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Bioluminescence relies on the oxidation of a luciferin substrate catalysed by a

luciferase enzyme. Luciferins and luciferases are generic terms used to

describe a large variety of substrates and enzymes. Whereas luciferins can

be shared by phylogenetically distant organisms which feed on organisms

producing them, luciferases have been thought to be lineage-specific

enzymes. Numerous light emission systems would then have co-emerged

independently along the tree of life resulting in a plethora of non-homologous

luciferases. Here, we identify for the first time a candidate luciferase of a lumi-

nous echinoderm, the ophiuroid Amphiura filiformis. Phylogenomic analyses

identified the brittle star predicted luciferase as homologous to the luciferase

of the sea pansy Renilla (Cnidaria), contradicting with the traditional view-

point according to which luciferases would generally be of convergent

origins. The similarity between the Renilla and Amphiura luciferases allowed

us to detect the latter using anti-Renilla luciferase antibodies. Luciferase

expression was specifically localized in the spines which were demonstrated

to be the bioluminescent organs in vivo. However, enzymes homologous to

the Renilla luciferase but unable to trigger light emission were also identified

in non-luminous echinoderms and metazoans. Our findings strongly indicate

that those enzymes, belonging to the haloalkane dehalogenase family, might

then have been convergently co-opted into luciferases in cnidarians and echi-

noderms. In these two benthic suspension-feeding species, similar ecological

pressures would constitute strong selective forces for the functional shift of

these enzymes and the emergence of bioluminescence.
1. Introduction
Bioluminescence is a common phenomenon in marine ecosystems [1,2]. This

ability to emit light seems to have evolved independently at least 40 times

and at least 17 phyla have developed this ability [1–5]. Bioluminescence is

used for (i) predation avoidance, (ii) luring prey, and (iii) intraspecific signalling

during courtship and mating [2,5].

Chemically, bioluminescence is described as the oxidation of a substrate

called luciferin by molecular oxygen [6,7]. The reaction, catalysed by an

enzyme called luciferase, forms a molecular product in an electronically excited

state, which is sufficiently energetic to result in the emission of a photon [2,8]. In

some particular cases, luciferin, oxygen and the luciferase apoprotein are bound

together in a ‘pre-charged’ compound [8,9], the so-called photoproteins. All
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Figure 1. The brittle star Amphiura filiformis. (a) Arms of A. filiformis emerging out of the sediment (in aquarium; scale bar, 1 cm). (b) Oral view of A. filiformis
(scale bar, 2 mm).
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known luciferases are oxygenases that use molecular oxygen

to oxidize an organic substrate to generate energy-rich peroxi-

dic intermediates. To date, several luminous systems have been

described involving different combinations of enzymes, cofac-

tors and luciferins [2,10]. Only a relatively small number of

luciferins have been characterized from luminous marine

organisms and some of them are shared by phylogenetically

distant organisms [2,5,11,12]. This large phylogenetic coverage

is partly explained by the transmission of the luciferin

through the food chain. Coelenterazine, originally named for

its presence in cnidarians [11,13], is the most widespread

marine luciferin [2,5]. It occurs in radiolarians, cnidarians, cte-

nophores, chaetognaths, crustaceans, echinoderms and fish

[8,12,14–18]. Coelenterazine is naturally found in conjunction

with both photoproteins and luciferases stricto sensu. Conver-

sely to the relatively restricted diversity of luciferins, many

different luciferases have already been identified and these

enzymes are supposed to be taxon-specific [2,19].

In echinoderms, luminous species have been described in

four of the five classes (Crinoidea, Holothuroidea, Asteroidea

and Ophiuroidea) but no light emitting species were found in

the class Echinoidea [20,21]. In ophiuroids, out of the 2200

described species [22,23], about 220 were tested for light emis-

sion and more than 75 were proved to be luminous [21]. The

emission of light in brittle stars seems to be mainly or exclu-

sively linked to an anti-predation function [20,24–28].

Despite the relatively common occurrence of luminous

echinoderms, only two ophiuroid species, Amphiura filiformis
and Ophiopsila californica, have been investigated biochemi-

cally. The former luminesces with a coelenterazine–luciferase

system whereas the latter emits light with a photoprotein

system [9,29]. Up to now, no luciferase sensu lato sequence

has been obtained for echinoderms and those enzymes

remain enigmatic in this phylum.

