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This paper explores what the virtual biodiversity e-infrastructure will look
like as it takes advantage of advances in ‘Big Data” biodiversity informatics
and e-research infrastructure, which allow integration of various taxon-level
data types (genome, morphology, distribution and species interactions)
within a phylogenetic and environmental framework. By overcoming the
data scaling problem in ecology, this integrative framework will provide
richer information and fast learning to enable a deeper understanding of bio-
diversity evolution and dynamics in a rapidly changing world. The Atlas of
Living Australia is used as one example of the advantages of progressing
towards this future. Living in this future will require the adoption of new
ways of integrating scientific knowledge into societal decision making.
This article is part of the themed issue ‘From DNA barcodes to biomes’.

1. Introduction

There is an urgent need to document and understand nature at a rate that will
provide us with an informed system-level response to the accelerating impacts
that humans are having on the world. Major challenges will include food secur-
ity, emerging diseases, managing natural and agricultural landscapes in a
sustainable fashion and interactions with invasive species (native and alien);
coinciding with an era of rapid environmental change [1]. This urgency is evi-
dent at an international level, given the importance of data to achieving the
goals of the Convention on Biological Diversity, expressed through the Aichi
Biodiversity Targets for 2020 and initiatives such as the Intergovernmental
Platform for Biodiversity and Ecosystem Services (IPBES) and research consor-
tiums such as GEO BON (Group on Earth Observations Biodiversity
Observation Network) [2,3]. Essential biodiversity variables (EBVs)—a mini-
mum set of essential measurements for studying, monitoring and reporting
on biodiversity and ecosystem change—are proposed as one mechanism for
addressing this goal [4], although practical implementation remains a challenge
[5,6]. In this context, maintaining investment in biodiversity surveys and
descriptions, including novel applications of predictive spatial modelling,
increased efficiency of phenotyping and (meta)genomics are key. Without
strong, ongoing support for data gap identification, generation and curation,
the most advanced informatics will be an empty shell.

Bringing biodiversity analysis into the digital world will provide all people
and jurisdictions with easy and rapid access to the authoritative and compre-
hensive evidence and knowledge that they need to make informed decisions.
Advances in biodiversity informatics, computer technology and governance
structures allow information to be shared and processed at unprecedented
speed, creating an environment to enable truly rapid biodiversity analysis
[7,8]. As data, information and knowledge become accessible, available and
able to be analysed in new and different ways, new uses for (and value of)
that information are continually being discovered and will increase our ability
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Table 1. Core principles to support e-research infrastructure for biodiversity knowledge generation.

type statement of intent

collaboration

we must develop an inclusive model for participation by all stakeholders, from local to national levels, in biodiversity information
we must adopt procedures to prevent duplication of effort, build on past investments and create shared efficiencies to the greater

sharing
benefit of all

science we must organize data to provide the best possible sustainable support for excellent, independent research, now and in the
future

learning we must enable novel or alternative approaches to new knowledge generation to be explored

integration we must be able to bring different types of data into a shared environment

quality

data quality at source
open access
acknowledgement
delivery
innovation

new uses of infrastructure and data
collect data once—make it freely accessible—use it many times

to inform research and policy [9]. Web-based e-infrastructure
will take advantage of, and further enable, the increasing
involvement of citizen scientists in supporting ecological
and environmental research [10,11].

It is essential that the biodiversity analysis laboratory of the
future can integrate a variety of taxon-level data types (e.g. dis-
tribution, genome, phenome, traits and species interactions)
and enable analysis of that information in an evolutionary
and environmental framework to produce more comprehen-
sive understanding of the drivers of biodiversity and the
potential impact of global change on biodiversity [12]. This
achievement will necessarily require changing some of the
norms of scientific endeavour to allow a new generation of
digital scientists running ‘Big Data’ experiments to push the
boundaries and transform knowledge of ecology [13].

This paper takes a wide view of biodiversity analysis.
Well-governed interoperable e-infrastructure and work
flows should support biodiversity discovery and documen-
tation, environmental monitoring, reporting and decision
making, as well as the capacity to run fundamental scientific
modelling experiments to build understanding of biodiver-
sity evolution, biogeography and dynamics in a changing
world [14,15].

