeSueur, 1821); <u>Loligo illecebrosus</u> LeSueur, 1821; <u>Loligo piscatorum</u> La Pylaie, 1825; <u>Ommastrephes illecebrosus</u> Verrill, 1880.


En - Northern shortfin squid FAO Names:

Fr - Encornet rouge nordique SP - Pota norteña


Diagnostic Features : Mantle robust, widest at midpoint between anterior end and beginning of fins; tail not sharply pointed. Fin angle moderate, 40° to 50°, mostly 45°, fin width greater than fin length. Head small, short and narrow. Arms relatively short, of about equal length in both sexes; hectocotylized arm (in males) shorter than the opposite ventral arm (IV), its modified portion very short, about 22% of arm length; trabeculae (lamellae) without papillose fringed flaps; 1 or 2 knobs on dorsal row of lamellae on modified arm tip. Colour: reddish-brown to deep purple, more intense on head, arms and dorsal surface of mantle and fins; paler on ventral surfaces; a brilliant yellowish-green tint.


dorsal view of mantle and fins

Geographical Distribution : Western Atlantic: 25°N to 60°N Northern and eastern Atlantic: British Isles north to Iceland and Greenland.

Habitat and Biology: An oceanic and neritic species, its total depth range extends from the surface to about 1 000 m, but varies a seasonally.

In the western Atlantic, seasonal northward - inshore and southward - offshore migrations take place in correlation with environmental conditions, feeding and reproductive cycles. Two groups of spawners one in spring/summer and the other in autumn/winter can be distinguished. Spawning apparently takes place offshore in deeper waters.

Females produce large, spherical, gelatinous egg masses that may reach 1 mm in diameter containing up to $100\ 000$ eggs. Post-spawning mortality is very high. Fertilization of eggs is more efficient at higher temperatures (range 7 to 21° C). Eggs require temperatures between 12 and 22° C for complete development. Hatching occurs after 9, 13 or 16 days at temperatures of 21° , 16° , and 13° C respectively.

Larvae hatching from the winter brood between January and February grow to adult size in little more than 1 year, and spawn after approximately 18 months in summer. Summer hatchlings achieve a mantle length of about 18 or 19 cm after 1 year (females are slightly larger than males) and are ready to spawn in winter at an age of about 1½ years (Mesnil, 1977). Growth rates vary directly with temperature and inversely with size. Small-sized

northern shortfin squids feed mainly on euphausids (Meganyctiphanes and Thysanoessa) but switch to finfishes (capelin, herring, and juvenile mackerel) as they grow larger. Squid bites may render unsaleable the finfish part of mixed trawl catches. Squids are in turn preyed upon by cod, adult mackerel, pilot whales and dolphins.

Size: Maximum mantle length 31 cm in females, 27 cm in males in the northern part of its distributional range, but 20 cm in females and 18 cm in males in the southern part.

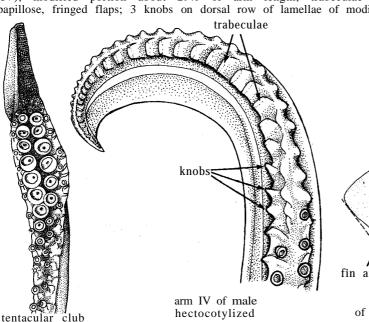
Interest to Fisheries: This species is almost exclusively fished in the northwestern Atlantic. Catches deteriorated from a 1979 peak of almost 180 000 metric tons to only about 38 000 metric tons in 1981 (FAO, 1983). Two large international fisheries exist: one in the bays of Newfoundland using jigs and jigging machines in depths from 0 to 30 m, and occasionally otter trawls (during summer and early autumn); and an extensive otter trawl fishery along part of eastern Canada and the USA on the shelf and upper slope, and around submarine canyons in depths from 100 to 250 m. Japan and Canada are the two countries taking the greatest share of these catches. The species is in high demand as bait in the autumn cod fishery off Newfoundland because it does not soak and fall off the hooks as fast as finfish bait. Its flesh is also of good food quality although it is high in water content and deteriorates easily. It is therefore processed (but not as salted-fermented 'siokara') or sold immediately fresh. It commands a price approximately 60% of that for Todarodes pacificus.

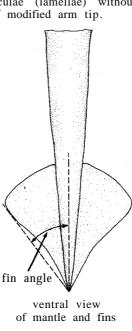
Literature : Clarke (1966, biology); O'Dor, Durward & Balch (1977, maintenance in tanks); Mesnil (1977, life history and growth); Testaverde (1977, squid attacks on trawl captured finfish); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Tomiyama & Hibiya (1978); Amaratunga (1980, growth); Durward et al. (1980, reproduction); O'Dor et al. (1980, reproduction); Okutani (1980); O'Dor et al. (1982, effect of temperature on development rates); Lange & Sissenwine (in press, resources).

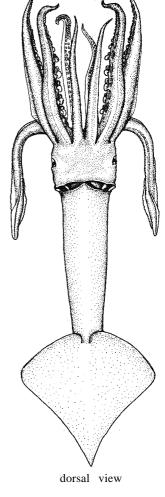
<u>Illex</u> <u>oxygonius</u> Roper, Lu & Mangold, 1969

OMMAS III 3

Illex oxygonius Roper, Lu & Mangold, 1969, Proc.Biol.Soc.Wash, 82:295.


Synonymy: None.

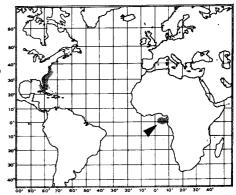

FAO Names: En - Sharptail shortfin squid


Fr - Encornet rouge à pointe

SP - Pota puntiaguda

Diagnostic Features: Mantle widest at anterior end; long, narrow, drawn out to a pointedtail posteriorly; males with a sharp, distinct triangular dorsal lobe at mantle opening. Fin angle acute, 25° to 35° (very occasionally to 40° (50° to 80° both fins); fin width equal to or slightly greater than fin length. Head mediumsized, wider than long. Arms moderately long and robust, especially the second and third in males; hectocotylized arm (in males) longer than the opposite ventral arm (IV); modified portion about 29% of arm length; trabeculae (lamellae) without papillose, fringed flaps; 3 knobs on dorsal row of lamellae of modified arm tip.

Geographical Distribution : Western Atlantic: Chesapeake Bay to southern Florida and southeastern Gulf of Mexico. Eastern Atlantic: Gulf of Guinea, limits undetermined.


Habitat and Biology: A primarily neritic species occurring in depth between 50 and 550 m within a temperature range from 6 to 13°C. It is associated with the bottom during daylight hours but disperses into the water column at night. Its biology is largely unknown; believed to feed on crustaceans and fishes.

Size: Maximum mantle length 23 cm in males, 21 cm in females.

Interest to Fisheries: At present, the species is only taken as bycath in bottom trawl fisheries; may co-occur with \underline{I} , illecebrosus.

Local Names: USA: Sharptail shortfin squid.

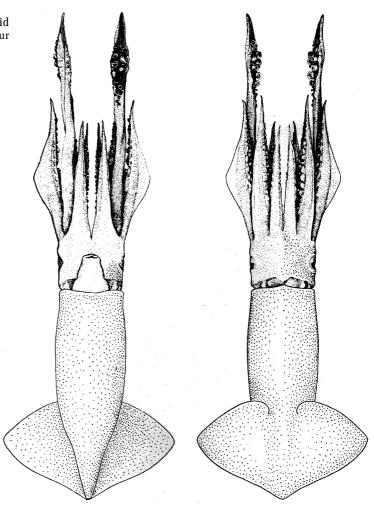
Literature: Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31).

Todaropsis eblanae (Ball, 1841)

OMMAS Todarop 1

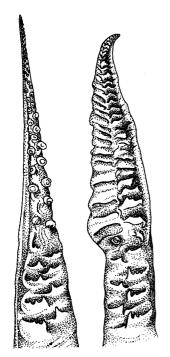
Loligo eblanae Ball, 1841, Proc.Roy.Irish Acad., 19:364.

Synonymy : Loligo eblanae Ball, 1841; Loligo sagittata Verany, 1851; Todaropsis veranyi Girard, 1889; Todaropsis veranii Nobre, 1936.

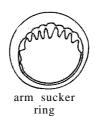

FAO Names: En - Lesser flying squid

Fr - Toutenon souffleur

Sp - Pota costera


Diagnostic Features : Fins with anterior border more convex than posterior border; length of fin less than 50% of dorsal mantle length, width of both fins equal to 90% of dorsal mantle length. Head large and broad, 4 nuchal folds on posterior of head; funnel groove without foveola or side pockets.

Dactylus of tentacular club with 4 longitudinal rows of small suckers; manus of club with 6 tranverse rows of 4 suckers, each with median pairs up to four times larger in diameter than lateral suckers; sucker rings of largest median suckers with about 30 short, pointed teeth, occasionally alternating with minute teeth. Left and right ventral arms (IV) hectocotylized by modification of suckers into cirrated lappets with transverse lamellae and expanded protective membrane; sucker rings of largest arm suckers with one large pointed median tooth and 3 or 4 smaller pointed teeth.




ventral view

dorsal view

arms IV of male hectocotylized

Geographical Distribution : Very disjunct: Eastern Atlantic: 36°S to 60°N, including around British Isles and Mediterranean Sea; southwest Pacific Ocean off Australia; Southeast Indian Ocean off Australia.

Habitat and Biology: A demersal species, usually associated with sandy to muddy bottoms within a temperature range from 9 to 18°C in depths between about 20 and 700 m (but confined to depths less than 200 m in the North Sea). There is evidence on seasonal migrations. The spawning season seems to be very extended. In the western Mediterranean, mature females (in their second year) are found from March to November, but are more abundant in summer. They carry up to 10 000 eggs (1 to 2 mm in diameter) which are laid in a large egg capsule secreted by the greatly enlarged nidamental glands. Males, which mature within their first year, produce some 200 spermatophores. Predators of this species include albacore (Thunnus alalunga) and sevengill sharks (Heptranchias).

Size: Maximum mantle length 27 cm in females, 16 cm in males; common to 20 cm in females, 13 cm in males. Length at first maturity is about 18 cm in females, 11.5 cm in males.

Interest to Fisheries: Taken as bycatch in otter trawl fisheries, very abundant in some years; catches are usually better in winter. In the western Mediterranean the principal catches are made in depths between 200 and 250 m, while on the Sahara Banks, off northwest Africa, fishing depths range from 100 to 400 m (mostly 200 m). Separate statistics are not reported for this species. Recently reported from Australia.

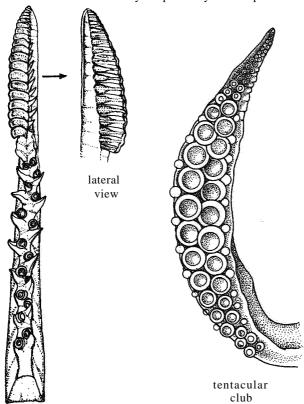
Local Names: AUSTRALIA: Golden arrow squid.

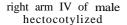
Literature : Mangold-Wirz (1963, biology, western Mediterranean); Clarke (1966, review, biology); Cooper (1979, length-mass relationship); Okutani (1980); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part); Lu & Dunning (1982, identification, Australia).

Remarks: Recently recorded in Australian waters.

Todarodes filippovae Adam 1975

OMMAS Todarod 2

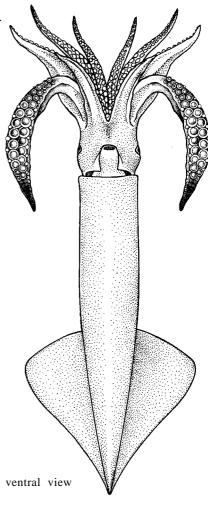

Todarodes fillippovae Adam, 1975, Bull.Inst.Roy.Sci.nat.Belg., 50(9):3.

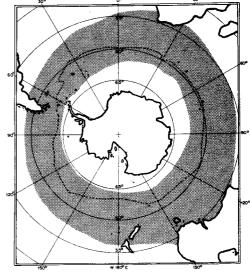

Synonymy: None.

FAO Names:

En - Antarctic flying squid Fr - Toutenon antarctique Sp - Jibia antártica

length and, width about 50% of mantle length; single fin angle about 30 to 35° (60° to 70° both fins). Tentacles very large and robust. Clubs very expanded occupying nearly entire length of tentacles; only 2 pairs carpal suckers at base of club; largest manal sucker rings with 8 to 11 sharp teeth alternating with low, flat platelets. Arms relatively short, sucker rings with 10 sharp teeth; right arm IV hectocotylized along distal 21 to 36% of the arm with suckers transformed to papillae and tubercles, with the ventral protective membrane and trabeculae very expansively developed.




Geographical Distribution : Circum-polar in the Southern Ocean; south of approximately 35°S; common in the Antarctic Convergence zone.

Habitat and Biology: An oceanic species, occurring between the surface and about 500(?) m depth, but more abundant to about 200 m. Positive phototaxis is strongly developed.

Size: Maximum mantle length over 50 cm; common between 20 and 40 cm.

Interest to Fisheries: Taken as bycatch to the recently developed extensive Japanese jig fishery for Nototodarus sloani off New Zealand and southern Australia; in 1978 it was caught in commercial quantities off northeast Tasmania. Also taken with jigs off the Falkland Islands. The species is believed to have some fishery potential.

Local Names:

Literature : Okutani (1977, fishery potential; 1980); Dunning (1982, fishery potential, Australia); Lu & Dunning (1982, identification, Australia).

Todarodes pacificus (Steenstrup, 1880)

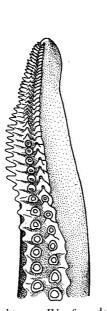
OMMAS Todarod 3

Ommastrephes pacificus Steenstrup, 1880, Danske Viden.Selsk.Forh., 1880:79.

Synonymy: Ommastrephes pacificus Steenstrup, 1880; Ommastrephes sloani pacificus Sasaki, 1929.

FAO Names: En - Japanese flying squid

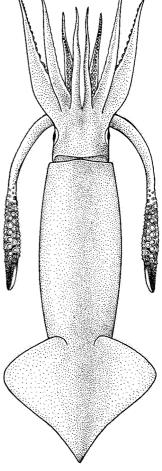
Fr - Toutenon japonais SP - Pota japonesa

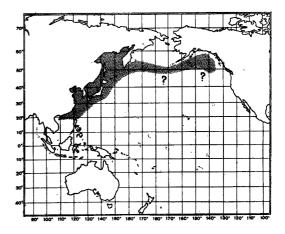

Diagnostic Features: Mantle slender, muscular. Fins sagittate, relatively short, length about 40 to 45% of mantle length.

Funnel groove with foveola, no side pockets. Tentacular club expanded, robust, long; median manal sucker rings with sharp, triangular teeth alternating with flat, truncate platelets. Arms relatively short; arm sucker rings smooth proximally, toothed with about 10 to 14 graded, sharp teeth distally; right arm IV hectocotylized in distal third with suckers and stalks modified into low, conical papillae and comb-like protective membrane.

Habitat and Biology: An oceanic and neritic species occurring within a broad temperature range from about 5° to 27°C, usually in surface waters to 100 m depth and, to a minor extent, down to 500 m depth. During its lifespan of about 1 year a northward migration occurs first, followed by another one in southward direction, usually in close correlation with changes of the main surface currents. Large aggregations occur in small gyres and along oceanic fronts. Three independently breeding subpopulations can be distinguished in Japanese

waters. The main group spawns in winter in the East China Sea, the second in autumn, west of Kyushu, and the third, minor group in spring/summer in the Sea of Japan as well as off northeastern Japan. Postspawning mortality is very high.


The males of all 3 subpopulations mature before the females and transfer their spermatophores on the still immature females (in water temperatures of 13 to 18°C). With the progressing southward migration, females mature and spawn 300 to 4 000 small, elliptical or semi-spherical eggs (greatest diameter 0.7 to 0.8 mm) embedded in a gelatinous capsule (egg mass). Spawning occurs usually at water temperatures between 15 and 20°C, and, depending on the temperature, the larvae hatch after an incubation period of 102 to 113 hours. Growth rates are directly related with temperature and inversely with size. Main food items are myctophids, anchovies (i.e., Engraulis japonica), crustaceans, gastropod larvae, and chaetognaths. Cannibalism is common. Predators include rays, dolphins (Coryphaena hippurus), balaen whales, and the northern fur seal.


right arm IV of made hectocotylized

tentacular club

dorsal view

Size: Maximum mantle length 50 cm in females, somewhat smaller in males; maximum weight at least 0.5 kg, common 0.1 to 0.3 kg. Females attain sexual maturity at 20 to 25 cm mantle length, males at 17 to 19 cm.

Interest to Fisheries: Well-developed fisheries for this species exist primarily in the northwestern Pacific (Fishing Area 61) around Japan and to a lesser extent off the Korean Peninsula and off China. After a peak of 600 000 tons in 1952, which at that time amounted to 91.5% of the entire Japanese cuttlefish and squid catch, the overall landings declined and have been fluctuating in the last few years between about 200 000 and less than 400 000 tons annually. 1981 catches were down to 230 000 metric tons from 380 000 metric tons in the preceeding year, but they still accounted for about 18% of world cephalopod catches (FAO, 1983). Japan continued to take the lion's share although that of the Republic of Korea steadily increased from approximately 10 to 15% to more than 33% in 1981.

Up to the forties, the Japanese $\underline{\text{Todarodes}}$ $\underline{\text{pacificus}}$ fishery was only a small-scale activity with unpowered boats of 1 to 2 tons, taking less than $\underline{100}$ $\underline{000}$ metric tons per yearIn the fifties, well equiped engine-powered boats of 10 to 30 tons were introduced. They deployed more-jigging lines as well as battery-powered lamps for light attraction. In the sixties, these boats were in turn substituted by even larger vessels operating with jigging machines and generator-driven lamps, this evolution going hand in hand with the development of improved handling and processing techniques. Furthermore, a 'fishery forecast' has been established for all fishing grounds in the Japan Sea and the western Pacific. Parallel to the decline of catches of T. pacificus, other species such as Ommastrephes bartrami are becoming more heavily exploited.

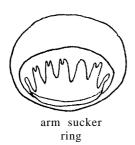
Initially \underline{T} pacificus was processed into a dried product (surume) for both domestic consumption and export, but with the $\overline{\text{expansion}}$ of the fishery, other production lines evolved, such as raw squid (sashimi), a cooked and processed product (sakiika), frozed and canned squid.

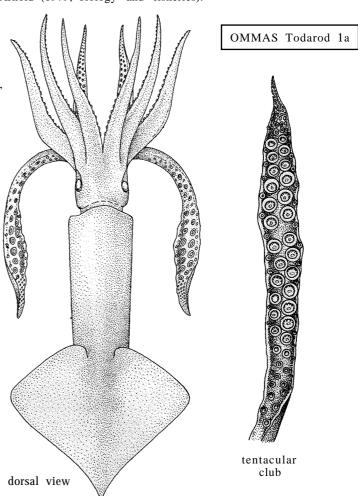
Local Names : CHINA: Yat boon yau yue (Japanese softfish); JAPAN: Akaika, Ganzeki, Matsuika, Mugiika, <u>Surumeika</u>, Tonkyu.

Literature : Clarke (1966, biology); Okiyama (1965, feeding habits); Hamabe <u>et al.</u> (1975, biology; 1976, fishery resources); Murata <u>et al.</u> (1973, ecology); Araya (1976, migration); Okutani 1977 resources; 1980); Pavlychev & Shevstov (1977, relationship between hydrographical conditions and catchability); Hibiya (1978); Kasahara (1978, jigging and forecasting techniques); Arnold (1979, biology and fisheries).

Todarodes sagittatus angolensis Adam, 1962

<u>Todarodes</u> <u>sagittatus</u> <u>angolensis</u> Adam, 1962, <u>Mem.Jun.Invest.Ultr.</u>, (2)33:32.

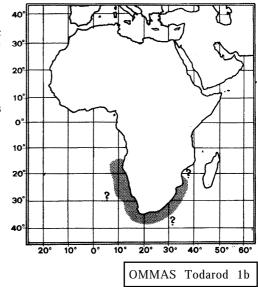

Synonymy: None.


FAO Names:

En - Angola flying squid Fr - Toutenon angolais

SP - Pota angolense

Diagnostic Features : Funnel groove with foveola, no side pockets; no light organs on viscera. Carpal area of club very short with 4 pairs of suckers. Arm sucker rings with large distal teeth alternating with very small teeth; right arm IV of male hectocotylized in distal 40% with suckerless, thick pedicels nearly completely connected by the ventral protective membrane; dorsal row of pedicels flattened.

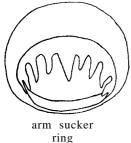

Geographical Distribution : Limited to the eastern Atlantic South of 13°S occurs around South Africa and reaches into the Indian Ocean; limits unknown.

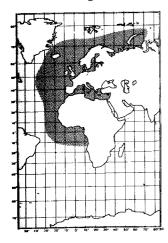
Habitat and Biology: Unknown.

Size : Maximum mantle length in females 35 cm, in males unknown.

Interest to Fisheries : Currently there is no directed fishery for this species. Caught as bycatch in otter trawl fisheries, but separate statistics are not reported.

Local Names:

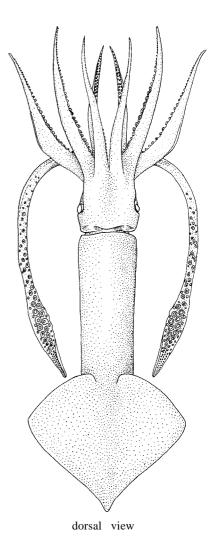

<u>Todarodes</u> <u>sagittatus</u> <u>sagittatus</u> (Lamarck, 1798)


Loligo sagittatus Lamarck, 1798, Mem.Soc.Hist.Nat.Paris, 1:13.

FAO Names: En - European flying squid

Fr - Toutenon commun SP - Pota europea

Diagnostic Features : Funnel groove with foveola and without side pockers. Club suckers on dactylus in 4 rows, suckers on elongate carpus in 10 to 12 pairs; entire club relatively very long, extending along stalk. Arm suckers with enlarged central tooth, 7 to 9 regular teeth and virtually no small alternating teeth. No light organs on viscera.



arm IV of male hectocotylized

tentacular club

Habitat and Biology: A neritic and oceanic species occurring from the surface to about 1 000 m depth. It is known to carry out diel vertical movements between the surface at night and near bottom waters during the day.

From June onwards, large schools appear off the south and southwest coast and in the northwestern fjords of Iceland, the Faroer Islands, Norway and, in some years, Scotland, where they stay until about December. Stranding of great numbers of squid is relatively common during this period. In early winter, the squids migrate into deeper offshore waters. In the western Mediterranean, no evidence was found for a similar migration pattern, but around Madeira and other parts of the eastern central Atlantic, the species is only found between March and May in large numbers on the fishing grounds.

Spawning probably takes place on the continental slope, in late winter or early spring off northern Europe, in March and April off France, and between September and November in the western Mediterranean. Ripe males seem to be present throughout the year, while mature females are found exclusively during the, spawning period. Each female may produce up to about 15 000 eggs. Individuals in the Mediterranean and the southern part of the distributional range mature at sizes much inferior than those in the North Atlantic. Females always greatly outnumber males. Individuals larger than 50 cm are believed to be at least 2 years old.

In northern waters, the species feeds primarily upon small herring ($\underline{\text{Clupea}}$ <u>harengus</u>), and cod ($\underline{\text{Gadus}}$ <u>morhua</u>) and is in turn preyed upon by tunas ($\underline{\text{Thunnus}}$ <u>obesus</u>, $\underline{\text{T.}}$ <u>alalunga</u>), cod, lancetfish ($\underline{\text{Alepisaurus}}$ <u>ferox</u>), dolphins and sperm whales.

Size: Maximum mantle length at least 75 cm; males off northern Europe grow at least to 64 cm; females to 49 cm, while in the Mediterranean the maximum sizes recorded are 32 cm and 37 cm respectively. Common sizes range between 25 and 35 cm.

Interest to Fisheries: A directed fishery for this species exists off Norway where some 10 000 metric tons were taken in 1981 about 3 times as much as in the preceeding year (FAO, 1983). In the Mediterranean, the main fishery is operated by Italian vessels, with annual catches stabilized around 3 000 metric tons in the last few years (FAO, 1983). In other parts of its distributional range, it is taken as bycatch in trawl fisheries. In some Mediterranean countries, the commercial value of this species is relatively high, although the flesh of large individuals is described as tough. It is consumed fresh or boiled; also marketed frozen, salted or dried and used as bait in the cod and halibut fisheries. Apart from large-scale predation on commercial finfish species, it has occasionally been considered a nuisance because of its competition with finfishes for baited hooks.

Local Names : CYPRUS: Thrapsallo; FRANCE: Calmar; GREECE: Kalamari; ITALY: Totano; JAPAN: Hokkaisurumeika, Taiseiyosurume, Yoroppasurumeika; MALTA: Totlu bajdani; MOROCCO: Passamar; SPAIN: Pota; USSR: Kalmar; YUGOSLAVIA: Lignjun.

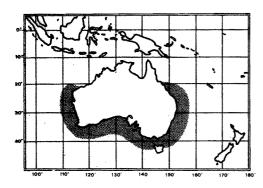
Literature : Mangold-Wirz (1963, biology, western Mediterranean); Clarke (1966, biology); Fischer (ed., 1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37); Tomiyama & Hibiya (1978); Arnold (1979, biology); Okutani (1980); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

Nototodarus gouldi (McCoy, 1888)

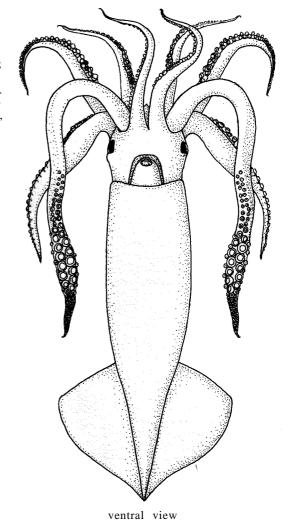
OMMAS Noto 1

Ommastrephes gouldi McCoy, 1888, Decade, 17:227.

Synonymy: Nototodarus sloani gouldi (McCoy, 1888); Ommastrephes gouldi McCoy, 1888.


FAO Names: En - Gould's flying squid

Fr - Encornet éventail SP - Pota australiana


Diagnostic Features: Mantle robust, heavily muscled, tapers gradually then very acutely to a point posteriorly. Fins strong, about 45% as long as mantle length; angle broad, 90 to 110° (45 to 55° single fin). Funnel groove with foveola and 6 to 8 low longitudinal ridges apically. Tentacular club long, 60 to 70% of tentacle length; about 8 pairs of enlarged manal suckers in median rows, marginal suckers small, subequal; largest sucker rings toothed all around with 15 separated, stout, triangular, pointed teeth interspersed with low, side platelets. Arm sucker rings with 12 or 13 sharp, triangular teeth graded to a single large central tooth distally; proximal 1/3 smooth,

without teeth or denticles; both ventral arms (IV) in males hectocotylized: the right arm with a heavily tuberculate basal region, a narrow sucker-bearing mid-part, and a distal part with very broadly expanded, pectinate protective membrane; the left ventral arm 1/4 longer than right IV, with 5 proximalmost pairs of suckers modified into large, swollen tubercles.

Geographical Distribution: Temperate to subtropical areas off Australia.

Habitat and Biology : A neritic and oceanic, mostly epipelagic species occurring from the surface to about 500 m depth. Its abundance in surface waters is correlated with the lunar cycle; in full moon nights the squids tend to remain in deeper waters where they are less vulnerable to the fishing gear. Individuals in all maturity stages are encountered throughout the year, but at least one major spawning season, from February to March can be identified. Large aggregations are formed in this period. Individuals ready to spawn seem to stay close to the bottom. Hectocotylization of both ventral arms in males starts at a minimum size of about 14 cm. Males usually outnumber females.

The species feeds predominantly on ommastrephid squids (with a high rate of cannibalism) and fishes (primarily pilchards). It is in turn preyed upon by tunas and other large carnivores.

Size: Maximum mantle length 40 cm in females, 35 cm in males; weight about 0.8 kg. Females grow larger than males, but males tend to be heavier at a given length.

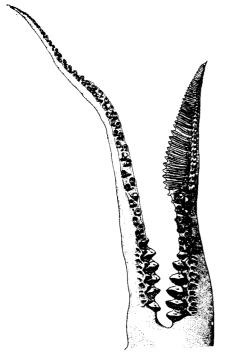
Interest to Fisheries : Initially, the species was only taken as bycatch in the Australian prawn fishery. Feasibility fishing started in summer 1978/1979, with 19 Japanese jiggers operating in southeast Australian waters. In the light of promising catch rates, exploratory fishing was subsequently expanded. Chinese jigging vessels (from Taiwan) operate intermittently in the area. Catches are best in the waters around Tasmania and the western Bass Straits, particularly from December to March. In recent years, the annual catch fluctuated between 4 000 and 5 000 metric tons (Dunning, 1982).

Local Names: AUSTRALIA: Gould's squid.

Literature: Machida (1980, squid survey); Dunning (1982, fishery resources); Smith (1983, biology and fishery); Chikuni (in press, resources).

Nototodarus hawaiiensis (Berry, 1912)

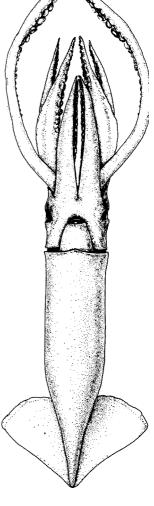
OMMAS Noto 2


Ommastrephes hawaiiensis Berry, 1912, Proc.Acad.Nat.Sci.Phila., 64(2):434.

Synonymy: Ommastrephes hawaiiensis Berry, 1912; Nototodarus sloani hawaiiensis (Berry, 1912).

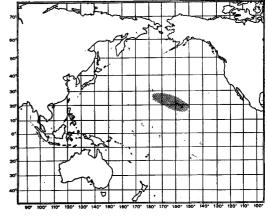
FAO Names: En - Hawaiian flying squid

Fr - Encornet bouquet SP - Pota hawaiana


Diagnostic Features: Mantle cylindrical, muscular, tapering to a conical tip. Fins muscular, length 38 to 40% of mantle length, single fin angle 54° (50 to 57°). Funnel groove with foveola, no longitudinal ridges. Tentacular club, especially carpal area, occupies most of tentacle length (about 70%); largest median sucker rings with 15 or 16 large conical, pointed teeth with. low, truncated platelets between each tooth; distal, central tooth quite enlarged. Arm sucker rings toothed all around with 19 to 21 small, conical (distally) to rounded (proximally) teeth; distal, central tooth quite enlarged; small denticles between some distal teeth; both arms IV hectocotylized in males, right especially so - longer and larger than left; proximal 1/4 of each have enlarged trabeculae and thickened protective membranes; distal right arm trabeculae, sucker stalks and suckers modified by enlargements, reductions, etc.

arms IV of male hectocotylized

tentacular club



ventral view

Geographical Distribution : Central Pacific Ocean: Hawaiian Islands to Midway Island.

Habitat and Biology: A demersal species taken in open nets fishing down to depths between 400 and 570 m, but it probably occurs also in shallower waters because it is an important food item in the diet of sea birds and fishes. 1ts biology is little known.

 ${f Size}$: Maximum mantle length 16 cm; males and females mature at 11 or 12 cm mantle length.

Interest to Fisheries : An artisanal fishery exists off Hawaii (Big Island) out of the Port of Hilo. Exploratory fishing with jigs and gillnets is in progress and the species is believed to have sufficient potential for an expansion of the fishery. Used for human consumption and as bait.

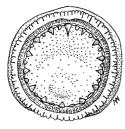
Local Names:

Nototodarus philippinensis Voss, 1962

OMMAS Noto 3

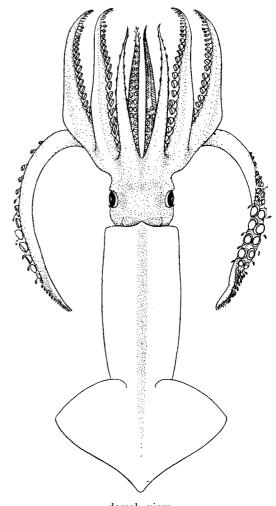
Nototodarus sloani philippinensis Voss, 1962, Proc.Biol.Soc.Wash., 75:171.

Synonymy: Nototodarus sloani philippinensis Voss, 1962


FAO Names: En - Philippine flying squid

Fr - Encornet fuiripin SP - Pota filipina

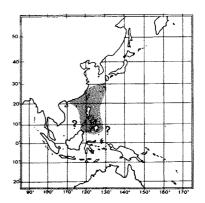
Diagnostic Features: Mantle thick, muscular, tapering to a narrow, pointed tip posteriorly. Fins muscular, broad, short, length about 50% of mantle length; a dark stripe of thickly set chromatophores along dorsal midline. Funnel groove with foveola and longitudinal ridges. Tentacular club occupies about 3/4 of tentacle; carpal area indistinct; about 12 median manal suckers 3 or 4 times larger than marginal suckers, with 14 to 18 large, sharp teeth, the central one enlarged. Arms large, robust; largest arm sucker rings with about 20 teeth all around; proximally, teeth are flattened broad platelets that grade distally into sharp, pointed teeth, the distal central tooth much enlarged, pointed and curved; both arms IV in males hectocotylized basally by protective membranes and trabeculae modified into thick, saw-like processes; right arm further modified to tip by greatly reduced suckers and stalks enlarged, closely set, comb-


arm sucker ring

tentacular ring

tentacular club

dorsal view


Geographical Distribution : South China Sea: Philippines, Hong Kong; limits undetermined.

Habitat and Biology: A demersal species in depths of 275 to $650~\mathrm{m}.$

Size: Maximum mantle length 18 cm, weight 0.2 kg.

Interest to Fisheries: Apparently very common, believed to have a high fishery potential because of its abundance and the consistency of the muscle which makes it fit for human consumption. Its occurrence in relatively deep waters may limit access by common trawling techniques.

Local Names: JAPAN: Fuiripinsurumeika.

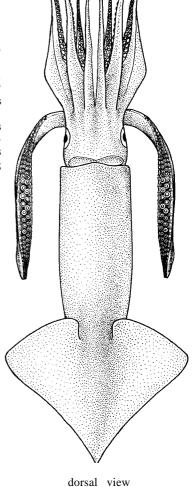
Nototodarus sloani (Gray, 1849)

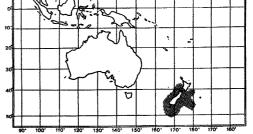
OMMAS Noto 4

Ommastrephes sloani Gray, 1849, Cat.Moll.Brit.Mus., 61.

Synoymy: Notodarus sloani sloani (Gray, 1849); Ommastrephes sloani Gray, 1849; Nototodarus insignis Pfeffer, 1912.

FAO Names: En - Wellington flying squid


Fr - Encornet minami SP - Pota neozelandesa


Diagnostic Features: Mantle muscular tapers to pointed tail. Fins broad, sagittate length 42 to 48% of mantle length; single fin angle 44° (40 to 50°). Funnel groove with foveola and 10 to 13 longitudinal ridges. Tentacular club occupies much of tentacle length; protective membranes very low, weak; largest sucker rings with 11 to 13 conical teeth all around interspersed with low truncated platelets; distal central tooth not enlarged. Arm sucker rings smooth proximally, grading to truncate teeth laterally and about 11 to 15, short, triangular teeth distally, the central one enlarged; both arms IV in males hectocotylized basally with modification of protective membranes and trabe-culae into large, ridged, saw-tooth processes; suckers absent; stalks remnants only; right arm IV distally with sucker stalks enlarged, comb-like, conical; suckers and trabeculae lost.

Geographical Distribution: Limited to New Zealand waters.

Habitat and Biology: A neritic and oceanic species occurring from the surface to about 500 m depth, occasionally forming large aggregations down to 300 m. It occurs over a broad range of temperatures but seems to be either more abundant or more vulnerable in colder waters. Two groups, possibly species, are distinguished by morphometric features, one north of the subtropical convergence zone and one within or south of the convergence. Within the northern group clearly identified as N. sloani, the western population occurs in an upwelling area and grows to larger sizes than the eastern population. The group south of the convergence has a growth pattern similar to that of the northwestern population. arm IV of male Growth rates vary inversely with size and directly with temperature (Roberts, 1983). The lifespan of this species exceeds one year. Each of the two northern

tentacular hectocotylized club

populations has 2 peak spawning season: autumn (March and April) and spring (September to November) for the northwestern population, and July and December for the northeastern population.

Size: Maximum mantle length about 42 cm, maximum weight 1.8 kg in western New Zealand, but 32 cm and 0.6 kg in the warmer waters of northeastern New Zealand.

averaged about 29 000 metric tons in recent years (FAO, 1983). Japanese and South Korean jigging vessels, operating under joint-venture schemes with New Zealand, take about half the catches, but they land only a fraction in this country. This squid is also taken in trawling operations of foreign licensed vessels from USSR, Japan and the Republic of Korea. The fishery is regulated through a quota system. The quotas for the 1981/1982 trawling season for all fishing grounds were allocated as follows: Republic of Korea: 1 600 tons, Japan: 9 900 tons, USSR: 11 500 tons, and joint venture operations 27 000 tons (Mattlin, 1982). So far, only the western and southern groups of N. sloani are being exploited. The vessels usually operate during a 90 to 120 day fishing season extending from December to April.

Frozen and processed squids are exported to various countries. Domestically caught squid are marketed fresh or processed.

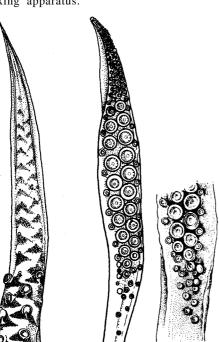
Local Names: JAPAN: Minamisurumeika, Nyujirando - minamisurumeika, Nyujirandosurumeika; NEW ZEALAND: New Zealand arrow squid.

Literature: Roberts (1978, New Zealand squid resources;1983, biology and fishery); Kawakami & Okutani (1981, identity); Mattlin (1982, fishery).

Remarks: Two species of Nototodarus are now believed to exist in New Zealand, a southern form and a western and northeastern form, but their nomenclature has not been clarified or published.

