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Abstract

The giant mud crab Scylla serrata provides an important source of income and food to

coastal communities in East Africa. However, increasing demand and exploitation due to

the growing coastal population, export trade, and tourism industry are threatening the sus-

tainability of the wild stock of this species. Because effective management requires a clear

understanding of the connectivity among populations, this study was conducted to assess

the genetic diversity and connectivity in the East African mangrove crab S. serrata. A section

of 535 base pairs of the cytochrome oxidase subunit I (COI) gene and eight microsatellite

loci were analysed from 230 tissue samples of giant mud crabs collected from Kenya, Tan-

zania, Mozambique, Madagascar, and South Africa. Microsatellite genetic diversity (He) ran-

ged between 0.56 and 0.6. The COI sequences showed 57 different haplotypes associated

with low nucleotide diversity (current nucleotide diversity = 0.29%). In addition, the current

nucleotide diversity was lower than the historical nucleotide diversity, indicating overexploi-

tation or historical bottlenecks in the recent history of the studied population. Considering

that the coastal population is growing rapidly, East African countries should promote sus-

tainable fishing practices and sustainable use of mangrove resources to protect mud crabs

and other marine fauna from the increasing pressure of exploitation. While microsatellite loci

did not show significant genetic differentiation (p > 0.05), COI sequences revealed signifi-

cant genetic divergence between sites on the East coast of Madagascar (ECM) and sites on

the West coast of Madagascar, mainland East Africa, as well as the Seychelles. Since East

African countries agreed to achieve the Convention on Biological Diversity (CBD) target to

protect over 10% of their marine areas by 2020, the observed pattern of connectivity and the

measured genetic diversity can serve to provide useful information for designing networks

of marine protected areas.
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Introduction

The giant mud crab (Scylla serrata) is widely distributed in the Indo-Pacific and it is the only

Scylla species found at African shores [1]. The crabs provide an important source of income

and food to coastal communities in East Africa [2]. Adult and juvenile mud crabs inhabit

muddy estuaries and mangrove ecosystems where they can be found buried in mud or taking

shelter in burrows at low tide [3,4]. Mated females migrate offshore to spawn because offshore

waters provide optimum salinity for larval development and greater chances for dispersal [5].

After hatching, the planktonic larvae undergo a series of up to five moults for a period of two

to three weeks [6]. During this period, the larvae are susceptible of being transported by cur-

rents and tides to coastal areas where they settle in sheltered areas among mangroves and sea-

grass. Therefore, currents and tides can influence larval availability. Stock structure and

population persistence depends greatly on successful larval settlement and recruitment into

the adult population [4]. Knowledge of the patterns of connectivity between sites is crucial for

the identification of genetically meaningful management units.

Settlement and recruitment of marine organisms are complex processes, influenced by the

interaction of multiple biotic and abiotic factors which operate at different temporal and spa-

tial scales [7]. To identify suitable areas for settlement, larvae of most crustaceans, including

Scylla serrata, rely on chemical cues produced by adults, predators, and certain macrophytes

[8]. However, the ability of olfactory receptors to detect such cues can be seriously affected by

the presence of contaminants in the environment [9]. Stock structure can also be affected by

overexploitation and habitat alteration. Due to rapid population growth in coastal areas in East

Africa, exploitation of mud crabs and other sea food has increased drastically. The rapidly

expanding tourism industry and export trade has also led to increased demand and exploita-

tion of mud crabs in the region [10]. As a result, the preferred market size has decreased con-

sistently from more than 1 kg two decades ago to the current size of 0.5 kg [2]. A previous

study reported that mud crab catches in the region are dominated by young crabs of 75 mm

carapace length, suggesting that few juveniles are able to recruit into the spawning population

[11]. The reduction of the spawning population can have serious effects on genetic diversity

and sustainability of the mud crab fishery. The collection of juvenile mud crabs for utilisation

in aquaculture [12] also puts more pressure on the wild stock and it is likely to exacerbate over-

exploitation, because this kind of farming is expanding drastically.

The growing coastal population is also threatening the sustainability of mud crab fisheries

due to increased incidences of pollution [13,14], and mangrove degradation [15]. In general,

1.25% of the existing African mangrove forest is lost each year [16]. Habitat loss and fragmen-

tation can influence the genetic structure of populations by limiting dispersal capabilities of

species [17], which leads to reduced fitness of the population and cases of localised extinction.

Although giant mud crabs have very high dispersal capacities [4], they might, over time, suffer

these consequences [18]. Such consequences were reported in other mangrove fauna in the

region [19,20]. Since genetic diversity is the basis for adaptation, management of genetic diver-

sity is crucial for maintaining the sustainability of marine resources. However, conservation

and management of genetic diversity require a clear understanding of the pattern of connectiv-

ity among populations.

In 2010, East African countries agreed to implement the UN Convention on Biological

Diversity (CBD) strategic plan for biodiversity 2011–2020, which targets to protect over 10%

of marine areas by 2020 [21]. Efforts have been taken because up to now, 8.7% of the continen-

tal shelf in Kenya, 8.1% in Tanzania, and 4.0% in Mozambique have been designated as marine

protected areas (MPAs) [22]. The MPAs provide spatial escape for intensely exploited species,

act as buffers against management miscalculations and unforeseen or unusual conditions, and
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they are expected to act as centres for dispersion of propagules to surrounding areas [23]. Assess-

ment of the effectiveness of the existing MPAs and establishment of new MPAs require a clear

understanding of the patterns of connectivity in the study area. Recent studies did not detected

significant genetic differentiation among populations of fiddler crabs Uca annulipes [24] and lit-

torinid gastropods (Littoraria scabra and Littoraria glabrata) [25] along the East African coast.