For the most part, the key components of this e-research
infrastructure already exist. The digital transformation is pro-
viding a suite of emerging and disruptive technologies,
which are changing the way we think about managing, disco-
vering and delivering biodiversity and environmental data
[16]. These have been embraced by a wide range of global
initiatives, which are producing remarkable results for
specific elements of biodiversity information (e.g. spatially
explicit distributional data, species trait and other profile
information). It is now time to coordinate the sharing of
information in an integrated way to facilitate rapid biodiver-
sity analysis, novel knowledge and its timely use in
decisions [5,13]. Although this outcome may appear challen-
ging on a global scale, the Atlas of Living Australia (ALA,
www.ala.org.au) shows that such a digital platform for

we must enable users to understand the level of evidence and authority for all data elements and have services to help improve

we must promote and facilitate free and open use of data—and infrastructure
we must create an environment where individual and collective endeavours can be recognized and built upon
we must provide comprehensive, stable, authoritative services that meet the needs of stakeholder groups

we must establish a model for continuous modernization and improvement of services. Open infrastructure will support innovative

knowledge sharing can be created on a continental/national
scale [17]. Examples of outcomes from this integration are
used to illustrate the benefits of such e-infrastructure,
although global level implementation will require coordi-
nation of both e-infrastructure efforts and data standards
[5,7,18,19].

2. Key components of a virtual biodiversity
analysis e-research infrastructure

Truly integrated biodiversity e-infrastructure will bring
together computable data about taxa which, when placed in
an environmental and evolutionary context, will enable
rapid biodiversity analysis and facilitate informed decision-
making. As important as the data and analysis tools are, so
too is improved capacity to visualize and share the knowl-
edge derived from these analyses with a broad audience.
Finally, we acknowledge the need for data aggregators
and servers to strive to develop tools to enable data quality
to be improved at source, such as by the natural history
collections that curate the original data [20].

Key elements in this web-based e-infrastructure include
taxon-level information, environmental and other contextual
layers, the ability to incorporate evolutionary and functional
perspectives, informatics and analysis tools supporting appli-
cations, all of which must operate under an agreed set
of principles promoting data discovery and sharing, open
infrastructure and collaboration (table 1).

(a) Taxon information

Incorporating a range of taxon-level attributes will enhance
efforts informing effective management of sustainable
environments into the future. In particular, we need data sys-
tems that enable us to move from ‘what is where’ questions
to ‘why is it there’, “‘what does it do’ and ‘what can we do
about it’. A list of the types of taxon data that we should
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be able to integrate in an e-research environment would
include the following:

(i) Distribution

Spatially explicit biodiversity data for taxa are the mainstay of
many biodiversity analyses and provide a form of computable
data that enable a great many uses. The Global Biodiversity
Information Facility (GBIF—www.gbif.org) currently aggre-
gates and provides over 577 million occurrence records
(October 2015), and their science review [21] provides numerous
examples and over 200 references to the use of GBIF mediated
occurrence data to support research activities in the areas of
invasive alien species, impacts of climate change, species
conservation and protected areas, biodiversity and human
health, food, farming and biofuels, ecosystem services and
advancing biodiversity science. An example of e-infrastructure
that leverages GBIF records is Map of Life (www.mol.org),
which connects spatially explicit point data with layers of
expert geographical ranges, conservation reserves and values
of evolutionary distinctness and IUCN (International Union
for the Conservation of Nature) status [22].

(ii) Genetic/genomic information

Over recent decades, various DNA barcoding initiatives
have yielded broad-scale coverage of species and continents
for a few standardized reference genes. Hebert ef al. [23]
showed that continent-wide DNA barcode libraries (and by
extension, other types of genomic information) could be
generated quite rapidly through targeting well-curated and
identified material in natural history collections to link sequence
records to authoritative voucher specimens. Now, with the
capacity to efficiently generate sequence data for hundreds to
thousands of genes from populations to entire clades [24,25],
we are set to transform molecular systematics yet again.
Further, the burgeoning field of environmental genomics—
including metabarcoding and metagenomics—will add yet
more capacity for biodiversity analyses and monitoring
[13,14]. It may not be practical to combine all these types of
information within a single e-infrastructure in the near future;
however, discovery of relevant data across platforms can be
enabled through use of uniform metadata standards and the
ability to import molecular analysis products (e.g. phylogenetic
trees and trait suites; see the following sections).