Ommastrephes bartrami (LeSueur, 1821)

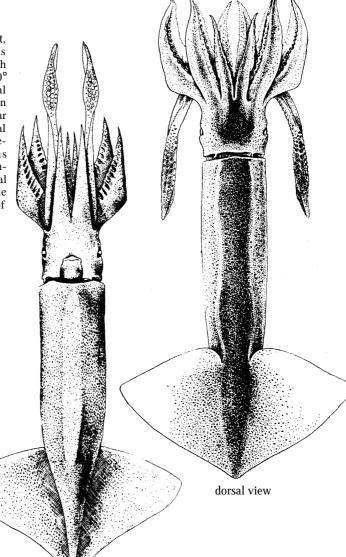
OMMAS Ommas 2

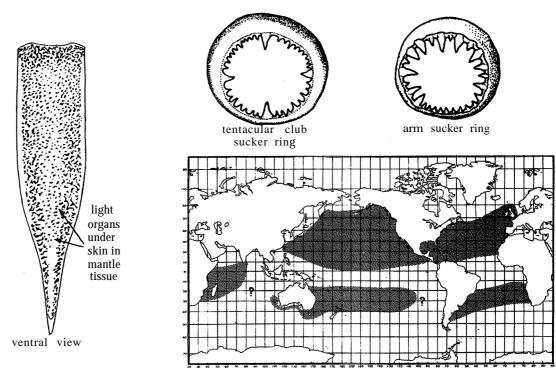

Loligo bartrami LeSueur, 1821, J.Acad.Nat.Sci.Phila., 2(1):90.

Synonymy: <u>Loligo</u> <u>bartrami</u> LeSueur, 1821; <u>Sthenoteuthis</u> <u>bartrami</u> - invalid generic name.


FAO Names: En - Neon flying squid

Fr - Encornet volant Sp - Pota saltadora


Diagnostic Features : Mantle muscular, robust, not drawn out posteriorly into a pointed tail. Fins muscular, length 40 to 45% of mantle length, width about 60% of mantle length, single fin angle 45 to 50° A long golden or silvery stripe along the ventral midline from mantle opening to level of fin-insertion (this stripe probably is a luminescent organ); similar golden tissue on ventral surfaces of head and ventral arms (IV); numerous closely-packed, small, very irregularly shaped, often interconnected, light organs embedded under the skin in muscle of mantle ventrally; similar light organs occur in patches on ventral surface to head. Four to six small suckers on the tentacular stalk proximal to the first smooth knob of the fixing apparatus.



arms IV of male hectocotylized

ventral view

Geographical Distribution : Worldwide in subtropical and temperate oceanic waters, but distribution discontinuous (apparently non-tropical, absent in equatorial waters).

Habitat and Biology: An oceanic species occurring from the surface to approximately 1 500 m depth. In the northwestern Pacific, population densities are highest in the boundary zone between warm and cold waters, particularly from July to August (water temperature gradient 15 to 24°C) and from end of September to December (10 to 22°C). This species avoids waters of less than 10°C. It carries out seasonal migrations. Throughout summer and fall, dense schools are encountered associated with the movements of the Kuroshio current, feeding in surface waters, which migrate to deeper waters and disperse during winter and spring. During the feeding season, diurnal vertical migrations have been observed between nearsurface waters at night and deeper layers in daytime. From July through October most individuals are immature; both sexes mature between January and April, the males about 3 months earlier than the females. The spawning season is rather extended (January to May off Japan) and hence it is possible to distinguish a "fast"-growing and a "slow"-growing group, depending on the environmental conditions at hatching and in the initial juveniles stages. Growth rates are directly correlated with temperature and inversely with size. The lifespan is about 1 year. Food of flying squid consists predominantly of fishes, such as lanternfishes, sardines, mackerel larvae, and sauries. Other squids account for up to 30% of the stomach contents, including a high percentage of cannibalism, while pelagic crustaceans form a highly variable, but usually minor fraction (particularly in adult squids).

Size: Maximum mantle length 50 cm in females; males somewhat smaller; maximum weight 1.8 kg. Off Japan, females mature at little less than 40 cm, males between 29 and 32 cm.

Interest to Fisheries: With the decline of the stocks of Todarodes pacificus, the effort of the Japanese squid fishery has been increasingly shifting towards the exploitation of flying squid, and since 1974 catch and effort levels for this species have gone beyond the exploratory fishing stage. Landings increased from 17 000 tons in 1974 to about 150 000 tons in 1978 and 187 000 tons in 1980, primarily as a result of the eastward expansion of the fishing grounds. An annual 'fishery forecast' is prepared in Japan for the fishing grounds in the Japan Sea and the Pacific. During its northward migration in early summer, the species is fished off northeastern Honshu, between the surface and about 150 m depth with jigging machines, while in the Tasman Sea, off New Zealand and in the North Pacific, it is caught with drift gillnets. Although it is abundant in other oceans, there are currently no fisheries directed at this species outside the Pacific. The current level of exploitation is suspected to exceed the optimum sustainable yield. The flesh is of good quality for human consumption, although somewhat tough in mature individuals. It is marketed fresh and frozen.

Local Names : AUSTRALIA: Red ocean squid; JAPAN: Akaika, Bakaika, Medama, Murasakiika; USA: Neon flying squid.

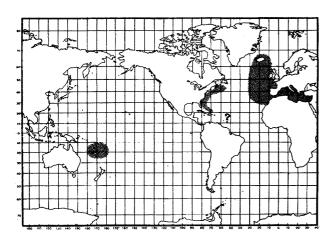
Literature: Ishi (1977, growth, northwestern Pacific); Murata & Ishi (1977, biology, northwestern Pacific); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

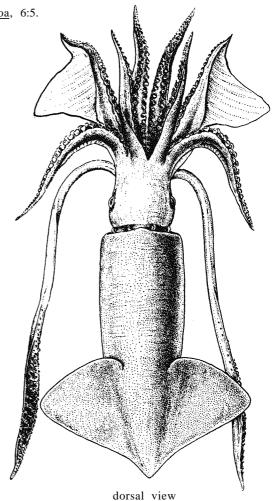
Onmastrephes caroli (Furtado, 1887)

OMMAS Ommas 1

Ommatostrephes caroli Furtado, 1887, Mem. Acad. Sci. Lisboa, 6:5.

Synonymy: Ommatostrephes caroli Furtado, 1887.


FAO Names: En - Webbed flying squid


Fr - Encornet carol Sp - Pota velera

Diagnostic Features : A large squid. Mantle very muscular, robust. Fins large, muscular, broad, width about 90% of mantle length, length about 45 to 50% of mantle length; fin angle broad, single fin angle 60 to 65°; ventral protective membrane on arm III of adults very

greatly enlarged into a broad triangular web.

Geographical Distribution : Northeastern Atlantic (excluding the North Sea), Mediterranean Sea; western North Atlantic, southwestern Pacific.

Habitat and Biology: An oceanic species occurring between the surface and 1 500 m depth and carrying out diel vertical movements (near the surface at night and in deeper waters in daytime). It is also known to migrate seasonally in relation to the temperature conditions of the water bodies in the northeastern Atlantic. By about July, small individuals of both sexes appear in Madeiran waters where they form numerous schools of up to 50 similar-sized individuals. These schools become smaller as the individuals grow in size.

Spawning takes place in late summer and autumn. A large female may carry up to about 360 000 eggs. The species feeds on fishes and other squids. Cannibalism is common. It is in turn preyed upon by tunas, cod and other finfishes.

Size: Maximum mantle length 70 cm in females, somewhat smaller in males. Length at first maturity is about 40 cm in females, 30 cm in males.

Interest to Fisheries : In Madeira, the species is locally fished for human consumption and bait. It is believed to have some potential for an expanded fishery. Its size and muscular consistency appear most desirable.

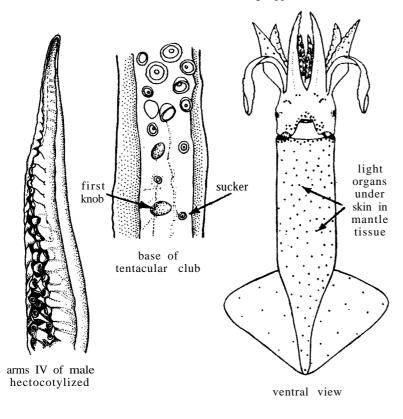
Local Names: USA: Webbed flying squid.

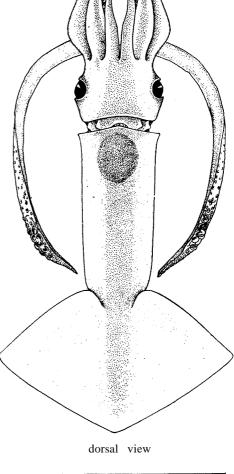
Literature: Clarke (1966, biology).

Remarks : The larval stage sometimes referred to as $\underline{Rhynchoteuthisand}$ is easily confused with \underline{O} . pteropus.

Ommastrephes pteropus Steenstrup, 1855

OMMAS Ommas 3


<u>Ommastrephes</u> <u>pteropus</u> Steenstrup, 1855, <u>Over.Oanske Vidensk.Forh.</u>, 1855:199.


Synonymy: Ommastostrephes pteropus - invalid generic name.

FAO Names: En - Orangeback flying squid

Fr - Encornet dos orange Sp - Pota naranja

Diagnostic Features: Mantle muscular, robust, not drawn out posteriorly into a pointed tail. Fins muscular, length 45 to 50% of mantle length, width 75 to 80% of mantle length; single fin angle 55 to 60°. A large, oval patch on the antero-dorsal part of the mantle just beneath the skin consisting of numerous densely packed, small light organs; small, individual scattered light organs (like short grains of rice) embedded in muscle of ventral surface of mantle, head and arms IV. Zero to 2 small suckers on the tentacular stalk proximal to the first smooth knob of the fixing apparatus.

Geographical Distribution : Pan-Atlantic in tropical and warm-temperate waters; limits of distribution unknown; the 25°C surface isotherm has been suggested as the southern limit, the 22°C surface isotherm as the northern limit.

Habitat and Biology: An oceanic species occurring from the surface to about 1 500 m depth, known to carry out diel vertical movements between the surface at night and deeper waters in daytime. During periods of bright moonlight or rough seas, however, it does not appear at the surface.

Every year, around August, schools of maturing females (hardly any males) migrate northward into Madeiran waters in coincidence with the shifting of the 22° C surface isotherm, which seems to determine the northern range limit of the species. The size of schools decreases as individuals grow in size. Spawning areas are unknown; the eggs are laid in large, gelatinous, sausage-shaped masses that float at or near the water surface and contain up to several hundred thousand embryos.

The species is an active predator on fishes, crustaceans and squids. Cannibalism is common. It is in tum preyed upon by tunas, billfishes, cod and other finfishes.

Size: Maximum mantle length 40 cm in females, males somewhat smaller; length at first maturity about 30 cm in females.

Interest to Fisheries: Around Madeira this species is locally dipnetted or jigged at night, and utilized for human consumption. It is believed to be very abundant, although no assessment of the actual population size has been made. It may have sufficient potential to also support a fishery in the Caribbean. The flesh is of excellent quality, and hence, well suited for human consumption, either fresh or frozen.

Local Names: COLOMBIA, CUBA, MEXICO: Lomo anaranjado; USA: Orangeback flying squid; VENEZUELA: Lomo anaranjado.

Literature : Clarke (1966, biology); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

Symplectoteuthis luminosa Sasaki, 1915

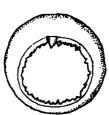
OMMAS Symp 2

Symplectoteuthis <u>luminosa</u> Sasaki, 1915, <u>J.Coll.Agric.</u>, <u>Tohoku Imp.Univ.</u>, 6(6):144.

Synonymy: Eucleoteuthis luminosa Berry, 1916 - invalid generic name.

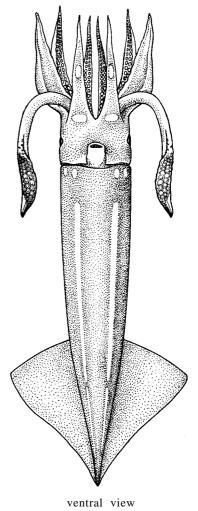
FAO Names:

En - Luminous flying squid Fr - Encornet lumineux Sp - Pota luminosa


Diagnostic Features : Mantle muscular, conical, tapering to moderately sharp tail. Fins sagittate, length about 50% of mantle length, width about 50% of mantle length; single fin angle 40° (35 to 50°); mantle and funnel fused at locking cartilages; two sets of vivid longitudinal stripes along ventral surface of mantle (are photophores); a large photophoric patch at base of each arm IV. Left arm IV hectocotylized at distal end with absence of suckers; paired papillae areremnants of sucker stalks.

funnel component fused with mantle component

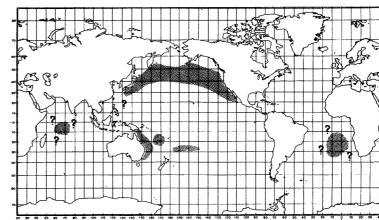
arm sucker ring


tentacular sucker ring

left arm IV of male hectocotylized

tentacular club

Geographical Distribution : Discontinuous distribution: Pacific Ocean: subtropical and temperate waters. Atlantic Ocean: southeastern Atlantic, distribution undetermined. Indian Ocean: distribution undetermined.


Habitat and Biology: An oceanic species with unknown depth distribution, probably not deeper than 1 300 m, reaching into surface waters; does not appear to school as do most other ommastrephids.

Size: Maximum mantle length 18 cm in females, about 20 cm in males.

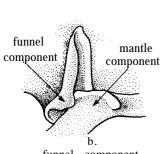
Interest to Fisheries : S. luminosa constitutes an incidental catch of the jigging

fishery for Todarodes pacificus, but is not utilized currently. Apparently abundant in mixing waters between the Kuroshio and the Oyashio off Japan.

Local Names: AUSTRALIA: Striped squid; JAPAN: Sujiika; USA: Luminous flying squid.

Symplectoteuthis oualaniensis (Lesson, 1830)

OMMAS Symp 1

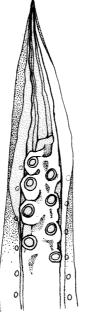

Loligo oualaniensis Lesson, 1830, Voy.Coquillel, 2(1):240.

FAO Names: En - Purpleback flying squid

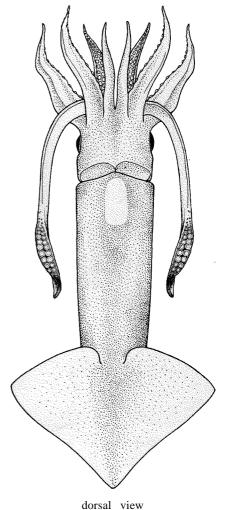
Fr - Encornet bande violette

Sp - Pota cárdena

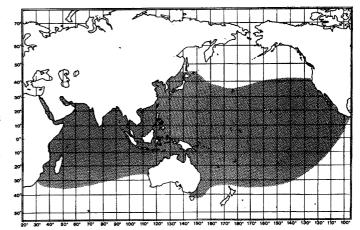
Diagnostic Features : Mantle very muscular, conical posteriorly. Fins muscular, broad, width 79% (69 to 86%) of mantle length, length 43% (39 to 50%) of mantle length; single fin angle 64° (61 to 71°); males have wider fins than females; mantle and funnel fused at locking cartilages; a large, oval photophoric patch on anterodorsal surface of mantle (see remarks).


funnel component fused with mantle component

arm sucker ring


tentacular sucker ring

arm IV of male hectocotylized



tentacular club

Geographical Distribution : Indo-Pacific; Indian Ocean: entire area north of approximately 25°S. Pacific Ocean: entire area south of approximately 45°N and north of 30°S on western side and 10°N on eastern side.

Habitat and Biology: An oceanic species occurring from the surface to probably 1 000 m depth, largely replacing the genus Ommastrephes in the western Pacific and Indian Ocean. It is known to carry out diurnal vertical movements between the surface at night and deeper layers during the day. Little is known about seasonal migrations of either form or species (see remarks). In Chinese waters, 3 seasonal subpopulations seem to exist. They are preyed upon by sea birds and fishes.

Size: Maximum mantle length 35 cm. Females with the dorsal light organ mature at about 18 cm, males at less than 13.6 cm; females without the light organ at 10.7 cm.

Interest to Fisheries: The species supports local fisheries in Okinawa (June to November) and Taiwan (Province of China) (March to November, peak May to August), and is dipnetted or jigged at the surface day and night. Mechanical jigging machines were tried near Okinawa and Fiji with poor results. The species is the primary fishing bait imported to Okinawa from Taiwan (Province of China); its meat is thick. Voss (1973), speculates a potential of at least 100 000 metric tons in the central eastern Pacific. The species also occurs in commercial quantities in the northwestern Indian Ocean with large concentrations in the Gulf of Aden and the Arabian Sea, and is abundant around the Hawaiian Islands, where it is used for bait in the seasonal tuna fishery; caught by jigging; results of experimental fishing indicate a large population.

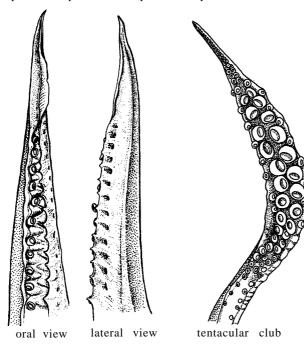
Local Names: AUSTRALIA: Yellow-backed squid; JAPAN: Tobiika; USA: Purpleback flying squid.

Literature: Dunning (1982, identification); Osako & Murata (in press, resources).

Remarks: Two sympatric species are known under the name <u>S. oualaniensis</u>: (1) a larger one with a dorsal photophore on the mantle, much more frequently captured; (2) a smaller one, without photophore, and infrequently captured. The name probably applies to the larger, more common, shallower-living species.

<u>Dosidicus</u> <u>gigas</u> (Orbigny, 1835)

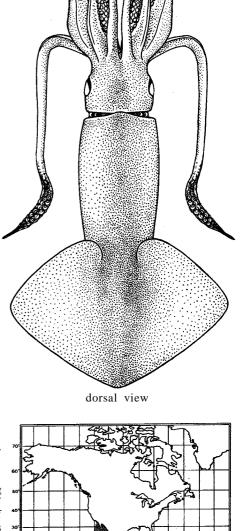
OMMAS Dosid 1


Ommastrephes gigas Orbigny, 1835, in 1834-1848, Voy.Amer.Merid., 5(3):50.

Synonymy : Ommastrephes gigas Orbigny, 1835; Ommastrephes giganteus Gray, 1849; Dosidicus eschrichti Steenstrup, 1857; Dosidicus steenstrupi Pfeffer, 1884.

FAO Names: En - Jumbo flying squid

Fr - Encornet géant SP - Jibia gigante


Diagnostic Features: A very large squid. Mantle very large, robust, thick-walled. Fins rhomboidal, muscular, broad, width 56% of mantle length (49 to 65%), length 45% (41 to 49%) of mantle length, single fin angle 57° (50 to 65°). Distal end of arms (adults especially) drawn out into very long, attenuate tips with 100 to 200 minute, closely packed suckers; dorsal protective membrane very weakly developed, but trabeculae are well-developed, exposed papillae, either arm IV hectocotylized (not both on same specimen) by absence of suckers and stalks at tip, and expanded and perforated protective membranes.

 $\begin{tabular}{lll} \textbf{Geographical Distribution} & \textbf{:} & Eastern & Pacific: from approximately $35^\circ N$ south to Tierra del Fuego. \end{tabular}$

Habitat and Biology: An oceanic and neritic species occurring from the surface to 500 m (?) depth; it is most abundant and largest off South America, where adults are found in water temperatures of between 26 and 28°C to much colder. In nearshore waters, it occurs near to the surface day and night. In the Gulf of California a single stock composed of several cohorts has been identified. Its seasonal migrations, similar to those of other ommastrephids, are described by Ehrhardt et al. (in press). The cohorts grow at different rates depending on the environmental conditions at the time of hatching, but all recruit into the fishery around May each year. Longevity is about 1 year for the population in the northern hemisphere. Mortality after spawning is high. This species feeds on larvae of pelagic fishes such as lanternfishes, sardines, mackerels and sauries, and on crustaceans. Cannibalism is common. It is in turn preyed upon by swordfish, sharks, porpoises and other mammals.

Size: Maximum total length 4 m, maximum mantle length 1.5 m off Chile, about 1 m in the northern population; length at first maturity in the latter ranges between 35 and 40 cm in females (4 to 6 months of age) and from 18 to 25 cm in males (2 to 3 months of age). Common length about 50 to 80 cm, common weight 2 or 3 kg.

Interest to Fisheries: Exploratory fishing for this species was initiated in the early seventies in several areas along the Pacific coast of America. While the operations by Japanese vessels off Chile were discontinued because of insufficient landings, Mexican catches increased from 14 tons in 1974 to over 19 000 tons in 1980, but deteriorated subsequently, to about 10 000 tons in 1981 (FAO, 1983) and to even lower levels in the 1982-83 fishing season. Most of these catches are taken by Japanese jigger boats under a joint venture scheme and by

Mexican shrimpers that switch to squid fishing during the closed season for shrimp fishing. The best catches are obtained during the summer months, but the season has been progressively expanded, so that fishing now occurs throughout the year. Jigging operations are enhanced at night by light attraction. The sport fishery for the species, off southern California, is of very limited importance. This squid is mainly used as bait, some of it is dried for human consumption, and in Chile, small amounts are marketed canned. A market for frozen filets has recently developed in the western USA.

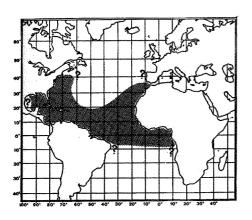
Local Names: JAPAN: Amerikaooakaika, Amerika-oosurume, Jumbo squid; USA: Jumbo flying squid.

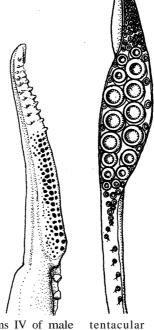
Literature: Ehrhardt et al. (in press, biology and fishery, Gulf of California, Mexico); Sato (1976, exploratory fishing, Mexico).

Ornithoteuthis antillarum Adam, 1957

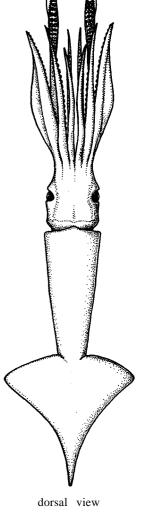
Ornithoteuthis volatilis antillarum Adam, 1957, Bull.Inst.Roy.Sci.Nat.Belg., 33(7):3.

Synonymy: None.


FAO Names: En - Atlantic bird squid


Fr - Encornet oiseau Sp - Pota pájaro

Diagnostic Features: Mantle muscular, narrow, drawn out posteriorly into a long pointed tail. Funnel groove with foveola with 7 to 12 indistinct folds, side pockets


often obscure. No external light organs; a long, thin usually pinkish stripe of luminiscent material along the ventral surface of the viscera from about the level of the heart to the posterior tip of the viscera; discrete light organs on the ink sac and rectum. Tentacular club moderately expanded, no distinct fixing apparatus on tentacular stalk.

Geographical Distribution : Eastern Atlantic: from the Straits of Gibraltar to slightly south of the equator; tropical and subtropical western Atlantic and Caribbean Sea.

arms IV of male hectocotylized

OMMAS Orni 1

Habitat and Biology: An oceanic species occurring between the surface and about 1 100 m depth. It is a powerful swimmer carrying out diel vertical movements resulting in capture in bottom-trawls at 580 to 1 100 m depth (mostly 640 to 825 m) during the day, and in midwater trawls at 100 to 600 m over very deep waters and by dipnets at the surface in the open ocean at night. The species feeds on other cephalopods, shrimps and small fishes. It is probably in turn preyed upon by marine mammals such as Tursiops truncatus, and by billfishes and tunas.

Size: Maximum mantle length of an unsexed individual 20 cm; off the West Indies, 10.3 cm in females, 14.1 cm in males.

Interest to Fisheries: The species is not currently fished commercially. It may inhabit continental shelf and slope waters or be associated with islands, as major catches were made in bottom trawls. Too few data are available on distribution. Separate statistics are not reported for this species. Fishing techniques would include jigging, dipnetting and especially otter and midwater trawling. The species should be edible, as other members of the family are confirmed to be good.

Local Names: USA: Atlantic bird squid.

Literature : Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

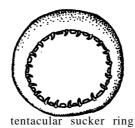
Omithoteuthis volatilis Sasaki, 1915

OMMAS Orni 2

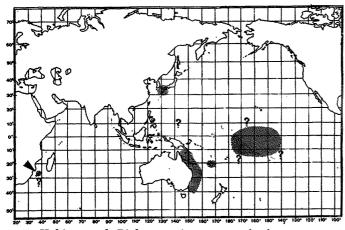
Ommastrephes volatilis Sasaki, 1915, J.Coll.Agri.Tohoku Imp.Univ.Sapporo, 6(6):138.

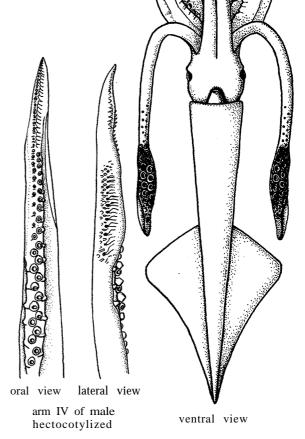
Synonymy: Ommastrephes volatilis Sasaki, 1915.

FAO Names: En - Shiny bird squid


Fr - Encornet planeur SP - Pota planeadora

Diagnostic Features : Mantle very narrow, drawn out posteriorly into a long pointed tail; muscular. Fins long, sagittate, sharply lanceolate posteriorly; length 55% (51 to 59%) of mantle length, width 47% (45 to 51%) of mantle


length, single fin angle 27° (20 to 35°). Tentacular club 35°). expanded with very large medial manal suckers, their rings with 18 to 20 evenly spaced, pointed teeth of same size. Arm sucker rings with 10 to 14 sharp teeth; right arm IV hectocotylized in distal half with suckers reduced stalks modified insize, papillae particularly in dorsal row, and protective membranes swollen with honey-combed ridges and deep depressions. A large oval photophore present on intestine.



arm sucker ring

Geographical Distribution : Central and western Pacific in warm and warm temperate waters.

Habitat and Biology: A very poorly known oceanic species; very rarely collected at the surface, even at night. Japanese fishermen report it occasionally gliding above the surface of the sea.

Size: Maximum mantle length 21 cm in females, 31 cm in males.

Interest to Fisheries: Apparently too rarely encountered currently to represent a worthwhile fishery potential. Size and consistency of flesh are good, however, if concentrations would be found the species could be used for human consumption.

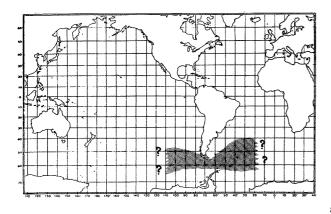
Local Names: AUSTRALIA: Long-tailed flying squid; JAPAN: Tobi-ika, Yasetobi-ika.

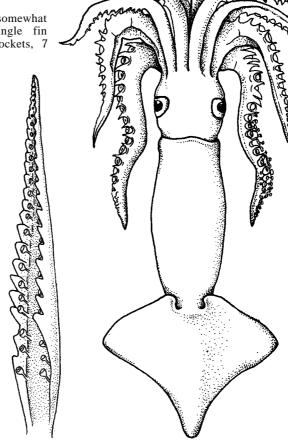
Literature: Okutani (1980).

Martialia hyadesi Rochebrune & Mabille, 1889

OMMAS Mart 1

Martialia hyadesi Rochebrune & Mabille, 1889, Miss.Sci.Cap Horn, 6:9.


Synonymy: None.


FAO Names: En - Sevenstar flying squid

Fr - Encornet étoile SP - Pota festoneada

Diagnostic Features: Mantle robust, tapers to a somewhat elongated tail. Fins rhomboidal, elongated posteriorly, single fin angle 35 to 45%. Funnel groove with foveola, no side pockets, 7 longitudinal folds. Tentacular clubs occupy almost entire length of tentacles. Protective membranes on arms very weak and low, but trabeculae very strongly developed into prominent, pointed cirri all along the arms; suckers proportionally small, rings with 5 teeth in distal half, central one conical, lateral ones becoming truncated; proximal half of ring smooth; right arm IV hectocotylized in males.

Geographical Distribution : Southern Ocean: southwestern Atlantic (39 to 51°S), South Pacific, and Antarctic Convergence; exact distribution undetermined.

arm IV of male hectocotylized

dorsal view

Habitat and Biology: An oceanic species; exact depth distribution unknown; biology unknown.

Size: Maximum mantle length approximately 40 cm.

Interest to Fisheries : So far, no fisheries have developed for this species, but it is believed to have some potential.

Local Names:

Hyaloteuthis pelagica (Bosc, 1802)

OMMAS Hyal 1

Sepia pelagica Bosc, 1802, Hist.Nat.Coquilles V. I. In Histoire Naturelle de Bouffon, p. 46.

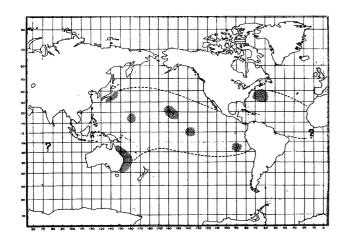
Synonymy: Sepia pelagica Bosc, 1802; Ommastrephes pelagicus Orbigny, 1835-1848.

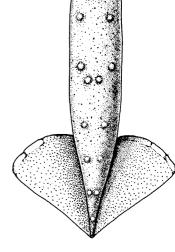
 $\begin{array}{lll} En & - & Glassy & flying & squid \\ Fr & - & Encornet & vitreux \end{array}$ FAO Names:

Sp - Pota estrellada

Diagnostic Features: Mantle muscular, narrow (17 to 19% of mantle length), cylindrical nearly to posterior end, then tapers suddenly to a point; ventral surface of mantle covered with 19 relatively large, round photophores in a distinct pattern, primarily in pairs; 3 round photophores

along ventral surface of arm IV: at the base, the midpoint and near distal tip. Fins relatively short (37% of mantle length), width 58% (57 to 61%) of mantle length, single fin angle about 50° (45 to 55°). Right (occasionally left) arm IV hectocotylized in males.




arm sucker ring

tentacular sucker ring

Geographical Distribution : Warm waters of Atlantic and Pacific (Indian?) oceans; limits undetermined.

club

ventral view

Habitat and Biology: An oceanic species occurring between the surface and about 200 m depth. It is believed to carry out diel vertical migrations, being encountered at or near the surface at night and in deeper waters during the day. It is preyed upon, i.e. by black noddy terns (Anöus tenuirostris), and finfishes.

Size: Maximum mantle length 9 cm.

Interest to Fisheries: A rather rarely captured species; its fishery potential is at present undetermined.

Local Names:

Literature: Clarke (1966, biology).

4.14 FAMILY THYSANOTEUTHIDAE Keferstein, 1866

THYSANO

Thysanoteuthidae Keferstein, 1866, Bronn's Klass.Ordn.Thierreichs, 1862-66:1445.

FAO Names: En - Rhomboid squids

Fr - Chipilouas SP - Chipirones

Diagnostic Features : The family is characterized by a funnel locking-cartilage with a long, narrow longitudinal groove and a short, broad transverse groove (-| -shaped); long broad fins in the shape of a rhombus that extend nearly the full length of the mantle; a nuchal-mantle lock with two distinct knobs that fit into opposing pits; extremely long, cirrate trabeculae on the arms; buccal connectives that attach to the ventral borders of arms IV; two rows of suckers on the arms and four rows of suckers on the manus; the absence of photophores.

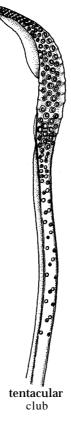
General Remarks on the Family: Two genera, Thysanoteuthis and Cirrobrachium, are currently included in the family. Cirrobrachium is known only from a few larval forms and a single, larger fragmentary specimen; it is distinguished by long, slender free cirri (trabeculae) on the arms. So little is known about the characters of the two nominal species of Cirrobrachium that the genus is in question. The monotypic species of the other genus, Thysanoteuthis rhombus, attains a large size (at least 100 cm mantle length and 20 kg weight) and is a very powerful swimmer the only species of some interest to fisheries.

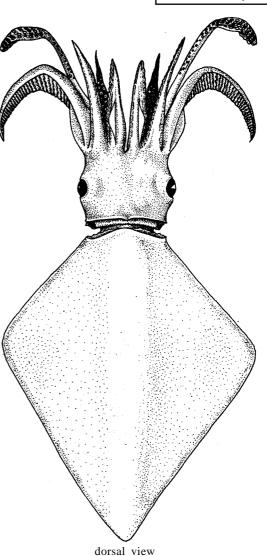
Thysanoteuthis rhombus Troschel, 1857

THYSANO Thysano 1

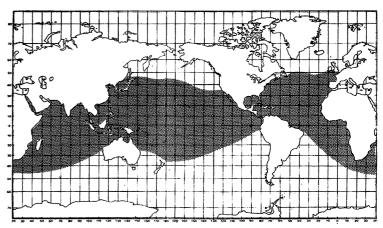
 $\frac{Thysanoteuthis}{Naturgesch.Berlin}, \ 32(1):70. \ Troschel, \ 1857, \ \underline{Arch.}$

Synonymy: <u>Thysanoteuthis</u> <u>nuchalis</u> Pfeffer, 1912.


FAO Names: En - Diamondback squid


Fr - Chipiloua commun SP - Chipirón volantín

Diagnostic Features: Mantle thick, muscular, tapering to a blunt tip posteriorly. Fins long, broad, rhombic () occupying the entire length of mantle; mantle-funnel locking apparatus - shaped. Tentacular clubs with 4 rows of suckers; arms with 2 rows of suckers; buccal connectives attached to ventral borders of arms IV.


funnel-locking apparatus

Geographical Distribution : Presumed to occur worldwide in warm and warm temperate seas, but limits not well defined.

Habitat and Biology: an epipelagic, oceanic species, often occurring in pairs of small schools in surface waters; the lower limits of its depth distribution are unknown. Off Japan, seasonal migrations with the Kuroshio and Tsushima currents are reported, the squids entering the Japan Sea from the south. The spawning season and areas are unknown, but 'sausage'-like, gelatinous egg masses measuring 60 to 70 cm in length and about 15 to 20 cm in diameter are encountered floating at or near the surface. Adults are

very powerful swimmers and are reported to jump occasionally on to the deck of boats. They are also known from strandings. Predators include sperm whales and blue marlins.

Size: Maximum mantle length 100 cm and weight 20 kg; common to 60 cm mantle length.

Interest to Fisheries: In the Japan Sea a local fishery exist on this species. The fishing fleet consists of small units of about 5 tons numbering up to 200 in the peak fishing season. Catches are better at night with drifting jigs, but the species is also taken during the day. Off the west coast of mid-Honshu set nets are the preferred gear.

Local Names: JAPAN: Ootobiika, Sodeika, Taruika.

Literature : Clarke (1966, migration); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part).

4.15 FAMILY CRANCHIIDAE Prosch, 1849

CRANCH

Cranchiidae Prosch, 1849, Kong. Dans. Viden. Selsk., (5)1:71.

FAO Names: En - Cranch squids Fr - Encornets outres

Sp - Cranquilurias

Diagnostic Features: The family Cranchiidae contains a great diversity of species which exhibit a wide variety of basic characters. One prominent character, however, easily distinguishes all members of the group: the mantle is fused to the head in the nuchal region and to the funnel at its two posterolateral corners. Buccal connectives attach to the ventral borders of arms IV; the armature of the clubs generally is in four longitudinal rows; the arms generally have biserial suckers; hooks occur in some species; photophores are present.

The numerous cranchiid genera are grouped under two subfamilies, the Cranchiinae and the Taoniinae.

The Cranchiinae is characterized by the presence of cartilaginous strips bearing tubercles on the ventral surface of the mantle originating at the funnel-mantle fusions and extending posteriorly by the lateral fusion of the funnel to the ventral surface of the head in the adult stage, and by one or more rows of small, round photophores on the eye. This subfamily contains the genera <u>Cranchia</u>, <u>Liocranchia</u> and <u>Leachia</u>.

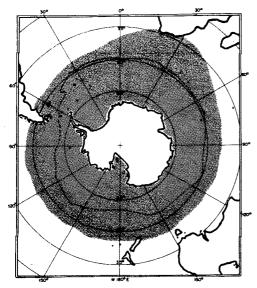
The Taoniinae is characterized by the absence of cartilaginous strips that extend posteriorly from the funnel-mantle fusions, by the presence of a funnel that is free laterally, and by the presence of one to three generally crescent-shaped photophores on the eyes. This subfamily contains numerous and diverse species that are arranged in several genera, many of which are based on larval forms (e.g. Fusocranchia, Teuthowenia, and Taonidium). The genera are: Taonius, Egea, Sandalops, Liguriella, Teuthowenia, Megalocranchia, Helicocranchia, Galiteuthis, Bathothauma, and Mesonychoteuthis.

An illustrated key to the genera of this family is given by Voss (1980).

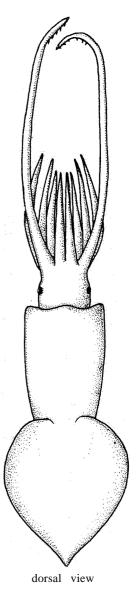
The monotypic genus $\underline{\text{Mesonychoteuthis}}$, represented only by $\underline{\text{M.}}$ $\underline{\text{hamiltoni}}$ is the only one considered to be of potential interest to fisheries at the present time. It has large hooks on both the tentacles and arms; it attains a total length of at least 4 m. A related genus, $\underline{\text{Galiteuthis}}$, has large hooks only on the tentacular clubs. $\underline{\text{Taonius}}$ has a few greatly enlarged teeth, closely approximating hooks, that arise from the sucker rings on the tentacular clubs.

Mesonychoteuthis hamiltoni Robson, 1925, Ann.Mag.Nat.Hist., (9)16:272.

Synonymy: None.


FAO Names: En - Antarctic cranch squid

Fr - Encornet outre commun Sp - Cranquiluria antártica


Diagnostic Features: This is a very larg e species. Mantle broad, tapering in its posterior third to a long, narrow, sharply pointed tail; mantle wall up to 5 to 6 cm thick, soft, slightly semigelatinous; mantle fused to head dorsally at

neck and ventrally to the funnel at the site of the locking cartilages. Fins over half as long as mantle, heart-shaped, broad, muscular. Head narrower than mantle. Tentacular clubs relatively unexpanded, lacking swimming keels and protective membranes, with 2 rows of well-developed hooks medially on manus (up to 22) and minute lateral suckers; 4 rows of minute suckers on dactylus. Arms very thick, muscular, long, attenuate at tips, with broad protective membranes basally, mid-portion with 3 to 11 pairs of hooks, distal third with suckers.

Geographical Distribution: Southern Ocean, circumpolar, primarily south of Antarctic Convergence, occasionally north in cold waters to off South Africa.

Habitat and Biology : A mesopelagic species, ranging in depth from 200 to 600 m; a relatively passive swimmer. Feeds on mesopelagic fishes (Myctophidae, Paralepididae) and squids and is very heavily preyed upon by sperm whales at 400 to 600 m during the sperm whales feeding migration to the Southern Ocean in summertime; juveniles are occasionally also preyed upon by albatrosses.

Size : Maximum mantle length 250 cm; total length exceeds 4 m; maximum weight 150 kg; matures at mantle lengths greater than 100 cm and 25 to 30 kg weight; spermatophores are 17 to 27 cm long.