The significant genetic differentiation among the East African S. serrata populations docu-

mented in a previous study [26] was not confirmed in a more recent study which used a larger

number of individuals [27]. Both studies used a fragment (535 base pairs) of the mitochondrial

cytochrome oxidase subunit I gene (COI) to analyse genetic variability and connectivity. In

order to obtain a better resolution of the genetic population structure of S. serrata in the WIO,

the present study was conducted using both mitochondrial and microsatellite DNA markers.

Materials and methods

Study area

The study was conducted in East African coastal waters. This coastal zone is characterised by

mangrove forests, fringing coral reefs, sand beaches, and rock outcrops [28]. Molluscs, mud-

skippers, sesarmid crabs, fiddler crabs, and giant mud crabs are commonly found in the man-

grove forests [29,30]. The climate of the region has two alternating and distinctive seasons,

influenced by the southern and the northern monsoons, which have a marked effect on winds,

rainfall, as well as air and water temperature [1]. Ocean currents are driven by trade winds,

which are greatly influenced by the movement of the thermal equator (intertropical conver-

gence zone). The currents have a direct influence on nutrient transport and potentially on lar-

val dispersal. The westward South Equatorial Current (SEC) splits at around 17˚S in front of

the East coast of Madagascar and flows northward as the Northeast Madagascar Current

(NEMC) and southward as the Southeast Madagascar Current (SEMC) [31]. The extension of

the SEC northwest of Madagascar reaches the African coast around 11˚S, where it splits into

the northward East African Coast Current (EACC) and the southward Mozambique Current

(MC) [32]. Flow in the Mozambique channel is dominated by eddies which propagate south-

ward into the Agulhas Current (AC) (Fig 1).

Sampling

Sampling of giant mud crabs (S. serrata) was conducted between 2011 and 2015. Tissue sam-

ples of 230 individual giant mud crabs were collected from mangrove forests in Kenya, Tanza-

nia, Mozambique, Madagascar, and South Africa (Fig 1 and Table 1). The mud crabs were

collected at low tide with the help of local fishermen or bought at landing sites. A section of the

pereopod tissue was collected from each animal and preserved in 99.9% ethanol for further

analysis.

Ethics statement

Permission to collect samples was provided by the Tanzania Commission for Science and

Technology (COSTEC), Tanzania Ministry of Agriculture, Livestock and Fisheries, the Uni-

versity of Tuléar (Madagascar), and the School of Marine and Coastal Sciences, Eduardo Mon-

dlane University.

Laboratory analyses

DNA extraction. Total DNA was extracted from the collected tissues (20–30 mg) by

using the E.Z.N.A. Tissue DNA Kit (Omega Bio-Tek Inc., Norcross, USA). Tissue lysis, DNA
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Fig 1. A. Map of the East African coast showing sample sites. SEC = South Equatorial Current, EACC = East African Coast

Current, MC = Mozambique Current, NEMC = Northeast Madagascar Current, SEMC = Southeast Madagascar Current,

AC = Agulhas Current. Main ocean currents were drawn according to [31]. B. Bar charts showing the likelihood of individual

genotypes of belonging to different groups inferred by STRUCTURE analysis. C. Haplotype network of partial cytochrome oxidase

subunit I sequences. Each circle represents a haplotype. Size of each circle is proportional to the number of individuals carrying
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extraction, and purification were performed according to the manufacturer’s protocol. Aga-

rose gel electrophoresis was performed to check the quality of the DNA extracts. Agarose gel

electrophoresis was performed using the procedures outlined in a previous study [20].

Polymerase chain reactions. Polymerase chain reactions (PCR) were performed using an

MJ research PTC 200 Peltier thermocycler. Multiplex PCR was performed to assess microsatel-

lite polymorphism. Two multiplex systems containing eight microsatellite markers were devel-

oped using previously published markers (Table 2)[34–36]. The software Multiplex Manager

ver. 1.2 [37] was used to organise the primers into two multiplex sets. Multiplex PCR reactions

were performed using the Type-it Microsatellite PCR Kit (QIAGEN Inc., Valencia, CA, USA).

Optimisation and thermocycling profiles were conducted according to the manufacturer’s

protocol. Agarose gel electrophoresis was performed to assess yield and quality of the PCR

products. Fragment analysis was performed by using an Applied Biosystems 3730 capillary

sequencer. GeneScan 500 LIZ was used as a size standard. The obtained microsatellite frag-

ments were genotyped with the software GeneMarker ver. 2.2.0 (SoftGenetics LLC, Oakwood,

USA). The program CONVERT ver. 1.3.1 [38] was used to reformat the obtained genotypic

data in order to generate input files for population genetic software packages used in subse-

quent analyses. PCR and fragment analysis were repeated for samples that produced unclear

genotypes.