(iii) Genome to phenome

To move from mapping diversity to understanding how it
evolved and functions, it is imperative that we combine dis-
tribution data with a range of genomic and phenomic data.
Integrating genetic and morphological attributes, as well as
other forms of trait data such as behaviour, life history and
chemical composition and gene expression, informs and
improves species discrimination, taxonomy, phylogenetic
analysis and a range of other biodiversity data integration
applications [26].

Differences in data types and standards have hindered the
ability to bring all these types of ancillary data into a single
analysis platform. Researchers often adopt short-term indi-
vidual approaches to solve a data integration problem to
meet their analysis requirements. These are key challenges
that will need to be addressed to create the e-infrastructure
necessary for collaborative, comprehensive and efficient
biodiversity analysis.

(iv) Trait data

There are a variety of forms of data that can be considered as
species traits, including morphology, chemical, habitat and
life history characters. One important set is morphological
characters, and there needs to be the ability to capture geo-
referenced character information in a fashion that enables
understanding of variation within and between species and
provides sets of characters that can be used (and re-used) in
identification keys and phylogenetic, evolutionary and
macroecological analyses [27,28]. Global examples of trait
banks include the Encyclopedia of Life Trait Bank (www.
eol.org/traitbank) [29] that delivers 11 million records for
over 330 attributes for 1.7 million taxa, and the TRY Plant
Trait Database (Www.try-db.org) [30] that delivers 5.6 million
trait records from 100 000 plant species.

Image libraries are a way of depicting morphological
characters (as well as spatial distribution of characters) and
images can come in a variety of forms: specimen images,
scanning electron micrographs, CT/MicroCT scans [31,32],
three-dimensional images [33,34] and whole drawer images
[35]. However, image libraries are only a starting point and
there remains the need to extract character information
from them in such a way that the information can be
shared, made freely available and re-used. Methods to extract
information might include experts, crowdsourcing through
digitization portals [36] or even automated extraction by
machines [37].

(v) Species/trophic interactions

Interactions between species are key components of maintain-
ing ecosystem stability and are central to the diversification
and organization of life [38]. Global environmental change
can produce adverse impacts on species interactions to the
detriment of ecosystem stability [39]; thus, being able to
record and track species interactions can inform policy, oper-
ational and research direction. In the simplest form, a single
species interaction could be recorded as a species trait; how-
ever, complex food webs are common in nature, contain
multiple interactions and are living laboratories for ecological
research [40,41]. Clearly, the ability to convey this information
as an integrated component of a future biodiversity-analysis
laboratory will have immense value, but will require some
quite sophisticated infrastructure. GloBI (Global Biotic Inter-
actions: www.globalbioticinteractions.org/about.html) [42]
is an example of such a database, delivering over 1.3 million
interactions for 113 000 distinct taxa.

(b) Taxonomic framework
Any attempt at documenting biodiversity has to be placed in
a taxonomic framework to give it credibility and ensure that
information can be universally shared and associated with
the correct taxon. A ‘standard’ taxonomic framework might
consist of scientific names, species concepts and classification.

There is a great deal of complexity with handling names,
including synonymy, homonymy, misidentifications and a
variety of common names in use for any given organism.
Life science identifiers (LSIDs) are unique identifiers that
could be applied to each name, or species concept, to avoid
confusion and ensure stability [43].

Species concepts are biological concepts, fluid and often
subjective in interpretation [44]. Each species concept will
encompass one-to-many scientific names, with one being
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Figure 1. The ALA’s phylogenetics tool integrates phylogenetic trees and spatial mapping so that phylogenies can be represented spatially, for example by species
occurrence or character. Here, the occurrence of Acacia species from the dade highlighted by the blue node to the left is mapped and coloured by species.

the senior, valid name, although there can be disagreement
on which name or combination to use. Classifications arrange
species into higher taxa, such as genera, subfamilies and
families. They can be even more subjective than species
concepts, with often several different classifications being
used at any given time. A modern informatics infrastructure
must be able to display differing views of species and
higher classifications to be of optimal value to the user
community.

In addition to a standard Linnaean taxonomic frame-
work, a variety of biodiversity analyses might need the use
of interim taxonomic nomenclature. Operational taxonomic
units (OTUs) [45] might represent candidate species that
can be recognized (morphologically or genetically) but are
yet to be formally named. An example of a DNA-based deli-
neation would be a barcode index number (BIN) [46]. It is
important to be able to integrate information associated
with BINs with information about closely related species
that have been formally named (and that may also have an
associated BIN).

