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ABSTRACT

The northern North Atlantic comprises a dynamically complex area with distinct topographic features,

making it challenging to model oceanic features with global climate models. As climate models form the basis

for assessment reports of future regional sea level rise, model evaluation is important. In this study, the

representation of regional sea level in this area is evaluated in 18 climatemodels that contributed to phase 5 of

the Coupled Model Intercomparison Project. Modeled regional dynamic height is compared to observations

from an altimetry-based record over the period 1993–2012 in terms of mean dynamic topography, interannual

variability, and linear trend patterns.Asmodels are expected to reproduce the location andmagnitude but not

the timing of internal variability, the observations are compared to the full 150-yr historical simulations using

20-yr time slices. This approach allows one to examine modeled natural variability versus observed changes

and to assess whether a forced signal is detectable over the 20-yr record or whether the observed changes can

be explained by internal variability. The models perform well with respect to mean dynamic topography.

However, model performances degradewhen interannual variability and linear trend patterns are considered.

Themodeled regionwide average steric and dynamic sea level rise is larger than estimated from observations,

and the marked observed increase in the subpolar gyre is not consistent with a forced response but rather a

result of internal variability. Using a simple weighting scheme, it is shown that the results can be used to

reduce uncertainties in sea level projections.

1. Introduction

Global sea level is rising andwill continue to do so in the

future. Regional sea level changes have a direct impact on

infrastructure, population, and coastal ecosystems. Yet,

regional sea level changes deviate largely from the global

mean, and their simulation requires complex and com-

putationally expensive atmosphere–ocean global climate

models (AOGCMs) that form the basis for the projection

of regional sea level changes (Church et al. 2013).

Quantifying future regional sea level change and its

impacts is pivotal for coastal communities in order to

adapt to rising sea levels. Because of the presence of un-

forced internal variability, climate model projections be-

come increasingly more uncertain when going to smaller

spatial and temporal scales as the dominating processes

become more complex and the need for simplifying pa-

rameterizations due to computational constraints impedeSupplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JCLI-D-17-

0310.s1.
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the accurate representation of local processes. It is

therefore important to evaluate the performance of

models on a regional scale with available observations.

For the dynamic sea level contribution to sea level

changes, Landerer et al. (2014) evaluated the perfor-

mance of climate model simulations for the global ocean

with a focus on the Southern Ocean and equatorial re-

gions where biases of the mean state were largest. In

particular, because of large observed rates of sea level

rise, the tropical Pacific Ocean has received considerable

attention (e.g., Meyssignac et al. 2012; Palanisamy et al.

2015) compared to other regions such as the northern

North Atlantic. We plan to direct our attention to the

latter region for several reasons: 1) the sea level in the

Atlantic subpolar gyre has been rising over the altimetric

record (e.g., Häkkinen et al. 2013), which is associated

with a weakening of the gyre circulation; 2) the Nordic

seas and subpolar North Atlantic are surrounded by gla-

ciated landmasses and, through gravitational adjustment,

regional sea level trends are expected to be affected by

changes in land-based icemasses in a way that counteracts

the global mean effect; 3) the additional freshwater input

to the ocean is suspected to already have an impact on

ocean dynamics (Rahmstorf et al. 2015), although recent

research shows that the impact of meltwater runoff is

still small (Böning et al. 2016); and 4) freshwater input is

not yet routinely implemented in AOGCMs used for cli-

mate projections. Given these potential weaknesses,

and the fact that the region is surrounded by densely

populated coasts where the models form the basis for

numerous national assessment reports (e.g., Simpson et al.

2015; Grinsted et al. 2015), it is particularly important to

evaluate the models here. For the Norwegian coast,

AOGCMs have been evaluated earlier (Simpson et al.

2014); however, for the abovementioned reasons, we wish

to focus on the whole northern North Atlantic region.

Recent studies attempted to quantify the magnitude

of internal variability in climate model simulations in

order to assess the time of emergence of an externally

forced signal in regional sea level (Lyu et al. 2014;

Richter and Marzeion 2014; Bilbao et al. 2015). Richter

and Marzeion (2014) found that it takes at least 30 years

in the area of interest for an externally forced signal to

emerge from the noise when considering a period

starting in 1990 (the approximate advent of satellite al-

timetry). Furthermore, from an observational point,

Dangendorf et al. (2014b) found that sea level data from

tide gauges exhibit significant decadal and multidecadal

correlations independent of any systematic rise. It is

therefore not clear whether a forced signal in sea level is

already detectable in the northern North Atlantic and

Nordic seas or whether observed changes over the alti-

metric period are caused by internal variability.

Global observational coverage is available for the past

few decades (1993–2012 is used in this study). As models

are expected to reproduce the locations and magni-

tudes but not the timing of internal variability, the ob-

servations have to be compared to the full historical

simulations (1850–2012) of sea level. In this way, it can

be assessed whether a forced signal is already detectable

(i.e., the observed changes are reproduced by all models

in the observational period), whether the observed

changes show similarity with modeled internal vari-

ability (i.e., the observed changes are reproduced in

random 20-yr periods), andwhether themodels are at all

able to simulate variability similar to the observed.

We will focus on the northern North Atlantic region

and address the following questions: Is the mean dy-

namic topography correctly simulated? Is themagnitude

and location of observed sea level variability repro-

duced? Are observed sea level trends consistent with

modeled trends over the same period (and therefore

forced) or more likely due to internal variability? In

section 2 we describe the model data as well as the ob-

servations and explain how we will compare the two

datasets in order to evaluate the simulated sea level. The

results are presented in section 3 for the three variables

that are being investigated, namely, mean dynamic to-

pography, regional interannual sea level variability, and

regional linear sea level trends. The results are discussed

in section 4, followed by the conclusions in section 5.

2. Data and methods

a. CMIP5 model output

We use output from 18 climate models (Table S1 in

the supplemental material) participating in phase 5 of

the Coupled Model Intercomparison Project (CMIP5;

Taylor et al. 2012) to compare modeled sea level with

observations with respect to the mean state, interannual

variability, and linear trend patterns. The first re-

alization of eachmodel (r1i1p1) is used.We combine the

sea level above the geoid (‘‘zos’’ in CMIP5 terminology)

with the global mean (thermo)steric sea level change

(‘‘zostoga’’ or ‘‘zossga’’). Most but not all of the models

conserve volume rather than mass, that is, a net increase

in seawater temperature does not necessarily lead to a

global mean sea level rise in zos in these models. This

effect is instead computed from the density fields and

represented by zossga or zostoga. For consistency, we

therefore remove the global mean from the spatial fields

of zos at every time step prior to adding the global mean

steric change. The resulting variable comprises the re-

gional dynamic and steric sea level change as well as the

global mean steric change.
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The historical simulations used include all known cli-

mate forcings (Slangen et al. 2015). With some excep-

tions, they cover the period 1850–2005. They are

extended up to 2012 using the representative concentra-

tion pathway 4.5 (RCP4.5) scenario (Van Vuuren et al.

2011). However, the choice of scenario is not critical over

this short period as the scenarios only start to diverge in

the second half of the twenty-first century. The climate

drift (long-term trends in the absence of an external

forcing; Sen Gupta et al. 2013) is accounted for by re-

moving the linear trend found in the control simulations

for all variables. Since we are eventually interested in

multidecadal variability, annual data are computed.

The grid size of the models varies widely in the area

(Table S1), from the comparatively dense grid of 0.98 3 0.58
(longitude 3 latitude) or finer for the MPI-ESM-LR,

CCSM4, and NorESM models to the coarser grid of

2.58 3 1.28 for the CMCC-CMS model. (Expansions of

acronyms are available online at http://www.ametsoc.

org/PubsAcronymList.) For model-observation inter-

comparison, the processed data are regridded to a reg-

ular grid of 18 3 18.

b. Sea level anomalies andmean dynamic topography
from observations

Sea surface height (SSH) is defined as the height of the

ocean surface above the reference ellipsoid while sea

level anomalies are the deviations of the instantaneous

SSH from a reference mean sea surface (MSS). In this

study, we use sea level anomalies to investigate vari-

ability and trends (and refer to it as sea level). Monthly

fields of sea level for the period 1993–2012 are obtained

from the European Space Agency (ESA) Climate

Change Initiative (CCI) project (ESA-CCI; Ablain et al.

2015, 2017). Annual means for the 20-yr time period are

then calculated from the monthly data.

