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Automated detection and 
enumeration of marine wildlife 
using unmanned aircraft systems 
(UAS) and thermal imagery
A. C. Seymour1, J. Dale1, M. Hammill2, P. N. Halpin1 & D. W. Johnston1

Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating 
population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, 
human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches 
show promise, but can be constrained by long setup times and difficulty discriminating animals in 
aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision 
to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped 
with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern 
Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an 
automated classification and detection algorithm discriminated seals based upon temperature, size, 
and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle 
Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 
2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision 
by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study 
illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect 
population data critical to wildlife management.

Estimating the abundance of animal populations is essential for both fundamental and applied wildlife ecology1,2. 
A good understanding of the abundance or density of a species or population within an ecosystem is required 
to elucidate its ecological roles within a community3, and to determine how best to manage human interactions 
with animal populations2.

Generating abundance information about a species usually relies on human survey effort to either census a 
population, or estimate its numbers through a statistically robust sampling program. In many cases, these efforts 
employ real-time visual4 or post-processed remote sensing surveys5 that allow for direct or indirect enumeration 
of individual animals or their indicators, such as tracks, scat or sounds2.

Aerial surveys are particularly useful for species that make use of predictable habitats for resting, mating, 
breeding, feeding or other social activities. This is especially true for marine species such as seabirds and pinni-
peds that spend significant time at sea where they are cryptic and largely unavailable for visual or remotely-sensed 
detection. For these species, ground-based or aerial surveys at terrestrial/on ice aggregation sites provide for 
efficient abundance assessments.

Traditional surveys of many animal colonies are conducted using human-occupied helicopters or fixed-wing 
aircraft, which is risky6, costly for small study areas and can disturb animals during image collection7. The increas-
ing resolution of satellite imagery has provided new opportunities to assess wildlife populations from space8. 
However satellite-derived methods have difficulty resolving smaller animals9, and are hampered by atmospheric 
interference from clouds and humidity. The use of unmanned aircraft systems (UAS) for wildlife population 
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assessments can often reduce costs and risk to humans while providing extremely high resolution imagery of 
small species, overcoming the constraints of satellites and occupied aircraft10.

The use of UAS in terrestrial research applications is now wide-spread and transforming spatial ecological 
science11. These devices are used regularly to reduce costs and increase knowledge of key agricultural parameters 
through a combination of visible and multispectral imagery12. Small UAS are used to assess progress and envi-
ronmental compliance in mining operations and increasingly to study the terrestrial habitats and aggregations 
of wildlife13. The use of UAS in marine science is also on the rise, with applications focused on coastal ocean 
processes, habitats and species. For example, UAS have been used to assess ocean temperatures14, ocean produc-
tivity15, and coastal geomorphology16. They have also been used to assess seagrass beds17, for shoreline habitat 
mapping and coastal erosion studies16, and to assess the abundance and health of marine vertebrates18,19.

While UAS surveys collect detailed information rapidly, they do not overcome existing data analysis bottle-
necks. Specifically, manual counting of animals in imagery is time consuming and inefficient20. However, recent 
advances in automated counting and computer vision/machine learning approaches can help overcome these 
inefficiencies20. For example, automated detection and counting of birds21 and marsupials and mammals22,23 
can speed up population assessments and, depending on the sensors used, real-time applications are possible. 
Thermal sensors are particularly useful for mammalian wildlife, which tend to emit thermal energy at 9–14 μ m 
wavelengths that is detectable by a range of commercially available sensors24. Recent studies have capitalized on 
steep thermal gradients between mammalian targets and their backgrounds to identify, localize and count them25.

Like many terrestrial carnivores, coastal predators in North America were severely depleted during the 19th 
and 20th centuries. Subsequent conservation actions have enabled the recovery of many populations26. In eastern 
North America, grey seal (Halichoerus grypus) populations were once depleted through bounties and hunts27,28, 
and have subsequently made remarkable recoveries across much of their range29. As this species recovers and 
reassumes its roles in coastal ecosystems, there is a need for cost efficient and accurate abundance estimates to 
inform management30.