Interest to Fisheries: This species is believed to have some potential for a fishery. The flesh is said to be of excellent quality and very flavourful. Klumov & Yukhov (1975) estimate that 1 or 2 million tons can easily be taken in view of reduced sperm whale predation (whole population decline); total reserves estimated at 90 million tons (biomass); but fishing methods have not yet been developed.

Local Names:

Literature: Voss (1980, generic revision of family).

5. OCTOPUSES (Order Octopoda)

Octopoda Leach, 1818, Zool.Miscell., 3(30):138.

The Order Octopoda apparently became distinct from the Coleoid basic line in the Middle Triassic (Jeletzky, 1966). Octopods are divided into two suborders; Cirrata, mostly deep-sea pelagic and epibenthic forms which possess cirri along the arms and have paddle-shaped fins and Incirrata, moderately deep to shallow-living benthic and epipelagic forms which posses neither cirri nor fins. Only the Incirrata are of commercial interest, with some species of Octopus supporting among the major fisheries for cephalopods.

Diagnostic Features: Eight circumoral arms, no tentacles; fins subterminal (on sides of mantle), widely separated, or absent; shell reduced, vestigial, "cartilagenous", or absent; suckers without chitinous rings, set directly on arms without stalks; eye open to sea with primary and secondary (concentric) lids; branchial canal present on gills between down-folded filaments (some exceptions); liver a single structure with incorporated pancreas; central (rachidian) tooth of radula with 1 large projection and 2 or more small lateral cusps, first and second lateral teeth multicuspid; buccal membrane absent; olfactory organ a ciliated pit.

Suborder Incirrata Grimpe, 1916

Incirrata Grimpe, 1916, Zool.Anz., 46(12):353.

Only one of the eight famlies, Octopodidae, is commercially exploited, although other species taken incidentally also are utilized.

Diagnostic Features: Eight arms with suckers only, no cirri; fins absent.

5.1 FAMILY OCTOPODIDAE Orbigny, 1845

OCT

Octopodidae Orbigny, 1845, Moll. Viv. Foss., 1:164.

FAO Names: En - Octopuses

Fr - Pieuvres, Poulpes Sp - Pulpitos, Pulpos

General Remarks on the Family: The systematics of the Octopodidae is in a thoroughly unsettled state and the group is very much in need of systematic revision. Three subfamilies exist. Octopodinae, Eledoninae, and Bathypolypodinae (see generic list); separated by relatively minor characters, they all are easily recognizable as octopuses. There are 21 currently accepted genera in this large family, however, only Octopus commonly supports major fisheries.

Habitat and Biology: Most octopuses are benthic animals. Representatives of the family are usually encountered throughout the world from the coast down to at least 1 000 m depth. Many species have cryptic habits hiding in crevices, empty mollusc shells and seagrass beds during the day and hunting at night, others occur over open trawlable bottoms. Many species lay relatively large eggs which are brooded by the female during a prolonged incubation period. During this time females often almost cease feeding and hence in these species, female mortality after the hatching of the eggs is high. Most brooding species have a direct development and hatchlings almost immediately adopt the benthic life of the adults. In other species, the larvae pass through a pelagic stage prior to switching to benthic life. Particularly cryptic species have a well developed territorial behaviour and therefore rarely form aggregations.

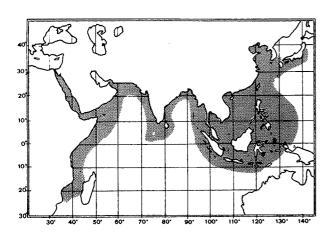
Interest to Fisheries : Octopuses are the most traditional of all cephalopod resources, and have been exploited for more than 2 000 years. Their catches during the last few decades have fluctuated between 150 000 and 230 000 metric tons annually (190 000 tons in 1981, representing 14.6% of world cephalopod fisheries in that year (FAO, 1983). The most important octopus fisheries and markets are located in Asia (particularly Japan) and in the Mediterranean countries. Fishing gears for these resources include pots, traps, spears and hooks for the cryptic species, and bottom trawls and seines for those living in open areas.

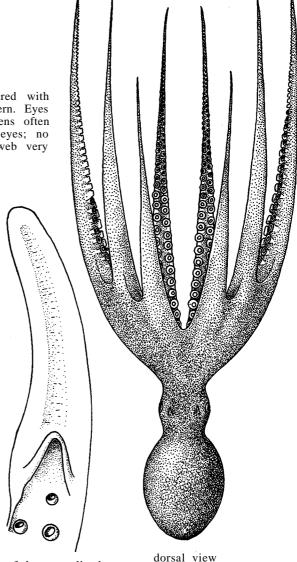
Octopus aegina Gray, 1849

OCT Oct 6

Octopus aegina Gray, 1849, Cat.Moll.Brit.Mus., 1:7.

Synonymy: Octopus kagoshimensis Ortmann, 1888.


FAO Names: En - Sandbird octopus


Fr - Poulpe des sables SP - Pulpo reticulado

Diagnostic Features: Mantle rounded to oval, covered with small tubercles or fine papillae arranged in a reticulate pattern. Eyes prominent, a single cirrus dorsal to each eye; fresh specimens often with a white band across basal surface of head between eyes; no ocellae. Arms long, robust, arms I strikingly the shortest; web very

shallow between arms I, moderate depth between other arms; a dark patch of chromatophores appears at the base of each sucker on the dorsal side of each arm; right arm III hectocotylized, ligula short, 5 to 8% of arm length; ligula with very shallow groove; calimus small, distinct; 7 to 10 lamellae on outer demibranch of gill; eggs very small - 2 mm long.

Geographical Distribution : Western Pacific, Indian Ocean, Red Sea, Japan to Mozambique.

tip of hectocotylized right arm III of male

Habitat and Biology : A benthic, not highly cryptic species, common on the continental shelf from 30 to 120 m depth.

Size: Maximum mantle length 10 cm (total length 30 cm), weight 0.4 kg.

Interest to Fisheries: Together with Cistopus indicusthis is the commonest species in Indo-Malayan markets. It is trawled on the continental shelf or caught with traps and on hook-and-line. It also supports subsistence fisheries in East Africa.

Local Names: CHINA: Saa liu (sand bird).

Literature: Voss & Williamson (1971, description, biology).

Remarks: Closely related to O. dollfusi, which might be a synonym.

Octopus briareus Robson, 1929

OCT Oct 3

Octopus briareus Robson, 1929, Ann.Mag.Nat.Hist., (10)3:612.

Synonymy: None.

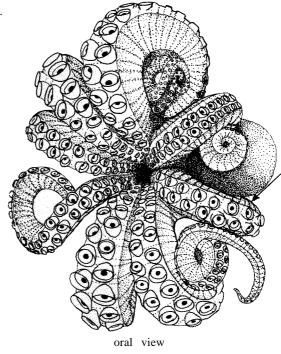
FAO Names: En - Caribbean reef octopus

Fr - Poulpe ris Sp - Pulpo de arrecife

Diagnostic Features: Body chuncky, with long arms of unequal length and thickness. Dorsal (I) pair of arms shortest, the least stout, arms II and III longest and very stout; right arm III of males hectocotylized by modification of arm tip into a large expanded, ridged and grooved ligula;

ligula index (length of ligula expressed as percentage of length of hectocotylized arm) 3 or 4; 6 to 8 gill lamellae on outer side of gill.

Geographical Distribution: Tropical Western Atlantic: warm waters of southeastern USA, southeastern Gulf of


Mexico, Bahamas, Caribbean islands chain and northern South America.

Habitat and Biology: A benthic, cryptic species inhabiting coral reefs in very shallow water, but also found on grass flats, and rocky and sandy bottoms. The spawning season extends from about December to March. Males die after mating. Females lay about 500 eggs in small clusters which they brood and which hatch after 65 days (at temperatures of 23°C). Females usually die after hatching. Recently hatched octopus are large and well advanced and settle immediately in the adult habitat. Longevity is about 1 year. This species feeds on crabs, shrimps, molluscs and sometimes on carrion. Cannibalism is common.

Size: Maximum total length 100 cm and 1.5 kg weight; 60 cm in the warmer parts of the distributional range; common to 40 cm.

tip of hectocotylized right arm III of male

20' 10' 100' 90' 80' 70' 60' 50' 40' 30' 20' 10'

Interest to Fisheries: It is believed that part of the Octopus vulgaris catch reported for the western central Atlantic, Fishing Area 31 (almost 7 000 metric tons in 1981) (FAO, 1983), is attributable to O. briareus. Although no large-scale fishing operations seem to be directed at O. vulgaris, it is fished locally throughout its distributional range. Fishing methods include spearing over open bottoms in very shallow water, extraction from caves and crevices with hooks mounted on poles, and trapping in the traditional clay pots. Octopuses are used fresh for food and as bait.

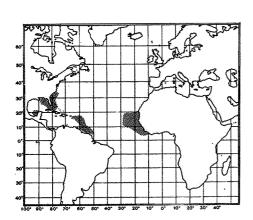
Local Names: CUBA: Fabiana; USA: Briar octopus, Caribbean reef octopus.

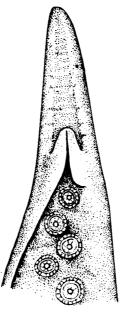
Literature : Voss (1971, resources); Hanlon (1977, laboratory rearing); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31).

Remarks: The species has been reared successfully under laboratory conditions and might have some larger-scale aquaculture potential because of its large egg size, direct development, high food conversion efficiency, fast growth, large adult size and its value as a nutritious,marketable food source (Hanlon, 1977).

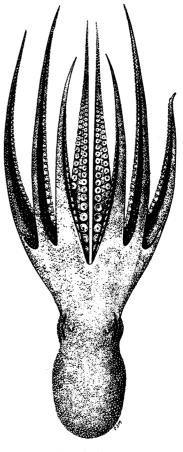
OCT Oct 7 Octopus burryi Voss, 1950

Octopus burryi Voss, 1950, Rev.Soc.Malac., 7(2):76.


Synonymy: Octopus vincenti Pickford, 1955.


FAO Names:

En - Brownstriped octopus Fr - Poulpe à rayures bleues Sp - Pulpo granuloso


Diagnostic Features : Mantle, head and arms covered with close-set round papillae; dark blue to purplish-brown band along dorso-lateral surface of each arm; one cirrus over each eye. Right arm III hectocotylized; ligula length 2 to 6% of hectocotylized arm length with weak laminae; calimus with deep groove; 9 to 11 filaments on outer demibranch of gill.

Geographical Distribution : Tropical western Atlantic: North Carolina to northern Brazil. Tropical eastern Atlantic: Africa.

tip of hectocotylized right arm III of male

dorsal view

Habitat and Biology: A benthic species, associated with bottoms composed of sand, broken coral and shells from 10 m to 200 m on the lower part of the continental shelf.

Size: Maximum mantle length 7 cm.

Interest to Fisheries: Currently taken only as bycatch in trawl fisheries.

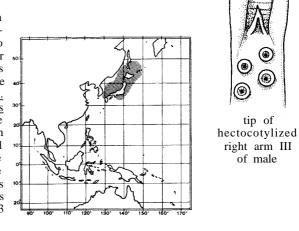
Local Names USA: Brownstriped octopus.

Octopus conispadiceus (Sasaki, 1917)

OCT Oct 8

Polypus conispadiceus Sasaki, 1917, Annot.Zool.Japan, 9(3):367.

Synonymy: None.


FAO Names: En - Chestnut octopus

Fr - Poulpe casse-noix SP - Pulpo espadaña

Diagnostic Features : Mantle globular, proportionally small compared with the large, robust arms; surface smooth; one distinct cirrus over each eye. Arms I to III coequal, about 3 times longer than mantle and head; arms IV shorter; right arm III hectocotylized; ligula very conspicuous, 16 to 20% as long as the arm, conical groove deep, narrow, finely striated; calimus acutely pointed, about 1/8 as long as ligula; 20 to 24 gill lamellae (total count).

 $\begin{tabular}{lll} \textbf{Geographical} & \textbf{Distribution} & \textbf{:} & \textbf{Western} & \textbf{Pacific:} & \textbf{Japan,} & \textbf{especially} & \textbf{around} \\ \textbf{Hokkaido.} & \end{tabular}$

Habitat and Biology: A benthic shelf species on sandy to. muddy bottoms. It carries out seasonal migrations in response to changes in temperature, tending to alternate between deeper waters in summer and shallower waters in the colder season, but it usually occurs in depths greater than 100 m, so that there is relatively little overlap between the depth ranges of this species, O. dofleini (primarily shallower), and O. araneoides (occurring mostly deeper than 200 m). Mating takes place during the inshore migration. Egg numbers increase with size of females and fluctuate between about 700 and 1 200 (egg diameter ranging between 1.7 and 2.2 mm). The eggs are deposited on the seafloor and brooded by the females throughout the incubation period. During this period females starve and usually die a few days afterwards. The lifespan of this species is assumed to be 3 or 4 years.

Size: Maximum total length 150 cm and weight 4 kg. Females grow larger than males.

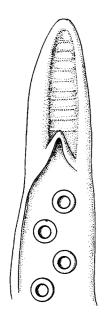
Interest to Fisheries: Abundantly caught by trawl, bottom longline and trap in northern Japan and as bycatch in the Soviet bottom trawl fishery in the Japan Sea and around the southern Kuril Islands. It is the second most abundant species in the market of Hokkaido, next to <u>O. dofleini</u>, but separate statistics are not reported.

Local Names: JAPAN: Yanagi dako.

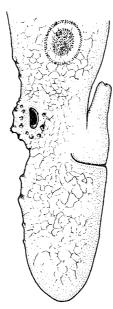
Literature: Osako & Murata (in press, resources).

Octopus cyaneus Gray, 1849

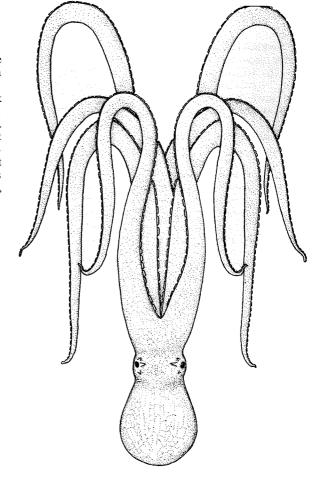
OCT Oct 9


Octopus cyanea Gray, 1849, Cat.Moll.Brit.Mus., 1:15.

Synonymy: Octopus marmoratus Hoyle, 1885; Joubin, 1894; Berry, 1909; Octopus horsti Joubin, 1898.

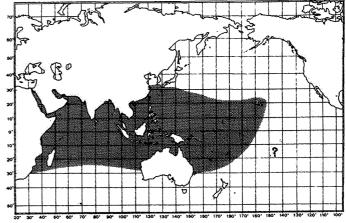

FAO Names: En - Big blue octopus

Fr - Gros poulpe bleu SP - Pulpo azulón


Diagnostic Features: A large octopus. Mantle round to oblong, smooth-skinned (non-papillose) with a few large tubercles; one large cirrus over each eye, usually with 2 secondary, smaller tubercles; a dark purplish, ringed ocellus or "eye spot" located on web on each side between the eye and the base of arms III and IV. Arms stout, robust, coequal, arms IV slightly longer; right arm III hectocotylized: calimus and ligula very small (0.4 to 1.4% of arm length); ligula groove shallow with about 10 often obscured transverse ridges; About 10 filaments on outer demibranch of gill. Colour: mantle mottled, reticulate, arms with purple-brown blotches.

tip of hectocotylized right arm III of male

lateral view of body and head



dorsal view

Geographical Distribution: Throughout the Indo-Pacific region: East Africa to Hawaiian Islands in tropical and warm waters including the Red Sea, India and Australia.

Habitat and Biology: A benthic species occurring in shallow waters on coral reefs. Unlike many other octopuses, it hunts during daylight hours.

Size: Maximum total length 120 cm and weight 4 kg.

Interest to Fisheries: It is taken throughout its range in local and subsistence fisheries, especially with traps; also speared at night, using light attraction devices. It is probably the most important of the reef-dwelling species. Used for human consumption.

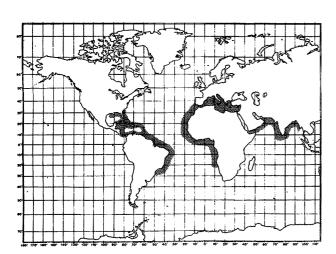
Local Names: USA: Hawaii: He'e.

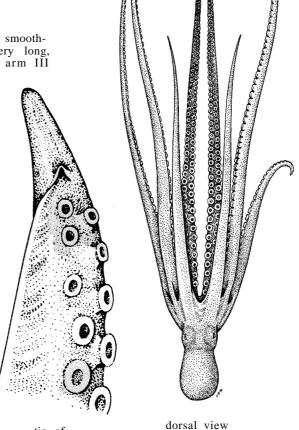
Octopus defilippi Verany, 1851

OCT Oct 10

Octopus defilippi Verany, 1851, Mollusques Méditerranéens, 1:30, pl. 11.

Synonymy: Macrotritopus species.


FAO Names: En - Lilliput longarm octopus Fr - Poulpe à longs bras


Sp - Pulpito patilargo

Diagnostic Features: Mantle relatively very small, smooth-skinned, no pigmented ocellus, spot, or ring. All arms very long, slender, asymmetrical; arms II and III longest; right arm III hectocotylized, very short, with ligula 1.8 to 2.5% of arm length, groove very shallow, calimus very

Geographical Distribution: Mediterranean Sea; eastern Atlantic from Morocco to Angola, Cape Verde Islands; western Atlantic: Bahamas, Gulf of Mexico, Caribbean Sea to Brazil; Indian Ocean: Arabian Peninsula to Burma.

small. Eleven gill lamellae on outer demibranch.

tip of hectocotylized right arm III of male

Habitat and Biology: A little known benthic species taken on sandy to muddy bottom from 6 to 60 m depth, but occasionally reported down to 200 m.Its larvae and juveniles are pelagic (called "Macrotritopus larva") and characterized by extremely long arms III. Females lay over 10 000 small eggs (2.1 mm long) that may be brooded in the arms.

Size: Maximum mantle length 9 cm.

Interest to Fisheries: Taken only as bycatch to demersal fisheries directed at other species.

Local Names: ITALY: Polpessa di rena; SPAIN: Pulpo judio; USA: Lilliput longarm octopus.

Octopus dofleini (Wulker, 1910)

OCT Oct 11

Polypus dofleini Wulker, 1910, Abh.Bayer.Akad.Wissen., 3(Suppl.l):7.

Synonymy: Polypus dofleini Wulker, 1910; Octopus dofleini apollyon (Berry, 1912); Octopus hongkongensis Hoyle, 1885; O. gilbertianus(Berry, 1912); O. punctatus Gabb, 1862.

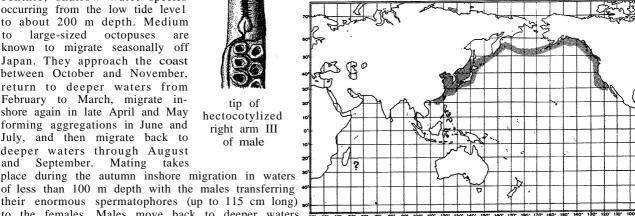
FAO Names: En - North Pacific giant octopus

Fr - Poulpe géant (du Pacifique nord)

Sp - Pulpo gigante

Diagnostic Features : Animal gigantic, the largest of all octopods. Mantle ovate, soft, skin loose, warty, warts often connected with ridges; warts coarser, stelliform in young; 3 or 4 cirri over each eye; web well developed, depth up to 1/4 the

way out the arms. Arms thick, long, arms I to III coequal, arms IV shortest; right arm III very prominently hectocotylized, with the ligula occupying 16 to 25% of total length of arm; ligula tapers to blunt terminus; groove depth with numerous fine striations (laminae); calimus small, acute 24 to 30 gill lamellae (total count).


Geographical Distribution: North Pacific: northern California northward through Alaska to Japan.

Habitat and Biology: A benthic, shallow water species occurring from the low tide level to about 200 m depth. Medium to large-sized octopuses are known to migrate seasonally off Japan. They approach the coast between October and November, return to deeper waters from February to March, migrate inshore again in late April and May forming aggregations in June and July, and then migrate back to deeper waters through August and September. Mating takes

tip of hectocotylized right arm III of male

dorsal view

of less than 100 m depth with the males transferring their enormous spermatophores (up to 115 cm long) to the females. Males move back to deeper waters and die several months later, while females continue migrating into shallower waters. Depending on their size, females may produce between 30 000 and 60 000 eggs which are deposited in May and June in nests on rocky or

sandy bottoms, less than about 50 m deep. The eggs are brooded by the females during the 6 or 7 months prior to hatching. During this period females almost cease feeding and die shortly afterwards. Hatchlings measure about 10 mm total length. They are planktonic until they reach about 20 to 50 mm total length, and thereafter become benthic (by about March of the following year). They reach adult size (minimum 10 kg weight) in about 3 years. Their lifespan varies between 3 and 4 years.

Size: Maximum total length 300 cm (500 cm?); maximum weight 50 kg; common-between 2 and 10 kg. Females mature at about 10 kg; they grow larger than males.

Interest to Fisheries: The most common species of octopuses in northern Japan. Since the beginning of the fisheries off Hokkaido, in 1955, about 20 000 metric tons are being caught per year (including minor quantities of O. conispadiceus and O. araneoides) (Osako & Murata, in press). It is fished from May to August in shallower waters; down to 60 m depth with wooden traps and from December to February; in depths between about 70 and 150 m with longlines from April to July and from November to February with modified trolls, trailed over the bottom. In the eastern Pacific, giant octopus is taken incidentally in trawl fisheries. The Californian catch is very low and scattered. Fishing depth in the Bering Sea used to be about 40 to 50 m in October but is gradually

becoming deeper in recent years (possibly in response to changing hydrographical conditions). The species is used locally for human consumption and as bait in longline fisheries.

Local Names: JAPAN: Mizo dako; USA: North Pacific giant octopus.

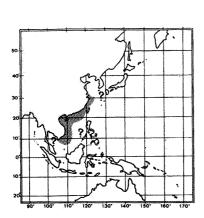
Literature : High (1977, distribution and notes on biology); Osako & Murata (in press, biology and fishery, Japan).

Octopus dollfusi Robson, 1928

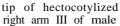
OCT Oct 12

Octopus dollfusi Robson, 1928, Serv.Oceano.Pêches Indo., 10:43.

Synonymy: None.


FAO Names: En - Marbled octopus

Fr - Poulpe nain SP - Pulpo marmóreo


Diagnostic Features : Mantle oblong to elongate oval. Head small with inconspicuous eyes; no eye cirrus. Arms moderately long and stout, dorsal arms much the shortest; mantle, head, and arms covered dorsally with numerous, large warts interspersed with smaller papillae, each unit bordered by a darkly pigmented line, giving a distinct reticulate pattern; right arm III hectocotylized: spermatophoric groove very strong, ligula 8 to 10% of arm length, elongate with a deep groove and well-developed calimus; a few enlarged suckers at bases of arms II and III in males; 8 or 9 lamellae per demibranch on the gills.

Geographical Distribution: Indo-China; Hong Kong; limits

unknown.

dorsal view

Habitat and Biology: A benthic species living in holes in the bottom or inside empty mollusc shells in extremely shallow waters close to the coast down to a few metres depth.

Size: Maximum mantle length 9 cm, weight 0.2 kg.

Interest to Fisheries : In Hong Kong currently no commercial fishery; taken only as bycatch in demersal trawl fishery.

Local Names:

Literature: Voss & Williamson (1971, description).

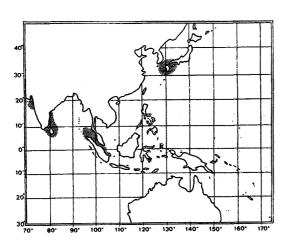
Remarks: Closely related to O. aegina.

Octopus globosus Appellöf, 1886

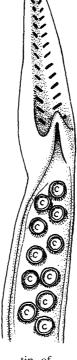
OCT Oct 13

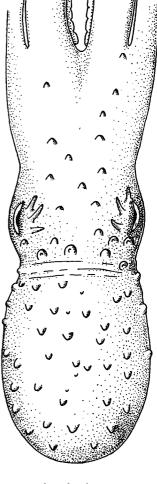
Octopus globosus Appellöf, 1886, Svenska Vet.Akad., 21(13):7.

Synonymy: None.


FAO Names: En - Globe octopus

Fr - Poulpe globe SP - Pulpo globoso


Diagnostic Features : Mantle globular to slightly elongate; dorsal and lateral surface of mantle, head, and bases of arms covered with widely spaced conical warts of various sizes, skin smooth in between warts; 5 to 7 warts above and posterior to each eye of


which 3 are elongated into cirri. Arms moderately long, arms I the longest, arms IV the shortest; right arm III hectocotylized, only 2/3 as long as left III; ligula about 15% of arm length, elongate-conical, with a broad, deep groove that has a median pinnate ridge with about 15 alternating side-arms and depressions on each side; calimus well-developed, relatively long; 17 to 19 lamellae (total count) in each gill.

Geographical Distribution : Scattered reports from Japan to India.

tip of hectocotylized right arm III of male

dorsal view of body and head

Habitat and Biology: A littoral species.

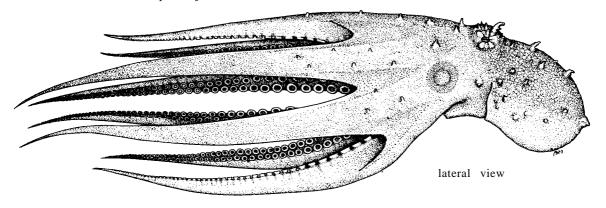
Size: Maximum total length 25 cm, sexually mature at about 19 cm.

Interest to Fisheries : Reported as one of the main commercial cephalopod species in India; along the southeastern coast longlines of hundreds of <u>Pterocera</u> shells are set out for <u>Octopus</u> species, which are used as bait for longline fishing for seerfish, carangids, sharks and rays.

Local Names:

Literature: Voss (1973, resources).

Octopus hummelincki Adam, 1936


OCT Oct 14

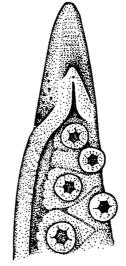
Octopus hummelincki Adam, 1936, Bull.Mus.R.Hist.Nat.Belg., 12:1.

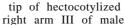
Synonymy: Octopus filosus Howell, 1868; Octopus rugosus Robson 1929 (in part).

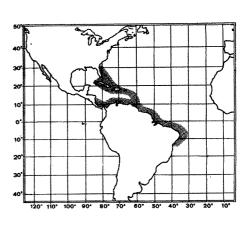
FAO Names: En - Bumblebee octopus

Fr - Poulpe bourdon SP - Pulpo abejorro

Diagnostic Features : A very small species. Mantle globular to oval, usually covered with conspicuous papillae; a vivid dark iridescent blue ocellus occurs on the web at the base of arms II and III anterior to the eyes; several papillae or cirri over each eye.Arms relatively long and robust; a few suckers on arms II and III enlarged in males; right arm III hectocotylized; ligula short, small, length 2 to 6% of arm length, with a very shallow spoon-like groove: calimus acute with a deep spermatophore groove; 5 to 9, mostly 6 to 7, filaments on outer demibranch-of gill.


Geographical Distribution: Tropical western Atlantic: Caribbean, Florida and Bahamas to Brazil.


Habitat and Biology: This small benthic species occurs from very shallow waters, where it is associated with coral reefs, down to 200 m depth on sand and gravel bottom, often associated with calcareous algae, and shell rubble.


Size: Maximum mantle length 7 cm, mostly 2 to 3 cm.

Interest to Fisheries : None at present.

 $\begin{array}{cccc} \textbf{Local} & \textbf{Names} & \textbf{:} & USA: & \underline{Bumblebee} \\ \underline{octopus}. & & \\ \end{array}$

Octopus joubini Robson, 1929, Mono.Rec.Ceph., 161.

Synonymy: None.

FAO Names: En - Pygmy octopus

Fr - Poulpe pygmé SP - Pulpo pigmeo

SP - Pulpo pigmeo Diagnostic Features : A very small species. Mantle glo-bular, smooth, no ocellae nor papillae. Arms very short, subequal, small; some suckers near base of arms II and III of males conspicuously enlarged; right arm III hectocotylized, shorter than left III; ligula 4 to 7% of arm lenght, groove shallow with a few transverse ridges; calimus small; 5 to 7 gill lamellae. dorsal view

Geographical Distribution : Tropical western Atlantic: Florida, Gulf of Mexico, Caribbean Sea to Guyanas.

Habitat and Biology: A benthic, shallow-water species occurring on sandy and hard coral and rubble bottoms down to about 80 m depth. It frequently hides in bivalve shells. Spawning takes place in 2 periods, the first between November and January, and the second between April and June. The females lay their about 10 mm long eggs in clam shells and brood them. The hatchlings settle immediately in the benthic adult habitat.

Size: Maximum total length 15 cm.

tip of hectocotylized right arm III of male

Interest to Fisheries : No commercial fishing exists due to the very small size of the species. It is, however, believed to have potential for mariculture.

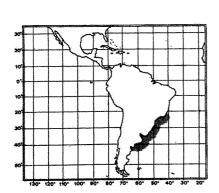
Local Names: USA: Pygmy octopus.

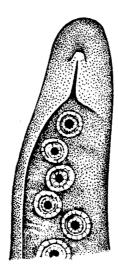
Remarks: It has been cultured through five generations. Excellent for behavioural and biomedical research.

Octopus lobensis Castellanos & Menni, 1969

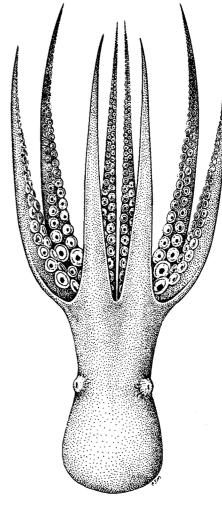
OCT Oct 16

Octopus lobensis Castellanos & Menni, 1969, Neotropica, 15(47):92.


Synonymy: None.


FAO Names: En - Lobed octopus

Fr - Poulpe séganliou SP - Pulpo lobero


Diagnostic Features: Mantle broad, short, globular, its width 71 to 110% of its length; head and arms broad; funnel organ distinctly VV-shaped. Arms moderately long, very robust at bases; one or two suckers on the 7th or 8th row out; arms II and III greatly enlarged in both males and females right arm III hectocotylized in males

only slightly shorter than Ieft III; ligula very small, indistinct (1.5% of arm length), bluntly rounded, with an indistinct, shallow groove; calimus small, rounded. Five to 11 gill filaments on outer demibranch.

tip of hectocotylized right arm III of male

dorsal view

Habitat and Biology: A benthic species occurring in shallow waters down to 60 to 80 m depth; the eggs are about 9 mm long.

Size: Maximum mantle length 10 cm.

Interest to Fisheries: Currently taken as bycatch in trawl fisheries.

Local Names:

Remarks: Sympatric with O. tehuelchus, with which it is probably often confused.

Octopus macropus Risso, 1826

OCT Oct 2

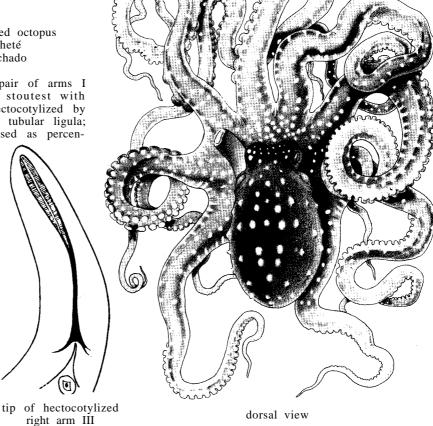
Octopus macropus Risso, 1826, Hist.nat.Europe Méridion., 4:3.

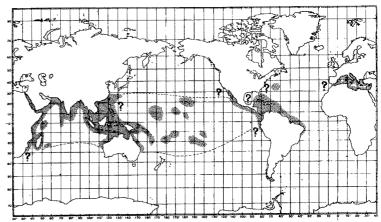
Synonymy: Octopus cuvieri - Orbigny, 1840;
Octopus longimanus - Orbigny, 1840; Octopus
bermudensis - Hoyle, 1885; Octopus chromatus
Heilprins, 1888

FAO Names: En - White-spotted octopus

Fr - Poulpe tacheté Sp - Pulpo manchado

Diagnostic Features : Dorsal pair of arms I longest and stoutest (or coequally stoutest with arms II; right arm III of males hectocotylized by modification of tip to a large stout, tubular ligula; ligula index (length of ligula expressed as percen-


tage of length of hectocotylized arm) up to 14; 9 to 13 gill lamellae on outer side of gill. Colour: conspicuous white spots on reddish background


Geographical Distribution: Worldwide in warm to warm-temperate waters.

Habitat and Biology: A benthic, shallow-water species occurring in coral reefs, reef flats and on open bottoms. In the western central Atlantic, the spawning season extends from winter into early spring. Hatchlings are first planktonic, settling to the bottom after a short time. The lifespan of this species probably does not exceed 1 year. It preys on crustaceans, molluscs and, occasionally, fishes.

Size: Maximum total length from 120 to 150 cm; common to 60 cm; maximum mantle length 14 cm, weight 2 kg.

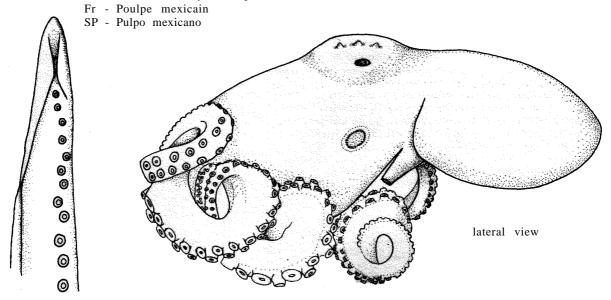
Interest to Fisheries: No large-scale fisheries are directed at this species, but it supports artisanal and subsistence fisheries in several regions, i.e. in the Philippines and the Mediterranean and Caribbean seas. Separate catch statistics are not available for this species, although it is suspected that it may be partially included in catch figures attributed to O. vulgaris. Fishing gears include spears, hook, and lures, trawls and traps. In the Caribbean and northern South America it is marketed fresh; in other areas it may also be marketed frozen and dried-salted as O. vulgaris.

Local Names : CHINA: Sui gwai (Water ghost); CYPRUS: Octapodi; FRANCE: Poulpe; GREECE: Khtapódi; ITALY: Polpessa; MALTA: Frajjel; MOROCCO: Poulpe; SPAIN: Pulpo patudo; TUNISIA: Qarnit kbir; TURKEY: Ahtapot; USA: White-spotted octopus; USSR: Osminog; YUGOSLAVIA: Tracan.

of male

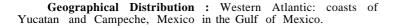
Literature: Voss & Williamson (1971, Hong Kong); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Chikuni (in press, resources).

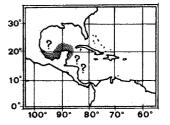
Remarks : Occasionally confused with <u>Cistopus</u> <u>indicus</u>, but can be distinguished by sculpture, lack of water pores, and the large ligula in the male.


Octopus maya Voss & Solis, 1966

OCT Oct 4

Octopus maya Voss & Solis, 1966, Bull.Mar.Sci., 16(3):617.


Synonymy: None.


FAO Names: En - Mexican four-eyed octopus

tip of hectocotylized right arm III of male)

Diagnostic Features: A large, round dark "eyespot" (ocellus) between eye and base of arms II and III on each side of head. Arms long with attenuate tips; right arm III in males shortened, hectocotylized by modification of tip into a small, smooth spoon-shaped ligula with inrolled edges; ligula index (length of ligula expressed as percentage of length of hectocotylized arm) 1.4 to 1.9. Nine or 10 gill lamellae on outer side of gill.

Habitat and Biology : A benthic, shallow-water species occurring in seagrass beds, empty shells and crevices down to 50 m depth. The spawning season extends from November to December; females deposit 1 500 to 2 000 large eggs (up to 17 mm long) in festoons in crevices or empty mollusc shell in September/October and brood them during the incubation period of 50 to 65 days. The large hatchlings settle immediately to benthic life. Longevity is about 1 to 2 years. The species feeds on crabs (such as the stone crab, Menippe mercenaria), gastropods (i.e. Nerita) and fishes. It is in turn preyed upon by groupers (Serranidae) and Spanish mackerels (Scombridae).

Size: Maximum total length 130 cm, weight 5 kg.

Interest to Fisheries: In the Bay of Campeche, this species is taken between June and December on crabbaited lines, in pots, with artificial lures and dipnets. In shallow waters, it is also hooked or speared. Separate statistics are not reported, but it may at least partially have been included in Mexico's catch figures for O. vulgaris reported as 6 877 metric tons in 1981 (FAO, 1983). The species is marketed fresh for human consumption and as bait.

Local Names :

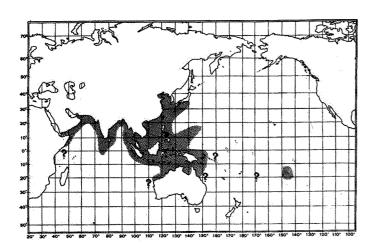
Literature: Solis (1967, biology); Voss (1971, resources); Van Heukelem (1977, breeding and rearing); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31).

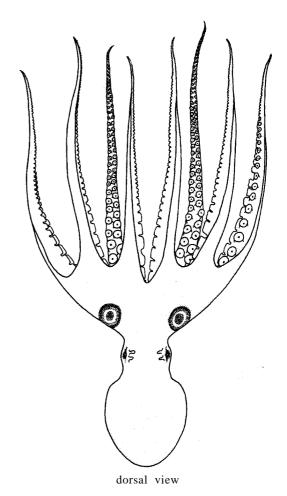
Remarks: This species has been reared through several generations is the laboratory and is an ideal experimental animal due to the large size of the eggs.

Octopus membranaceus Quoy & Gaimard, 1832

OCT Oct 17

Octopus membranaceus Quoy & Gaimard, 1832, Zool.Astrolabe, 2:89.


Synonymy: Octopus fang-siao Orbigny, 1840 (in 1834-1848); Octopus ocellatus Gray, 1849.


FAO Names: En - Webfoot octopus

Fr - Poulpe à quatre yeux SP - Pulpo membranoso

Diagnostic Features: Mantle saccular to elongate, sculptured with small, close-set tubercles over head, mantle, and arms; 2 cirri or warts over each eye. Arms moderately long, robust; web low; a conspicuous, dark, ringed ocellus on web at base of arms II, enteroventral to the eyes; right arm III hectocotylized; ligula slender, long, 4 to 6% of arm length, with a groove; 7 or 8 filaments in outer demibranch of gill.

Geographical Distribution : Indo-Pacific: Indian Ocean to Japan, China, Philippines and southward to Australia.

Habitat and Biology: A benthic shallow-water species occurring down to about 60 m depth. It shows a strong cryptic behaviour and usually hides in holes on flat bottoms. The spawning season extends from December to February.