Through geostrophy the ocean surface circulation re-

lates to the oceans mean dynamic topography (MDT),

which yields the long-term average strength of the ocean

currents (e.g., Knudsen et al. 2011). The precise knowledge

of the geoid height, together with MSS, known within

centimeter accuracy (Schaeffer et al. 2012), enables us to

compute the MDT of the ocean using (e.g., Raj 2017):

MDT5MSS2 geoid. (1)

The geoid is the equipotential surface of Earth’s

gravity field. More accurately, it is the sea surface in the

absence of winds, tides, and currents, only influenced by

gravity (e.g., Raj 2017). The Gravity Field and Steady-

State Ocean Circulation Explorer (GOCE) High-Level

Processing Facility (HPF) models Earth’s geopotential

as a truncated spherical harmonic expansion in the

spectral domain (Bruinsma et al. 2014). Using the gravity

field coefficients from the level-2 global gravity models

provided by HPF, the geoid height can be determined as

detailed in previous studies (e.g., Johannessen et al. 2003;

Jin et al. 2014; Raj 2017). In our study, we use theGOCE

user toolbox (GUT; Benveniste et al. 2007) to estimate the

geoid height from the gravity models and the National

Space Institute of the Technical University of Denmark

(DTU Space) 2013 (DTU13)MSSmodel (Andersen et al.

2015) to computeMDT.Even though conceptually simple,

the computation of MDT needs to satisfy important a

priori conditions (Benveniste et al. 2007): both the geoid

height and theMSS used should be referenced to the same

reference ellipsoid and estimated on the same tide system.

The reference ellipsoid, a sphere flattened at its pole, is an

arbitrary reference surface that is a raw approximation of

Earth’s shape. Here, similar to theDTU13MSS, the geoid

height is estimated in the mean tide system relative to the

TOPEX ellipsoid. The TOPEX ellipsoid is the first-order

definition of the nonspherical shape of the Earth as an

ellipsoid of revolution with an equatorial radius of

6378.1363km and a flattening coefficient of 1/298.257

(Tapley et al. 1994). In the mean tide system, the effects of

the permanent tides are included in the definition of the

geoid in contrast to the zero tide system where they are

excluded. Further, the noise in the MDT due to in-

consistencies in the resolution of MSS and geoid is re-

moved by a Gaussian filter (90km).

Both maps of sea level and mean dynamic topogra-

phy, initially on a 0.258 3 0.258 grid, have been re-

mapped to a 18 3 18 grid for comparison with the model

data (section 2a). Since MDT is the sea surface relative

to the geoid, and the climate models have no geoid, the

observed MDT is comparable to the modeled mean sea

surface.

c. Contribution from land-based ice and GIA

The research area (Fig. 1) is surrounded by (partly)

ice-covered land and therefore located in the near-field

of potential land-ice changes. The mass exchange be-

tween land and ocean affects the gravitational field, that

is, the geoid, and thus the shape of the sea surface. The

effect on regional sea level gradients is largest close to

changing land ice (e.g., Mitrovica et al. 2001). In addi-

tion, the altimetry-based sea level observations include

the change of the geoid due to the ongoing response of

the viscoelastic Earth to the last deglaciation [glacial

isostatic adjustment (GIA); Tamisiea 2011]. The CMIP5

models are neither coupled to land-ice models nor do

they have geoids that could change, and sea level

changes originating from past as well as present changes

in land ice have to be removed from the observations

prior to comparing observed and modeled trends.
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The glacier mass change over the observational period

is obtained by forcing the glacier model of Marzeion et al.

(2012) with temperature and precipitation from gridded

climate observations [Climatic Research Unit (CRU)

time series; Newet al. 2002]. Reconstructions of themodel

over the twentieth century were shown to be consistent

with other reconstructive methods based on observations

of glacier length change, mass balance observations, and

remotely sensed estimates (Marzeion et al. 2015). The

contributions from the Greenland and Antarctic ice

sheets are taken from Shepherd et al. (2012). The data

include both the contribution from surface mass balance

changes as well as dynamical changes of the ice.

To translate the land-ice changes into absolute regional

sea level changes, the corresponding fingerprints have

been computed by assuming themelt of a uniform ice layer

over the glaciated area (e.g., Riva et al. 2010; Slangen et al.

2012, 2014; Perrette et al. 2013) and by computing the in-

duced sea level change after solving the sea level equation

(Farrell and Clark 1976) using a pseudospectral approach

(Mitrovica and Peltier 1991), including the rotational

feedback (Milne and Mitrovica 1998), on a compressible

elastic Earth (Dziewonski and Anderson 1981).

To account for the geoid-related signal due to GIA

from the sea level observation, we use the correction from

the ICE-5GGIAmodel as provided by Peltier (2004).1As

we are interested in absolute sea level changes, only the

rate of change of the geoid is used.

Figure 2a shows the observed 1993–2012 sea level

trends in the region. The average trend over the region is

2.35mmyr21, less than the global average of 3.16 6
0.5mmyr21 (Ablain et al. 2015). Sea level change is

positive except east and southwest of Svalbard and in a

very localized area south of the Iceland Basin. The rise is

largest in the subpolar gyre and, to a lesser degree, along

the European coast. The contribution from changing

glaciers and ice sheets to absolute sea level over the

same period (Fig. 2b) is characterized by a sea level

decrease around Svalbard and Greenland in accordance

with the loss of land ice in these regions. However,

compared to observed sea level, changing land ice con-

tributes little to the spatial variability of observed trends

whereas the average sea level change over the area due

to changes in land ice is significant, contributing 0.49

(glaciers) and 0.43mmyr21 (ice sheets), respectively, to

the observed regionwide average trend (Fig. S2 in the

supplemental material). The same is true for the geoid-

related GIA contribution: it contains little spatial vari-

ability compared to the observed trend pattern while the

corresponding regionwide average presents a signifi-

cant, notably negative, contribution of 20.31mmyr21

(Fig. 2c).

To assess the impact of land-ice melting on regional

sea level trends, we removed the contribution from

glaciers and ice sheets as well as from GIA from the

observed sea level prior to computing linear trends. The

result is a reduced regionwide average trend of

1.75mmyr21, with few changes in the regional trend

pattern (cf. Figs. 2a,d). The pattern is still dominated by

the stronger sea level rise in the subpolar gyre around

the southern tip of Greenland. The negative trend

FIG. 1. The northern North Atlantic and the Nordic seas. Schematic surface currents are

based on literature (see Furevik and Nilsen 2005). Gray lines represent the 1000-, 2000-, and

3000-m isobaths. (NAC is North Atlantic Current, and SPG is subpolar gyre.)

1 Dataset available from http://www.atmosp.physics.utoronto.

ca/;peltier/datasets/GRID/dGeoid250.1grid.ICE5Gv1.3_VM2_

L90_2012.nc.
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southwest of Svalbard is slightly enhanced while the sea

level rise on the Norwegian shelf, and therefore the

across-shelf gradient, is reduced. To be consistent with

the models, we use these trends (presented in Fig. 2d) in

our trend analysis (section 3c).

d. Methods

The sea level observations from satellite altimetry

used in this study span the period 1993–2012. From this

20-yr record of annual means, we calculate maps of

sea level variability (in terms of temporal standard

deviation) and linear sea level trends. These maps, to-

gether with maps of MDT, are used for the model–

observation analysis. The model simulations cover the

period 1850–2012. To account for the random phases of

internal variability in the models, we slide a 20-yr win-

dow over the annual data and compute maps of MDT,

sea level variability, and linear trends for each 20-yr

period, thus giving us a total of 143 maps per model per

variable, available for comparison with the observa-

tions. Linear trends are removed from every 20-yr pe-

riod prior to calculating variability.

To assess the model performance, we use basic sta-

tistical measures: modeled and observed fields are

compared by computing the area-weighted pattern

correlation coefficients (PCCs) and root-mean-square

errors (RMSEs) between modeled and observed maps.

In this case, the PCC is the equivalent to the correlation

coefficient between two time series, with the only dif-

ference being that the correlation is computed between

corresponding locations instead of corresponding points

in time (Thomson and Emery 2001). Prior to computing

PCCs and RMSEs, the regionwide average is subtracted

from all maps. That is, we compute centered statistics to

assess the similarity between observed and modeled

regional anomalies (e.g., Santer et al. 1995). Note that

PCCs are not sensitive to errors in the amplitudes in the

modeled patterns. These errors are reflected in the

RMSEs. Centered statistics are insensitive to the re-

gionwide average. This is of particular importance for

the comparison of observed and modeled trends. In line

with the global mean, we expect simulated regionwide

average trends to be small in the beginning of the his-

torical record and grow increasingly more positive

throughout the modeled period considered here (1850–

2012). To take this fact into account, we will also report

the total RMSE (RMSE without removing the region-

wide average) when presenting results of the trend

analysis.