The present work aimed at the identification of the

luciferase of A. filiformis. Sequences homologous to known

luciferases were searched in the genome and an adult tran-

scriptome of A. filiformis. This ophiuroid, a dominant species

on most sublittoral soft bottoms in Europe, is characterized

by an infaunal lifestyle with the individuals feeding on

suspended particles by extending two arms in the water

column (figure 1). Genome and transcriptome analyses made

it possible to highlight putative luciferase genes and their

expression in the arms of A. filiformis. In particular, sequences

similar to the luciferase of the luminous sea pansy Renilla
(RLuc) attracted our attention. The corresponding RLuc-like
protein was specifically detected by immunofluorescence in

the arm spines of the brittle star, which were identified as

the photogenic areas by videography with brilliance intensifi-

cation and macrophotography. RLuc-like sequences were also

identified in genomic and transcriptomic databases from non-

luminous echinoderms and metazoans. However, only extracts

from the arms of A. filiformis produced light in the presence of

coelenterazine, raising interesting questions about the other

putative functions of these luciferase-like enzymes.
2. Results and discussion
2.1. Renilla luciferase-like proteins are expressed in

both luminous and non-luminous organisms
Thanks to new genomic and transcriptomic data, the number

of available sequences for echinoderms, including the brittle

star model species A. filiformis, is increasing exponentially

[30–34]. In order to highlight the potential luciferase of

this luminous ophiuroid species, sequences similar to all

known light emitting luciferases were searched in a reference

transcriptome of adult arm tissue [35]. We found transcripts

similar to four luciferase queries: the Renilla luciferase

(RLuc) (Cnidaria, Anthozoa), the Suberites luciferase (Pori-

fera), the firefly luciferases (sequences from multiple

species, Arthropoda, Insecta) and the Watasenia candidate

luciferases (Mollusca, Cephalopoda). Summarized BLAST

results are presented in the electronic supplementary material

table S1. Among these different sequences, we focused our

attention on three mRNA sequences with a strong homology

with the luciferase gene of the Anthozoa Renilla sp. (RLuc).

Indeed, the luminous system of A. filiformis is considered as

physiologically similar to the one of Renilla reniformis, with

the use of an identical luciferin, coelenterazine, and a com-

parable coelenterazine-specific luciferase activity [8,36,37]

making this RLuc-like enzyme a good luciferase candidate

for A. filiformis. Additionally, Suberites and firefly lucifera-

ses and Watasenia candidate luciferases all correspond to

the ‘insect-type luciferases’ which, with the exception of

Watasenia candidate luciferase, are not coelenterazine-specific

[11,38,39]. Moreover, these luciferases are known to be hom-

ologous to the ubiquitous acyl-CoA ligases that are involved

in metabolism of all organisms from bacteria to metazoans

[39–42]. It is not surprising therefore to find sequences

similar to acyl-CoA ligases in A. filiformis.

http://rsob.royalsocietypublishing.org/
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RLuc is known to catalyse the oxidation of coelenterazine

to yield coelenteramide, carbon dioxide and blue light [14].

It shows a characteristic alpha/beta-hydrolase fold [43] and

was found to have a high level of similarity in tertiary

structure and to be homologous to the bacterial haloalkane

dehalogenases, which are primarily hydrolase enzymes cleav-

ing a carbon–halogen bond in halogenated compounds

[44–48]. This degree of similarity is somewhat surprising con-

sidering that haloalkane dehalogenases are hydrolases and

RLuc is an oxygenase. A bacterial haloalkane dehalogenase

(outgroup, Mycobacterium sp.) is presented in the alignment

of figure 2. Mycobacterium haloalkane dehalogenase shares

high sequence identity (38%) and similarity (55%) with

the sequence of RLuc (electronic supplementary material,

table S2). Asp120, Glu144 and His285 together form the

active site of RLuc and homologous bacterial haloalkane

dehalogenases, and mutations within this site deactivate the

enzymes [44,49,50]. The amino acid triad is conserved in

most luciferase-like sequences we identified (see legend of

figure 2 for additional information). Cys 73 is also required

for the activity of RLuc [44,51], and this specific amino acid

was found in all metazoan luciferase-like sequences while it

is absent in numerous microbial haloalkane dehalogenases

(figure 2 and electronic supplementary material, figure S1).