Size: Maximum total length 30 cm; mantle length 8 cm; weight 0.5 kg.

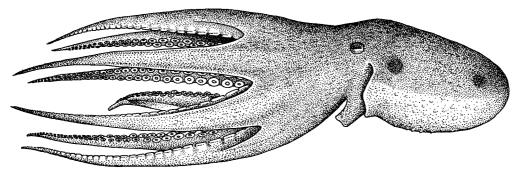
Interest to Fisheries: An important market species, supporting local fisheries throughout Japan (mostly in the Inland Sea) and in China. It is caught with small pots and as bycatch in shallow-water trawl fisheries throughout southeast Asian waters. Separate statistics are not reported.

Local Names: CHINA: Sei ngaan liu (Four-eyed bird); JAPAN: Ji dako.

Literature: Voss & Williamson (1971, Hong Kong); Chikuni (in press, resources, as O. ocellatus).

Remarks : The nomenclature is confused and unresolved; a species related to the $\underline{Octopus}$ $\underline{areolatus}$ $\underline{ocellatus}$ complex.

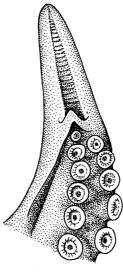
Octopus selene Voss, 1971

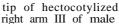

OCT Oct 18

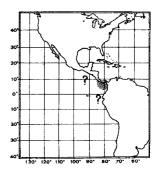
Octopus selene Voss, 1971, Bull.Mar.Sci., 21(1):11.

Synonymy: None.

FAO Names:


En - Moon octopus Fr - Poulpe lune SP - Pulpo lunero




lateral view

Diagnostic Features : A medium-sized octopus. Mantle stout, rounded, with weak rugosity; web moderately shallow, extending 2/3 of length out arms. Arms of medium length; right arm III hectocotylized in males, shorter (by 25%) than left III; ligula small, narrow, pointed, with a distinct groove with transverse rugae; ligula length about 7.5% (5 to 10%) of arm length; calimus short, triangular; 12 to 16, mostly 13 to 14 lamellae on outer demibranch of gill. Colour: 4 dark pigment spots on dorsolateral surface of mantle.

Geographical Distribution: Tropical eastern Pacific; Gulf of Panama.

Habitat and Biology: A benthic, shallow-water species occurring on sandy and rocky bottoms, in depths between 20 and 50 m.

Size: Maximum mantle length 6 cm, mostly 4 to 4.5 cm. Females attain larger sizes than males.

Interest to Fisheries: Some potential has been predicted for this species as it occurs on good trawlable bottom in the Gulf of Panama and appears to be very abundant in some areas (up to 1.5 specimens per square metre).

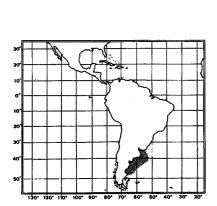
Local Names: PANAMA: Pulpo.

Literature: Voss (1967).

Octopus tehuelchus Orbigny, 1834

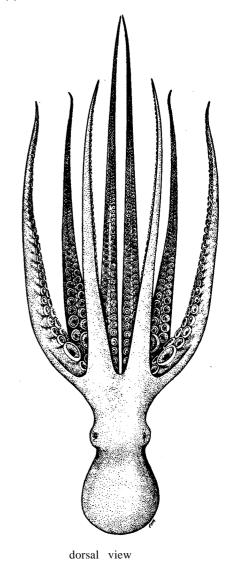
OCT Oct 19

Octopus tehuelchus Orbigny, 1834, in 1834-1846, Voy.Amér.Mérid., 5(3):27.


Synonymy: None.

FAO Names: En - Tehuelche octopus

Fr - Poulpe téhuelche SP - Pulpo tehuelche


Diagnostic Features: A medium-sized species. Mantle globular, narrow; surface smooth with minute granulations around the eyes. Head slightly narrower than mantle; eyes prominent; neck constricted; mantle opening wide; funnel long, extends anterior to level of eyes; funnel organ thick, W-shaped. Arms moderate in length (66 to 76% of total length) and thickness, attenuate, subequal, arms IV longest, arms II shortest; enlarged suckers present in males only; right arm III hectocotylized in males, short (80% of left III); ligula medium-sized (3 to 6% of arm length), groove shallow; calimus small, smooth; 6 gill filaments on outer demi-branch.

Geographical Distribution : Southern Brazil to Golfo San Jorge, Argentina (50°S). Unconfirmed to Patagonia and Falkland (Malvina) Islands.

tip of hectocotylized right arm III of male

Habitat and Biology: A benthic, shallow-water species occurring down to 90 m depth.

Size: Maximum total length 20 cm.

Interest to Fisheries: Bycatch to trawl fisheries and of local interest.

Local Names: BRAZIL: Pulpo.

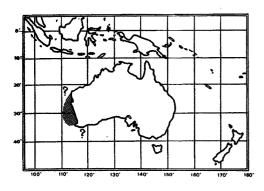
Literature: Palocio (1977, Brazil).

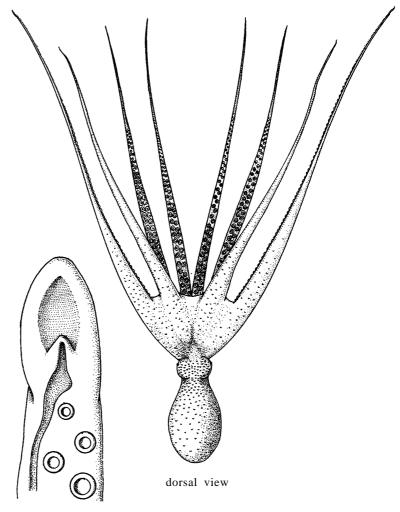
Remarks: Much information is needed for this species.

Octopus tetricus Gould, 1852 OCT Oct 20

Octopus tetricus Gould, 1852, U.S.Explor.Exped., 12:474.

Synonymy: Octopus boscii Gray, 1849.


FAO Names: En - Gloomy octopus


Fr - Poulpe sombre SP - Pulpo tétrico

SP - Pulpo tétrico

Diagnostic Features: A relatively large species. Mantle saccate; neck constricted. Arms very long and attenuate, comprising 80 to 90% of the total length of the animal; depth of web 1/5 to 1/4 of arm length; skin covered with conical rosette-shaped tubercles with erect central knobs; funnel organ W-shaped; right arm III hectocotylized, shorter than left III; ligula very small (1.5% of arm length), leaf-shaped, with a wide, shallow groove; 9 or 10 filaments in outer demibranch of gill.

Geographical Distribution: Eastern Indian Ocean: temperate coastal waters of southwestern Australia, exact range undetermined.

tip of hectocotylized right arm III of male

Habitat and Biology: A benthic, shallow-water species occurring from the intertidal zone down to about 60 m depth. There is at least one, rather prolonged, breeding season. The eggs are small and hatch into planktonic larvae. Females die after the hatching of the eggs. The species feeds on crabs and molluscs.

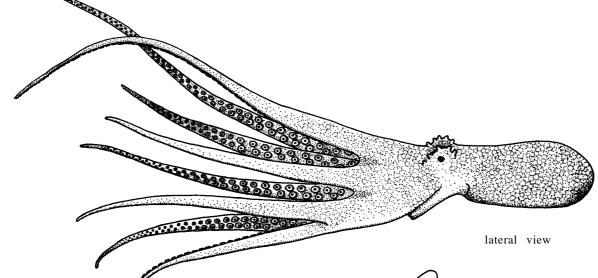
Size: Maximum total length 80 cm; females recorded to 3 kg.

Interest to Fisheries: Initially, this octopus was considered an unwellcome bycatch in the valuable western Australian rock lobster industry, since it would enter the pots and eat the rock lobsters (<u>Panulirus longipes</u>). In the 1975/76 season, the losses due to octopus were conservatively estimated at about \$400 000. While this bycatch was initially only used as bait, a directed octopus fishery has been developing recently, aimed in particular at the Japanese seafood market. Catches are best between January and June.

Local Names: AUSTRALIA: Octopus.

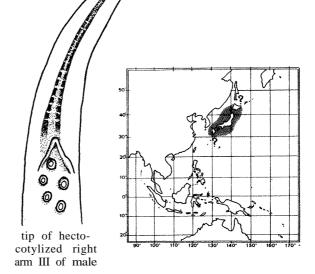
Literature: Joll (1977, octopus predation on rock lobster).

Octopus variabilis (Sasaki, 1929)


OCT Oct 21

Polypus variabilis var. typicus Sasaki, 1929, J.Coll.Agr.Hokkaido Imp.Univ., 20:90.

Synonymy: Polypus variabilis Sasaki, 1929.


FAO Names: En - Whiparm octopus

Fr - Poulpe fouet Sp - Pulpo antenado

Diagnostic Features: Mantle elongate, oval, up to twice as long as broad; skin covered with variable-sized warts and papillae; 5 to 8 cirri over each eye, one quite enlarged; neck strongly constricted; web very low. Arms very long, unequal, arms I longest, up to 2 times longer than arms III or IV; male with some considerably enlarged suckers; right arm III hectocotylized, at maturity only half as long as left III; ligula large, conspicuous (1/4 to 1/7 the length of the arm), terminally rounded; groove deep with 10 to 14 strong transverse ridges and grooves; calimus relatively large, bluntly pointed, conical; 20 to 24 lamellae (total count).

Geographical Distribution : Western Pacific Ocean: Japan; limits unknown.

Habitat and Biology: A benthic, littoral species occurring down to about 200 m depth around Japan.

Size: Maximum mantle length 10 cm total length 70 cm; sexually mature at about 50 cm total length.

Interest to Fisheries: The species is important in the Japanese fishery off Honshu. It is also one of the three species reported in the Chinese octopus catch. No separate statistics are available.

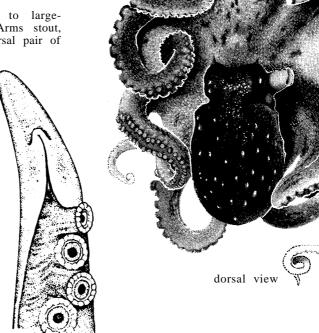
Local Names:

Octopus vulgaris Cuvier, 1797

Octopus vulgaris Cuvier, 1797, Tabl.élém.hist.nat., 380.

Synonymy: Octopus vulgaris Lamarck, 1798.

FAO Names: En - Common octopus


Fr - Pieuvre SP - Pulpo común

Diagnostic Features : Medium to largesized; animal chunky in appearance. Arms stout, of about equal length and thickness, dorsal pair of

arms slightly shorter; shortened right arm III of males hectocotylized by modification of tip into a very small, spoon-shaped ligula; ligula index (length of ligula expressed as percentage of length of hectocotylized arm) less than 2.5; 7 to 11 gill lamelae on outer side of gill, including terminal lamella.

Geographical Distribution: Worldwide in temperate and tropical waters; limits unknown.

Habitat and Biology: A benthic, neritic species occurring from the coastline to the outer edge of the continental shelf (in depths from 0 to 200 m), where it is found in a variety of habitats, such as rocks coral reefs, and grass beds. It is inactive in waters of 7°C and colder.

tip of hectocotylized right arm III of male

Throughout its distribution range, this species is known to undertake limited seasonal migrations, usually overwintering in deeper waters and occurring in shallower waters during summer. In the western Mediterranean, large mature or maturing individuals migrate inshore in early spring, followed lateron by smaller immature individuals. These two groups begin their retreat into deeper waters by August/September and November/December respectively. Similar migration patterns are found in other sea areas.

Two spawning peaks per year can be observed for this species throughout its distributional range: in the Mediterranean and the Inland Sea of Japan, the first occurs in April/May, corresponding to the group migrating in-

shore in spring (most important in the Mediterranean) and the second in October, corresponding to the group migrating in autumn (most important in Japan); off West Africa, around Cape Blanc, the first spawning peak occurs in May/June and the second (more important) in September.

Females may produce between 120 000 and 400 000 eggs little longer than 2 mm, which they deposit in strings in crevices or holes, usually in shallow waters. Spawning may extend up to 1 month. During the brooding period (25 to 65 days), females almost cease feeding and many die after the hatching of the larvae. The hatchlings are pelagic, but settle to benthic life after about 40 days at a minimum size of approximately 12 mm. In the Inland Sea of Japan, common octopus reaches about 1 kg weight in 4 months; in the western Mediterranean it grows from 3 to about 20 cm in 17 months. A von Bertalanffy growth expression is given for the Mediterranean and eastern Atlantic populations by Guerra (1979). Food consists of bivalves and crustaceans. Larvae and juveniles are preyed upon by albacore (Thunnus alalunga), etc., and adults by benthic finfishes.

OCT Oct 1

Size: Maximum total length 1.2 m in females and to 1.3 m in males; maximum weight 10 kg; common to 3 kg. In the western Mediterranean, mantle length at first maturity is about 9.5 cm in males, 13.5 cm in females.

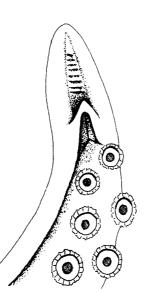
Interest to Fisheries: World catches attributed to <u>O. vulgaris</u> declined from peaks in the late sixties (more than 100 000 metric tons per year) to 20 000 to 30 000 tons in recent years (FAO, 1983). Part of the non-identified world catches of <u>Octopus</u> oscillating between 120 000 and 160 000 metric tons annually, also pertain to this species (including part of the nearly 45 000 metric tons caught by Japan in the Inland Sea, Fishing Area 61, and most of the catches (between 40 000 and 50 000 metric tons) taken by Spanish vessels on the Sahara Banks off West Africa, Fishing Area 34). The species is highly desirable and commands high prices throughout its distributional range and supports artisanal as well as industrial fisheries. It is taken mainly with lures, hook-and-lines, pots, spears and otter trawls. In the Inland Sea of Japan, some 12 000 to 17 000 pots are laid out annually to provide shelter and enhance egg conservation as a measure to safeguard recruitment of the fishable stock. This species is marketed fresh, frozen and dried salted, mostly for human consumption.

Local Names: BAHAMAS: Scuttle; BULGARIA: Octopod; CHILE: Pulpo; CYPRUS: Octopodi; EGYPT: Akhtaboot; FRANCE: Pieuvre, Poulpe de roche; GREECE: Khtapodi; ITALY: Polpo; JAPAN: Ma dako; LEBANON: Akhtaboot; LIBYA: Garnet; MALTA: Qarnita; MONACO: Purpu; MOROCCO: Pulpe; SPAIN: Pulpo; TUNISIA: Qarnit kbir; TURKEY: Ahtapot; USA: Common octopus; USSR: Osminog; YUGOSLAVIA: Hobotnika.

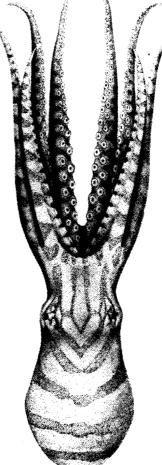
Literature: Mangold-Wirz (1963, biology, western Mediterranean); Basilio & Pérez-Gandaras Pedrosa (1973, fishery, West Africa); Fischer (ed., 1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37); Roper (1978, Species Identification Sheets, western central Atlantic, fishing area 31); Guerra (1979, growth); Hatanaka (1979b, spawning season; 1979c, fishery, biology, West Africa); FAO (1981, population dynamics, West Africa); Roper & Sweeney (1981, Species Identification Sheets, eastern central Atlantic, fishing areas 34/47 in part); Fisheries Committee for the Eastern Central Atlantic (1982, production model).

Remarks: While this species, or species-complex, is very widely distributed around the world, its taxonomic and geographic parameters still are not precisely defined.

Octopus zonatus Voss, 1968


Octopus zonatus Voss 1968, Bull.Mar.Sci., 18(3):647.

Synonymy: None.


FAO Names: En - Atlantic banded octopus

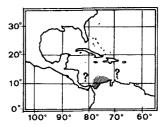
Fr - Poulpe zèbre SP - Pulpo acebrado

Diagnostic Features: Mantle small, oblong; mantle wall thick, muscular. Head narrow; web shallow. Arms of moderate length; right arm III hectocotylized in males, only slightly shorter than left III; ligula slender, pointed, medium-sized (6.3 to 8.5% of arm length), groove with raised, inrolled edges, a median ridge, and faint transverse rugae; calimus erect, conspicuous; 6 or 7 lamellae on outer demibranch of gill. Colour pattern distinct: yellowish to greyish white bands alternating with dark greyish or brownish bands transversely across the mantle, longitudinally on the head and transversely on the arms.

tip of hectocotylized right arm III of male

OCT Oct 22

dorsal view


Geographical Distribution: Western Atlantic Ocean: Colombia.

Habitat and Biology: A benthic species found in 30 to 75 m depth.

Size: Maximum mantle length 3 cm.

Interest to Fisheries: Small species of undetermined fishery potential.

Local Names:

Danoctopus schmidti Joubin, 1933

OCT Dan 1

<u>Danoctopus</u> <u>schmidti</u> Joubin, 1933, <u>Ann.Inst.Oceano</u>, 13(1):4.

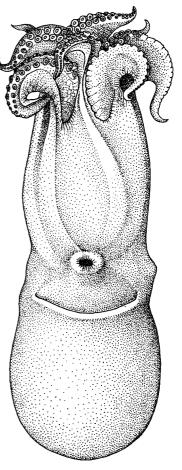
Synonymy: None.

FAO Names: En - Dana octopus

Fr - Poulpe dana Sp - Pulpito monedero

Diagnostic Features: Mantle compact, globular, nearly as wide as long; skin slightly papillose. Head broad, short; eyes small; no neck constriction; 2 widely spaced ocular cirri. Suckers in 2 rows, arms moderately long and stout; web deep -½ of arm length; right arm III hectocotylized in males, much shorter than left III, stouter, bordered with broad extension of web; ligula and calimus present (undescribed); 9 lamellae on demibranch of gill.

Geographical Distribution: Western north Atlantic: Dry Tortugas, Dominica, Bermuda, 38° N 70°W.


Habitat and Biology Immature forms are captured in midwater, adults are benthic in depths to 600 m on trawlable bottom.

Size: Maximum mantle length 4 cm.

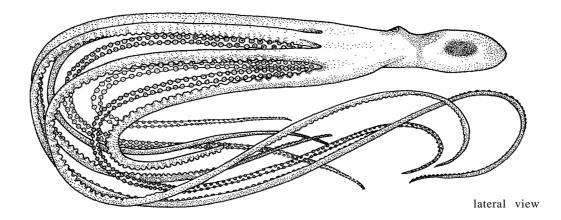
Interest to Fisheries : A small species of undetermined fishery potential.

Local Names:

Remarks: Possibly juvenile form of another taxon.

ventral view

Euaxoctopus pillsburyae Voss, 1975

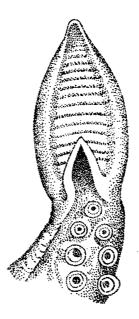

OCT Euax 1

Euaxoctopus pillsburyae Voss, 1975, Bull.Mar.Sci., 25(3):346.

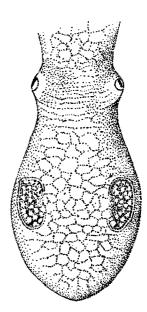
Synonymy: None.

FAO Names: En - Map octopus

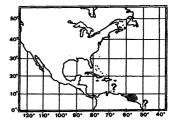
Fr - Poulpe lierre SP - Pulpo lampazo


Diagnostic Features: A small species. Mantle small, only 10% of total length, oblong; neck constricted; arms very long, slender, attenuate; suckers biserial, very small, none enlarged in males; web very low, less than 6% of arm length; right arm III hectocotylized in males, much shorter and stouter than others; ligula lanceolate with raised margins forming a broad groove with numerous (15 to 20) transverse ridges; calimus relatively large, well-developed, sharply pointed; 7 lamellae on outer demibranch of gill. Colour: a large, darkly pigmented patch, enclosed by a small ridge on each dorsolateral side of the mantle.

Geographical Distribution : Tropical western Atlantic: Surinam.


Habitat and Biology: A benthic species occurring in depths from 20 to 60 m on trawlable bottoms.

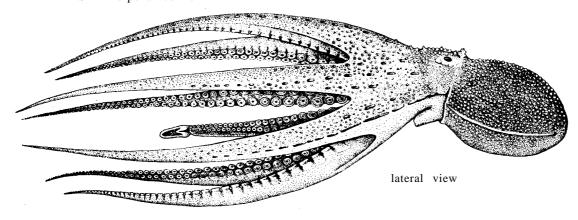
 $\mbox{\bf Size}:\mbox{\bf Maximum}$ mantle length 3 cm, total length to 20 cm.


Interest to Fisheries: Currently there is no fishery directed at this species, but it is taken as bycatch in trawls.

tip of hectocotylized right arm III of male

dorsal view of body and head.

Scaeurgus unicirrhus (Orbigny, 1840)


OCT Scae 1

Octopus unicirrhus Orbigny, 1840, in 1834-1848, Hist.Nat.Ceph.Acetab., 70.

Synonymy : Octopus unicirrhus Orbigny, 1840; Octopus cocco Verany, 1846; Scaeurgus patagiatus Berry, 1913.

FAO Names: En - Unihorn octopus

Fr - Poulpe licorne SP - Pulpo unicornio

Diagnostic Features: Mantle compact, oblong; body covered with round papillae or warts that may coalesce and form linear ridges; a peripheral ridge encircles the lateral surfaces of the mantle. A single, multified cirrus over each eye. Arms moderate; web deep; left arm III hectocotylized in males, markedly shorter

than right III; ligula long, blunt, spoon-shaped, (8 to 11% of arm length) with swollen, heavily infolded marains, deep groove and transverse striae; calimus long, acutely conical with a deep groove; mostly 12 or 13 lamellae on outer demibranch of gill, range 11 to 14.

tip of hectocotvlized right arm III of-male

Geographical Distribution: Worldwide, scattered in tropical and warm temperate waters.

Habitat and Biology: A benthic species occurring in the depth range between 100 and 400 m, but occasionally down to 800 m, associated with sandy and coralline bottoms. There seems to be migration to the spawning grounds; spawning takes place in summer (by August and September) in the western Mediterranean, but throughout the year in tropical seas. The species feeds on molluscs, crustaceans, and small fishes.

Size: Maximum mantle length 6 cm. Males are mature at 5 cm.

Interest to Fisheries: Unassessed, but a regional potential is believed to exist, in some regions.

Local Names: USA: Unihorn octopus.

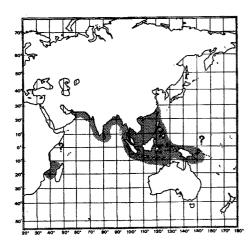
Literature: Mangold-Wirz (1963, biology, western Mediterranean).

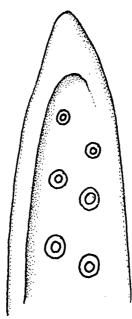
Cistopus indicus (Orbigny, 1840)

OCT Cist

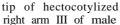
Octopus indicus Orbigny, 1840, in 1834-1848, Hist.Nat.Ceph.Acetab., 24.

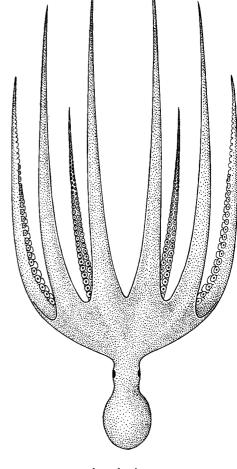
Synonymy: Octopus indicus Orbigny, 1840; Cistopus bursarius (Steenstrup MS) Hoyle, 1886.


FAO Names:


En - Old woman octopus Fr - Poulpe vieille femme Sp - Pulpo perforado

Diagnostic Features : Mantle elongate; neck constricted; head narrow. Arms long, slender, attenuate tips; dorsal arms (I) always longest and stoutest, IV shortest; dorsum covered with fine, low, widely-spaced warts; a small pouch occurs on each segment of the web between the bases of the arms; these 8 water pouches communicate with the sea water


through small pores that open on the oral surface of the web; right arm III hectocotylized with a very small ligula (3% of arm length) that appears smooth and poorly developed; 10 or 11 lamellae on demibranch of gill.


Geographical Distribution: Indo-Pacific: mostly Indo-Malayan region, the Philippines, China, Bangladesh, India and Pakistan, and recorded off Mozambique

dorsal view

Habitat and Biology: A benthic species, occurring from 0 to 50 m depth on mud bottom in Hong Kong.

Size: Maximum total length 60 cm; maximum mantle length 18 cm, weight 2 kg.

Interest to Fisheries: The species is a primary commercial octopod in most Asian markets. It also supports localized and subsistence fisheries in the Philippines. About 50 metric tons landed in Hong Kong per year.

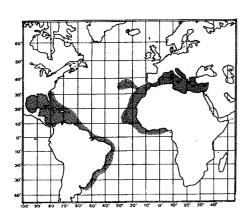
Local Names: CHINA: Laai por (Muddy old woman).

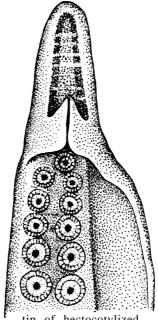
Literature: Voss & Williamson (1971, Hong Kong); Pickford (1974).

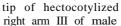
Pteroctopus tetracirrhus (Delle Chiaje, 1830)

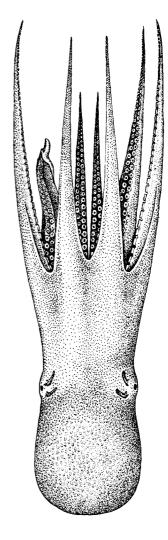
OCT Pter 1

Octopus tetracirrhus Delle Chiaje, 1830, Mem.Anim.Napoli, 4, pl. 72.


Synonymy: Octopus tetracirrhus Delle Chiaje, 1830; ? Scaeurgus titanotus Troschel, 1857.


FAO Names: En - Fourhorn octopus


Fr - Poulpe à quatre cornes SP - Pulpo cuatro cuernos


Diagnostic Features: A median-sized, deepwater octopus. Mantle very broadly oval, usually as broad as long; neck not constricted; the skin and subcutaneous tissue are very soft and gelatinous. Head nearly as wide as mantle; two long, slender cirri occur over each eye (may measure up to 50% as long as mantle). Arms of moderate length; suckers biserial proportianally very small and imbedded; web deep-up to 40% of arm length; the surface of the skin is covered with low, closely-set tubercles; left arm III hectocotylized, stouter and shorter (60 to 80%) than right III; ligula broadly conical (blunt tip); large (5 to 11% of arm length), with shallow groove and faint transverse ridges; calimus medium-sized, conical, deeply grooved; 9 or 10 filaments on outer demibranch of gill.

Geographical Distribution: Mediterranean and Atlantic Ocean: east coast of Africa (Azores, Cape Verde Islands); Cuba; Gulf of Mexico, east coast of US from North Carolina, Caribbean Sea to Uruguay.

dorsal view

Habitat and Biology: A benthic species occurring from 25 to about 720 m depth on muddy bottoms. Medium-sized individuals are taken in April in demersal catches. Males and females mature consecutively by May/June and June/July respectively. Young, immature individuals appear in the catches by November and December. Longevity is probably about 2 or 3 years.

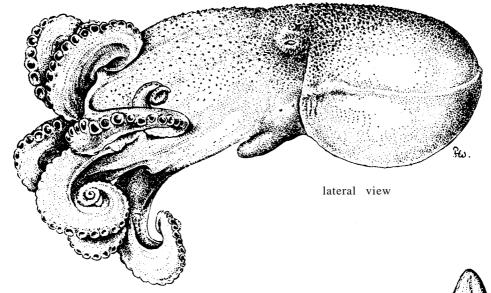
Size: Maximum mantle length 13 cm in females, 11 cm in males; maximum total length 28 cm. Mantle Iength at first maturity about 11 cm in females, 8.5 cm in males.

Interest to Fisheries: Currently minor; taken as bycatch in shrimp or finfish trawling operations in western Mediterranean and western Atlantic. Separate statistics are not reported for this species.

Local Names:

Literature: Mangold-Wirz (1963, biology, western Mediterranean).

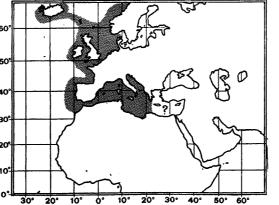
Eledone cirrosa (Lamarck, 1798)

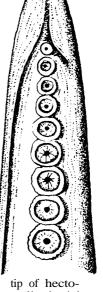

OCT Eled 1

Octopus cirrhosus Lamarck, 1798, Bull.Soc.Philom.Paris, 2:130.

Synonymy: Octopus cirrhosus Lamarck, 1798; Octopus aldrovandi Montfort, 1802 (see Robson, 1932, p. 264).

FAO Names: En - Horned octopus


Fr - Elédone commune Sp - Pulpo blanco



Diagnostic Features: Mantle ovoid, broad; skin covered with very fine, closely-set granulations or warts, interspersed with larger warts; a low, pale-coloured ridge encircles the lateral periphery of the mantle. Head narrower than body; one cirrus over each eye. Arms moderately short; suckers uniserial (one row only); web about 30% (21 to 41%) of arm length; right arm III hectocotylized, about 69 to 76% as long as left III; ligula very short (3 or 4% of arm length), indistinct; calimus lacking; suckers near tips of remaining arms of males modified by being compressed and drawn out into cirrus-like prolongations with much reduced sucker size; 11 filaments on outer demibranch of gill. Colour: living animal yellowish or reddish orange to reddish brown dorsally with diffuse rust-brown patches.

Geographical Distribution: 60
Eastern Atlantic: northeast
Atlantic, Iceland (to 67°N) and
Mediterranean Sea.

Habitat and Biology: A 40° benthic species occurring on trawlable grounds from the coastline down to about 500 m depth, mostly between 60 and 150 m. Females predominate from 30 to 80 m, males below 100 m depth. This species seems to be rather stationary.

tip of normal

cotylized right arm III of male

In the western Mediterranean, spawning occurs between May and September with a peak in July. Females deposit from 800 to 1 500 large eggs (up to about 7.5 mm long) whichtake about 100 days to hatch (at temperatures of 16°C). The juveniles appear in demersal catches by about March measuring between 2 and 2.5 cm (mantle length). In spring of the following year females have attained about 9 to 9.5 cm mantle length, males about 7 cm. Growth retes vary inversely with size and seasonally, directly with temperature (Mangold-Wirz, 1963). A similar growth pattern was found in the North Sea, off Scotland, but due to overall lower temperatures growth is slower (Boyle & Knobloch, 1982) and apparently larger maximum sizes are reached. In the western Mediterranean, the lifespan appears to be 2 or 3 years, in the North Sea probably longer. Food consists primarily of crustaceans such as shrimps (Crangon), crabs (Carcinus, Macropipus), and lobsters (Nephrops).

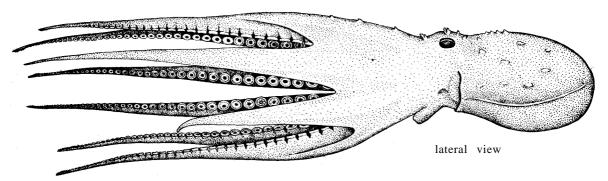
Size: Maximum total length 40 cm; maximum weight about 1.2 kg (females grow larger than males). In the western Mediterranean, mantle length at first maturity is about 12.5 cm in females; males start maturing at about 5 cm mantle length.

Interest to Fisheries: The Mediterranean catch for all <u>Eledone</u> species was reported as about 2 300 metric tons in 1981 (FAO, 1983). Most of this corresponds to <u>E. cirrosa</u>, which is the most abundant species of the genus. it is taken throughout the year, with best catches usually in July to December. In the western Mediterranean, extensive fisheries exist for this and other octopus species, which are important for the local economy. The species is primarily caught with bottom trawls, and to a lesser extent with seines.

Local Names: FRANCE: Elédone; GREECE: Moscoctapoda; ITALY: Moscardino bianco; MONACO: Purpissa; SPAIN: Pulpo blanco; TUNISIA: Qarnit; TURKEY: Ahtopot; UK: Curled octopus.

Literature : Mangold-Wirz (1963, biology, western Mediterranean); Fischer (ed., 1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37); Moriyasu (1981, biology, population dynamics and fishery, western Mediterranean); Boyle & Knobloch (1982, growth, Scotland).

Eledone massyae Voss, 1964

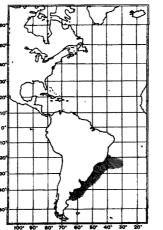

OCT Eled 3

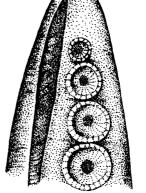
Eledone massyae Voss, 1964, Bull.Mar.Sci.Gulf and Carib., 14(3):511.

Synonymy: Moschites brevis Massy, 1916.

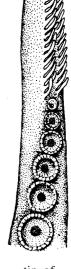
FAO Names: En - Combed octopus

Fr - Elédone peigne SP - Pulpo desflecado


Diagnostic Features: Animal covered with fine, round papillae interspersed with a few larger, simple papillae or warts. Mantle oval, broad (the width 60 to 100% of mantle length), somewhat dorso-ventrally flattened; lateral periphery surrounded by a low cutaneous fold or ridge; mantle aperture wide. Head broad; no neck constriction; 2 to 4 bifid or multifid cirri occur over each eye; Arms moderately long, slender, tapering; suckers uniserial (in one row), small, well-spaced proximally, crowded and minute distally; in males the 7 non-hectocotylized arms have suckers modified into a double row of minute, fleshy papillae; right arm III hectocotylized, only 65% as long as left III; ligula 4 to 15% of arm length, conical, undifferentiated, calimus absent; 8 to 10 filaments on outer demibranch of gill:


Geographical Distribution : Southwestern South Atlantic Ocean; Brazil and Argentina (20°S to 43°S); Trinidade Island (20°30'S, 29°20'W).

Habitat and Biology: A very little known, benthic species; caught on trawlable bottoms at 30 to 160 m depth.

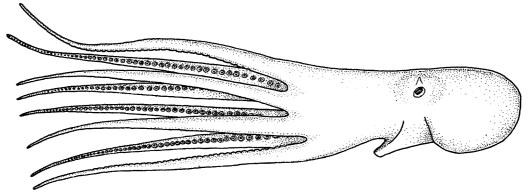

Size: Maximum mantle length 7.5 cm.

Interest to Fisheries: Possibly as bycatch to other demersal fisheries.

tip of hectocotylized right arm III of male

tip of normal arm

Eledone moschata (Lamarck, 1798)

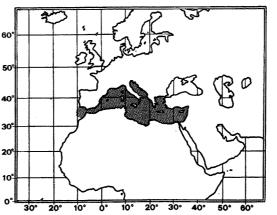

OCT Eled 2

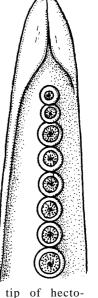
Octopus moschatus Lamarck, 1798, Bull.Soc.Philom.Paris, 2:130.

Synonymy: Octopus moschatus Lamarck, 1798.

FAO Names: En - Musky octopus

Fr - Elédone musquée Sp - Pulpo almizclado




lateral view

Diagnostic Features: Mantle ovoid, moderately broad; skin smooth to very finely granulose; no ridge occurs around the lateral periphery of the mantle. Head narrower than mantle. Arms subequal, moderately long - up to 22% of mantle length; suckers uniserial, enlarged in males; web moderately deep - 30% of arm length; right arm III hectocotylized, length only 60 to 70% of left III; ligula very short - 3% of arm length; undifferentiated; calimus absent; distal tips of all other arms of males modified by subdivision of uniserial suckers into 2 parallel rows of flattened laminae or platelets; 11 or 12 filaments on outer demibranch of gill. Living animal exudes a very prominent, musk-like odour, reportedly from glands in the skin. Live colour greyish-brown with blackish-brown blotches on dorsum.

Geographical Distribution:
Mediterranean sea including 60
Adriatic Sea; Gulf of Cadiz
(Atlantic).

Habitat and Biology: A coastal benthic species occurring from 10 to 200 and 300 m depth on muddy bottoms; in the western Mediterranean, mating concentrations occur in February from 60 to 90 m depth, with most males mature and females nearly so; spawning occurs between March and July.

cotylized right

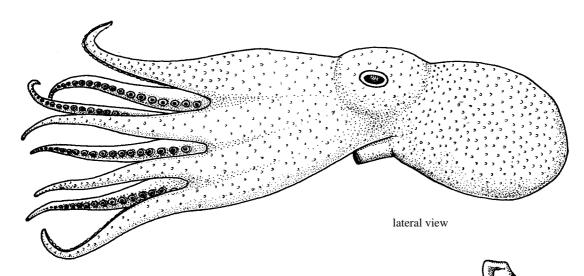
arm III of male

arm

Size: Maximum total length 35 cm; mantle length 14 cm.

Interest to Fisheries: The 1981 catch for all <u>Eledone</u> species was about 2 300 metric tons (FAO, 1983), part of which was <u>E. moschata</u>. This species is taken as bycatch in local trawl fisheries. In the western Mediterranean, it is captured year-round, with a maximum from April to July.

Local Names : FRANCE: Elédone musquée; GREECE: Moscoctapoda; ITALY: Moscardino rosso; MALTA: Karnita tal misk; MONACO: Muscardin; SPAIN: Pulpo almizclado; TUNISIA: Bou msik; TURKEY: Ahtopot; YUGOSLAVIA: Muzgavac.

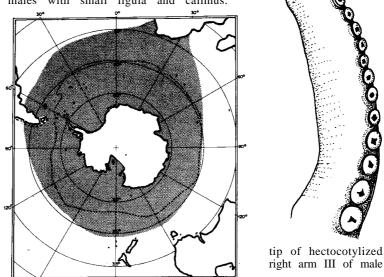

Literature: Fischer (ed., 1973, Species Identification Sheets, Mediterranean and Black Sea, fishing area 37).

Pareledone species OCT Parel

Synonymy: None.

FAO Names: En - Antarctic octopuses

Fr - Elédones antarctiques SP - Pulpos antárticos



Diagnostic Features: Mantle broad, saccular, granulose. Arm suckers uniserial; right arm III hectocotylized in males with small ligula and calimus.

Geographical Distribution: Southern Ocean: southern South America, South Africa to Antarctica.

Habitat and Biology: A benthic species with a total depth range from 10 to 750 m, but occurring primarily on the Antarctic shelf, usually onrough grounds.

Interest to Fisheries: These small to large octopuses with potential value to fisheries occur in sizeable quantities on the Antarctic shelf and northward to the Falkland/Malvina Islands and the Burwood Bank off southern Patagonia. So far, they are only taken as bycatch in bottom trawls and their annual catch probably does not exceed a few hundred tons. The consistency of the flesh is firm, similar to octopuses that are regularly utilized. Their often eating qualities.