As mentioned, we account for the different phases of

internal variability in models and observations by com-

paring the observations with modeled fields from all

20-yr windows. Since, on a time scale of only two de-

cades, internal variability is expected to be strong in

FIG. 2. (a) Observed trends from satellite altimetry during 1993–2012, (b) contribution from glaciers and ice

sheets, and (c) contribution from the geoid-related component ofGIA. (d) Trends in sea level corrected for land-ice

contributions and GIA. The numbers above each map represent the regionwide average and root-mean-square,

respectively.
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both models and observations, we anticipate some var-

iability in the PCCs and RMSEs as we slide the window

across the model record. The approach presents us with

several possibilities to compute multimodel means:

(i) by taking the mean over the observational period

(1993–2012); (ii) by selecting, for each model, the period

with maximum PCC with the observed field and taking

themean over thesemodel maps (max corr); or (iii) as in

(ii), but for periods of minimumRMSE (min RMSE). In

the following, we will present results for ensemble

means computed followingmethod (i) and (ii), as results

for ensemble (iii) are similar to those of ensemble

(ii). Note that multimodel means are formed by first

computing maps of MDT, variability, and linear trends

for each model, and subsequently averaging over these

fields. In the same manner as for individual maps (by

computing PCCs and RMSEs), we compare the three

different ensemble means with observations. This en-

ables us to assess whether the observed regional trend

patterns are due to internal variability or externally

forced. In the latter case, we expect a good agreement

not only between models and observations but also be-

tween the individual models over the observational pe-

riod (1993–2012).

3. Results

a. Mean dynamic topography

The mean dynamic topography determines the sur-

face circulation of the oceans and is thus crucial not only

for heat and salt transport, but also directly for sea

level changes, particularly along the margins of the

oceans. Observation-based MDT is shown in Fig. 3a

with the regionwide average removed for easier com-

parison with modeled MDT. The cyclonic circulation in

the Nordic seas is visible by local minima in the basins of

the Nordic seas and elevated MDT along the sur-

rounding coasts of Greenland and northern Europe.

The even more pronounced and larger minimum

south of Greenland represents the subpolar gyre. The

North Atlantic Current, the inflow to theNordic seas, and

the Norwegian Atlantic Current are represented by the

northwest–southeastward sea level gradient in the south-

eastern half of themap, in particular along the continental

slope (see Fig. 1).

Figure 4 shows the RMSE of the MDT fields for

each model and the PCC for the observational period

together with the corresponding ranges that repre-

sent the spread of RMSE and PCC over all 20-yr pe-

riods. The PCCs are large (around 0.9) for seven models

with corresponding lowRMSEs (;0.1m). These models

capture the western extent of the subpolar gyre cor-

rectly (Fig. S2). Models with PCC , 0.6 (GFDL-

ESM2G,MRI-CGCM3, and BCC_CSM1.1) and amean

RMSE . 0.15m do not simulate the characteristic sea

level minimum corresponding to the subpolar gyre at all.

The MDT minimum in the Nordic seas is present in

all models except for one (INM-CM4.0), although the

FIG. 3. MDT from (a) observations and (b) multimodel mean for the observational period. The PCC between those fields is also shown.

(c) Ensemble mean of differences between models and observations for the observational period. Black, gray, and white contours in

(b) and (c) represent signal-to-noise ratio of 1, 1.5, and 2, respectively, defined as the ratio of ensemble mean and ensemble standard

deviation of the regional anomalies. The numbers above each map represent the regionwide average and root-mean-square, respectively.

FIG. 4. Results of model–observation comparison ofMDT:mean

RMSE over all 20-yr periods from 1850 to 2012 (bars) with

minimum–maximum range (black error bars) as well as RMSE

over observational period (black dots) for each model. The

equivalent is shown for the PCCs (red error bars and dots). Also

shown are theRMSEs and PCCs for the three differentmultimodel

means over the observational period, over modeled maps of min-

imum RMSE, and over modeled maps of maximum PCC

(section 2d).
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strength and location vary. The spatial variability of

the multimodel mean over the observational period

(Fig. 3b) is slightly smaller than the observed variability.

The ensemble mean difference between modeled and

observed MDT over the observational period is shown

in Fig. 3c. The most pronounced feature is a systematic

underestimation of the strength of the subpolar gyre in

the Labrador Sea. There is also a significant lack of re-

gional details in the North Atlantic Current in the

Norwegian Sea.

Generally, the lower the PCC is, the higher the RMSE

is (Fig. 4). The RMSE is of the same order of magnitude

as found in Landerer et al. (2014) for the entire world

ocean over the period 1993–2002. The spread of RMSEs

and PCCs derived from all available 20-yr periods is

small for most models, indicating that internal variabil-

ity has little effect on modeled MDT patterns. The ex-

ception is GFDL-ESM2G, where the RMSE increases

gradually and the PCC decreases gradually throughout

the historical simulation (not shown). PCCs are highest

(.0.9) with corresponding low RMSEs for the multi-

model mean. This applies to any 20-yr period over which

MDT is calculated: the observational period, the period

ofminimumRMSE, and the period of maximum pattern

correlation (Fig. 4).

b. Variability

The observed interannual sea level variability

(Fig. 5a) exhibits local maxima in the Lofoten Basin, as

well as in the Iceland Basin and Irminger Sea at the

eastern rim of the subpolar gyre. In contrast, observed

interannual variability is weak in the western branch of

the subpolar gyre and on the shallow European shelf

from the British Isles along the Norwegian coast up to

the entrance to the Barents Sea. In the coastal areas of

the North Sea, however, variability is stronger.

Models are designed to reproduce the main climate

modes in terms of amplitude and location. However, the

phase and timing of simulated variability is not necessarily

the same as that of the observed variability. Therefore, we

do not expect the models to reproduce the observed

variability over the observational period, and the RMSEs

and the PCCs are expected to vary when comparing all

available modeled 20-yr periods with the observations.

This is indeed the case (Fig. 6). The range of PCCs ismuch

larger than the equivalent range for the MDT (Fig. 4).

RMSEs are on the order of 1–2 cm, with some models

showing a spread as large as 1 cm. The PCCs are low

(between 20.1 and 0.5), and some models display both

negative and positive correlation coefficients. The PCCs

for the observational period are not systematically in the

higher end of the range, indicating that the observed

variability is not in phase with the variability in the forced

simulations and thus indeed unforced. In the same way as

for MDT, the ensemble means of variability for the ob-

servational period and periods of minimum RMSE and

maximum PCC, respectively, show smaller RMSEs and

larger PCCs than any of the individual models.

Figure 5b shows the modeled variability as the mul-

timodel mean over the periods of maximum pattern

correlation of the individual models. These periods are

FIG. 5. Sea level variability from (a) observations and (b) multimodel mean over the periods of maximum pattern correlation. The PCC

between those fields is also shown. (c)Difference ofmodeled and observed variability averaged over all models for the period ofmaximum

pattern correlation. The mean difference has been removed and only anomalies are shown. Black, gray, and white contours represent

signal-to-noise ratio of 1, 1.5, and 2, respectively, defined as the ratio of ensemble mean and ensemble standard deviation of the regional

anomalies. The numbers above each map represent the regionwide average and root-mean-square, respectively.

FIG. 6. As in Fig. 4, but for results of model–observation compar-

ison of sea level variability.
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different for each model as the internal variability is

random and not in phase between the individual models.

The mean difference averaged over all models is 0.21 cm

(not included in Fig. 5c), indicating that models over-

estimate the variability in this region. The multimodel

mean variability shows enhanced variability away from

the coasts in accordance with the observations (Figs. 5a,b).

However, the pattern is very smooth and does not

reproduce the finer spatial features. This is partly due to

the ensemble averaging: when looking at individual

models (Fig. S3 in the supplemental material) local de-

tails like the enhanced variability in the central Nordic

seas are evident in most models (except IPSL-CM5A-

MR). The strength and location of these details, how-

ever, differ from model to model.