In addition to the three identified arm transcripts, geno-

mic searches highlighted 13 RLuc-like sequences in the

draft genome of A. filiformis. All RLuc-like sequences and

the reciprocal BLASTx results are presented in the electronic

supplementary material, files S1 and table S3, respectively.

RLuc-like predicted protein sequences share up to 44%

amino acid identity and a general similarity of up to 62%

when compared with RLuc (electronic supplementary

material, table S2). BLAST searches also permitted identifi-

cation of multiple sequences homologous to RLuc in the

sea urchin genome and in several echinoderm transcriptomes

belonging to all five classes [32,35,52] (electronic supplemen-

tary material, file S2). Predicted sea urchin luciferase-like

sequences have up to 48% of identity and up to 66% of

similarity to RLuc with a coverage of 96% (electronic

supplementary material, table S2). RLuc-like genes were

also detected in other deuterostome genomes including

one urochordate (Ciona intestinalis), one cephalochordate (Bran-
chiostoma floridae) and one hemichordate (Saccoglossus
kowalevskii). Although these three species are not luminous,

these sequences share more than 44% of identity with the

RLuc sequence (electronic supplementary material, table S2).

On the contrary, RLuc-like genes are rare in ‘non-

deuterostomia’ databases. Besides RLuc, no similar sequence

was found in cnidarians but homologous sequences were

detected in Trichoplax adhaerens (Placozoa) and Capitella teleta
(Annelida). RLuc-like genes were also reported in another

annelid species (Hermodice carunculata) [53]. The alignment of

representative RLuc-like sequences found in online databases

is presented in the electronic supplementary material, figure S1.

Phylogenetic relationships between RLuc, haloalkane

dehalogenases and metazoan RLuc-like sequences were esti-

mated using maximum-likelihood, Bayesian and distance

methods (figure 3). The distinction between bacterial haloalk-

ane dehalogenases and the ‘RLuc-like proteins containing

group’ is clear. Within this second group, the topology of

the trees appears variable and uncertain. In all cases, RLucs

cluster with echinoderm sequences. Interestingly, T. adhaerens
sequences do not cluster with RLuc sequences but instead
branch basally to the cluster containing other metazoan

RLuc-like sequences.

2.2. Only RLuc-like proteins from luminous organisms
present a luciferase activity

As we identified RLuc-like proteins in both luminous and non-

luminous echinoderms, one can wonder whether all these

proteins have luciferase activity and, therefore, whether the

light emission capacity of the organisms could be in fact limited

by the presence/absence of the luciferin substrate. Dietary

acquisition of luciferins has indeed been proved experimentally

or suggested for numerous species [2,16,54–57]. In A. filiformis,
bioluminescence decreases with time in captivity (J Delroisse

2015, personal observations) suggesting that coelenterazine or

a precursor might be acquired through feeding in this species.

Non-luminous species could thus simply not have access

to coelenterazine. To measure luciferase activity, a specific

assay was performed on crude protein extracts from the arms

of A. filiformis, on the one hand, and from the tube feet of the

sea star Asterias rubens, on the other hand, to test their ability

to trigger light emission in the presence of the coelenterazine

substrate (figure 4a–c). Purified RLuc was used as a positive

control (figure 4c). Asterias rubens was chosen because we ident-

ified RLuc-like sequences in that species at the transcriptomic

level (see above). Additionally, we immunodetected the

RLuc-like protein in A. rubens tube feet using a polyclonal anti-

body specifically directed against RLuc (electronic

supplementary material, figure S2), confirming the presence

of the protein in tube feet. After coelenterazine addition to the

protein extracts, light emission was detected in the A. filiformis
arm extracts (figure 4a) while no bioluminescence was observed

in the A. rubens tube foot extracts (figure 4b), supporting the

idea that the sea star RLuc-like protein does not exhibit a light

triggering activity. Interestingly, Fortova et al. [58] also reported

the absence of light emission after coelenterazine addition, indi-

cating the absence of a luciferase function, for a particular RLuc-

like protein from the sea urchin Strongylocentrotus purpuratus.
This protein, DspA, was recently characterized as the first

haloalkane dehalogenase of non-microbial origin [58]. It

seems therefore that RLuc-like proteins would possess only

the haloalkane dehalogenase function in sea urchins. Similarly,

we could hypothesize that the haloalkane dehalogenase func-

tion, defined as the ancestral function, might be also

conserved in other non-luminous species.