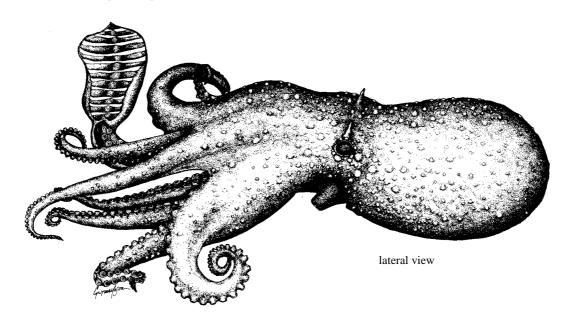
that are regularly utilized. Their often "loose" and semigelatinous skin, however, may detract from their good

Local Names:

Literature: Everson (1977, resources, Southern Ocean).

Remarks : This group includes several proorly described species in need of revision, being undertaken by G.L. Voss. Southern substitute of <u>Octopus</u> species.

Bathypolypus arcticus (Prosch, 1849)

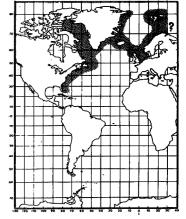

OCT Bath 1

Octopus arcticus Prosch, 1849, Kong.Dan.Viden.Sels., 1:59.

Synonymy: Octopus arcticus Prosch, 1849; Octopus groenlandicus Steenstrup, 1856; Octopus bairdi Verrill, 1873; Octopus lentus Verrill, 1880; Octopus obesus Verrill, 1880; Octopus faeroensis Russell, 1922.

FAO Names: En - North Atlantic octopus

Fr - Poulpe boreal Sp - Pulpito violáceo


Diagnostic Features : Mantle globular, nearly as wide as long; mantle opening very narrow, restricted; surface of mantle, head, arms and web covered with simple or multifid warts, especially around the eyes. Head narrower than mantle; a large, prominent multifid, cirrus occurs above each eye; some specimens grade to smooth skinned. Arms short, irregular order; suckers small, biserial; web varies between 1/4 to 1/2 as deep as the longest arm; right arm III hectocotylized, about 75% as long as arm I; ligula huge, broad, spade-shaped, usually with a distal sharp-pointed tip; sides inrolled, forming a deep trough (groove) in which lie 9 to 13 strong, transverse laminae; calimus very small, conical. Ink sac absent; 7 or 8 filaments on demibranch of gill.

Geographical Distribution : North Atlantic Ocean: Straits of Florida northward to Greenland, Iceland, Spitzbergen and southward to northern Great Britain and North Sea.

Habitat and Biology: A benthic species with a broad depth distribution ranging from a few meters (14 m) to about 1 000 m depth on mud bottom mostly of the continental shelf and upper slope.

Breeding of the 13 mm long and about 6 mm wide eggs takes place throughout the year. The lifespan is 18 months. Its feeding pattern is opportunistic, including ophiuroids (brittle stars), crustaceans (isopods, amphipods, copepods, ostracods, barnacles), polychaete worms, bivalve and gastropod molluscs. It is in turn preyed upon by bottom fishes.

Size: Maximum mantle length 10 cm, mostly to 6 cm; weight from 300 to 400 g.

Interest to Fisheries : This species is frequently taken as bycatch in otter trawls; its potential for a directed fishery has not been assessed, but is believed to be significant if the animal proves of commercial interest

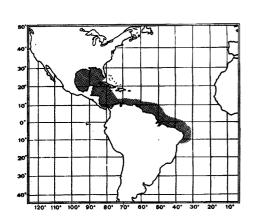
Local Names: USA: North Atlantic octopus.

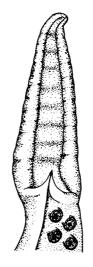
Remarks: The species is very variable in appearance; other species of this genus occur in the eastern Atlantic (B. proschi) and Mediterranean (B. sponsalis).

Bethoctopus januari (Hoyle, 1885)

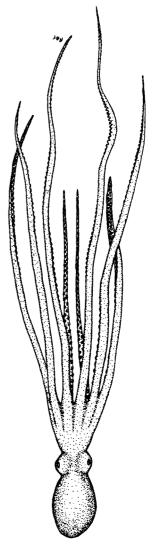
OCT Benth 1

Octopus januari Hoyle, 1885, Ann.Mag.Nat.Hist., (5)15:229.


Synonymy: Octopus januari Hoyle, 1885.


FAO Names:

En - January octopus Fr - Poulpe filamenteux Sp - Pulpo filamentoso


Díagnostic Features : Mantle saccular, elongate, smooth, devoid of sculpture. Head narrow; neck constriction deep. Arms long, narrow, very attenuate; suckers biserial; web very shallow, a maximum of 15% of longest arm length; right arm III hectocotylized, only about half as long as left III; ligula medium-sized (6 to 9% of arm length) with a deep groove and weak transverse laminae; calimus small, acute. Ink sac absent; 7 or 8 lamellae on outer demibranch of gill.

Geographical Distribution: Gulf of Mexico, Caribbean Sea, Tropical Atlantic to 10°S.

tip of hectocotylized right arm III of male

dorsal view

Habitat and Biology: A deep-living, benthic species occurring between 400 and 750 m depth on mud bottom.

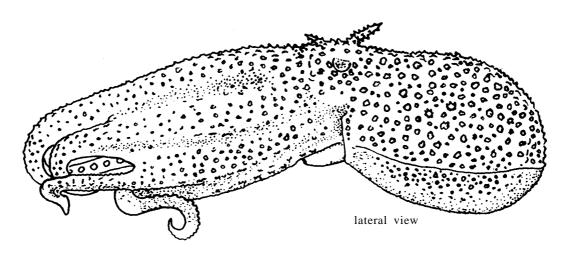
Size: Maximum mantle length 7 cm.

Interest to Fisheries: None currently; its firm consistency makes it a good candidate for the development of a fishery.

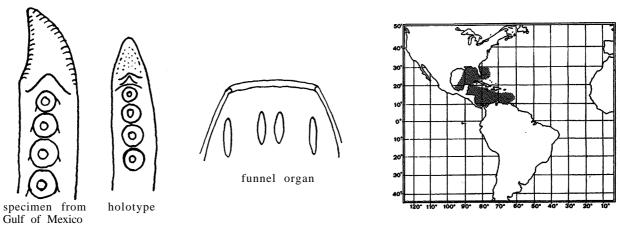
Local Names:

Remarks: A second species, B. oregonae Toll, 1981, also occurs in the Caribbean; it is a more gelatinous, stouter, shorter-armed species than B. januari.

Tetracheledone spinicirrhus Voss, 1955


OCT Tetra 1

Tracheledone spinicirrhus Voss, 1955, Bull.Mar.Sci.Gulf and Carib., 5(2) p. 107.


Synonymy: None.

FAO Names: En - Spiney-horn octopus

Fr - Poulpe cornu SP - Pulpo cornudo

Diagnostic Features: Mantle globular, as wide as long; surface of mantle, head, arms, and web covered with conspicuous, closely-set, large, stellate tubercles; a narrow, tuberculate, fold of skin encircles the lateral surface of the mantle; funnel organ, 4 separate longitudinal pads. Head narrower than mantle; two large, papillose cirri above each eye Arms relatively long with a deep web and uniserial, small, deep-set suckers; right arm III hectocotylized, ligula up to 10% of hectocotylized arm length; calimus short, broad, conical; 6 to 9 lamellae on demibranch of gill.

tip of hectocotylized right arm III of male

Geographical Distribution: Gulf of Mexico, Straits of Florida, Caribbean Sea, limits unknown.

Habitat and Biology : A benthic species occurring from about 200 to 400 m depth on trawlable bottom (mud).

Size: Maximum mantle length 10 cm.

Interest to Fisheries: None presently.

5.2 FAMILY ARGONAUTIDAE Tryon, 1879

ARGO

Argonautidae Tryon, 1879, Man.Conch., 1:138.

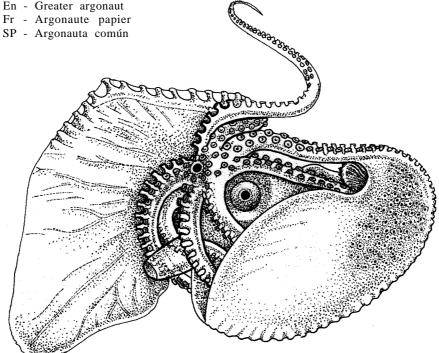
FAO Names: En - Argonauts; Paper nautiluses

Fr - Argonautes papier

SP - Argonautas

General Remarks on the Family: The argonauts or paper nautiluses (a misnamer, use of which must be discouraged) are very abundant in tropical to warm-temeprate waters of the world. A large number of nominal species exists, but the group needs revision to verify the species, perhaps 6 to 8 in all. The family is monotypic. The "shell", actually in incubation chamber for the eggs, is popular among collectors because of its beauty, coloration, sculpture and fragility. The largest species, <u>Argonauta argo</u>, attains a maximum size of nearly 30 cm shell diameter; it enters fish markets in India and Japan when fortuitous oceanographic conditions cause mass aggregations so that large numbers can be captured. Normally it is a non-schooling, solitary group.

Diagnostic Features : Sexual dimorphism very marked, with adult females relatively large, up to 10 to 15 times larger than adult males; hectocotylus of males autotomous (self-amputating) into the egg mass that is attached inside a large, external, calcium carbonate egg case ("paper nautilus shell") in which the female also resides, holding on to the case with extremely broad webs on the dorsal arms (1); suckers biserial; web weakly developed; no water pores; no shell vestige.

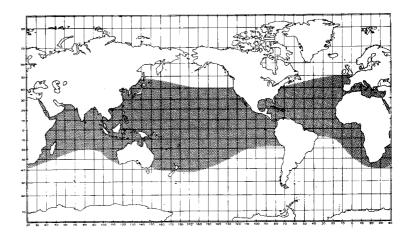

Argonauta argo Linnaeus, 1758

ARGO Argo 1

Argonauta argo Linnaeus, 1758, Systema naturae (ed. 10, 1894):708 (part).

Synonymy: None.

FAO Names: En - Greater argonaut



Diagnostic Features: Sexes grossly dimorphic (males minute). Description for females: Mantle narrowly to broadly oval, bluntly pointed posteriorly; mantle opening very broad. Head small, short; eyes prominent. Arms long, subequal; arms I thick at base with a very large membraneous flap that extends nearly their entire length; the web secretes, envelops, and holds the thin white calcareous "shell" in which the female resides, lays eggs, and incubates them.

Geographical Distribution : Worldwide in tropical and warm temperate seas.

Habitat and Biology: An epipelagic, oceanic species, occurring in near-surface waters; males possess a large, conspicuous hectocotylus that autotomes and remains in the shell (egg case) of the female to fertilize the eggs; no spermatophores. Occasional mass occurrences are reported near-shore as a result of changed currents. The species is heavily preyed upon by epipelagic predators such as tunas, dolphinfishes, bill-fishes, etc.

Size: Maximum length of shell to 30 cm in females; mantle to 12 cm; males are of dwarf size, only 1.5 to 2 cm in total length.

Interest to Fisheries: Occasionally found in markets in India and Japan; probably there are no directed fisheries, but fortuitous catches up to several hundred kilograms are landed.

6. CLASSIFICATION OF THE GENERA OF RECENT CEPHALOPODS

(Adapted from Voss, 1977)

Subfamily Pyroteuthinae Pfeffer, 1912 CLASS CEPHALOPODA Cuvier, 1798 Subclass NAUTILOIDEA Agassiz, 1847 Pyroteuthis Hoyle, 1904 Pterygioteuthis Fischer, 1896 Family Nautilidae Blainville, 1825 <u>Nautilus</u> Linnaeus, 1758 Family Octopoteuthidae Berry, 1912 Subclass COLEOIDEA Bather, 1888 Óctopoteuthis Rüppell, 1844 Order SEPIOIDEA Naef, 1916 Taningia Joubin, 1931 Family Spirulidae Owen, 1836 Family Onychuteuthidae Gray, 1849 Spirula Lamarck, 1801 Onychoteuthis Lichtenstein, 1818 Family Sepiidae Keferstein, 1866 Onykia LeSueur, 1821 Chaunoteuthis Appellöf, 1890 Sepia Linnaeus, 1758 Ancistroteuthis Gray, 1849 Moroteuthis Verrill, 1881 Kondakovia Filippova, 1972 Sepiella Gray, 1849 Family Sepiadariidae Naef, 1912 Sepiadarium Steenstrup, 1881 Sepioloidea Orbigny, 1840 Family Cycloteuthidae Naef, 1923 <u>Cycloteuthis</u> Joubin, 1919 <u>Discoteuthis</u> Young & Roper, 1969 Family Sepiolidae Leach, 1817 Subfamily Rossiinae Appellöf, 1898 Rossia Owen, 1834 Family Gonatidae Hoyle, 1886 Semirossia Steenstrup, 1887 Gonatus Gray, 1849 Gonatopsis Sasaki, 1920 Berryteuthis Naef, 1921 Neorossia Boletzky, 1971 Subfamily Heteroteuthinae Heteroteuthis Gray, 1849 Family Psychroteuthidae Thiele, 1921 Nectoteuthis Verrill, 1883 Psychroteuthis Thiele, 1921 Iridoteuthis Naef, 1912 Family Lepidoteuthidae Naef, 1912 Stoloteuthis Verrill, 1881 Lepidoteuthis Joubin, 1895 Sepiolina Naef, 1912 Pholidoteuthis Adam, 1950 Subfamily Sepiolinae Appellöf, 1898 <u>Sepiola</u> Leach, 1817 Tetronychoteuthis Pfeffer, 1988 Family Architeuthidae Pfeffer, 1900 Architeuthis Steenstrup, 1857 Euprymna Steenstrup, 1887 Family Histioteuthidae Verrill, 1881 Rondeletiola Naef, 1921 Sepietta Naef, 1912 Histioteuthis Orbigny, 1841 Family Neoteuthidae Naef, 1921 Inioteuthis Verrill, 1881 Alluroteuthis Odhner, 1923 Family Idiosepiidae Appellöf, 1898 <u>Idiosepius</u> Steenstrup, 1881 Order TEUTHOIDEA Naef, 1916 Neoteuthis Naef, 1921 Family Bathyteuthidae Pfeffer, 1900 Suborder MYOPSIDA Orbigny, 1845 Bathyteuthis Hoyle, 1885 Family Ctenopterygidae Grimpe, 1922 Family Pickfordiateuthidae Voss, 1953 Pickfordiateuthis Voss, 1953 Ctenopteryx Appellöf, 1899 Family Loliginidae Steenstrup, 1861 Family Brachioteuthidae Pfeffer, 1908 Loligo Schneider, 1784 Doryteuthis Naef, 1912 Brachioteuthis Verrill, 1881 Family Batoteuthidae Young & Roper, 1968 Lolliguncula Steenstrup, 1881 Batoteuthis Young & Roper, 1968 Sepioteuthis Blainville, 1824 Family Ommastrephidae Steenstrup, 1857 Alloteuthis Wülker, 1920 Uroteuthis Rehder, 1945 Subfamily Illicinae Illex Steenstrup, 1880 Loliolus Steenstrup, 1856 Todaropsis Girard, 1890 Loliolopsis Berry, 1929 Suborder OEGOPSIDA Orbigny, 1845 Subfamily Todarodinae Todarodes Steenstrup, 1880 Nototodarus Pfeffer, 1912 Family Lycoteuthidae Pfeffer, 1908 Martialia Rochebrune & Mabille, 1889 Subfamily Lycoteuthinae Pfeffer, 1908 Subfamily Ommastrephinae Lycoteuthis Pfeffer, 1908 Selenoteuthis Voss, 1958 Ommastrephes Orbigny, 1835 Nematolampas Berry, 1913 Dosidicus Steenstrup, 1857 Subfamily Lampadioteuthinae Berry, 1916 Symplectoteuthis Pfeffer, 1900 Lampadioteuthis Berry, 1916 Ornithoteuthis Okada, 1927 Family Enoploteuthidae Pfeffer, 1980 Hyaloteuthis Gray, 1849 Subfamily Enoploteuthinae Pfeffer, 1912 Family Thysanateuthidae Keferstein, 1866 Enoploteuthis Orbigny, 1839 Abralia Gray, 1849 <u>Thysanoteuthis</u> Troschel, 1857 <u>Cirrobrachium</u> Hoyle, 1904 Abraliopsis Joubin, 1896 Watasenia Ishikawa, 1913 Family Chiroteuthidae Grav. 1849 <u>Chiroteuthis</u> Orbigny, 1839 <u>Valbyteuthis</u> Joubin, 1931 Subfamily Ancistrocheirinae Pfeffer, 1912 Family Mastigoteuthidae Verrill, 1881 Ancistrocheirus Gray, 1849

Mastigoteuthis Verrill, 1881

Thelidioteuthis Pfeffer, 1908

Family Promachoteuthidae Naef, 1912 Promachoteuthis Hoyle, 1885 Family Grimalditeuthidae Pfeffer, 1900 Grimalditeuthis Joubin, 1898 Family Joubiniteuthidae Naef, 1922 Joubiniteuthis Berry, 1920 Family Cranchiidae Prosch, 1849 Subfamily Cranchiinae Prosch, 1849 Cranchia Leach, 1817 Leachia LeSueur, 1821 Liocranchia Pfeffer, 1884 Subfamily Taoniinae Pfeffer, 1912 Taonius Steenstrup, 1861 Egea Joubin, 1933 Sandalops Chun, 1906 Liguriella Issel, 1908 Teuthowenia Chun, 1910 Megalocranchia Pfeffer, 1884 Helicocranchia Massy, 1907 Galiteuthis Joubin, 1898 Bathothauma Chun, 1906 Mesonychoteuthis Robson, 1925 Order VAMPYROMORPHA Pickford, 1939 Family Vampymteuthidae Thiele, 1915 Vampyroteuthis Chun, 1903 Order OCTOPODA Leach, 1818 Suborder CIRRATA Grimpe, 1916 Family Cirroteuthidae Keferstein, 1866 Cirroteuthis Eschricht, 1838 Cirrothauma Chun, 1911 Family Stauroteuthidae Grimpe, 1916 <u>Stauroteuthis</u> Verrill, 1879 <u>Grimpoteuthis</u> Robson, 1932 Chunioteuthis Grimpe, 1916 Froekenia Hoyle, 1904 Family Opisthoteuthidae Verrill, 1896 Opisthoteuthis Verrill, 1883 Suborder INCIRRATA Grimpe, 1916 Family Bolitaenidae Chun, 1911 Bolitaena Steenstrup, 1859 Japetella Hoyle, 1885 Eledonella Verrill, 1884 Dorsopsis Thore, 1949

Family Amphitretidae Hoyle, 1886 Amphitretus Hoyle, 1885 Family Idioctopodidae Taki, 1962 Idioctopus Taki, 1962 Family Vitreledonellidae Robson Vitreledonella Joubin, 1918 Family Octopodidae Orbigny 1845 Subfamily Octopodinae Grimpe, 1921 Octopus Lamarck, 1798 Enteroctopus Rochebrune & Mabille, 1889 Danoctopus Joubin, 1933 Cistopus Gray, 1849 Robsonella Adam, 1938 Scaeurgus Troschel, 1857 Pteroctopus Fisher, 1882 Hapalochlaena Robson, 1929 Berrya Adam, 1939 Euaxoctopus Voss, 1971 Subfamily Eledoninae Gray, 1849 Eledone Leach, 1817 Pareledone Robson, 1932 <u>Thaumeledone</u> Robson, 1930 <u>Bentheledone</u> Robson,1932 Subfamily Bathypolypodinae Robson Bathypolypus Grimpe, 1921 Graneledone Joubin, 1918 Benthoctopus Grimpe, 1921 Teretoctopus Robson, 1929 Grimpella Robson, 1928 Haptochlaena Grimpe, 1922 Tetracheledone Voss, 1955 Family Tremoctopodidae Brock, 1882 Tremoctopus Delle Chiaje, 1829 Family Ocythoidae Gray, 1849 Ocythoe Rafinesque, 1814 Family Argonautidae Naef, 1912 Argonauta Linnaeus, 1758 Family Alloposidae Verrill, 1882 Alloposus Verrill, 1880

7. LIST OF SPECIES BY MAJOR FISHING AREAS

							GEO	GR	A P H	I C A	\ L	TSIC	RIE	UT	ION					
SPECIES	PAGE				MA	JOR I	MARI	NE F	ISHIN	G AR	REAS	FOR	STAT	ISTIC	AL P	ÚRPC	SES			İ
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Nautilus macromphalus	26		! ! ! !	! ! !			! ! ! ! !		! ! ! !	<u>.</u>						•	; ; ; ;	, , ,		
Nautilus pompilius	26) (() ()		 			•		; ; ; ;		•		! ! !		
Sepia aculeata	30			(((; ; ;			! ! !	•	•	 	•		•	! ! !			
Sepia andreana	31			 	! ! !			1		 			i i i i	•		•		 		
Sepia apama	32				 			 				•		 	1	•] 	•		
Sepia arabica	33			1			 		1		•	; ; ; ;	i i i		1		; ; ;] 	1 1 1 1
Sepia australis	34		1	1	 				•	1 1 1 1	•]		<u></u>			
Sepia bertheloti	35				 	•			•) ! !				7 ! !	1		; ; ;	,
Sepia braggi	36]] 	•	 				1]
Sepia brevimana	37		1	1)	•	•	1			•	4			
Sepia elegans	37			•	•	•										1		1		
Sepia elobyana	39		1	1	1	•				1						1		1		

						(G E O	GR	4 P H	ICA	L C) I S T	RIB	UT	ION		-			
SPECIES	PAGE				МА	JOR I	MARI	NE F	ISHIN	G AR	EAS	FOR	STAT	ISTIC	AL P	URPC	SES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Sepia esculenta	40													•	! ! ! ! !	•				
Sepia kobiensis	41				 									•		•	 	 		
Sepia latimanus	42										•	•		•	! ! !	•	! !	•		
Sepia longipes	43													•			; } } }	; ; ; ! !	<u> </u>	¦
Sepia lorigera	43				 									•						
Sepia lycidas	44		 		 				 		 			•		•		 	 	
Sepia madokaj	45		 	! ! !					 			 		•	ļ Ļ	ļ ļ	ļ ļ	ļ 	i 	
Sepia mestus	46		! !	! ! !	ļ 	ļ 						•				•	; }	•		
Sepia murrayi	46				; ; ;			: : : !			•	; ; ; ; }	 		} 	} 		ļ 	<u></u>	ļ
Sepia officinalis	47			•	ļ ļ	•	•	: : : !	•	! !	•	; ; ; ; ;	, 	; ; ; ; ;	; ; ; ‡	; ! ! !	; ! ! !	ļ 		i ! !
Sepia omani	49		; ; ; ; ;	<u>.</u> 	<u> </u> 	<u>.</u>		i ! ! !	 	 	•	; i ! ! !	i t ! ! !	; ; ; ;		 	 			
Sepia orbignyana	50			•	ļ 	•	•	ļ 	•	<u>.</u> 4	ļ Ļ			; ; ; ;	ļ ļ	ļ ļ	; ; ; +		<u>.</u> 	
Sepia pharaonis	51			ļ 	ļ Ļ	ļ 	! !		<u>.</u> 4	<u>.</u> <u>.</u> 	•	•	! ! !	•		•	<u>.</u>			
Sepia prashadi	52			: : : : : :	; ; ;	<u> </u>	<u> </u>	<u> </u>		i i i	•	•	; ; ;	; !		!		1		<u> </u>

							GFO	GR	4 Р Н	ICA	г) [S]	RIB	JJTI	- N	 	w		·	
SPECIES	PAGE		, , , , , , , , , , , , , , , , , , , 		MA					·			STAT			URPC	SES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Sepia recurvirostra	53			 	: : :							•				•			 	ļ.
Sepia savignyi	54			 ! !	1 1 1 1						•									
Sepia trygonina	55		T : : : : : : : : : : : : : :	T	1						•		7		1 · · · · · · · · · · · · · · ·			7		
Sepia (Metasepia) tullbergi	56		†	†	†								 ! ! !		•	(•)	,	1	1 ! !	
Sepiella inermis	57		† ! !	†	1	† · ! ! !				j 	•	•	†	,	1	•	· 		\	
Sepiella japonica	58		1	1		,	 ! !			 			7	•					1 !	
Sepiella ornata	59		†			•	1 ! !	• • •	•	† · · · · · · · · · · · · · · ·	1	,	T) ·	, , ,			,	1	
Sepiadarium kochi	60		†	!	† 	†	† ·	 		 	•	•	†	•	,	•		 		
Sepiolina nipponensis	65			†	! !	;	 	† · ! !			; ; ;	7	† · · · · · · · · · · · · · · ·	•	1	•		 		\
Sepiola atlantica	66			•		•	† ! !	† · · · · · · · · · · · · · · ·) 	† · · · · · · · · · · · · · · ·	† * * * * * * * * * * * * * * * * * * *	† · · · · · · · · · · · · · · · ·	1 ! !	7 ! ! !		1	1		1
Sepiola birostrata	66		T					1 1 1	 ! !	1	T	 		•			 !	7 · · · · · · · · · · · · · · · ·		
Sepiola rondeleti	68			•		•	•	1	†	1	1	1		1]			1		
Euprymna berryi	69		1						; !	1	•	•	 	•		•			1	1
Euprymna morsei	70			1		1			T ! !			•	1	•] 	•		1		

				,			GEO	GR	APH	ICA	L) [S 1	TRIE	UT	NO					
SPECIES	PAGE		·	-	MA	JOR	MARI	NE F	ISHIN	G AF	REAS	FOR	STAT	ISTIC	AL P	URPC	SES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Sepietta oweniana	71		 	•		•	•				! ! ! !	 	[]] 1	 		t 		(1 	
Rondeletiola minor	72				1	•	•		† · · · · · · · · · · · · · · ·	·	 		i			i · i i	i	j · ! ! !	i ·	
Rossia antillensis	72			 	•	1	 !		i ·			 	† · ! !	i	·	i	i	i	† · · · · · · · · · · · · · · · ·	
Rossia bullisi	73				•				† ·	† · ! !	†	· 		i ! ! !	 	j ! !	i	j · ! ! !	† · ! !	
Rossia macrosoma	74			•		•	•	 ! !	i ·	† · ! !	i ·	 	i	i	i ·	i	j====: : : :	i	j	
Rossia pacifica	75									†		†	†	•	•	i	•	i	† 	
Rossia tortugaensis	76			† !	•	 		 	†		†	†	† !	 !		i	 !		† !	
Neorossia caroli	76					•	•	! !		† !	† ! !						 !		† !	
Semirossia equalis	77		 		•			 ! !	† !	 							 !			† ! !
Semirossia tenera	78		•		•			 !	 -	† !		† !				ļ		! -	 	
Loligo beka	84		1	 				 !	† !	 	†		 !	•	i					 !
Loligo (Doryteuthis) bleekeri	84		†	 			 	 	† !	 	†	 	†	•			i	i	i	†
Loligo chinensis	86		1				 	† !	†	† !	†	i	 ! !	•		•		i		† !
Loligo duvauceli	87		 				1	† †		† 		•	 	•	 			i	†	

SPECIES	PAGE			······································	140							FOR					nses			
		18	21	27	31		 	41	•			57 57				71		81	87	-
Loligo edulis	88			i ! !	1 1 1 1	i			1 1 1 1	! !	 	•		•		•	1 1 1 1 1		 	+
Loligo edulis budo	89		† ⁵ + 5	 	† ! !	 	·		 	 							 	†~~~ !		-
Loligo forbesi	90			•	† !	•	•		 	† · ! !	•				 ! !	†	† ! !		 	-
Loligo gahi	91		† !	†	†			•	† ·	 ! !						† ! !	† -	† ·	•	
Loligo japonica	93		† !			 !		† ·				 ! ! !	 	•	i	† ! !	†	† · ! !	i ·	
Loligo kobiensis	94							 	• • • • • • • • • • • • • • • • • • •	!				•	 	†		†		
Loligo ocula	95				•				†					i · · · · · · · · · · · · · · ·	 ! !	†		, ,		
Loligo opalescens	95						}						 		•		•			-
Loligo pealei	97		•		•		† 	!		!			 							
Loligo (Doryteuthis) plei	98		1		•			•												
Loligo reynaudi	100				1	1		7	•	7	•		1	1	7	T		1]	_
Loligo roperi	101		!	1	•	 			T		T				1	1	,	1] 	
Loligo sanpaulensis	102		1		; ;	1		•				7 				T				_
Loligo (Doryteuthis) sibogae	. 103		!	!					Ţ	1				•		•			 !	-

							GEC	GR	АРН	ICA	L C	DIST	RIE	UT	ION					
SPECIES	PAGE				MA	JOR	MARI	NE F	ISHIN	G AR	REAS	FOR	STAT	ISTIC	AL P	URPC	SES	4		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Loligo (Doryteuthis) singhalensis	103										•	•		•		•				
Loligo surinamensis	105				•															
Loligo uyii	106											******		•		(•)				
Loligo vulgaris	107			•	•		•			•										
Sepioteuthis australis	109			 			 					•				 		•		
Sepioteuthis lessoniana	109		 	 	 	i ! ! !	! ! !	 	 	; 	•	•		•	 	•	•	•		<u>.</u>
Sepioteuthis sepioides	111		; ; ; }	 	•			ļ 		 	 	 			i ! ! !	; ; ; ; ;		 		1
Alloteuthis africana	112			 -	; } }	•	ļ 	! ! !	•		<u>.</u> 	; ; ; ;	; ; ; +						; ; ; ; }	
Alloteuthis media	113		; ; }	•	; ; ; ;	•	•	; ; ; ; }	; ! !		ļ +	; ; ; ; } = = = =	; ! ! ! !		; ! ! !	; 				
Alloteuthis subulata	114		!. 	•	<u>.</u> 	•	•		; ; ; ; }	<u> </u> 	<u>.</u>	; ; ; ; ;		 	; } }		; ; ; ;	ļ 	i 	
Uroteuthis bartschi	115		ļ 	 	 			 		ļ 		(•)	; ; ; }	; ; ; ;	i 	•		ļ 	ļ 	
Lolliguncula brevis	115		•		•	<u>.</u>		•					; ; ;	: : : !			i !			
Lolliguncula mercatoris	117				<u>.</u>	•			•		ļ 	; ; ;	<u> </u>	<u>.</u>	ļ			-		ļ
Lolliguncula panamensis	118				i !			<u>.</u>	i !			i ! !	! ! ! !			i !	•		•	

						•	GEO	GR.	APH	ICA	L [) I S I C	RIB	UT	ION					
SPECIES	PAGE		1		MA	JOR	MARI	NE F	ISHIN	G AR	EAS	FOR	STAT	ISTIC	AL P	URPC	SES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Loliolopsis diomedeae	119					i i i											•		•	
Ancistrocheirus lesueuri	121			•		1 1 1 1 1	 	1 1 1 1 1	•		•			•		•				
Pterygioteuthis giardi	122		•	•	•	•	•	•	•		•	•	 			•	•	•	•	
Watasenia scintillans	123			T	T	T		T ·	·			T		•						
Taningia danae	124		†	•	† !	•	† ·	i	•	† · ! ! !	•			•	•		•		1 1 1	
Ancistroteuthis lichtensteini	127		† !	† ! !	•	•	•	i	•		† !	†	†	†	 	•	 	 		
Onychoteuthis banksi	128		•	•	•	•	i	•	•	•	•	•	† ! ! !	•	 	•	•	•	•	i
Onychoteuthis borealijaponica	129		†		†	;	†	i		† ! !	†	†	† ·	•	•	ř	•	1		i
Moroteuthis ingens	130		+	†		†	†	•	•	•	•	•	•	† ! !		 	 	•	•	•
Moroteuthis knipovitchi	131		†	+	†			•	•	•	†	†		† !	 			†	•	•
Moroteuthis lönnbergi	132							†	†	† !	†	·†		•				†	j	j
Moroteuthis robsoni	133				†		+	•	•	•	•	•	†	†			·	†	(•)	(•)
Moroteuthis robustus	134		+	†	·+	+		†	†	†	•	•	†	•		•	•	•	•	
Gonatus fabricii	136		•	•		+		†	 		†	- †		†	·			†		

							G E O	GR.	A P H	I C A	L C	IST	RIB	UTI	ОИ					
SPECIES	PAGE				МА	JOR	MARI	NE F	ISHIN	G AR	EAS	FOR	STAT	ISTIC	AL P	URPC	SES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Gonatus madokai	137				 									•						! !
Gonatus middendorffi	138													•	•	! ! ! !				
Gonatus steenstrupi	139		•	•	1											 			1 - - -	
Gonatopsis borealis	140		! ! !				 		 					•	•		•			
Gonatopsis makko	141			 	1.	1	: : :			 				•	•	!	! ! ! !	 		<u> </u>
Berryteuthis anonychus	142								i ! !		 		 	•	•	 	 		! ! !	
Berryteuthis magister	143		†	 !								i i i	 	•	•	1				
Psychroteuthis glacialis	144			 !				•	•	•	•	 	•	 			1			
Pholidoteuthis adami	145		•	† ! !	•		† !	† !	†	†	† ·	†	† ·	 ! !						
Pholidoteuthis boschmai	146		!			•		•	•		•	•	•		 	•				
Architeuthis species	147		•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	
Histioteuthis bonnellii	149		•	•	•	•	•	•	•		•	(•)								
Histioteuthis dofleini	150			•	•	•					•	1		•	•		•	•		
Histioteuthis elongata	151		•	•		•	•	1	1	1	!							1		

						i	GEO	GR	ΑРН	ICA	L C) I S T	RIE	BUT	ION					
SPECIES	PAGE				МА	JOR	MARI	NE F	ISHIN	G AR	REAS	FOR	STAT	ISTIC	AL P	URPO	SES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Alluroteuthis antarcticus	152									•			•							•
Bathyteuthis abyssicola	153		•			•		•	•	•	 						•		•	•
Brachioteuthis picta	154				 		 	•	•	•						! ! !		•	•	•
Brachioteuthis riisei	155		•	•	•	•	•									! ! !	•		 	
Illex argentinus	159			 				•								 				
Illex coindetii	160			•	•	•	•		•	 		; ; ; ;				; ; ;			: : :	
Illex illecebrosus	161		•	•	•	1	1		1				 		 		1	 		
Illex oxygonius	163		•	 !	•	•	 	· · · · · · · · · · · · · · ·					F	 		 	 			
Todaropsis eblanae	164		† ·	•		•	•		•		1	•		 ! !	 ! !	•	,	•	1 · · · · · · · · · · · · · · ·	
Todarodes filippovae	166		T ·	 !				•	•	•	•	•	•	r : : : :				•	•	•
Todarodes pacificus	167		,	 !								 ! !		•	•	•	!	; ; ; ;		1
Todarodes sagittatus angolensis	168		i						•		•									
Todarodes sagittatus sagittatus	169	•		•		•	•	•	•				!			!				
Nototodarus gouldi	170		1		!							•				•		•		

							GEO	GR	АРН	ICA	L C	DIST	RIE	UT	ION					
SPECIES	PAGE				МА	JOR	MARI	NE F	ISHIN	G AR	EAS	FOR	STAT	ISTIC	AL P	URPC	SES	4		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Nototodarus hawaiiensis	172			 	 	! ! ! ! !	 								 	! ! !	•			
Nototodarus philippinensis	173		-											•		•				
Nototodatus sloani	174			·			1 · · · · · · · · · · · · · · ·] · · · · · · · · · · · · · · ·			•		
Ommastrephes bartrami	175		•	•	•	•	i · · · · · · · · · · · · · · ·	•	•		•	•		•	•	•	•	•	•	
Ommastrephes caroli	177		•	•	•	•	•						• • • • • • • • • • • • • • • • • • •		i · · · · · · · · · · · · · ·	•		(•)		
Ommastrephes pteropus	178		•	•	•	•	•	•	•		†		j		†	† ·	†*************************************	† = = = = : ! ! !	 	
Symplectoteuthis luminosa	179			i			†	† · · · · · · · · · · · · · · ·	•	† · · · · · · · · · · · · · · ·	•		† · ! ! !	•	•	•	•	•		i
Symplectoteuthis oualaniensis	180		 ! ! !	† ! !	1 · · · · · · · · · · · · · · ·	 	† ! ! !	† · ! !		† ! ! !	•	•	† · ! ! !	•	•	•	•	•		
Dosidicus gigas	181		 	† ! !	† † 	† !	† ! !	† · · · · · · · · · · · · · ·	i	† · · · · · · · · · · · · · · ·	†	†	† * * * · ! !	† } ! !	†	† ! !	•	† ! !	•	
Ornithoteuthis antillarum	183		•	†	•	•	 	•	•	† 	†	†	• • • • • • • • • • • • • • • • • • •	† !	†	 ! ! !	† ! !	• • • • • • • • • • • • • • • • • • •	; ; ;	
Ornithoteuthis volatilis	184		 	† ! !	1	† !	† ! !	† !	†	† !	•	†	† · · · · · · · · · · · · · ·	•	†	•	•	•		
Martialia hyadesi	185		 	†	†		†	•	†	•	†	† ! !	† ! !	† 	1	†	†	(•)	•	•
Hyaloteuthis pelagica	186			1	•	•	1	•	†		(•)	(•)		•	T	•	•	•	•	T
Thysanoteuthis rhombus	187		•	•	•	•	•	•	†	† !	•	•	1	•	•	•	•	•	•	

			· · · · · · · · · · · · · · · · · · ·	·		······································	G E O	GR	АРН	ICA	L E	0151	RIE	UTI	0 N					
SPECIES	PAGE				MA	JOR	MARI	NE F	ISHIN	G AF	REAS	FOR	STAT	ISTIC	AL P	URPO	DSES			
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Mesonychoteuthis hamiltoni	189		! ! ! ! !	! ! !	; ; ; ; ;			•	•	•	•	•	•					•	•	•
Octopus aegina	192		! ! ! !	 	! ! ! !					 	•	•		•		•		1		
Octopus briareus	193		! ! ! !		•			•	! ! !	! !								1 1 1 1		
Octopus burryi	194				•	•				 										
Octopus conispadiceus	195							! ! ! ! !	! !		 		: ! !	•			 	<u>.</u>	 	<u> </u>
Octopus cyaneus	196				 			! ! ! !	 		•	•	 	•		•	•	•		
Octopus defilippi	197				•	•	•	•	•	 	•	•	• • • •		 	 		[· ·	<u> </u>
Octopus dofleini	198		 		1		 					[•	•	! ! !	•			
Octopus dollfusi	199		7		1 1 1	1		 		 	 	 		•	! ! ! ! !	•			 	
Octopus globosus	200			†					 		•	•	! !	•	 	•				
Octopus hummelincki	201		1	1	•	 	1 1 1	•		T		1	1					 		1
Octopus joubini	202		1	T	•	T	T	T	T				1	1	r	 		 		
Octopus lobensis	203		T			T		•	1					1	F					
Octopus macropus	204				•	(•)	•	•			•	•	1	•	1	•	•	•]	1