There must also be the ability to import a list of (often intra-
specific) OTUs along with associated data (genomic, trait and
distribution) for analyses within the e-research laboratory,
even if this information does not (yet) have a persistent home
within the research infrastructure. To address this need and
the fluidity of species and higher taxon concepts, there is
value in representing current knowledge via the phylogenetic
trees below and above the species level. Analyses of spatial
genetic diversity within described species—phylogeogra-
phy—frequently reveal high levels of lineage diversity that
often remains invisible to taxonomy, and hence, inaccessible
to most data infrastructure. Yet, using phylogenetic represen-
tations of diversity, this rich source of information can be
effectively visualized for scientific and conservation purposes

(e.g. [47]).

() Phylogeny

Adding a phylogenetic component to biodiversity informatics
is crucial to understanding how evolutionary responses to past
environmental change have shaped current biodiversity.
A phylogenetic framework for the biodiversity analysis labora-
tory allows us to develop new tools to integrate and analyse big
data across taxa, regions and timescales. The results will yield
unparalleled understanding of the distribution of genetic,
taxonomic and functional diversity over space and time. In
turn, this will provide novel insights into the potential futures
of biodiversity and enhance strategies to protect it [28,48,49].
This will serve to bridge the current void between conservation
policy and practice by showing how knowledge of evolution-
ary processes can improve large-scale planning, and it will
deploy this know-how to predict and improve management
of biodiversity. Initial efforts towards this are being developed
in the ALA (http://phylolink.ala.org.au/) and allow for the
import of phylogenetic trees into the Atlas e-infrastructure
environment where they can be combined with mapping
and analysis tools and contextual layers [50,51] (figure 1).

(d) Environmental information

Environmental information is fundamental to understand-
ing in ecology. A wide variety of environmental factors
play a role in the distribution, health and maintenance of
biodiversity. The ability to analyse spatially explicit and
temporally varying biodiversity data in respect to these
environmental (or other contextual) variables provides tre-
mendous power to the study of biodiversity and predictive
analyses based on biodiversity data. New initiatives in
environmental modelling and remote sensing are rapidly
advancing the spatial and temporal resolution and three-
dimensional detail by which environmental attributes such
as soil can be mapped [52,53], with potential to overwhelm
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storage and analysis capacity of e-infrastructures. Yet this
example belies the general dearth of information on edapho-
logical data and the multiple layers of missing habitat
information, requiring concerted efforts to bring together
and harmonize relevant data regionally and globally. The
digital laboratory of the future will need to provide guidance
and a portal to an array of environmental variables of poten-
tial relevance in biodiversity research—helping integrate
knowledge across realms, from terrestrial and freshwater to
coastal and marine toward a realization of the digital Earth
concept [54,55].

Finding and organizing the diverse sources of spatial
environmental data needed for biodiversity analysis is not tri-
vial [17]. The ALA started tackling this problem in 2010. The
Spatial Portal [56] (http://spatial.ala.org.au/) presently inte-
grates multiple types of biological data (collection records,
survey observations, checklists and range maps) with over
450 remotely derived abiotic and biotic contextual layers
(such as climate, terrain, soils, vegetation, land cover, land
use, jurisdiction boundaries) and is reaching capacity using
current technology. A new distributed approach is needed,
one that supports discovery, access and manipulation of
data to derive biologically meaningful predictor variables
[57]. DataOne is an example of collaborative e-infrastructure
heading in this direction [55] and in this context, the concept
of a KLAS—knowledge, learning and analysis system—is
visionary [13]. The BCCVL (Biodiversity and Climate Change
Virtual Laboratory) [58] provides a sandpit of environment
variables for analysis that are pre-selected from easily accessed
sources and can be easily updated when appropriate. New
spatial analysis technologies and information standards may
in the future negate the need to locally aggregate spatial data
in a common format like a cube and instead allow flexible
interrogation at source via Web services, combined in a
model, with predictions visually represented at appropriate
resolutions. Open geospatial data standards and application
programming interfaces (APIs) are essential to this vision of
interoperability, with the Open Geospatial Consortium leading
on these developments [59].