The relatively good statistical performance of the

ensemble mean as shown in Fig. 6 is therefore due to

smoothing of local features, and the performance comes

from good reproduction of large-scale features. However,

a systematic underestimation of variability in the Lofoten

Basin is identified, as well as an overestimation of the

strength of the variability in the southern Iceland Basin

(Fig. 5c, at lower right). In the remaining areas, no sys-

tematic differences are found.

c. Linear trends

As mentioned, we use the altimetric sea level cor-

rected for contributions from land ice (Figs. 2d and 7a)

in the following trend analysis. Linear trends in sea level

over the observational period may be unforced, that is,

due to internal variability only; externally forced (nat-

ural or anthropogenic); or a combination of both. To

account for the presence of unforced trends, we apply

the same procedure as for the investigation of variability

and compare the observed trends with trends from all

20-yr periods available in the models.

Statistical parameters from the observation–model

comparison of trend anomalies are shown in Fig. 8. The

PCCs for trends span an even wider range (from20.45 to

0.45) than for variability (cf. Fig. 6), as is to be expected.

For most models, PCCs are symmetric around zero.

Notable exceptions are GFDL-ESM2G and IPSL-

CM5A-MR, with maximum positive PCCs much larger

than absolute negative PCCs. The RMSEs are on the

order of the observed mean sea level rise itself or higher.

For the ensemble means, RMSEs are smaller than for

the individual models. For the ensemble mean over the

periods of minimum RMSE and maximum pattern cor-

relation, the PCCs exceed 0.6 (0.18 for observational

period), indicating that the observed trend pattern is at

least partly simulated at some point in time by some of

the models. It is also noteworthy that PCCs are not

largest and RMSEs not smallest over the observational

period (red and black dots in Fig. 8, respectively), hinting

toward the importance of internal variability. Note that

the RMSE is not the total RMSE but the RMSE of the

fields with the regionwide average trend removed. That

is, we compare observed and modeled trend anomalies.

This way, we account only for spatial variability and not

for biases in the regionwide average trend. This is im-

portant as the modeled trends, and therefore the total

FIG. 7. Linear sea level trends over the observational period from (a) observations (as in Fig. 2d) and (b) multimodel mean of modeled

trends. The PCC between those fields is also shown. (c) Multimodel mean of the differences between modeled and observed trend

anomalies for the observational period. The regionwide average difference that has been removed (as we look at anomalies) is

0.82mmyr21. Black, gray, and white contours represent signal-to-noise ratio of 1, 1.5, and 2, respectively, defined as the ratio of ensemble

mean and ensemble standard deviation of the regional maps. The numbers above each map represent the regionwide average and root-

mean-square, respectively.

FIG. 8. As in Fig. 4, but for results of model–observation compar-

ison of trends.
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RMSE, are strongly affected by the global average sea

level rise. As we expect the observed trends to be at least

partly affected by internal variability and therefore cor-

respond to any modeled time period with potentially

lower global sea level rise, it is important to take this into

account.

The modeled average sea level trends for the obser-

vational period range from 0.12 (MRI-CGCM3) to

4.97mmyr21 (BCC_CSM1.1; Fig. S4 in the supple-

mental material) with a multimodel mean of 2.26 6
1.23mmyr21 (one standard deviation), which is larger

than the observed average trend of 1.75mmyr21. The

ensemble mean of modeled regional trends over the

observational period is shown in Fig. 7b. Compared to

the observations (Fig. 7a), the simulated spatial vari-

ability is small (0.84 versus 1.48mmyr21). The marked

sea level rise in the subpolar gyre that dominates the

observed trends is not simulated at all. This indicates

that it is a manifestation of internal variability, the re-

sponse to an external forcing that is not included in the

models, or processes that are not properly represented

or resolved. Instead, a negative trend in the central

North Atlantic is simulated that is also present in the

observations but has a signal-to-noise ratio of less than 1.

The sea level rise along the shallow shelf areas and west

of Greenland is systematic across the models (high

signal-to-noise ratio), indicating that it may be a forced

signal. However, it should be noted that the relatively

high signal-to-noise ratio shown in Fig. 7b is due to the

regionwide average sea level trend. Once this trend

is removed and only anomalies are considered, the

signal-to-noise ratio is less than 1 in the entire area

(not shown).

To assess whether the models systematically over- or

underestimate observed trends, we compute the multi-

model mean of the differences between modeled and

observed trend anomalies for the observational period

(Fig. 7c). The regionwide averagedifference is 0.51mmyr21,

reflecting the overestimation of the sea level rise in the

region by the models. The differences shown in Fig. 7c

resemble the spatial pattern of the observed trend

anomalies (Fig. 7a), and indeed the PCC between the two

fields is 20.86.

Compared to the observed trends, the modeled trend

field is rather smooth.While a large grid size contributes

to a smoother result, this also indicates that the modeled

trend anomalies during this period are offsetting each

other partially in the ensemble mean and are therefore

induced by internal variability rather than forced. This is

confirmed when looking at individual models (Fig. S4).

While all models simulate a regionwide average sea

level rise, the spatial patterns are very different. From

this, we conclude that the observed regional sea level

trend pattern results from internal variability while the

regionwide average positive sea level change is externally

forced.

To investigate whether internal variability as simu-

lated by the models reproduces the observed spatial

trend pattern, we turn again to the pattern correlation

analysis and select, for eachmodel, the 20-yr period with

the maximum pattern correlation. The results are shown

in Fig. S5 of the supplemental material for each model,

and themultimodelmean is presented in Fig. 9b. Indeed,

the multimodel mean now displays positive trends in

the region of the subpolar gyre with a relatively high

signal-to-noise ratio. The PCC of the ensemble mean

with the observed anomalies is 0.66. The regionwide

average of the multimodel mean (subtracted in Fig. 9b)

is 1.32mmyr21, indicating that the periods of maximum

pattern correlation occur at times of lower regionwide

sea level rise in the majority of the models. The re-

gionwide average sea level trend for individual models

ranges from 20.68mmyr21 for HadGEM2-ES (period

of maximum pattern correlation: 1954–73) to 4.45mmyr21

for GFDL-ESM2M (1981–2000).

For the period of maximum PCC, the multimodel

mean difference (Fig. 9c) between modeled and ob-

served anomalies is less systematic than the differences

FIG. 9. Linear sea level trend anomalies (relative to regionwide average) from (a) observations and (b) ensemble mean over periods of

maximum pattern correlation. The PCC between those fields is also shown. (c) The multimodel mean of the differences between models

and observations. Black, gray, and white contours represent signal-to-noise ratio of 1, 1.5, and 2, respectively, defined as the ratio of

ensemble mean and ensemble standard deviation of the regional maps. The numbers above each map represent the regionwide average

and root-mean-square, respectively.
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for the observed period (Fig. 7c) with a lower corre-

sponding PCC of 20.62. It appears that a part of the

observed signal can be identified as an internal signal.

In the next step, we combine the forced signal that

appears to consist of a regionwide sea level rise (Fig. 7b)

with the signal that originates from internal variability

(Fig. 9b) to obtain the full signal (Fig. 10b). The PCC

with the observations is 0.61. The approach implicitly

assumes the perfect cancellation of internal variability

during the observational period, which cannot be ex-

pected to be entirely true due to the different repre-

sentation of internal variability in themodels in terms of

strength, location, and frequency. The anomalously

high sea level rise in the subpolar gyre is well captured,

as is the sea level rise along the east coast of Greenland.

The regional pattern of the differences between mod-

eled and observed trend anomalies has a very low

signal-to-noise ratio (PCC of 20.42 with observations),

except in the Davis Strait, where the models appear to

systematically overestimate the change in sea level

(Fig. 10c).

4. Discussion

We have assessed the representation of simulated sea

level in terms of its mean state (MDT), interannual

variability, and linear trends in 18 CMIP5 climate

models by comparing the model output with observa-

tions from satellite altimetry. As the altimetric record

covers only 20 years, a time span on which internal

variability dominates over externally forced signals

(Richter and Marzeion 2014), the observations were

compared to the entire model record (1850–2012) using

20-yr time slices.

A summary of the statistical results with respect to

multimodel means is shown in Table 1 and for individual

models in Fig. 11. While the multimodel means repre-

sent the observed MDT rather well (PCC . 0.9), the

multimodel mean performance degrades with respect to

regional interannual variability and trends. This is also

true for individual models: the PCCs for MDT can ex-

ceed 0.9 for some models, while the maximum PCC is

below 0.6 for linear trends and variability.

With the exception of GFDL-ESM2G, the model

performance with respect to MDT depends only a little

on the chosen period (small spread in RMSE and cor-

relations in Fig. 4), indicating that internal variability

has little influence on MDT in a 20-yr period and is of

the same order of magnitude as intermodel differences.