							GEO	GR	APH	ICA	L C	IST	RIB	UTI	ION					
SPECIES	PAGE				МА	JOR	MARI	NE F	ISHIN	G AR	EAS	FOR	STAT	ISTIC	AL P	URPC	SES			
		18	21	27.	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Octopus maya	205		,		•										: : : :					
Octopus membranaceus	206										•	•		•	i i i	•	•			
Octopus selene	207						 										•			
Octopus tehuelchus	208		· · · · · · · · · · · · · · · · · · ·	 ! !			; ; ;	•												
Octopus tetricus	209			† ! !		 	·			; ; !		•			i		j		 	
Octopus variabilis	210		 !			† ·	!		;		†		 	•	i :	1	j ·			
Octopus vulgaris	211		† !	•	•	•	•	•	•	† ! !	•	•	i	•	i	•	(ullet)	† · ! ! !	(•)	†
Octopus zonatus	212		† !	† ! !	•	† ·	† · · · · · · · · · · · · · · ·	† · ! !	† · ! !	† ·	†		i · · · · · · · · · · · · · · ·		1		1	; ; ; ;		T
Danoctopus schmidti	213		•	† ! !	•	† ! !	† · · · · · · · · · · · · · · ·	† · · · · · · · · · · · · · · ·	1	† · · · · · · · · · · · · · · · ·	† • • • • • • • • • • • • • • • • • • •	j	j ·					T		
Euaxoctopus pilisburyae	214		†	†	•	† !	†	(•)	† !		†	i								
Scaeurgus unicirrhus	215		1		•	1	•	•	† !	1	•	•		•			•			
Cistopus indicus	216		1	1		†		† !	†	1	•	•		•		•				
Pteroctopus tetracirrhus	217			•	•	•	•	•			1									
Eledone cirrosa	218		1	•	-+	•	•	1	†	†	†		j		j					

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Eledone massyae	219							•												t
Eledone moschata	220					•	•		·							 				
Pareledone species	221							•	•	•	•	•	•					•	•	•
Bathypolypus arcticus	222		•	•	•			1 1 6 1		[; ; ;				
Benthoctopus januari	223			 	•	 		•	 	i ! !					 ! !					
Tetracheledone spinicirrhus	224				•			 		 	7 · · · · · · · · · · · · · · ·		 ! ! !	 	[1	[· · · · · · · · · · · · · ·			1
Argonauta argo	225		•	•	•	•	•	•	•	! ! !		•		•	•	•	•	•	•	

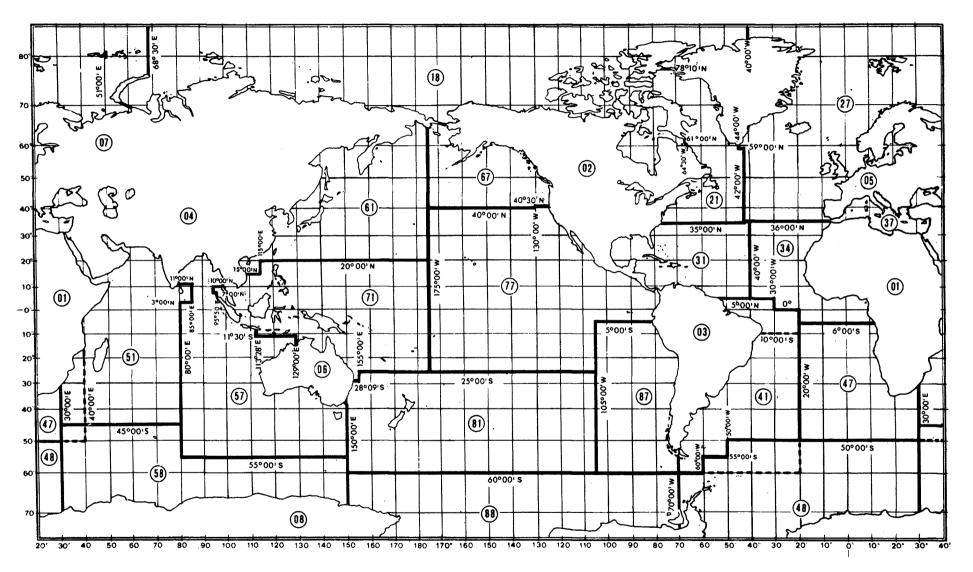


Fig. 78 Major Fishing Areas for statistical purposes

8. BIBLIOGRAPHY

- Abolmasova, G.I., Skorost' obmena u nekotorykh vidov bespozvonochnykh iz Sredizemnogo morya (Metabolic rates 1978 in some invertebrates from the Mediterranean Sea). <u>Biol.Morya Kiev</u>, (46):25-9
- Adam, W., The Cephalopoda in the Indian Museum, Calcutta. Rec.Indian Mus., 41(1):61-110
- Siboga-Expeditie. Cephalopoda. Partie 2.2 Révision des espèces Indo-Malaises du genre Sepia Linné, 1758. Siboga Exped., Leiden, (55b):35-122
- Notes sur les Cephalopodes. 22 Deux nouvelles espèces de la côte africaine occidentale. <u>Bull.</u>
 Inst.Sci.Nat.Belg., 26(45):1-9
- , Cephalopodes. <u>Résult.Sci.Expéd.Oceanogr.Belge Atl.Sud.</u>, 3(3):1-142
- , Siboga-Expeditie. Cephalopoda. Partie 3. 4 Céphalopodes à l'exclusion des genres <u>Sepia</u>, <u>Sepiella</u> et <u>Sepioteuthis</u>. <u>Siboga Expéd.,Leiden</u>, (55c):123-93
- Cephalopoda. Partie 4. Céphalopodes à l'éxclusion des genres <u>Sepia, Sepiella</u> et <u>Sepioteuthis</u>. 1954a <u>Siboga Exped.,Leiden, (55c):121-98</u>
- Contributions to the knowledge of the Red Sea. 16. Cephalopoda from the Gulf of Aqaba. <u>Bull.</u>

 Sea Fish.Res.Stn.Haifa, (26):26 p.
- , Céphalopodes de l'archipel du Cap-Vert, de l'Angola et du Mozambique. <u>Trab.Cent.Biol.Piscatoria</u> 1962 <u>Lisb.</u>, (32):7-64
- Adam, W. & W.J. Rees, A review of the cephalopod family Sepiidae. <u>Sci.Rep.John Murray Exped.1933-34</u>, 1966 11(1):1-165
- Allué, C. et al., Fichas de identificación de especies, Atlántico oriental. Estrecho de Gibraltar Cabo Verde 1977 (área CECAF 34). 2:Cl.Cephalopoda. <u>Datos Inf.Inst.Invest.Pesq.Barc.</u>, (3):unpag.
- Amaratunga, T., Growth and maturation patterns of the short-finned squid (<u>Illex illecebrosus</u>) on the Scotian 1980 shelf. NAFO SCR Doc. 80/11/30, Serial No. NO 62:17 p. (mimeo)
- ______, The role of cephalopods in the marine ecosystem. <u>In</u> Advances in assessment of world cephalopod (in press) resources; edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):379-415
- Anon., Octopus survey. FINS (Fish.Ind.News Serv.) West.Aust., 13(2):21-2
- ______, Further support for possible octopus industry. <u>FINS (Fish.Ind.News Serv.) West.Aust.</u>, 14(4):3-6
- Araya, H., Distribution and migration of the winter subpopulation of <u>Todarodes</u> <u>pacificus</u> (Steenstrup) in the 1976 northern waters of Japan. <u>FAO Fish.Rep.</u>, (170)Suppl.l:18-23.
- Araya, H. & M. Ishi, Information on the fishery and the ecology of the squid, <u>Doryteuthis</u> <u>bleekeri</u> Keferstein, in 1974 the waters of Hokkaido. Bull.Hokkaido Reg.Fish.Res.Lab., (40):1-13
- Ariz, J., E. Blaguerias & J.C. Santana, Composición de las capturas de <u>Loligo vulgaris</u> realizadas por la flota española en la división 34.1.3 de CECAF en el período de 1976 a 1980. Apéndice 4, <u>CECAF/ECAF Ser.</u>, (82/24):65-82
- , Distribución de los rendimientos de <u>Loligo</u> <u>vulgaris</u> obtenidas en las campañas de colaboración científica hispano marroquí efectuadas en la división 34.1.3 de CECAF por el B/O lbn Sina. Apéndice 8, <u>CECAF/ECAF Ser.</u>, (82/24):121-9
- Arnold, G.P., Squid: a review of their biology and fisheries. <u>Lab.Leafl.Dir.Fish.Res.,G.B.</u>, (48):37 p. 1979

- Baker, P.F., The giant squid axon: a model for studies of neuronal calcium metabolism. <u>Symp.Zool.Soc.Lond.</u>, 1977 38:243-60
- Bakhayokho, M., Biology of the cuttlefish, <u>Sepia officinalis hierraddda</u> off the Senegalese coast. <u>In</u> Advances in (in press) assessment of world cephalopod resources; edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):204-63
- Bakhaykho, M. & O. Drammeh, Eléments de biologie et d'identité des populations de seiches (<u>Sepia officinalis</u> 1982 <u>hierredda</u>) des côtes Séné-gambiennes. <u>CECAF/ECAF Ser.</u>, (82/24):149-72
- Balch, N., T. Amaratunga & R.K. O'Dor (eds), Proceedings of the workshop on the squid, <u>Illex</u> <u>illecebrosus</u>,

 1978 Dalhousie University, Halifax, Nova Scotia, May 1978, and a bibliography on the genus <u>Illex</u>.

 Halifax, N.S., Canada, 25 May 1978. <u>Tech.Rep.Fish.Mar.Serv.</u>, (833):311 p.
- Ball, R., On a species of Loligo, found on the shore of Dublin Bay. Proc.R.Irish Acad., 19:362-4
- Barlow, J.J., Comparative biochemistry of the central nervous sytem. <u>Symp.Zool.Soc.Lond.</u>, 38:325-46 1977
- Barragan, V.J., Estudio de la nutrición del calamar del Pacífico colombiano, <u>Lolliguncula</u> <u>panamensis</u> 1969 (Cephalopeda: Myopsida). Divulg.Pesq.Inst.Desarr.Recurs.Nat.Renov.,Bogota, 10 (2-3):18 p.
- Bather, F.A., Shell-growth in Cephalopoda (Siphonopoda). Ann.Mag.Nat.Hist., 6(1):289-310
- Berry, S.S., Preliminary notices of some new Pacific cephalopods. <u>Proc.U.S.Natl.Mus.</u>, 40(1838):589-92
- , Note on a new Abraliopsis from Japan. Nautilus, 25(8):93-4

1912

- 1911a
- , A note on the genus <u>Lolliguncula</u>. <u>Proc.Acad.Nat.Sci.Philad.</u>, 63(1):100-5
- , A review of the cephalopods of western North America. <u>Bull.Bur.Fish.Wash.</u>, (30):263-336
- , Notes on some west American cephalopods. Proc.Acad.Nat.Sci.Philad., 65:72-7
- , The Cephalopoda of the Hawaiian Islands. Bull.Bur.Fish.Wash., (32):255-362
 - 1914
 - , Report on the Cephalopoda obtained by F.I.S. Endeavour in the Great Australian Bight and other Southern Australian localities. Biol. Results Fish.Exp.'Endeavour', 4(5):203-98
- , A review of the cephalopod genera, <u>Sepioloidea</u>, <u>Sepiadarium</u> and <u>Idiosepius</u>. <u>Rec.South Aust.Mus.</u>, 1921 1:347-64
- , Cephalopods of the genera <u>Sepioloidea</u>, <u>Sepiadarium</u> and <u>Idiosepius</u>. <u>Philipp.J.Sci.</u>, 47:39-53
- Blainville, H.D. de, Mémoire sur les espèces du genre Calamar (<u>Loligo</u>, Lamarck). <u>J.Phys.Chim.Hist.Nat.</u>, 96: 1823 116-35
- , Manuel de malacologie et de conchyliologie. Paris, 664 p.
- Sepia. <u>In</u> Dictionnaire des sciences naturelles. Paris, vol.48:283-5
- Boletzky, S. von, Post-hatching behaviour and mode of life in cephalopods. Symp.Zool.Soc.Lond., 38:557-67
- Boyle, P.R. & D. Knobloch, On growth of the octopus, <u>Eledone cirrhosa</u>. <u>J.Mar.Biol.Ass.U.K.</u>, 62:277-96 1982

- Brakoniecki, T.F., <u>Lolliguncula</u> <u>tydeus</u>, a new species of squid (Cephalopoda: Myopsida) from the Pacific coast of 1980 central America. <u>Bull.Mar.Sci.</u>, 30(2):424-30
- Brakoniecki, T.F., <u>Loligo</u> <u>sanpaulensis</u>, a new species of squid (Cephalopoda: Myopsida) from the southwest 1984 Atlantic with <u>a redescription</u> of Loligo gahi Orbigny, 1835. <u>Bull.Mar.Sci.</u>, 34(2)
- Bravo de Laguna, J., M.A.R. Fernandez & J.C. Santana, Discardings of fishes in the cephalopods fishery off West 1976 Africa. ICES CM 1976/K:32:6 p. (mimeo)
- Budelmann, B.U., Structure and function of the angular acceleration receptor systems in the statocysts of cephalopods. Symp.Zool.Soc.Lond., 38:309-24
- Caddy, J.F., Some factors relevant to management of cephalopod resources off West Africa. Dakar, FAO/UNDP 1981 Interregional Fisheries Management and Development Programme, INT/79/019 CE, CECAF/TECH/81/37: 46 p. Issued also in French
- , (ed), Advances in assessment of world cephalopod resources. <u>FAO Fish.Tech.Pap.</u>, (231):452 p. (in press)
- The cephalopods: factors relevant to their population dynamics and to the assessment and management of stocks. <u>In</u> Advances in assessment of world cephalopod resources: edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):416-52
- Castellanos, Z.J.A. de, Una nueva especie de calmar argentino, <u>Ommastrephes</u> <u>argentinus</u> sp. nov. (Mollusca: 1960 Cephalopoda). <u>Neotropica</u>, 6(20):55-8
- Chikuni, S., Cephalopod resources in the Indo-Pacific region. <u>In</u> Advances in assessment of world cephalopod (in press) resources; edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):264-305
- Choe, S., On the eggs, rearing, habits of the fry, and growth of some Cephalopoda. <u>Bull.Mar.Sci.</u>, 16(2):330-48 1966
- Chotiyaputta, C., Squid fisheries of Thailand. In Report of the Third Session of the Standing Committee on Resources Research and Development of the Indo-Pacific Fishery Commission. Sydney, Australia, 24 April to 4 May 1982, FAO Fish.Rep., (275):124-34
- Chun, C., Die Cephalopoden. 1. Oegopsida. <u>Wiss.Ergeb.Dtsch.Tiefsee-Exped.'Valdivia'</u>, 18(1):410 p.
- Clarke, M.R., A review of the systematics and ecology of oceanic squids. <u>Adv.Mar.Biol.</u>, 4:91-300 1966
- , A deep-sea squid, <u>Taningia</u> <u>danae</u> Joubin, 1931. <u>Symp.Zool.Soc.Lond.</u>, 19:127-43
- , Beaks, nets and numbers. <u>Symp Zool.Soc.Lond.</u>, 38:89-126
- ______, Cephalopoda in the diet of sperm whales of the Southern Hemisphere and their bearing on sperm whale biology. Discovery Rep., (37):324 p.
- Clarke, M.R. & C.C. Lu, Vertical distribution of cephalopods at 30°N 23'W in the North Atlantic. <u>J.Mar.Biol.</u> 1974 <u>Assoc.U.K.</u>, 54:969-84
- Clarke, M.R. & G.E. Maul, A description of the "scaled" squid, <u>Lepidoteuthis grimaldi</u> Joubin, 1895. <u>Proc.Zool.</u> 1962 Soc.Lond., 139 (1):97-118
- Clarke, et al. Cephalopod remains from the stomach of a sperm whale stranded at Rio Grande do Sul in Brazil.

 1980 Mar.Biol., 59:235-9
- Cohen, A.C.,The systematics and distribution of <u>Loligo</u> (Cephalopoda: Myopsida) in the western North Atlantic, 1976 with descriptions of two new species. <u>Malacologia</u>, 15(2):299-367
- Conseil général des pêches pour la Méditerranée (CGPM)/General Fisheries Council for the Mediterranean 1982 (GFCM), Rapport de la Première Consultation technique sur l'évaluation des stocks dans la Méditerranée centrale. Tunis, 19-23 avril 1982/Report of the first Technical Consultation on stock assessment in the central Mediterranean. Tunis, 19-23 April 1982. FAO,Rapp.Pêches/FAO Fish. Rep., (266):125 p.

- Cooper, J., Length-mass relationships, water content and energy values for two species of squid, Loligo reynaudi 1979 and Todaropsis eblanae, off the South-western Cape. Fish.Bull.S.Afr., 11:43-5
- Cort Basilio, J.L. & G. Pérez-Gándaras Pedrosa, Estudios de pesca de los cefalópodos (<u>Octopus vulgaris</u>, <u>Sepia officianalis</u> hierredda y <u>Loligo vulgaris</u>) del banco pesquero sahariano. <u>Bol.Inst.Esp.Oceanol.</u>, (173): 63 p.
- Court, W.G., Japan's squid fishing industry. Mar.Fish.Rev., 42(7-8):1-9
- Cuvier, G.L.C., Tableau élémentaire de l'histoire des animaux. Paris, 710 p. 1978
- Dell, R.K., The recent Cephalopoda of New Zealand. <u>Dom.Mus.Bull.</u>, (16):157 p. 1952
- Delle Chiaje, S., Memorie sulla storia e anatomia degli animali senza vertebre del Regno di Napoli. Napoli, 4 vols 1829
- Dong, Z., The present status and the prospects of cephalopod resources in the West Pacific. <u>J.Fish.China</u>, 1981 5(3):263-70
- Donovan, D.T., Evolution of the Dibranchiate Cephalopoda. <u>Symp.Zool.Soc.Lond.</u>, 38:15-48 1977
- Dunning, M., Squid and cuttlefish resources of Australian waters. In Report of the Third Session of the Standing
 Committee on Resources Research and Development of the Indo-Pacific Fishery Commission,
 Sydney, Australia, 24 April to 4 May 1982, FAO Fish.Rep., (275):103-8
- Durward, R.D., \underline{et} $\underline{al.}$, Reproduction in the squid, \underline{IIlex} $\underline{illecebrosus}$: first observations in the captivity and 1980 implications for the life cycle. $\underline{Sel.Pap.ICNAF}$, $\underline{(6):7-13}$
- Ehrenberg, C.G., Symbolae physicae, animalia evertebrata exclusis insects. Mollusca. Berlin, vol.4:unpag. 1831
- Ehrhardt, N.M., <u>et al.</u>, On the fishery and biology of the giant squid, <u>Dosidicus</u> <u>gigas</u> in the Gulf of California, (in press) <u>Mexico. In</u> Advances in assessment of world cephalopod resources, edited by J.F. Caddy. <u>FAO Fish. Tech.Pap.</u>, (231):306-40
- Everson, I., The living resources of the Southern Ocean. FAO/UNDP GLO/SO/77/1:156 p. 1977
- FAO, Contributed papers submitted to the Expert Consultation on fishing for squid and other cephalooods.

 1976 Supplement 1 to the Report of the Expert Consultation on fishing for squid and other cephalopods.

 Tokyo and Hakodate, Japan, 9-13 September 1975. FAO Fish.Rep., (170):Suppl.1:150 p.
- , Comité des pêches pour l'Atlantique centre-est. Dynamique des populations et êvaluation des stocks de poulpes de l'Atlantique centre-est. <u>COPACE/PACE Sér.</u>, (80/18):57 p. Issued also in Spanish
- , Yearbook of fishery statistics. Annuaire statistique des pêches. Anuario estadístico de pesca.

 1983 Catches and landings. Captures et quantites debarquées. Capturas y desembarques, 1981.

 Year.Fish.Stat./Annu.Stat.Pêches/Anu.Estad.Pesca, (52):356 p.
- Ferussac, A. de, Tableau méthodique de la classe des Céphalopodes, par A. d'orbigny. <u>Ann.Sci.Nat.,Paris(1)</u>, 1826 7:95-169
- Fields, W.G., A preliminary report on the fishery and on the biology of the squid, <u>Loligo opalescens</u>. <u>Calif.Fish</u> 1950 <u>Game</u>, 36(4):366-77
- The structure, development, food relations, reproduction, and life history of the squid, <u>Loligo</u>

 Opalescens. Fish Bull.Calif.Dep.Fish Game, (131):108 p.
- Fischer, W. (ed), FAO species identification sheets for fisheries purposes, Mediterranean and Black Sea (fishing 1973 area 37). Rome, FAO, vol.2:pag.var.
- Fiscus, CH. & R.W. Mercer, Squids taken in surface gillnets in the North Pacific Ocean by the Pacific Salmon 1982 Investigations Program, 1955-72. NOAA Tech.Memo.NMFS, (F/NWC-28):32 p.

- Fisheries Committee for the Eastern Central Atlantic, Report of the Special Working Group on Cephalopod 1982 Stocks in the northern region of CECAF. Centro Costero de Canarias, Instituto Español de Oceanografía, 27-30 January 1982. CECAF/ECAF Ser., (82/24):178 p. Issued also in French
- Ghiretti-Magaldi, A., F. Ghiretti & B. Salvato, The evolution of haemocyanin. <u>Symp.Zool.Soc.Lond.</u>, 38:513-23 1977
- Gilpin-Brown, J.B., The squid and its giant nerve fibre. Symp.Zool.Soc.Lond., 38:233-41
- Goodrich, E.S., Report on a collection of Cephalopoda from the Calcutta Museum. <u>Trans.Linn.Soc.Lond.(2)</u>, 1896 7(1):1-24
- Gould, A.A., Mollusca and shells. <u>In</u> United States Exploring Expedition, during the years 1838-1842, vol.12:1-510 1852
- Gray, J.E., Catalogue of the Mollusca in the collection of the British Museum. Part 1. Cephalopoda Antepedia. 1849 London, British Museum (Natural History), 164 p.
- Griffin, W.L., J.P. Warren & W.E. Grant, A bio-economic model for fish stock management: the cephalopod fishery of northwest Africa. Dakar, FAO/UNDP Project for the Development of Fisheries in the eastern central Atlantic, CECAF/TECH/79/16:42 p. Issued also in French
- Grimpe, G., <u>Chunioteuthis</u> Eine neue Cephalopodengattung. <u>Zool.Anz.</u>, 46(12):349-59 1916
- , Zur Kenntnis der Cephalopodenfauna der Nordsee. <u>Wiss.Meeresunters.(Kiel)</u>, 16(3):1-124
- Guerra, A., Fitting a von Bertalanffy expression to Octopus vulgaris growth. Invest.Pesq.,Barc., 41(1):319-26 1970
- Guerra, A. & G. Pérez-Gánderas, Recursos mundiales de cefalópodos: situación actual y perspectivas. 1983 <u>Inf.Técn.Invest.Pesq.</u>, 110-3
- Hamabe, M., C. Hamuro & M. Ogura, Squid jigging from small boats, edited by FAO Fisheries Technology Service.

 1982 Farnham, Surrey, Fishing News Books Ltd., FAO Fishing Manuals, 74 p.
- Hamabe, M. <u>et al.</u>, Biology of the common squid, <u>Todarodes pacificus</u>, trawled from off Hirakata, Kitaibaraki 1975 City, Ibaraki Prefecture in October 1974, viewed from sexual maturity. <u>Bull.Tokai Req.Fish.Res. lab.</u>, 82:25-40
- ______, Review of cephalopod resources and their exploitation by Japan. <u>FAO Fish.Rep.</u>, (170):Suppl.1:1-3
- Hanlon, R.T., Laboratory rearing of the Atlantic reef octopus, Octopus briareus Robson, and its potential for 1977 mariculture. Proc.Annu.Meet.World Maricult.Soc., 8:471-82
- Hatanaka, H., Studies on the fisheries biology of common octopus off the northwest coast of Africa. <u>Bull.Far Seas</u> 1979 <u>Fish.Res.Lab.</u>, (17):13-124
- ______, Spawning season of cuttlefish, <u>Sepia officinalis</u> <u>officinalis</u> Linné, off the northwestern coast of 1979a África. <u>CECAF/ECAF Ser.</u>, (78/11):63-74
- ______, Spawning season of common octopus, Octopus vulgaris Cuvier, off the northwestern coast of Africa. CECAF/ECAF Ser., (78/11):135-46
- Hemphill, H., Note on a California <u>Loligo</u>. <u>Zoe</u>, 3:51 1892
- Hernando, Jr., A.M. & E.E.C. Flores, The Philippines squid fishery: A review. Mar.Fish.Rev., 43(1):13-20 1981
- Herring, P-J., Luminescence in cephalopods and fish. <u>Symp.Zool.Soc.Lond.</u>, 38:127-59
- High, W.L., The giant Pacific octopus. Fish.Gaz., N.Y., 94(9):71-3

- Holme, N.A., The biology of <u>Loligo</u> forbesi Steenstrup (Mollusca: Cephalopoda) in the Plymouth area. <u>J.Mar.Biol.</u> 1974 Ass.UK, 54:481-503
- Hotta. M., The Japanese market. review and outlook for squid and cuttlefish. Paper presented at the IPFC Standing Committee on Resources Research and Development. Third session. Sydney, Australia, 28 April to 4 May 1982. Rome, FAO, IPFC:RRD/82/Inf.8(1):28 p. (mimeo)
- Hoyle, W.E., Diagnoses of new species of Cephalopoda collected during the cruise of H.M.S. Challenger. 2. The 1885 Decapoda. Ann.Mag.Nat.Hist., (5)16:181-203
- Report on the cephalopods collected by H.M.S. Challenger during the years 1873-76. Rep.Sci.Res. Voy.'Challenger' 1873-76(Zool.), 16(44):245 p.
- Hurley, Ann C., Feeding behaviour, food consumption, growth and respiration of the squid, <u>Loligo</u> <u>opalescens</u>, 1976 raised in the laboratory. Fish.Bull.NOAA/NMFS, 74(1):176-82
- , School structure of the squid Loligo opalescens. Fish.Bull.NOAA/NMFS, 76(2):433-42
- Hwang, B.N., Republic of Korea squid fisheries. <u>In</u> Report of the Third Session of the Standing Committee on Resources Research and Development of the Indo-Pacific Fishery Commission. Sydney, Australia, 24 April to 4 May 1982. FAO Fish.Rep., (275):118
- Ichikawa, W. & T. Sato, The present state of exploitation of <u>Illex</u> <u>illecebrosus</u> off New York and Newfoundland. 1976 FAO Fish.Rep., (170)Suppl.1:68-75
- Ishi, M.,Studies on the growth and age of the squid, Ommastrephes bartrami (LeSueur) in the Pacific off Japan. 1977 Bull.Hokkaido Reg.Fish.Res.Lab., (42):25-36
- Itami, K., The Inland Sea octopus fisheries. <u>FAO Fish.Rep.</u>, (170)Suppl.1:79-84
- Iverson, I.L.K. & L. Pinkas, A pictorial guide to beaks of certain eastern Pacific cephalopods. <u>Fish.Bull.Calif.Dep.</u> 1971 <u>Fish Game</u>, (152):83-105
- Jameson, J., Australian squid fishery-resource, gear and methods. <u>Fish.Rep.Fish.Div.Aust.</u>, (29):16 p. 1980
- Jatta, G., I cefalopodi viventi nel Golfo di Napoli (Sistematica). <u>Fauna Flora Golf Neapel</u>, 23:268 p. 1896
- Jeletzky, J.A., Comparative, morphology, phylogeny and classification of fossil Coleoidea. <u>Paleontol.Contrib.</u> 1966 Univ.Kansas, (7):162 p.
- Joll, L.M., The predation of pot-caught western rock lobster (<u>Panulirus longipes cygnus</u>) by octopus. <u>Rep.Dep.</u> 1977 <u>Fish.Wildl.West Aust.</u>, (29):1-58
- Joubin, L., Céphalopodes provenant des campagnes de la "Princesse Alice" (1898-1916). 3e Serie. 1920 <u>Résult.Camp.Sci.Prince Albert I</u>, (54):95 p.
- Notes préliminaires sur les Céphalopodes des croisières du Dana (1921-1922). 3e Partie. Ann. d'Inst.Océanogr.,Monaco, 10(7):167-211
- Notes préliminaires sur les Céphalopodes des croisières du Dana (1921-1922). 4e Partie. Ann.Inst.
 Oceanogr., Monaco, 13(1):49 p.
- Juanicó, M., Squid maturity scales for population analysis. <u>In</u> Advances in assessment of world cephalopod (in press) resources; edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):341-78
- Kasahara, S., Description of offshore squid angling in the Sea of Japan, with special reference to the distribution of common squid (<u>Todarodes pacificus</u> Steenstrup); and on the techniques for forecasting fishing conditions. Bull.Japan Sea Reg.Fish.Res.Lab., (29):179-99

- Kasahara, S., <u>et. al.</u> Contributions of biological information useful for development of inshore squid fishery in the Japan Sea. 2. A note on reproduction and distribution of <u>Berryteuthis magister</u> (Berry) assumed from biological observations on trawl catches in the waters around the Oki Islands, Japan Sea. <u>Bull.</u>

 Jap.Sea Reg.Fish,Res.Lab., (29):159-78
- Kato, S. & J.E. Hardwick, The California squid fishery. <u>FAO Fish.Rep.</u>, (170) Suppl.l:107-27 1976
- Kawakami, T. & T. Okutani, A note on identity of ommastrephid squids of the genus <u>Nototodarus</u> exploited in the 1981 New Zealand waters. <u>Bull.Tokai Reg.Fish.Res.Lab.</u>, (105):17-30
- Keferstein, W., In Die Klassen und Ordnungen des Thierreichs wissenschaftlich dargestellt in Wort und Bild von 1866 H.G. Bronn und W. Keferstein. Leipzig und Heidelberg, 6 vals, pp.1307-464
- Klimaj, A., Cephalopods as by-catch in trawls from the fishing grounds extending from Rio de Oro to Cap Timiris 1970 in 1966. Rapp.P.-VCIEM, 159:146-8
- Kluchnik, T.S., List of species and the distribution of oceanic squid larvae in the eastern Atlantic. <u>Tr.Atl.</u> 1978 <u>Nauchno-Issled.Inst.Rybn.Khoz.Okeanogr.</u>, 11(1-2):132
- Klumov, S.K. & V.L. Yukhov, <u>Mesonychoteuthis hamiltoni</u> Robson, 1925 (Cephalopoda: Oegopsida) i ego znachenie

 v pitanii kashalota antarkticheskikh vod (<u>Mesonychoteuthis hamiltoni</u> Robson, 1925 (Cephalopoda: Oegopsida) and its significance in the feeding of sperm whales in Antarctic waters). <u>Antarktika</u>, (14):159-89 (in Russian)
- Kolator, D.J. & D.P. Long, The foreign squid fishery off the northeast United States coast. <u>Mar.Fish.Rev.</u>, 1979 41(7):1-15
- Kore, B.A. & M.C. Joshi, Food of the squid, <u>Loligo duvauceli</u> d'Orbigny. <u>Proc.Indian Acad.Sci.</u> (B), 81(1):28-8 1975
- Kreuzer, R., Cephalopods: handling, processing and products. <u>FAO Fish.Tech.Pap.</u>, in prep. (in prep.)
- Kristensen, T.K., The genus <u>Gonatus</u> Gray, 1849 (Mollusca: Cephalopoda) in the northern Atlantic. A revision of 1981 the North Atlantic species and description of <u>Gonatus</u> <u>steenstrupi</u> n.sp. <u>Steenstrupia</u>, 7(4):61-99
- Lamarck, J.B., Extrait d'un mémoire sur le genre de la seiche, du calmar et du poulpe, vulgairement nommés, 1798 polypes de mer. <u>Bull.Sci.Soc.Philomat.</u>, 2(5):129-31
- , Sur les genres de la sèche, du calmar et du poulpe. Mém.Soc.Hist.Nat.Paris, 1:1-25
- Lange, A.M.T. & M.P. Sissenwine, Squid resources of the Northwest Atlantic. <u>In</u> Advances in assessment of world (in press) cephalopod resources; edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):21-54
- Latif, M.S.B.S.A., Malaysian squid resources. <u>In</u> The Report of the Third Session of the Standing Committee on 1982 Resources Research and Development of the Indo-Pacific Fishery Commission, Sydney, Australia, 28 April to 4 May 1982. <u>FAO Fish.Rep.</u>, (275):118-20
- Laughlin, R.A. & R.J. Livingston, Environmental and trophic determinants of the spatial/temporal distribution of 1982 the brief squid (Lolliguncula brevis) in the Apalachicola estuary (North Florida, USA). Bull.Mar.Sci., 32(2):489-97
- Leach, W.E., Synopsis of the orders, families and genera of the class Cephalopoda. Zool.Misc., 3(30):137-41
- Lesson, R.P., Mollusques, Annélides et Vers. <u>In</u> Voyage autour du monde, sur la Corvette de la Majesté, La 1830 Coquille, pendant les annees 1822, 1823, 1824 et 1825. Paris, 2(1):239-471
- LeSueur, C.A., Descriptions of several new species of cuttlefish. <u>J.Acad.Nat.Sci.Philad.</u>, 2(1):86-101 1821
- Leta, H.R., Las capturas del calamar, <u>Illex argentinus</u>, en el Uruguay. <u>Inf.Tec.Inst.Nac.Pesca,Montevid.</u>, 1981 (21):37 p.
- , Producción y comercialización del calamar en el Uruguay. <u>Inf.Tec.Inst.Nac.Pesca,Montevid.,</u> 1981a (22):20 p.