Furthermore, there are some significant initiatives under-
way that we would want a virtual biodiversity e-infrastructure
to connect to in due course. It will be critical to engage with com-
munities of practice such as the OBO (Open Biomedical
Ontologies) ontology foundry—a collective of developers com-
mitted to interoperable ontologies (common controlled
vocabularies) that are both logically well formed and scientifi-
cally accurate [60]. The wider biodiversity data community
will need to increase its awareness of, for example, existing
ontologies for contextualizing biological entities such as
ENVO (Environmental Ontology; http://www.environmen-
tontology.org/) [61] and avoid ‘silos and reinvented wheels’
[62] by adopting shared principles (e.g. http://www.obofoun-
dry.org/) and participate in established networks (e.g. see
resources and projects on http://bioportal.bioontology.org).
The Ocean Data Interoperability Platform (ODIP) is an example
of a community of practice developing a common framework
for marine data management. ODIP’s initial focus on cruise
information is now extending to observation data [63]. Other
initiatives to be aware of that may soon interface with the bio-
diversity science community or provide examples of how to
advance collaborative infrastructures are the US-based Earth-
Cube, http://earthcube.org/ (mostly solid Earth sciences) and
the community effort called Earth Science Information Partners

(ESIP). EarthCube is considering ‘Collaborative Resource Incu- “

bators’ to increase science community-driven innovation for
infrastructure solutions [64]. The Research Data Alliance,
which promotes open sharing of data (https://rd-alliance.
org/), and INSPIRE—Spatial Information in the European
Community (http://inspire.ec.europa.eu/)—and the common
principles upon which they are founded are also relevant.

An important emerging project for the biodiversity
community is GLOBIS-B (http://www.globis-b.eu), which
aims to foster global cooperation of biodiversity research
infrastructures and biodiversity scientists to advance the
implementation and calculation of EBVs [5]. GLOBIS-B
(GLOBal Infrastructures for Supporting Biodiversity research)
builds on the roadmap for interoperability developed by the
preceding CReATIVE-B project (Coordination of Research
e-infrastructures Activities Toward an International Virtual
Environment for Biodiversity, 2011-2014). Another EU initiat-
ive is LifeWatch (http://www lifewatch.eu/)—European
infrastructure for biodiversity and ecosystem research—aimed
at providing researchers with access to virtual laboratories of
biodiversity data with advanced biodiversity-informatics tools
[65]. A challenge for the future will be addressing global inter-
operability among the different architectures across a rapidly
emerging plethora of eResearch platforms.

An e-research environment should include tools for data
discovery, access, integration, filtering, visualization, analy-
sis, mapping and annotation. Currently, the spatial portal
within the ALA links biological and environmental data to
a limited suite of visualization and modelling tools—ranging
from simple graphing and tabulation functions (e.g. figure 2)
through to ecological classification (e.g. figure 3), species- and
community-level biodiversity modelling techniques [17].
These tools enable a variety of exploratory analyses and
assessments, including predicting threatened species ranges
and/or helping to identify species climatic requirements
[57,67,68]. This open software architecture, including a stan-
dard set of tools embedded in the spatial analysis portal,
is being adopted by other countries (e.g. Atlas of Living
Scotland, http://www.als.scot/).

There is a balance between creating a wide range of specific
tools for biodiversity analysis and giving users the ability to
develop or adapt their own tools. To facilitate user flexibility,
the ALA supported the development of an R programming
language package for researchers (ALA4R) [69] enabling direct
access to hosted data resources using APIs. Perhaps, one critical
tool missing from the ALA platform is a means of routinely iden-
tifying gaps in biological data collections using multivariate
environmental space [70,71]. An early Web-based implemen-
tation of the survey gap-analysis method using the
environmental diversity concept [72], under the auspices of
GBIF [73], is no longer available. The addition of this tool is
one example of an easily achieved task with high added value
to support biodiversity discovery and data acquisition priorities.