The most striking intermodel differences are the simu-

lation of the location, strength, and shape of the sea level

minimum associated with the subpolar gyre and to some

degree the Nordic seas minimum (Fig. S2). Shortcom-

ings in the representation of open ocean circulation can

be expected to have consequences for the ability to

simulate relevant regional coastal sea level, since it is

the transport of steric anomalies toward the shelves and

the dynamics of the slope currents that constitute the

FIG. 10. Linear trends in sea level from (a) observations (as in Fig. 2d) and (b) combined modeled signal from the observational period

(Fig. 7b) and periods of maximum pattern correlation (Fig. 9b). The PCC between those fields is also shown. (c) The multimodel mean

differences with observations. Black, gray, and white contours represent signal-to-noise ratio of 1, 1.5, and 2, respectively, defined as the

ratio of ensemble mean and ensemble standard deviation of regional anomalies. The numbers above each map represent the regionwide

average and root-mean-square, respectively.

TABLE 1. PCCs andRMSEs between observations and different ensemblemeans: observational period 1993–2012, periods ofmaximum

pattern correlation (maxcorr), and for trends in periods of maximum pattern correlation plus observational period (maxcorr2012). For

variability and trends, the total RMSE (regionwide average included) is shown in the bottom row.

MDT (m) Variability (cm) Linear trends (mmyr21)

1993–2012 Maxcorr 1993–2012 Maxcorr 1993–2012 Maxcorr Maxcorr2012

PCC 0.92 0.95 0.53 0.66 0.18 0.66 0.61

RMSE 0.073 0.065 0.76 0.68 1.63 1.19 1.40

Total — — 0.78 0.69 1.69 2.14 1.48
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regional steric/dynamic contribution to coastal sea level

change and variability.

The larger range in PCCs for variability (Fig. 5) as

compared to MDT reflects the importance of internal

variability in the area. The finer details (e.g., in the

Lofoten Basin and the areas east and west of Reykjanes

Ridge) are not captured by the models. When looking at

individual models, variability is strikingly overestimated

by some models in large parts of the region. A more

detailed analysis is necessary to reveal the reasons for

the under- or overestimation of interannual variability

(i.e., steric vs dynamic changes).

Unsurprisingly, we found that linear 20-yr trends are

heavily impacted by internal variability and no forced

pattern of regional sea level trend could be detected

over the observational period, supporting previous

studies (Richter et al. 2017). According to our results,

the observed increase in sea level in the subpolar gyre

appears to be induced by internal variability. This is in

line with the results ofHäkkinen et al. (2013), who found
that the increase is part of Atlantic multidecadal vari-

ability mainly forced by wind stress changes. Climate

modes involving atmospheric circulation (such as the

North Atlantic meridional dipole) have been shown to

govern variability in both on-shelf sea level (Richter

et al. 2012a; Calafat et al. 2012; Dangendorf et al. 2014a;

Chafik et al. 2017) and ocean circulation (e.g., Nilsen

et al. 2003; Sandø et al. 2012; Richter et al. 2012b) in the

North Atlantic, on time scales from months to decades.

Although considered part of natural variability, spa-

tial shifts and changes in these modes (Ulbrich and

Christoph 1999) may lead to significant sea level

changes, especially along the coasts (Chafik et al. 2017).

A recent study by Becker et al. (2016) compared long-

term correlation in sea level as observed by century-long

tide gauge records with simulated nearby sea level from

FIG. 11. Taylor diagrams to summarize the performance of individual models with respect to (a) MDT (obser-

vational period), (b) variability (maximumPCC), and (c) linear trends (maximumPCC). The dashed arcs represent

the RMSE. Standard deviation and RMSE are standardized with the respective observed spatial standard de-

viation. The respective multimodel mean and the observations as well as the multimodel mean based on selection

(w1) and weighting (w2) are also shown.
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climate models and found that the models over-

estimated long-term trends at the North Atlantic coasts

as induced by internal variability. Here, we found no

evidence of an overestimation of 20-yr trends, but our

approach is not perfectly suited to detect such a misfit.

Note also that we are focusing on larger spatial scales

and the open oceans to shed light on the model perfor-

mance in the regions from where long-term sea level

changes are likely to originate. For a more thorough

assessment of both variability and trends, and to disen-

tangle the steric and dynamic contribution, we would

need to produce a steric estimate from both models and

observations. This is, however, out of the scope of

this study.

The performance of the individual models is summa-

rized in Fig. 11. In the Taylor diagrams, the distance

between the points representing the simulated fields and

the point representing the observed field is inversely

proportional to the overall similarity of the two fields.

For variability and trends (Figs. 11c,d), models are

grouped along a line as we display their performance

during periods of maximum PCC, which is similar for

most models (Figs. 6 and 8). From Fig. 11 outliers can be

identified visually, that is, MRI-CGCM3 in Fig. 11b and

HadGEM2-CC in Fig. 11c. It is also clear that the en-

semble mean delivers the best performance. However,

because of the ensemble averaging, finer details are lost

and the spatial standard deviation of the ensemble mean

is always smaller than the observed one (Fig. 11), except

when weighting is applied (see below).

From Fig. 11 it can be seen that there is no clear re-

lationship between the model performances regarding

MDT and their performances regarding variability and

linear trends. Also, there is no consistent relationship

between model grid spacing and their performance.

While models with comparatively small grid spacing like

CCSM4 and NorESM are consistently in the upper half

of the ranking, so is CMCC-CMS—a model with rela-

tively large grid spacing in the area. In contrast, MPI-

ESM-LR does perform well with respect to MDT, but

performance degrades considerably regarding variabil-

ity and trends. A good performance with respect to the

mean state is therefore no guarantee for an equally good

performance with respect to decadal trends and in-

terannual variability.

One might ask whether the results of our analysis can

be used to improve projections and/or reduce un-

certainties of regional sea level and risk assessments that

are based on the climate simulations we investigated

here. Weighting model output has been used widely

with respect to, for example, mean surface temperature

(Räisänen et al. 2010), the meridional overturning cir-

culation (Schneider et al. 2007), and sea ice extent

(Knutti et al. 2017). Various approaches are conceiv-

able, such as selecting the model that performs best,

excluding models that perform inadequately, or assign-

ing different weights to models based on their

performance.

Prior to computing weights, it needs to be assessed

whether our diagnostics (mean state, interannual vari-

ability, or short-term trends) are relevant for projections

on long time scales. The regional trend patterns are

mostly due to internal variability. It is therefore ques-

tionable to draw conclusions about sea level projections

(i.e., forced changes) based on the models’ performance

with respect to linear trends over the observational pe-

riod. The accurate representation of the mean state is

more relevant to projections (and has also been shown

to be time independent), as is the simulation of the re-

gionwide sea level rise that has been shown to be at least

partly forced. If weights are to be computed, these two

diagnostics should be used.

We emphasize that our study focuses on evaluating

the large-scale features of CMIP5 models in contrast to

details on shelves and near coasts, where we do not

expect these coarse grid models to perform well (e.g.,

Griffies et al. 2014). The overestimation of near-coast

sea level changes pointed out by Becker et al. (2016)

may indicate that CMIP5 models may be lacking in

representation of relevant processes. For example, the

decoupling between on-shelf and off-shelf sea level

changes on short–interannual time scales (e.g., Hughes

and Williams 2010; Bingham and Hughes 2012) may

play a role on longer time scales, but it is not necessarily

modeled correctly, neither are transfer mechanisms

involving coastally trapped waves (Calafat et al. 2012;

Dangendorf et al. 2014a; Frederikse et al. 2016). The

ability to model exchanges with the Mediterranean Sea

has also been proposed to be important for the repre-

sentation of sea level changes on the European shelves

(Hughes et al. 2015). Such small-scale processes should

be taken into consideration for improvement and

evaluation of future models but are outside the scope of

this study. Our motivation is that the circulation and

variability in the open oceans need to be realistic to

model the off-shelf, long-term steric and dynamic

changes that will, through the abovementioned or

other mechanisms, affect long-term sea level changes

on shelves and coasts.

Here, we provide a test of our hypothesis that there is

potential benefit in basing model selection or weighting

on the models’ performance with respect to the large-

scale mean state. Comparisons were done between the

full ensemble (equal weights), an ensemble of models

with MDT RMSE below median (zero weights for

deselected models), and an ensemble weighted by the
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inverse of the MDT RMSE. The according weights are

presented in Table S2, and the skill of the modified

multimodel means is included in Fig. 11. The perfor-

mance of the ensemble mean MDT improves only

marginally with the selection and weighting (Fig. 11a

and Fig. S6 in the supplemental material), as the full

ensemble already performed reasonably. However, the

strength and shape of the subpolar gyre becomes more

realistic with selection, but not with weighting. As ex-

pected, the performance with respect to trends and

variability does not improve with weighting or selecting,

but it does not deteriorate either (see also Figs. S7 and

S8 in the supplemental material).