- Linneaus, C. von, Systema naturae. Holmiae, 10th edition 1758
- Liu, H.C. & H.L. Lai, Cost-revenue analysis of Taiwanese pair trawler operated in Australian waters. <u>Acta</u> 1980 <u>Oceanogr.Taiwan</u>, 11:217-27
- Lu, C.C. & C.F.E. Roper, Cephalopods from deepwater Dumpside 106 (Western Atlantic): vertical distribution and seasonal abundance. Smithsonian Contrib.Zool., (288):36 p.
- Lu, C.C. & M. Dunning, Identification guide to Australian arrow squid (family Ommastrephidae). <u>Tech.Rep.Vict.</u> 1982 <u>Inst.Mar.Sci.</u>, (2):30 p.
- Machida, S., Report of the squid survey by FV HOYO MARU No.67 in southeast Australian waters, 1979/80. 1980 JAMARC Rep., (22):43 p.
- Mangold-Wirz, K., Biologie des céphalopodes benthiques et nectoniques de la mer catalane. <u>Vie Milieu,</u> 1963 Supp1.13:285 p.
- , La migration des céphalopodes méditerranéens. Rapp.P.-V.Reun.CIESM, 16(2):299-304
- Mangold, K. & D. Froesch, A reconsideration of factors associated with sexual maturation. <u>Symp.Zool.Soc.Lond.</u>, 1977 38:541-55
- Martin, R., The giant nerve fibre system of cephalopods. Recent structural findings. <u>Symp.Zool.Soc.Lond.</u>, 1977 38:261-75
- Martins, H.R., Biological studies of the exploited stock of <u>Loligo</u> <u>forbesi</u> (Mollusca: Cephalopoda) in the Azores. 1982 <u>J.Mar.Biol.Ass.UK</u>, 62:799-808
- Matallanas, J., Feeding habits of <u>Scymnorhinus licha</u> in Catalan waters. <u>J.Fish.Biol.</u>, 20(2):155-63
- Matilda, C.E., Bibliography of the biology of squids of the family Loliginidae with selected references to 1981 cephalopod processing. Queensl.Dep.Primary Ind.Bibliogr., (81004):33 p.
- Matsumoto, W.M.,The status of the squid fisheries in the United States of America. Paper presented at the IPFC Standing Committee on Resources Research and Development, Third Session, Sydney, Australia, 28 April to 4 May 1982. IPFC:RRD/83/Inf.8/d:19 p. (mimeo)
- Mattlin, R.H., New Zealand squid resources. <u>In</u> Report of the Third Session of the Standing Committee on 1982 Resources Research and Development of the Indo-Pacific Fishery Commission, Sydney, Australia, 24 April to 4 May 1982. FAO Fish.Rep., (275):120-3
- Mauro, A., Extra-ocular photoreceptors in cephalopods. <u>Symp.Zool.Soc.Lond.</u>, 38:287-308
- McCoy, F., Prodromus of the zoology of Victoria, or figures and descriptions of the living species of all classes of 1888 the Victorian indigenous animals. <u>Decade</u>, 17:255-7
- McMahon, J.J. and W.C. Summers, Temperature effects on the developmental rate of squid (<u>Loligo pealei</u>) 1971 embryos. <u>Biol.Bull.Mar.Biol.Lab.,Woods Hale</u>, 141:561-7
- Mercer. M.C., The tropical loliginid squid, <u>Sepioteuthis</u> <u>sepioidea</u> from the northwest Atlantic. <u>J.Fish.Res.Board</u> 1970 <u>Can.</u>, 27(10):1892-3
- ,(ed.), Proceedings of the Squid Workshop, sponsored by the Resource Assessment and Conservation

 Division, Northwest and Alaska Fisheries Center. 19-20 March 1981, Seattle, Washington. NWAFC

 Process.Rep., (81-11):34 p.
- Mesnil, B., Growth and life cycle of squid, <u>Loligo pealei</u> and <u>Illex illecebrosus</u>, from the northwest Atlantic. <u>Sel.Pap.ICNAF</u>, (2):55-69
- L'exploitation des céphalopodes: situation et perspectives. Sci.Pêche, (265):21 p.
- Messenger, J.B., Prey-capture and learning in the cuttlefish, <u>Sepia</u>. <u>Symp.Zool.Soc.Lond.</u>, 38:347-76 1977

- Minervini, R., R. Sequi & F. Barbato, Considerazioni sull'allevamento intensivo di <u>Sepia</u> <u>officinalis</u> (Mollusca: 1982 Cephalopoda) <u>Quad.Ist.Idrobiol.Acquacolt."G.Brunelli" Sabaudia</u>, 2(3):36-9
- Moriyasu, M., Biologie des pêches de céphalopodes benthiques. Application aux éledones, <u>Eledone cirrhosa</u> (Lam., 1981 1798) du Golfe du Lion. Thèse. Université des Sciences et Techniques du Langue du Languedoc, Montpellier, 225 p.
- Moynihan, M. & A.F. Rodaniche, The behaviour and natural history of the Caribbean reef squid, <u>Sepioteuthis</u>

 1982 <u>sepioidea</u>: with a consideration of social, signal and defensive patterns for difficult and dangerous environments. Berlin, Paul Parey. Fortschr. Verhaltenforsch./Adv. Ethol., 25:150 p.
- Muntz, W.R.A., Pupillary response of cephalopods. <u>Symp.Zool.Soc.Lond.</u>, 38:277-85
- Murakami, K., Distribution in relation to environment of squid in the northwest Pacific and the Okhotsk Sea. <u>FAO</u> 1976 <u>Fish.Rep.</u>, (170)Suppl.1:9-17
- Murata, M. et al., Ecological studies on the squid, <u>Todarodes pacificus</u> Steenstrup, in the northern waters of the 1973 Japan Sea in 1971. <u>Bull.Hokkaido Reg.Fish.Res.Lab.</u>, (39):1-25
- Murata, M. & M. Ishi, Some information on the ecology of the oceanic squid, <u>Ommastrephes bartrami</u> (LeSueur) 1977 and <u>Onychoteuthis borealijaponicus</u> Okada, in the Pacific Ocean of northeastern Japan. <u>Bull. Hokkaido Reg.Fish.Res.Lab.</u>, (42):1-23
- Naef, A., Systematische Übersicht der mediterranen Cephalopoden. <u>Pubbl.Stn.Zool.Napoli</u>, 1:11-9
- , Die Cephalopoden. <u>Fauna Flora Golf.Neapel</u>, 35(1)Pt.l No.l:1-148
- , Die Cephalopoden: Systematik. <u>Fauna Flora Golf.Neapel</u>, 35(1)Pt.l.No.2:149-863
- Nesis, K.N., Stimulation of bioluminescena in cephalopods. <u>Oceanology</u>, 16(1):83-5
- Nesis, K.N. & G.A. Shevtsov, Neritic squid (family Loliginidae) in the waters of the Soviet Far East. <u>Sov.J.Mar.</u> 1977 <u>Biol.</u>, 3(3):219-20
- New England Fisheries Development Foundation, Inc., Proceedings of the International Squid Symposium. August 1982 9-12, 1981, Boston, Massachusetts. New York, UNIPUB, 390 p.
- Nixon, N. & P.N. Dilly, Sucker surfaces and prey capture. Symp.Zool.Soc.Lond., 38:447-511 1979
- Odhner, N.H., Die Cephalopoden. <u>Further Zool.Result.Swed.Antarct.Exped.</u>, 1:1-7 1923
- O'Dor, R.K., R.D. Durward & N. Balch, Maintenance and maturation of squid (<u>Illex illecebrosus</u>) in a 15-m 1977 circular pool. <u>Biol.Bull.Mar.Biol.Lab.</u>, Woods Hole, 153:322-35
- O'Dor, R.K., et al., Feeding and growth in capture squid, Illex illecebrosus, and the influence of food availability on growth in the natural population. Sel.Pap.ICNAF, (6):15-21
- _______, Embryonic development of the squid, <u>Illex illecebrosus</u>, and effect of temperature on development rates. <u>J.Northw.Atl.Fish.Sci.</u>, 3:41-5
- Okada, Y.K., Contribution a l'étude des céphalopodes lumineux (notes préliminaires). 1. Organes photogènes 1927 <u>d'Onychoteuthis</u>; établissement d'une nouvelle espèce <u>Onychoteuthis</u> <u>borealjaponicus</u>. <u>Bull.Inst.</u> <u>Océanogr.Monaco</u>, (494):1-7
- Okiyama, M., On the feeding habit of the common squid, <u>Todarodes pacificus</u> Steenstrup, in the offshore region of the Japan Sea. <u>Bull.Japan Sea Reg.Fish.Res.Lab.</u>,31-41
- Okutani, T., Epipelagic decapod cephalopods collected by micronekton tows during the EASTROPAC Expeditions, 1974 1967-1968 (Systematic part). <u>Bull.Tokai Reg.Fish.Res.Lab.</u>, (80):29-118

- Okutani, T., Stock assessment of cephalopod resources fished by Japan. FAO Fish.Tech.Pap., (173):62 p. 1978
- ______, Useful and latent cuttlefish and squids of the world. Tokyo, published by the National Cooperative

 1980 Association of Squid Processors for the 15th Anniversary of its Foundation, 66 p.
- Okutani, T. et al., A survey of decapod cephalopods collected by Shirasu boat seiners operated in Suruga Bay,
 1975 Japan, with special reference to discrimination of juveniles of two loliginid species. Bull.Tokai Reg.
 Fish.Res.Lab., (82):41-55
- Okutani, T. & H. Hatanaka, Distribution of ommastrephid and large-sized loliginid squids. <u>FAO Fish.Rep.,</u> 1976 (170)Suppl.l:4-8
- Okutani, T. & J.A. McGowan, Systematics, distribution and abundance of the epiplanktonic squid (Cephalopoda: 1969 Decapoda) larvae of the California Current, April 1954-March 1957. <u>Bull.Scripps Inst.Oceanogr.</u>, (14):90 p.
- Okutani, T. & M. Murata, A review of the biology of the oceanic squid, <u>Onychoteuthis borealijaponica</u>. <u>In</u>
 1983 Proceedings of the Workshop on the biology and resource potential of cephalopod. Melbourne,
 Australia, 9-13 March 1981, edited by C.F.E. Roper, C.C. Lu & F.G. Hochberg. <u>Mem.Natl.Mus.Vict.</u>,
 (44)
- Orbigny, A.d', Mollusques. <u>In</u> Voyage dans l'Amérique méridionale, Vol.5.Pt.3:758 p. 1834-1846
- Céphalopodes acétabulifères vivants et fossils. <u>In</u> Histoire naturelle générale et particulière; 1834-1848 edited by A. Ferussac and A. d'orbigny. Paris, 366 p.
- , Mollusques. <u>In</u> Histoire naturelle des Iles Canaries, by P.B. Webb and S. Berthelot. Paris, Vol.2 pt.2:117 p.
- , Mollusques vivants et fossils. Paris, 605 p.
- O'Sullivan, D., Biology of Gould's squid in Bass Strait studied. <u>Aust.Fish.</u>, 39(12):18-9 1980
- Packard, A. & F.G. Hochberg, Skin patterning in Octopus and other genera. Symp.Zool.Soc.Lond., 38:191-231
- Palacio, F.J.,A study of coastal cephalopods from Brazil with a review of Brazilian zoogeography. Ph.D. Thesis, 1977 Univ. Miami, 311 p.
- Pascual, E.,Growth and feeding of laboratory reared <u>Sepia</u> <u>officinalis</u>. <u>Invest.Pesq.</u>, 42(2):421-42 1978
- Pavlychev, V.P. & G.A. Shevstov, Vliyanie hidrologicheskikh uslovij na promysel kal'mara <u>Todarodes pacificus</u>
 1977 Steenstrup v severo-zapadnoj chasti Tikhogo okeana. (Effect of hydrological conditions on the fishery of squid, <u>Todarodes pacificus</u> Steenstrup, in the Northwest Pacific). <u>Izv.Tikhookean.</u>
 Nauchno.Issled.Inst.Rybn.Khoz.Okeanogr./Trans.Pac.Res.Inst.Fish.Oceanogr., 101:1-31
- Pereiro, J.A. & J. Bravo de Laguna, Dinámica de la población y evaluación de los recursos del pulpo del Atlántico centro-oriental. <u>Bol.Inst.Esp.Oceanogr.</u>, 5(3):69-105
- Perera, N.M.P.J., Taxonomic study of the Cephalopods, particularly the Teuthoidea (Squids) and Sepioidea 1975 (cuttlefish) in the waters around Sri Lanka. <u>Bull.Fish.Res.Stn.,Colombo</u>, 26(1-2):45-60
- Pfeffer, G., Die Cephalopoden des Hamburger Naturhistorischen Museums. <u>Abh.Naturwiss.Ver.Ham.</u>, 8(4):63-90 1884
- , Synopsis der oegopsiden Cephalopoden. Mitteilungen. Naturhistorischen Museum in Hamburg.

 1900 <u>Jahrb.Hamburg Wiss.Anstalt.(Beiheft)</u>, 17(2):147-98
- ______, Die Cephalopoden. <u>Nord.Plankt.</u>, 2 Pt.9(4):9-116

- Pfeffer, G., Die Cephalopoden der Plankton-Expedition. <u>Ergeb.Plankt.-Exped.Humboldt-Stiftung</u>, 2:815 p. 1912
- Pickford, G.E., <u>Cistopus</u> indicus (Orbigny): a common Indo-Malayan species of octopus. <u>J.Mar.Biol.Ass.Ind.,</u> 1974 16(1):43-8
- Potter, M.A., R.H. Winstanley & A.E. Caton, Australian cephalopod resources. <u>In</u> Proceedings of the Workshop on the biology and resource potential of cephalopods. Melbourne, Australia, 9-13 March 1981; edited by C.F.E. Roper, C.C. Lu & F.G. Hochberg. <u>Mem.Natl.Mus.Vict.</u>, (44)
- Quoy, J.R. & J.P. Gaimard, Mollusques. <u>In</u> Voyage de découvertes de l'Astrolabe pendant les années 1826-1829. 1832 Zoologie, Vol.2 Pt.l:320 p.
- Rancurel, P., Les contenus stomachaux <u>d'Alepisaurus</u> <u>ferrox</u> dans le sud-ouest Pacifique (Céphalopodes). <u>Cah.</u> 1970 <u>ORSTOM (Ser.Océanol.)</u>, 8(4):3-87
- Rang, MS., Documents pour servir à l'histoire naturelle des céphalopodes cryptobranches. <u>Mag.Zool.</u>, 7(Cl.V): n.d. 1-77
- Rathjen, W.F., Northwest Atlantic squids. Mar.Fish.Rev., 35(12):20-6
- Rathjen, W.F., R.F. Hixon & R.T. Hanlon, Squid fishery resources and development in the northwest Atlantic and 1979 Gulf of Mexico. <u>Proc.Gulf Caribb.Fish.Inst.</u>, 31:145-57
- Recksiek, C.W. & H.W. Frey, Biological, oceanographic and acoustic aspects of the market squid, <u>Loligo</u> opalescens Berry. <u>Fish.Bull.Calif.Dep.Fish Game</u>, (169):185 p.
- Rehder, H.A., A new genus and species of squids from the Philippines. <u>Proc.Biol.Soc.Wash.</u>, 58:1-26 1945
- Risso, A., Aperçu sur d'histoire naturelle des Mollusques. <u>In</u> Histoire naturelle des principales productions de 1'Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. vol.4:439 p.
- Roberts, P.E., New Zealand squid resources. <u>Occas.Publ.Fish.Res.Div.N.Z.</u>, (15):90-3 1978
- , The biology of jig-caught arrow squid (<u>Nototodarus</u> spp.) in New Zealand waters. In Proceedings of the Workshop on the biology and resource potential of cephalopods. Melbourne, Australia, 9-13 March 1981, edited by C.F.E. Roper, C.C. Lu & F.G. Hochberg. Mem Natl.Mus.Vict., (44)
- Robson, G.C., A monograph of the recent Cephalopoda. Part 1. Octopodinae. I. London, British Museum 1929 (Natural History), 236 p.
- Notes on the Cephalopoda. 9. Remarks on Atlantic Octopoda, etc. in the Zoologisch Museum,
 Amsterdam. Ann.Mag.Nat.Hist., 3(10):609-18
- ______, A monograph of the recent Cephalopoda. Part 2. The Octopoda, excluding the Octopodinae. 2. 1932 London, British Museum (Natural History), 359 p.
- Rochebrune, A. & J. Mabille, Mollusques. In Mission Scientifique du Cap Horn, 1882-83, 6(2):1-143
- Roeleveld, M.A., A review of the Sepiidae (Cephalopoda) of southern Africa. <u>Ann.S.Afr.Mus.</u>, 59:193-313 1972
- Roper, C.F.E., A study of the genus <u>Enoploteuthis</u> (Cephalopoda: Oegopsida) in the Atlantic Ocean with a 1966 redescription of the type species, <u>E. leptura</u> (Leach, 1817). <u>Dana Rep.</u>, (66):46 p.
- , Systematics and zoogeography of the worldwide bathypelagic squid, genus <u>Bathyteuthis</u> (Cephalopoda: Oegopsida). <u>Bull.U.S.Natl.Mus.</u>, (291):208 p.
- Comparative captures of pelagic cephalopods by midwater trawls. <u>Symp.Zool.Soc.Lond.</u>, 38:61-87

- Roper, C.F.E., Cephalopods. <u>In</u> FAO species identification sheets for fishery purposes. Western central Atlantic 1978 (fishing area 31), edited by W. Fischer. Rome, FAO, Vol.6:pag.var.
- Roper, C.F.E. & K.J. Boss, The giant squid. <u>Sci.Amer.</u>, 246(4):96-105
- Roper, C.F.E., C.C. Lu & F.G. Hochberg (eds), Proceedings of the Workshop on the biology and resource potential of cephalopods. Melbourne, Australia, 9-13 March 1981. Mem.Natl.Mus.Vict., (44):311 p.
- Roper, C.F.E., C.C. Lu Sc K. Mangold, A new species of <u>Illex</u> from the western Atlantic and distributional aspects of other <u>Illex</u> species (Cephalopoda: Oegopsida). <u>Proc.Biol.Soc.Wash.</u>, 82:295-322
- Roper, C.F.E. & M.J. Sweeney, Cephalopods. In FAO species identification sheets for fishery purposes. Eastern 1981 central Atlantic, fishing areas 34,47 (in part); edited by W. Fischer, G. Bianchi & W.B. Scott, Canada Funds-in-Trust. Ottawa, Dept. Fisheries and Oceans Canada, by arrangement with FAO of the United Nations, Vol.6:pag.var.
- Roper, C.F.E. & R.E. Young, A review of the Valbyteuthidae and an evaluation of its relationship with the 1967 Chiroteuthidae (Cephalopoda: Oegopsida). <u>Proc.U.S.Natl.Mus.</u>, 123(3612):I-V
- , The Promachoteuthidae (Cephalopoda: Oegopsida). 1. A reevaluation of its systematic position based on new material from the Antarctic and adjacent waters. Antarct.Res.Ser., 11:203-14
- Roper, C.F.E., R.E. Young & G.L. Voss, An illustrated key to the families of the order Teuthoidea (Cephalopoda). 1969 Smithson.Contrib.Zool., (13):32 p.
- Saito, R., The Japanese fishery (jigging) for <u>Nototodarus</u> <u>sloani</u> in New Zealand waters. <u>FAO Fish.Rep.</u>, 1976 (170)Suppl.l:53-60
- Sakamoto, T., The Japanese northern oceanic octopus fishery. <u>FAO Fish.Rep.</u>, (170)Suppl.1:77-8 1976
- Sakurai, T., Squid and cuttlefish fisheries in Thailand. Paper submitted to the 15th Session of the Indo-Pacific 1972 Fisheries Commission, Wellington, New Zealand, 18-27 October 1972, IPFC/72/SYM 38:10 p.
- Sanders, G.D., Multiphasic retention performance curves: fear of memory? <u>Symp.Zool.Soc.Lond.</u>, 38:435-45
- Sanders, M.J., Revised stock assessment for the cuttlefish, <u>Sepia pharaonis</u>, taken off the People's Democratic 1971 Republic of Yemen. Cairo, UNDP/FAO Project for the Development of Fisheries in Areas of the Red Sea and Gulf of Aden, RAB/77/008/13:44 p. (mimeo)
- Sanders, M.J. & M. Bouhlel, Second report of mesh selection studies conducted in the People's Democratic Republic of Yemen on the cuttlefish, Sepia pharaonis. Cairo, UNDP/FAO Project for the Development of Fisheries in Areas of the Red Sea and Gulf of Aden, RAB/77/008:29 p. (mimeo)
- Sarvesan, R.,On the occurrence of <u>Sepia</u> <u>trygonina</u> (Rochebrune) (Cephalopoda: Sepiidae) in the Gulf of Mannar. 1976 <u>Indian J.Fish.</u>, 23(1-2):257-60
- Sasaki, M., On three interesting new oegopsids from the Bay of Sagami. <u>J.Coll.Agric.Tohuku Imp.Univ.Sapporo,</u> 1915 6(6):131-50
- Notes on the Cephalopoda. 2. Diagnoses of four new species of Polypus. Annot.Zool.Jap., 9(3):364-7
- , On a new eight-armed squid from Hokkaido, <u>Gonatopsis</u> <u>borealis</u> n.sp. <u>Annot.Zool.Jap.</u>, 10:203-7
- , A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters.

 1929 J.Coll.Agric.Hokkaido Imp.Univ., 20(Suppl.):357 p.
- Sato, T., Results of exploratory fishing for <u>Dosidicus</u> <u>gigas</u> (d'Orbigny) off California and Mexico. <u>FAO Fish.Rep.,</u> 1976 (170)Suppl.l:61-7
- Sato, T. & H. Hatanaka, A review of assessment of Japanese distant-water fisheries for cephalopods. <u>In</u>
 (in press) Advances in assessment of world cephalopod resources; edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>,
 (231):145-80

- Saunders, W.B., The species of living <u>Nautilus</u> and their distribution. <u>Veliger</u>, 24(1):8-17 1981
- Serchuk, F.M. & W.F. Rathjen, Aspects of the distribution and abundance of the long-finned squid, <u>Loligo</u> <u>pealei</u>, 1974 between Cape Hatteras and Georges Bank. <u>Mar.Fish.Rev.</u>, 36(1):10-7
- Shin, P.K.S., The Hong Kong squid fishery. <u>In</u> Report of the Third Session of the Standing Committee on 1982 Resources Research and Development of the Indo-Pacific Fishery Commission. Sydney, Australia, 24 April to 4 May 1982. <u>FAO Fish.Rep.</u>, (275):112-4
- Silas, E.G. et al., The exploited squid and cuttlefish resources of India: a review. <u>Tech.Ext.Ser.Mar.</u> 1983 Fish.<u>Inf.Serv.</u>,Cochin, (34):1-16
- Sissenwine, M.P. & A.M. Tibbetts, Simulating the effect of fishing on squid (<u>Loligo</u> and <u>Illex</u>) populations off the 1977 northeastern United States. <u>Sel.Pap.ICNAF</u>, (2):71-84
- Smith, H.K., Fishery and biology of Nototodarus gouldi (McCoy, 1888) in western Bass Strait. In Proceedings of the Workshop on the biology and resource potential of cephalopods. Melbourne, Australia, 9-13 March 1981; edited by C.F.E. Roper, C.C. Lu & F.G. Hochberg. Mem.Natl.Mus.Vict., (44)
- Solis, M.J., Aspectos biológicos del pulpo <u>Octopus</u> <u>maya</u> Voss and <u>Solis.Publ.Inst.Nac.Invest.Biol.Pesq.,Mex.,</u> 1967 (18):90 p.
- South China Sea Fisheries Development and Coordination Programme, Joint ADB/FAO (SCSP-INFOFISH) market studies. Vol.1. Highlights and conclusions. Manila, FAO, South China Sea Fisheries Development and Coordinating Programme, SCS/DEV/83/21:22 p.
- Sowerby, G.B., Monograph of the genus $\underline{\text{Nautilus}}$. $\underline{\text{In}}$ Thesaurus conchyliorum, Vo1.2:463-5 1849
- Steenstrup, J., Kjaeber af en kolossal Blaecksprutter (O. pteropus). <u>K.Dan.Vidensk.Selsk.Forh.</u>, 1855:199-200 1855
- Hectocotyldannelsen hos Octopodslaegterne <u>Argonauta</u> oz <u>Tremoctopus</u>, oplyst ved Iagttagelse af lignende Dannelser hos Blaekspruttern i Almindelighed. <u>K.Dan.Vidensk.Selsk.</u>Skr. 4(5):185-216
- , Oplysning om en ny art af blaeksprutter, <u>Dosidicus</u> <u>eschrichtii</u>. <u>K.Dan.Vidensk.Selsk.Forh.</u>, 1857:11-4
- , <u>Hemisepius</u>, ennyslaegt of Sepia-Blaeksprutternes Familie. <u>K.Dan.Vidensk.Selsk.Skr.(5)</u>, 10(7):
- , De Ommatostrephagtige blaeksprutter indbyrdes forhold. <u>K.Dan.Vidensk.Selsk.Forh.</u>, 1880:73-110
- , <u>Sepiadarium</u> og <u>Idiosepius</u>, to nye Slaegter af Sepiernes Familie. Med Bemaerkninger om de to Leslaegtede Sepioloidea, d'orbigny og <u>Spirula</u> Lamk. <u>K.Dan.Vidensk.Selsk.Skr.(Ser.6)</u>, 1(3):213-42
- Stuttaford, M., Squid handling on board U.S. quality trials. <u>S.Afr.Shipp.News Fish.Ind.Rev.</u>, 36(9):27-9 1981
- Summers, W.C., The growth and size distribution of current year class, <u>Loligo</u> <u>pealei</u>. <u>Biol.Bull.Mar.Biol.Lab.</u>, 1968 <u>Woods Hole</u>, 135:366-77
- , Winter population of <u>Loligo pealei</u> in the Mid-Atlantic <u>Bight.Biol.Bull.Mar.Biol.Lab.,Woods Hole,</u> 137:202-16
- , Age and growth of <u>Loligo</u> <u>pealei</u>, a population study of the common Atlantic coast squid. <u>Biol.Bull.</u>

 Mar.Biol.Lab.,Woods Hole, 141:189-201
- Suzuki, H., One significant by-catch of <u>Illex</u> <u>coindetti</u> (Verany) from trawling off Guinea Bissau, Africa. <u>FAO</u> 197 <u>Fish.Rep.</u>, (170)Suppl.1:76
- Suzuki, H. & M. Hamabe, Ecological studies on common squid, <u>Todarodes pacificus</u> Steenstrup, in the offshore area in the Sea of Japan. 1. The condition of the squid shoals moving across the Tsushima warm current front viewed from distribution and structure of the north-going shoals. <u>Bull.Tokai Reg.Fish.</u>
 Res.Lab., 86:71-80

- Testaverde, S.A., Shortfin squid, <u>Illex</u> <u>illecebrosus</u>, attacks on trawl-captured fish. <u>Mar.Fish.Rev.</u>, 39(12):23
- Thiele, J., Die Cephalopoden der deutschen Südpolar-Expedition. <u>Dtsch.Südpol.-Exped.(Zool.)</u>, 16(8):433-66 1921
- Tibbetts, A.M., Squid fisheries (<u>Loligo pealei</u> and <u>Illex</u> illecebrosus) off the northeastern coast of the United 1977 States of America, 1963-74. <u>Sel.Pap.ICNAF</u>, (2):85-109
- Toll, R.B., The comparative morphology of the gladius in the Order Teuthoidea (Mollusca: Cephalopoda) in 1982 relation to systematics and phylogeny. Ph.D. Thesis, Univ. Miami, 390 p.
- Tomiyama, T. & T. Hibiya, Fisheries in Japan: squid and cuttlefish. Tokyo, Japan Marine Products Photo 1978 Materials Association, 161 p.
- Troschel, F., Bemerkungen über die Cephalopoden von Messina. Arch.Naturgesch., 23(1):4076
- Unar, M. & M. Sahibi, A small-scale squid fishery in Alas Strait, West Nusatenggara. In Report of the Third

 1982 Session of the Standing Committee on Resources Research and Development of the Indo-Pacific
 Fishery Commission. Sydney, Australia, 24 April to 4 May 1982. FAO Fish.Rep., (275):116-7
- Van Heukelem, W.F., Laboratory maintenance, breeding, rearing and biomedical research potential of the 1977 Yucatan octopus (Octopus maya). Lab.Anim.Sci., 27:852-9
- Verany, J.B., Mémoire sur six nouvelles espèces de Céphalopodes trouvés dans la Méditerranée à Nice. Mem.R. 1839 Accad. Sci. Torino, 2(1):91-8
- Verrill, A.E., The cephalopods of the north-eastern coast of America Part 2. The smaller cephalopods, including the "squids" and the octopi, with other allied forms. <u>Trans.Conn.Acad.Arts Sci.</u>, 5(6):259-446
- , A report on the Cephalopods and on some additional species dredged by the U.S. Fish Commission steamer "Fish Hawk", during the season of 1880. <u>Bull.Mus.Comp.Zool.Harv.</u>, 8(5):99-116
- Voss, G.L., A new family, genus and species of myopsid squid from the Florida Keys. <u>Bull.Mar.Sci.Gulf Caribb.</u>, 1953 2(4):602-9
- , A review of the cephalopods of the Gulf of Mexico. <u>Bull.Mar.Sci.Gulf Caribb.</u>, 6(2):85-178
- , Potentialities for an octopus-and squid fishery in the West Indies. <u>Proc.Gulf Caribb.Fish.Inst.</u>, 12:129-35
- A monograph of the Cephalopoda of the North Atlantic. 1. The family Lycoteuthidae.

 Bull.Mar.Sci.Gulf Caribb., 12(2):264-305
- , Cephalopods of the Philippine Islands. <u>Bull.U.S.Natl.Mus.</u>, (234):180 p.
- 1963
- , Thecephalopod resources of the Caribbean Sea and adjacent regions. <u>FAO Fish.Rep.</u>, (71.2): 307-
- Cephalopods collected by the R/V JOHN ELLIOTT PILLSBURY in the Gulf of Panama in 1967.

 Bull.Mar.Sci., 21(1):1-34
- , Cephalopod resources of the world. FAO Fish.Circ., (149):75 p.
 - 19/3
- , Present status and new trends in cephalopod systematics. <u>Symp.Zool.Soc.Lond.</u>, 38:49-60
- Voss, G.L., L. Opresko & R. Thomas, The potentially commercial species of octopus and squid of Florida, the Gulf 1973 of Mexico and the Caribbean Sea. <u>Univ.Miami Sea Grant Field Guide Ser.</u>, (2):23 p.
- Voss, G.L. & M. Solis, Octopus maya, a new species from the Bay of Campeche, Mexico. Bull.Mar.Sci., 16(3): 1966 615-25

- Voss, G.L. & G.R. Williamson, Cephalopods of Hong Kong, Hong Kong, Government Press, 138 p. 1971
- Voss, N.A., A monograph of the cephalopoda of the North Atlantic: the family Histioteuthidae. <u>Bull.Mar.Sci.</u>, 1969 19(4):713-867
- , A generic revision of the Cranchiidae (Cephalopoda: Oegopsida). <u>Bull.Mar.Sci.</u>, 30(2):365-412
- Wakiya, Y. & M. Ishikawa, Review of myopsid cephalopods in Japan. Zool.Mag., Tokyo, 33:279-92 1921
- Wells, M.J. & J. Wells, Optic glands and the endocrimology of reproduction. Symp.Zool.Soc.Lond., 38:525-40 1977
- Wiborg, K.F., <u>Gonatus</u> <u>frabricii</u> (Lichtenstein) en mulig fiskeriressurs i norskehavet (<u>Gonatus</u> <u>fabricii</u>, 1979 Lichtenstein, a possible fishery resource in the Norwegian Sea). <u>Fisk.Havet.</u>, 1979(1):33-46
- Worms, J., Biologie et pêche des céphalopodes. 1. Techniques de pêche et de conditionnement. <u>Pêche Marit.,</u> 1978 57(1207):575-82
- , Biologie et pêche des céphalopodes. 2. La pêche en Mediterranée: évolution et perspectives.

 1979 <u>Pêche Marit.</u>, 58(1212):169-72
- , World fisheries for cephalopods: a synoptic overview. <u>In</u> Advances in assessment of world (in press) cephalopod resources, edited by J.F. Caddy. <u>FAO Fish.Tech.Pap.</u>, (231):1-20
- Wormuth, J.H., The biogeography and numerical taxonomy of the Oegopsid squid family Ommastrephidae in the 1976 Pacific Ocean. <u>Bull.Scripps Inst.Oceanogr.</u>, (23):90 p.
- Wulker, G., Über japanische Cephalopoden,Beiträge zur Kenntnis der Systematik und Anatomie der 1910 Dibranchiaten. <u>Abh.Bayer.Akad.Wiss.Math.-Phys.Kl.</u>, 3(Suppl.I):1-77
- Yamashita, Y., The octopus fishery of Hokkaido. <u>FAO Fish.Rep.</u>, (170)Suppl.l:142-7
- Yasui, T., Fluctuations in abundance of the winter subpopulation of <u>Todarodes</u> <u>pacificus</u>. <u>FAO Fish.Rep.</u>, (170) 1976 Suppl.1:24-9
- Young, J.Z., Brain, behaviour and evolution of cephalopods. Symp.Zool.Soc.Lond., 38:377-434 1977
- Young, R.E., The systematics and areal distribution of pelagic cephalopods from the seas off Southern California.

 1972 Smithson.Contrib.Zool., (97):159 p.
- , Ventral bioluminescent countershading in midwater cephalopods. <u>Symp.Zool.Soc.Lond.</u>, 38:161-90
- Young, R.E. & C.F.E. Roper, The Batoteuthidae, a new family of squid (Cephalopoda: Oegopsida) from Antarctic 1968 waters. <u>Antarct.Res.Ser.</u>, 11:185-202
- , A monograph of the Cephalopoda of the North Atlantic. The family Joubiniteuthidae (Suborder Oegopsida). Smithson.Contrib.Zool., (15):10 p.
- A monograph of the Cephalopoda of the North Atlantic. The family Cycloteuthidae (Suborder 1969a Oegopsida). Smithson.Contrib.Zool., (5):24 p.

9. INDEX OF SCIENTIFIC AND INTERNATIONAL FAO NAMES

EXPLANATION OF THE SYSTEM

The index applies exclusively to Chapter 2 through 5, pertaining to information by species

Type faces used:

Italics: Valid scientific names (genera and species)

: Synonyms (preceeded by an asterisc)

Roman: International (FAO) species

PAGE

		Atlantic banded octopus	212
Λ		Atlantic bird squid ^ Atlantic bobtail	183 66
\boldsymbol{A}		Atlantic gonate squid *atlantica, Histiopsis	139
*Abraliopsis joubini	123	atlantica, Histiopsis	149 66
*Abraliopsis scintillans	123	Australian giant cuttlefish	32
abyssicola, Bathyteuthis *Acanthosepion enoplon	153 50	australis, Sepia australis, Sepioteuthis	34 109
*accidentalis, Sepioteuthis	111	austraits, septeteamis	100
aculeata, Sepia adami, Pholidoteuthis	$\frac{30}{145}$		
aegina, Octopus	192		
*affinis, Sepia	56		
African cuttlefish African squid	$\begin{array}{c} 35\\112\end{array}$	В	
africana, Alloteuthis	112	D	
*aldrovandi, Octopus *alessandrini, Theliodioteuthis	218 121	*bairdi, Octopus	222
Alloteuthis africana	112	*banksi, Loligo	128
Alloteuthis media	113	banksi, Onychoteuthis	128
Alloteuthis subulata Alluroteuthis antarcticus	$\frac{114}{152}$	*banksi, Onychoteuthis *bartrami, Loligo	129 175
*aluei, Entomopsis	155	bartrami, Ommastrephes	175
*alumnus. Nautilus *ambiguus. Nautilus	26 26	*bartrami, Sthenoteuthis Bartsch's squid	175 115
*Amplisepia parysatis	32	bartschi, Uroteuthis	115 222
*Amplisepia verreauni	32 121	Bathypolypus arcticus	222 153
Ancistrocheirus lesueuri Ancistroteuthis lichtensteini	127	BATHYTEUTHIDAE Bathyteuthis abyssicola	153
*Ancistroteuthis robusta	131	Batiluria	153
Andrea cuttlefish andreana, Sepia	31 31	Batilurias Beka squid	153 84
*andreanoides, Sepia	41	beka, Loligo	84
Angel squid	127 168	Bellybutton nautilus	$\begin{array}{c} 26 \\ 223 \end{array}$
Angola flying squid angolensis, Todarodes sagittatus	168	Benthoctopus januari *Benthoteuthis megalops	153
anonychus, Berryteuthis	142	*bernudensis, Octopus	204
*anonychus, Gonatus Antarctic cranch squid	142 189	berryi, Euprymna Berryteuhis magister	69 143
Antarctic flying squid	166	Berryteuthis anonychus	142
Antarctic neosquid	$\begin{array}{c} 152 \\ 221 \end{array}$	bertheloti, Sepia	35
Antarctic octopuses antarcticus/ Alluroteuthis	152	*biangutata, Sepioteuthis Big blue octopus	111 196
antillarum, Ornithoteuthis antillensis, Rossia	183	Bigeye inshore squid	95
Antilles bobtail	$\begin{array}{c} 72 \\ 72 \end{array}$	Bigfin reef squid** *bilineata, Sepioteuthis	110 109
apama, Sepia	32	birostrata, Sepiola	66
*apollyon, Octopus dofleini Arabian cuttlefish	$\frac{198}{33}$	*biserialis, Sepia *bleekeri, Doryteuthis	37 84
arabica, Sepia	33	bleekeri, Loligo (Doryteuthis)	84
ARCHITEUTHIDAE	147	Bobtail squids	61
Architeuthis arcticus, Bathypolypus	$\begin{array}{c} 147 \\ 222 \end{array}$	*bonelliana, Cranchia *bonelliana, Histioteuthis	149 149
*arcticus. Octopus	222	*bonnellii, Cranchia bonnellii, Histioteuthis	149
*arctipinnis, Sepioteuthis *Arctosepia braggi	$\begin{array}{c} 109 \\ 36 \end{array}$	bonnellii, Histioteuthis Boreal clubhook squid	149 129
*arcturi, Stigmatoteuthis	150	borealijaponica, Onychoteuthis	129
Argentine shortfin squid	159 159	borealis, Gonatopsis	140 136
argentinus, Illex *argentinus, Ommastrephes	159	Boreoatlantic gonate squid Boreopacific gonate squid	140
argo, Argonauta	225	boschmai, Pholidoteuthis	146
Argonauta argo Argonauta común	$\frac{225}{225}$	*boscii, Octopus Bottletail squid	209 60
Argonautas	225	Bottletail squids BRACHIOTEUTHIDAE	60
Argonaute papier	$\begin{array}{c} 225 \\ 225 \end{array}$	BRACHIOTEUTHIDAE Brachioteuthis picta	154 154
Argonautes papier ARGONAUTIDAE	225	Brachioteuthis riisei	155
Argonauts	225	*braggi, Arctosepia	36
Arm squids *Ascarosepion verreauxi	$\begin{array}{c} 154 \\ 46 \end{array}$	<i>braggi, Sepia</i> Braqui luria común	36 155

PAGE

Braquiluria moteada	154	Calmar à gros yeux	95
Braquilurias * <i>brasiliensis, Loligo</i>	154 98	Calmar baril Calmar budo	104 89
*brasil <i>iensis, Loligo</i> *brasi <i>liensis, Loligo</i> *brasia Masshita	102	Calmar cracheur	84 101
*brevia, Moschites brevimana, Sepia	219 37	Calmar Creole Çalmar de roche austral	109
* <i>brevipinna, Toligo</i> *brevis <i>Toligo</i>	115 115	Calmar de Sao Paulo Calmar doigtier commun	102 116
*brevis, <i>Loligo</i> brevis, <i>Lolliguncula</i>	115	Calmar doigtier de Guinée	117
*brevis, Sepioteuthis briareus, Octopus	109 193	Calmar du Cap Calmar du Surinam	100 105
Broadback cuttlefish Broadclub cuttlefish	54 42	Calmar épée Calmar fléche	88 98
Broadtail shortfin squid	160	Calmar fléchette	119
*brogniartii, Loligo Brownstriped octopus	160 194	Calmar indien Calmar japonais	87 93
Budo squid	89 89	Calmar japonais Calmar kobi Calmar lancette	94 85
budo, Loligo edulis <i>bullisi, Rossia</i> Bully bobtail	73	Calmar mignon	106
Bumblebee octopus	$\begin{array}{c} 73 \\ 201 \end{array}$	Calmar mitre Calmar opale	86 96
burryi, Octopus	$\frac{194}{216}$	Calmar patagon	92 111
*bursarius, Cistopus Butterfly bobtail	67	Calmar ris Calmar siboga	103
		Calmar tépo Calmar tonnelet	115 110
		Calmar totam Calmars	97 80
		Calmars	156
C		Calmars côtiers Cape Hope squid	$\begin{array}{c} 80 \\ 100 \end{array}$
C		*capensis, Sepia	34
Calamar	107	Caribbean reef octopus Caribbean reef squid	193 111
Calamar balilla Calamar beka	$^{106}_{84}$	Carol bobtail caroli, Neorossia	$\begin{array}{c} 76 \\ 76 \end{array}$
Calamar budo Calamar buril	89	caroli. Ommastrephes	177
Calamar dardo	104 119	*caroli, Ommatostrephes *caroli, Rossia	$\begin{array}{c} 177 \\ 76 \end{array}$
Calamar de arrecife Calamar de Sao Paulo	$\begin{array}{c} 111 \\ 102 \end{array}$	Casseron africain Casseron bambou	112 113
Calamar dedal	116	Casseron commun	114
Calamar dedal de Guinea Calamar dedal panameño	117 118	Casserons Chambered nautiluses	80 25
Calamar del Cabo Calamar doigtier panaméen	100 118	Chestnut octopus <i>chinensis, Loligo</i>	195 86
Calamar espada	88	Chipiloua commun	187
Calamar flécha Calamar indico	98 87	Chipilouas Chipirón volantin	187 187
Calamar insular Calamar ianonés	$\begin{array}{c} 101 \\ 93 \end{array}$	Chipirones *chiroctes, Loliolopsis	187 119
Calamar japonés Calamar kobi	94	Choquito con punta	50
Calamar lanceolado Calamar manopla	85 110	Choquito sin punta * chromatus, Octopus	$\begin{array}{c} 38 \\ 204 \end{array}$
Calamar mitrado Calamar ojigrande	86 95	*chuni, Stigmatoteuthis	$\begin{array}{c} 150 \\ 218 \end{array}$
Calamar ojigrande Calamar opalescente	96	*ci <i>rrhosus, Octopus</i> cirrosa, Eledone	218
Calamar pálido Calamar patagónico	97 92	*Cistopus burşarius Cistopus <i>indicus</i>	$\frac{216}{216}$
Calamar roquero austral Calamar siboga	$\begin{array}{c} 109 \\ 103 \end{array}$	Cloquitos *clouei, Entomopsis	27 155
Calamar surinames	105	*cocco. Octopuŝ	215
Calamar veteado Calamares	90 80	Coffeebean scaled squid *coindeti, Illex illecebrosus	146 160
Calamarete Calamaretes	115 80	coindetii. Illex	160 160
Calamarin africano	112	*coindetii, Loligo *collinsi, Histioteuthis	149
Calamarin menor Calamarin picudo	113 114	Combed octopus Common arm squid	219 155
Calamarines	80 151	Common bobtail Common clubhook squid	71 128
*calliteuthis elongata	131	Common Clubhook Squiu	140