A fragment (557 bp) of the COI gene was also amplified using the primers mtd10 5´ TT
GATTTTTTGGTCATCCAGAAGT3´ [39] and C/N 2769 5´ TTAAGTCCTAGAAATGTTRGGGA
3´ [33]. The PCR were done in a total volume of 25 μL containing 10 ng of the DNA template,

0.25 U of the Thermus aquaticus DNA polymerase, 0.2 μM of each primer, 0.2 mM DNTP,

each haplotype. The central haplotype represents 109 sequences. Hatch marks = mutations. EA = sites on mainland East Africa,

West coast of Madagascar, and Seychelles. ECM = East Coast of Madagascar.

https://doi.org/10.1371/journal.pone.0186817.g001

Table 1. Number of giant mud crabs (Scylla serrata) collected from mangrove forests at the Western Indian Ocean. COI = Cytochrome oxidase sub-

unit I sequences analysed, COI previous study = COI sequences taken from previous studies [27,33].

Site Site name Coordinates Samples

Longitudes

(˚ E)

Latitudes

(˚ S)

Microsatellite

Samples

COI this study COI previous studies

1 Lamu, Kenya 40.91 2.29 16 14 30

2 Gazi, Kenya 39.54 4.42 13 14 30

3 Pangani, Tanzania 38.97 5.41 32 31 -

4 Dar es Salaam, Tanzania 39.29 6.86 20 20 -

5 Kilwa, Tanzania 39.51 8.93 20 20 -

6 Mtwara, Tanzania 40.21 10.27 20 20 -

7 Pemba, Mozambique 40.51 12.92 23 22 -

8 Quelimane, Mozambique 36.95 18.00 24 25 -

9 Mahajanga, Madagascar 46.31 15.70 21 21 -

10 St Marie, Madagascar 49.93 16.82 19 18 -

11 Vatomandry, Madagascar 48.98 19.32 19 20 -

12 Inhaca, Mozambique 32.95 26.03 - - 28

13 Durban, South Africa 31.04 29.81 - - 11

14 Kwa Zulu Natal, South Africa 29.45 31.67 - 5

15 Mahe island, Seychelles 55.47 4.67 - - 26

Total 227 230 125

https://doi.org/10.1371/journal.pone.0186817.t001
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3 mM MgCl2, 1x Taq buffer, and 0.4 mg bovine serum albumin. The PCR profiles included an

initial denaturation step of 5 min at 95˚C, followed by 35 cycles of 30 s at 95˚C, 30 s at 50˚C,

and 1 min at 72˚C. A final extension step of 10 min at 72˚C was added to ensure complete

amplification. Agarose gel electrophoresis was performed to assess the quality of the PCR

products. Sequencing of both strands of the fragment of COI gene was done with an ABI 3700

XL sequencer. For each sample, the obtained forward and reverse sequences were edited and

aligned using the ClustalW algorithm as implemented in MEGA ver. 6.0 [40] to generate con-

sensus sequences (557 base pairs). The same software was used to translate the nucleotide

sequences into amino acid sequences using the invertebrate mitochondrial genetic code. This

was done in order to ensure that functional mitochondrial DNA was obtained and not a

nuclear pseudogene [41].

Data analyses

Analysis of genetic diversity. Microsatellite based estimates of the observed and expected

heterozygosity were determined with the software GenAlEx ver. 6.5 [42]. The same software

was used to test for departure from the Hardy-Weinberg equilibrium (HWE). Allelic richness

was estimated with the program FSTAT ver. 2.9.3 [43]. The same program was used to esti-

mate FIS (within sub-population inbreeding coefficient) and to test whether it is significantly

different from zero. Prior to these analyses, samples with missing data at three or more loci

were removed from the data set. The data set was also checked for null alleles, large allele drop

out, and scoring errors due stuttering using the software Micro-Checker ver. 2.2 [44].

A total of 230 COI sequences were obtained from the analysed tissues. Alignment of the

edited sequences was performed with MEGA ver. 6.1 [40] to generate a multiple alignment

with 535 base pairs. Estimates of genetic diversity, such as the number of haplotypes, haplotype

diversity, current nucleotide diversity (θπ, based on pairwise differences), and historical nucle-

otide diversity (θw, based on number of segregating sites) were calculated with the program

DnaSP ver. 5.10 [45].

Table 2. Primers used to amplify microsatellite loci in the giant mud crab Scylla serrata from the Western Indian Ocean. Cy3 = Cyanine3.

Dye = fluorescent dye, Na = number of alleles, Ta = annealing temperature.

Locus Repeat motif Primer sequence (5ꞌ-3ꞌ) Size (bp) Na Dye

Multiplex 1 (Ta = 50˚C) Scpa-INI-SSR (AG)31 F: CTGTCTGTCCCTCGCGTCC 167–215 22 HEX

R: TTCTCTCCCTTTTGAGCGAATAAG

Scse53-1 (CA)32 F: CCGTCACTTCACAGTATA 236–240 2 Cy3

R: GTTTTCATTTGAGTTTCC

Scse43-1 (TG)15 F: GAAATCTGAGCTGCCAATC 222–240 10 ROX

R: CACCCATCCAAGTACCAA

Multiplex 2 (Ta = 54.2˚C) Scse96-1 (GAAGG)10 F: CTTCCTCACCGTCCCTAT 270–285 4 6FAM

R: CTCTGTTGCCTAATTCCTC

Scpa-CB-SSR (TG)17 F: CAGTGCAAGGCAAGTCAGGATAC 264–296 15 ROX

R: AGTTCTGGAAGCATGCAATACTGAC

SCY38 (CA)14 F: CAGACACTCAAGTCTCACCTGC 233–245 7 HEX

R: CAGAATGGTTAATGGGGGG

SCY12 (CA)16 F: AGACCTCTCTCCCTTCCTGC 201–211 6 Cy3

R: GGTGAACCTGCTTGGCAC

SCY23 (CA)11 F: TGACAGTTGGTAGAGGCGC 113–117 3 Cy3

F: GTCTAGCTGAGAGGGCGATG

https://doi.org/10.1371/journal.pone.0186817.t002
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Population structure and demographic history. The analysis of molecular variance