In parallel to this in vitro assay, A. filiformis biolumines-

cence was characterized in vivo, at the organism level, by

triggering light emission in anaesthetized individuals, using

entire individuals, arm fragments or discs. The light emission

kinetics was measured by luminometry using the technique

of Mallefet et al. [59]. When chemically stimulated, the brittle

star A. filiformis emitted flashes of light for about 30 s

(figure 4d ). The measurement of bioluminescence spectral

emission by microspectrophotometry showed a maximum

emission peak (lmax) at about 472 nm (figure 4e).

2.3. Light production and RLuc-like protein expression
are co-localized at the level of the spines in
Amphiura filiformis

Detection of the luminous areas of A. filiformis by macropho-

tography and videography with brilliance intensification

http://rsob.royalsocietypublishing.org/
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Figure 2. Multiple sequence alignment of the Renilla luciferase (RLuc), deuterostomian luciferase-like proteins (echinoderms: Amphiura filiformis, Asterias rubens,
Strongylocentrotus purpuratus; hemichordate: Saccoglossus kowalevskii; urochordate: Ciona intestinalis), placozoan luciferase-like protein (Trichoplax adhaerens) and
bacterial haloalkane dehalogenase proteins (Mycobacterium sp.). Alignment was performed using GENEIOUS software (MAFFT alignment). Conserved amino acids rela-
tive to RLuc are coloured in all sequences. The amino acid triad known as the active site in haloalkane dehalogenases and RLuc is framed in black. This amino acid
triad is conserved in all luciferase-like sequences we identified except in A. filiformis Gen853765. Sequence accession numbers: T. adhaerens, XP002116677;
R. reniformis, AAA29804.1; S. purpuratus, DspA XP794172.2; A. rubens, Ar_comp22488; B. floridae, XP002611539.1; C. intestinalis, XP002127127.1; S. kowalevskii,
XP002738321.1, XPE002730984.1; Mycobacterium sp., WP067006024.
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Figure 4. In vitro luciferase activity of echinoderm extracts (a – c) and in vivo light emission in A. filiformis (d,e). Luminometry tests of luciferase activity performed
on A. filiformis arm extracts (a), on A. rubens tube foot extracts (b), and on purified RLuc (c), after coelenterazine addition. (d ) Light emission of an arm in an adult
A. filiformis measured by luminometry (RLU: relative light unit). (e) Bioluminescence spectral emission of A. filiformis measured by microspectrophotometry.
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demonstrated blue emission on the arms and the absence of

emission on the disc (figure 5a), as previously reported in

the literature [60,61]. It is noteworthy that, under normal con-

ditions, arms are the only part of the animal body present in

the water column, the disc being buried in the sediment.

From observations of flashing individuals or arms, it could

be seen that light originated from areas located at the spine

tips only (figure 5b–d). All spines emitted light when the

arm was chemically stimulated. Conversely, a mechanical

stimulation triggered only a local light emission around the

stimulated area.
Immunodetections were performed on whole mount arm

tissues of A. filiformis using polyclonal antibodies specifically

directed against RLuc. Immunoreactive cells, presumably

corresponding to photocytes, were detected only in the

stroma, i.e. the inner part of the spines, where they form

cell clusters (figure 5e–g). This organization is congruent

with the description in some historical studies of putative

photocytes present at the base of the spines of A. filiformis,
their cell body tapering into an elongated cell process running

all along the spine [60]. The specific expression of RLuc-like

proteins in the spines together with our in vivo observations

http://rsob.royalsocietypublishing.org/
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Figure 5. Light emission in A. filiformis and immunodetection of RLuc-like proteins. (a) Aboral view of an individual during KCl stimulation (scale bar, 0.5 cm).
(b) Detail of the arm light emission (scale bar, 1 mm). (c) Detail of the spine emission (scale bar, 150 mm). (d ) Schematic view of the arm bioluminescence.
(e – h) Immunolocalization of RLuc-like proteins (red) and acetylated alpha tubulin (green) in an arm portion of A. filiformis. Nuclear DAPI staining is in blue
(scale bar, 200 mm). (h) Immunolocalization of RLuc-like proteins in a single spine (scale bar, 40 mm; a, arm; d, disc; s, spine; bs, luminous blue spot; p, podia.
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of light emission at the level of these organs strongly support

that these proteins are the candidate luciferases of A. filiformis.