This paper illustrates the combination of (1) efficient UAS surveys, (2) thermal imaging and (3) a simple to 
use GIS-based workflow, to enhance the detection and enumeration of a marine predator at predictable terrestrial 
breeding colonies. Specifically, the present study estimates the abundance of grey seals at two breeding colonies 
in eastern Canada through automated counting of thermal imagery, classifying each individual seal as either an 
adult (> 1 year old) or pup/young of the year (hereafter YOY, < 1 year old). These counts are then compared to 
traditional human-generated counts of seals in both thermal and RGB imagery.

Methods
Study Location. Surveys for adult and YOY grey seals were conducted during the breeding season (January 
29 to February 2, 2015) at Hay Island (approximately 46.022593° N, − 59.685304° W) and Saddle Island (approx-
imately 45.814449° N, − 63.251189° W), two breeding colonies in the Gulf of St. Lawrence, Nova Scotia, Canada 
(Fig. 1).

Small Unmanned Aircraft System. All UAS Surveys were conducted with the senseFly eBee, a com-
mercially available fixed wing UAS. These modular devices are light-weight foam airframes powered by a single 
brushless electric motor supplied by lithium polymer batteries. They have a wing-span of 96 cm, weigh 0.7 kg and 
are highly portable, fitting into a case capable of being carried as cabin baggage on airliners for transport.

The single engine and propeller are rear-mounted to ensure the safety of both the UAS and the people operat-
ing it. The aerodynamic profile allows the UAS to cruise at speeds of 36–57 km/h (10–16 m/s) and resist winds of 
up to 45 km/h (12 m/s). The UAS was pre-programmed in eMotion 2 software package (senseFly, Switzerland) to 
follow a 3-dimensional flight path guided by a precision GPS sensor, a high-resolution barometer, ground-sensing 
camera and wind-speed sensor. Failsafe logic within the autopilot was programmed to return the UAS to the 
landing zone if it experienced anomalies in sensor performance or extreme wind conditions. All flight data was 
telemetered to the operator over VHF frequencies in real-time. The instrument was launched by hand and recov-
ered after either a linear approach/landing at a predetermined 5 m radius region.

Sensors. Seal surveys were conducted at each colony using both a 12 megapixel RGB camera (Canon S110) 
and a 640 ×  512-pixel thermal infrared camera (senseFly LLC, Thermomapper). This sensor is self-calibrating, 
with a marketed precision of 0.1 °C (senseFly LLC). Comparisons with ground-based temperature measurements 
indicate that it is accurate within 1 °C. RGB imagery was captured at a shutter speed of 1/2000th of a second at 3 cm 
ground sampling resolution with a photo taken approximately every 3 seconds. Thermal imagery was captured at 
sub-second intervals and at 8 cm ground sampling resolution at each location.

Seal Count Data. Images collected by the UAV were processed using Pix4d software to create RGB orthomo-
saics and thermal spatial indices (°C) of both colonies. All orthomosaics and thermal indices were corrected for 
any inconsistencies due to animal movement between adjacent images, exported as GeoTIFF files and then then 
imported into the iTag software package. Human analysts manually counted the number of seals and classified 
each as either an adult or a YOY. Temperature index GeoTIFFs were also imported into ArcMap GIS software 
(Version 10.4.1, ESRI Inc) for subsequent automated detection and counting of adult and YOY seals.

Automated detection and Counting of seals. The seal detection model was built in the ArcGIS model 
builder programming environment and was designed to scan thermal imagery, detect seals and count them. The 
tool used spectral thresholds and pixel cluster size sorting to detect grey seal adults and YOY, and integrated 
object recognition and high pass filtering (i.e. edge detection) to discriminate individuals within closely packed 
aggregations. The tool’s logical overview can be seen in Fig. 2, and the full tool script can be seen in appendix A 
of the Supplementary Materials.
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Methodological Details. Thermal and RGB mosaic spatial indices of Hay Island were first masked by 
excluding areas around the southern and eastern edge of the island where the ambient temperature of landscape 
features overlapped with the temperature of seals.

All pixels in the Hay Island thermal imagery greater than or equal to 9 °C were selected. We chose this value 
after visually estimating a lower thermal boundary for seal identification that excluded warmer landscape fea-
tures. Selected pixels were then converted into polygons (Panel B, Fig. 3) and the area and average temperature of 
each polygon was recorded.

Because seals touching one another in aggregations resulted in single polygons with irregular shapes, we built 
convex hulls around all polygons (Panel B, Fig. 3). A ratio between the area of the original polygon and the area 
of its convex hull was appended to each original polygon, serving as a basis to discriminate individual seals from 
seal aggregations.