(AMOVA) of the microsatellite data was performed with the software Arlequin ver. 3.5.1.2

[46], in order to determine the pattern of differentiation between sample sites. Since the mark-

ers displayed multiple alleles, correlation analysis between the single locus GST values and the

within subpopulation genetic diversity (Hs) was performed using the computer program

CoDiDi (Correlation between Diversity and Differentiation) ver. 1.0 [47]. This was done in

order to determine if GST is an appropriate measure of genetic differentiation for the sampled

populations. Generally, GST gives correct estimates of genetic differentiation if the effect of

mutation is lower than other demographic forces. Mutation effects are lower than other demo-

graphic factors when the correlation between GST and Hs (within subpopulation expected het-

erozygosity) is not significant [47]. Pairwise comparison of GST was performed with GenAlEx

ver. 6.5 [42], in order to determine the pattern of genetic differentiation between populations.

The significance of GST values was determined according to the Holm-Bonferroni sequential

procedure [48]. To test whether individuals clustered according to geographical origin, a

Bayesian analysis implemented in the software STRUCTURE ver. 2.3.4 [49] was performed,

testing for different numbers of clusters (k) in the dataset and giving the corresponding proba-

bilities. STRUCTURE HARVESTER ver. 0.6.94 was used to infer the optimal k through the Δ
k statistic, which is based on the rate of change of log probability of the data between successive

k–values [50].

The 230 analysed COI sequences were combined with 125 previously published sequ-

ences [27,33], to form a combined data set with 355 sequences (Table 1). The software

MEGA ver. 6.0 [40] was used to align the sequences. The program FaBox DNA collapser

ver. 1.41 [51] was used to collapse the aligned sequences into haplotypes and to create input

files for subsequent analyses. Analysis of Molecular Variance (AMOVA) of the sequences

was performed in order to analyse the partitioning of the total genetic variation and to esti-

mate the fixation index. This was done by using the software Arlequin ver. 3.5.1.2 [46]. The

same software was used to compare populations by computing pairwise FST values, which

were calculated from haplotype frequencies. The significance of pairwise FST values was cal-

culated by 10,000 random permutations of haplotypes between populations. The FST p-val-

ues were adjusted using the Holm-Bonferroni sequential procedure [48]. Hierarchical

AMOVA was performed to determine if there is a significant genetic break between groups

of populations. The significance of the population fixation indices (FST and FST) was deter-

mined with 10,000 permutations. A minimum spanning haplotype network was constructed

with the software PopART ver. 1.7 [52] to examine the relationship between haplotypes.

The mutation-scaled effective population size Θ (2Neμ) and the mutation-scaled migration

rates (M = m/μ) (where Ne = effective population size, m = immigration rate per generation,

μ = mutation rate per generation) were estimated using the program MIGRATE-N ver.

3.6.11 [53]. The program was run based on a full migration matrix model and Bayesian

inference. The parameters Θ and M were estimated based on an exponential posterior dis-

tribution and a single long chain run consisting of 50 000 recorded steps, burn-in of 100

000, and four heated chains (static heating scheme) with temperatures 1.00, 1.50, 3.00 and 1

000 000. Prior to this, three replicate runs (without heating) were performed to estimate the

boundaries of Θ and M. The number of immigrants per generation (2Nem) was obtained by

multiplying Θ and M [53].

Fu’s Fs [54] and Tajima’s D [55] tests of neutrality were performed to evaluate the demo-

graphic history of the studied populations. Mismatch distribution analysis was performed to

estimate the parameters of the sudden expansion model such as the sum of the squared devia-

tion, the Harpending’s Raggedness index, and the time since expansion [56].
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Results

Genetic diversity

The eight analysed microsatellite loci did not show significant evidence of large allele drop out

or scoring errors due to stuttering. In addition, the analysed loci did not show significant evi-

dence of null alleles in all sampled populations, except locus Scse43-1 at site 4. The loci Ssse96-

1 and Scpa-INI-SSR showed significant deviation from the HWE at site 3. The locus Scse43-1

showed significant departure from the HWE at sites 4 and 7. Significant departure from the

HWE was also shown by the loci SCY38 and SCY12 at sites 6 and 10, respectively. The locus

Scse53-1 was monomorphic at all sites, except site 1 (Table 2). The total number of alleles ran-

ged between 2 and 22. Expected heterozygosity ranged between 0.561 and 0.601 (Table 3). The

within sub-population inbreeding coefficients (FIS) were not significantly different from zero

(p> 0.00057 (adjusted nominal level)).

A total of 230 COI sequences each with 535 base pairs were obtained. Diversity indices

were calculated only for sites with at least 14 sequences. The analysed sequences showed 40

haplotypes. The highest haplotype diversity was observed at sites 2 and 8 (Table 4). The lowest

haplotype diversity was measured in samples from site 11. The current nucleotide diversity

was generally low as it ranged between 0.07% (site 11) and 0.32% (site 8). In addition, the cur-

rent nucleotide diversity was generally low than the historical nucleotide diversity (θπ< θw).