Additional data on the biochemical characterization of the

enzyme will be needed to confirm the ability of the candi-

date luciferase of A. filiformis to emit light in vitro. Although

the fine morphology of the luminous areas and the photo-

cyte organization still remain unknown in this species, our

findings open the way for further studies on its biolumines-

cence. In particular, as photocytes have been identified, their

ultrastructure could be investigated to describe potential
microsources involved in the light emission, as previously

performed for other luminous species [62–64].

2.4. New insights on luciferase evolution
Bioluminescence relies on the oxidation of a luciferin sub-

strate catalysed by a luciferase enzyme, luciferins and

luciferases being generic terms covering a large variety of

substrates and enzymes [6,7]. Whereas luciferins can be

shared by phylogenetically distant organisms which feed

http://rsob.royalsocietypublishing.org/
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on organisms producing them (as exemplified by the wide-

spread occurrence of coelenterazine in the marine world

[2,11,16]; figure 6), luciferases have been thought to be

lineage-specific enzymes [2,19]. Numerous light emission

systems would then have co-emerged independently along

the tree of life resulting in a plethora of non-homologous luci-

ferases. Global sequence-similarity-based clustering analyses

conducted using all known light-emitting proteins including

luciferases and photoproteins available in online databases

and the RLuc-like proteins from A. filiformis partially confirm

this hypothesis. Indeed, in the resulting cluster map, homolo-

gous luciferases are usually grouped in taxonomically

homogeneous clusters which appear unrelated one with

another (figure 6). As far as coelenterazine-specific luciferases

are concerned, several have been described [45,65–70] but

no large sequence similarity has been seen among them so far

(figure 6). This suggests that many enzymes evolved to use

coelenterazine for light emission [2,5]. However, paradoxically,

our study shows the presence of two similar luciferases in two

phylogenetically distant species (Renilla sp. and A. filiformis;
figure 6). Recently, similar cases were described for the

sponge Suberites domuncula and for the squid Watasenia scintil-
lans, in which firefly-type luciferases were demonstrated to be

involved in light emission [71,72] (figure 6). Luciferases could

be co-opted from other genes with other functions and share

high similarity with these primary genes, as was shown in

the case of insect bioluminescence in which luciferases evolved

from acyl-CoA ligases [39].

In the case of Renilla/Amphiura, luciferases presumably

evolved from haloalkane dehalogenases that have a hydrolase

function. Some authors speculated that a horizontal gene trans-

fer could be responsible for the presence of that bacterial-type
homologous protein in Octocorallia [44], which would explain

the high similarity between them and why we were not able to

find any related sequence in other cnidarians. Horizontal gene

transfers are known to play an important role in eukaryo-

tic evolution leading to the acquisition of novel traits [73].

Our results highlight the possibility that the horizontal gene

transfer occurred in the common ancestor of cnidarians and

echinoderms (hypothesis a). Additionally, multiple indepen-

dent horizontal gene transfers from prokaryotes to multiple

marine metazoans could also explain the sparse presence of

haloalkane dehalogenases/RLuc-like proteins in metazoans

(hypothesis b). Horizontal gene transfers from prokaryotes to

metazoans, with secondary gene transfers from metazoans or

other metazoans, could also be hypothesized (hypothesis c).