Data availability and quality are important aspects of
e-infrastructure, which must enable data capture, discovery,
visualization and analysis for a range of purposes—not all of
which are known at the outset. It will be equally important
to develop sets of tools and services for data checking
and revision, with feedback mechanisms between data custo-
dians/providers and users, to capture their annotations about


http://spatial.ala.org.au/
http://spatial.ala.org.au/
http://www.environmentontology.org/
http://www.environmentontology.org/
http://www.environmentontology.org/
http://www.obofoundry.org/
http://www.obofoundry.org/
http://www.obofoundry.org/
http://bioportal.bioontology.org
http://bioportal.bioontology.org
http://earthcube.org/
http://earthcube.org/
https://rd-alliance.org/
https://rd-alliance.org/
https://rd-alliance.org/
http://inspire.ec.europa.eu/
http://inspire.ec.europa.eu/
http://www.globis-b.eu
http://www.globis-b.eu
http://www.lifewatch.eu/
http://www.lifewatch.eu/
http://www.als.scot/
http://www.als.scot/

AddtoMap  Tools  Import  Export  Help (]
' . My Scatterplot - Camaby's Cockatoo Qod ooo
= Map options Delete all all | Hideall o o
My Scatterplot - Carnaby's Cockatoo =
(=]

Species display settings Download image | Download data

Records selected: 21 add infout layers to map

SELECT records with missing values (5)

d O

Highlight occurrences on the scatterplot that are in an area
Australia v | Clear

Calyptorhynchus (Zanda) latirostris

"Precipitation - annual {Biol2)" mm

12 13 14 15 16 17 18 19 20 21
‘Temperature - annual mean Bio01)" degrees C

Marble Bar

Telfer

Cor a_l Bay

Carnarvon

Exmouth
Katrlamilyi
Katijini National Park
Newman
Paraburdoo o
Minilya
Wiluna WESTERN
% AUSTRALIA
)
°
nna'mn [ ]
)
L]
o®
oo
Kalgoorhe,

a v

B LT W ol tage °b

Figure 2. The ALA scatterplot analysis maps distribution points (right) in two-dimensional environmental space; here, we show a grid of rainfall versus temperature
(left). Placing the small box around the ‘hottest, driest’ points on the left produces the red circles for those points on the distribution map (for advanced examples
see http:/www.ala.org.au/spatial-portal-help/scatterplot/). The ‘cool, wet’ outliers on the plot are spurious locations in eastern Australia where the species does not

occur naturally.

data quality and improve fitness for use for all practitioners [74].
As one example, VertNET (www.vertnet.org), an aggregated
database of museum records for vertebrate species, enables
users to submit annotation on individual records directly to
the contributing collection, thereby correcting errors at the
source [20].

It is important to note however, that there have been sig-
nificant architectural shifts in recent years, which could
challenge some of the existing biodiversity infrastructures.
E-research will increasingly depend on Web-architectures
with persistent URIs (uniform resource identifiers) being
the default expectation by which data are linked. A URI is
a string of characters to identify a name or a Web resource
and can be classified as locators (URLs), as names (Uniform
Resource Names—URNSs) or as both. LSIDs are represented
as URNs—for example, see [75]. The exact location of a
URN may change, but the owner of the URN can expect
that the resource can always be able found somehow. There
is also a shift towards URI-based APIs, rather than query-
based services (this is referred to as REST). Representational
state transfer (REST) is a set of software architecture prin-
ciples [76] that have become the default for most Web and
mobile apps. Web service APIs that adhere to the REST

architectural constraints are called RESTful APIs and allow
higher-performing, more easily maintained software for
Web services [77].

3. Discussion
(a) Benefits

The wish list for e-infrastructure outlined in this paper is not an
end in itself. It is needed to inform a range of outcomes, includ-
ing conservation, environmental monitoring and reporting,
area management, ecosystem modelling, sustainable food
and health, biosecurity, biodiversity discovery and documen-
tation, as well as supporting community engagement and
research across a range of biodiversity science activities.

As mentioned above, access to GBIF-mediated spatially
explicit biodiversity data resulted in over 200 publications
across a range of activities [21] and these are in addition to
grey literature, government reporting and directly informing
environmental management decisions and policy. Adding an
environmental and/or evolutionary context expands the
usage of cases to include a much wider range of activities
within a single environment, such as developing sustainable
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revegetation strategies under climate change [67], under-
standing climatic envelopes and adaptability of tree species
[68], understanding environmental variables for biodiversity
modelling [57] or predicting the evolution of tolerance to
other environmental factors such as salinity [78].