Demographic history

A multiple alignment of the 230 sequences obtained during this study and the 125 previously

published COI sequences was performed. The sequences were collapsed with the program

FaBox DNA collapser ver. 1.41 [51] to generate 57 haplotypes (Table 5). The haplotype

sequences were submitted to GenBank (accession numbers for haplotypes 1–57 = MF496045

—MF496101). Fu’s Fs and Tajima’s D test of the pooled samples showed significant deviation

from the neutral evolution hypothesis (Tajima’s D = -2.36, p< 0.001: Fu’s Fs = -27.48,

p< 0.001). Mismatch distribution of the pooled samples produced a unimodal distribution,

supporting the null hypothesis of population expansion (Fig 2). The raggedness index and sum

of squared deviations (SSD) showed that the null hypothesis of population expansion cannot

be rejected (raggedness index = 0.025, p> 0.05: SSD = 0.00087; p> 0.05). Fu’s Fs and Tajima’s

D test were also performed for each population and they indicated significant deviation from

Table 3. Indices of microsatellite genetic diversity in the East African giant mud crab Scylla serrata.

N = sample size, Ar = allelic richness, Ho = observed heterozygosity, He = expected heterozygosity, FIS =

within sub population inbreeding coefficient. Cy3 = Cyanine3. For sites see Table 1 and Fig 1.

Site N Ar Ho He FIS

1 16 4.5 0.57 0.591 0.04

2 13 4.5 0.61 0.587 -0.04

3 32 4.9 0.57 0.596 0.04

4 20 4.5 0.61 0.597 -0.02

5 20 4.2 0.64 0.561 -0.14

6 20 4.5 0.53 0.583 0.10

7 22 4.8 0.59 0.593 0.00

8 24 4.9 0.59 0.601 0.01

9 19 4.3 0.58 0.583 0.00

10 18 3.9 0.54 0.576 0.07

11 21 3.7 0.58 0.567 -0.01

https://doi.org/10.1371/journal.pone.0186817.t003
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the hypothesis of neutral evolution for all sampled populations, except populations at sites 6, 7,

11, 13, 14, and 15 (Table 6). The raggedness index for each population was not significant

except for the population at site 8.

Table 4. Indices of molecular diversity in the East African giant mud crab Scylla serrata based on mitochondrial cytochrome oxidase subunit I

sequences. N = sample size, nh = number of haplotypes, h = haplotype diversity, θπ = current nucleotide diversity, θw = historical nucleotide diversity. For

sample sites, see Fig 1 and Table 1.

Sites 1 2 3 4 5 6 7 8 9 10 11 Total

N 14 14 31 20 20 20 22 25 21 18 20 225

nh 5 7 10 4 8 5 5 11 9 8 3 40

h 0.59 0.85 0.66 0.28 0.59 0.66 0.62 0.85 0.65 0.64 0.35 0.75

θπ (%) 0.26 0.29 0.22 0.13 0.18 0.24 0.18 0.32 0.19 0.22 0.07 0.29

θw (%) 0.41 0.29 0.52 0.32 0.42 0.37 0.31 0.50 0.53 0.44 0.11 1.15

https://doi.org/10.1371/journal.pone.0186817.t004

Table 5. Distribution of the cytochrome oxidase subunit I haplotypes in the East African giant mud crab Scylla serrata. The number below each hap-

lotype is proportional to the number of individuals carrying each haplotype, nh = number of haplotypes (GenBank accession numbers for haplotypes 1–-

57 = MF496045—MF496101).

Site nh Distribution of haplotypes

1 12 h1 h10 h11 h12 h13 h16 h17 h18 h19 h26 h27 h28

30 4 1 1 1 1 1 1 1 1 1 1

2 17 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h14 h15 h27 h29 h30 h31 h32

20 1 1 1 1 1 1 1 2 5 1 2 3 1 1 1 1

3 9 h1 h5 h10 h33 h34 h35 h36 h41 h43

18 1 4 1 1 1 1 2 1

4 4 h1 h36 h37 h38

17 1 1 1

5 8 h1 h10 h30 34 h39 h40 h41 h42

13 1 1 1 1 1 1 1

6 5 h1 h10 h13 h19 h27

11 3 1 1 4

7 5 h1 h11 h15 h37 h44

12 1 1 7 1

8 11 h1 h15 h27 h30 h31 h40 h45 h46 h47 h48 h49

4 1 9 2 1 1 1 2 1 1 2

9 9 h1 h15 h27 h33 h45 h54 h55 h56 h57

13 1 1 1 1 1 1 1 1

10 8 h1 h10 h15 h30 h50 h51 h52 h53

1 11 1 1 1 1 1 1

11 3 h10 h15 h52

16 3 1

12 8 h1 h10 h15 h19 h20 h21 h22 h23

18 3 1 1 1 1 2 1

13 1 h1

11

14 2 h1 h5

4 1

15 5 h1 h7 h10 h24 h25

18 1 5 1 1

https://doi.org/10.1371/journal.pone.0186817.t005
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Connectivity among populations

Correlation analysis showed that the association between the microsatellite based genetic dif-

ferentiation (GST) and the within subpopulation expected heterozygosity (Hs) is not significant