However, our phylogenetic analyses support a monophyly of

metazoan haloalkane dehalogenases/RLuc-like proteins

making the hypothesis a more probable. Hypotheses a and b are

illustrated in figure 7. This contradicts classical theories

suggesting that bioluminescence arose from oxygenases

involved in the removal of oxygen (by-product of oxygen

detoxification when photosynthetic oxygen started to rise in

the atmosphere) or involved in oxidation of increasing levels

of unsaturated and aromatic compounds during early life his-

tory [74,75]. As we showed here and as it was already shown

for insect bioluminescence [39], all luciferases did not originate

from oxygenases but, rather, selective pressure drove the emer-

gence of new oxygenase functions. A coelenterazine-specific

luciferase could have evolved from an enzyme that catalyses

a non-related reaction, as coelenterazine chemiluminesces

easily in aprotic solvents [44]. The enzyme would only have

to provide a hydrophobic environment for coelenterazine to

achieve some low level of bioluminescence [44].

http://rsob.royalsocietypublishing.org/
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We hypothesize that the haloalkane-dehalogenase func-

tion constituted the metazoan ancestral state, which shifted

to luciferase in octocorals (lineage of Renilla sp. and poten-

tially luminous sea-pens in general) and brittle stars

(lineage of A. filiformis; Echinoderm, Ophiuroidea). Haloalk-

ane dehalogenases were therefore co-opted in luciferases in

these two specific lineages. In A. filiformis, the apparent

recent duplications of luciferase-like genes could suggest the

co-occurrence of both luciferase and haloalkane dehalogenase

functions. Alternatively, luciferase/haloalkane dehalogenase

enzymes could be bifunctional and potentially have a con-

text-dependent bioactivity as observed for some insect

luciferases [42]. This last hypothesis is, however, not corrobo-

rated by our luminometry assay results or by a previous study

performed on sea urchins [58]. Renilla sp. and A. filiformis thus

possess similar and homologous luciferases to catalyse the

photogenous reaction. A co-emergence happened between

these two luminous systems using the same compounds

under similar environmental pressure. The ecological simi-

larities between the sea pansies (R. muelleri, R. reniformis)

and the brittle star A. filiformis, such as the benthic position

on soft sediments and the suspension-feeding strategy,

would presumably allow dietary acquisition of coelenterazine

from planktonic organisms. The predation pressure would

positively select the emergence of the bioluminescence func-

tion endowing these slow moving organisms with an

efficient anti-predation strategy.
3. Material and methods
3.1. Organisms sampling
Specimens of A. filiformis (Müller 1776) were collected in

the vicinity of the Lovén Center (Kristineberg, Sweden) at

25–40 m in depth by using a mechanical grab. The brittle
stars were carefully rinsed out of the sediment, and intact

specimens were kept in sediment and running deep-

seawater (12–14%, 32‰ salinity). The individuals were

transported to the Marine Biology Laboratory of the

University of Louvain-La-Neuve, and kept alive in a closed-

circuit marine aquarium filled with a mixture of natural and

artificial recirculating seawater until required. Individuals of

A. rubens Linnaeus, 1758 were collected on rocks during low

tide at Audresselles (Opal Coast, France) and Roscoff (Brittany,

France). They were transported to the Biology of Marine

Organisms and Biomimetics laboratory of the University of

Mons, where they were kept in a marine aquarium with

closed circulation (138C, 32‰ salinity).

3.2. In silico analyses
To identify the putative luciferase of A. filiformis, reference

luciferase/photoprotein sequences from various luminous

organisms obtained from open-access NCBI online databases

(http://www.ncbi.nlm.nih.gov) were used in a ‘tBLASTn/

reciprocal BLASTx’ approach. These sequences are listed in

the electronic supplementary material, file S1. Homologous

sequences to reference luciferases were first searched using

tBLASTn in an adult arm transcriptome of A. filiformis [35].

Arms are known to be the light emitting body parts in

A. filiformis. Candidate matches were then used as queries

in a reciprocal BLASTx search against online databases in

order to highlight sequences with high similarity with poten-

tial luciferases. Secondarily, luciferase-like sequences of

interest found in the A. filiformis transcriptome were also

searched in the draft genome of A. filiformis (http://www.