More importantly, compared to using the full en-

semble, selecting models leads to a reduction in spread

of regional sea level ensemble projections along the

coastlines. A similar spread reduction is not apparent in

our weighted results (Figs. 12d–f). These results indicate

that climate model performance with respect to simu-

lating coastal sea level change should be assessed by

their oceanwide circulation and that selection should be

considered a liable option. This also underlines that

climatemodels need to be investigated further regarding

their steric and dynamic features and performance,

preferably on longer time scales as well.

5. Conclusions

We decomposed annually averaged sea level in the

northern North Atlantic and Nordic seas over a 20-yr

period into a mean state, linear trends, and residual in-

terannual variability to evaluate the performance of

climate models that are routinely used to project the

steric/dynamic component of future sea level changes

against altimetric observations.

We demonstrated that models are in general capable

of capturing the main features of observed sea level

changes if internal variability is taken into account. Our

study shows that the observed linear trend pattern over

the period 1993–2012 is likely dominated by internal

variability, whereas the mean state pattern is rather in-

sensitive to which 20-yr period is chosen. While no

forced signal could be detected in the regional trend

patterns, the observed regionwide average sea level rise

during the observational period (1993–2012) appears to

be partly forced.

According to our results, the ensemble mean out-

performs every single model, in line with what has been

shown in other studies (e.g., Yin et al. 2010; Simpson

et al. 2014). Risk assessments are, however, not only

interested in the most likely projection, but also the

uncertainty range around it. Our results also highlight

that the multimodel projection spread of regional

coastal sea level change can be reduced by selecting

models based on their ability to simulate the mean dy-

namic topography over the entire ocean region in

question. This highlights the general importance of a

realistic mean state representation as the most impor-

tant feature of ocean models in order to be suitable for

sea level projections.

Our selection–weighting approach is rather ad hoc

and simple and, as such, is subject to certain caveats

(e.g., we are not considering intermodel dependencies).

Sea level changes as investigated here are the result of

FIG. 12. Multimodel mean of sea level change from 1986–2005 to 2081–2100 (RCP4.5) with (a) no weighting (i.e., equal weights), (b) a

subselection of models with MDT RMSE smaller than median, and (c) models weighted with inverse of MDT RMSE. (d)–(f) The re-

spective ensemble standard deviation (also weighted when appropriate). The numbers on top of each map indicate the regionwide

average.
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several processes (air–sea heat exchange, redistribution

of heat and freshwater in the ocean, and dynamic

changes) and, in line with Knutti et al. (2017), several

variables (e.g., ocean temperature and salinity) and di-

agnostics (e.g., stratification) should be analyzed in

conjunction in order to assign sensible weights to

each model.

Acknowledgments. This work was funded by the

Austrian Science Fund (FP253620) and supported by

the Austrian Ministry of Science BMWF as part of the

UniInfrastrukturprogramm of the Focal Point Scientific

Computing at the University of Innsbruck. Support was

also provided by the Centre for ClimateDynamics at the

Bjerknes Centre, through the project iNcREASE. The

work is also partly supported by the ESA-CCI Sea Level

project funded under the ESRIN Contract 4000109872/

13/1-NB and by the Copernicus Arctic MFC project.

This paper has further profited from the outcome of

work with the ISSI international team on Contemporary

Regional and Global Sea-Level Rise: Assessment of

Satellite and In-Situ Observations and Climate Models

(www.issibern.ch). We acknowledge the World Climate

Research Programme’s Working Group on Coupled

Modelling, which is responsible for CMIP5, and we

thank the climate modeling groups (listed in Table S1 of

this paper) for producing and making available their

model output.

REFERENCES

Ablain, M., and Coauthors, 2015: Improved sea level record over

the satellite altimetry era (1993–2010) from the Climate

Change Initiative project. Ocean Sci., 11, 67–82, doi:10.5194/

os-11-67-2015.

——, J. Legeais, P. Prandi, M. Marcos, L. Fenoglio-Marc,

H. Dieng, J. Benveniste, and A. Cazenave, 2017: Satellite

altimetry-based sea level at global and regional scales. Surv.

Geophys., 38, 7–31, doi:10.1007/s10712-016-9389-8.

Andersen, O., P. Knudsen, and L. Stenseng, 2015: The DTU13

MSS (mean sea surface) and MDT (mean dynamic topogra-

phy) from 20 years of satellite altimetry. IGFS 2014: Pro-

ceedings of the 3rd International Gravity Field Service, S. Jin

and R. Barzaghi, Eds., IAG Symposia, Vol. 144, Springer,

111–121, doi:10.1007/1345_2015_182.

Becker, M., M. Karpytchev, M. Marcos, S. Jevrejeva, and

S. Lennartz-Sassinek, 2016: Do climate models reproduce

complexity of observed sea level changes?Geophys. Res. Lett.,

43, 5176–5184, doi:10.1002/2016GL068971.

Benveniste, J., and P. Knutsen, and the GUTS Team, 2007: The

GOCE User Toolbox. Proc. 3rd International GOCE User

Workshop, SP-627, Frascati, Italy, European Space Agency,

265–268.

Bilbao, R. A., J. M. Gregory, and N. Bouttes, 2015: Analysis of the

regional pattern of sea level change due to ocean dynamics

and density change for 1993–2099 in observations and CMIP5

AOGCMs. Climate Dyn., 45, 2647–2666, doi:10.1007/

s00382-015-2499-z.

Bingham, R., and C. Hughes, 2012: Local diagnostics to estimate

density-induced sea level variations over topography and

along coastlines. J. Geophys. Res., 117, C01013, doi:10.1029/

2011JC007276.

Böning, C. W., E. Behrens, A. Biastoch, K. Getzlaff, and J. L.

Bamber, 2016: Emerging impact of Greenland meltwater on

deepwater formation in the North Atlantic Ocean. Nat. Geo-

sci., 9, 523–527, doi:10.1038/ngeo2740.

Bruinsma, S. L., C. Förste, O. Abrikosov, J.-M. Lemoine, J.-C.

Marty, S. Mulet, M.-H. Rio, and S. Bonvalot, 2014: ESA’s

satellite-only gravity field model via the direct approach based

on all GOCE data. Geophys. Res. Lett., 41, 7508–7514,

doi:10.1002/2014GL062045.

Calafat, F., D. Chambers, and M. Tsimplis, 2012: Mechanisms of

decadal sea level variability in the eastern North Atlantic and

the Mediterranean Sea. J. Geophys. Res., 117, C09022,

doi:10.1029/2012JC008285.

Chafik, L., J. E. Ø. Nilsen, and S. Dangendorf, 2017: Impact of

North Atlantic teleconnection patterns on Northern Euro-

pean sea level. J. Mar. Sci. Eng., 5, 43, doi:10.3390/

jmse5030043.

Church, J. A., and Coauthors, 2013: Sea level change. Climate

Change 2013: The Physical Science Basis, T. F. Stocker et al.,

Eds., Cambridge University Press, 1137–1216.

Dangendorf, S., F. M. Calafat, A. Arns, T. Wahl, I. D. Haigh, and

J. Jensen, 2014a: Mean sea level variability in the North Sea:

Processes and implications. J. Geophys. Res. Oceans, 119,

6820–6841, doi:10.1002/2014JC009901.

——, D. Rybski, C. Mudersbach, A. Müller, E. Kaufmann,

E. Zorita, and J. Jensen, 2014b: Evidence for long-term

memory in sea level. Geophys. Res. Lett., 41, 5530–5537,

doi:10.1002/2014GL060538.

Dziewonski, A., and D. Anderson, 1981: Preliminary reference

Earth model. Phys. Earth Planet. Inter., 25, 297–356,

doi:10.1016/0031-9201(81)90046-7.

Farrell, W., and J. Clark, 1976: On postglacial sea level. Geo-

phys. J. Int., 46, 647–667, doi:10.1111/j.1365-246X.1976.

tb01252.x.

Frederikse, T., R. Riva, M. Kleinherenbrink, Y. Wada, M. Broeke,

and B. Marzeion, 2016: Closing the sea level budget on a re-

gional scale: Trends and variability on the Northwestern

European continental shelf. Geophys. Res. Lett., 43, 10 864–

10 872, doi:10.1002/2016GL070750.