(GST = 0.0093Hs—0.0023: r = 0.327, p> 0.05). The analysis of molecular variance of the

microsatellite data showed that the variation among sites was not significant (FST = 0.00424,

p> 0.05, 100172 permutations). STRUCTURE analysis did not detect meaningful genetic

clusters (Fig 1). Apart from that, the analysis of molecular variance (AMOVA) of the COI

sequences revealed significant genetic differentiation among sites (FST = 0.158, p< 0.001;

FST = 0.238, p< 0.001). Pairwise comparison of FST-values showed variable connectivity

Fig 2. Pairwise mismatch distribution showing a unimodal distribution of the cytochrome oxidase subunit I

haplotypes in the East African giant mud crab Scylla serrata.

https://doi.org/10.1371/journal.pone.0186817.g002

Table 6. Parameters estimated under the selective neutrality tests and the sudden expansion model for the East African giant mud crab (Scylla

serrata) based on cytochrome oxidase subunit I sequences. D = Tajima’s D, FS = Fu’s FS, HRI = Harpending’s raggedness index, SSD = sum of squared

deviations, p = p-values. For sample sites, see Table 1 and Fig 1.

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D -2.4 -1.9 -1.8 -1.9 -1.9 -1.2 -1.3 -1.1 -2.3 -1.7 -0.8 -1.7 0.0 -0.8 -0.9

D p 0.00 0.01 0.01 0.01 0.01 0.12 0.08 0.13 0.00 0.02 0.25 0.02 1.00 0.29 0.20

FS -7.2 -13.7 -5.7 -0.8 -5.1 -0.5 -1.2 -5.8 -6.8 -4.6 -0.8 -3.8 0.0 0.1 -1.1

FS p 0.00 0.00 0.00 0.24 0.00 0.33 0.14 0.00 0.00 0.00 0.20 0.00 N.A. 0.30 0.15

SSD 0.39 0.00 0.00 0.01 0.00 0.01 0.01 0.03 0.01 0.01 0.00 0.00 0.00 0.01 0.36

SSD p 0.00 0.60 0.85 0.36 0.80 0.57 0.21 0.07 0.32 0.58 0.47 0.86 0.00 0.79 0.00

HRI 0.2 0.0 0.0 0.3 0.1 0.1 0.1 0.2 0.1 0.0 0.2 0.0 0.0 0.2 0.2

HRI p 0.98 0.63 0.96 0.56 0.86 0.82 0.26 0.02 0.35 0.99 0.40 0.90 0.00 0.94 1.00

https://doi.org/10.1371/journal.pone.0186817.t006
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among the sample sites. With the exception of site 8, populations from Seychelles, Kenya, Tan-

zania, Mozambique, South Africa, and the West Coast of Madagascar did not show significant

genetic differentiation (Table 7). Apart from that, a significant genetic break was observed for

populations on the East coast of Madagascar (ECM) (sites 10 and 11), which were significantly

differentiated from the other sample sites. This was confirmed by hierarchical AMOVA, which

showed significant genetic differentiation between populations on the ECM and other sampled

populations (FCT = 0.361, p< 0.01: FCT = 0.564, p< 0.01). The observed pattern of genetic

differentiation was also revealed in the haplotype network (Fig 1). The network showed a star-

like shape, with two main clusters of haplotypes joined to the main haplotype by few muta-

tions. Haplotypes of populations on the ECM formed a separate cluster, which contained very

few shared haplotypes (4 shared haplotypes and 4 private haplotypes). Sites from Kenya, Tan-

zania, and the Mozambique Channel showed high effective population size compared to other

sites (Table 8). Estimates of the immigration rate showed high rate of immigration to Kenyan

and Tanzanian mangroves and the lowest immigration rate to mangroves at the ECM.

Discussion

Genetic diversity

The East African S. serrata populations showed high mitochondrial DNA haplotype diversity

and low nucleotide diversity (Table 4). This is due to the fact that most haplotypes differed

from each other by very few mutations (one to five mutations, S1 Table). Similar observations

were previously reported in S. serrata in the WIO [26,27] and the Western Pacific [33]. Similar

findings were also reported in other mangrove fauna in the WIO [19,24]. The high haplotype

diversity and low nucleotide diversity might indicate genetic bottleneck events, where most

haplotypes became extinct, followed by population expansion [57]. The measured haplotype

diversity (h = 0.75) and nucleotide diversity (θπ = 0.29%) are low compared to the reported

levels of genetic diversity in the mangrove crabs Uca hesperiae (h = 0.80 ± 0.02, θπ = 0.25 ±
0.16%), Perisesarma guttatum (h = 0.85 ± 0.02, θπ = 0.42 ± 0.25%), and Neosarmatium africa-
num (h = 0.82 ± 0.02, θπ = 0.46 ± 0.26%) [58] from the WIO. Nevertheless, the measured indi-

ces of genetic diversity are higher than the reported levels of genetic diversity in the mangrove

crab Uca occidentalis (h = 0–0.679, θπ = 0–0.13% [24]: h = 0.19 ± 0.03, θπ = 0.03 ± 0.04% [58])

Table 7. Pairwise FST-values derived from pairwise comparison of cytochrome oxidase subunit I sequences of giant mud crabs (Scylla serrata) in

the Western Indian Ocean. Bold values are significant after Holm-Bonferroni sequential correction. For sample sites, see Table 1 and Fig 1.