Resulting polygons were then classified as individual YOYs, individual adults, YOY aggregations or adult 
aggregations (Panel C, Fig. 3). Classification parameters (Table 1, “complex model”) were developed from 
a spatially-referenced dataset of YOYs and adults that were identified manually from UAS thermal and RGB 
imagery using the program ITag. YOY classification was based on polygon size as well average temperature, as 
YOYs had smaller planar areas and tended to be cooler than adults. Adult classification was based upon polygon 
size, temperature and polygon shape; adults tended to be warmer and larger than YOYs and had smoother shapes 
than aggregations. Classification of YOY aggregations were based on polygon size and shape. The YOY aggrega-
tions tended to be irregularly shaped, smaller than adult aggregations and not thermally distinct. Adult aggrega-
tions were classified based on polygon size and shape; adult aggregations were larger than YOY aggregations and 
irregularly shaped compared to large individuals.

Aggregation polygons were additionally processed with a high pass filter. High pass filters are neighborhood 
functions that accentuate the differences between pixels and are effective at detecting edges (a mathematical 

Figure 1. Locations of grey seal Halichoerus grypus breeding colonies on Saddle and Hay Island, Nova 
Scotia, Canada surveyed with unmanned aircraft systems (UAS) during January 29–February 2 2015. This 
map was created with ArcMap GIS software (version 10.4.1, Esri Inc.) using ArcMap’s World Imagery service 
layer. Service Layer Credits: Source: Esri, Digital Globe, GeoEye, Earthstar, Geographics, CNES/Airbus DS, 
USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS user community.
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description of the filter can be found in appendix A of the Supplementary Materials). The filter separated aggrega-
tion polygons into clusters of pixels representing individual seals, which were then converted to polygons repre-
senting individual seals (Panel D, Fig. 3). All polygons derived from adult aggregations were assumed to be adult 
seals, and all polygons derived from YOY aggregations were assumed to be YOY. Total seal counts were generated 
by summing the individual YOY and individual adult polygons.

We also tested the above methods in a separate estimate of the grey seal populations at Saddle Island. Size 
and shape-based classification parameters trained at Hay Island were based on spatially-explicit 2-dimensional 
profiles of seals, and we re-applied those parameters at Saddle Island, only modifying the lower thermal detection 
threshold to 5.5 °C to avoid overlap with ambient landscape temperature. We tested two different variants (sim-
plified and complex) of the model on Saddle Island. The simplified version used only planer area and polygon 
shape to discriminate individual YOY and adult polygons (Table 1 “simplified model”), dropping the temperature 
parameter. The complex variant retained temperature as a classification parameter for individual YOY and adult 
polygons, with temperature parameters from Table 1 offset by the difference between Hay Island and Saddle 
Island lower thermal thresholds (− 3.5 °C). To minimize bias, the analyst developing and testing the model did 
not view the Saddle Island thermal dataset until modeling on Hay Island was completed.

For accuracy assessments at Hay and Saddle Island, model-predictions were compared to the human-identified 
ITag points. To correct for minor GPS error, ITag points within 0.5 m of prediction polygons were moved within 
the extent of prediction polygons. We then spatially joined ITag points with the model-generated prediction pol-
ygons, recording any points that overlapped with polygons.

Data Availability. All data used in analysis including human point counts of seals, thermal indices and 
orthomosaics are available for viewing and download at http://seamap.env.duke.edu/dataset/1462.

Figure 2. An overview of the seal detection model’s logical processes. Yellow icons are inputs, blue icons are 
intermediate processes and outputs, and green icons are final outputs.

http://seamap.env.duke.edu/dataset/1462
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Results
UAS Imagery. The RGB orthomosaic for Hay Island and a sample single image from the UAS are presented 
in Fig. 4a and b respectively. Similarly, the temperature index map for Hay Island, and a sample thermal image is 
presented in Fig. 5a and b respectively. The orthomosaics demonstrate that both RGB and thermal surveys cov-
ered the entire island colony, and each sample image reveals individual adult and YOY grey seals.