Such a digital infrastructure will see gains in efficiencies
by greatly reducing the amount of time necessary to perform
biodiversity analysis, meaning that we can respond to threats
to ecosystems and biodiversity in a much more meaningful
time frame [13,79]. As much as 90% of a research project
can be in data discovery, collation and integration. Effective
e-research infrastructure means that the majority of research
time is spent on research [58].

Experience from the ALA demonstrates that provision of
robust and open infrastructure with Web services enables a
variety of activities. For example, both the Biodiversity and
Climate Change Virtual Laboratory (www.bccvl.org.au) [58]
and Edgar (http://spatialecology.jcu.edu.au/Edgar/) are
separate ventures that draw in ALA data to support
analyses of the impact of climate change on biodiversity.

(b) Future opportunities

Presently, there is no single e-research infrastructure that
provides all the components described in this paper. At
the global level, many of the data types mentioned are handled
by separate initiatives, and the list of these initiatives provides
examples of forward vision and advanced biodiversity infor-
matics capabilities. These include (as a mere sample and
with apologies for omissions): the Global Biodiversity

Information Facility (GBIF—www.gbif.org), the Encyclopedia
of Life (EOL—www.eol.org), Catalogue of Life (www.catalo-
gueoflife.org), Map of Life (www.mappinglife.org), the
International Barcode of Life (iBOL—www.ibol.org), Genbank
(www.ncbinlm.nih.gov/genbank/), Open Tree of Life
(http://opentreeoflife.org/) and iDigBio (www.idigbio.org).
It is clear that any future model for biodiversity infrastructure
must build on the strengths and collaboration of these global
initiatives rather than try to duplicate or replace them. How-
ever, now there is a need for these initiatives to provide a
clear vision and strategy as to how they will work together to
create true global infrastructure, which is bringing together
(and building on) the current capabilities to deliver integrated
biodiversity information in a seamless manner. Ensuring data
consistency in this landscape will allow big data biodiversity
analytics to inform all aspects of biodiversity analysis and
assessment to provide an informed response to global change.

Meaningful thinking about the future of biodiversity
analysis needs to go past a discussion of current technology
and platforms and focus on what we need to achieve to
attain the environmental sustainability necessary for our
future. This means identifying major gaps in e-infrastructure,
agreeing on a set of priority goals and working together to
accomplish them.

We must create an order of magnitude increase in the rate
at which we capture biological and environmental data. This
means that biologists across a range of disciplines can no
longer justify non-digital data capture. ‘Born digital’ data
will come from field observations as well as imaging biologi-
cal collections, which are repositories of big data and hold
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longitudinal data through time that cannot be found any-
where else. We need to embrace a range of computer
vision, machine learning and remote sensing techniques as
well as robotics platforms to achieve our goals [80]. Crowd-
sourcing of data capture is an increasingly viable option,
and we have to work with citizen science communities to
enable the process and provide feedback to continually
improve the quality of our citizen scientists and the data
they produce.

We have to provide an infrastructure framework for
managing these data in a way that they can be mobilized, dis-
covered, searched, integrated and analysed and made freely
and openly available to the wider research and policy com-
munity. The community has to come together to develop
this vision and sell it with a common voice, as highlighted
by the Belmont Forum’s survey on open data [81]. We can
no longer afford to have informatics initiatives that do not
use Web services to share data, services and analysis tools,
or that want to do everything themselves and duplicate
scarce resources in their efforts.

We cannot hold on to technology. The rate of technologi-
cal advance is so rapid that anything that we are planning or
doing today will be out of date in 5 years. However, the dri-
vers for what we need to accomplish will remain the same, so
we have to embrace emerging technology and update our
thinking as we go.

The already overstretched taxonomy community has to
invent new practices and norms that will allow a step increase
in the rate of species discovery and description [82,83]. An
inventory of life on Earth is critical to environmental

management, yet we are centuries away from achieving this n

at our current rate of progress. To date we have described
something close to two million species. What will it take to
describe the next million in 10 years? That is the rate of
species discovery that is consistent with the needs we are
facing and it will require some radical changes in thinking
and work practices.

And finally, we must remember that the largest impedi-
ments we will face in creating true global infrastructure are
not technical. We need to encourage workers to welcome
and use open data, open infrastructure and services, and
shared, virtual environments to truly accelerate biodiversity
discovery and documentation to the level at which it can sup-
port timely and meaningful responses to the global
challenges we will be facing.
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