Furevik, T., and J. E. O. Nilsen, 2005: Large-scale atmospheric

circulation variability and its impacts on the Nordic seas ocean

climate—A review. The Nordic seas: An Integrated Perspec-

tive, Geophys. Monogr., Vol. 158, Amer. Geophys. Union,

105–136, doi:10.1029/158GM09.

Griffies, S. M., and Coauthors, 2014: An assessment of global and

regional sea level for years 1993–2007 in a suite of interannual

CORE-II simulations. Ocean Modell., 78, 35–89, doi:10.1016/

j.ocemod.2014.03.004.

Grinsted, A., S. Jevrejeva, R. E. Riva, and D. Dahl-Jensen, 2015:

Sea level rise projections for northern Europe under RCP8.5.

Climate Res., 64, 15–23, doi:10.3354/cr01309.

Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2013: Northern

North Atlantic sea surface height and ocean heat content

variability. J. Geophys. Res. Oceans, 118, 3670–3678,

doi:10.1002/jgrc.20268.

Hughes, C. W., and S. D. Williams, 2010: The color of sea level:

Importance of spatial variations in spectral shape for assessing

the significance of trends. J. Geophys. Res., 115, C10048,

doi:10.1029/2010JC006102.

9396 JOURNAL OF CL IMATE VOLUME 30

http://www.issibern.ch
http://dx.doi.org/10.5194/os-11-67-2015
http://dx.doi.org/10.5194/os-11-67-2015
http://dx.doi.org/10.1007/s10712-016-9389-8
http://dx.doi.org/10.1007/1345_2015_182
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1007/s00382-015-2499-z
http://dx.doi.org/10.1007/s00382-015-2499-z
http://dx.doi.org/10.1029/2011JC007276
http://dx.doi.org/10.1029/2011JC007276
http://dx.doi.org/10.1038/ngeo2740
http://dx.doi.org/10.1002/2014GL062045
http://dx.doi.org/10.1029/2012JC008285
http://dx.doi.org/10.3390/jmse5030043
http://dx.doi.org/10.3390/jmse5030043
http://dx.doi.org/10.1002/2014JC009901
http://dx.doi.org/10.1002/2014GL060538
http://dx.doi.org/10.1016/0031-9201(81)90046-7
http://dx.doi.org/10.1111/j.1365-246X.1976.tb01252.x
http://dx.doi.org/10.1111/j.1365-246X.1976.tb01252.x
http://dx.doi.org/10.1002/2016GL070750
http://dx.doi.org/10.1029/158GM09
http://dx.doi.org/10.1016/j.ocemod.2014.03.004
http://dx.doi.org/10.1016/j.ocemod.2014.03.004
http://dx.doi.org/10.3354/cr01309
http://dx.doi.org/10.1002/jgrc.20268
http://dx.doi.org/10.1029/2010JC006102


——, R. J. Bingham, V. Roussenov, J. Williams, and P. L.

Woodworth, 2015: The effect of Mediterranean exchange flow

on European time mean sea level. Geophys. Res. Lett., 42,

466–474, doi:10.1002/2014GL062654.

Jin, S., G. Feng, and O. Andersen, 2014: Errors of mean dy-

namic topography and geostrophic current estimates in

China’s marginal seas from GOCE and satellite altime-

try. J. Atmos. Oceanic Technol., 31, 2544–2555, doi:10.1175/

JTECH-D-13-00243.1.

Johannessen, J. A., and Coauthors, 2003: The European Gravity

Field and Steady-State Ocean Circulation Explorer satellite

mission: Its impact on geophysics. Surv. Geophys., 24, 339–

386, doi:10.1023/B:GEOP.0000004264.04667.5e.

Knudsen, P., R. Bingham, O. Andersen, and M.-H. Rio, 2011: A

global mean dynamic topography and ocean circulation esti-

mation using a preliminaryGOCE gravity model. J. Geod., 85,

861–879, doi:10.1007/s00190-011-0485-8.

Knutti, R., J. Sedlá�cek, B. M. Sanderson, R. Lorenz, E. M. Fischer,

and V. Eyring, 2017: A climate model projection weighting

scheme accounting for performance and interdependence.Geo-

phys. Res. Lett., 44, 1909–1918, doi:10.1002/2016GL072012.

Landerer, F. W., P. J. Gleckler, and T. Lee, 2014: Evaluation of

CMIP5 dynamic sea surface height multi-model simulations

against satellite observations. Climate Dyn., 43, 1271–1283,

doi:10.1007/s00382-013-1939-x.

Lyu, K., X. Zhang, J. A. Church, A. B. Slangen, and J. Hu, 2014:

Time of emergence for regional sea-level change.Nat. Climate

Change, 4, 1006–1010, doi:10.1038/nclimate2397.

Marzeion, B., A. H. Jarosch, and M. Hofer, 2012: Past and future

sea-level change from the surface mass balance of glaciers.

Cryosphere, 6, 1295–1322, doi:10.5194/tc-6-1295-2012.

——, P. W. Leclercq, J. G. Cogley, and A. H. Jarosch, 2015: Brief

communication: Global reconstructions of glacier mass

change during the 20th century are consistent. Cryosphere, 9,

2399–2404, doi:10.5194/tc-9-2399-2015.

Meyssignac, B., D. Salas y Melia, M. Becker, W. Llovel, and

A. Cazenave, 2012: Tropical Pacific spatial trend patterns in

observed sea level: Internal variability and/or anthropogenic

signature? Climate Past, 8, 787–802, doi:10.5194/cp-8-787-2012.

Milne, G., and J. Mitrovica, 1998: Postglacial sea-level change on a

rotating Earth. Geophys. J. Int., 133, 1–19, doi:10.1046/

j.1365-246X.1998.1331455.x.

Mitrovica, J., andW. Peltier, 1991: On postglacial geoid subsidence

over the equatorial oceans. J. Geophys. Res., 96, 20 053–

20 071, doi:10.1029/91JB01284.

Mitrovica, J. X., M. E. Tamisiea, J. L. Davis, andG. A.Milne, 2001:

Recent mass balance of polar ice sheets inferred from patterns

of global sea-level change. Nature, 409, 1026–1029, doi:10.1038/

35059054.

New, M., D. Lister, M. Hulme, and I. Makin, 2002: A high-

resolution data set of surface climate over global land areas.

Climate Res., 21, 1–25, doi:10.3354/cr021001.
Nilsen, J. E. O., Y. Gao, H. Drange, T. Furevik, and M. Bentsen,

2003: Simulated North Atlantic-Nordic seas water mass ex-

changes in an isopycnic coordinate OGCM. Geophys. Res.

Lett., 30, 1536, doi:10.1029/2002GL016597.

Palanisamy, H., B. Meyssignac, A. Cazenave, and T. Delcroix,

2015: Is anthropogenic sea level fingerprint already detectable

in the Pacific Ocean? Environ. Res. Lett., 10, 084024,

doi:10.1088/1748-9326/10/8/084024.

Peltier, W. R., 2004: Global glacial isostasy and the surface of the

ice-age Earth: The ICE-5G (VM2) model and GRACE.

Annu. Rev. Earth Planet. Sci., 32, 111–149, doi:10.1146/

annurev.earth.32.082503.144359.

Perrette,M., F. Landerer, R. Riva, K. Frieler, andM.Meinshausen,

2013: A scaling approach to project regional sea level rise and

its uncertainties. Earth Syst. Dyn., 4, 11–29, doi:10.5194/

esd-4-11-2013.

Rahmstorf, S., G. Feulner, M. E. Mann, A. Robinson,

S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional

twentieth-century slowdown in Atlantic Ocean overturning

circulation. Nat. Climate Change, 5, 475–480, doi:10.1038/

nclimate2554.

Räisänen, J., L. Ruokolainen, and J. Ylhäisi, 2010: Weighting

of model results for improving best estimates of climate

change. Climate Dyn., 35, 407–422, doi:10.1007/

s00382-009-0659-8.

Raj, R. P., 2017: Surface velocity estimates of the north IndianOcean

from satellite gravity and altimeter missions. Int. J. Remote

Sens., 38, 296–313, doi:10.1080/01431161.2016.1266106.

Richter, K., and B. Marzeion, 2014: Earliest local emergence of

forced dynamic and steric sea-level trends in climate models.

Environ. Res. Lett., 9, 114009, doi:10.1088/1748-9326/9/11/

114009.

——, J. E. Ø. Nilsen, and H. Drange, 2012a: Contributions to sea

level variability along the Norwegian coast for 1960–2010.