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0.03

3 0 0

4 0.02 0.10 0.06

5 -0.02 0.01 -0.02 0.02

6 0.01 -0.01 0.00 0.11 0.01

7 0.07 0.03 0.06 0.15 0.06 -0.01

8 0.23 0.09 0.17 0.33 0.19 0.10 0.07

9 -0.01 0.01 -0.01 0.04 -0.02 0.01 0.03 0.16

10 0.36 0.20 0.27 0.52 0.34 0.26 0.35 0.24 0.34

11 0.50 0.34 0.42 0.68 0.51 0.42 0.50 0.38 0.50 0.01

12 -0.01 0.01 -0.01 0.04 -0.02 0.01 0.07 0.20 -0.01 0.32 0.47

13 0.07 0.17 0.13 0.01 0.10 0.19 0.23 0.40 0.11 0.60 0.78 0.10

14 -0.05 0.01 -0.03 -0.04 -0.06 0.01 0.05 0.21 -0.05 0.41 0.63 -0.04 0.17

15 -0.01 0.03 -0.01 0.04 -0.01 0.02 0.10 0.24 0.02 0.33 0.49 -0.01 0.11 -0.02

https://doi.org/10.1371/journal.pone.0186817.t007
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from the WIO, but comparable to the reported levels of genetic diversity in S. serrata in the

WIO [26,27,33,58]. The measured indices of microsatellite diversity are also comparable to

reported levels of microsatellite diversity in Scylla paramamosain from the East China Sea [36].

Since genetic diversity is the raw material for evolution [59], these findings suggest that the

studied population is genetically robust. However, the fact that current genetic diversity was

low compared to historical genetic diversity indicates that the studied population experienced

periods of overexploitation or historical bottlenecks.

Demographic history

The Fu’s Fs and Tajima’s D test of the pooled sample showed significant deviation from the

neutral evolution hypothesis (Tajima’s D = -2.36, p< 0.001: Fu’s Fs = -27.48, p< 0.001).

When the hypothesis of neutral evolution was tested for each population, significant departure

from the hypothesis were observed at all sampled populations, except the populations at sites

6, 7, 11, 13, 14, and 15 (Table 7). This indicates selection or demographic expansion of the S.

serrata populations in the study area. Mismatch distribution of the pooled sample produced a

unimodal distribution, supporting the null hypothesis of population expansion (Fig 2). The

raggedness index and sum of squared deviations (SSD) showed that the null hypothesis of pop-

ulation expansion cannot be rejected (raggedness index = 0.025, p> 0.05: SSD = 0.00087;

p> 0.05). The constructed haplotype network also support the null hypothesis of recent popu-

lation expansion. The network produced a star like structure, with the central haplotypes sur-

rounded by several haplotypes that show little base pair differences (Fig 1). This suggests that

most haplotypes originated recently and it is indicative of recent population expansion from a

small number of founders [60]. The time of expansion was estimated from the expansion

Table 8. Mutation-scaled effective population size (Θ) and the mutation-scaled immigration rates (M = m/μ) in the giant mud crabs (Scylla serrata)

from the Western Indian Ocean. Migrants = number of immigrants (Θ times M). Group A = sites in Kenya and Tanzania, B = sites in the Mozambique chan-

nel, C = sites on the ECM, D = site 12–14, E = Seychelles.

Groups Θ Direction M Migrants Total immigrants Total emigrants

A 0.0445 B! A 300.5 4 7 10

B 0.0125 C! A 156.7 0 4 6

C 0.0028 D! A 432.4 3 3 2

D 0.0058 E! A 384.8 1 4 4

E 0.0017 A! B 66.1 3 4 1

C! B 109.9 0

D! B 144.9 1

E! B 129.7 0

A! C 52 2

B! C 42.7 1

D! C 61.6 0

E! C 68.9 0

A! D 63.5 3

B! D 54.2 1

C! D 198.2 1

E! D 151.6 0

A! E 53.8 2

B! E 60.1 1

C! E 119.2 0

D! E 70.4 0

https://doi.org/10.1371/journal.pone.0186817.t008
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parameter tau (τ), using the equation t = τ/2 μ, where μ is the rate of mutation. Using the esti-

mated τ of 1.10625 and the COI mutation rate of 1.15% per million years [33], the time at

which population expansion began was estimated to be about 90 thousand years ago. This

time corresponds with the last glacial period which spanned from 125 to 14.5 thousands of

years ago. The observed population expansion was probably due to sea level oscillations during

this time [61].

Connectivity among populations

The correlation between microsatellite genetic differentiation (GST) and the within subpopula-

tion heterozygosity was not significant (p> 0.05). This shows that single loci GST-values are

marker independent and that GST is the best estimate of genetic differentiation in the study

area [47]. Apart from that, AMOVA of the microsatellite data did not detect significant genetic

differentiation among sites (FST = 0.00424, p> 0.05, 100172 permutations). In contrast, COI

showed significant genetic differentiation among sites (FST = 0.158, p< 0.05; FST = 0.238,

p< 0.05). The contrasting patterns of genetic differentiation between nuclear and mitochon-

drial DNA are reported in several other species [62,63] and they can be due to a complex array

of conditions that include selection, fluctuations in populations size, variations in sex ratio,

and introgressive hybridisation [62,64]. Introgressive hybridisation from related species, does

not account for the observed patterns, since S. serrata is the only Scylla species occurring in the

study area [1]. In addition, the observed discrepancy might not be due to selection, because

the neutrality tests showed no evidence of selection in the mtDNA (Table 7). While nuclear

DNA is less likely to be affected by bottlenecks and rapid population expansions, mtDNA is

more susceptible to these evolutionary forces due to its smaller effective population size