Seal Counts. Human-conducted counts using ITag were very similar to seal detection model estimates 
(Table 2). Total seal counts between the detection model and human guided methods were within ~95% of one 
another at Hay Island and ~98% of one another at Saddle Island and did not differ between simple and complex 
classification. The model detected ~91% of the seals counted by humans at Hay Island and ~96% at Saddle Island, 
performing better at the prediction site than the training site. The two methods were also very similar in their sub 
counts of YOYs and adults, with greatest conformance at Saddle Island using simplified classification. Automated 
detection rarely mis-identified landscape features as seals, and most of the seals the model detected that were not 
corroborated in ITag appeared to be seals that human analysts overlooked. The model slightly undercounted seals 
when compared to traditional methods, missing a small number of animals that were below the chosen lower 
temperature detection threshold.

Figure 3. (A) Thermal imagery with overlaid human-identified seal points (red =  YOY, green =  adult). (B) 
Red seal polygons outlined by blue convex hulls. (C) Tier 1 model classification of seals. Blue polygons are adult 
aggregations, orange polygons are YOY aggregations, green polygons are individual adults and red polygons are 
individual YOYs. (D) Aggregation polygons after high pass filtering, broken up into individual adults and YOYs. 
This map was created with ArcMap GIS software (version 10.4.1, Esri Inc.).

Polygon class Classification parameters

Individual Juvenile
Complex Model: Polygon Area ≤  0.85 m2 and Mean Temperature 
< 10 °C OR Polygon Area < 0.65 m2 
Simplified Model: Polygon Area ≤  0.85 m2

Individual Adult

Complex Model: Polygon Area > 0.65 m2 and ≤ 3.5 m2 and 
Polygon/Convex Hull Ratio > 0.8 and Mean Temperature > 10 °C 
OR Polygon Area > 0.85 m2 and ≤ 3.5 m2 and Polygon/Convex 
Hull Ratio > 0.8 
Simplified Model: Polygon Area > 0.85 m2 and Polygon 
Area ≤  3.5 m2 and Polygon/Convex Hull Ratio > 0.8

Juvenile Aggregation
Polygon Area > 0.65 m2 and < 0.85 m2 and Polygon/Convex 
Hull Ratio < 0.75 OR Polygon Area > 0.85 m2 and < 3.5 m2 and 
Polygon/Convex Hull Ratio < 0.8

Adult Aggregation Polygon Area > 3.5 m2 and Polygon/Convex Hull Ratio < 0.8

Table 1.  Classification parameters for the seal detection model.
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The seal detection model predicted individual YOYs with a high level of accuracy at both locations, but was 
closer to human-generated counts at Saddle Island (Table 3) regardless of whether simple or complex classifica-
tion was used. The model classified some thermal signatures as YOYs that humans did not. Upon investigation, 
most these additional detections appeared to be seals and not misclassified landscape features. The rate of true 
misclassification appeared higher at Hay Island where ambient landscape temperatures were warmer. Likewise, 
the model failed to detect some human-identified YOYs that were below the model’s temperature-detection 
threshold, which was more prevalent at Hay Island. At both study sites, the number of additional seals detected by 
the model and the seals the model missed nearly negated one another.

The model predicted individual adults at a true positive rate of ~81% at both sites when simplified classifica-
tion was applied on Saddle Island (Table 3). When misclassification occurred, the model most commonly inter-
preted larger human-identified YOYs as adults. Using complex classification, the true positive rate fell to ~67%, 
accentuating the tendency for larger, warmer human-identified YOYs to be misclassified as adults. There were 
very few human-identified adults that were entirely missed by the model; At Hay Island there were 11 adults that 
were not classified by any seal prediction polygons and at Saddle Island there were 2.

Discussion
This paper provides a compelling example of how small UAS and easy-to-use, automated GIS workflows can 
be used to enhance wildlife surveys. The use of thermal imagery for counting pinnipeds has been used previ-
ously25, although early instruments did not have the sensitivity required to discriminate many seals from the 
background31. Our approach may be especially useful to assess new and growing colonies of grey seals as they 
reoccupy portions of the traditional range in the Western North Atlantic26,29. As these animals recover and inter-
act with human activities (e.g. ref. 31), it is increasingly important to understand trends in their abundance. Small 
UAS also provide detailed information on the habitats found at gray seal colonies and these data are crucial for 
managing colony interactions with human use patterns at those locations26.