J. Geophys. Res., 117, C05038, doi:10.1029/2011JC007826.
——,O. Segtnan, and T. Furevik, 2012b: Variability of the Atlantic

inflow to the Nordic seas and its causes inferred from obser-

vations of sea surface height. J. Geophys. Res., 117, C04004,

doi:10.1029/2011JC007719.

——, B. Marzeion, and R. Riva, 2017: The effect of spatial aver-

aging and glacier melt on detecting a forced signal in regional

sea level. Environ. Res. Lett., 12, 034004, doi:10.1088/

1748-9326/aa5967.

Riva, R. E.M., J. L. Bamber, D. A. Lavallée, and B.Wouters, 2010:

Sea-level fingerprint of continental water and ice mass change

from GRACE. Geophys. Res. Lett., 37, L19605, doi:10.1029/

2010GL044770.

Sandø, A., J. Nilsen, T. Eldevik, and M. Bentsen, 2012:

Mechanisms for variable North Atlantic–Nordic seas

exchanges. J. Geophys. Res., 117, C12006, doi:10.1029/

2012JC008177.

Santer, B. D., K. E. Taylor, T. M. L. Wigley, J. E. Penner, P. D.

Jones, and U. Cubasch, 1995: Towards the detection and at-

tribution of an anthropogenic effect on climate. Climate Dyn.,

12, 77–100, doi:10.1007/BF00223722.

Schaeffer, P., Y. Faugére, J. F. Legeais, A. Ollivier, T. Guinle, and

N. Picot, 2012: The CNES_CLS11 global mean sea surface

computed from 16 years of satellite altimeter data. Mar.

Geod., 35, 3–19, doi:10.1080/01490419.2012.718231.
Schneider, B., M. Latif, and A. Schmittner, 2007: Evaluation of

different methods to assess model projections of the future

evolution of the Atlantic meridional overturning circulation.

J. Climate, 20, 2121–2132, doi:10.1175/JCLI4128.1.

Sen Gupta, A., N. C. Jourdain, J. N. Brown, and D. Monselesan,

2013: Climate drift in the CMIP5 models. J. Climate, 26, 8597–

8615, doi:10.1175/JCLI-D-12-00521.1.

Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-

sheet mass balance. Science, 338, 1183–1189, doi:10.1126/

science.1228102.

Simpson, M. J. R., K. Breili, and H. P. Kierulf, 2014: Estimates of

twenty-first century sea-level changes for Norway. Climate

Dyn., 42, 1405–1424, doi:10.1007/s00382-013-1900-z.

1 DECEMBER 2017 R I CHTER ET AL . 9397

http://dx.doi.org/10.1002/2014GL062654
http://dx.doi.org/10.1175/JTECH-D-13-00243.1
http://dx.doi.org/10.1175/JTECH-D-13-00243.1
http://dx.doi.org/10.1023/B:GEOP.0000004264.04667.5e
http://dx.doi.org/10.1007/s00190-011-0485-8
http://dx.doi.org/10.1002/2016GL072012
http://dx.doi.org/10.1007/s00382-013-1939-x
http://dx.doi.org/10.1038/nclimate2397
http://dx.doi.org/10.5194/tc-6-1295-2012
http://dx.doi.org/10.5194/tc-9-2399-2015
http://dx.doi.org/10.5194/cp-8-787-2012
http://dx.doi.org/10.1046/j.1365-246X.1998.1331455.x
http://dx.doi.org/10.1046/j.1365-246X.1998.1331455.x
http://dx.doi.org/10.1029/91JB01284
http://dx.doi.org/10.1038/35059054
http://dx.doi.org/10.1038/35059054
http://dx.doi.org/10.3354/cr021001
http://dx.doi.org/10.1029/2002GL016597
http://dx.doi.org/10.1088/1748-9326/10/8/084024
http://dx.doi.org/10.1146/annurev.earth.32.082503.144359
http://dx.doi.org/10.1146/annurev.earth.32.082503.144359
http://dx.doi.org/10.5194/esd-4-11-2013
http://dx.doi.org/10.5194/esd-4-11-2013
http://dx.doi.org/10.1038/nclimate2554
http://dx.doi.org/10.1038/nclimate2554
http://dx.doi.org/10.1007/s00382-009-0659-8
http://dx.doi.org/10.1007/s00382-009-0659-8
http://dx.doi.org/10.1080/01431161.2016.1266106
http://dx.doi.org/10.1088/1748-9326/9/11/114009
http://dx.doi.org/10.1088/1748-9326/9/11/114009
http://dx.doi.org/10.1029/2011JC007826
http://dx.doi.org/10.1029/2011JC007719
http://dx.doi.org/10.1088/1748-9326/aa5967
http://dx.doi.org/10.1088/1748-9326/aa5967
http://dx.doi.org/10.1029/2010GL044770
http://dx.doi.org/10.1029/2010GL044770
http://dx.doi.org/10.1029/2012JC008177
http://dx.doi.org/10.1029/2012JC008177
http://dx.doi.org/10.1007/BF00223722
http://dx.doi.org/10.1080/01490419.2012.718231
http://dx.doi.org/10.1175/JCLI4128.1
http://dx.doi.org/10.1175/JCLI-D-12-00521.1
http://dx.doi.org/10.1126/science.1228102
http://dx.doi.org/10.1126/science.1228102
http://dx.doi.org/10.1007/s00382-013-1900-z


——, and Coauthors, 2015: Sea level change for Norway: Past

and present observations and projections to 2100. NCCS

Rep. 1/2015, Norwegian Centre for Climate Services, 156 pp.,

http://www.miljodirektoratet.no/Documents/publikasjoner/

M405/M405.pdf.

Slangen, A., C. Katsman, R. van de Wal, L. Vermeersen, and

R. Riva, 2012: Towards regional projections of twenty-first

century sea-level change based on IPCC-SRES scenarios.

Climate Dyn., 38, 1191–1209, doi:10.1007/s00382-011-1057-6.

——, M. Carson, C. Katsman, R. van de Wal, A. Köhl,
L. Vermeersen, and D. Stammer, 2014: Projecting twenty-first

century regional sea-level changes.Climatic Change, 124, 317–
332, doi:10.1007/s10584-014-1080-9.

——, J. A. Church, X. Zhang, and D. P. Monselesan, 2015: The sea

level response to external forcings in historical simulations of

CMIP5 climate models. J. Climate, 28, 8521–8539, doi:10.1175/

JCLI-D-15-0376.1.

Tamisiea, M. E., 2011: Ongoing glacial isostatic contributions to

observations of sea level change. Geophys. J. Int., 186, 1036–
1044, doi:10.1111/j.1365-246X.2011.05116.x.

Tapley, B. D., and Coauthors, 1994: Precision orbit determination

for TOPEX/POSEIDON. J. Geophys. Res. Oceans, 99,

24 383–24 404, doi:10.1029/94JC01645.

Taylor, K., R. Stouffer, andG.Meehl, 2012:An overviewof CMIP5

and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–

498, doi:10.1175/BAMS-D-11-00094.1.

Thomson, R. E., and W. J. Emery, 2001:Data Analysis Methods in

Physical Oceanography. Elsevier, 654 pp.

Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and in-

creasing storm track activity over Europe due to anthropo-

genic greenhouse gas forcing. Climate Dyn., 15, 551–559,

doi:10.1007/s003820050299.

Van Vuuren, D., and Coauthors, 2011: The representative

concentration pathways: An overview. Climatic Change, 109,

5–31, doi:10.1007/s10584-011-0148-z.

Yin, J. J., S. M. Griffies, and R. J. Stouffer, 2010: Spatial

variability of sea level rise in twenty-first century

projections. J. Climate, 23, 4585–4607, doi:10.1175/

2010JCLI3533.1.

9398 JOURNAL OF CL IMATE VOLUME 30

http://www.miljodirektoratet.no/Documents/publikasjoner/M405/M405.pdf
http://www.miljodirektoratet.no/Documents/publikasjoner/M405/M405.pdf
http://dx.doi.org/10.1007/s00382-011-1057-6
http://dx.doi.org/10.1007/s10584-014-1080-9
http://dx.doi.org/10.1175/JCLI-D-15-0376.1
http://dx.doi.org/10.1175/JCLI-D-15-0376.1
http://dx.doi.org/10.1111/j.1365-246X.2011.05116.x
http://dx.doi.org/10.1029/94JC01645
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1007/s003820050299
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1175/2010JCLI3533.1
http://dx.doi.org/10.1175/2010JCLI3533.1