echinobase.org/Echinobase/AfiBase) using local tFASTx

searches (v. 36.3.4) on the A. filiformis dataset (957 749 165

residues and 1 407 676 sequences). Exon–intron predictions

were performed on potential luciferase sequences found in

the A. filiformis draft genome using the GENSCAN Web

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.echinobase.org/Echinobase/AfiBase
http://www.echinobase.org/Echinobase/AfiBase
http://www.echinobase.org/Echinobase/AfiBase
http://tolweb.org
http://tolweb.org
http://rsob.royalsocietypublishing.org/
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Server (http://genes.mit.edu/GENSCAN.html). A similar

approach was used to look for luciferase-like sequences

in multiple echinoderm databases such as the genome of

S. purpuratus (Echinoidea) and a tube foot transcriptome

of A. rubens (Asteroidea) [32,35,52,76].
In silico translations were performed on all luciferase-

like sequences found in transcriptomic databases using the

Expasy translate tool (http://web.expasy.org/translate/).

A multiple amino acid alignment of RLuc-like protein

sequences was performed using MAFFT algorithm (v. 7.017,

E-INS-i, Scoring matrix: Blosum 62, Gap open penalty: 1,53)

and refined using MUSCLE algorithm in GENEIOUS software

(v. 8.1.5., www.geneious.com). For phylogenetic and similarity

matrix reconstructions, alignment trimming was performed

using BMGE software (http://mobyle.pasteur.fr/cgi-bin/

portal.py). Pairwise sequence identity and similarity were cal-

culated from multiple sequence alignments using SIAS web

tool (http://imed.med.ucm.es/Tools/sias.html).

Based on the trimmed alignment, phylogenetic analyses

were conducted using maximum-likelihood, Bayesian and

distance methods. Maximum-likelihood phylogenetic tree

was reconstructed using the PHYML software (v. 3.1/3.0

aLRT) [77]. Best-fit model analysis was previously conducted

using Smart Model Selection (http://www.atgc-montpellier.

fr/sms). The WAG substitution model was selected assuming

an estimated proportion of invariant sites (of 0.041) and four

gamma-distributed rate categories to account for rate hetero-

geneity across sites. The gamma shape parameter was

estimated directly from the data (gamma ¼ 1.078). Reliability

for internal branch was assessed using the bootstrapping

method (100 bootstrap replicates). The Bayesian phylogenetic

tree was reconstructed using MRBAYES software (v. 3.2.3) [78]

using the GTR þ G model. Four Markov Chain Monte Carlo

(MCMC) chains were run for 3 000 000 generations reaching a

split frequency value inferior to 0.01. The first 25% sampled

trees were discarded as ‘burn-in’. Finally, a 50% majority

rule consensus tree was constructed. In parallel, neighbour

joining tree was reconstructed using BIONJ. The JTT model

was used for substitution while the default gamma shape

parameter was set to 1. Reliability of the tree was assessed

using the bootstrapping method (1000 bootstrap replicates).

All known luciferase/photoprotein sequences and new

potential A. filiformis luciferase sequences were also analysed

using a sequence-similarity-based clustering approach based

on BLASTp e-values and using the CLANS software [79].

3.3. Luminometry assays and spectral measurements
In order to measure luciferase activity, an in vitro luminome-

try assay was performed in which echinoderm fresh tissue

extracts were subjected to coelenterazine addition following

the procedure classically used in luciferase characterization

[8]. Arms from the brittle star A. filiformis and tube feet

from the sea star A. rubens were homogenized in a fivefold

(w : v) volume of distilled water, in order to extract the poten-

tial luciferase-like enzymes as described in Shimomura [8].

The extracts were kept on ice and in the dark between exper-

iments and all reactions were performed within 1 h after

extraction. Crude extracts were tested for their capability to

react with purified coelenterazine (NanoLight, working

dilution of 0.044 g l21 in methanol) by recording light

emission. The assay was done as follows: 20 ml of the tissue

extract was added to 180 ml of Tris–HCl buffer (Tris–HCl
0.01 mol l21, NaCl 0.5 mol l21, pH 7.4). In another tube, 5 ml

of coelenterazine was added to 195 ml of the same buffer.

The background emission of the catalyst tube was recorded

for 10 s, then the luciferin mixture was quickly injected and

the recording was continued for 3 min. Measurements were

performed using a FB12 luminometer (Berthold Detection

System) coupled with the FB12 SIRIUS software v. 1.5. The

potential weak self-emission of both reagents was indepen-

dently controlled. As a positive control, coelenterazine was

tested for its capability to react with purified Renilla luciferase

(NanoLight, working dilution of 0.2 g l21 in Tris–HCl buffer;

Tris–HCl 0.01 mol l21, NaCl 0.5 mol l21, pH 7.4).