PAGE

TAGE	IA
E 195 127 129	104
128 <i>eblanae, Toďaropsis</i> 132 <i>edulis, Loligo</i>	164 164 88
134 <i>Eledone cirrosa</i> 133 Elédone commune	$\begin{array}{c} 111 \\ 218 \\ 218 \end{array}$
188 Eledone moschata	$\begin{array}{c} 219 \\ 220 \\ 220 \end{array}$
149 Eledone peigne 188 Elédones antarctiques	219 221 37
188 Elĕgant cuttlefish 124 <i>*elliptica, Sepia</i>	38 40
53 <i>*elongata, Calliteuthis</i> 27 <i>elongata, Histioteuthis</i>	39 151 151
204 Elongate jewell squid 196 Emperor nautilus Encornet	$ \begin{array}{r} 151 \\ 26 \\ 107 \end{array} $
Encornet ailes courtes Encornet atlantique Encornet atlantoboréal	$ \begin{array}{r} 142 \\ 139 \\ 136 \end{array} $
Encornet austral Encornet bande voilette Encornet boréopacifique	$ \begin{array}{r} 144 \\ 180 \\ 140 \end{array} $
Encornet boubou Encornet bouquet	122 172 138
124 Encornet bras courts comm 124 Encornet bras courts orné	
119 Encornet carol 153 Encornet dos orange	177 178 185
197 Encornet éventail 187 <u>E</u> ncornet fuiripin	170 173 182
119 Encornet l'umière 150 Encornet lumineux	123 179 137
198 Encornet mako 150 <u>E</u> ncornet minami	141 174 147
55 Encornet oiseau 84 Encornet outre commun	183 189
98 Encornet poulpe dana 102 Encornet rouge	184 124 160
181 Encornet rouge argentin 181 Encornet rouge nordique	163 159 162
69 Encornet veíné 87 <u>E</u> ncornet vitreux	143 90 186
Encornets Encornets	175 80 120
Encornets Encornets	135 144 156
Encornets monstres Encornets outres	154 147 188
Encornets poulpes Enope squids	124 120
	47 211 195 127 129 130 *eblanae, Loligo 128 eblanae, Todaropsis 132 edulis, Loligo 131 *ehrhardti. Sepioteuthis 134 Eledone corrosa 133 Elédone commune 125 Eledone massyae 149 Elédone peigne 188 Elédone peigne 188 Elédone peigne 189 elegans, Sepia 181 Elégant cuttlefish 124 *elliptica, Sepia 124 elobyana, Sepia 135 *elongata, Histioteuthis 149 Elénore nautilus 150 Encornet 160 Emperor nautilus 170 Encornet atlantoboréal 181 Encornet bande voilette 182 Encornet boréopacifique 183 Encornet bras courts 184 Encornet bras courts 185 Encornet bras courts 186 Encornet bras courts 187 Encornet bras courts 188 Elegant cuttlefish 198 Encornet dos orange 199 Encornet bras courts 199 Encornet cachalot 199 Encornet dos orange 153 Encornet étoile 197 Encornet fétoile 197 Encornet fétoile 197 Encornet géant 198 Encornet lumineux 198 Encornet lumineux 198 Encornet madokai 198 Encornet madokai 198 Encornet madokai 198 Encornet mako 150 Encornet mako 151 Encornet mako 152 Encornet mako 153 Encornet rouge apointe 154 Encornet rouge 155 Encornet rouge argentin 156 Encornet rouge argentin 167 Encornet rouge argentin 178 Encornet rouge nordique 181 Encornet rouge argentin 182 Encornet rouge argentin 183 Encornet rouge nordique 184 Encornet rouge nordique 185 Encornets 186 Encornets bras courts 186 Encornets bras courts 187 Encornets bras courts 188 Encornets bras courts 189 Encornets bras courts 180 Encornets 180 E

	PAGE		PAGE
Enoploluria centellante Enoploluria orejuda Enoploluria rómbica Enoplolurias *enoplon. Acanthosepion ENOPLOTEUTHIDAE *Entomopsis aluei *Entomopsis clouei *Entomopsis velaini equalis, Semirossia *eschrichti, Dosidicus esculenta, Sepia *etheridgei, Loligo Euaxoctopus pillsburyae *Eucleoteuthis luminosa Euprymna berryi Euprymna morsei *Euprymna similis European common squid European flying squid European squid	123 122 121 120 50 120 155 155 155 77 181 40 86 214 179 69 70 70 114 169	Globito del Pacífico boreal Globito reluciente Globito robusto Globito tierno Globitos globosus, Octopus Gloomy octopus Golden cuttlefish Gonalura alicorta Gonalura atlántica Gonalura atlántica Gonalura madokai Gonalura madokai Gonalura magister Gonalura magister Gonalura pacificoboreal Gonalura Sonalura Gonalura magister Gonalura magister Gonalura magister Gonalura mako Gonatura mako Gonatura seguids Gonaturas Gonate squids Gonatopsis borealis Gonatopsis makko *Gonatus anonychus Gonatus fabricii *Gonatus fabricii Gonatus madokai	75 77 74 78 61 200 209 40 142 139 136 138 141 140 135 135 141 142 136 139 141
fabricii, Gonatus *fabricii, Gonatus *fabricii, Onychoteuthis *faeroensis, Octopus *fang-siao, Octopus filippovae, Todarodes *filosus. Octopus Flowervas jewell squid Flying squids forbesi, Loligo *formosana, Loligo *formosana, Sepia Fourhorn octopus Frog cuttlefish	136 139 136 222 206 166 201 150 156 90 86 51 217 46	*Gonatus magister Gonatus middendorffi *Gonatus steenstrupi Gould's flying squid gouldi, Nototodarus *gouldi, Nototodarus sloani *gouldi, Nomastrephes *gracilis, Verrillida *grandipes, Loligo edulis Greater argonaut Greater hooked squid Greater shining bobtail *groenlandicus, Octopus Gros poulpe bleu Guinean cuttlefish Guinean thumbstall squid *guinensis, Sepioteuthis	143 138 143 139 170 170 170 155 89 225 130 77 222 196 39 117
G		Н	
gahi, Loligo Giant squid Giant squids giardi, Pterygioteuthis **giganteus, Ommastrephes gigas, Dosidicus **gigas, Ommastrephes **gilbertianus, Octopus Glacial squid Glacial squids glacial squids glacial squids Globe octopus Globito Globito Globito antillano Globito Carolino Globito de Tortugas	91 147 147 122 181 181 181 198 144 144 144 186 200 68 72 73 76 76	hamiltoni, Mesonychoteuthis Hawaiian flying squid hawaiiensis, Nototodarus *hawaiiensis, Ommastrephes *heiniptera, Loligo *hercules, Sepia *Heteroteuthis tenera *heylei, Sepiella *Histiopsis atlantica HISTIOTEUTHIDAE *Histioteuthis bonelliiana Histioteuthis bonnellii *Histioteuthis dofleini Histioteuthis elongata *Histioteuthis rüppelli *hongkongensis, Octopus Hooded cuttlefish	189 172 172 172 172 172 115 42 78 58 149 148 149 149 149 150 151 149 198

PAGE PAGE

Hooked squids Horned octopus *horsti, Octopus humelincki, Octopus hvadesi, Martialia Hyaloteuthis pelagica	125 218 196 201 185 186	*kagosh imensis, Octopus *kensaki, Doryteuthis Kisslip cuttlefish knipovitchi, Moroteuthis Kobi cuttlefish Kobi squid kobiensis, Loligo kobiensis, Sepia	192 88 44 131 41 94 94
illecebrosus, Illex *Illecebrosus, Illex *Illecebrosus, Illex *Illecebrosus, Loligo *illecebrosus, Ommastrephes Illex argentinus Illex coindetii Illex illecebrosus *illex illecebrosus vilacabrosus	161 161 161 161 159 160 161	kochii, Sepiádariun *krempli, Sepioteuthis L	60 109
*Illex illecebrosus illecebrosus Illex oxygonius Indian squid *indica, Sepia *indica, Sepioteuthis indicus, Cistopus *indicus, Octopus inermis, Sepiella ingens, Moroteuthis *ingens, Onychoteuthis *lnioteuthis morsei Inshore squids * insignis, Nototodarus Island inshore squid *italica, Sepia	161 163 87 30 109 216 216 56 130 70 80 174 101 37	latimamus, Sepia Lentil bobtail *lentus, Octopus LEPIDOTEUTHIDAE Lesser flying squid Lesser shining bobtail lessoniana, Sepioteuthis *Lestoteuthis robusta *lesueuri, Onychoteuthis lesueuri, Ancistrocheirus lichtensteini, Ancistroteuthis *lichtensteini, Onychoteuthis *litiana, Solitosepia Lilliput longarm octopus Little squid Lobed octopus Lobedsis, Octopus LOLIGINIDAE Loligo (Doryteuthis) bleekeri Loligo (Doryteuthis) sibogae Loligo (Doryteuthis) sibogae Loligo (Doryteuthis) singhalensis	42 72 222 145 164 78 109 134 121 127 127 127 203 203 80 84 98
januari, Benthoctopus *januari, Octopus January octopus Japanese bobtail Japanese flying squid Japanese spineless cuttlefish Japanese squid japanese squid japanese squid japonica, Sepiella Jewell squids Jibia africana Jibia africana Jibia antartica Jibia gigante Jibias * joubini, Abraliopsis joubini, Octopus Joyeluria alargada Joyeluria floral Joyeluria membranosa Joyelurias Jumbo flying squid	223 223 223 655 167 132 588 93 588 148 148 156 123 202 151 150 149 148 182	*Loligo (bot) viculits) singilaleisis *Loligo banksi *Loligo bartrami Loligo brasiliensis *Loligo brasiliensis *Loligo brevipinna *Loligo brevipinna *Loligo brevipinna *Loligo chinensis *Loligo chinensis *Loligo coindetii *Loligo diomedeae Loligo duvauceli *Loligo edulis *Loligo edulis budo *Loligo edulis budo *Loligo edulis grandipes *Loligo etheridgei Loligo etheridgei Loligo formosana Loligo formosana Loligo jaho *Loligo illecebrosus Loligo illecebrosus Loligo japonica Loligo kobiensis *Loligo marmorae	103 128 175 84 98 102 115 115 160 119 87 164 88 89 89 86 90 86 91 115 161 115 115 115 115 115 115 115 11

	PAGE		PAGE
Loligo ocula Loligo opalescens *Loligo oshimai *Loligo oualaniensis *Loligo pallida *Loligo patlida *Loligo pealei *Loligo pealei *Loligo pillae *Loligo piscatorun Loligo reynaudi Loligo roperi *Loligo sagittata *Loligo sagittata *Loligo sagittatus Loligo sarpaulensis *Loligo senpaulensis *Loligo senroidea *Loligo stearnsi *Loligo sumatrensis Loligo sumatrensis Loligo surinamensis *Loligo todarus Loligo todarus Loligo todarus Loligo vanicoriensis Loligo vanicoriensis Loligo vulgaris	95 95 87 180 97 91 97 160 161 100 101 162 111 95 114 84 105 106 169 106 180 107	M macromphalus, Nautilus macropus, Octopus macrosoma, Rossia *macrosoma, Sepiola *Macrotritopus Madokai gonate squid madokai, Gonatus madokai's cuttlefish magister, Berryteuhis *magister, Gonatus *maindroni, Sepiella makko, Gonatopsis Mako gonate squid *malayana, Sepioteuthis *malayense, Sepiadarium Map octopus Marbled octopus *marginalis, Nautilus perforatus *marmorae, Loligo	26 204 74 74 78 197 137 45 45 143 143 56 141 141 109 60 214 199 26
	107 119 119 115 117 118 104 43 97 204 43 132 43 152 146 149 145 151 150 145 148 152 153 179		113 196 185 219 109 205 113 113 153 147 206 117 35 189 46 205 61 56 138 113 70 72 72 86
luminosa, Symplectoteuthis Luminous flying squid *lunulata, Sepioteuthis Luria boreal Luria escamuda Luria escamuda cafetal Luria ganchuda Luria glacial Luria paloma Lurias Lurias Lurias escamudas Lurias glaciales Lurión común Lurión japonés Lurión liso Lurión máximo Lurión rugoso Luriones lycidas, Sepia	179 179 109 129 145 146 128 144 127 125 145 144 130 132 131 134 133 125 44	Moon octopus *moretoni, Nautilus perforatus Moroteuthis ingens Moroteuthis knipovitchi Moroteuthis lönnbergi Moroteuthis robsoni Moroteuthis robustus morsei, Euprymna *morsei, Inioteuthis moschata, Eledone *moschatus, Octopus *Moschites brevia *mozambica, Sepia murrayi, Sepia Musky octopus	207 26 130 131 132 133 134 70 70 220 220 219 42 46 220

	PAGE		PAGE
Nautile bouton Nautile flammé Nautile ombligo Nautiles NAUTILIDAE Nautilos alumnus *Nautilus alumnus *Nautilus alumnus *Nautilus ambiguus Nautilus macromphalus *Nautilus perforatus marginalis *Nautilus perforatus moretoni *Nautilus perforatus perforatus Nautilus perforatus perforatus Nautilus perforatus perforatus Nautilus penporatus *Nautilus repertus *Nautilus stenomphalus Needle cuttlefish *neoguinaica, Sepioteuthis Neoluria antártica Neolurias Neolurias Neolurias Neon flying squid *Neorossia caroli Neosquids NEOTEUTHIDAE nipponensis, Sepiolina *nipponensis, Stoloteuthis North Atlantic octopus North Pacific bobtail North Pacific giant octopus Northern shortfin squid *Notodarus sloani sloani	26 26 26 25 25 26 26 26 26 26 26 26 27 75 152 175 65 222 75 198	Octopus conispadiceus *Octopus cuvieri Octopus cyaneus Octopus defilippi Octopus dofleini *Octopus dofleini apollyon Octopus dofleini apollyon Octopus faeroensis *Octopus fang-siao *Octopus fing-siao *Octopus glibertianus Octopus globosus *Octopus globosus *Octopus groenlandicus *Octopus hongkongensis *Octopus hongkongensis *Octopus hongicus *Octopus januari Octopus januari Octopus joubini *Octopus kagoshimensis *Octopus lentus Octopus lobensis *Octopus lomgimanus Octopus marmoratus Octopus maya Octopus maya Octopus moschatus *Octopus ocellatus *Octopus punctatus *Octopus rugosus Octopus selene Octopus tetuelchus *Octopus tetuelchus *Octopus tetuelchus	195 204 196 197 198 198 199 222 206 201 198 200 222 198 201 216 223 202 192 222 203 204 204 204 205 206 220 222 206 206 207 121 207 124 208
	162 174 170 172 174 173 174 170 172 173		208 217 209 215 210 194 211 212 191 95
*nuchalis. Thysanoteuthis *nympha, Verrilliola O	187 155	officinalis, Sepia Old woman octopus Oman cuttlefish omani, Sepia *Ommastostrephes pteropus *Ommastrephes argentinus Ommastrephes bartrami Ommastrephes Caroli *Ommastrephes giganteus *Ommastrephes gigans *Ommastrephes gouldi	47 216 49 49 178 159 175 177 181 181
*obesus, Octopus *oceanicus, Ommastrephes *ocellatus, Octopus OCTOPODIDAE OCTOPOTEUTHIDAE Octopus aegina *Octopus aldrovandi *Octopus arcticus *Octopus bairdi *Octopus bermudensis *Octopus briareus Octopus briareus Octopus briareus Octopus briareus *Octopus chromatus *Octopus cirrhosus *Octopus cocco	222 180 206 191 124 192 218 222 222 204 209 193 194 204 218	*Ommastrephes hawaiiensis *Ommastrephes oceanicus *Ommastrephes oceanicus *Ommastrephes pacificus *Ommastrephes pelagicus *Ommastrephes pelagicus *Ommastrephes robusta *Ommastrephes sagiitatus *Ommastrephes sloani *Ommastrephes sloani pacificus *Ommastrephes volatilis *Ommastrephes caroli *Ommatostrephes caroli *Ommatostrephes sagiitatus *ONYCHOTEUTHIDAE *Onychoteuthis banksi	172 161 180 167 186 178 134 169 174 167 184 156 177 169 125

*Onychoteuthis banksi 129 Onychoteuthis borealijaponica 129 *Onychoteuthis fabricii 130 *Onychoteuthis ingens 130 *Onychoteuthis lesuerii 121	<i>pompilius, Nautilus</i> Pota angolense Pota argentina Pota australiana	210 26 168 159
*Onychoteuthis lichtensteini opalescens, Loligo 990 Opalescens, Loligo 990 Opalescent inshore squid 990 Orangeback flying squid 1780 orbignyana, Sepia 500 *ornata, Sepia 500 *ornata, Sepiella 500 Ornate arm squid 1540 Ornate cuttlefish 500 Ornithoteuthis antillarum 1850 Ornithoteuthis volatilis 1860 *oshimai, Loligo 870 *oshimai, Loligo 1860 oualaniensis, Loligo 1860 oualaniensis, Symplectoteuthis 1860 *voata, Sepioteuthis 111 oweniana, Sepioteuthis 111 oweniana, Sepiota 71 oxygonius, Illex 1650	Pota costera Pota estrellada Pota estrellada Pota fuscioneada Pota filipina Pota hawaiana Pota japonesa Pota luminosa Pota naranja Pota neozelandesa Pota pájaro Pota planeadora Pota saltadora Pota velera Pota voladora Potas	170 180 164 186 169 185 173 172 167 179 178 174 162 183 184 163 175 177 160 156
pacifica, Rossia *pacificus, Ommastrephes *pacificus, Ommastrephes sloani pacificus, Todarodes Paintpot cuttlefish *pallida, Loligo *pallida, Loligo *palmata. Sepia Panama brief squid panamensis, Lolliguncula Paper nautiluses *Parateuthis tunicata Pareledone *parysatis, Amplisepia *patagiatus, Scaeurgus Patagonian squid patagonica, Loligo pelagica, Hyaloteuthis *pelagica, Sepia *pelagicus, Ommastrephes *perforatus, Nautilus perforatus Pharaon cuttlefish pharaonis, Sepia Philippinensis, Nototodarus *philippinensis, Nototodarus	Potas Poulpe á longs bras Poulpe á quatre cornes Poulpe á quatre yeux Poulpe á rayures bleues Poulpe boreal Poulpe bourdon Poulpe casse-noix Poulpe dana Poulpe des sables Poulpe filamenteux Poulpe fouet Poulpe géant (nord- Pacifique) Poulpe globe Poulpe licorne Poulpe licorne Poulpe lirere Poulpe lune Poulpe maxicain Poulpe nain Poulpe pygmé Poulpe ris Poulpe séganliou Poulpe sombre Poulpe tacheté Poulpe téhuelche Poulpe vieille femme Poulpe zèbre Poulpes prashadi Sepia PSYCHROTEUTHIDAE Psychroteuthis glacialis Pteroctopus tetraeirrhus *pteropus, Ommastostrephes pteropus, Ommastostrephes pteropus, Ommastostrephes Pterygioteuthis giardi Pulpito monedero Pulpito patilargo Pulpito silargo Pulpo abejorro Pulpo abejorro Pulpo amizclado Pulpo antenado Pulpo antenado Pulpo antenado	156 197 206 194 222 201 195 224 213 192 223 210 198 200 215 214 207 205 199 202 193 209 204 208 216 212 191 52 144 217 178 178 178 178 178 178 178 178 178 1

	PAGE		PAGE
Pulpo cuatro cuernos Pulpo de arrecife Pulpo desflecado Pulpo espadaña Pulpo filamentoso Pulpo gigante Pulpo gioboso Pulpo granuloso Pulpo lobero	217 193 219 195 223 198 200 194 214 203	*rupelloria, Sepia *rüppelli, Histioteuthis	37 149
Pulpo lunero Pulpo manchado Pulpo marmóreo Pulpo membranoso Pulpo perforado Pulpo pigmeo Pulpo reticulado Pulpo tétrico Pulpo unicornio Pulpos Pulpos antárticos Pulpota Pulpota Pulpota Pulpota Pulpota Pulpota Pulpota Pulpota Pulpota Purpleback flying squid Pygmy octopus	207 204 199 206 205 216 202 192 209 215 191 221 124 124 128 180 202	*sagittata, Loligo *sagittatus, Loligo *sagittatus, Ommastrephes *sagittatus, Ommatostrephes sagittatus, Todarodes sagittatus Sandbird octopus sanpaulensis, Loligo Sao Paulo squid sayignyi, Sepia *Scaeurgus patagiatus *Scaeurgus patagiatus *Scaeurgus unicirrhus Scaled squid Scaled squid Scaled squids schmidti, Danoctopus Schoolmaster gonate squid *scintillans, Abraliopsis scintillans, Watasenia Seiche africaine Seiche andreana	160 164 169 169 169 192 102 54 215 217 215 145 213 143 123 35 30 31
R		Seiche araignée Seiche australe Sei che baisers	44 34 44 52
*rappiana, Sepia Reaper cuttlefish recurvirostra, Sepia *repertus, Nautilus reynaudi, Loligo Rhomboid squids rhombus, Thysanoteuthis riisei, Brachioteuthis *riisei, Tracheloteuthis *robsoni, Moroteuthis *robsoni, Moroteuthis *robsusta, Ancistroteuthis *robusta, Ancistroteuthis *robusta, Ommastrephes robusta, Moroteuthis *robusta, Eestoteuthis *robusta, Moroteuthis rondeleti, Sepiola Rondeletiola Rondeletiola Rondeletiola *Rossia antillensis *Rossia bullisi *Rossia turtugaensis **rostata	42 46 53 26 1000 1877 187 1555 1333 45 134 134 134 134 131 134 137 72 72 72 72 73 76 74 75 78 78	Seiche capuchon Seiche commune Seiche d'Arabie Seiche d'Oman Seiche de Guinée Seiche dorée Seiche elegante Seiche elegante Seiche géante Seiche grandes mains Seiche madokai Seiche madokai Seiche hameçon Seiche kobi Seiche madokai Seiche moisson Seiche petites mains Seiche pharaon Seiche pieuvre Seiche pieuvre Seiche rosée Seiche trident Seiches Seelne, Octopus Semirossia equalis Semirossia tenera Sepia (Metasepia) tullbergi *Sepia (Sepiella) microcheirus Sepia actinis	47 333 49 39 40 38 56 32 36 42 46 54 45 46 37 51 43 50 55 27 77 78 56 56 56 56 37
*rostrata, Sepia Roundear enope squid *rouxi, Sepia *rubens, Şepia	37 122 51	*Sepia affinis Sepia andreana *Sepia andreanoides	56 31 41
Rugose hooked squid *rugosus, Octopus	50 133 201	Sépia apama Sepia arabica Sepia arábiga	32 33 33

	PAGE		PAGE
Sepia austral	34	Sepia tintero	56
Sepia australis	34	Sepia tridente	55
Sepia bertheloti *Sepia biserialis	35 37	Sepia trygonina *Sepia winckworthi	55 37
Sepia braggi	36	SEPIADARIIDAE	60
Sepia brazolargo Sepia brevimana	43 37	Sepiadarium kochii	60
*Sepia capensis	34	*Sepiadariun nalayense Sepias	$\begin{smallmatrix} 60\\27\end{smallmatrix}$
Sepia caperuza	52	*Sepiella heylei	58
Sepia común Sepia con punta	47 30	Sepiella inermis Sepiella japonica	56 58
Sepia dorada	40	*Sepiella maindroni	56
Sepia elegans *Sepia elliptica	$\begin{array}{c} 37 \\ 40 \end{array}$	Sepiella ornata	59 71
Sepia elobyana	39	Sepieta comun Sepietas	
Sepia esculenta	40	*Sepietta minor	$\begin{array}{c} 61\\ 72\end{array}$
Sepia faraónica * <u>Sepia formosana</u>	51 51	Sepietta oweniana SEPIIDAE	71 27
Sepia ganchuda	53	*sepioidea, Loligo	111
Sepia gigante	32	sepioidea, Sepioteuthis	111
Sepia grácil Sepia guineana	36 39	Sepiola atlantica Sepiola atlántica	66 66
*Sepia hercules	42	Sepiola birostrata	66
*Sepia indica Sepia inerme	30 57	Sepiola colibrí	$^{69}_{74}$
Sepia inerme	57	*Sepiola macrosoma Sepiola mariposa	67
Sepia inerme japonaise	58	Sepiola mimika	70
Sepia inerme Japonesa *Sepia italica	58 37	*Sepiola oweniana Sepiola rondeleti	71 68
Sepia kobi	41	Sepiolas	61
<i>Sepia kobiensis</i> Sepia labiada	41 44	Sépiole bobie	72
Sepia latimamus	42	Sépiole bouledogue Sépiole calamarette	73 78
Sepia longipes	43	Sépiole carolette	76
Sepia loriga Sepia lorigera	44 43	Sépiole colibri Sépiole commune	$\frac{69}{71}$
Sepia lycidas	44	Sépiole cracheuse	77
Sepia madokai	45 37	Sépiole du Pacifique boréal	75 66
Sepia mazicorta Sepia mazuda	42	Sépiole grandes oreilles Sépiole gros yeux	66 65
*Sepia media	113	Sépiole melon	74
*Sepia mercatoris Sepia mestus	35 46	Sépiole mignonne Sépiole mimika	72 70
*Sepia mozambica	42	Sépiole naine	68
Sepia murrayi	46	Sépiole papillon Sépiole tortuette	67
Sepia officinalis Sepia omani	47 49	Sépioles	76 61
Sepia omani	49	Sépiolette	60
<i>Sepia orbignyana</i> Sepia orlada	50 59	Sépiolettes SEPIOLIDAE	60 61
*Sepia ornata	59	Sepiolilla	60
Sepia ornée	59 32	Sepiolilias Sepiolina	60 65
*Sepia palmata *Sepia pelagica	186	Sepiolina Sepiolina nipponensis	65
Sepia pharaonis	51	*Sepioteuthis accidentalis	111
<i>Sepia prashadi</i> Sepia ranuda	52 46	*Sepioteuthis arctipinnis Sepioteuthis australis	109 109
*Sepia rappiana	42	*Sepioteuthis biangutata	111
Sepia recurvirostra *Sepia robsoni	53 45	*Sepioteuthis bilineata *Sepioteuthis brevis	109 109
Sepia robusta	54	*Sepioteuthis ehrhardti	111
*Sepia rostrata	37	*Sepioteuthis guinensis *Sepioteuthis indica	109
*Sepia rouxi *Sepia rubens	51 50	*Sepioteuthis indica *Sepioteuthis krempfi	$\begin{array}{c} 109 \\ 109 \end{array}$
*Sêpia rupelloria	37	Sepioteuthis lessoniana	109
Sepia sayignyi Sepia segadora	54 46	*Sepioteuthis lunulata *Sepioteuthis malayana	109 109
*Sepia segadora *Sepia singaporensis	53	*Sepioteuthis malayana *Sepioteuthis mauritania	109
*Sepia sinope	34	*Sepioteuthis neoguinaica	109
*Sepia subaculeata *Sepia tigris	44 51	*Sepioteuthis ovata Sepioteuthis sepioidea	111 111
, ··· ·· · · · · · · · · · · · · · · ·			

	PAGE		PAGE
*Sepioteuthis sinensis *Sepioteuthis sinensis *Sepioteuthis sinensis Sevenstar flying squid Sharpear enope squid Sharptail shortfin squid Shiny bird squid Shortarm gonate squid Shortclub cuttlefish Sibogae squid *sibogae, Doryteuthis sibogae, Loligo (Doryteuthis) *sieboldi, Sepioteuthis *sinensis, Sepioteuthis *sinensis, Sepioteuthis *singaporensis, Sepia singhalensis, Loligo (Doryteuthis) *sinope, Sepia Slender cuttlefish Slender tuttlefish Slender inshore squid *sloani, Notodarus *sloani, Notodarus *sloani, Ommastrephes *sloani, Sepioteuthis Smallfin gonate squid Solitosepia liliana Southern cuttlefish Southern reef squid Sparkling enope squid Sparkling enope squid Sparkling enope squid Spider cuttlefish Spineless cuttlefish Spineless cuttlefish Spineless cuttlefish Spiney-horn octopus spinicirrhus, Tetracheledone *steenstrupi, Dosidicus	109 109 111 163 184 138 377 103 103 103 109 53 34 36 98 174 174 174 174 174 174 174 174 174 174	*tetracirrhus, Octopus tetracirrhus, Pteroctopus tetricus, Octopus *Theliodioteuthis alessandrini THYSANOTEUTHIDAE *Thysanoteuthis nuchalis Thysanoteuthis rhombus *tigris, Sepia *titanotus, Scaeurgus Todarodes filippovae Todarodes sagittatus angolensis Todarodes sagittatus sagittatus Todaropsis veranii *Todaropsis veranyi *Todaropsis veranyi *todarus, Loligo Tortuga bobtail tortugaensis, Rossia Toutenon angolais Toutenon antarctique Toutenon commun Toutenon japonais Toutenon souffleur *Tracheloteuthis riisei Trident cuttlefish trygonina, Sepia *trygoninum Doraseplon tullbergi, Sepia (Metasepia) *tunicata, Parateuthis	217 217 209 121 187 187 187 166 167 168 169 164 169 76 76 76 168 169 167 165 555 555 555 555
steenstrupi, Gonatus *stenomphalus, Nautilus *Sthenoteuthis bartrami *Stigmatoteuthis acturi *Stigmatoteuthis acturi *Stigmatoteuthis dolfleini *Stoloteuthis nipponensis Stout bobtail *subaculeata, Sepia subulata, Alloteuthis *subulata, Loligo *sumatrensis, Loligo Surinam squid surinamensis, Loligo Swordtip squid Symplectoteuthis luminosa Symplectoteuthis oualaniensis	139 26 175 150 150 150 65 74 44 114 184 105 88 179 180	Umbrella squid Umbrella squids *unguiculata, Cucioteuthis *unguiculatus, Cucioteuthis *unicirrhus, Octopus unicirrhus, Scaeurgus Unihorn octopus Uroteuthis bartschi uyii, Loligo	149 148 124 124 215 215 215 115 106
*tagoi, Loligo Taningia danae Tehuelche octopus tehuelchus, Octopus *tenera, Heteroteuthis *tenera, Semirossia Tetracheledone spinicirrhus	106 124 208 208 78 78 78 224	*vanicoriensis, Loligo variabilis, Octopus *variabilis, Polypus Veined squid *velaini, Entomopsis *veranti, Todaropsis *veranyi, Todaropsis *verreauni, Amplisepia *verreauxi, Ascarosepion *Verrilliola nympha *vincenti, Octopus	180 210 210 90 155 164 160 164 32 46 155 155

	PAGE
*volatilis, Ommastrephes volatilis, Ornithoteuthis vulgaris, Loligo vulgaris, Octopus	184 184 107 211
W	
Watasenia scintillans Webbed flying squid Webfoot octopus Wellington flying squid Western Atlantic brief squid Whiparm octopus White-spotted octopus *winckworthi, Sepia	123 177 206 174 116 210 204 37
Z	
zonatus, Octopus	212

10. INDEX OF LOCAL NAMES

	PAGE		PAGE
Ahtapot Ahtopot Akaika Akhtaboot Aluda Amerika kensakiika Amerika-oosurume Amerika ooakaika Ami-monkouika Anchou souchot Aoriika Argentina matsuika Arrow squid Asia kouika Atlantic bird squid	204,212 (219-220 (168,176 (212 (49 (49 (168 (168 (168 (168 (168 (168 (168 (168	Choco Chocón Chopito Choubaï Choubei Chouebi Chubei	49 104 104 48 88 88 85 49 49,68,74 49 51,74 48 49 48-49 46 212 98 219 49
Babbucciedda Babbunedda Babbuccia Bakaika Bakaika Bashouika Beccaficu Beka Bobie Bone squid Bou msik Bougie Bouzuika Briar octopus Brief squid Brownstriped octopus Budouika Bumblebee octopus	68 I 176 I 111 68 I 68 I 84 I 68 I 98 220 68 75,93 193 116 194 90 201	Daai mei yau yue Dakkra Dangoika Derinsu sübyesi Dosuika Dwerginktvis Dyonon refui Eledone Eledone Encornet	111 68 70 68 143 68 48
Calamar Calamarcito Calamarcito Calamaro Calmar Cape e chiuove Cape'e chiuove Capo di chiodo Caribbean reef octopus Cascaño Castaño Castaño Castañuela Chakod Chambered nautilus	74 I 193 I 48 I 38 I	Faux encornet Foo baan woo chak	45 193 161 52 68 204 68 173

PAGE

K Kalamari
Kalmar
Kalmas
Kaminariika
Kanadairekkusu
Kariforunia yariika
Karnita tal misk
Kensakiika
Khtapódi
Khtapodi
Klamar
Kleiner Tintenfisch
Kobushime
Koika Gam woo chak Ganzeki $\begin{array}{c} 40 \\ 168 \\ 212 \\ 48 \\ 48 \\ 45 \\ 68 \\ 68, 74 \\ 165 \\ 89 \\ 171 \end{array}$ $\begin{array}{c} 108,170 \\ 108,170 \\ 161 \\ 45 \\ 163 \\ 96 \\ 220 \\ 89 \\ 204 \\ 212 \\ 108 \\ 68 \\ 45 \\ 42 \\ 93 \\ 49 \\ 40 \end{array}$ Garnet Gemeiner Tintenfisch Gewone Inktvis Gitchyoika Glaouchau Globito Golden arrow squid Gotouika Gould's squid Kobushime Koika Kora katitza Kouika Kubushime Kuragedako Kutsuika 42 150 H 111 Habbar Hariika 40 58 196 70 93 41 86 212 170 123 Harinashikouika He'e Hidokoika Hiika Himekouika Hirakensakiika Hobotnika Hokkaisurumeika Hotaruika Laai por
Leung yea jai
Lignja
Lignjun
Lilliput longarm
octopus
Little squid
Lomo anaranjado
Long-finned squid
Long-tailed flying
squid
Luda
Lula 216 69 108 170 197 114 179 98 184 I 49 91 Izuika 111 Lula Luminous flying squid Luria 180 J M Jam mak yue Jhindouika Ji dako Jibiia Jibiion 30,40,54 93 Ma dako
Maika
Mak dau
Mak gung
Mak gung
Mak mo
Mainescui
Margade
Market squid
Maruichi
Matsuika
Mawashikko (juveniles) 212 40 56 45 52 68 48 96 45 123.168 206 49 49 70 Jikoika Jumbo flying squid Jumbo squid 183 183

1	PAGE		PAGE
Medama Mehikariika Mettik Mimiika Minamisurumaika Mizo dako Mizuika Mo jam woo chak Moika Mongoika Mongoika Mongouika Morralet Moscardino bianco Moscardino rosso Moscoctapoda 2 Mugiika Murasakiika Murasakiika Muscardin Mustekala Muzgavac	176 89 108 70 175 199 111 58 111 45,52 68 219 220 19-220 168 176 220 48 220	Petit encornet Pieuvre Pignatta Polpessa Polpessa Polpessa Polpessa Porpo-seppia Poulpe Poulpe de roche Poulpe sèche Pruppusiccia Pugnatta Pulpe Pulpo Pulpo almizclado Pulpo judio Pulpo patudo Purpessa de funna Purpissa Purpleback flying squid Purpu Pygmy octopus	114 212 74 204 197 212 68 68,170 204 212 68 48 74 212 207-208,212 220 219 197 204 74 218 181 74 212 202
N			
Neon flying squid New Zealand arrow squid Ngor huet mak North Atlantic octopus North Pacific giant octopus Northern shortfin squid Nyujirando - minamisurumeika Nyujirandosurumeika	176 175 58 222 199 163 175	Qarnit Qarnit kbir Qarnita Queen squid	204,219 204,212 212 94
		D	
Octapodi Octopod Octopodi Octopus Ootobiika Opalescent inshore	204 212 212 209 188 96	Red ocean squid Rellena Relleno	176 49 49
squid Orangeback flying squid Osminog 20	179 04,212	S	
Passamar Passamas	170 161	Saa 1iu Sabbidije Sasaika Sayanaga Scarpetta Scarpitelle (juveniles) Scarpitta Scartoccio Scuttle	192 48 85 85 48,68 48 48 68 212

Secce	48	Takoika	140-141
Seccetella	48,68	Tantena	$\begin{array}{c} 68 \\ 188 \end{array}$
Seche Sei ngaan liu	49 206	Taruika Tenashi	85
Seiba	48	Терро	85
Seich	48	Teppo Thrapsallo	170
Seiche	48-49	Thumbstall squid	116
Sepa Sepia	$\begin{array}{c} 48 \\ 48 \text{-} 49 \end{array}$	Tobi-ika Tobiika	184 181
Sepia imperiale	48	Tonkyu Tor yau yue Torafukouika	168
Sepie	48	Tor yau yue	86,89
Sepieta	68	Torafukouika	52
Sepietta	68 48	Totanino Totanitu	$\begin{array}{c} 68 \\ 114 \end{array}$
Sepija Sepiola	68	Totanitu Totano Totano volatore	170
Sépiole	$68\\68,74$	Totano volatore	161
Sepiolina	68	Totanu	108
Sepion Sepiou	68 68	Totariello Totlu baidani	114 170
Sepioun Sepioun	68	Totlu bajdani Totlu hammari	161
Seppa	48	Tracan	204
Seppetta	68	Tsubekusari	58
Seppia Seppia	48 38	Tsumeika Tsutsuika	129 85
Seppia elegante Seppia pizzuta	51	Tutariedde	68
Seppio	48		
Seppiola grossa	74		
Seppiolo Shakuhachiika	68 85		
Sharptail shortfin	164		
squid			
Shirikusari	58	TT	
Shiriyakeika Shiraika	58 90,111	U	
Shiroika Short-finned squid Shoubia	163	_	
Shoubia	48	Unihorn octopus	215
Sibia	49	•	
Sicca Siccia	48 48		
Sipa	49		
Sipia	49		
Sipionet	49		
Slênder inshore squid Sobbeit	$\frac{99}{48,108}$	\ 7	
Sodeika	188	V	
Soubia	49	** 1 1	
Soupia	48	Volador	161 74
Soupitza Sponce currienti	68 68	Vurpascele	74
Striped squid	180		
Sübye	49		
Sui [*] gwai Sujiika	204		
Sujiika Sumiika	180 40		
Süpia	48	T T 7	
Supieța	68	\/ \/	
Süpiola Surumeika	68 168	* *	
Surumerka	100	Webbed flying squid	177
		Western Atlantic brief	116
		sauid	204
		White-spotted octopus Winter squid	204 98
		viller squiu	00
T			
1			

Taiseiyoirekkususurume	163
Taiseivoitekkususurume	161
Taiseiyosurume	161,163,170

Y

Yanagi dako	195
Yariika	85
Yasetobi-ika	184
Yat boon yau yue	168
Yau jai	88,106
Yellow-backed squid	181
Yi muk woo chak	45
Yoroppa kouika	48
Yoroppairekkusu	161
Yoroppasurumeika	170

\mathbf{Z}

Zeekat	48
Zotoleto	68
Zotolo	68
Zula	68