The seal detection model recorded a similar number of grey seals in UAS-collected thermal imagery as human 
generated counts in ITag, and effectively applied parameters from a training site to a spatially and temporally 

Figure 4. An RGB orthomosaic (A) and a representative individual RGB image (B) of the grey seal colony at 
Hay Island, NS Canada. This footrprint of the individual image is projected onto the orthomosaic, providing a 
detailed view of adult and YOY grey seals and the habitats surveyed (rock, beach and frozen ground). This map 
was created with ArcMap GIS software (version 10.4.1, Esri Inc.).
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separate prediction site. The model compared better to human counts at the prediction site (Saddle Island) where 
ambient landscape temperatures were lower, allowing for better contrast between seals and the environment. 
Discrepancies between human and model counts were due to humans overlooking YOYs, the lower thermal 
detection boundary of the model, size/temperature similarities between large YOYs and small adults, and an 
inability to distinguish between YOY aggregations and pup/mother pairs.

Much of the difference in counts between the two methods was due to the detection of individual YOYs. Some 
of the apparent false positives (Table 3, Not Detected by Humans) were pups that human analysts failed to detect. 
Inappropriate image value scaling, line symbology and landscapes with different aspects and substrate types can 
cause smaller, colder seal pups appear to a human analyst like landscape features. Conversely, the model failed to 
detect YOYs below the specified lower thermal boundaries while human analysts could detect colder YOYs if they 
were laying out on contrasting landscape (Table 3, YOYs not detected by model). These false positives may also 
be the result of humans detecting dead YOYs that deviate from background temperatures. While uncommon, in 
some instances the model classified small patches of warmer landscape as YOYs, and in many cases these small 
patches were individual pixels. This phenomenon was more prevalent at Hay Island, where the ambient landscape 

Figure 5.  A thermal infrared spatial index map (A) and a representative individual thermal infrared image (B) 
of the grey seal colony at Hay Island, NS Canada. This footprint of the individual image is projected onto the 
spatial index, providing a detailed view of adult and YOY grey seals and the habitats surveyed (rock, beach and 
frozen ground). This map was created with ArcMap GIS software (version 10.4.1, Esri Inc.).

Seal Count Estimates

Detection Model ITag (human-generated)

Category Hay Island
Saddle Island 

(Simple)
Saddle Island 

(Complex) Hay Island Saddle Island

Total Juveniles 1652 648 592 1743 660

Total Adults 536 246 302 568 253

Total Seals: 2188 894 2311 913

Table 2.  Comparison of computer vision and human-generated seal count estimates.
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temperature overlapped with the thermal signature of seals in some areas. Selecting a higher temperature detec-
tion threshold could help avoid these false positives, but threshold selection is a trade-off between detecting seals 
and making commission errors. A winnowing filter was also not an appropriate solution to this problem because, 
in many instances at Hay Island, polygons consisting of a single pixel correctly represented YOYs.

The above false positives can be reduced or eliminated by collecting UAS thermal images during early dawn, 
reducing ambient landscape temperature and increasing the contrast between seals and landscape. This allows for 
selection of a colder lower thermal boundary in the model, which detects more YOYs without miss-identifying 
warmer landscape features as seals. Improving thermal contrast can also eliminate the need to mask out warm 
ambient landscape that overlaps with seals during analysis, which can make it impossible to detect some seals. 
However, it is important to consider seal haul-out behavior when planning dawn flights to avoid grossly under-
estimating populations, and also to allow enough light for humans to spot-check model results using RGB 
imagery32.

Most remaining discrepancies between model and human methods were related to the binning of seals into 
adult or YOY classes. For instance, individuals derived from adult or YOY aggregation polygons were automati-
cally binned into the demographic class indicated by their aggregation polygon. While adult aggregations nearly 
only consisted of adult seals, YOY aggregation polygons sometimes included adult females adjacent to their new-
born pups. In these cases, the model incorrectly identified adults as YOYs. These false positives could be elimi-
nated with a second round of object size analysis.