[65,66]. Evidence of sudden expansion of the East African S. serrata populations was revealed

by the mismatch analysis (Fig 2). This suggests that the observed discordance might be due to

the varying effects of genetic drift on mitochondria and nuclear DNA. In addition, if there is

no variations in sex ratio, the index of genetic differentiation is expected to be four times

higher in mtDNA than nuclear DNA [67]. The ratio of mtDNA to nuclear DNA differentia-

tion in the present study was 37 (0.157/0.00424). This suggests that the observed discrepancy

in population differentiation between mitochondrial and microsatellite DNA is probably due

to variation in sex ratio. Generally, in areas without sex-biased fishery, males giant mud crabs

can outnumber females by three folds [68]. This is in line with what was observed during field-

work, since males showed high abundance. High abundance of male S. serrata in East African

mangroves was also reported in a previous study [11]. Therefore, the observed discordance is

probably due to variation in sex ratio.

The analysis of molecular variance did not detect significant genetic differentiation among

sites in the Seychelles, Kenya, Tanzania, Mozambique, and South Africa. The observed lack of

genetic differentiation between these sites is in line with the findings of previous studies

[27,58]. A similar pattern of genetic differentiation in this region was also reported in other

mangrove fauna [24,25,58]. In contrast to these studies, this study detected significant genetic

differentiation between sites at the East coast of Madagascar (ECM) and sites in mainland East

Africa and the Seychelles (FCT = 0.361, p< 0.05: FCT = 0.564, p< 0.05). The fact that previous

studies did not include samples from the ECM [24,25,58] can explain why no genetic differen-

tiation was detected in previous studies. The fact that significant genetic differentiation

between Mauritius Island and mainland East Africa was not detected in two previous studies

[27,33] can be attributed to consequences of low sample size. The studies used only five

sequences, representing only one haplotype from Mauritius. The observed genetic break

between populations on the ECM and other sample sites is probably due to the influence of
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ocean circulation on larval transport and dispersal. Oceanic circulations in the region are influ-

enced by trade and monsoon winds [1]. Because S. serrata has a planktonic larval stage, the SEC

is expected to transport and disperse larvae from the ECM to East Africa through the EACC,

MC and AC. The observed genetic differentiation indicate that there is limited larval exchange

between sites in the ECM and sites in mainland East African and the Seychelles. This is sup-

ported by the measured mutation scaled immigration rate, which showed lowest rate of immi-

gration to mangroves at the ECM (Table 8). The observed pattern in genetic differentiation is

also supported by the haplotype network, which showed haplotypes from the ECM in a separate

cluster, containing very few shared haplotypes (Fig 1). The patterns of currents can also account

for the lack of genetic differentiation among sites on the coastline of East Africa. Circulation in

East African coastal waters are influenced by the northward EACC, as well as the MC and

eddies in the Mozambique channel, which propagate southward into the south-bound AC [31].

These currents are probably responsible for the dispersal of larvae among adjacent populations

and thus accounting for the observed connectivity. This argument is supported the haplotype

network, which showed that mangrove forests in the Mozambique channel, Kenya, Tanzania,

South Africa and the Seychelles share the most common haplotypes (Fig 1).

Implications for fisheries management

The study showed that the current genetic diversity is low compared to historical genetic diver-

sity (θπ< θw). This shows that the studied population experienced bottlenecks in its recent his-

tory. Considering that indications of mud crab overexploitation and mangrove degradation are

reported in the study area [2,11], measures aimed at enhancing sustainable use of resources

should be strengthened. The observed limited gene flow between ECM and other sites indicate

that protected mangroves and MPAs in the west coast of Madagascar and mainland East Africa

cannot help to protect the biodiversity of mangroves in the ECM. Since Madagascar is planning

to triple the extent of its MPAs by 2020, the observed patterns provide useful information for

establishment of MPA networks around the island. Since giant mud crabs in the WIO are heavily

exploited for food and trade, the observed low population size in the ECM and the Seychelles

suggest that these areas require immediate attention. The mangroves in Kenya and Tanzania

showed a high effective population size, which is maintained by a high rate of immigration from

other mangroves in mainland East Africa. Estimates of migration rate showed highest number

of immigrants to mangroves in this region (Table 8), indicating that overexploitation and degra-

dation of some ecosystems is likely to affect recruitment and stock structure of adjacent ecosys-

tems. Therefore, management efforts should strive to maintain connectivity among mangroves

in this region. Since female giant mud crabs migrate offshore to spawn, management efforts

should focus on both intertidal and offshore ecosystems.

Conclusion

East African countries agreed to implement the UN Convention on Biological Diversity

(CBD) strategic plan for biodiversity 2011–2020, which is targeting to achieve effective protec-

tion of 10% of the global marine ecoregions by 2020 [21]. Progress have been made, because so

far 8.7% of the continental shelf in Kenya, 8.1% in Tanzania, and 4.0% in Mozambique has

been designated [22]. The observed pattern of connectivity and the measured genetic diversity

can serve to provide useful information for designing MPA networks for protection of biodi-

versity in the study area. Since signs of overexploitation and historical bottlenecks were

observed at each site, special attention should be given to areas which showed low genetic

diversity. Considering that the coastal population is growing rapidly, East African countries
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should promote sustainable fishing practices and sustainable use of mangrove resources to

protect giant mud crabs and other marine fauna from the increasing pressure of exploitation.
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