An in vivo assay was also conducted to measure the kinetics

of bioluminescence in A. filiformis. Animals were first anaesthe-

tized by immersion for 3 min in 3.5% w/v MgCl2 in artificial

seawater (ASW: 400.4 mmol l21 NaCl, 9.9 mmol l21, CaCl2,

9.6 mmol l21, KCl 52.3 mmol l21, MgCl2 27.7 mmol l21,

Na2SO4 20 mmol l21 Tris, pH 8.3). Arms were isolated from

the disc and rinsed in filtered seawater. Light emission of

entire individuals or dissected body parts was triggered using

a v/v mixture of seawater and KCl 400 mmol l21 solution

according to the method of Mallefet et al. [59]. Light responses

were recorded using the FB12 Berthold Luminometer linked

to a laptop computer.

In order to localize the bioluminescent areas, fresh and

anaesthetized organisms were used for luminous areas detec-

tion by videography with brilliance intensification and high

sensitivity macrophotography. Emission spectra were measured

with an optical fibre coupled to a minispectrophotometer

(Hamamatsu Photonics K.K. TM-VIS/NIR: C10083CA,

Hamamatsu-City, Japan; precision: 6 nm) positioned

perpendicularly to the photogenic tissue at a distance of 1 mm.

3.4. Luciferase immunodetection
Based on the high similarity between luciferase-like sequences

found in the genomic and transcriptomic databases and the

Renilla luciferase, we performed immunodetections on arms

of A. filiformis using a commercial anti-RLuc polyclonal anti-

body (Genetex GTX125851, generated against the full-length

RLuc protein). Arms were anaesthetized using 7% MgCl2 in

an equivolumic mixture of filtered seawater and distilled

water. Arm pieces were fixed in 4% paraformaldehyde in

phosphate-buffered saline (PBS: 0.05 M PB/0.3 M NaCl, pH

7.4) for 30–60 min at room temperature and decalcified in

an equivolumic mixture of ascorbic acid 2% and NaCl

0.3 M. They were then rinsed in PBS and blocked in the

same buffer containing 0.25% bovine serum albumin, 0.1%

Triton X-100 and 0.05% NaN3 for 30 min at room temperature.

Anti-RLuc antibodies were diluted in PBS (with a final

dilution of 1 : 250). After an overnight incubation at 48C, tis-

sues were rinsed in PBS and then incubated in a 1 : 500

dilution of Alexa Fluor conjugated goat anti-rabbit IgG (Mol-

ecular Probes) for 2 h at room temperature. After several

washes in PBS, specimens were mounted in an antifading

medium containing a glycerin/PBS mixture and examined

using a Zeiss 510 metaconfocal microscope. Projections

shown in the present study were produced by recording con-

focal image stacks and projecting them in the z-axis using FIJI.

The specificity of the immunofluorescent labelling was con-

firmed by control experiments using exactly the same

procedure but omitting either the primary or the secondary

antibodies. Double labelling was also performed using a

http://genes.mit.edu/GENSCAN.html
http://genes.mit.edu/GENSCAN.html
http://web.expasy.org/translate/
http://web.expasy.org/translate/
http://www.geneious.com
http://mobyle.pasteur.fr/cgi-bin/portal.py
http://mobyle.pasteur.fr/cgi-bin/portal.py
http://mobyle.pasteur.fr/cgi-bin/portal.py
http://imed.med.ucm.es/Tools/sias.html
http://imed.med.ucm.es/Tools/sias.html
http://www.atgc-montpellier.fr/sms
http://www.atgc-montpellier.fr/sms
http://www.atgc-montpellier.fr/sms
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second round of incubation of primary antibody, namely

anti-acetylated alpha-tubulin (SIGMA).
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Identification of the catalytic triad in the haloalkane
dehalogenase from Sphingomonas paucimobilis
UT26. FEBS Lett. 446, 177 – 181. (doi:10.1016/
S0014-5793(99)00199-4)
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