While the model’s simple and complex classification approaches recorded identical total seal counts, they 
binned adults and YOY differently. Complex classification took temperature into account to correctly parse larger 
YOY and smaller adults, but detected adults worse than simplified classification when human methods were used 
as a benchmark. The 3.5 °C offset applied to the complex classification parameters at Saddle Island was adopted 
from the difference in user-selected lower temperature thresholds between the two study datasets. It is possible 
this coarse offset did not account for seals’ responses to the lower ambient temperature at Saddle, including the 
potential for YOYs and adults to react to colder ambient temperature differently. Additionally, the temperature 
difference between YOYs and adults may be sensitive to immediate thermal landscape that the model was not 
designed to detect. Considering these uncertainties and the value of automated detection with minimal setup 
time, the parsimonious classification scheme is preferable and allows for a more universal application of the 
model.

The detection model in this study has a logical flow applicable to other homeotherms that gather in large 
numbers on thermally-contrasting landscape, including colonial seabirds such as penguins, social ungulates like 
horses or deer, some primate species and many other pinnipeds. Our polygon/convex hull ratio and high-pass 
filter combination is effective at counting animals within dense aggregations where thermal signatures over-
lap, which has been a challenge in past computer vision studies. While beyond the scope of the present study, 
longer-term projects that adopt our approach may develop methods for predicting the accuracy of other detec-
tion methods (i.e. human-guided counting), or to correct for misclassification error within a larger statistical 
model. However, the model is not suitable for analysis of imagery containing multiple species and, in this study, 
would likely misclassify any homeotherm with a body size similar to a seal. As such, this approach is suitable for 
enumeration of single species colonies where the target species represents the vast majority of animals present. 
The model is also sensitive to large shifts in ground sampling resolution. Our analysis is performed on corrected, 
spatially rectified imagery and individual seal classification relies largely on the planar area of objects, which 
should remain relatively constant with resolution shift. However, aggregation detection relies on convex hull 
ratios, which may be more sensitive to large resolution changes.

Result Description Hay Island Proportion
Saddle 

(Simple) Proportion
Saddle 

(Complex) Proportion

YOY Prediction Accuracy

 True Positive NA 1329 0.804 566 0.871 515 0.870

 False Positive Confused with Adult 105 0.064 33 0.051 30 0.051

 False Positive Confused with Juvenile Aggregation 48 0.029 3 0.005 3 0.005

 False Positive Confused with Adult and Juvenile Pair 0 0.000 3 0.005 3 0.005

 False Positive Not Detected by Humans 170 0.103 43 0.066 41 0.069

Human-Identified Juveniles Not Detected By Model 215 39

Adult Prediction Accuracy

 True Positive NA 436 0.813 199 0.809 202 0.669

 False Positive Confused with Juvenile 68 0.127 23 0.093 75 0.248

 False Positive Confused with Juvenile Aggregation 26 0.049 9 0.037 9 0.030

 False Positive Confused with Adult and Juvenile Pair 6 0.011 13 0.053 13 0.043

 False Positive Not Detected by Humans 0 0.000 2 0.008 3 0.010

Human-Identified Adults Not Detected By Model 11 2

Table 3.  Accuracy assessment for model-generated individual YOY and adult prediction polygons. Model 
estimates were assessed against human-identified ITag counts, so that “true positives” indicate prediction 
polygons that overlap with matching ITag points.
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Automated image classification is often considered a means to save time and costs associated with 
human-driven analysis21. However, these approaches are of limited utility if models must be re-trained for each 
new dataset, or require extensive set up time. Our model applies parameters from a single training site to a 
spatially and temporally separate prediction site, estimating populations with accuracy meeting or exceeding 
traditional human-guided methods. Specifically, machine-based counts of animals can help eliminate individual 
variability in counts conducted by different people. Our “plug and play” approach is parsimonious, requiring only 
a site-specific temperature detection threshold as an input. This value can be chosen after 10–15 minutes of visual 
investigation of a thermal orthomosaic. Our workflow could be easily applied to a range of sites, especially if the 
sampling method is conserved.

Automated image classification models like the one in this study synergize well with UAS. Appropriate use 
of UAS can output more precise counts than traditional methods18 and can yield cost savings. Additionally, UAS 
assessment of marine vertebrate populations can reduce human risk, and a recent review of job-related mortali-
ties of wildlife biologists revealed that a significant proportion arose from aviation accidents6. This type of risk is 
amplified when working in coastal regions or over the water. The combination of automated image classification 
and UAS in this study presents a compelling argument for a decrease in the cost of wildlife assessments, a reduc-
tion in analyst time and minimization of risk to human surveyors.
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